Sample records for vertical range resolution

  1. Effective resolution concepts for lidar observations

    NASA Astrophysics Data System (ADS)

    Iarlori, M.; Madonna, F.; Rizi, V.; Trickl, T.; Amodeo, A.

    2015-12-01

    Since its establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has provided, through its database, quantitative aerosol properties, such as aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it independently (from Raman or high-spectral-resolution lidars). These coefficients are stored in terms of vertical profiles, and the EARLINET database also includes the details of the range resolution of the vertical profiles. In fact, the algorithms used in the lidar data analysis often alter the spectral content of the data, mainly acting as low-pass filters to reduce the high-frequency noise. Data filtering is described by the digital signal processing (DSP) theory as a convolution sum: each filtered signal output at a given range is the result of a linear combination of several signal input data samples (relative to different ranges from the lidar receiver), and this could be seen as a loss of range resolution of the output signal. Low-pass filtering always introduces distortions in the lidar profile shape. Thus, both the removal of high frequency, i.e., the removal of details up to a certain spatial extension, and the spatial distortion produce a reduction of the range resolution. This paper discusses the determination of the effective resolution (ERes) of the vertical profiles of aerosol properties retrieved from lidar data. Large attention has been dedicated to providing an assessment of the impact of low-pass filtering on the effective range resolution in the retrieval procedure.

  2. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.

    2018-05-01

    Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  3. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    NASA Astrophysics Data System (ADS)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to derive vertical profiles of aerosol backscatter ratio and aerosol extinction at 355 nm. Set of Stokes and anti-Stokes PRR lines are separated by the polychromator to derive temperature profiles. The humidity profiles have vertical resolution from 15 m (within the boundary layer) to 100-450 m (within the free troposphere), time resolution of 30 min and 5 km vertical range at daytime and 10 km at night-time. The aerosol backscatter ratio and extinction profiles have similar resolution with vertical range of approximately 10 km. The temperature profiles are derived from PRR lidar signals, simultaneously recorded in analog and photon counting mode, allowing vertical range of approximately 10 km. Vaisala RS-92 and Snow-White chilled mirror hygrometer radiosondes were used for calibration of the water vapor and temperature channels. Continuous temperature profiles were obtained and were coupled with the available water vapor mixing ratio profiles to obtain relative humidity time series. Lidar derived aerosol backscatter ratio profiles will be used for estimation of the boundary layer height and validation of NWP model results. Optical thickness time series are currently compared to independent measurements from a collocated sun photometer to assess the performance of the aerosol channel.

  4. Wide field of view 3D label-free super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Nolvi, Anton; Laidmäe, Ivo; Maconi, Göran; Heinämäki, Jyrki; Hæggström, Edward; Kassamakov, Ivan

    2018-02-01

    Recently, 3D label-free super-resolution profilers based on microsphere-assisted scanning white light interferometry were introduced having vertical resolution of few angstroms (Å) and a lateral resolution approaching 100 nm. However, the use of a single microsphere to generate the photonic nanojet (PNJ) limits their field of view. We overcome this limitation by using polymer microfibers to generate the PNJ. This increases the field of view by order of magnitude in comparison to the previously developed solutions while still resolving sub 100 nm features laterally and keeping the vertical resolution in 1nm range. To validate the capabilities of our system we used a recordable Blu-ray disc as a sample. It features a grooved surface topology with heights in the range of 20 nm and with distinguishable sub 100 nm lateral features that are unresolvable by diffraction limited optics. We achieved agreement between all three measurement devices across lateral and vertical dimensions. The field of view of our instrument was 110 μm by 2 μm and the imaging time was a couple of seconds.

  5. Effects of measurement resolution on the analysis of temperature time series for stream-aquifer flux estimation

    NASA Astrophysics Data System (ADS)

    Soto-López, Carlos D.; Meixner, Thomas; Ferré, Ty P. A.

    2011-12-01

    From its inception in the mid-1960s, the use of temperature time series (thermographs) to estimate vertical fluxes has found increasing use in the hydrologic community. Beginning in 2000, researchers have examined the impacts of measurement and parameter uncertainty on the estimates of vertical fluxes. To date, the effects of temperature measurement discretization (resolution), a characteristic of all digital temperature loggers, on the determination of vertical fluxes has not been considered. In this technical note we expand the analysis of recently published work to include the effects of temperature measurement resolution on estimates of vertical fluxes using temperature amplitude and phase shift information. We show that errors in thermal front velocity estimation introduced by discretizing thermographs differ when amplitude or phase shift data are used to estimate vertical fluxes. We also show that under similar circumstances sensor resolution limits the range over which vertical velocities are accurately reproduced more than uncertainty in temperature measurements, uncertainty in sensor separation distance, and uncertainty in the thermal diffusivity combined. These effects represent the baseline error present and thus the best-case scenario when discrete temperature measurements are used to infer vertical fluxes. The errors associated with measurement resolution can be minimized by using the highest-resolution sensors available. But thoughtful experimental design could allow users to select the most cost-effective temperature sensors to fit their measurement needs.

  6. A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity

    NASA Astrophysics Data System (ADS)

    Reckinger, Shanon M.; Petersen, Mark R.; Reckinger, Scott J.

    2015-12-01

    MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are carried out using three of the vertical coordinate types available in MPAS-Ocean, including z-star with partial bottom cells, z-star with full cells, and sigma coordinates. The results are first benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model, which are used to set the base case used for this work. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Lastly, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates.

  7. Resolution-dependent behavior of subgrid-scale vertical transport in the Zhang-McFarlane convection parameterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Heng; Gustafson, Jr., William I.; Hagos, Samson M.

    2015-04-18

    With this study, to better understand the behavior of quasi-equilibrium-based convection parameterizations at higher resolution, we use a diagnostic framework to examine the resolution-dependence of subgrid-scale vertical transport of moist static energy as parameterized by the Zhang-McFarlane convection parameterization (ZM). Grid-scale input to ZM is supplied by coarsening output from cloud-resolving model (CRM) simulations onto subdomains ranging in size from 8 × 8 to 256 × 256 km 2s.

  8. Overflow Simulations using MPAS-Ocean in Idealized and Realistic Domains

    NASA Astrophysics Data System (ADS)

    Reckinger, S.; Petersen, M. R.; Reckinger, S. J.

    2016-02-01

    MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Also, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates. Additionally, preliminary measurements of overflow diagnostics on global simulations using a realistic oceanic domain are presented.

  9. Variability in Tropospheric Ozone over China Derived from Assimilated GOME-2 Ozone Profiles

    NASA Astrophysics Data System (ADS)

    van Peet, J. C. A.; van der A, R. J.; Kelder, H. M.

    2016-08-01

    A tropospheric ozone dataset is derived from assimilated GOME-2 ozone profiles for 2008. Ozone profiles are retrieved with the OPERA algorithm, using the optimal estimation method. The retrievals are done on a spatial resolution of 160×160 km on 16 layers ranging from the surface up to 0.01 hPa. By using the averaging kernels in the data assimilation, the algorithm maintains the high resolution vertical structures of the model, while being constrained by observations with a lower vertical resolution.

  10. Antenna induced range smearing in MST radars

    NASA Technical Reports Server (NTRS)

    Watkins, B. J.; Johnston, P. E.

    1984-01-01

    There is considerable interest in developing stratosphere troposphere (ST) and mesosphere stratosphere troposphere (MST) radars for higher resolution to study small-scale turbulent structures and waves. At present most ST and MST radars have resolutions of 150 meters or larger, and are not able to distinguish the thin (40 - 100 m) turbulent layers that are known to occur in the troposphere and stratosphere, and possibly in the mesosphere. However the antenna beam width and sidelobe level become important considerations for radars with superior height resolution. The objective of this paper is to point out that for radars with range resolutions of about 150 meters or less, there may be significant range smearing of the signals from mesospheric altitudes due to the finite beam width of the radar antenna. At both stratospheric and mesospheric heights the antenna sidelobe level for lear equally spaced phased arrays may also produce range aliased signals. To illustrate this effect the range smearing functions for two vertically directed antennas have been calculated, (1) an array of 32 coaxial-collinear strings each with 48 elements that simulates the vertical beam of the Poker Flat, Glaska, MST radar; and (2) a similar, but smaller, array of 16 coaxial-collinear strings each with 24 elements.

  11. Effective resolution concepts for lidar observations

    NASA Astrophysics Data System (ADS)

    Iarlori, M.; Madonna, F.; Rizi, V.; Trickl, T.; Amodeo, A.

    2015-05-01

    Since its first establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has been devoted to providing, through its database, exclusively quantitative aerosol properties, such as aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it independently (from Raman or High Spectral Resolution Lidars). As these coefficients are provided in terms of vertical profiles, EARLINET database must also include the details on the range resolution of the submitted data. In fact, the algorithms used in the lidar data analysis often alter the spectral content of the data, mainly working as low pass filters with the purpose of noise damping. Low pass filters are mathematically described by the Digital Signal Processing (DSP) theory as a convolution sum. As a consequence, this implies that each filter's output, at a given range (or time) in our case, will be the result of a linear combination of several lidar input data relative to different ranges (times) before and after the given range (time): a first hint of loss of resolution of the output signal. The application of filtering processes will also always distort the underlying true profile whose relevant features, like aerosol layers, will then be affected both in magnitude and in spatial extension. Thus, both the removal of noise and the spatial distortion of the true profile produce a reduction of the range resolution. This paper provides the determination of the effective resolution (ERes) of the vertical profiles of aerosol properties retrieved starting from lidar data. Large attention has been addressed to provide an assessment of the impact of low-pass filtering on the effective range resolution in the retrieval procedure.

  12. Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl NPP accident: influence of varying emission-altitude and model horizontal and vertical resolution

    NASA Astrophysics Data System (ADS)

    Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A. P.

    2013-03-01

    The coupled model LMDzORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer 137Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5°×1.25°, and the same grid stretched over Europe to reach a resolution of 0.45°×0.51°. The vertical dimension is represented with two different resolutions, 19 and 39 levels, respectively, extending up to mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 vertical levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The best choice for the model validation was the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986. This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for 137Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. However, the best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to Atlas), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for the 39 layers run due to the increase of the levels in conjunction with the uncertainty of the source term. Moreover, the ecological half-life of 137Cs in the atmosphere after the accident ranged between 6 and 9 days, which is in good accordance to what previously reported and in the same range with the recent accident in Japan. The high response of LMDzORINCA model for 137Cs reinforces the importance of atmospheric modeling in emergency cases to gather information for protecting the population from the adverse effects of radiation.

  13. A Vertically Flow-Following, Icosahedral Grid Model for Medium-Range and Seasonal Prediction. Part 1: Model Description

    NASA Technical Reports Server (NTRS)

    Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques; hide

    2015-01-01

    A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.

  14. Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl Nuclear Power Plant accident: influence of varying emission-altitude and model horizontal and vertical resolution

    NASA Astrophysics Data System (ADS)

    Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A. P.

    2013-07-01

    The coupled model LMDZORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer 137Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5° × 1.27°, and the same grid stretched over Europe to reach a resolution of 0.66° × 0.51°. The vertical dimension is represented with two different resolutions, 19 and 39 levels respectively, extending up to the mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The model is validated with the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986 using the emission inventory from Brandt et al. (2002). This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for 137Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. The best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to De Cort et al., 1998), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for the 39 layers run due to the increase of the levels in conjunction with the uncertainty of the source term. Moreover, the ecological half-life of 137Cs in the atmosphere after the accident ranged between 6 and 9 days, which is in good accordance to what previously reported and in the same range with the recent accident in Japan. The high response of LMDZORINCA model for 137Cs reinforces the importance of atmospheric modelling in emergency cases to gather information for protecting the population from the adverse effects of radiation.

  15. Ozone height profiles using laser heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Jain, S. L.

    1994-01-01

    The monitoring of vertical profiles of ozone and related minor constituents in the atmosphere are of great significance to understanding the complex interaction between atmospheric dynamics, chemistry and radiation budget. An ultra high spectral resolution tunable CO2 laser heterodyne radiometer has been designed, developed and set up at the National Physical Laboratory, New Delhi to obtain vertical profiles of various minor constituents the characteristic absorption lines in 9 to 11 micron spectral range. Due to its high spectral resolution the lines can be resolved completely and data obtained are inverted to get vertical profiles using an inversion technique developed by the author. In the present communication the salient features of the laser heterodyne system and the results obtained are discussed in detail.

  16. Calibration between Color Camera and 3D LIDAR Instruments with a Polygonal Planar Board

    PubMed Central

    Park, Yoonsu; Yun, Seokmin; Won, Chee Sun; Cho, Kyungeun; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    Calibration between color camera and 3D Light Detection And Ranging (LIDAR) equipment is an essential process for data fusion. The goal of this paper is to improve the calibration accuracy between a camera and a 3D LIDAR. In particular, we are interested in calibrating a low resolution 3D LIDAR with a relatively small number of vertical sensors. Our goal is achieved by employing a new methodology for the calibration board, which exploits 2D-3D correspondences. The 3D corresponding points are estimated from the scanned laser points on the polygonal planar board with adjacent sides. Since the lengths of adjacent sides are known, we can estimate the vertices of the board as a meeting point of two projected sides of the polygonal board. The estimated vertices from the range data and those detected from the color image serve as the corresponding points for the calibration. Experiments using a low-resolution LIDAR with 32 sensors show robust results. PMID:24643005

  17. The high-energy x-ray diffraction and scattering beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Gomez, A.; Dina, G.; Kycia, S.

    2018-06-01

    The optical design for the high-energy x-ray diffraction and scattering beamline of the Brockhouse sector at the Canadian Light Source is described. The design is based on a single side-bounce silicon focusing monochromator that steers the central part of a high-field permanent magnet wiggler beam into the experimental station. Two different configurations are proposed: a higher energy resolution with vertical focusing and a lower energy resolution with horizontal and vertical focusing. The monochromator will have the possibility of mounting three crystals: one crystal optimized for 35 keV that focuses in the horizontal and vertical directions using reflection (1,1,1) and two other crystals both covering the energies above 40 keV: one with only vertical focusing and another one with horizontal and vertical focusing. The geometry of the last two monochromator crystals was optimized to use reflections (4,2,2) and (5,3,3) to cover the broad energy range from 40 to 95 keV.

  18. Ultrahigh vertical resolution radar measurements in the lower stratosphere at Arecibo

    NASA Technical Reports Server (NTRS)

    Ierkic, H. M.; Perillat, P.; Woodman, R. F.

    1990-01-01

    The paper reports on heretofore unprecedented observations of the turbulent layers in the lower stratosphere using the Arecibo 2380-MHz radar. Spectral profiles with about 20 m height and 15 s time resolutions at altitudes in the range 16-19 km are used to parametrize relevant characteristics of the turbulence, namely, vertical widths, distributions, lifetimes, and cutoffs height. These measurements validate previous deconvolved estimates and are free from contaminating factors like shear or beam broadening and partial reflections. Some theoretical predictions are verified, in particular those relating to the height of cutoff and the outer scale of the turbulence.

  19. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  20. A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model

    DOE PAGES

    Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.; ...

    2016-09-16

    Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less

  1. A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.

    Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less

  2. Tropopause sharpening by data assimilation

    NASA Astrophysics Data System (ADS)

    Pilch Kedzierski, R.; Neef, L.; Matthes, K.

    2016-08-01

    Data assimilation was recently suggested to smooth out the sharp gradients that characterize the tropopause inversion layer (TIL) in systems that did not assimilate TIL-resolving observations. We investigate whether this effect is present in the ERA-Interim reanalysis and the European Centre for Medium-Range Weather Forecasts (ECMWF) operational forecast system (which assimilate high-resolution observations) by analyzing the 4D-Var increments and how the TIL is represented in their data assimilation systems. For comparison, we also diagnose the TIL from high-resolution GPS radio occultation temperature profiles from the COSMIC satellite mission, degraded to the same vertical resolution as ERA-Interim and ECMWF operational analyses. Our results show that more recent reanalysis and forecast systems improve the representation of the TIL, updating the earlier hypothesis. However, the TIL in ERA-Interim and ECMWF operational analyses is still weaker and farther away from the tropopause than GPS radio occultation observations of the same vertical resolution.

  3. Sensitivity of mesoscale-model forecast skill to some initial-data characteristics, data density, data position, analysis procedure and measurement error

    NASA Technical Reports Server (NTRS)

    Warner, Thomas T.; Key, Lawrence E.; Lario, Annette M.

    1989-01-01

    The effects of horizontal and vertical data resolution, data density, data location, different objective analysis algorithms, and measurement error on mesoscale-forecast accuracy are studied with observing-system simulation experiments. Domain-averaged errors are shown to generally decrease with time. It is found that the vertical distribution of error growth depends on the initial vertical distribution of the error itself. Larger gravity-inertia wave noise is produced in forecasts with coarser vertical data resolution. The use of a low vertical resolution observing system with three data levels leads to more forecast errors than moderate and high vertical resolution observing systems with 8 and 14 data levels. Also, with poor vertical resolution in soundings, the initial and forecast errors are not affected by the horizontal data resolution.

  4. Efficient Computation of Atmospheric Flows with Tempest: Validation of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, Jorge; Ullrich, Paul

    2016-04-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods for a wide range of spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of idealized test cases to validate the performance of the SNFEM applied in the vertical with an emphasis on flow features and dynamic behavior. Internal gravity wave, mountain wave, convective bubble, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  5. Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling

    NASA Astrophysics Data System (ADS)

    Barrera-Verdejo, María; Crewell, Susanne; Löhnert, Ulrich; Orlandi, Emiliano; Di Girolamo, Paolo

    2016-08-01

    Continuous monitoring of atmospheric humidity profiles is important for many applications, e.g., assessment of atmospheric stability and cloud formation. Nowadays there are a wide variety of ground-based sensors for atmospheric humidity profiling. Unfortunately there is no single instrument able to provide a measurement with complete vertical coverage, high vertical and temporal resolution and good performance under all weather conditions, simultaneously. For example, Raman lidar (RL) measurements can provide water vapor with a high vertical resolution, albeit with limited vertical coverage, due to sunlight contamination and the presence of clouds. Microwave radiometers (MWRs) receive water vapor information throughout the troposphere, though their vertical resolution is poor. In this work, we present an MWR and RL system synergy, which aims to overcome the specific sensor limitations. The retrieval algorithm combining these two instruments is an optimal estimation method (OEM), which allows for an uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information, taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied to a 2-month field campaign around Jülich (Germany), focusing on clear sky periods. Different experiments are performed to analyze the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity uncertainty is reduced above the last usable lidar range by a factor of ˜ 2 with respect to the case where only RL measurements are used. The analysis in terms of degrees of freedom per signal reveal that most information is gained above the usable lidar range, especially important during daytime when the lidar vertical coverage is limited. The retrieved profiles are further evaluated using radiosounding and Global Position Satellite (GPS) water vapor measurements. In general, the benefit of the sensor combination is especially strong in regions where Raman lidar data are not available (i.e., blind regions, regions characterized by low signal-to-noise ratio), whereas if both instruments are available, RL dominates the retrieval. In the future, the method will be extended to cloudy conditions, when the impact of the MWR becomes stronger.

  6. Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction

    PubMed Central

    Wang, Le; Xu, Xiaoji G.

    2015-01-01

    Scattering-type scanning near-field optical microscopy provides access to super-resolution spectroscopic imaging of the surfaces of a variety of materials and nanostructures. In addition to chemical identification, it enables observations of nano-optical phenomena, such as mid-infrared plasmons in graphene and phonon polaritons in boron nitride. Despite the high lateral spatial resolution, scattering-type near-field optical microscopy is not able to provide characteristics of near-field responses in the vertical dimension, normal to the sample surface. Here, we present an accurate and fast reconstruction method to obtain vertical characteristics of near-field interactions. For its first application, we investigated the bound electromagnetic field component of surface phonon polaritons on the surface of boron nitride nanotubes and found that it decays within 20 nm with a considerable phase change in the near-field signal. The method is expected to provide characterization of the vertical field distribution of a wide range of nano-optical materials and structures. PMID:26592949

  7. Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden; Baines, Kevin Hays; Drossart, Pierre; Fegley, Bruce; Orton, Glenn; Noll, Keith; Reitsema, Harold; Bjoraker, Gordon L.

    1990-01-01

    The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5 microns. ACM recovers spatially-resolved atmospheric temperatures in Titan's troposphere via 3- and 5-microns spectral transitions. Together, the mixing ratio profiles and the aerosol distributions are utilized to investigate the photochemistry of the stratosphere and consequent formation processes for aerosols. Finally, ring opacities, observed during solar occultations and in reflected sunlight, provide a measurement of the particle size and distribution of ring material. ACM will be the first high spectral resolution mapping spectrometer on an outer planet mission for atmospheric studies while retaining a high resolution spatial mapping capability. ACM, thus, opens an entirely new range of orbital scientific studies of the origin, physio-chemical evolution and structure of the Saturn and Titan atmospheres. ACM provides high angular resolution spectral maps, viewing nadir and near-limb thermal radiation and reflected sunlight; sounds planetary limbs, spatially resolving vertical profiles to several atmospheric scale heights; and measures solar occultations, mapping both atmospheres and rings. ACM's high spectral and spatial resolution mapping capability is achieved with a simplified Fourier Transform spectrometer with a no-moving parts, physically compact design. ACM's simplicity guarantees an inherent stability essential for reliable performance throughout the lengthy Cassini Orbiter mission.

  8. Microwave Radiometer and Lidar Synergy for High Vertical Resolution Thermodynamic Profiling in a Cloudy Scenario

    NASA Astrophysics Data System (ADS)

    Barrera Verdejo, M.; Crewell, S.; Loehnert, U.; Di Girolamo, P.

    2016-12-01

    Continuous monitoring of thermodynamic atmospheric profiles is important for many applications, e.g. assessment of atmospheric stability and cloud formation. Nowadays there is a wide variety of ground-based sensors for atmospheric profiling. However, no single instrument is able to simultaneously provide measurements with complete vertical coverage, high vertical and temporal resolution, and good performance under all weather conditions. For this reason, instrument synergies of a wide range of complementary measurements are more and more considered for improving the quality of atmospheric observations. The current work presents synergetic use of a microwave radiometer (MWR) and Raman lidar (RL) within a physically consistent optimal estimation approach. On the one hand, lidar measurements provide humidity and temperature measurements with a high vertical resolution albeit with limited vertical coverage, due to overlapping function problems, sunlight contamination and the presence of clouds. On the other hand, MWRs obtain humidity, temperature and cloud information throughout the troposphere, with however only a very limited vertical resolution. The benefits of MWR+RL synergy have been previously demonstrated for clear sky cases. This work expands this approach to cloudy scenarios. Consistent retrievals of temperature, absolute and relative humidity as well as liquid water path are analyzed. In addition, different measures are presented to demonstrate the improvements achieved via the synergy compared to individual retrievals, e.g. degrees of freedom or theoretical error. We also demonstrate that, compared to the lidar, the higher temporal resolution of the MWR presents a strong advantage for capturing the high temporal variability of the liquid water cloud.. Finally, the results are compared with independent information sources, e.g. GPS or radiosondes, showing good consistency. The study demonstrates the benefits of the sensor combination, being especially strong in regions where lidar data is not available, whereas if both instruments are available, the lidar measurements dominate the retrieval.

  9. Vertical structure of the lower troposphere derived from MU radar, unmanned aerial vehicle, and balloon measurements during ShUREX 2015

    NASA Astrophysics Data System (ADS)

    Luce, Hubert; Kantha, Lakshmi; Hashiguchi, Hiroyuki; Lawrence, Dale; Mixa, Tyler; Yabuki, Masanori; Tsuda, Toshitaka

    2018-12-01

    The ShUREX (Shigaraki UAV Radar Experiment) 2015 campaign carried out at the Shigaraki Middle and Upper atmosphere (MU) observatory (Japan) in June 2015 provided a unique opportunity to compare vertical profiles of atmospheric parameters estimated from unmanned aerial vehicle (UAV), balloon, and radar data in the lower troposphere. The present work is intended primarily as a demonstration of the potential offered by combination of these three instruments for studying the small-scale structure and dynamics in the lower troposphere. Here, we focus on data collected almost simultaneously by two instrumented UAVs and two meteorological balloons, near the MU radar operated continuously during the campaign. The UAVs flew along helical ascending and descending paths at a nearly constant horizontal distance from the radar ( 1.0 km), while the balloons launched from the MU radar site drifted up to 3-5 km in the altitude range of comparisons ( 0.5 to 4.0 km) due to wind advection. Vertical profiles of squared Brünt-Väisälä frequency N 2 and squared vertical gradient of generalized potential refractive index M 2 were estimated at a vertical resolution of 20 m from pressure, temperature, and humidity data collected by UAVs and radiosondes. Profiles of M 2 were also estimated from MU radar echo power at vertical incidence at a vertical sampling of 20 m and various time resolutions (1-4 min). The balloons and the MU radar provided vertical profiles of wind and wind shear S so that two independent estimates of the gradient Richardson number ( Ri = N 2/ S 2) could be obtained at a range resolution of 150 m. The two estimates of Ri profiles also showed remarkable agreement at all altitudes. We show that all three instruments detected the same prominent temperature and humidity gradients, down to decameter scales in stratified conditions. These gradients extended horizontally over a few kilometers at least and persisted for hours without significant changes, indicating that the turbulent diffusion was weak . Large discrepancies between N 2and M 2 profiles derived from the balloon, UAV, and radar data were found in a turbulent layer generated by a Kelvin-Helmholtz (KH) shear flow instability in the height range from 1.80 to 2.15 km. The cause of these discrepancies appears to depend on the stage of the KH billows.

  10. Simultaneous piston position and tilt angle sensing for large vertical displacement micromirrors by frequency detection inductive sensing

    NASA Astrophysics Data System (ADS)

    Tseng, V. F.-G.; Xie, H.

    2015-11-01

    This paper presents a frequency detection based inductive eddy current sensing mechanism to simultaneously sense the piston position and tilt angle of the mirror plate of large vertical displacement micromirrors that exhibit piston scan ranges above 100 μm. This is accomplished by sensing the inductance change, and thus resonant frequency shift, of two microfabricated sensing coils packaged underneath the mirror plate. For demonstration purpose, the coils were paired with discrete circuit components to oscillate at 11.9 MHz and 12.5 MHz, respectively. The piston position and tilt angle of the mirror plate could be simultaneously monitored over a 500 μm piston scan range, achieving a maximum piston sensitivity of 4.15 kHz/μm with a piston sensing resolution of 96 nm and a maximum tilt angle sensitivity of 60.5 kHz/° with a tilt angle sensing resolution of 0.0013°. Analytical modeling of the coil inductance change via image theory was also conducted, showing that the sensor sensitivity and resolution could be improved by increasing the coil oscillation frequency and decreasing the coil size.

  11. Weather Research and Forecasting Model with Vertical Nesting Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improves WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundarymore » conditions to be provided through the nesting procedure.« less

  12. Increasing vertical resolution in US models to improve track forecasts of Hurricane Joaquin with HWRF as an example

    PubMed Central

    Zhang, Banglin; Tallapragada, Vijay; Weng, Fuzhong; Liu, Qingfu; Sippel, Jason A.; Ma, Zaizhong; Bender, Morris A.

    2016-01-01

    The atmosphere−ocean coupled Hurricane Weather Research and Forecast model (HWRF) developed at the National Centers for Environmental Prediction (NCEP) is used as an example to illustrate the impact of model vertical resolution on track forecasts of tropical cyclones. A number of HWRF forecasting experiments were carried out at different vertical resolutions for Hurricane Joaquin, which occurred from September 27 to October 8, 2015, in the Atlantic Basin. The results show that the track prediction for Hurricane Joaquin is much more accurate with higher vertical resolution. The positive impacts of higher vertical resolution on hurricane track forecasts suggest that National Oceanic and Atmospheric Administration/NCEP should upgrade both HWRF and the Global Forecast System to have more vertical levels. PMID:27698121

  13. Improved Ozone Profile Retrievals Using Multispectral Measurements from NASA 'A Train' Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Worden, J.; Livesey, N. J.; Irion, F. W.; Schwartz, M. J.; Bowman, K. W.; Pawson, S.; Wargan, K.

    2013-12-01

    Ozone, a radiatively and chemically important trace gas, plays various roles in different altitude ranges in the atmosphere. In the stratosphere, it absorbs the solar UV radiation from the Sun and protects us from sunburn and skin cancers. In the upper troposphere, ozone acts as greenhouse gas. Ozone in the middle troposphere reacts with many anthropogenic pollutants and cleans up the atmosphere. Near surface ozone is harmful to human health and plant life. Accurate monitoring of ozone vertical distributions is crucial for a better understanding of air quality and climate change. The Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder (MLS) are both in orbit on the Earth Observing System Aura satellite and are providing ozone concentration profile measurements. MLS observes limb signals from 118 GHz to 2.5 THz, and measures upper tropospheric and stratospheric ozone concentration (among many other species) with a vertical resolution of about 3 km. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. AIRS is a grating spectrometer, on EOS Aqua satellite, that measures the thermal infrared (TIR) radiances emitted by Earth's surface and by gases and particles in the spectral range 650 - 2665 cm-1. We present an approach to combine simultaneously measured UV and TIR radiances together with the retrieved MLS ozone fields, to improve the ozone sounding. This approach has the potential to provide a decadal record of ozone profiles with an improved spatial coverage and vertical resolution from space missions. For evaluating the quality of retrieved profiles, we selected a set of AIRS and OMI measurements, whose ground pixels were collocated with ozonesonde launch sites. The results from combination of these measurements are presented and discussed. The improvements on vertical resolution of tropospheric ozone profiles from the MLS/AIRS/OMI joint retrievals, as compared with either spectral region alone, are estimated using the ozonesonde measurements.

  14. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  15. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, Jorge E.; Ullrich, Paul A.

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  16. Full-field chromatic confocal surface profilometry employing digital micromirror device correspondence for minimizing lateral cross talks

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Chang, Yi-Wei; Li, Hau-Wei

    2012-08-01

    Full-field chromatic confocal surface profilometry employing a digital micromirror device (DMD) for spatial correspondence is proposed to minimize lateral cross-talks between individual detection sensors. Although full-field chromatic confocal profilometry is capable of enhancing measurement efficiency by completely removing time-consuming vertical scanning operation, its vertical measurement resolution and accuracy are still severely affected by the potential sensor lateral cross-talk problem. To overcome this critical bottleneck, a DMD-based chromatic confocal method is developed by employing a specially-designed objective for chromatic light dispersion, and a DMD for lateral pixel correspondence and scanning, thereby reducing the lateral cross-talk influence. Using the chromatic objective, the incident light is dispersed according to a pre-designed detection range of several hundred micrometers, and a full-field reflected light is captured by a three-chip color camera for multi color detection. Using this method, the full width half maximum of the depth response curve can be significantly sharpened, thus improving the vertical measurement resolution and repeatability of the depth detection. From our preliminary experimental evaluation, it is verified that the ±3σ repeatability of the height measurement can be kept within 2% of the overall measurement range.

  17. Combined VIS-IR spectrometer with vertical probe beam

    NASA Astrophysics Data System (ADS)

    Protopopov, V.

    2017-12-01

    A prototype of a combined visible-infrared spectrometer with a vertical probe beam is designed and tested. The combined spectral range is 0.4-20 μ with spatial resolution 1 mm. Basic features include the ability to measure both visibly transparent and opaque substances, as well as buried structures, such as in semiconductor industry; horizontal orientation of a sample, including semiconductor wafers; and reflection mode of operation, delivering twice the sensitivity compared to the transmission mode.

  18. Vertical resolution of baroclinic modes in global ocean models

    NASA Astrophysics Data System (ADS)

    Stewart, K. D.; Hogg, A. McC.; Griffies, S. M.; Heerdegen, A. P.; Ward, M. L.; Spence, P.; England, M. H.

    2017-05-01

    Improvements in the horizontal resolution of global ocean models, motivated by the horizontal resolution requirements for specific flow features, has advanced modelling capabilities into the dynamical regime dominated by mesoscale variability. In contrast, the choice of the vertical grid remains a subjective choice, and it is not clear that efforts to improve vertical resolution adequately support their horizontal counterparts. Indeed, considering that the bulk of the vertical ocean dynamics (including convection) are parameterized, it is not immediately obvious what the vertical grid is supposed to resolve. Here, we propose that the primary purpose of the vertical grid in a hydrostatic ocean model is to resolve the vertical structure of horizontal flows, rather than to resolve vertical motion. With this principle we construct vertical grids based on their abilities to represent baroclinic modal structures commensurate with the theoretical capabilities of a given horizontal grid. This approach is designed to ensure that the vertical grids of global ocean models complement (and, importantly, to not undermine) the resolution capabilities of the horizontal grid. We find that for z-coordinate global ocean models, at least 50 well-positioned vertical levels are required to resolve the first baroclinic mode, with an additional 25 levels per subsequent mode. High-resolution ocean-sea ice simulations are used to illustrate some of the dynamical enhancements gained by improving the vertical resolution of a 1/10° global ocean model. These enhancements include substantial increases in the sea surface height variance (∼30% increase south of 40°S), the barotropic and baroclinic eddy kinetic energies (up to 200% increase on and surrounding the Antarctic continental shelf and slopes), and the overturning streamfunction in potential density space (near-tripling of the Antarctic Bottom Water cell at 65°S).

  19. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2013-06-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  20. Evaluation of NCMRWF unified model vertical cloud structure with CloudSat over the Indian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Jayakumar, A.; Mamgain, Ashu; Jisesh, A. S.; Mohandas, Saji; Rakhi, R.; Rajagopal, E. N.

    2016-05-01

    Representation of rainfall distribution and monsoon circulation in the high resolution versions of NCMRWF Unified model (NCUM-REG) for the short-range forecasting of extreme rainfall event is vastly dependent on the key factors such as vertical cloud distribution, convection and convection/cloud relationship in the model. Hence it is highly relevant to evaluate the vertical structure of cloud and precipitation of the model over the monsoon environment. In this regard, we utilized the synergy of the capabilities of CloudSat data for long observational period, by conditioning it for the synoptic situation of the model simulation period. Simulations were run at 4-km grid length with the convective parameterization effectively switched off and on. Since the sample of CloudSat overpasses through the monsoon domain is small, the aforementioned methodology may qualitatively evaluate the vertical cloud structure for the model simulation period. It is envisaged that the present study will open up the possibility of further improvement in the high resolution version of NCUM in the tropics for the Indian summer monsoon associated rainfall events.

  1. Design and fabrication of a large vertical travel silicon inchworm microactuator for advanced segmented silicon space telescope (ASSIST)

    NASA Technical Reports Server (NTRS)

    Yang, E.; Dekany, R.; Padin, S.

    2003-01-01

    The goal of this research is to develop inchworm motor systems capable of simultaneously providing nanometer resolution, high stiffness, large output force, long travel range, and compactness for ultraprecision positioning applications in space.

  2. Experiments on tropical stratospheric mean-wind variations in a spectral general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, K.; Yuan, L.

    1992-12-15

    A 30-level version of the rhomboidal-15 GFDL spectral climate model was constructed with roughly 2-km vertical resolution. This model fails to produce a realistic quasi-biennial oscillation (QBO) in the tropical stratosphere. Several simulations were conducted in which the zonal-mean winds and temperatures in the equatorial lower and middle stratosphere were instantaneously perturbed and the model was integrated while the mean state relaxed toward its equilibrium. The time scale for the mean wind relaxation varied from over one month at 40 km to a few months in the lower stratosphere. The wind relaxations in the model also displayed the downward phasemore » propagation characteristic of QBO wind reversals, and mean wind anomalies of opposite sign to the imposed perturbation appear at higher levels. In the GCM the downward propagation is clear only above about 20 mb. Detailed investigations were made of the zonal-mean zonal momentum budget in the equatorial stratosphere. The mean flow relaxations above 20 mb were mostly driven by the vertical Eliassen-Palm flux convergence. The anomalies in the horizontal Eliassen-Palm fluxes from extratropical planetary waves were found to be the dominant effect forcing the mean flow to its equilibrium at altitudes below 20 mb. The vertical eddy momentum fluxes near the equator in the model were decomposed using space-time Fourier analysis. While total fluxes associated with easterly and westerly waves are comparable to those used in simple mechanistic models of the QBO, the GCM has its flux spread over a broad range of wavenumbers and phase speeds. The effects of vertical resolution were studied by repeating part of the control integration with a 69-level version of the model with greatly enhance vertical resolution in the lower and middle stratosphere. The results showed that there is almost no sensitivity of the simulation in the tropical stratosphere to the increased vertical resolution. 34 refs., 16 figs., 3 tabs.« less

  3. Estimations of ABL fluxes and other turbulence parameters from Doppler lidar data

    NASA Technical Reports Server (NTRS)

    Tzvi, Gal-Chen; Mei, XU; Eberhard, Wynn

    1990-01-01

    Techniques for extracting boundary layer parameters from measurements of a short pulse CO2 Doppler Lidar are described. The radial velocity measurements have a range resolution of 150 m. With a pulse repetition rate of 20 Hz, it is possible to perform scannings in two perpendicular vertical planes in approx. 72 s. By continuously operating the Lidar for about an hour, one can extract stable statistics of the radial velocities. Assuming that the turbulence is horizontally homogeneous, the mean wind, its standard deviations, and the momentum fluxes were estimated. From the vertically pointing beam, the first, second, and third moments of the vertical velocity were also estimated. Spectral analysis of the radial velocities is also performed from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation.

  4. A Conceptual Design For A Spaceborne 3D Imaging Lidar

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2002-01-01

    First generation spaceborne altimetric approaches are not well-suited to generating the few meter level horizontal resolution and decimeter accuracy vertical (range) resolution on the global scale desired by many in the Earth and planetary science communities. The present paper discusses the major technological impediments to achieving few meter transverse resolutions globally using conventional approaches and offers a feasible conceptual design which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction.

  5. Verification of the NWP models operated at ICM, Poland

    NASA Astrophysics Data System (ADS)

    Melonek, Malgorzata

    2010-05-01

    Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw (ICM) started its activity in the field of NWP in May 1997. Since this time the numerical weather forecasts covering Central Europe have been routinely published on our publicly available website. First NWP model used in ICM was hydrostatic Unified Model developed by the UK Meteorological Office. It was a mesoscale version with horizontal resolution of 17 km and 31 levels in vertical. At present two NWP non-hydrostatic models are running in quasi-operational regime. The main new UM model with 4 km horizontal resolution, 38 levels in vertical and forecats range of 48 hours is running four times a day. Second, the COAMPS model (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by the US Naval Research Laboratory, configured with the three nested grids (with coresponding resolutions of 39km, 13km and 4.3km, 30 vertical levels) are running twice a day (for 00 and 12 UTC). The second grid covers Central Europe and has forecast range of 84 hours. Results of the both NWP models, ie. COAMPS computed on 13km mesh resolution and UM, are verified against observations from the Polish synoptic stations. Verification uses surface observations and nearest grid point forcasts. Following meteorological elements are verified: air temperature at 2m, mean sea level pressure, wind speed and wind direction at 10 m and 12 hours accumulated precipitation. There are presented different statistical indices. For continous variables Mean Error(ME), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) in 6 hours intervals are computed. In case of precipitation the contingency tables for different thresholds are computed and some of the verification scores such as FBI, ETS, POD, FAR are graphically presented. The verification sample covers nearly one year.

  6. Climatology of tropospheric vertical velocity spectra

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.

    1986-01-01

    Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.

  7. Vertical coherence in mantle heterogeneity from global seismic data

    NASA Astrophysics Data System (ADS)

    Boschi, L.; Becker, T. W.

    2011-10-01

    The vertical coherence of mantle structure is of importance for a range of dynamic issues including convective mass transport and the geochemical evolution of Earth. Here, we use seismic data to infer the most likely depth ranges of strong, global changes in the horizontal pattern of mantle heterogeneity. We apply our algorithm to a comprehensive set of measurements, including various shear- and compressional-wave delay times and Love- and Rayleigh-wave fundamental mode and overtone dispersion, so that tomography resolution is as high as possible at all mantle depths. We find that vertical coherence is minimum at ∼100 km and ∼800 km depths, corresponding to the base of the lithosphere and the transition between upper and lower mantle, respectively. The D″ layer is visible, but not as prominent as the shallower features. The rest of the lower mantle is, essentially, vertically coherent. These findings are consistent with slab stagnation at depths around, and perhaps below, the 660-km phase transition, and inconsistent with global, chemically distinct, mid-mantle layering.

  8. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara

    This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisturemore » transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the data aggregation effect in omega, thermodynamic changes become relatively significant in offsetting the effect of dynamics leading to reduce differences between the simulated and aggregated results. Compared to MPAS, the simulated stronger vertical motion with HOMME also results in larger resolution dependency. Compared to the simulation at fine resolution, the vertical motion during extremes is insufficiently resolved/parameterized at the coarser resolution even after accounting for the natural reduction in variability with coarser resolution, and this is more distinct in the simulation with HOMME. To reduce uncertainties in simulated precipitation extremes, future development in cloud parameterizations must address their sensitivity to spatial resolution as well as dynamical cores.« less

  9. Dependence of Hurricane intensity and structures on vertical resolution and time-step size

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Lin; Wang, Xiaoxue

    2003-09-01

    In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken

    A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV,more » respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.« less

  11. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-03-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.

  12. Tunable laser heterodyne spectrometer measurements of atmospheric species

    NASA Technical Reports Server (NTRS)

    Allario, F.; Katzberg, S. J.; Hoell, J. M.

    1983-01-01

    It is pointed out that spectroscopic measurements conducted with the aid of tunable laser heterodyne spectrometers in the 3-30 micron range of the electromagnetic spectrum have the potential to measure the vertical profiles of tenuous gas molecules in the atmosphere with ultra high spectral resolution and great sensitivity. Programs related to the realization of this potential have been conducted for some time, and a Laser Heterodyne Spectrometer (LHS) experiment was developed. The present investigation has the objective to provide an overview of the LHS concept for measuring the vertical profiles of tenuous gas molecules in the upper atmosphere from space and airborne platforms, and to discuss the sensitivity ranges for this technique.

  13. Observing tectonic plate motions and deformations from satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  14. Validation of Long Range Wind Lidar for Atmospheric Dynamics Studies during inter comparison campaign

    NASA Astrophysics Data System (ADS)

    Boquet, M.; Cariou, J. P.; Lolli, S.; Sauvage, L.; Parmentier, R.

    2009-09-01

    To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity resolution (0.2m/s). Enhanced measurement range is now expected through new optical device.

  15. Changing the scale of hydrogeophysical aquifer heterogeneity characterization

    NASA Astrophysics Data System (ADS)

    Paradis, Daniel; Tremblay, Laurie; Ruggeri, Paolo; Brunet, Patrick; Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Holliger, Klaus; Irving, James; Molson, John; Lefebvre, Rene

    2015-04-01

    Contaminant remediation and management require the quantitative predictive capabilities of groundwater flow and mass transport numerical models. Such models have to encompass source zones and receptors, and thus typically cover several square kilometers. To predict the path and fate of contaminant plumes, these models have to represent the heterogeneous distribution of hydraulic conductivity (K). However, hydrogeophysics has generally been used to image relatively restricted areas of the subsurface (small fractions of km2), so there is a need for approaches defining heterogeneity at larger scales and providing data to constrain conceptual and numerical models of aquifer systems. This communication describes a workflow defining aquifer heterogeneity that was applied over a 12 km2 sub-watershed surrounding a decommissioned landfill emitting landfill leachate. The aquifer is a shallow, 10 to 20 m thick, highly heterogeneous and anisotropic assemblage of littoral sand and silt. Field work involved the acquisition of a broad range of data: geological, hydraulic, geophysical, and geochemical. The emphasis was put on high resolution and continuous hydrogeophysical data, the use of direct-push fully-screened wells and the acquisition of targeted high-resolution hydraulic data covering the range of observed aquifer materials. The main methods were: 1) surface geophysics (ground-penetrating radar and electrical resistivity); 2) direct-push operations with a geotechnical drilling rig (cone penetration tests with soil moisture resistivity CPT/SMR; full-screen well installation); and 3) borehole operations, including high-resolution hydraulic tests and geochemical sampling. New methods were developed to acquire high vertical resolution hydraulic data in direct-push wells, including both vertical and horizontal K (Kv and Kh). Various data integration approaches were used to represent aquifer properties in 1D, 2D and 3D. Using relevant vector machines (RVM), the mechanical and geophysical CPT/SMR measurements were used to recognize hydrofacies (HF) and obtain high-resolution 1D vertical profiles of hydraulic properties. Bayesian sequential simulation of the low-resolution surface-based geoelectrical measurements as well as high-resolution direct-push measurements of the electrical and hydraulic conductivities provided realistic estimates of the spatial distribution of K on a 250-m-long 2D survey line. Following a similar approach, all 1D vertical profiles of K derived from CPT/SMR soundings were integrated with available 2D geoelectrical profiles to obtain the 3D distribution of K over the study area. Numerical models were developed to understand flow and mass transport and assess how indicators could constrain model results and their K distributions. A 2D vertical section model was first developed based on a conceptual representation of heterogeneity which showed a significant effect of layering on flow and transport. The model demonstrated that solute and age tracers provide key model constraints. Additional 2D vertical section models with synthetic representations of low and high K hydrofacies were also developed on the basis of CPT/SMR soundings. These models showed that high-resolution profiles of hydraulic head could help constrain the spatial distribution and continuity of hydrofacies. History matching approaches are still required to simulate geostatistical models of K using hydrogeophysical data, while considering their impact on flow and transport with constraints provided by tracers of solutes and groundwater age.

  16. An experiment concept to measure stratospheric trace constituents by laser heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Allario, F.; Hoell, J. M., Jr.; Katzberg, S. J.; Larsen, J. C.

    1980-01-01

    Laser heterodyne spectroscopy (LHS) techniques were used to measure radical gases from Spacelab. Major emphasis was placed on the measurement of ClO, ClOnO2, HO2, H2O2, N2O5, and HOCl in solar occultation with vertical resolution less than or equal to 2-km and vertical range from 1O to 70-km. Sensitivity analyses were performed on ClO and O3 to determine design criteria for the LHS instrument. Results indicate that O3 and ClO vertical profiles can be measured with an accuracy more than or equal to 95% and more than or equal to 80%, respectively, over the total profile.

  17. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.

  18. Thermal structure of the Martian atmosphere retrieved from the IR spectrometry in the 15 μm CO2 band: input to MIRA

    NASA Astrophysics Data System (ADS)

    Zasova, L. V.; Formisano, V.; Grassi, D.; Igantiev, N. I.; Moroz, V. I.

    This paper describes one of the sources of the data concerning the thermal structure of the Martian atmosphere, based on the thermal IR spectrometry method. It allows to investigate the Martian atmosphere below 55 km by retrieving the temperature profiles from the 15 μm CO2 band. This approach enables to reach the vertical resolution of several kilometers and the temperature accuracy of several Kelvins. An aerosol abundance, which influences the temperature profile, is obtained from the continuum of the same spectrum parallel with the temperature profile and is taken into account in the temperature retrieval procedure in a self consistent way. Although this method has the limited vertical resolution, it possesses a significant advantage: the thermal IR spectrometry allows to monitor the temperature profiles with a good coverage both in space and local time. The Planetary Fourier spectrometer on board of Mars Express has the spectral range from 250 to 8000 cm-1 and a high spectral resolution of about 2 cm-1. Vertical temperature profiles retrieval is one of the main scientific goals of the experiment. The important data are expected to be obtained on the vertical thermal structure of the atmosphere, and its dependence on latitude, longitude, season, local time, clouds and dust loadings. These results should give a significant input in the future MIRA, being included in the Chapter “Structure of the atmosphere from the surface to 100 km”.

  19. Advantages of a Vertical High-Resolution Distributed-Temperature-Sensing System Used to Evaluate the Thermal Behavior of Green Roofs

    NASA Astrophysics Data System (ADS)

    Hausner, M. B.; Suarez, F. I.; Cousiño, J. A.; Victorero, F.; Bonilla, C. A.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Leiva, E.; Pasten, P.

    2015-12-01

    Technological innovations used for sustainable urban development, green roofs offer a range of benefits, including reduced heat island effect, rooftop runoff, roof surface temperatures, energy consumption, and noise levels inside buildings, as well as increased urban biodiversity. Green roofs feature layered construction, with the most important layers being the vegetation and the substrate layers located above the traditional roof. These layers provide both insulation and warm season cooling by latent heat flux, reducing the thermal load to the building. To understand and improve the processes driving this thermal energy reduction, it is important to observe the thermal dynamics of a green roof at the appropriate spatial and temporal scales. Traditionally, to observe the thermal behavior of green roofs, a series of thermocouples have been installed at discrete depths within the layers of the roof. Here, we present a vertical high-resolution distributed-temperature-sensing (DTS) system installed in different green roof modules of the Laboratory of Vegetated Infrastructure for Buildings (LIVE -its acronym in Spanish) of the Pontifical Catholic University of Chile. This DTS system allows near-continuous measurement of the thermal profile at spatial and temporal resolutions of approximately 1 cm and 30 s, respectively. In this investigation, the temperature observations from the DTS system are compared with the measurements of a series of thermocouples installed in the green roofs. This comparison makes it possible to assess the value of thermal observations at better spatial and temporal resolutions. We show that the errors associated with lower resolution observations (i.e., from the thermocouples) are propagated in the calculations of the heat fluxes through the different layers of the green roof. Our results highlight the value of having a vertical high-resolution DTS system to observe the thermal dynamics in green roofs.

  20. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    NASA Astrophysics Data System (ADS)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  1. Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-08-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  2. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-04-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds on climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 193 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e. when the whole CVS is correctly estimated) for the methods ranges between 26-64%; the methods show additional approximate agreement (i.e. when at least one cloud layer is correctly assessed) from 15-41%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, like those from the outputs of reanalysis methods or from the WMO's Global Telecommunication System. The perfect agreement, even when using low resolution profiles, can be improved up to 67% (plus 25% of approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  3. Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvements in the cold pole bias and generation of a QBO-like oscillation in the tropics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, K.; Wilson, R.J.; Hemler, R.S.

    1999-11-15

    The large-scale circulation in the Geophysical Fluid Dynamics Laboratory SKYHI troposphere-stratosphere-mesosphere finite-difference general circulation model is examined as a function of vertical and horizontal resolution. The experiments examined include one with horizontal grid spacing of {approximately}35 km and another with {approximately}100 km horizontal grid spacing but very high vertical resolution (160 levels between the ground and about 85 km). The simulation of the middle-atmospheric zonal-mean winds and temperatures in the extratropics is found to be very sensitive to horizontal resolution. For example, in the early Southern Hemisphere winter the South Pole near 1 mb in the model is colder thanmore » observed, but the bias is reduced with improved horizontal resolution (from {approximately}70 C in a version with {approximately}300 km grid spacing to less than 10 C in the {approximately}35 km version). The extratropical simulation is found to be only slightly affected by enhancements of the vertical resolution. By contrast, the tropical middle-atmospheric simulation is extremely dependent on the vertical resolution employed. With level spacing in the lower stratosphere {approximately}1.5 km, the lower stratospheric zonal-mean zonal winds in the equatorial region are nearly constant in time. When the vertical resolution is doubled, the simulated stratospheric zonal winds exhibit a strong equatorially centered oscillation with downward propagation of the wind reversals and with formation of strong vertical shear layers. This appears to be a spontaneous internally generated oscillation and closely resembles the observed QBO in many respects, although the simulated oscillation has a period less than half that of the real QBO.« less

  4. Ranging performance of satellite laser altimeters

    NASA Technical Reports Server (NTRS)

    Gardner, Chester S.

    1992-01-01

    Topographic mapping of the earth, moon and planets can be accomplished with high resolution and accuracy using satellite laser altimeters. These systems employ nanosecond laser pulses and microradian beam divergences to achieve submeter vertical range resolution from orbital altitudes of several hundred kilometers. Here, we develop detailed expressions for the range and pulse width measurement accuracies and use the results to evaluate the ranging performances of several satellite laser altimeters currently under development by NASA for launch during the next decade. Our analysis includes the effects of the target surface characteristics, spacecraft pointing jitter and waveform digitizer characteristics. The results show that ranging accuracy is critically dependent on the pointing accuracy and stability of the altimeter especially over high relief terrain where surface slopes are large. At typical orbital altitudes of several hundred kilometers, single-shot accuracies of a few centimeters can be achieved only when the pointing jitter is on the order of 10 mu rad or less.

  5. Extending the Measurement Range of AN Optical Surface Profiler.

    NASA Astrophysics Data System (ADS)

    Cochran, Eugene Rowland, III

    This dissertation investigates a method for extending the measurement range of an optical surface profiling instrument. The instrument examined in these experiments is a computer -controlled phase-modulated interference microscope. Because of its ability to measure surfaces with a high degree of vertical resolution as well as excellent lateral resolution, this instrument is one of the most favorable candidates for determining the microtopography of optical surfaces. However, the data acquired by the instrument are restricted to a finite lateral and vertical range. To overcome this restriction, the feasibility of a new testing technique is explored. By overlapping a series of collinear profiles the limited field of view of this instrument can be increased and profiles that contain longer surface wavelengths can be examined. This dissertation also presents a method to augment both the vertical and horizontal dynamic range of the surface profiler by combining multiple subapertures and two-wavelength techniques. The theory, algorithms, error sources, and limitations encountered when concatenating a number of profiles are presented. In particular, the effects of accumulated piston and tilt errors on a measurement are explored. Some practical considerations for implementation and integration into an existing system are presented. Experimental findings and results of Monte Carlo simulations are also studied to explain the effects of random noise, lateral position errors, and defocus across the CCD array on measurement results. These results indicate the extent to which the field of view of the profiler may be augmented. A review of current methods of measuring surface topography is included, to provide for a more coherent text, along with a summary of pertinent measurement parameters for surface characterization. This work concludes with recommendations for future work that would make subaperture -testing techniques more reliable for measuring the microsurface structure of a material over an extended region.

  6. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    NASA Astrophysics Data System (ADS)

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  7. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai

    2006-10-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  8. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    NASA Astrophysics Data System (ADS)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  9. Derivation of Sky-View Factors from LIDAR Data

    NASA Technical Reports Server (NTRS)

    Kidd, Christopher; Chapman, Lee

    2013-01-01

    The use of Lidar (Light Detection and Ranging), an active light-emitting instrument, is becoming increasingly common for a range of potential applications. Its ability to provide fine resolution spatial and vertical resolution elevation data makes it ideal for a wide range of studies. This paper demonstrates the capability of Lidar data to measure sky view factors (SVF). The Lidar data is used to generate a spatial map of SVFs which are then compared against photographically-derived SVF at selected point locations. At each location three near-surface elevations measurements were taken and compared with collocated Lidar-derived estimated. It was found that there was generally good agreement between the two methodologies, although with decreasing SVF the Lidar-derived technique tended to overestimate the SVF: this can be attributed in part to the spatial resolution of the Lidar sampling. Nevertheless, airborne Lidar systems can map sky view factors over a large area easily, improving the utility of such data in atmospheric and meteorological models.

  10. Trade-off studies of a hyperspectral infrared sounder on a geostationary satellite.

    PubMed

    Wang, Fang; Li, Jun; Schmit, Timothy J; Ackerman, Steven A

    2007-01-10

    Trade-off studies on spectral coverage, signal-to-noise ratio (SNR), and spectral resolution for a hyperspectral infrared (IR) sounder on a geostationary satellite are summarized. The data density method is applied for the vertical resolution analysis, and the rms error between true and retrieved profiles is used to represent the retrieval accuracy. The effects of spectral coverage, SNR, and spectral resolution on vertical resolution and retrieval accuracy are investigated. The advantages of IR and microwave sounder synergy are also demonstrated. When focusing on instrument performance and data processing, the results from this study show that the preferred spectral coverage combines long-wave infrared (LWIR) with the shorter middle-wave IR (SMidW). Using the appropriate spectral coverage, a hyperspectral IR sounder with appropriate SNR can achieve the required science performance (1 km vertical resolution, 1 K temperature, and 10% relative humidity retrieval accuracy). The synergy of microwave and IR sounders can improve the vertical resolution and retrieval accuracy compared to either instrument alone.

  11. Equatorial waves in a stratospheric GCM: Effects of vertical resolution. [GCM (general circulation model)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boville, B.A.; Randel, W.J.

    1992-05-01

    Equatorially trapped wave modes, such as Kelvin and mixed Rossby-gravity waves, are believed to play a crucial role in forcing the quasi-biennial oscillation (QBO) of the lower tropical stratosphere. This study examines the ability of a general circulation model (GCM) to simulate these waves and investigates the changes in the wave properties as a function of the vertical resolution of the model. The simulations produce a stratopause-level semiannual oscillation but not a QBO. An unfortunate property of the equatorially trapped waves is that they tend to have small vertical wavelengths ([le] 15 km). Some of the waves, believed to bemore » important in forcing the QBO, have wavelengths as short as 4 km. The short vertical wavelengths pose a stringent computational requirement for numerical models whose vertical grid spacing is typically chosen based on the requirements for simulating extratropical Rossby waves (which have much longer vertical wavelengths). This study examines the dependence of the equatorial wave simulation of vertical resolution using three experiments with vertical grid spacings of approximately 2.8, 1.4, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and inertio-gravity waves are identified in the simulations. At high vertical resolution, the simulated waves are shown to correspond fairly well to the available observations. The properties of the relatively slow (and vertically short) waves believed to play a role in the QBO vary significantly with vertical resolution. Vertical grid spacings of about 1 km or less appear to be required to represent these waves adequately. The simulated wave amplitudes are at least as large as observed, and the waves are absorbed in the lower stratosphere, as required in order to force the QBO. However, the EP flux divergence associated with the waves is not sufficient to explain the zonal flow accelerations found in the QBO. 39 refs., 17 figs., 1 tab.« less

  12. The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow

    NASA Astrophysics Data System (ADS)

    Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.

    2018-02-01

    In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.

  13. Chemical analysis of solids with sub-nm depth resolution by using a miniature LIMS system designed for in situ space research

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Brigitte Neuland, Maike; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2015-04-01

    Sensitive elemental and isotope analysis of solid samples are of considerable interest in nowadays in situ space research. For context in situ analysis, high spatial resolution is also of substantial importance. While the measurements conducted with high lateral resolution can provide compositional details of the surface of highly heterogeneous materials, depth profiling measurements yield information on compositional details of surface and subsurface. The mass spectrometric analysis with the vertical resolution at sub-µm levels is of special consideration and can deliver important information on processes, which may have modified the surface. Information on space weathering effects can be readily determined when the sample composition of the surface and sub-surface is studied with high vertical resolution. In this contribution we will present vertical depth resolution measurements conducted by our sensitive miniature laser ablation ionization time-of-flight mass spectrometer (160mm x Ø 60mm) designed for in situ space research [1-3]. The mass spectrometer is equipped with a fs-laser system (~190fs pulse width, λ = 775nm), which is used for ablation and ionization of the sample material [2]. Laser radiation is focussed on the target material to a spot size of about 10-20 µm in diameter. Mass spectrometric measurements are conducted with a mass resolution (m/Δm) of about 400-500 (at 56Fe mass peak) and with a superior dynamic range of more than eight orders of magnitude. The depth profiling performance studies were conducted on 10µm thick Cu films that were deposited by an additive-assisted electrochemical procedure on Si-wafers. The presented measurement study will show that the current instrument prototype is able to conduct quantitative chemical (elemental and isotope) analysis of solids with a vertical resolution at sub-nm level. Contaminants, incorporated by using additives (polymers containing e.g. C, N, O, S) and with layer thickness of a few nanometres, can be fully resolved [1]. The current measurement performance, including the sensitivity and the high vertical depth resolution, opens new perspectives for future applications in the laboratory, e.g. measurements of Genesis samples, and new measurement capabilities for in situ space research. References 1)V. Grimaudo, P. Moreno-García, M.B. Neuland, M. Tulej, P. Broekmann, P. Wurz and A. Riedo, "High-resolution chemical depth profiling of solid material using a miniature laser ablation/ionization mass spectrometer", Anal. Chem., 2015, submitted. 2)A. Riedo, M. Neuland, S. Meyer, M. Tulej, and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 2013, 28, 1256. 3)Tulej et al. CAMAM: A Miniature Laser Ablation Ionisation Mass Spectrometer and Microscope-Camera System for In Situ Investigation of the Composition and Morphology of Extraterrestrial Materials, Geostand. Geoanal. Res., 2014, doi: 10.1111/j.1751-908X.2014.00302.x

  14. Behavior of predicted convective clouds and precipitation in the high-resolution Unified Model over the Indian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Jayakumar, A.; Sethunadh, Jisesh; Rakhi, R.; Arulalan, T.; Mohandas, Saji; Iyengar, Gopal R.; Rajagopal, E. N.

    2017-05-01

    National Centre for Medium Range Weather Forecasting high-resolution regional convective-scale Unified Model with latest tropical science settings is used to evaluate vertical structure of cloud and precipitation over two prominent monsoon regions: Western Ghats (WG) and Monsoon Core Zone (MCZ). Model radar reflectivity generated using Cloud Feedback Model Intercomparison Project Observation Simulator Package along with CloudSat profiling radar reflectivity is sampled for an active synoptic situation based on a new method using Budyko's index of turbulence (BT). Regime classification based on BT-precipitation relationship is more predominant during the active monsoon period when convective-scale model's resolution increases from 4 km to 1.5 km. Model predicted precipitation and vertical distribution of hydrometeors are found to be generally in agreement with Global Precipitation Measurement products and BT-based CloudSat observation, respectively. Frequency of occurrence of radar reflectivity from model implies that the low-level clouds below freezing level is underestimated compared to the observations over both regions. In addition, high-level clouds in the model predictions are much lesser over WG than MCZ.

  15. Assessment of Data Assimilation with the Prototype High Resolution Rapid Refresh for Alaska (HRRRAK)

    NASA Technical Reports Server (NTRS)

    Harrison, Kayla; Morton, Don; Zavodsky, Brad; Chou, Shih

    2012-01-01

    The Arctic Region Supercomputing Center has been running a quasi-operational prototype of a High Resolution Rapid Refresh for Alaska (HRRRAK) at 3km resolution, initialized by the 13km Rapid Refresh (RR). Although the RR assimilates a broad range of observations into its analyses, experiments with the HRRRAK suggest that there may be added value in assimilating observations into the 3km initial conditions, downscaled from the 13km RR analyses. The NASA Short-term Prediction Research and Transition (SPoRT) group has been using assimilated data from the Atmospheric Infrared Sounder (AIRS) in WRF and WRF-Var simulations since 2004 with promising results. The sounder is aboard NASA s Aqua satellite, and provides vertical profiles of temperature and humidity. The Gridpoint Statistical Interpolation (GSI) system is then used to assimilate these vertical profiles into WRF forecasts. In this work, we assess the use of AIRS data in combination with other global data assimilation products on non-assimilated HRRRAK case studies. Two separate weather events will be assessed to qualitatively and quantitatively assess the impacts of AIRS data on HRRRAK forecasts.

  16. An Overview of the Topography of Mars from the Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft has now completed more than half of its one-Mars-year mission to globally map Mars. During the MGS elliptical and circular orbit mapping phases, the Mars Orbiter Laser Altimeter (MOLA), an instrument on the MGS payload, has collected over 300 million precise elevation measurements. MOLA measures the range from the MGS spacecraft to the Martian surface and to atmospheric reflections. Range is converted to topography through knowledge of the MGS spacecraft orbit. Ranges from MOLA have resulted in a precise global topographic map of Mars. The instrument has also provided measurements of the width of the backscattered optical pulse and of the 1064 nm reflectivity of the Martian surface and atmosphere. The range resolution of the MOLA instrument is 37.5 cm and the along-track resolution of MOLA ground shots is approx. 300 m; the across-track spacing depends on latitude and time in the mapping orbit. The best current topographic grid has a spatial resolution of approx. 1/16 deg and vertical accuracy of approx. one meter. Additional information is contained in the original extended abstract.

  17. Multibeam Laser Altimeter for Planetary Topographic Mapping

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Bufton, J. L.; Harding, D. J.

    1993-01-01

    Laser altimetry provides an active, high-resolution, high-accuracy method for measurement of planetary and asteroid surface topography. The basis of the measurement is the timing of the roundtrip propagation of short-duration pulses of laser radiation between a spacecraft and the surface. Vertical, or elevation, resolution of the altimetry measurement is determined primarily by laser pulse width, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and nanosecond resolution timing electronics, submeter vertical range resolution is possible anywhere from orbital altitudes of approximately 1 km to altitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition rate, laser transmitter beam configuration, and altimeter platform velocity determine the spacing between successive laser pulses. Multiple laser transmitters in a single laser altimeter instrument that is orbiting above a planetary or asteroid surface could provide across-track as well as along-track coverage that can be used to construct a range image (i.e., topographic map) of the surface. We are developing a pushbroom laser altimeter instrument concept that utilizes a linear array of laser transmitters to provide contiguous across-track and along-track data. The laser technology is based on the emerging monolithic combination of individual, 1-sq cm diode-pumped Nd:YAG laser pulse emitters. Details of the multi-emitter laser transmitter technology, the instrument configuration, and performance calculations for a realistic Discovery-class mission will be presented.

  18. Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design

    NASA Technical Reports Server (NTRS)

    King, J. L.

    1980-01-01

    The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.

  19. Surface rupture and vertical deformation associated with 20 May 2016 M6 Petermann Ranges earthquake, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Clark, Dan; King, Tamarah; Quigley, Mark

    2017-04-01

    Surface-rupturing earthquakes in stable continental regions (SCRs) occur infrequently, though when they occur in heavily populated regions the damage and loss of life can be severe (e.g., 2001 Bhuj earthquake). Quantifying the surface-rupture characteristics of these low-probability events is therefore important, both to improve understanding of the on- and off-fault deformation field near the rupture trace and to provide additional constraints on earthquake magnitude to rupture length and displacement, which are critical inputs for seismic hazard calculations. This investigation focuses on the 24 August 2016 M6.0 Petermann Ranges earthquake, Northern Territory, Australia. We use 0.3-0.5 m high-resolution optical Worldview satellite imagery to map the trace of the surface rupture associated with the earthquake. From our mapping, we are able to trace the rupture over a length of 20 km, trending NW, and exhibiting apparent north-side-up motion. To quantify the magnitude of vertical surface deformation, we use stereo Worldview images processed using NASA Ames Stereo Pipeline software to generate pre- and post-earthquake digital terrain models with a spatial resolution of 1.5 to 2 m. The surface scarp is apparent in much of the post-event digital terrain model. Initial efforts to difference the pre- and post-event digital terrain models yield noisy results, though we detect vertical deformation of 0.2 to 0.6 m over length scales of 100 m to 1 km from the mapped trace of the rupture. Ongoing efforts to remove ramps and perform spatial smoothing will improve our understanding of the extent and pattern of vertical deformation. Additionally, we will compare our results with InSAR and field measurements obtained following the earthquake.

  20. Display dimensionality and conflict geometry effects on maneuver preferences for resolving in-flight conflicts.

    PubMed

    Thomas, Lisa C; Wickens, Christopher D

    2008-08-01

    Two experiments explored the effects of display dimensionality, conflict geometry, and time pressure on pilot maneuvering preferences for resolving en route conflicts. With the presence of a cockpit display of traffic information (CDTI) that provides graphical airspace information, pilots can use a variety of conflict resolution maneuvers in response to how they perceive the conflict. Inconsistent preference findings from previous research on conflict resolution using CDTIs may be attributable to inherent ambiguities in 3-D perspective displays and/or a limited range of conflict geometries. Pilots resolved predicted conflicts using CDTIs with three levels of display dimensionality; the first had two 2-D orthogonal views, the second depicted the airspace in two alternating 3-D perspective views, and the third had a pilot-controlled swiveling viewpoint. Pilots demonstrated the same preferences that have been observed in previous research for vertical over lateral maneuvers in low workload and climbs over descents for level-flight conflicts. With increasing workload the two 3-D perspective displays, but not the 2-D displays, resulted in an increased preference for lateral over vertical maneuvers. Increased time pressure resulted in increased vertical maneuvers, an effect again limited to the two 3-D perspective displays. Resolution preferences were more affected by workload and time pressure when the 3-D perspective displays were used, as compared with the 2-D displays, although overall preferences were milder than in previous studies. Investigating maneuver preferences using the strategic flight planning paradigm employed in this study may be the key to better ensure pilot acceptance of computer-generated resolution maneuvers.

  1. Running GCM physics and dynamics on different grids: Algorithm and tests

    NASA Astrophysics Data System (ADS)

    Molod, A.

    2006-12-01

    The major drawback in the use of sigma coordinates in atmospheric GCMs, namely the error in the pressure gradient term near sloping terrain, leaves the use of eta coordinates an important alternative. A central disadvantage of an eta coordinate, the inability to retain fine resolution in the vertical as the surface rises above sea level, is addressed here. An `alternate grid' technique is presented which allows the tendencies of state variables due to the physical parameterizations to be computed on a vertical grid (the `physics grid') which retains fine resolution near the surface, while the remaining terms in the equations of motion are computed using an eta coordinate (the `dynamics grid') with coarser vertical resolution. As a simple test of the technique a set of perpetual equinox experiments using a simplified lower boundary condition with no land and no topography were performed. The results show that for both low and high resolution alternate grid experiments, much of the benefit of increased vertical resolution for the near surface meridional wind (and mass streamfield) can be realized by enhancing the vertical resolution of the `physics grid' in the manner described here. In addition, approximately half of the increase in zonal jet strength seen with increased vertical resolution can be realized using the `alternate grid' technique. A pair of full GCM experiments with realistic lower boundary conditions and topography were also performed. It is concluded that the use of the `alternate grid' approach offers a promising way forward to alleviate a central problem associated with the use of the eta coordinate in atmospheric GCMs.

  2. Laser-induced local activation of Mg-doped GaN with a high lateral resolution for high power vertical devices

    NASA Astrophysics Data System (ADS)

    Kurose, Noriko; Matsumoto, Kota; Yamada, Fumihiko; Roffi, Teuku Muhammad; Kamiya, Itaru; Iwata, Naotaka; Aoyagi, Yoshinobu

    2018-01-01

    A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1-2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.

  3. Information for space radar designers: Required dynamic range vs resolution and antenna calibration using the Amazon rain forest

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Frost, V. S.

    1985-01-01

    Calibration of the vertical pattern of the antennas for the SEASAT scatterometer was accomplished using the nearly-uniform radar return from the Amazon rain forest. A similar calibration will be attempted for the SIR-B antenna. Thick calibration is important to establish the radiometric calibration across the swath of the SIR-B, and the developed methodology will provide an important tool in the evaluation of future spaceborne imaging radars. This calibration was made by the very-wide-beam SEASAT scatterometer antennas because at 14.65 GHz the scattering coefficient of the rain forest is almost independent of angle of incidence. It is expected that the variation in scattering coefficient for the rain forest across the relatively narrow vertical beam of the SIR-B will be very small; even at L band the forest should be essentially impenetrable for radar signals, the volume scatter from the treetops will predominate as at higher frequencies. The basic research elements include: (1) examination of SIR-B images over the rain forest to establish the variability of the scattering coefficient at finer resolutions than that of the SEASAT scatterometer; (2) analysis of the variability of SIR-B data detected prior to processing for either azimuth compression or; possibly, range compression so that averages over relatively large footprints can be used; (3) processing of data of the form of (2) using algorithms that can recover the vertical pattern of the antenna.

  4. 1.6μm DIAL System for Measurements of CO2 Concentration Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.

    2013-12-01

    We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere. Our 1.6 μm DIAL system has a 60 cm telescope for vertical measurement and a 25 cm scanning telescope for horizontal measurement. This 1.6 μm DIAL system is also available to measure CO2 concentration profiles for daytime by using narrow-band interference filters. The 1.6 μm DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 30 minutes and vertical resolution of 300 - 600 m. The CO2 DIAL was also operated with the range-height indicator (RHI) mode, and the 2-D measurement provided inhomogeneity in the boundary layer. The vertical distribution of CO2 concentration from 2 km to 7 km altitude has been observed using two telescopes with different apertures. We hope to get the data of the CO2 concentration from lower altitude to 7 km at the same time. Since the change of signal intensity is larger near the ground, it is also important to the install the photon counter with the faster count rate to expand the dynamic range. The high speed counter and the telescope system make the dynamic range expand more than 10 times and the vertical distribution observation of CO2 concentration from 0.5 km to 7 km altitude is performed. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp. 748-757, 2009. Stephens, B. B. et al., Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2, Science 316, pp. 1732-1735, 2007.

  5. New Satellite Estimates of Mixed-Phase Cloud Properties: A Synergistic Approach for Application to Global Satellite Imager Data

    NASA Astrophysics Data System (ADS)

    Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.

    2016-12-01

    Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and validated with icing PIREPS. The initial validation is encouraging for single-layer cloud conditions. More work is needed to test and refine the method for global application in a wider range of cloud conditions. A brief overview of our current method, applications, verification, and plans for future work will be presented.

  6. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Wang, Xin, E-mail: wangx@tongji.edu.cn, E-mail: mubz@tongji.edu.cn; Zhan, Qi

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system basedmore » on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.« less

  7. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wang, Xin; Zhan, Qi; Huang, Shengling; Chen, Yifan; Mu, Baozhong

    2016-07-01

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system based on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.

  8. Effects of Mesoscale Eddies in the Active Mixed Layer: Test of the Parametrisation in Eddy Resolving Simulations

    NASA Technical Reports Server (NTRS)

    Luneva, M. V.; Clayson, C. A.; Dubovikov, Mikhail

    2015-01-01

    In eddy resolving simulations, we test a mixed layer mesoscale parametrisation, developed recently by Canuto and Dubovikov [Ocean Model., 2011, 39, 200-207]. With no adjustable parameters, the parametrisation yields the horizontal and vertical mesoscale fluxes in terms of coarse-resolution fields and eddy kinetic energy (EKE). We compare terms of the parametrisation diagnosed from coarse-grained fields with the eddy mesoscale fluxes diagnosed directly from the high resolution model. An expression for the EKE in terms of mean fields has also been found to get a closed parametrisation in terms of the mean fields only. In 40 numerical experiments we simulated two types of flows: idealised flows driven by baroclinic instabilities only, and more realistic flows, driven by wind and surface fluxes as well as by inflow-outflow. The diagnosed quasi-instantaneous horizontal and vertical mesoscale buoyancy fluxes (averaged over 1-2 degrees and 10 days) demonstrate a strong scatter typical for turbulent flows, however, the fluxes are positively correlated with the parametrisation with higher (0.5-0.74) correlations at the experiments with larger baroclinic radius Rossby. After being averaged over 3-4 months, diffusivities diagnosed from the eddy resolving simulations are consistent with the parametrisation for a broad range of parameters. Diagnosed vertical mesoscale fluxes restratify mixed layer and are in a good agreement with the parametrisation unless vertical turbulent mixing in the upper layer becomes strong enough in comparison with mesoscale advection. In the latter case, numerical simulations demonstrate that the deviation of the fluxes from the parametrisation is controlled by dimensionless parameter estimating the ratio of vertical turbulent mixing term to mesoscale advection. An analysis using a modified omega-equation reveals that the effects of the vertical mixing of vorticity is responsible for the two-three fold amplification of vertical mesoscale flux. Possible physical mechanisms, responsible for the amplification of vertical mesoscale flux are discussed.

  9. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    NASA Astrophysics Data System (ADS)

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  10. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel; Reyna-Gutierrez, Jose Antonio; Bauer-Gottwein, Peter

    2017-05-01

    The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts have been devoted to the retrieval of these hydraulic properties from spaceborne platforms in the past few decades. However, due to coarse spatial and temporal resolutions, spaceborne missions have several limitations when assessing the water level of terrestrial surface water bodies and determining complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric height). Three different ranging payloads, which consisted of a radar, a sonar and an in-house developed camera-based laser distance sensor (CLDS), have been evaluated in terms of accuracy, precision, maximum ranging distance and beam divergence. After numerous flights, the relative accuracy of the overall system was estimated. A ranging accuracy better than 0.5% of the range and a maximum ranging distance of 60 m were achieved with the radar. The CLDS showed the lowest beam divergence, which is required to avoid contamination of the signal from interfering surroundings for narrow fields of view. With the GNSS system delivering a relative vertical accuracy better than 3-5 cm, water level can be retrieved with an overall accuracy better than 5-7 cm.

  11. Reducing the spatial resolution range of neutron radiographs cast by thick objects

    NASA Astrophysics Data System (ADS)

    Almeida, G. L.; Silvani, M. I.; Souza, E. S.; Lopes, R. T.

    2017-11-01

    The quality of a neutron radiograph is strongly dependent upon the features of the acquisition system. Most of them, such as detector resolution, electronic noise and statistical fluctuation can hardly be improved. Yet, a main parameter ruling the image spatial resolution, namely the L/D ratio of the system can be increased simply by lengthening the source-detector clearance. Such an option eventually may not be feasible due to neutron flux decreasing or engineering constraints. Under this circumstance, a radiograph improvement is only possible by some kind of after-acquisition procedure capable to retrieve, at least partially, the information concealed by the degradation process. Since the spoiling agent tied to the L/D has a systematic character, its impact can be reduced by an unfolding procedure such as Richardson-Lucy algorithm. However, that agent should be fully characterized and furnished to the algorithm as a Point Spread Function - PSF unfolding function. A main drawback of unfolding algorithms like Richardson-Lucy is that the PSF should be fixed, i.e., it assumes a certain constant image spatial resolution, rather than a variable one as actually occurs for thick objects. This work presents a methodology to minimize this difficulty by making all planes of the inspected object to cast a resolution within the shorter gap comprised between the object central plane and the detector. The image can then be unfolded with a lower resolution within a tighter range, yielding a better quality. The process is performed with two radiographs, where one of them is acquired with the object turned by 180° on its vertical axis with regard to the other. After a mirroring of one of them about its vertical axis, the images are added. As the resolution increases linearly with the object-detector gap, it would remain always lower than that of the central one. Therefore, the overall resolution of the composite radiograph is enhanced. A further improvement can then be achieved through an efficient unfolding since the object has been virtually shrunk along the neutron path.

  12. Dielectric method of high-resolution gas hydrate estimation

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Goldberg, D.

    2005-02-01

    In-situ dielectric properties of natural gas hydrate are measured for the first time in the Mallik 5L-38 Well in the Mackenzie Delta, Canada. The average dielectric constant of the hydrate zones is 9, ranging from 5 to 20. The average resistivity is >5 ohm.m in the hydrate zones, ranging from 2 to 10 ohm.m at a 1.1 GHz dielectric tool frequency. The dielectric logs show similar trends with sonic and induction resistivity logs, but exhibits inherently higher vertical resolution (<5 cm). The average in-situ hydrate saturation in the well is about 70%, ranging from 20% to 95%. The dielectric estimates are overall in agreement with induction estimates but the induction log tends to overestimate hydrate content up to 15%. Dielectric estimates could be used as a better proxy of in-situ hydrate saturation in modeling hydrate dynamics. The fine-scale structure in hydrate zones could help reveal hydrate formation history.

  13. The Martian Neutral Atmosphere from the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Paetzold, Martin; Haeusler, Bernd; Tyler, G. L.; Hinson, David P.

    The Mars Express Radio Science Experiment (MaRS) has been sounding the Martian atmo-sphere and ionosphere by means of radio occultation since 2004. To date more than 570 sound-ings covering all latitudes during almost all seasons have been obtained in seven occultation seasons, mostly in the northern hemisphere. The highly elliptical orbit of Mars Express provides access to a large range of local times and locations which we use to investigate latitudinal, diurnal, and seasonal behavior of the atmosphere. Observed radial profiles of neutral number density, n[r], are used to obtain accurate measurements of temperature, T[r], and pressure, p[r], from the surface boundary layer to altitudes of 50 km with a vertical resolution of only a few hundred metres. Typical measurement accuracies of the temperature are in the range of ten percent at the upper boundary and fractions of a Kelvin near the surface. Several soundings are located in the polar regions of both hemispheres. These measurements will be used to examine the seasonal variations at high latitudes. The high vertical resolution and accuracy of the temperature profiles allows us to investigate the CO2 supersaturation and condensation near the poles. Atmospheric waves can be identified and will be investigated with regard to their spatial oc-currence over all latitude ranges. The MaRS experiment is funded by DLR under grant 50QM0701.

  14. Techniques for studying gravity waves and turbulence: Vertical wind speed power spectra from the troposphere and stratosphere obtained under light wind conditions

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.

    1983-01-01

    A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.

  15. Kelvin waves: a comparison study between SABER and normal mode analysis of ECMWF data

    NASA Astrophysics Data System (ADS)

    Blaauw, Marten; Garcia, Rolando; Zagar, Nedjeljka; Tribbia, Joe

    2014-05-01

    Equatorial Kelvin waves spectra are sensitive to the multi-scale variability of their source of tropical convective forcing. Moreover, Kelvin wave spectra are modified upward by changes in the background winds and stability. Recent high resolution data from observations as well as analyses are capable of resolving the slower Kelvin waves with shorter vertical wavelength near the tropical tropopause. In this presentation, results from a quantitive comparison study of stratospheric Kelvin waves in satellite data (SABER) and analysis data from the ECMWF operational archive will be shown. Temperature data from SABER is extracted over a six year period (2007-2012) with an effective vertical resolution of 2 km. Spectral power of stratospheric Kelvin waves in SABER data is isolated by selecting symmetric and eastward spectral components in the 8-20 days range. Global data from ECMWF operational analysis is extracted for the same six years on 91 model levels (top level at 0.01 hPa) and 25 km horizontal resolution. Using three-dimensional orthogonal normal-mode expansions, the input mass and wind data from ECMWF is projected onto balanced rotational modes and unbalanced inertia-gravity modes, including spectral data for pure Kelvin waves. The results show good agreement between Kelvin waves in SABER and ECMWF analyses data for: (i) the frequency shift of Kelvin wave variance with height and (ii) vertical wavelengths. Variability with respect to QBO will also be discussed. In a previous study, discrepancies in the upper stratosphere were found to be 60% and are found here to be 10% (8-20 day averaged value), which can be explained by the better stratosphere representation in the 91 model level version of the ECMWF operational model. New discrepancies in Kelvin wave variance are found in the lower stratosphere at 20 km. Averaged spectral power over the 8-20 day range is found to be 35% higher in ECMWF compared to SABER data. We compared results at 20 km with additional satellite data from HIRDLS (1 km eff. resolution) and conclude preliminary that SABER data does not represent the shortest 20 day Kelvin waves as well as HIRDLS and ECMWF operational analysis.

  16. Use of Dialysis Multi-level Samplers to Examine Microbial Processes in a Shallow Alluvial Aquifer of the Rio Grande, New Mexico

    NASA Astrophysics Data System (ADS)

    Crossey, L. J.; Vinson, D. S.; Block, S. E.; Dahm, C. N.; Spilde, M.; Pershall, A. D.

    2001-12-01

    The riparian zone of the Rio Grande near Belen, New Mexico, hosts a shallow sand-dominated aquifer with discharge - recharge events occurring on time scales ranging from hours to months. Using a multi-level sampler with dialysis cells (DMLS), we have sampled the upper 1.5 m of the water table at 10 cm vertical resolution. The DMLS system provides a passive means of water sampling at high resolution and with minimal disturbance to the environment being studied. Water samples have been analyzed for major ion chemistry as well as redox-sensitive parameters (iron, manganese, dissolved oxygen, sulfur, organic carbon, and redox potential). Depth-related trends emerge through the DMLS approach that are not evident from traditional well sampling methods. Vertical hydrochemical profiles reveal substantial seasonal variability, as well as changes related to major infiltration events during monsoon rains. In conjunction with continuously recorded water table data, we can assess redox-related biogeochemical and microbiological processes in terms of groundwater-surface water interaction. In addition, we have examined mineral products and bacterial growths within the dialysis cells. Cells with membrane pore size of 10†m serve as microcosms to investigate solid products that would be difficult to isolate from the natural sediments. Over a period of several weeks, sufficient microbial/mineral growth occurs. These samples have been imaged with scanning electron microscopy and chemically inspected by energy-dispersive X-ray spectroscopy. Notable products include iron sulfides; iron and manganese oxides (crystalline and amorphous); and tentatively authigenic phosphates, some containing rare earth elements. DMLS is a useful tool for coupling high-resolution chemical investigation of groundwater with examination of microbial activity in this shallow aquifer. The approach may have applications in other environments where good vertical resolution is needed.

  17. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    USGS Publications Warehouse

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  18. On the vertical resolution for near-nadir looking spaceborne rain radar

    NASA Astrophysics Data System (ADS)

    Kozu, Toshiaki

    A definition of radar resolution for an arbitrary direction is proposed and used to calculate the vertical resolution for a near-nadir looking spaceborne rain radar. Based on the calculation result, a scanning strategy is proposed which efficiently distributes the measurement time to each angle bin and thus increases the number of independent samples compared with a simple linear scanning.

  19. Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun

    2016-11-01

    In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.

  20. Macro-SICM: A Scanning Ion Conductance Microscope for Large-Range Imaging.

    PubMed

    Schierbaum, Nicolas; Hack, Martin; Betz, Oliver; Schäffer, Tilman E

    2018-04-17

    The scanning ion conductance microscope (SICM) is a versatile, high-resolution imaging technique that uses an electrolyte-filled nanopipet as a probe. Its noncontact imaging principle makes the SICM uniquely suited for the investigation of soft and delicate surface structures in a liquid environment. The SICM has found an ever-increasing number of applications in chemistry, physics, and biology. However, a drawback of conventional SICMs is their relatively small scan range (typically 100 μm × 100 μm in the lateral and 10 μm in the vertical direction). We have developed a Macro-SICM with an exceedingly large scan range of 25 mm × 25 mm in the lateral and 0.25 mm in the vertical direction. We demonstrate the high versatility of the Macro-SICM by imaging at different length scales: from centimeters (fingerprint, coin) to millimeters (bovine tongue tissue, insect wing) to micrometers (cellular extensions). We applied the Macro-SICM to the study of collective cell migration in epithelial wound healing.

  1. Focusing, collimation and flux throughput at the IMCA-CAT bending-magnet beamline at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshelev, Irina; Huang, Rong; Graber, Timothy

    2009-09-02

    The IMCA-CAT bending-magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high-quality multi- and single-wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending-magnet beamline achieves a flux of 8 x 10{sup 11} photons s{sup -1} at 1 {angstrom} wavelength, at a beamline aperture of 1.5 mrad (horizontal) x 86 {mu}rad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) {delta}E/E = 1.5 x 10{sup -4} (at 10 kV). The beamline operates in a dynamic range of 7.5-17.5 keV and deliversmore » to the sample focused beam of size (FWHM) 240 {micro}m (horizontally) x 160 {micro}m (vertically). The performance of the 17-BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.« less

  2. Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.

    2017-12-01

    The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.

  3. Profiling of Atmospheric Water Vapor with MIR and LASE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesly, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.

  4. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  5. Vertical and horizontal resolution dependency in the model representation of tracer dispersion along the continental slope in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Bracco, Annalisa; Choi, Jun; Kurian, Jaison; Chang, Ping

    2018-02-01

    A set of nine regional ocean model simulations at various horizontal (from 1 to 9 km) and vertical (from 25 to 150 layers) resolutions with different vertical mixing parameterizations is carried out to examine the transport and mixing of a passive tracer released near the ocean bottom over the continental slope in the northern Gulf of Mexico. The release location is in proximity to the Deepwater Horizon oil well that ruptured in April 2010. Horizontal and diapycnal diffusivities are calculated and their dependence on the model set-up and on the representation of mesoscale and submesoscale circulations is discussed. Horizontal and vertical resolutions play a comparable role in determining the modeled horizontal diffusivities. Vertical resolution is key to a proper representation of passive tracer propagation and - in the case of the Gulf of Mexico - contributes to both confining the tracer along the continental slope and limiting its vertical spreading. The choice of the tracer advection scheme is also important, with positive definiteness in the tracer concentration being achieved at the price of spurious mixing across density surfaces. In all cases, however, the diapycnal mixing coefficient derived from the model simulations overestimates the observed value, indicating an area where model improvement is needed.

  6. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    Membrive, Olivier; Crevoisier, Cyril; Sweeney, Colm; Danis, François; Hertzog, Albert; Engel, Andreas; Bönisch, Harald; Picon, Laurence

    2017-06-01

    An original and innovative sampling system called AirCore was presented by NOAA in 2010 Karion et al.(2010). It consists of a long ( > 100 m) and narrow ( < 1 cm) stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i) better capture the vertical distribution of CO2 and CH4, (ii) provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution) AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm) tube and a 100 m of 0.25 in. (6.35 mm) tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h). The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada). High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles) and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a good agreement is found in terms of vertical structure, the comparison between the various AirCores yields a large and variable bias (up to almost 3 ppm in some parts of the profiles). The reasons of this bias, possibly related to the drying agent used to dry the air, are still being investigated. Finally, the uncertainties associated with the measurements are assessed, yielding an average uncertainty below 3 ppb for CH4 and 0.25 ppm for CO2 with the major source of uncertainty coming from the potential loss of air sample on the ground and the choice of the starting and ending point of the collected air sample inside the tube. In an ideal case where the sample would be fully retained, it would be possible to know precisely the pressure at which air was sampled last and thus to improve the overall uncertainty to about 0.1 ppm for CO2 and 2 ppb for CH4.

  7. Vapor Growth and Characterization of Cr-Doped ZnSe Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, Shari; Volz, M. P.; Matyi, R.; George, M. A.; Chattopadhyay, K.; Burger, A.; Lehoczky, S. L.

    1999-01-01

    Cr-doped ZnSe single crystals were grown by a self-seeded physical vapor transport technique in both vertical (stabilized) and horizontal configurations. The source materials were mixtures of ZnSe and CrSe. Growth temperatures were in the range of 1140-1150 C and the furnace translation rates were 1.9-2.2 mm/day. The surface morphology of the as-grown crystals was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Different features of the as-grown surface of the vertically and horizontally grown crystals suggest that different growth mechanisms were involved in the two growth configurations. The [Cr] doping levels were determined to be in the range of 1.8-8.3 x 10 (exp 19) cm (exp -3) from optical absorption measurements. The crystalline quality of the grown crystals were examined by high-resolution triple-crystal X-ray diffraction (HRTXD) analysis.

  8. Development status of the EarthCARE Mission and its atmospheric Lidar

    NASA Astrophysics Data System (ADS)

    Hélière, A.; Wallace, K.; Pereira Do Carmo, J.; Lefebvre, A.; Eisinger, M.; Wehr, T.

    2016-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes with a vertical resolution up to 100 m from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol (Mie) and molecular (Rayleigh) scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are also separated and measured on dedicated channels. This paper gives an overview of the mission science objective, the satellite configuration with its four instruments and details more specifically the implementation and development status of the Atmospheric Lidar. Manufacturing status and first equipment qualification test results, in particular for what concerns the laser transmitter development are presented.

  9. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  10. Tunable vertical cavity surface emitting lasers for use in the near infrared biological window

    NASA Astrophysics Data System (ADS)

    Kitsmiller, Vincent J.; Dummer, Matthew; Johnson, Klein; O'Sullivan, Thomas D.

    2018-02-01

    We present a near-infrared tunable vertical cavity surface emitting laser (VCSEL) based upon a unique electrothermally tunable microelectromechanical systems (MEMS) topside mirror designed for tissue imaging and sensing. At room temperature, the laser is tunable from 769-782nm with single mode CW output and a peak output power of 1.3mW. We show that the tunable VCSEL is suitable for use in frequency domain diffuse optical spectroscopy by measuring the optical properties of a tissue-simulating phantom over the tunable range. These results indicate that tunable VCSELs may be an attractive choice to enable high spectral resolution optical sensing in a wearable format.

  11. Lidar-revised geologic map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Haugerud, Ralph A.; Haeussler, Peter J.; Clark, Kenneth P.

    2011-01-01

    This map is an interpretation of a 6-ft-resolution (2-m-resolution) lidar (light detection and ranging) digital elevation model combined with the geology depicted on the Geologic Map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington (Haeussler and Clark, 2000). Haeussler and Clark described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Wildcat Lake 7.5' quadrangle. This map, derived from 1951 aerial photographs, has 20-ft contours, nominal horizontal resolution of approximately 40 ft (12 m), and nominal mean vertical accuracy of approximately 10 ft (3 m). Similar to many geologic maps, much of the geology in the Haeussler and Clark (2000) map-especially the distribution of surficial deposits-was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound lidar Consortium obtained a lidar-derived digital elevation model (DEM) for Kitsap Peninsula including all of the Wildcat Lake 7.5' quadrangle. This new DEM has a horizontal resolution of 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air photo stereo models have much improved the interpretation of geology in this heavily vegetated landscape, especially the distribution and relative age of some surficial deposits. Many contacts of surficial deposits are adapted unmodified or slightly modified from Haugerud (2009).

  12. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.

  13. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; hide

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  14. Turbulent vertical diffusivity in the sub-tropical stratosphere

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Legras, B.

    2008-02-01

    Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s-1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  15. Turbulent CO2 Flux Measurements by Lidar: Length Scales, Results and Comparison with In-Situ Sensors

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2009-01-01

    The vertical CO2 flux in the atmospheric boundary layer (ABL) is investigated with a Doppler differential absorption lidar (DIAL). The instrument was operated next to the WLEF instrumented tall tower in Park Falls, Wisconsin during three days and nights in June 2007. Profiles of turbulent CO2 mixing ratio and vertical velocity fluctuations are measured by in-situ sensors and Doppler DIAL. Time and space scales of turbulence are precisely defined in the ABL. The eddy-covariance method is applied to calculate turbulent CO2 flux both by lidar and in-situ sensors. We show preliminary mean lidar CO2 flux measurements in the ABL with a time and space resolution of 6 h and 1500 m respectively. The flux instrumental errors decrease linearly with the standard deviation of the CO2 data, as expected. Although turbulent fluctuations of CO2 are negligible with respect to the mean (0.1 %), we show that the eddy-covariance method can provide 2-h, 150-m range resolved CO2 flux estimates as long as the CO2 mixing ratio instrumental error is no greater than 10 ppm and the vertical velocity error is lower than the natural fluctuations over a time resolution of 10 s.

  16. Single-station 6C beamforming

    NASA Astrophysics Data System (ADS)

    Nakata, N.; Hadziioannou, C.; Igel, H.

    2017-12-01

    Six-component measurements of seismic ground motion provide a unique opportunity to identify and decompose seismic wavefields into different wave types and incoming azimuths, as well as estimate structural information (e.g., phase velocity). By using the relationship between the transverse component and vertical rotational motion for Love waves, we can find the incident azimuth of the wave and the phase velocity. Therefore, when we scan the entire range of azimuth and slownesses, we can process the seismic waves in a similar way to conventional beamforming processing, without using a station array. To further improve the beam resolution, we use the distribution of amplitude ratio between translational and rotational motions at each time sample. With this beamforming, we decompose multiple incoming waves by azimuth and phase velocity using only one station. We demonstrate this technique using the data observed at Wettzell (vertical rotational motion and 3C translational motions). The beamforming results are encouraging to extract phase velocity at the location of the station, apply to oceanic microseism, and to identify complicated SH wave arrivals. We also discuss single-station beamforming using other components (vertical translational and horizontal rotational components). For future work, we need to understand the resolution limit of this technique, suitable length of time windows, and sensitivity to weak motion.

  17. Resolution characteristics of optical coherence tomography for dental use.

    PubMed

    Watanabe, Hiroshi; Kuribayashi, Ami; Sumi, Yasunori; Kurabayashi, Tohru

    2017-03-01

    The purpose of this study was to clarify the resolution characteristics of optical coherence tomography (OCT) for dental use. Two types of swept-source optical coherence tomography machines were employed in this study. To clarify their resolution characteristics, we newly developed a glass chart device with a ladder pattern of wavelengths, which ranged from 4 × 2 μm to 1024 × 2 μm, as well as a star-target pattern, a grid pattern and a spatial frequency response pattern. The resolving powers and characteristics of the OCTs were subjectively evaluated. The Santec OCT-2000 ™ (Santec Co., Komaki, Japan) had a resolving power of 64 μm in both the horizontal X and vertical Y directions, while the OCT from Yoshida had a resolving power of 64 μm in the horizontal X direction and 128 µm in the vertical Y direction. The resolving power of the depth Z direction could not be obtained from this study. With the Yoshida OCT, the star-target pattern seemed to be non-symmetrical, owing to an edge enhancement effect, which was revealed when the ladder patterns were placed in a horizontal direction. This study successfully clarified the resolution characteristics of two types of OCTs. The obtained data may be useful for diagnostic purposes, and the glass chart device used in this study may be useful for OCT quality assurance programmes.

  18. Lidar-revised geologic map of the Poverty Bay 7.5' quadrangle, King and Pierce Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Booth, Derek B.; Troost, Kathy Goetz

    2014-01-01

    In 2003, the Puget Sound Lidar Consortium obtained a lidar-derived digital elevation model (DEM) for the Puget Sound region including all of the Poverty Bay 7.5' quadrangle. For a brief description of lidar (LIght Detection And Ranging) and this data acquisition program, see Haugerud and others (2003). This new DEM has a horizontal resolution and accuracy of 6 ft (2 m) and vertical accuracy of approximately 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM have facilitated a new interpretation of the geology, especially the distribution and relative age of some surficial deposits.

  19. Evaluation of predicted diurnal cycle of precipitation after tests with convection and microphysics schemes in the Eta Model

    NASA Astrophysics Data System (ADS)

    Gomes, J. L.; Chou, S. C.; Yaguchi, S. M.

    2012-04-01

    Physics parameterizations and the model vertical and horizontal resolutions, for example, can significantly contribute to the uncertainty in the numerical weather predictions, especially at regions with complex topography. The objective of this study is to assess the influences of model precipitation production schemes and horizontal resolution on the diurnal cycle of precipitation in the Eta Model . The model was run in hydrostatic mode at 3- and 5-km grid sizes, the vertical resolution was set to 50 layers, and the time steps to 6 and 10 s, respectively. The initial and boundary conditions were taken from ERA-Interim reanalysis. Over the sea the 0.25-deg sea surface temperature from NOAA was used. The model was setup to run for each resolution over Angra dos Reis, located in the Southeast region of Brazil, for the rainy period between 18 December 2009 and 01 de January 2010, the model simulation range was 48 hours. In one set of runs the cumulus parameterization was switched off, in this case the model precipitation was fully simulated by cloud microphysics scheme, and in the other set the model was run with weak cumulus convection. The results show that as the model horizontal resolution increases from 5 to 3 km, the spatial pattern of the precipitation hardly changed, although the maximum precipitation core increased in magnitude. Daily data from automatic station data was used to evaluate the runs and shows that the diurnal cycle of temperature and precipitation were better simulated for 3 km when compared against observations. The model configuration results without cumulus convection shows a small contraction in the precipitating area and an increase in the simulated maximum values. The diurnal cycle of precipitation was better simulated with some activity of the cumulus convection scheme. The skill scores for the period and for different forecast ranges are higher at weak and moderate precipitation rates.

  20. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-01-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.

  1. Hydrostratigraphic analysis of the MADE site with full-resolution GPR and direct-push hydraulic profiling

    USGS Publications Warehouse

    Dogan, M.; Van Dam, R. L.; Bohling, Geoffrey C.; Butler, J.J.; Hyndman, D.W.

    2011-01-01

    Full-resolution 3D Ground-Penetrating Radar (GPR) data were combined with high-resolution hydraulic conductivity (K) data from vertical Direct-Push (DP) profiles to characterize a portion of the highly heterogeneous MAcro Dispersion Experiment (MADE) site. This is an important first step to better understand the influence of aquifer heterogeneities on observed anomalous transport. Statistical evaluation of DP data indicates non-normal distributions that have much higher similarity within each GPR facies than between facies. The analysis of GPR and DP data provides high-resolution estimates of the 3D geometry of hydrostratigraphic zones, which can then be populated with stochastic K fields. The lack of such estimates has been a significant limitation for testing and parameterizing a range of novel transport theories at sites where the traditional advection-dispersion model has proven inadequate. ?? 2011 by the American Geophysical Union.

  2. The rationale and suggested approaches for research geosynchronous satellite measurements for severe storm and mesoscale investigations

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.; Adler, R. F.; Chesters, D.; Susskind, J.; Uccellini, L.

    1984-01-01

    The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments.

  3. Asymmetric Eyewall Vertical Motion in a High-Resolution Simulation of Hurricane Bonnie (1998)

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Pu, Zhao-Xia

    2003-01-01

    This study examines a high-resolution simulation of Hurricane Bonnie. Results from the simulation will be compared to the conceptual model of Heymsfield et al. (2001) to determine the extent to which this conceptual model explains vertical motions and precipitation growth in the eyewall.

  4. Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.

    2017-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.

  5. Increasing vertical resolution of three-dimensional atmospheric water vapor retrievals using a network of scanning compact microwave radiometers

    NASA Astrophysics Data System (ADS)

    Sahoo, Swaroop

    2011-12-01

    The thermodynamic properties of the troposphere, in particular water vapor content and temperature, change in response to physical mechanisms, including frictional drag, evaporation, transpiration, heat transfer and flow modification due to terrain. The planetary boundary layer (PBL) is characterized by a high rate of change in its thermodynamic state on time scales of typically less than one hour. Large horizontal gradients in vertical wind speed and steep vertical gradients in water vapor and temperature in the PBL are associated with high-impact weather. Observation of these gradients in the PBL with high vertical resolution and accuracy is important for improvement of weather prediction. Satellite remote sensing in the visible, infrared and microwave provide qualitative and quantitative measurements of many atmospheric properties, including cloud cover, precipitation, liquid water content and precipitable water vapor in the upper troposphere. However, the ability to characterize the thermodynamic properties of the PBL is limited by the confounding factors of ground emission in microwave channels and of cloud cover in visible and IR channels. Ground-based microwave radiometers are routinely used to measure thermodynamic profiles. The vertical resolution of such profiles retrieved from radiometric brightness temperatures depends on the number and choice of frequency channels, the scanning strategy and the accuracy of brightness temperature measurements. In the standard technique, which uses brightness temperatures from vertically pointing radiometers, the vertical resolution of the retrieved water vapor profile is similar to or larger than the altitude at which retrievals are performed. This study focuses on the improvement of the vertical resolution of water vapor retrievals by including scanning measurements at a variety of elevation angles. Elevation angle scanning increases the path length of the atmospheric emission, thus improving the signal-to-noise ratio. This thesis also discusses Colorado State University's (CSU) participation in the European Space Agency (ESA)'s "Mitigation of Electromagnetic Transmission errors induced by Atmospheric WAter Vapor Effects" (METAWAVE) experiment conducted in the fall of 2008. CSU deployed a ground-based network of three Compact Microwave Radiometers for Humidity profiling (CMR-Hs) in Rome to measure atmospheric brightness temperatures. These measurements were used to retrieve high-resolution 3-D atmospheric water vapor and its variation with time. High-resolution information about water vapor can be crucial for the mitigation of wet tropospheric path delay variations that limit the quality of Interferometric Synthetic Aperture Radar satellite interferograms. Three-dimensional water vapor retrieval makes use of radiative transfer theory, algebraic tomographic reconstruction and Bayesian optimal estimation coupled with Kalman filtering. In addition, spatial interpolation (kriging) is used to retrieve water vapor density at unsampled locations. 3-D humidity retrievals from Rome data with vertical and horizontal resolution of 0.5 km are presented. The water vapor retrieved from CMR-H measurements is compared with MM5 Mesoscale Model output, as well as with measurements from the Medium Resolution Imaging Spectrometer (MERIS) aboard ESA's ENVISAT and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua and Terra satellites.

  6. Global distribution of vertical wavenumber spectra in the lower stratosphere observed using high-vertical-resolution temperature profiles from COSMIC GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Noersomadi; Tsuda, T.

    2016-02-01

    We retrieved temperature (T) profiles with a high vertical resolution using the full spectrum inversion (FSI) method from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation (GPS-RO) data from January 2007 to December 2009. We studied the characteristics of temperature perturbations in the stratosphere at 20-27 km altitude. This height range does not include a sharp jump in the background Brunt-Väisälä frequency squared (N2) near the tropopause, and it was reasonably stable regardless of season and latitude. We analyzed the vertical wavenumber spectra of gravity waves (GWs) with vertical wavelengths ranging from 0.5 to 3.5 km, and we integrated the (total) potential energy EpT. Another integration of the spectra from 0.5 to 1.75 km was defined as EpS for short vertical wavelength GWs, which was not studied with the conventional geometrical optics (GO) retrievals. We also estimated the logarithmic spectral slope (p) for the saturated portion of spectra with a linear regression fitting from 0.5 to 1.75 km.Latitude and time variations in the spectral parameters were investigated in two longitudinal regions: (a) 90-150° E, where the topography was more complicated, and (b) 170-230° E, which is dominated by oceans. We compared EpT, EpS, and p, with the mean zonal winds (U) and outgoing longwave radiation (OLR). We also show a ratio of EpS to EpT and discuss the generation source of EpS. EpT and p clearly showed an annual cycle, with their maximum values in winter at 30-50° N in region (a), and 50-70° N in region (b), which was related to the topography. At 30-50° N in region (b), EpT and p exhibited some irregular variations in addition to an annual cycle. In the Southern Hemisphere, we also found an annual oscillation in EpT and p, but it showed a time lag of about 2 months relative to U. Characteristics of EpTand p in the tropical region seem to be related to convective activity. The ratio of EpT to the theoretical model value, assuming saturated GWs, became larger in the equatorial region and over mountainous regions.

  7. Application of high-resolution linear Radon transform for Rayleigh-wave dispersive energy imaging and mode separating

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.

  8. Vertical distribution of the sound-scattering layer in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, Hyungbeen; La, Hyoung Sul; Kang, Donhyug; Lee, SangHoon

    2018-03-01

    Mid-trophic level at high-latitude coastal water in the Southern Ocean reside unique geographical condition with sea ice, coastal polynya, and ice shelf. To investigate the regional differences in their vertical distribution during summer, we examined acoustic backscatter data from scientific echo sounder, collected in the three representative regions in the Amundsen Sea: pack ice zone, coastal polynya zone, and ice shelf zone. The weighted mean depths (WMDs) representing zooplankton were calculated with the high resolution acoustic backscatter (1-m depth) to identify the vertical variability of the sound-scattering layer (SSL). WMDs were mainly distributed between 50 and 130 m exhibiting clear regional differences. The WMDs were detected in the shallow depth ranged between 48 and 84 m within the pack ice and coastal polynya, whereas they were observed at deeper depths around near ice shelf ranged between 117 and 126 m. WMDs varied with changing the stratification of water column structure representing strong linear relationship with the mixed layer depth (r = 0.69). This finding implies that understanding the essential forcing of zooplankton behavior will improve our ability to assess the coastal ecosystem in the Southern Ocean facing dramatic change.

  9. Crater Morphometry and Crater Degradation on Mercury: Mercury Laser Altimeter (MLA) Measurements and Comparison to Stereo-DTM Derived Results

    NASA Technical Reports Server (NTRS)

    Leight, C.; Fassett, C. I.; Crowley, M. C.; Dyar, M. D.

    2017-01-01

    Two types of measurements of Mercury's surface topography were obtained by the MESSENGER (MErcury Surface Space ENvironment, GEochemisty and Ranging) spacecraft: laser ranging data from Mercury Laser Altimeter (MLA) [1], and stereo imagery from the Mercury Dual Imaging System (MDIS) camera [e.g., 2, 3]. MLA data provide precise and accurate elevation meaurements, but with sparse spatial sampling except at the highest northern latitudes. Digital terrain models (DTMs) from MDIS have superior resolution but with less vertical accuracy, limited approximately to the pixel resolution of the original images (in the case of [3], 15-75 m). Last year [4], we reported topographic measurements of craters in the D=2.5 to 5 km diameter range from stereo images and suggested that craters on Mercury degrade more quickly than on the Moon (by a factor of up to approximately 10×). However, we listed several alternative explanations for this finding, including the hypothesis that the lower depth/diameter ratios we observe might be a result of the resolution and accuracy of the stereo DTMs. Thus, additional measurements were undertaken using MLA data to examine the morphometry of craters in this diameter range and assess whether the faster crater degradation rates proposed to occur on Mercury is robust.

  10. Temporal Variability in Vertical Groundwater Fluxes and the Effect of Solar Radiation on Streambed Temperatures Based on Vertical High Resolution Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.

    2013-12-01

    Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow and heat transport model (HydroGeoSphere). Subsequently, time series of vertical groundwater fluxes were computed based on the high-resolution vertical streambed sediment temperature profiles by coupling the model with PEST. The calculated vertical flux time series show spatial differences in discharge between the two HR-DTS sites. A similar temporal variability in vertical fluxes at the two test sites can also be observed, most likely linked to rainfall-runoff processes. The effect of solar radiation as streambed conduction is visible both at the exposed and shaded test site in form of increased diel temperature oscillations up to 14 cm depth from the streambed surface, with the test site exposed to solar radiation showing larger diel temperature oscillations.

  11. The Evaluation of the Spanish Air Quality Modelling System: CALIOPE. Dynamics and Chemistry over Europe and Iberian Peninsula for 2004 at high horizontal resolution

    NASA Astrophysics Data System (ADS)

    Piot, M.; Pay, M.; Jorba, O.; Lopez, E.; Pirez, C.; Gasso, S.; Baldasano, J. M.

    2009-12-01

    In Europe, human exposure to air pollution often exceeds standards set by the EU commission (Directives 1996/62/EC, 2002/3/EC, 2008/50/EC) and the World Health Organization (WHO). Urban/suburban areas are predominantly impacted upon, although exceedances of particulate matter (PM10 and PM2.5) and Ozone (O3) also take place in rural areas. Within the CALIOPE project, a high-resolution air quality forecasting system, namely WRF-ARW/HERMES04/CMAQ/BSC-DREAM, has been developed and applied to the European domain (12x12 sq. km, 1hr) as well as the Spanish domain (4x4 sq. km, 1hr). The simulation of such high-resolution model system has been made possible by its implementation on the MareNostrum supercomputer. This contribution describes a thorough quantitative evaluation study performed for the reference year 2004. The WRF-ARW meteorological model contains 38 vertical layers reaching up to 50 hPa. The vertical resolution of the CMAQ chemistry-transport model for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Gas phase boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model. For the European simulation, emissions are disaggregated from the EMEP emission inventory for 2004 to the utilized resolution using the criteria implemented in the HERMES04 emission model. The HERMES04 model system, running through a bottom-up approach, is used to estimate emissions for Spain at a 1x1 sq. km horizontal resolution, every hour. In order to evaluate the performances of the CALIOPE system, the model simulation for Europe was compared with ground-based measurements from the EMEP and the Spanish air quality networks (total of 60 stations for O3, 43 for NO2, 31 for SO2, 25 for PM10 and 16 for PM2.5). The model simulation for Europe satisfactorily reproduces O3 concentrations throughout the year (annual correlation: 0.66) with relatively small errors: MNGE values range from 13% to 26%, and MNBE values show a slight negative bias ranging from -18% to 0%. These values lie within the range defined by the US-EPA (MNGE: +/- 30-35%; MNBE: +/- 10-15%. See US-EPA, 1991, 2005). NO2 is less accurately simulated, with a mean MNBE of -35% caused by an overall underestimation in concentrations. The reproduction of SO2 concentrations is relatively correct but false peaks are reported (mean annual MNBE=6%). The simulated variation of particulate matter is reliable, with a mean correlation of 0.57. The aerosol dynamics is well captured and false peaks are reduced by use of an improved 8-bin aerosol description in the BSC-DREAM dust model, but mean levels are still underestimated by a factor of two. The model simulation for Europe is used to force the nested high-resolution simulation of Spain. The performances of the latter will be also presented.

  12. Development of high resolution simulations of the atmospheric environment using the MASS model

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Zack, John W.; Karyampudi, V. Mohan

    1989-01-01

    Numerical simulations were performed with a very high resolution (7.25 km) version of the MASS model (Version 4.0) in an effort to diagnose the vertical wind shear and static stability structure during the Shuttle Challenger disaster which occurred on 28 January 1986. These meso-beta scale simulations reveal that the strongest vertical wind shears were concentrated in the 200 to 150 mb layer at 1630 GMT, i.e., at about the time of the disaster. These simulated vertical shears were the result of two primary dynamical processes. The juxtaposition of both of these processes produced a shallow (30 mb deep) region of strong vertical wind shear, and hence, low Richardson number values during the launch time period. Comparisons with the Cape Canaveral (XMR) rawinsonde indicates that the high resolution MASS 4.0 simulation more closely emulated nature than did previous simulations of the same event with the GMASS model.

  13. Mesospheric sodium over Gadanki during Geminid meteor shower 2007

    NASA Astrophysics Data System (ADS)

    Lokanadham, B.; Rakesh Chandra, N.; Bhaskara Rao, S. Vijaya; Raghunath, K.; Yellaiah, G.

    Resonance LIDAR system at Gadanki has been used for observing the mesospheric sodium during the night of 12-13 Dec 2007 when the peak activity of Geminid meteor shower occurred. Geminid meteor shower is observed along with the co-located MST radar in the altitude range 80-110 km. Sodium density profiles have been obtained with a vertical resolution of 300 m and a temporal resolution of 120 s with sodium resonance scattering LIDAR system. The sodium layers were found to exist in the altitude range 90-100 km. The enhanced Geminid meteor rates were recorded with the co-located MST radar in the same altitude range. The sodium concentration in the atmospheric altitude of ~93 km is estimated to be 2000 per cc where the meteoric concentration of Geminid is maximum and reduced to around 800 on the non activity of Geminid. These observations showed that the sodium levels in the E-region are found to be increasing during meteor shower nights at least by a factor of two.

  14. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  15. A study of the material in the ATLAS inner detector using secondary hadronic interactions

    DOE PAGES

    None, None

    2012-01-13

    The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from ~ 200μm to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such asmore » tracks, leptons, jets, and missing transverse momentum.« less

  16. Cumulus cloud venting of mixed layer ozone

    NASA Technical Reports Server (NTRS)

    Ching, J. K. S.; Shipley, S. T.; Browell, E. V.; Brewer, D. A.

    1985-01-01

    Observations are presented which substantiate the hypothesis that significant vertical exchange of ozone and aerosols occurs between the mixed layer and the free troposphere during cumulus cloud convective activity. The experiments utilized the airborne Ultra-Violet Differential Absorption Lidar (UV-DIAL) system. This system provides simultaneous range resolved ozone concentration and aerosol backscatter profiles with high spatial resolution. Evening transects were obtained in the downwind area where the air mass had been advected. Space-height analyses for the evening flight show the cloud debris as patterns of ozone typically in excess of the ambient free tropospheric background. This ozone excess was approximately the value of the concentration difference between the mixed layer and free troposphere determined from independent vertical soundings made by another aircraft in the afternoon.

  17. Ensuring Interoperability between UAS Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    The UAS community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. They were evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance systems in terms of: 1) the primary objective of restricting DAA vertical guidance before RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at a DAA alert when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region--during which DAA vertical guidance is restricted--when the time to closest point of approach is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  18. Ensuring Interoperability Between Unmanned Aircraft Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seungman

    2017-01-01

    The Unmanned Aircraft Systems (UAS) community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. Each definition was evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance in terms of how well it achieved: 1) the primary objective of restricting DAA vertical guidance prior to RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at DAA alerts when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region where DAA vertical guidance is restricted when the time to closest point of approach (CPA) is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  19. H3+ Measurements in the Jovian Atmosphere with JIRAM/Juno

    NASA Astrophysics Data System (ADS)

    Mura, A.; Migliorini, A.; Dinelli, B. M.; Moriconi, M. L.; Altieri, F.; Adriani, A.; Fabiano, F.; Piccioni, G.; Tosi, F.; Filacchione, G.; Sindoni, G.; Grassi, D.; Noschese, R.; Cicchetti, A.; Sordini, R.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Levin, S.; Lunine, J. I.; Gerard, J. C. M. C.; Turrini, D.; Stefani, S.; Olivieri, A.; Plainaki, C.

    2017-12-01

    The NASA Juno mission has been investigating Jupiter's atmosphere since August 2016, providing unprecedented insights into the giant planet. The Jupiter Infrared Auroral Mapper (JIRAM) experiment, on board Juno, performed spectroscopic observations of the H3+ emissions both in the auroral regions (Dinelli et al., 2017; Adriani et al., 2017; Mura et al., 2017) and at mid latitudes. In the present work, we analyse the observations acquired by the JIRAM spectrometer during the first perijove passage on 26-27 August 2016, when the spacecraft was at about 500,000-1,200,000 km (7-17 RJ) from the planet. During a portion of the observations, the slit of the spectrometer sampled Jupiter's limb in the latitude range from 30° to 60° in both hemispheres. The limb spectra show the typical features of the H3+ emission in the 3-4 μm spectral range, which are generally used to retrieve the H3+ concentration and temperature in the auroral region. In this work we employ above spectral region to provide new insight into the H3+ vertical distribution. The spatial resolution of the limb observations of Jupiter, ranging between 50 and 130 km, is favorable for investigating the vertical distribution of H3+. The vertical profiles of the H3+ limb intensity will be presented along with the preliminary results of the retrieval on H3+ vertical volume mixing ratio (VMR) height profiles, and comparison with predictions from the available atmospheric models of the planet. Possible variability of the altitude of the peak emission with respect to latitude and longitude will also be discussed.

  20. High-Resolution Fibre-Optic Temperature Sensing: A New Tool to Study the Two-Dimensional Structure of Atmospheric Surface-Layer Flow

    NASA Astrophysics Data System (ADS)

    Thomas, Christoph K.; Kennedy, Adam M.; Selker, John S.; Moretti, Ayla; Schroth, Martin H.; Smoot, Alexander R.; Tufillaro, Nicholas B.; Zeeman, Matthias J.

    2012-02-01

    We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25 m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8 m × 8 m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space-time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt-Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.

  1. Hydrostatic and non-hydrostatic simulations of dense waters cascading off a shelf: The East Greenland case

    NASA Astrophysics Data System (ADS)

    Magaldi, Marcello G.; Haine, Thomas W. N.

    2015-02-01

    The cascade of dense waters of the Southeast Greenland shelf during summer 2003 is investigated with two very high-resolution (0.5-km) simulations. The first simulation is non-hydrostatic. The second simulation is hydrostatic and about 3.75 times less expensive. Both simulations are compared to a 2-km hydrostatic run, about 31 times less expensive than the 0.5 km non-hydrostatic case. Time-averaged volume transport values for deep waters are insensitive to the changes in horizontal resolution and vertical momentum dynamics. By this metric, both lateral stirring and vertical shear instabilities associated with the cascading process are accurately parameterized by the turbulent schemes used at 2-km horizontal resolution. All runs compare well with observations and confirm that the cascade is mainly driven by cyclones which are linked to dense overflow boluses at depth. The passage of the cyclones is also associated with the generation of internal gravity waves (IGWs) near the shelf. Surface fields and kinetic energy spectra do not differ significantly between the runs for horizontal scales L > 30 km. Complex structures emerge and the spectra flatten at scales L < 30 km in the 0.5-km runs. In the non-hydrostatic case, additional energy is found in the vertical kinetic energy spectra at depth in the 2 km < L < 10 km range and with frequencies around 7 times the inertial frequency. This enhancement is missing in both hydrostatic runs and is here argued to be due to the different IGW evolution and propagation offshore. The different IGW behavior in the non-hydrostatic case has strong implications for the energetics: compared to the 2-km case, the baroclinic conversion term and vertical kinetic energy are about 1.4 and at least 34 times larger, respectively. This indicates that the energy transfer from the geostrophic eddy field to IGWs and their propagation away from the continental slope is not properly represented in the hydrostatic runs.

  2. Micromachined Chip Scale Thermal Sensor for Thermal Imaging.

    PubMed

    Shekhawat, Gajendra S; Ramachandran, Srinivasan; Jiryaei Sharahi, Hossein; Sarkar, Souravi; Hujsak, Karl; Li, Yuan; Hagglund, Karl; Kim, Seonghwan; Aden, Gary; Chand, Ami; Dravid, Vinayak P

    2018-02-27

    The lateral resolution of scanning thermal microscopy (SThM) has hitherto never approached that of mainstream atomic force microscopy, mainly due to poor performance of the thermal sensor. Herein, we report a nanomechanical system-based thermal sensor (thermocouple) that enables high lateral resolution that is often required in nanoscale thermal characterization in a wide range of applications. This thermocouple-based probe technology delivers excellent lateral resolution (∼20 nm), extended high-temperature measurements >700 °C without cantilever bending, and thermal sensitivity (∼0.04 °C). The origin of significantly improved figures-of-merit lies in the probe design that consists of a hollow silicon tip integrated with a vertically oriented thermocouple sensor at the apex (low thermal mass) which interacts with the sample through a metallic nanowire (50 nm diameter), thereby achieving high lateral resolution. The efficacy of this approach to SThM is demonstrated by imaging embedded metallic nanostructures in silica core-shell, metal nanostructures coated with polymer films, and metal-polymer interconnect structures. The nanoscale pitch and extremely small thermal mass of the probe promise significant improvements over existing methods and wide range of applications in several fields including semiconductor industry, biomedical imaging, and data storage.

  3. Using High and Low Resolution Profiles of CO2 and CH4 Measured with AirCores to Evaluate Transport Models and Atmospheric Columns Retrieved from Space

    NASA Astrophysics Data System (ADS)

    Membrive, O.; Crevoisier, C. D.; Sweeney, C.; Hertzog, A.; Danis, F.; Picon, L.; Engel, A.; Boenisch, H.; Durry, G.; Amarouche, N.

    2015-12-01

    Over the past decades many methods have been developed to monitor the evolution of greenhouse gases (GHG): ground networks (NOAA, ICOS, TCCON), aircraft campaigns (HIPPO, CARIBIC, Contrail…), satellite observations (GOSAT, IASI, AIRS…). Nevertheless, precise and regular vertical profile measurements are currently still missing from the observing system. To address this need, an original and innovative atmospheric sampling system called AirCore has been developed at NOAA (Karion et al. 2010). This new system allows balloon measurements of GHG vertical profiles from the surface up to 30 km. New versions of this instrument have been developed at LMD: a high-resolution version "AirCore-HR" that differs from other AirCores by its high vertical resolution and two "light" versions (lower resolution) aiming to be flown under meteorological balloon. LMD AirCores were flown on multi-instrument gondolas along with other independent instruments measuring CO2 and CH4 in-situ during the Strato Science balloon campaigns operated by the French space agency CNES in collaboration with the Canadian Space Agency in Timmins (Ontario, Canada) in August 2014 and 2015. First, we will present comparisons of the vertical profiles retrieved with various AirCores (LMD and Frankfurt University) to illustrate repeatability and impact of the vertical resolution as well as comparisons with independent in-situ measurements from other instruments (laser diode based Pico-SDLA). Second, we will illustrate the usefulness of AirCore measurements in the upper troposphere and stratosphere for validating and interpreting vertical profiles from atmospheric transport models as well as observations of total and partial column of methane and carbon dioxide from several current and future spaceborne missions such as: ACE-FTS, IASI and GOSAT.

  4. ATLID, the atmospheric lidar on board the Earthcare Satellite

    NASA Astrophysics Data System (ADS)

    Hélière, Arnaud; Gelsthorpe, Robert; Le Hors, Lénaïc.; Toulemont, Yves

    2017-11-01

    The EarthCARE mission is the sixth Earth Explorer Mission of the ESA Living Planet Programme, with a launch date planned in 2015. It addresses the interaction and impact of clouds and aerosols on the Earth's radiative budget. ATLID (ATmospheric LIDar), one of the four instruments of EarthCARE, shall determine vertical profiles of cloud and aerosol physical parameters (altitude, optical depth, backscatter ratio and depolarisation ratio) in synergy with other instruments. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes with a vertical resolution of about 100 m from ground to an altitude of 40 km. As a result of high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol (Mie) and molecular (Rayleigh) scattering, which gives access to aerosol optical depth. The purpose of the paper is to present the progress in the instrument and subsystem design. The instrument is currently in phase C where the detailed design of all sub-systems is being performed. Emphasis will be put on the major technological developments, in particular the laser Transmitter, the optical units and detector developments.

  5. Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT

    NASA Astrophysics Data System (ADS)

    Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.

    2017-09-01

    We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important and timely reference for them.

  6. Comparison of the GOSAT TANSO-FTS TIR CH volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Strong, Kimberly; Walker, Kaley A.; Boone, Chris D.; Raspollini, Piera; Plieninger, Johannes; Bader, Whitney; Conway, Stephanie; Grutter, Michel; Hannigan, James W.; Hase, Frank; Jones, Nicholas; de Mazière, Martine; Notholt, Justus; Schneider, Matthias; Smale, Dan; Sussmann, Ralf; Saitoh, Naoko

    2017-10-01

    The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS uses three short-wave infrared (SWIR) bands to retrieve total columns of CO2 and CH4 along its optical line of sight and one thermal infrared (TIR) channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios (VMRs) in the troposphere. We examine version 1 of the TANSO-FTS TIR CH4 product by comparing co-located CH4 VMR vertical profiles from two other remote-sensing FTS systems: the Canadian Space Agency's Atmospheric Chemistry Experiment FTS (ACE-FTS) on SCISAT (version 3.5) and the European Space Agency's Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat (ESA ML2PP version 6 and IMK-IAA reduced-resolution version V5R_CH4_224/225), as well as 16 ground stations with the Network for the Detection of Atmospheric Composition Change (NDACC). This work follows an initial inter-comparison study over the Arctic, which incorporated a ground-based FTS at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, and focuses on tropospheric and lower-stratospheric measurements made at middle and tropical latitudes between 2009 and 2013 (mid-2012 for MIPAS). For comparison, vertical profiles from all instruments are interpolated onto a common pressure grid, and smoothing is applied to ACE-FTS, MIPAS, and NDACC vertical profiles. Smoothing is needed to account for differences between the vertical resolution of each instrument and differences in the dependence on a priori profiles. The smoothing operators use the TANSO-FTS a priori and averaging kernels in all cases. We present zonally averaged mean CH4 differences between each instrument and TANSO-FTS with and without smoothing, and we examine their information content, their sensitive altitude range, their correlation, their a priori dependence, and the variability within each data set. Partial columns are calculated from the VMR vertical profiles, and their correlations are examined. We find that the TANSO-FTS vertical profiles agree with the ACE-FTS and both MIPAS retrievals' vertical profiles within 4 % (± ˜ 40 ppbv) below 15 km when smoothing is applied to the profiles from instruments with finer vertical resolution but that the relative differences can increase to on the order of 25 % when no smoothing is applied. Computed partial columns are tightly correlated for each pair of data sets. We investigate whether the difference between TANSO-FTS and other CH4 VMR data products varies with latitude. Our study reveals a small dependence of around 0.1 % per 10 degrees latitude, with smaller differences over the tropics and greater differences towards the poles.

  7. 1920x1080 pixel color camera with progressive scan at 50 to 60 frames per second

    NASA Astrophysics Data System (ADS)

    Glenn, William E.; Marcinka, John W.

    1998-09-01

    For over a decade, the broadcast industry, the film industry and the computer industry have had a long-range objective to originate high definition images with progressive scan. This produces images with better vertical resolution and much fewer artifacts than interlaced scan. Computers almost universally use progressive scan. The broadcast industry has resisted switching from interlace to progressive because no cameras were available in that format with the 1920 X 1080 resolution that had obtained international acceptance for high definition program production. The camera described in this paper produces an output in that format derived from two 1920 X 1080 CCD sensors produced by Eastman Kodak.

  8. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    PubMed

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  9. Determination of Fluxes and their Source Partitioning from high-resolution Profile Measurements of Wind Speed and Scalars within and above short Canopies

    NASA Astrophysics Data System (ADS)

    Graf, A.; Ney, P.

    2017-12-01

    A continuously moving elevator-based system is described to measure vertical profiles of wind speed, temperature, CO2 and H2O within and above short plant canopies with a vertical resolution in the centimeter range. On sample days in 2015 to 2017, we measured profiles from the soil surface to 2 m a.g.l. in a crop rotation including wheat, barley, bare soil, winter catch crops and sugarbeet, with canopy heights of up to 1 m. Profiles over bare soil or very short canopies could be described well by fitting Monin-Obukhov-like profiles, and the derived fluxes of momentum and all three scalars matched well those of a nearby eddy-covariance station. In green canopies during the day, CO2 profiles clearly indicated the plant sink and soil source by a local minimum in the canopy and a maximum at the soil surface. H2O profiles, indicating sources both in the canopy and at the soil surface, did or did not show a local minimum between both, depending on canopy structure and turbulence. Temperature profiles showed various shapes including solar incident angle effects, and often the expected opposing signs of thermal stability between the subcanopy and the roughness sublayer. Finally, we test different existing parametrizations to estimate the vertical source / sink distribution from the measured profiles, compare the resulting vertically integrated fluxes to eddy-covariance based net fluxes, and discuss limitations and needed improvements to quantify subcanopy soil respiration and evaporation from such approaches.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosismore » from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.« less

  11. Vertical land motion along the coast of Louisiana: Integrating satellite altimetry, tide gauge and GPS

    NASA Astrophysics Data System (ADS)

    Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.

    2017-12-01

    Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.

  12. Local and General Monitoring of Forni Glacier (italian Alps) Using Multi-Platform Structure-From Photogrammetry

    NASA Astrophysics Data System (ADS)

    Scaioni, M.; Corti, M.; Diolaiuti, G.; Fugazza, D.; Cernuschi, M.

    2017-09-01

    Experts from the University of Milan have been investigating Forni Glacier in the Italian alps for decades, resulting in the archive of a cumbersome mass of observed data. While the analysis of archive maps, medium resolution satellite images and DEM's may provide an overview of the long-term processes, the application of close-range sensing techniques offers the unprecedented opportunity to operate a 4D reconstruction of the glacier geometry at both global and local levels. In the latest years the availability of high-resolution DEM's from stereo-photogrammetry (2007) and UAV-photogrammetry (2014 and 2016) has allowed an improved analysis of the glacier ice-mass balance within time. During summer 2016 a methodology to record the local disruption processes has been investigated. The presence of vertical and sub-vertical surfaces has motivated the use of Structure-from-Motion Photogrammetry from ground-based stations, which yielded results comparable to the ones achieved using a long-range terrestrial laser scanner. This technique may be assumed as benchmarking for accuracy assessment, but is more difficult to be operated in high-mountain areas. Nevertheless, the measurement of GCP's for the terrestrial photogrammetric project has revealed to be a complex task, involving the need of a total station a GNSS. The effect of network geometry on the final output has also been investigated for SfM-Photogrammetry, considering the severe limitations implied in the Alpine environment.

  13. Long-period GPS waveforms. What can GPS bring to Earth seismic velocity models?

    NASA Astrophysics Data System (ADS)

    Kelevitz, Krisztina; Houlié, Nicolas; Boschi, Lapo; Nissen-Meyer, Tarje; Giardini, Domenico

    2014-05-01

    It is now commonly admitted that high rate GPS observations can provide reliable surface displacement waveforms (Cervelli, et al., 2001; Langbein, et al., 2006; Houlié, et al., 2006; Houlié et al., 2011). For long-period (T>5s) transients, it was shown that GPS and seismometer (STS-1) displacements are in agreement at least for vertical component (Houlié, et al., Sci. Rep. 2011). We propose here to supplement existing long-period seismic networks with high rate (>= 1Hz) GPS data in order to improve the resolution of global seismic velocity models. GPS measurements are providing a wide range of frequencies, going beyond the range of STS-1 in the low frequency end. Nowadays, almost 10.000 GPS receivers would be able to record data at 1 Hz with 3000+ stations already streaming data in Real-Time (RT). The reasons for this quick expansion are the price of receivers, their low maintenance, and the wide range of activities they can be used for (transport, science, public apps, navigation, etc.). We are presenting work completed on the 1Hz GPS records of the Hokkaido earthquake (25th of September, 2003, Mw=8.3). 3D Waveforms have been computed with an improved, stabilised inversion algorithm in order to constrain the ground motion history. Through the better resolution of inversion of the GPS phase observations, we determine displacement waveforms of frequencies ranging from 0.77 mHz to 330 mHz for a selection of sites. We compare inverted GPS waveforms with STS-1 waveforms and synthetic waveforms computed using 3D global wave propagation with SPECFEM. At co-located sites (STS-1 and GPS located within 10km) the agreement is good for the vertical component between seismic (both real and synthetic) and GPS waveforms.

  14. Airborne LiDAR analysis and geochronology of faulted glacial moraines in the Tahoe-Sierra frontal fault zone reveal substantial seismic hazards in the Lake Tahoe region, California-Nevada USA

    USGS Publications Warehouse

    Howle, James F.; Bawden, Gerald W.; Schweickert, Richard A.; Finkel, Robert C.; Hunter, Lewis E.; Rose, Ronn S.; von Twistern, Brent

    2012-01-01

    We integrated high-resolution bare-earth airborne light detection and ranging (LiDAR) imagery with field observations and modern geochronology to characterize the Tahoe-Sierra frontal fault zone, which forms the neotectonic boundary between the Sierra Nevada and the Basin and Range Province west of Lake Tahoe. The LiDAR imagery clearly delineates active normal faults that have displaced late Pleistocene glacial moraines and Holocene alluvium along 30 km of linear, right-stepping range front of the Tahoe-Sierra frontal fault zone. Herein, we illustrate and describe the tectonic geomorphology of faulted lateral moraines. We have developed new, three-dimensional modeling techniques that utilize the high-resolution LiDAR data to determine tectonic displacements of moraine crests and alluvium. The statistically robust displacement models combined with new ages of the displaced Tioga (20.8 ± 1.4 ka) and Tahoe (69.2 ± 4.8 ka; 73.2 ± 8.7 ka) moraines are used to estimate the minimum vertical separation rate at 17 sites along the Tahoe-Sierra frontal fault zone. Near the northern end of the study area, the minimum vertical separation rate is 1.5 ± 0.4 mm/yr, which represents a two- to threefold increase in estimates of seismic moment for the Lake Tahoe basin. From this study, we conclude that potential earthquake moment magnitudes (Mw) range from 6.3 ± 0.25 to 6.9 ± 0.25. A close spatial association of landslides and active faults suggests that landslides have been seismically triggered. Our study underscores that the Tahoe-Sierra frontal fault zone poses substantial seismic and landslide hazards.

  15. Advances in Using Fiber-Optic Distributed Temperature Sensing to Identify the Mixing of Waters

    NASA Astrophysics Data System (ADS)

    Briggs, M. A.; Day-Lewis, F. D.; Rosenberry, D. O.; Harvey, J. W.; Lane, J. W., Jr.; Hare, D. K.; Boutt, D. F.; Voytek, E. B.; Buckley, S.

    2014-12-01

    Fiber-optic distributed temperature sensing (FO-DTS) provides thermal data through space and time along linear cables. When installed along a streambed, FO-DTS can capture the influence of upwelling groundwater (GW) as thermal anomalies. The planning of labor-intensive physical measurements can make use of FO-DTS data to target areas of focused GW discharge that can disproportionately affect surface-water (SW) quality and temperature. Typical longitudinal FO-DTS spatial resolution ranges 0.25 to1.0 m, and cannot resolve small-scale water-column mixing or sub-surface diurnal fluctuations. However, configurations where the cable is wrapped around rods can improve the effective vertical resolution to sub-centimeter scales, and the pipes can be actively heated to induce a thermal tracer. Longitudinal streambed and high-resolution vertical arrays were deployed at the upper Delaware River (PA, USA) and the Quashnet River (MA, USA) for aquatic habitat studies. The resultant datasets exemplify the varied uses of FO-DTS. Cold anomalies found along the Delaware River steambed coincide with zones of known mussel populations, and high-resolution vertical array data showed relatively stable in-channel thermal refugia. Cold anomalies at the Quashnet River identified in 2013 were found to persist in 2014, and seepage measurements and water samples at these locations showed high GW flux with distinctive chemistry. Cable location is paramount to seepage identification, particularly in faster flowing deep streams such as the Quashnet and Delaware Rivers where steambed FO-DTS identified many seepage zones with no surface expression. The temporal characterization of seepage dynamics are unique to FO-DTS. However, data from Tidmarsh Farms, a cranberry bog restoration site in MA, USA indicate that in slower flowing shallow steams GW inflow affects surface temperature; therefore infrared imaging can provide seepage location information similar to FO-DTS with substantially less effort.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Severson; M Bissen; M Fisher

    SRC has recently commissioned a new Varied Line-Spacing Plane Grating Monochromator (VLS-PGM) utilizing as its source a 1 m long APPLE II insertion device in short-straight-section 9 of the Aladdin storage ring. The insertion device reliably delivers horizontal, vertical, and right and left circularly polarized light to the beamline. Measurements from an in situ polarimeter can be used for undulator corrections to compensate for depolarizing effects of the beamline. The beamline has only three optical elements and covers the energy range from 11.1 to 270 eV using two varied line-spacing gratings. A plane mirror rotates to illuminate the gratings atmore » the correct angle to cancel the defocus term at all photon energies. An exit slit and elliptical-toroid refocusing mirror complete the beamline. Using a 50 {mu}m exit slit, the beamline provides moderate to high resolution, with measured flux in the mid 10{sup 12} (photons/s/200 mA) range, and a spot size of 400 {mu}m horizontal by 30 {mu}m vertical.« less

  17. Terrain-driven unstructured mesh development through semi-automatic vertical feature extraction

    NASA Astrophysics Data System (ADS)

    Bilskie, Matthew V.; Coggin, David; Hagen, Scott C.; Medeiros, Stephen C.

    2015-12-01

    A semi-automated vertical feature terrain extraction algorithm is described and applied to a two-dimensional, depth-integrated, shallow water equation inundation model. The extracted features describe what are commonly sub-mesh scale elevation details (ridge and valleys), which may be ignored in standard practice because adequate mesh resolution cannot be afforded. The extraction algorithm is semi-automated, requires minimal human intervention, and is reproducible. A lidar-derived digital elevation model (DEM) of coastal Mississippi and Alabama serves as the source data for the vertical feature extraction. Unstructured mesh nodes and element edges are aligned to the vertical features and an interpolation algorithm aimed at minimizing topographic elevation error assigns elevations to mesh nodes via the DEM. The end result is a mesh that accurately represents the bare earth surface as derived from lidar with element resolution in the floodplain ranging from 15 m to 200 m. To examine the influence of the inclusion of vertical features on overland flooding, two additional meshes were developed, one without crest elevations of the features and another with vertical features withheld. All three meshes were incorporated into a SWAN+ADCIRC model simulation of Hurricane Katrina. Each of the three models resulted in similar validation statistics when compared to observed time-series water levels at gages and post-storm collected high water marks. Simulated water level peaks yielded an R2 of 0.97 and upper and lower 95% confidence interval of ∼ ± 0.60 m. From the validation at the gages and HWM locations, it was not clear which of the three model experiments performed best in terms of accuracy. Examination of inundation extent among the three model results were compared to debris lines derived from NOAA post-event aerial imagery, and the mesh including vertical features showed higher accuracy. The comparison of model results to debris lines demonstrates that additional validation techniques are necessary for state-of-the-art flood inundation models. In addition, the semi-automated, unstructured mesh generation process presented herein increases the overall accuracy of simulated storm surge across the floodplain without reliance on hand digitization or sacrificing computational cost.

  18. Neptune Clouds Showing Vertical Relief

    NASA Image and Video Library

    1996-01-29

    NASA's Voyager 2 high resolution color image, taken 2 hours before closest approach, provides obvious evidence of vertical relief in Neptune's bright cloud streaks. These clouds were observed at a latitude of 29 degrees north near Neptune's east terminator. The linear cloud forms are stretched approximately along lines of constant latitude and the sun is toward the lower left. The bright sides of the clouds which face the sun are brighter than the surrounding cloud deck because they are more directly exposed to the sun. Shadows can be seen on the side opposite the sun. These shadows are less distinct at short wavelengths (violet filter) and more distinct at long wavelengths (orange filter). This can be understood if the underlying cloud deck on which the shadow is cast is at a relatively great depth, in which case scattering by molecules in the overlying atmosphere will diffuse light into the shadow. Because molecules scatter blue light much more efficiently than red light, the shadows will be darkest at the longest (reddest) wavelengths, and will appear blue under white light illumination. The resolution of this image is 11 kilometers (6.8 miles per pixel) and the range is only 157,000 kilometers (98,000 miles). The width of the cloud streaks range from 50 to 200 kilometers (31 to 124 miles), and their shadow widths range from 30 to 50 kilometers (18 to 31 miles). Cloud heights appear to be of the order of 50 kilometers (31 miles). This corresponds to 2 scale heights. http://photojournal.jpl.nasa.gov/catalog/PIA00058

  19. Neptune Clouds Showing Vertical Relief

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This Voyager 2 high resolution color image, taken 2 hours before closest approach, provides obvious evidence of vertical relief in Neptune's bright cloud streaks. These clouds were observed at a latitude of 29 degrees north near Neptune's east terminator. The linear cloud forms are stretched approximately along lines of constant latitude and the sun is toward the lower left. The bright sides of the clouds which face the sun are brighter than the surrounding cloud deck because they are more directly exposed to the sun. Shadows can be seen on the side opposite the sun. These shadows are less distinct at short wavelengths (violet filter) and more distinct at long wavelengths (orange filter). This can be understood if the underlying cloud deck on which the shadow is cast is at a relatively great depth, in which case scattering by molecules in the overlying atmosphere will diffuse light into the shadow. Because molecules scatter blue light much more efficiently than red light, the shadows will be darkest at the longest (reddest) wavelengths, and will appear blue under white light illumination. The resolution of this image is 11 kilometers (6.8 miles per pixel) and the range is only 157,000 kilometers (98,000 miles). The width of the cloud streaks range from 50 to 200 kilometers (31 to 124 miles), and their shadow widths range from 30 to 50 kilometers (18 to 31 miles). Cloud heights appear to be of the order of 50 kilometers (31 miles). This corresponds to 2 scale heights. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  20. Using Distributed Temperature Sensing for measuring vertical temperature profiles and air temperature variance in the roughness sublayer above a forest canopy

    NASA Astrophysics Data System (ADS)

    Schilperoort, B.; Coenders, M.; Savenije, H. H. G.

    2017-12-01

    In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.

  1. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cloud Optical Properties Determined by High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Grund, C. J.; Eloranta, E. W.

    1996-01-01

    During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension ratios of 1:5-1:1.

  2. A boundary condition for layer to level ocean model interaction

    NASA Astrophysics Data System (ADS)

    Mask, A.; O'Brien, J.; Preller, R.

    2003-04-01

    A radiation boundary condition based on vertical normal modes is introduced to allow a physical transition between nested/coupled ocean models that are of differing vertical structure and/or differing physics. In this particular study, a fine resolution regional/coastal sigma-coordinate Naval Coastal Ocean Model (NCOM) has been successfully nested to a coarse resolution (in the horizontal and vertical) basin scale NCOM and a coarse resolution basin scale Navy Layered Ocean Model (NLOM). Both of these models were developed at the Naval Research Laboratory (NRL) at Stennis Space Center, Mississippi, USA. This new method, which decomposes the vertical structure of the models into barotropic and baroclinic modes, gives improved results in the coastal domain over Orlanski radiation boundary conditions for the test cases. The principle reason for the improvement is that each mode has the radiation boundary condition applied individually; therefore, the packet of information passing through the boundary is allowed to have multiple phase speeds instead of a single-phase speed. Allowing multiple phase speeds reduces boundary reflections, thus improving results.

  3. Information content of ozone retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.

    1989-01-01

    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.

  4. Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.

    2017-12-01

    Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.

  5. Development of Elevation and Relief Databases for ICESat-2/ATLAS Receiver Algorithms

    NASA Astrophysics Data System (ADS)

    Leigh, H. W.; Magruder, L. A.; Carabajal, C. C.; Saba, J. L.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    The Advanced Topographic Laser Altimeter System (ATLAS) is planned to launch onboard NASA's ICESat-2 spacecraft in 2016. ATLAS operates at a wavelength of 532 nm with a laser repeat rate of 10 kHz and 6 individual laser footprints. The satellite will be in a 500 km, 91-day repeat ground track orbit at an inclination of 92°. A set of onboard Receiver Algorithms has been developed to reduce the data volume and data rate to acceptable levels while still transmitting the relevant ranging data. The onboard algorithms limit the data volume by distinguishing between surface returns and background noise and selecting a small vertical region around the surface return to be included in telemetry. The algorithms make use of signal processing techniques, along with three databases, the Digital Elevation Model (DEM), the Digital Relief Map (DRM), and the Surface Reference Mask (SRM), to find the signal and determine the appropriate dynamic range of vertical data surrounding the surface for downlink. The DEM provides software-based range gating for ATLAS. This approach allows the algorithm to limit the surface signal search to the vertical region between minimum and maximum elevations provided by the DEM (plus some margin to account for uncertainties). The DEM is constructed in a nested, three-tiered grid to account for a hardware constraint limiting the maximum vertical range to 6 km. The DRM is used to select the vertical width of the telemetry band around the surface return. The DRM contains global values of relief calculated along 140 m and 700 m ground track segments consistent with a 92° orbit. The DRM must contain the maximum value of relief seen in any given area, but must be as close to truth as possible as the DRM directly affects data volume. The SRM, which has been developed independently from the DEM and DRM, is used to set parameters within the algorithm and select telemetry bands for downlink. Both the DEM and DRM are constructed from publicly available digital elevation models. No elevation models currently exist that provide global coverage at a sufficient resolution, so several regional models have been mosaicked together to produce global databases. In locations where multiple data sets are available, evaluations have been made to determine the optimal source for the databases, primarily based on resolution and accuracy. Separate procedures for calculating relief were developed for high latitude (>60N/S) regions in order to take advantage of polar stereographic projections. An additional method for generating the databases was developed for use over Antarctica, such that high resolution, regional elevation models can be easily incorporated as they become available in the future. The SRM is used to facilitate DEM and DRM production by defining those regions that are ocean and sea ice. Ocean and sea ice elevation values are defined by the geoid, while relief is set to a constant value. Results presented will include the details of data source selection, the methodologies used to create the databases, and the final versions of both the DEM and DRM databases. Companion presentations by McGarry, et al. and Carabajal, et al. describe the ATLAS onboard Receiver Algorithms and the database verification, respectively.

  6. Tracking of fluorescence nanoparticles with nanometre resolution in a biological system: assessing local viscosity and microrheology.

    PubMed

    Marki, Alex; Ermilov, Eugeny; Zakrzewicz, Andreas; Koller, Akos; Secomb, Timothy W; Pries, Axel R

    2014-04-01

    The aim of the study was to establish a user-friendly approach for single fluorescence particle 3D localization and tracking with nanometre precision in a standard fluorescence microscope using a point spread function (PSF) approach, and to evaluate validity and precision for different analysis methods and optical conditions with particular application to microcirculatory flow dynamics and cell biology. Images of fluorescent particles were obtained with a standard fluorescence microscope equipped with a piezo positioner for the objective. Whole pattern (WP) comparison with a PSF recorded for the specific set-up and measurement of the outermost ring radius (ORR) were used for analysis. Images of fluorescent particles were recorded over a large range (about 7μm) of vertical positions, with and without distortion by overlapping particles as well as in the presence of cultured endothelial cells. For a vertical range of 6.5μm the standard deviation (SD) from the predicted value, indicating validity, was 9.3/8.7 nm (WP/ORR) in the vertical and 8.2/11.7 nm in the horizontal direction. The precision, determined by repeated measurements, was 5.1/3.8 nm in the vertical and 2.9/3.7 nm in the horizontal direction. WP was more robust with respect to underexposure or overlapping images. On the surface of cultured endothelial cells, a layer with 2.5 times increased viscosity and a thickness of about 0.8μm was detected. With a validity in the range of 10 nm and a precision down to about 3-5 nm obtained by standard fluorescent microscopy, the PSF approach offers a valuable tool for a variety of experimental investigations of particle localizations, including the assessment of endothelial cell microenvironment.

  7. Upper ocean moored current and density profiler applied to winter conditions near Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.

    1982-09-20

    A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less

  8. Validation campaigns of a coherent Doppler Wind Lidar for PBL Continuous Profiling

    NASA Astrophysics Data System (ADS)

    Sauvage, Laurent; Cariou, Jean-Pierre; Boquet, Matthieu; Parmentier, Remy

    2010-05-01

    To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. In July 2009, the WLS70 took its definitive configuration with a new optical device installed on it allowing enhanced measurement range. New measurements were done at PNNL in Richland, Washington, and NASA Langley in Hampton, Virginia. These results are now processed and will bring a further proof on reliability and accuracy. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity accuracy.

  9. Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, Kirk W.; Oue, Mariko; Kollias, Pavlos

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less

  10. Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E

    DOE PAGES

    North, Kirk W.; Oue, Mariko; Kollias, Pavlos; ...

    2017-08-04

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less

  11. Topography-based analysis of Hurricane Katrina inundation of New Orleans: Chapter 3G in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Gesch, Dean

    2007-01-01

    The ready availability of high-resolution, high-accuracy elevation data proved valuable for development of topographybased products to determine rough estimates of the inundation of New Orleans, La., from Hurricane Katrina. Because of its high level of spatial detail and vertical accuracy of elevation measurements, light detection and ranging (lidar) remote sensing is an excellent mapping technology for use in low-relief hurricane-prone coastal areas.

  12. Physical and performance characteristics of instruments selected for global change monitoring

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1991-01-01

    The following appendix (appendix B) lists the instruments chosen for the Global Change Monitoring program. The instruments are described according to the following categories: (1) Title; (2) Measurement; (3) Contact; (4) Instrument Type; (5) Dimensions; (6) Mass; (7) Average Operational Power; (8) Data Rate; (9) Spectral/Frequency Range; (10) Number of Channels/Frequencies; (11) Viewing Field; (12) Scanning Characteristics; (13) Resolution (Horizontal/Vertical); (14) Swath Width; (15) Satellite Application; and (16) Technology Status. A technical drawing of each instrument is also provided.

  13. Oblique sounding using the DPS-4D stations in Europe

    NASA Astrophysics Data System (ADS)

    Mosna, Zbysek; Kouba, Daniel; Koucka Knizova, Petra; Arikan, Feza; Arikan, Orhan; Gok, Gokhan; Rejfek, Lubos

    2016-07-01

    The DPS-4D Digisondes are capable of detection of echoes from neighbouring European stations. Currently, a campaign with high-temporal resolution of 5 min is being run. Further, ionograms from regular vertical sounding with 15 min resolution provide us with oblique reflections together with vertical reflections. We analyzed profiles of electron concentration and basic ionospheric parameters derived from the ionograms. We compared results derived from reflections from the ionosphere above the stations (vertical sounding) with information derived from oblique reflections between the stations. This study is supported by the Joint TUBITAK 114E092 and AS CR 14/001 projects.

  14. CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2B)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  15. CERES Clouds and Radiative Swath (CRS) data in HDF (CER_CRS_TRMM-PFM-VIRS_Edition2C)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  16. CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2A

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  17. Alleviating tropical Atlantic sector biases in the Kiel climate model by enhancing horizontal and vertical atmosphere model resolution: climatology and interannual variability

    NASA Astrophysics Data System (ADS)

    Harlaß, Jan; Latif, Mojib; Park, Wonsun

    2018-04-01

    We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.

  18. THREE-COMPONENT BOREHOLE MAGNETOMETER PROBE FOR MINERAL INVESTIGATIONS AND GEOLOGIC RESEARCH.

    USGS Publications Warehouse

    Scott, James H.; Olson, Gary G.

    1985-01-01

    A small-diameter three-component fluxgate magnetometer probe with gyroscopic and inclinometer orientation has been developed to meet U. S. Geological Survey design and performance specifications for measurement of the direction and intensity of the Earth's magnetic field in vertical and inclined boreholes. The orthogonal fluxgate magnetometer elements have a measurement resolution of 10 nanoteslas (nT) and a range of plus or minus 80,000 nT. The gyroscope has an effective resolution of one degree, and the orthogonal inclinometers, 0. 1 degree. The magnetometer probe has been field tested in several holes drilled through volcanic rocks in Nevada. Results indicate that reversals of polarization can be detected, and some rock units in this area appear to be characterized by unique magnetic signatures.

  19. Research and application of spectral inversion technique in frequency domain to improve resolution of converted PS-wave

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; He, Zhen-Hua; Li, Ya-Lin; Li, Rui; He, Guamg-Ming; Li, Zhong

    2017-06-01

    Multi-wave exploration is an effective means for improving precision in the exploration and development of complex oil and gas reservoirs that are dense and have low permeability. However, converted wave data is characterized by a low signal-to-noise ratio and low resolution, because the conventional deconvolution technology is easily affected by the frequency range limits, and there is limited scope for improving its resolution. The spectral inversion techniques is used to identify λ/8 thin layers and its breakthrough regarding band range limits has greatly improved the seismic resolution. The difficulty associated with this technology is how to use the stable inversion algorithm to obtain a high-precision reflection coefficient, and then to use this reflection coefficient to reconstruct broadband data for processing. In this paper, we focus on how to improve the vertical resolution of the converted PS-wave for multi-wave data processing. Based on previous research, we propose a least squares inversion algorithm with a total variation constraint, in which we uses the total variance as a priori information to solve under-determined problems, thereby improving the accuracy and stability of the inversion. Here, we simulate the Gaussian fitting amplitude spectrum to obtain broadband wavelet data, which we then process to obtain a higher resolution converted wave. We successfully apply the proposed inversion technology in the processing of high-resolution data from the Penglai region to obtain higher resolution converted wave data, which we then verify in a theoretical test. Improving the resolution of converted PS-wave data will provide more accurate data for subsequent velocity inversion and the extraction of reservoir reflection information.

  20. A method for retrieving vertical ozone profiles from limb scattered measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Chen, Shengbo; Yang, Chunyan; Jin, Lihua

    2011-10-01

    A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measurements from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ±10% (±5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO2 concentration are also investigated.

  1. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    NASA Technical Reports Server (NTRS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  2. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  3. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  4. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  5. Role of Gravity Waves in Determining Cirrus Cloud Properties

    NASA Technical Reports Server (NTRS)

    OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong

    2008-01-01

    Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).

  6. Modeling the QBO-Improvements resulting from higher-model vertical resolution.

    PubMed

    Geller, Marvin A; Zhou, Tiehan; Shindell, D; Ruedy, R; Aleinov, I; Nazarenko, L; Tausnev, N L; Kelley, M; Sun, S; Cheng, Y; Field, R D; Faluvegi, G

    2016-09-01

    Using the NASA Goddard Institute for Space Studies (GISS) climate model, it is shown that with proper choice of the gravity wave momentum flux entering the stratosphere and relatively fine vertical layering of at least 500 m in the upper troposphere-lower stratosphere (UTLS), a realistic stratospheric quasi-biennial oscillation (QBO) is modeled with the proper period, amplitude, and structure down to tropopause levels. It is furthermore shown that the specified gravity wave momentum flux controls the QBO period whereas the width of the gravity wave momentum flux phase speed spectrum controls the QBO amplitude. Fine vertical layering is required for the proper downward extension to tropopause levels as this permits wave-mean flow interactions in the UTLS region to be resolved in the model. When vertical resolution is increased from 1000 to 500 m, the modeled QBO modulation of the tropical tropopause temperatures increasingly approach that from observations, and the "tape recorder" of stratospheric water vapor also approaches the observed. The transport characteristics of our GISS models are assessed using age-of-air and N 2 O diagnostics, and it is shown that some of the deficiencies in model transport that have been noted in previous GISS models are greatly improved for all of our tested model vertical resolutions. More realistic tropical-extratropical transport isolation, commonly referred to as the "tropical pipe," results from the finer vertical model layering required to generate a realistic QBO.

  7. Atmospheric Emitted Radiance Interferometer (AERI) Handbook

    DOE Data Explorer

    Gero, Jonathan; Hackel, Denny; Garcia, Raymond

    2005-01-01

    The atmospheric emitted radiance interferometer (AERI) is a ground-based instrument that measures the downwelling infrared radiance from the Earth's atmosphere. The observations have broad spectral content and sufficient spectral resolution to discriminate among gaseous emitters (e.g., carbon dioxide and water vapor) and suspended matter (e.g., aerosols, water droplets, and ice crystals). These upward-looking surface observations can be used to obtain vertical profiles of tropospheric temperature and water vapor, as well as measurements of trace gases (e.g., ozone, carbon monoxide, and methane) and downwelling infrared spectral signatures of clouds and aerosols.The AERI is a passive remote sounding instrument, employing a Fourier transform spectrometer operating in the spectral range 3.3-19.2 μm (520-3020 cm-1) at an unapodized resolution of 0.5 cm-1 (max optical path difference of 1 cm). The extended-range AERI (ER-AERI) deployed in dry climates, like in Alaska, have a spectral range of 3.3-25.0 μm (400-3020 cm-1) that allow measurements in the far-infrared region. Typically, the AERI averages views of the sky over a 16-second interval and operates continuously.

  8. Doppler lidar for measurement of atmospheric wind fields

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1991-01-01

    Measurements of wind fields in the earth's troposphere with daily global coverage is widely considered as a significant advance for forecasting and transport studies. For optimal use by NWP (Numerical Weather Prediction) models the horizontal and vertical resolutions should be approximately 100 km and 1 km, respectively. For boundary layer studies vertical resolution of a few hundred meters seems essential. Earth-orbiting Doppler lidar has a unique capability to measure global winds in the troposphere with the high vertical resolution required. The lidar approach depends on transmission of pulses with high spectral purity and backscattering from the atmospheric aerosol particles or layered clouds to provide a return signal. Recent field measurement campaigns using NASA research aircraft have resulted in collection of aerosol and cloud data which can be used to optimize the Doppler lidar instrument design and measurement strategy.

  9. Constraining the Distribution of Vertical Slip on the South Heli Shan Fault (Northeastern Tibet) From High-Resolution Topographic Data

    NASA Astrophysics Data System (ADS)

    Bi, Haiyun; Zheng, Wenjun; Ge, Weipeng; Zhang, Peizhen; Zeng, Jiangyuan; Yu, Jingxing

    2018-03-01

    Reconstruction of the along-fault slip distribution provides an insight into the long-term rupture patterns of a fault, thereby enabling more accurate assessment of its future behavior. The increasing wealth of high-resolution topographic data, such as Light Detection and Ranging and photogrammetric digital elevation models, allows us to better constrain the slip distribution, thus greatly improving our understanding of fault behavior. The South Heli Shan Fault is a major active fault on the northeastern margin of the Tibetan Plateau. In this study, we built a 2 m resolution digital elevation model of the South Heli Shan Fault based on high-resolution GeoEye-1 stereo satellite imagery and then measured 302 vertical displacements along the fault, which increased the measurement density of previous field surveys by a factor of nearly 5. The cumulative displacements show an asymmetric distribution along the fault, comprising three major segments. An increasing trend from west to east indicates that the fault has likely propagated westward over its lifetime. The topographic relief of Heli Shan shows an asymmetry similar to the measured cumulative slip distribution, suggesting that the uplift of Heli Shan may result mainly from the long-term activity of the South Heli Shan Fault. Furthermore, the cumulative displacements divide into discrete clusters along the fault, indicating that the fault has ruptured in several large earthquakes. By constraining the slip-length distribution of each rupture, we found that the events do not support a characteristic recurrence model for the fault.

  10. Investigation of mesoscale trace gas distributions across an Arctic tropopause fold affected by gravity wave activity

    NASA Astrophysics Data System (ADS)

    Woiwode, Wolfgang; Oelhaf, Hermann; Dörnbrack, Andreas; Bramberger, Martina; Diekmann, Christopher; Friedl-Vallon, Felix; Höpfner, Michael; Hoor, Peter; Johansson, Sören; Krause, Jens; Kunkel, Daniel; Orphal, Johannes; Preusse, Peter; Ruhnke, Roland; Schlage, Romy; Schröter, Jennifer; Sinnhuber, Björn-Martin; Ungermann, Jörn; Zahn, Andreas

    2017-04-01

    Tropopause folds are known of enabling efficient exchange of trace constituents between the stratosphere and troposphere. In particular, the modification of the vertical distributions of radiatively important H2O and other reactive trace gases associated with tropopause folds is relevant for accurate model simulations of the upper troposphere and lower stratosphere composition. During the POLSTRACC/GW-LCYCLE/SALSA flight on 12 January 2016, the HALO (High Altitude LOng range) aircraft crossed twice an extended tropopause fold in the vicinity of the Arctic polar vortex. At the same time, the ECMWF operational analysis shows that the meteorological scenario probed above Italy was accompanied by wide-spread gravity wave activity induced by north-westerly winds. Using high spectral resolution limb-observations by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) spectrometer aboard HALO and associated observations, we investigate the vertical distributions of H2O, O3, temperature, and associated parameters across the tropopause fold. In combination with a high-resolution simulation by the ICON-ART (ICOsahedral Nonhydrostatic- Aerosol and Reactive Trace gases) model, we search for indications for irreversible trace gas exchange between the stratosphere and troposphere and the potential influence of gravity waves.

  11. Thrust Stand for Vertically Oriented Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Moeller, Trevor; Polzin, Kurt A.

    2010-01-01

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally-stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A non-contact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational restoring force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN-level thrusts, while those tests conducted on 200 lbm thruster yielded a resolution of roughly 2.5 micro at thrust levels of 0.5 N and greater.

  12. Thrust stand for vertically oriented electric propulsion performance evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, Trevor; Polzin, Kurt A.

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivotsmore » with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.« less

  13. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    NASA Astrophysics Data System (ADS)

    Martisek, Dalibor; Prochazkova, Jana

    2017-12-01

    The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  14. The Influence of Beam Broadening on the Spatial Resolution of Annular Dark Field Scanning Transmission Electron Microscopy.

    PubMed

    de Jonge, Niels; Verch, Andreas; Demers, Hendrix

    2018-02-01

    The spatial resolution of aberration-corrected annular dark field scanning transmission electron microscopy was studied as function of the vertical position z within a sample. The samples consisted of gold nanoparticles (AuNPs) positioned in different horizontal layers within aluminum matrices of 0.6 and 1.0 µm thickness. The highest resolution was achieved in the top layer, whereas the resolution was reduced by beam broadening for AuNPs deeper in the sample. To examine the influence of the beam broadening, the intensity profiles of line scans over nanoparticles at a certain vertical location were analyzed. The experimental data were compared with Monte Carlo simulations that accurately matched the data. The spatial resolution was also calculated using three different theoretical models of the beam blurring as function of the vertical position within the sample. One model considered beam blurring to occur as a single scattering event but was found to be inaccurate for larger depths of the AuNPs in the sample. Two models were adapted and evaluated that include estimates for multiple scattering, and these described the data with sufficient accuracy to be able to predict the resolution. The beam broadening depended on z 1.5 in all three models.

  15. Optimal design of a touch trigger probe

    NASA Astrophysics Data System (ADS)

    Li, Rui-Jun; Xiang, Meng; Fan, Kuang-Chao; Zhou, Hao; Feng, Jian

    2015-02-01

    A tungsten stylus with a ruby ball tip was screwed into a floating plate, which was supported by four leaf springs. The displacement of the tip caused by the contact force in 3D could be transferred into the tilt or vertical displacement of a plane mirror mounted on the floating plate. A quadrant photo detector (QPD) based two dimensional angle sensor was used to detect the tilt or the vertical displacement of the plane mirror. The structural parameters of the probe are optimized for equal sensitivity and equal stiffness in a displacement range of +/-5 μm, and a restricted horizontal size of less than 40 mm. Simulation results indicated that the stiffness was less than 0.6 mN/μm and equal in 3D. Experimental results indicated that the probe could be used to achieve a resolution of 1 nm.

  16. Indoor imagery with a 3D through-wall synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Fournier, Jonathan

    2012-06-01

    Through-wall radar imaging is an emerging technology with great interest to military and police forces operating in an urban environment. A through-wall imaging radar can potentially provide interior room layouts as well as detection and localization of targets of interest within a building. In this paper, we present our through-wall radar system mounted on the side of a vehicle and driven along a path in front of a building of interest. The vehicle is equipped with a LIDAR (Light Detection and Ranging) and motion sensors that provide auxiliary information. The radar uses an ultra wideband frequency-modulated continuous wave (FMCW) waveform to obtain high range resolution. Our system is composed of a vertical linear receive array to discriminate targets in elevation, and two transmit elements operated in a slow multiple-input multiple output (MIMO) configuration to increase the achievable elevation resolution. High resolution in the along-track direction is obtained through synthetic aperture radar (SAR) techniques. We present experimental results that demonstrate the 3-D capability of the radar. We further demonstrate target detection behind challenging walls, and imagery of internal wall features. Finally, we discuss future work.

  17. Simulations of Tornadoes, Tropical Cyclones, MJOs, and QBOs, using GFDL's multi-scale global climate modeling system

    NASA Astrophysics Data System (ADS)

    Lin, Shian-Jiann; Harris, Lucas; Chen, Jan-Huey; Zhao, Ming

    2014-05-01

    A multi-scale High-Resolution Atmosphere Model (HiRAM) is being developed at NOAA/Geophysical Fluid Dynamics Laboratory. The model's dynamical framework is the non-hydrostatic extension of the vertically Lagrangian finite-volume dynamical core (Lin 2004, Monthly Wea. Rev.) constructed on a stretchable (via Schmidt transformation) cubed-sphere grid. Physical parametrizations originally designed for IPCC-type climate predictions are in the process of being modified and made more "scale-aware", in an effort to make the model suitable for multi-scale weather-climate applications, with horizontal resolution ranging from 1 km (near the target high-resolution region) to as low as 400 km (near the antipodal point). One of the main goals of this development is to enable simulation of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously thought impossible. We will present preliminary results, covering a very wide spectrum of temporal-spatial scales, ranging from simulation of tornado genesis (hours), Madden-Julian Oscillations (intra-seasonal), topical cyclones (seasonal), to Quasi Biennial Oscillations (intra-decadal), using the same global multi-scale modeling system.

  18. Radar systems for the water resources mission. Volume 4: Appendices E-I

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts.

  19. Spatial variability of summer Florida precipitation and its impact on microwave radiometer rainfall-measurement systems

    NASA Technical Reports Server (NTRS)

    Turner, B. J.; Austin, G. L.

    1993-01-01

    Three-dimensional radar data for three summer Florida storms are used as input to a microwave radiative transfer model. The model simulates microwave brightness observations by a 19-GHz, nadir-pointing, satellite-borne microwave radiometer. The statistical distribution of rainfall rates for the storms studied, and therefore the optimal conversion between microwave brightness temperatures and rainfall rates, was found to be highly sensitive to the spatial resolution at which observations were made. The optimum relation between the two quantities was less sensitive to the details of the vertical profile of precipitation. Rainfall retrievals were made for a range of microwave sensor footprint sizes. From these simulations, spatial sampling-error estimates were made for microwave radiometers over a range of field-of-view sizes. The necessity of matching the spatial resolution of ground truth to radiometer footprint size is emphasized. A strategy for the combined use of raingages, ground-based radar, microwave, and visible-infrared (VIS-IR) satellite sensors is discussed.

  20. A Vertically Resolved Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1984-01-01

    Increase of the vertical resolution of the GLAS Fourth Order General Circulation Model (GCM) near the Earth's surface and installation of a new package of parameterization schemes for subgrid-scale physical processes were sought so that the GLAS Model GCM will predict the resolved vertical structure of the planetary boundary layer (PBL) for all grid points.

  1. Air quality over Europe and Iberian Peninsula for 2004 at high horizontal resolution: evaluation of the CALIOPE modelling system

    NASA Astrophysics Data System (ADS)

    Jorba, O.; Piot, M.; Pay, M. T.; Jiménez-Guerrero, P.; López, E.; Pérez, C.; Gassó, S.; Baldasano, J. M.

    2009-09-01

    In the frame of the CALIOPE project (Baldasano et al., 2008a), a high-resolution air quality forecasting system, WRF-ARW/HERMES/CMAQ/DREAM, is under development and applied to the European domain (12km x 12km, 1hr) as well as to the Iberian Peninsula domain (4km x 4km, 1hr) to provide air quality forecasts for Spain (http://www.bsc.es/caliope/). The simulation of such high-resolution model system is possible by its implementation on the MareNostrum supercomputer. To reassure potential users and reduce uncertainties, the model system must be evaluated to assess its performances in terms of air quality levels and dynamics reproducibility. The present contribution describes a thorough quantitative evaluation study performed for a reference year (2004). CALIOPE is a complex system that integrates a variety of environmental models. WRF-ARW provides high-resolution meteorological fields to the system. It is configured with 38 vertical layers reaching up to 50 hPa. Meteorological initial and boundary conditions are obtained from the NCEP final analysis data. The HERMES emission model (Baldasano et al., 2008b) computes the emissions for the Iberian Peninsula simulation at 4 km horizontal resolution every hour using a bottom-up approach. For the European domain, HERMES disaggregates the EMEP expert emission inventory for 2004. The CMAQ chemical transport model solves the physico-chemical processes in the system. The vertical resolution of CMAQ for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Chemical boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model (see Hauglustaine et al., 2004). Finally, the DREAM model simulates long-range transport of mineral dust over the domains under study. In order to evaluate the performances of the CALIOPE system, model simulations were compared with ground-based measurements from the EMEP and Spanish air quality networks. For the European domain, 45 stations have been used to evaluate NO2, 60 for O3, 39 for SO2, 25 for PM10 and 16 for PM2.5. On the other hand, the Iberian Peninsula domain has been evaluated against 75 NO2 stations, 84 O3 stations, 69 for SO2, and 46 for PM10. Such large number of observations allows us to provide a detailed discussion of the model skills over quite different geographical locations and meteorological situations. The model simulation for Europe satisfactorily reproduces O3 concentrations throughout the year with small errors: monthly MNGE values range from 13% to 24%, and MNBE values show a slight negative bias ranging from -15% to 0%. These values lie within the range defined by the US-EPA guidelines (MNGE: +/- 30-35%; MNBE: +/- 10-15%). The reproduction of SO2 concentrations is relatively correct but false peaks are reported (mean MNBE=22%). The simulated variation of particulate matter is reliable, with a mean correlation of 0.5. False peaks were reduced by use of an improved 8-bin aerosol description in the DREAM dust model, but mean aerosol levels are still underestimated. This problem is most probably related to uncertainties in our knowledge of the sources and in the description of organic aerosols. The nested high-resolution simulation of Spain (4 km) shows a very good agreement with observations for O3 (monthly MNGE range from 13 to 19%). Particulate matter results are in agreement with the European simulation, and a net improvement on nitrate and sulphate is observed in several stations in Spain. Such high-resolution simulation will allow analysing the small scale features observed over Spain. REFERENCES Baldasano J.M, P. Jiménez-Guerrero, O. Jorba, C. Pérez, E. López, P. Güereca, F. Martin, M. García-Vivanco, I. Palomino, X. Querol, M. Pandolfi, M.J. Sanz and J.J. Diéguez, 2008a: CALIOPE: An operational air quality forecasting system for the Iberian Peninsula, Balearic Islands and Canary Islands- First annual evaluation and ongoing developments. Adv. Sci. and Res., 2: 89-98. Baldasano J.M., L. P. Güereca, E. López, S. Gassó, P. Jimenez-Guerrero, 2008b: Development of a high-resolution (1 km x 1 km, 1 h) emission model for Spain: the High-Elective Resolution Modelling Emission System (HERMES). Atm. Environ., 42 (31): 7215-7233. Hauglustaine, D. A. and F. Hourdin and L. Jourdain and M.A. Filiberti and S. Walters and J. F. Lamarque and E. A. Holland, 2004: Interactive chemistry in the Laboratoire de Meteorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation. J. Geophys. Res., doi:10.1029/2003JD003,957.

  2. SAGE III L2 Monthly Cloud Presence Data (Binary)

    Atmospheric Science Data Center

    2016-06-14

    ... degrees South Spatial Resolution:  1 km vertical Temporal Coverage:  02/27/2002 - 12/31/2005 ... Parameters:  Cloud Amount/Frequency Cloud Height Cloud Vertical Distribution Order Data:  Search and ...

  3. Parameterization of turbulence and the planetary boundary layer in the GLA Fourth Order GCM

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1985-01-01

    A new scheme has been developed to model the planetary boundary layer in the GLAS Fourth Order GCM through explicit resolution of its vertical structure into two or more vertical layers. This involves packing the lowest layers of the GCM close to the ground and developing new parameterization schemes that can express the turbulent vertical fluxes of heat, momentum and moisture at the earth's surface and between the layers that are contained with the PBL region. Offline experiments indicate that the combination of the modified level 2.5 second-order turbulent closure scheme and the 'extended surface layer' similarity scheme should work well to simulate the behavior of the turbulent PBL even at the coarsest vertical resolution with which such schemes will conceivably be used in the GLA Fourth Order GCM.

  4. Modeling the QBO—Improvements resulting from higher‐model vertical resolution

    PubMed Central

    Zhou, Tiehan; Shindell, D.; Ruedy, R.; Aleinov, I.; Nazarenko, L.; Tausnev, N. L.; Kelley, M.; Sun, S.; Cheng, Y.; Field, R. D.; Faluvegi, G.

    2016-01-01

    Abstract Using the NASA Goddard Institute for Space Studies (GISS) climate model, it is shown that with proper choice of the gravity wave momentum flux entering the stratosphere and relatively fine vertical layering of at least 500 m in the upper troposphere‐lower stratosphere (UTLS), a realistic stratospheric quasi‐biennial oscillation (QBO) is modeled with the proper period, amplitude, and structure down to tropopause levels. It is furthermore shown that the specified gravity wave momentum flux controls the QBO period whereas the width of the gravity wave momentum flux phase speed spectrum controls the QBO amplitude. Fine vertical layering is required for the proper downward extension to tropopause levels as this permits wave‐mean flow interactions in the UTLS region to be resolved in the model. When vertical resolution is increased from 1000 to 500 m, the modeled QBO modulation of the tropical tropopause temperatures increasingly approach that from observations, and the “tape recorder” of stratospheric water vapor also approaches the observed. The transport characteristics of our GISS models are assessed using age‐of‐air and N2O diagnostics, and it is shown that some of the deficiencies in model transport that have been noted in previous GISS models are greatly improved for all of our tested model vertical resolutions. More realistic tropical‐extratropical transport isolation, commonly referred to as the “tropical pipe,” results from the finer vertical model layering required to generate a realistic QBO. PMID:27917258

  5. Spatio-Temporal Variability of Water Vapor in the Free Troposphere Investigated by Dial and Ftir Vertical Soundings

    NASA Astrophysics Data System (ADS)

    Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A.

    2016-06-01

    We report on the free tropospheric spatio-temporal variability of water vapor investigated by the analysis of a five-year period of water vapor vertical soundings above Mt. Zugspitze (2962 m a.s.l., Germany). Our results are obtained from a combination of measurements of vertically integrated water vapor (IWV), recorded with a solar Fourier Transform InfraRed (FTIR) spectrometer and of water vapor profiles recorded with the nearby differential absorption lidar (DIAL). The special geometrical arrangement of one zenith-viewing and one sun-pointing instrument and the temporal resolution of both optical instruments allow for an investigation of the spatio-temporal variability of IWV on a spatial scale of less than one kilometer and on a time scale of less than one hour. We investigated the short-term variability of both IWV and water vapor profiles from statistical analyses. The latter was also examined by case studies with a clear assignment to certain atmospheric processes as local convection or long-range transport. This study is described in great detail in our recent publication [1].

  6. Validation Campaigns of a new 1.5μm Doppler Wind Lidar for PBL Continuous Profiling

    NASA Astrophysics Data System (ADS)

    Sauvage, Laurent; Boquet, Matthieu; Cariou, Jean-Pierre; Lolli, Simone

    2010-05-01

    To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. In July 2009, the WLS70 took its definitive configuration with a new optical device installed on it allowing enhanced measurement range. New measurements were done at PNNL in Richland, Washington, and NASA Langley in Hampton, Virginia. These results are now processed and will bring a further proof on reliability and accuracy. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity accuracy (<0.2m/s).

  7. Uvmas: Venus Ultraviolet-visual Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Bellucci, G.; Zasova, L.; Altieri, F.; Formisano, V.; Ignatiev, N.; Moroz, V.

    We present the concept of an instrument for remote sensing of Venus from a planetary orbiter. The main characteristics of the instrument are the following: A~é· Spectral range: 0.190 A~é­ 0.490 A~éµm A~é· Spectral resolution: 0.4 nm (/= 500 at 0.2 A~éµ m) A~é· Angular resolution: 0.4 mrad at max A~é· Spatial resolution: 200 meters at 500 Km A~é· Field of view = 5.7A~é° A~é· S/N: 70 at 0.2 A~éµ m at 1 sec exp time given albedo = 0.03. The scientific objectives are the following: Dynamic investigation (0.2 5 µm). Mapping facility will allow the tracking of the UV features and will define the velocities in the atmosphere near the cloud top level. Detailed mapping of velocities of UV features at high spatial resolution, their variation with latitude, altitude and local time will advance our knowledge in understanding the puzzles of Venus dynamics like how and what mechanism drives the Venus atmospheric mass from equator to pole against temperature gradient and what is the mechanism supporting the zonal superrotation. What is the polar vortex organization, at what latitudes there is the descending branch of the Hadley cell. SO2 and SO in the range 0.232 µm. In this spectral range the SO2 and SO bands are observed. They present unresolved features with 10 Å width. Vertical profiles of these components may be obtained above the cloud and below the upper cloud boundary. Vertical, horizontal, local time and temporal variation will be obtained. This allows to create a photochemical model of the atmosphere above the clouds, and to understand a mechanism of cloud aerosol formation. "Unknown" UV- absorber, in the range 0.3 5 µm. It absorbs 50 % of the solar energy deposited on Venus. It exists only in the upper clouds. It is not known if it is in gaseous phase or included in the aerosol particles. This absorber is not homogeneously distributed and is responsible for the UV atmospheric contrast from 0.32­0.5 µm; it correlates with SO2 absorption. Many candidates were proposed for the "unknown" absorber. Some of them are sulfur, S2O, 1% solution of FeCl3 in H2SO4. Spectral and mapping facilities will allow to advance the problem.

  8. Distributed fiber-optic temperature sensing for hydrologic systems

    NASA Astrophysics Data System (ADS)

    Selker, John S.; ThéVenaz, Luc; Huwald, Hendrik; Mallet, Alfred; Luxemburg, Wim; van de Giesen, Nick; Stejskal, Martin; Zeman, Josef; Westhoff, Martijn; Parlange, Marc B.

    2006-12-01

    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We discuss the spectrum of fiber-optic tools that may be employed to make these measurements, illuminating the potential and limitations of these methods in hydrologic science. There are trade-offs between precision in temperature, temporal resolution, and spatial resolution, following the square root of the number of measurements made; thus brief, short measurements are less precise than measurements taken over longer spans in time and space. Five illustrative applications demonstrate configurations where the distributed temperature sensing (DTS) approach could be used: (1) lake bottom temperatures using existing communication cables, (2) temperature profile with depth in a 1400 m deep decommissioned mine shaft, (3) air-snow interface temperature profile above a snow-covered glacier, (4) air-water interfacial temperature in a lake, and (5) temperature distribution along a first-order stream. In examples 3 and 4 it is shown that by winding the fiber around a cylinder, vertical spatial resolution of millimeters can be achieved. These tools may be of exceptional utility in observing a broad range of hydrologic processes, including evaporation, infiltration, limnology, and the local and overall energy budget spanning scales from 0.003 to 30,000 m. This range of scales corresponds well with many of the areas of greatest opportunity for discovery in hydrologic science.

  9. Hydraulic Jumps, Waves and Other Flow Features Found by Modeling Stably-Stratified Flows in the Salt Lake Valley

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ludwig, F.; Street, R.

    2003-12-01

    The Advanced Regional Prediction System (ARPS) was used to simulate weak synoptic wind conditions with stable stratification and pronounced drainage flow at night in the vicinity of the Jordan Narrows at the south end of Salt Lake Valley. The simulations showed the flow to be quite complex with hydraulic jumps and internal waves that make it essential to use a complete treatment of the fluid dynamics. Six one-way nested grids were used to resolve the topography; they ranged from 20-km grid spacing, initialized by ETA 40-km operational analyses down to 250-m horizontal resolution and 200 vertically stretched levels to a height of 20 km, beginning with a 10-m cell at the surface. Most of the features of interest resulted from interactions with local terrain features, so that little was lost by using one-way nesting. Canyon, gap, and over-terrain flows have a large effect on mixing and vertical transport, especially in the regions where hydraulic jumps are likely. Our results also showed that the effect of spatial resolution on simulation performance is profound. The horizontal resolution must be such that the smallest features that are likely to have important impact on the flow are spanned by at least a few grid points. Thus, the 250 m minimum resolution of this study is appropriate for treating the effects of features of about 1 km or greater extent. To be consistent, the vertical cell dimension must resolve the same terrain features resolved by the horizontal grid. These simulations show that many of the interesting flow features produce observable wind and temperature gradients at or near the surface. Accordingly, some relatively simple field measurements might be made to confirm that the mixing phenomena that were simulated actually take place in the real atmosphere, which would be very valuable for planning large, expensive field campaigns. The work was supported by the Atmospheric Sciences Program, Office of Biological and Environmental Research, U.S. Department of Energy. The National Energy Research Scientific Computing Center (NERSC) provided computational time. We thank Professor Ming Xue and others at the University of Oklahoma for their help.

  10. High resolution on-chip optical filter array based on double subwavelength grating reflectors

    DOE PAGES

    Horie, Yu; Arbabi, Amir; Han, Seunghoon; ...

    2015-11-05

    An optical filter array consisting of vertical narrow-band Fabry-Pèrot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths ( Δλ/λ=5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. In conclusion, operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate.

  11. Effects of Molecular Adsorption on the Electronic Structure of Single-Layer Graphene

    DTIC Science & Technology

    2011-08-03

    HgxCd1xTe ( MCT -A) detector at a resolution of 4 cm1. 1000 scans were averaged in about 8 min, and 2-fold zero-filling and triangle apodization were...range was∼10007500 cm1, limited on the low end by the Si transmission and on the high end by the detector response. Note that the spectrometer low-pass...reflections) and without any arbitrary vertical displacement. The dashed line shows the position of δR/R = 0. The increased noise at the high-energy end is

  12. High resolution on-chip optical filter array based on double subwavelength grating reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Yu; Arbabi, Amir; Han, Seunghoon

    An optical filter array consisting of vertical narrow-band Fabry-Pèrot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths ( Δλ/λ=5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. In conclusion, operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate.

  13. Investigation of the scaling characteristics of LANDSAT temperature and vegetation data: a wavelet-based approach

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Bindhu, V. M.; Adamowski, Jan; Narasimhan, Balaji; Khosa, Rakesh

    2017-10-01

    An investigation of the scaling characteristics of vegetation and temperature data derived from LANDSAT data was undertaken for a heterogeneous area in Tamil Nadu, India. A wavelet-based multiresolution technique decomposed the data into large-scale mean vegetation and temperature fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial resolutions. In this approach, the wavelet coefficients were used to investigate whether the normalized difference vegetation index (NDVI) and land surface temperature (LST) fields exhibited self-similar scaling behaviour. In this study, l-moments were used instead of conventional simple moments to understand scaling behaviour. Using the first six moments of the wavelet coefficients through five levels of dyadic decomposition, the NDVI data were shown to be statistically self-similar, with a slope of approximately -0.45 in each of the horizontal, vertical, and diagonal directions of the image, over scales ranging from 30 to 960 m. The temperature data were also shown to exhibit self-similarity with slopes ranging from -0.25 in the diagonal direction to -0.20 in the vertical direction over the same scales. These findings can help develop appropriate up- and down-scaling schemes of remotely sensed NDVI and LST data for various hydrologic and environmental modelling applications. A sensitivity analysis was also undertaken to understand the effect of mother wavelets on the scaling characteristics of LST and NDVI images.

  14. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    NASA Astrophysics Data System (ADS)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  15. Spectral band passes for a high precision satellite sounder

    NASA Technical Reports Server (NTRS)

    Kaplan, L. D.; Chahine, M. T.; Susskind, J.; Searl, J. E.

    1977-01-01

    Atmospheric temperature soundings with significantly improved vertical resolution can be obtained from carefully chosen narrow band-pass measurements in the 4.3-micron band of CO2 by taking advantage of the variation of the absorption coefficients, and thereby the weighting functions, with pressure and temperature. A set of channels has been found in the 4.2-micron region that is capable of yielding about 2-km vertical resolution in the troposphere. The concept of a complete system is presented for obtaining high resolution retrievals of temperature and water vapor distribution, as well as surface and cloud top temperatures, even in the presence of broken clouds.

  16. High-resolution vertical profiles of stable water isotopes from airborne measurements in the western Mediterranean during HyMeX in October 2012

    NASA Astrophysics Data System (ADS)

    Sodemann, Harald; Aemisegger, Franziska; Pfahl, Stephan; Corsmeier, Ulrich; Wieser, Andreas; Bitter, Mark; Feuerle, Thomas; Hankers, Rudolf; Schulz, Helmut; Hsiao, Gregor; Wernli, Heini

    2013-04-01

    Stable water isotopes are useful indicators of meteorological processes on a broad range of scales, reflecting for example evaporation, precipitation and airmass mixing processes. Scientific understanding of water isotope meteorology has long been impeded by the sparsity of observational data. Most measurements of precipitation and water vapour have been made at the surface. Both sampling and isotope measurements had been fairly intricate until recently, and required to transfer samples to a lab environment. With the recent advent of fast laser-based spectroscopic methods it has become possible to measure the isotopic composition of atmospheric water vapour in situ at high temporal resolution, enabling to tremendously extend the measurement data base in space and time. Here we present the first set of airborne spectroscopic stable water isotopes measurements in the Mediterranean. Measurements have been acquired by a customised Picarro L2130i instrument with enhanced data acquisition rate by a dual-laser system. The instrument was deployed in cooperation with the Karlsruhe Institute of Technology (KIT) onboard the Dornier 128-6 research aircraft D-IBUF of the Institute of Flight Guidance, TU Braunschweig together with a meteorological flux measurement package during HYMEX in Corsica, France. Taking into account memory effects of the pipe system, the typical time resolution of the measurements was about 30s, resulting in an average spatial resolution of about 2 km. Cross-calibration of the water vapour observations with other humidity sensors showed good agreement in most flight conditions but very turbulent ones. In total 23 successful stable isotope flights have been performed. We report on the measurement setup, calibration procedures and data quality, and a first interpretation of these new airborne observations. A climatological perspective of the vertical stable isotope composition in the vicinity of Corsica during the campaign reveals for the first time vertical structure and variability of the Mediterranean boundary layer at high resolution. A comparison to literature data sets shows principal agreement, yet a tremendous level of detail is added by the new measurements. In a case study where a distinct airmass transition occurred during one flight we demonstrate the potential of the data to provide additional information that is not available from common meteorological measurements alone.

  17. Comparing and integrating multiple data source for 3D surface reconstruction of Alpine Glaciers

    NASA Astrophysics Data System (ADS)

    Scaioni, Marco; Fugazza, Davide; Diolaiuti, Guglielmina Adele; Cernuschi, Massimo; Corti, Manuel

    2017-04-01

    Alpine glaciers are generally undergoing a fast and complex process leading to the reduction of the ice mass. Monitoring this process from a quantitative and qualitative point-of-view is of great importance for understanding the related dynamics and to apply proper numerical models. While the analysis of archive maps, medium resolution satellite images and DEM's may provide an overview of the long-term processes, the application of close-range sensing techniques offers the unprecedented opportunity to operate a 4D reconstruction of the glacier geometry. Terrestrial sensors technologies (Long and Very-long Range TLS and SfM Photogrammetry) integrated to UAV Photogrammetry may offer a complete view of the dynamical evolution of a glacier, reaching a high spatial and temporal resolution. Up until today, not many cases exist where a long-term archive of 4D high-resolution data has been established, limiting the chance to understand and to model the undergoing physical processes. The goal of the research presented here is to collect a set of multi-temporal data sets of the lower part of the Forni Glacier, in the National Stelvio Park, Italy. The first data acquisition campaign was carried out during August 2016, to be followed on yearly regular-basis. This will give the researchers the opportunity to analyse 4D data describing in detail the disruption of the glacier and its dramatic retreat. These data sets could be compared to DEM's acquired in the past by using UAV-Photogrammetry (2014) and traditional stereo-photogrammetry (2007). In addition, the presence of additional hydrological and meteorological data can be exploited in the analyses. The first data acquisition campaign has also given the opportunity to investigate the data acquisition methodology. The UAV flight has revealed to output a complete overview of the glacier surface in terms of DEM and orthophoto. Thanks to the photogrammetric process and the use of seven GNSS-GCPs, a high resolution has been obtained (about 102 pts/m2). The presence of vertical and sub-vertical surfaces has motivated the use of terrestrial sensors. The integration of sensors from ground and from drones has allowed to better describe some local physical processes (i.e., opening of crevasses, ice tunnelling, local collapses) that are giving an impressive contribution to the loss of ice bulk. This processes require a detail 3D modelling to be investigated, calling for the use of sensors able to reconstruct also the vertical and sub-vertical faces, thus using a ground-based standpoint. To this purpose, the adoption of SfM-Photogrammetry has yielded results comparable to the ones achieved using a long-range TLS Riegl LMS-Z420i, which can be assumed as benchmarking for accuracy assessment, but being more cumbersome and difficult to be operated in the glacier area. The measurement of GCPs for the terrestrial photogrammetric project reveal to be a complex task, involving the need of a total station. For this reason, the integration of GNSS and cameras will be developed for the future measurement sessions. The effect of block geometry on the final output has also been investigated for SfM-Photogrammetry, considering the severe limitations implied in the Alpine environment.

  18. A High Resolution Study of Black Sea Circulation and Hypothetical Oil Spills

    NASA Astrophysics Data System (ADS)

    Dietrich, D. E.; Bowman, M. J.; Korotenko, K. A.

    2008-12-01

    A 1/24 deg resolution adaptation of the DieCAST ocean model simulates a realistically intense Rim Current and ubiquitous mesoscale coastal anticyclonic eddies that result from anticyclonic vorticity generation by laterally differential bottom drag forces that are amplified near Black Sea coastal headlands. Climatological and synoptic surface forcings are compared. The effects of vertical momentum transfer by known (by Synop region fishermen, as reported by Ballard National Geographic article) big amplitude internal waves are parameterized by big vertical viscosity. Sensitivity to vertical viscosity is shown. Results of simulated hypothetical oil spills are shown. A simple method to nowcast/forecast the Black Sea currents is described and early results are shown.

  19. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aizikov, Konstantin; Lin, Tzu-Yung; Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in {approx}1 x 10{sup -8} mbar vacuum. The rangemore » of motion is set to 100 mm x 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The ''oversampling'' MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter.« less

  20. Lidar-revised geologic map of the Des Moines 7.5' quadrangle, King County, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Booth, Derek B.

    2017-11-06

    This map is an interpretation of a modern lidar digital elevation model combined with the geology depicted on the Geologic Map of the Des Moines 7.5' Quadrangle, King County, Washington (Booth and Waldron, 2004). Booth and Waldron described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Des Moines 7.5' quadrangle. The base map that they used was originally compiled in 1943 and revised using 1990 aerial photographs; it has 25-ft contours, nominal horizontal resolution of about 40 ft (12 m), and nominal mean vertical accuracy of about 10 ft (3 m). Similar to many geologic maps, much of the geology in the Booth and Waldron (2004) map was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound Lidar Consortium obtained a lidar-derived digital elevation model (DEM) for much of the Puget Sound area, including the entire Des Moines 7.5' quadrangle. This new DEM has a horizontal resolution of about 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air-photo stereo models have much improved the interpretation of geology, even in this heavily developed area, especially the distribution and relative age of some surficial deposits. For a brief description of the light detection and ranging (lidar) remote sensing method and this data acquisition program, see Haugerud and others (2003). 

  1. SAGE III L2 Monthly Cloud Presence Data (HDF-EOS)

    Atmospheric Science Data Center

    2016-06-14

    ... degrees South Spatial Resolution:  1 km vertical Temporal Coverage:  02/27/2002 - 12/31/2005 ... Parameters:  Cloud Amount/Frequency Cloud Height Cloud Vertical Distribution Order Data:  Search and ...

  2. Analysis and numerical study of inertia-gravity waves generated by convection in the tropics

    NASA Astrophysics Data System (ADS)

    Evan, Stephanie

    2011-12-01

    Gravity waves transport momentum and energy upward from the troposphere and by dissipation affect the large-scale structure of the middle atmosphere. An accurate representation of these waves in climate models is important for climate studies, but is still a challenge for most global and climate models. In the tropics, several studies have shown that mesoscale gravity waves and intermediate scale inertia-gravity waves play an important role in the dynamics of the upper atmosphere. Despite observational evidence for the importance of forcing of the tropical circulation by inertia-gravity waves, their exact properties and forcing of the tropical stratospheric circulation are not fully understood. In this thesis, properties of tropical inertia-gravity waves are investigated using radiosonde data from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset and high-resolution numerical experiments. Few studies have characterized inertia-gravity wave properties using radiosonde profiles collected on a campaign basis. We first examine the properties of intermediate-scale inertia-gravity waves observed during the 2006 TWP-ICE campaign in Australia. We show that the total vertical flux of horizontal momentum associated with the waves is of the same order of magnitude as previous observations of Kelvin waves. This constitutes evidence for the importance of the forcing of the tropical circulation by intermediate-scale inertia-gravity waves. Then, we focus on the representation of inertia-gravity waves in analysis data. The wave event observed during TWP-ICE is also present in the ECMWF data. A comparison between the characteristics of the inertia-gravity wave derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this wave event but with a larger vertical wavelength. The Weather Research and Forecasting (WRF) modeling system is used to understand the representation of the wave event in the ECMWF data. The model is configured as a tropical channel with a high top at 1 hPa. WRF is used with the same horizontal resolution (˜ 40 km) as the operational ECMWF in 2006 while using a finer vertical grid-spacing than ECMWF. Different experiments are performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions and vertical resolution. We demonstrate that high vertical resolution would be required for ECMWF to accurately resolve the vertical structure of inertia-gravity waves and their effect on the middle atmosphere circulation. Lastly we perform WRF simulations in January 2006 and 2007 to assess gravity wave forcing of the tropical stratospheric circulation. In these simulations a large part of the gravity wave spectrum is explicitly simulated. The WRF model is able to reproduce the evolution of the mean tropical stratospheric zonal wind when compared to observational data and the ECMWF reanalysis. It is shown that gravity waves account for 60% up to 80% of the total wave forcing of the tropical stratospheric circulation. We also compute wave forcing associated with intermediate-scale inertiagravity waves. In the WRF simulations this wave type represents ˜ 30% of the total gravity wave forcing. This suggests that intermediate-scale inertia-gravity waves can play an important role in the tropical middle-atmospheric circulation. In addition, the WRF high-resolution simulations are used to provide some guidance for constraining gravity wave parameterizations in coarse-grid climate models.

  3. Probabilistic description of ice-supersaturated layers in low resolution profiles of relative humidity

    NASA Astrophysics Data System (ADS)

    Dickson, N. C.; Gierens, K. M.; Rogers, H. L.; Jones, R. L.

    2010-02-01

    The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensations trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. A robust assessment of the global distribution of ISSR will further this debate, and ISS event occurrence, frequency and spatial scales have recently attracted significant attention. The mean horizontal path length through ISSR as observed by MOZAIC aircraft is 150 km (±250 km). The average vertical thickness of ISS layers is 600-800 m (±575 m) but layers ranging from 25 m to 3000 m have been observed, with up to one third of ISS layers thought to be less than 100 m deep. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Specifically each radiosonde profile is divided into 50- and 100-hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve describing the ISS fraction in any average relative humidity pressure layer. An empirical investigation has shown that this one curve is statistically valid for mid-latitude locations, irrespective of season and altitude, however, pressure layer depth is an important variable. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Here the statistical distributions of actual high resolution RHi observations in any thick pressure layer, along with an error function, are used to mathematically describe the s-shape. Two models were developed to represent both 50- and 100-hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.

  4. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and imaging methods.

  5. Characterization of Water Vapor Fluxes by the Raman Lidar System Basil and the Univeristy of Cologne Wind Lidar in the Frame of the HD(CP)2 Observational Prototype Experiment - Hope

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.

    2016-06-01

    Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.

  6. Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian-Eulerian ocean model

    NASA Astrophysics Data System (ADS)

    Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair

    2017-11-01

    We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.

  7. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensingmore » limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062« less

  8. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    USGS Publications Warehouse

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  9. Digital solar edge tracker for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  10. Preliminary results from the Stereo-SCIDAR at the VLT Observatory: extraction of reference atmospheric turbulence profiles for E-ELT adaptive optics instrument performance simulations

    NASA Astrophysics Data System (ADS)

    Sarazin, Marc S.; Osborn, James; Chacon-Oelckers, Arlette; Dérie, Frédéric J.; Le Louarn, Miska; Milli, Julien; Navarrete, Julio; Wilson, Richard R. W.

    2017-09-01

    The Stereo-SCIDAR (Scintillation Detection and Ranging) atmospheric turbulence profiler, built for ESO by Durham University, observes the scintillation patterns of binary elements with one of the four VLT-Interferometer 1.8m auxiliary telescopes at the ESO Paranal Observatory. The primary products are the vertical profiles of the index of refraction structure coefficient and of the wind velocity which allow to compute the wavefront coherence time and the isoplanatic angle with a vertical resolution of 250m. The several thousands of profiles collected during more than 30 nights of operation are grouped following criteria based on the altitude distribution or on principal component analysis. A set of reference profiles representative of the site is proposed as input for the various simulation models developed by the E-ELT (European Extremely Large Telescope) instruments Consortia.

  11. The 2013 Balochistan earthquake: An extraordinary or completely ordinary event?

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Elliott, John R.; Parsons, Barry; Walker, Richard T.

    2015-08-01

    The 2013 Balochistan earthquake, a predominantly strike-slip event, occurred on the arcuate Hoshab fault in the eastern Makran linking an area of mainly left-lateral shear in the east to one of shortening in the west. The difficulty of reconciling predominantly strike-slip motion with this shortening has led to a wide range of unconventional kinematic and dynamic models. Here we determine the vertical component of motion on the fault using a 1 m resolution elevation model derived from postearthquake Pleiades satellite imagery. We find a constant local ratio of vertical to horizontal slip through multiple past earthquakes, suggesting the kinematic style of the Hoshab fault has remained constant throughout the late Quaternary. We also find evidence for active faulting on a series of nearby, subparallel faults, showing that failure in large, distributed and rare earthquakes is the likely method of faulting across the eastern Makran, reconciling geodetic and long-term records of strain accumulation.

  12. Radar - ARL Wind Profilerwith RASS, Boardman - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  13. Radar - ANL Wind Profiler with RASS, Yakima - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  14. Radar - ESRL Wind Profiler with RASS, Condon - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  15. Radar - ANL Wind Profiler with RASS, Walla Walla - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  16. Radar - ESRL Wind Profiler with RASS, Prineville - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  17. Radar - ESRL Wind Profiler with RASS, Troutdale - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  18. Radar - ANL Wind Profiler with RASS, Goldendale - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  19. Radar - ESRL Wind Profiler with RASS, Wasco Airport - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  20. Topography of Venus and earth - A test for the presence of plate tectonics

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Yuter, S. E.; Solomon, S. C.

    1981-01-01

    Comparisons of earth and Venus topography by use of Pioneer/Venus radar altimetry are examined. Approximately 93% of the Venus surface has been mapped with a horizontal resolution of 200 km and a vertical resolution of 200 m. Tectonic troughs have been indicated in plains regions which cover 65% of Venus, and hypsometric comparisons between the two planets' elevation distributions revealed that while the earth has a bimodal height distribution, Venus displays a unimodal configuration, with 60% of the planet surface within 500 m of the modal planet radius. The effects of mapping the earth at the same resolution as the Venus observations were explored. Continents and oceans were apparent, and although folded mountains appeared as high spots, no indications of tectonic activity were discernible. A NASA Venus Orbiting Imaging radar is outlined, which is designed to detect volcanoes, folded mountain ranges, craters, and faults, and thereby allow definition of possible plate-tectonic activity on Venus.

  1. Exploration of Venus with the Venera-15 IR Fourier spectrometer and the Venus Express planetary Fourier spectrometer

    NASA Astrophysics Data System (ADS)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.

    2006-07-01

    The infrared spectrometry of Venus in the range 6-45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55-100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75-85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55-100 km and aerosol at altitudes 55-70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9-45 μm and a spectral resolution of 1.8 cm-1. It will allow one to sound the middle atmosphere (55-100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.

  2. High Spectral Resolution LIDAR as a Tool for Air Quality Research

    NASA Astrophysics Data System (ADS)

    Eloranta, E. W.; Spuler, S.; Hayman, M. M.

    2017-12-01

    Many aspects of air quality research require information on the vertical distribution of pollution. Traditional measurements, obtained from surface based samplers, or passive satellite remote sensing, do not provide vertical profiles. Lidar can provide profiles of aerosol properties. However traditional backscatter lidar suffers from uncertain calibrations with poorly constrained algorithms. These problems are avoided using High Spectral Resolution Lidar (HSRL) which provides absolutely calibrated vertical profiles of aerosol properties. The University of Wisconsin HSRL systems measure 532 nm wavelength aerosol backscatter cross-sections, extinction cross-sections, depolarization, and attenuated 1064 nm backscatter. These instruments are designed for long-term deployment at remote sites with minimal local support. Processed data is provided for public viewing and download in real-time on our web site "http://hsrl.ssec.wisc.edu". Air pollution applications of HSRL data will be illustrated with examples acquired during air quality field programs including; KORUS-AQ, DISCOVER-AQ, LAMOS and FRAPPE. Observations include 1) long range transport of dust, air pollution and smoke. 2) Fumigation episodes where elevated pollution is mixed down to the surface. 3) visibility restrictions by aerosols and 4) diurnal variations in atmospheric optical depth. While HSRL is powerful air quality research tool, its application in routine measurement networks is hindered by the high cost of current systems. Recent technical advances promise a next generation HSRL using telcom components to greatly reduce system cost. This paper will present data generated by a prototype low cost system constructed at NCAR. In addition to lower cost, operation at a non-visible near 780 nm infrared wavelength removes all FAA restrictions on the operation.

  3. Lidar characterization of crystalline silica generation and transport from a sand and gravel plant.

    PubMed

    Trzepla-Nabaglo, Krystyna; Shiraki, Ryoji; Holmén, Britt A

    2006-04-30

    Light detection and ranging (Lidar) remote sensing two-dimensional vertical and horizontal scans collected downwind of a sand and gravel plant were used to evaluate the generation and transport of geologic fugitive dust emitted by quarry operations. The lidar data give unsurpassed spatial resolution of the emitted dust, but lack quantitative particulate matter (PM) mass concentration data. Estimates of the airborne PM10 and crystalline silica concentrations were determined using linear relationships between point monitor PM10 and quartz content data with the lidar backscatter signal collected from the point monitor location. Lidar vertical profiles at different distances downwind from the plant were used to quantify the PM10 and quartz horizontal fluxes at 2-m vertical resolution as well as off-site emission factors. Emission factors on the order of 65-110 kg of PM10 (10-30 kg quartz) per daily truck activity or 2-4 kg/t product shipped (0.5-1 kg quartz/t) were quantified for this facility. The lidar results identify numerous elevated plumes at heights >30 m and maximum plume heights of 100 m that cannot be practically sampled by conventional point sampler arrays. The PM10 and quartz mass flux was greatest at 10-25 m height and decreased with distance from the main operation. Measures of facility activity were useful for explaining differences in mass flux and emission rates between days. The study results highlight the capabilities of lidar remote sensing for determining the spatial distribution of fugitive dust emitted by area sources with intermittent and spatially diverse dust generation rates.

  4. Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, H.; Lin, P.

    2017-12-01

    The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.

  5. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was observed below the MH. The radiative power density absorbed into each atmospheric layer was normalized by the layer height to compare measurements taken at different sites with different vertical resolutions. The atmospheric absorption of radiative power below the MH ranged from +45.2±5.1 mW/m3 up to +103.3±16.2 mW/m3 and was ~2-3 times higher than above MH. The resulting heating rate was characterized by a vertical negative gradient with increasing height, from -2.6±0.2 K/(day km) up to -8.3±1.2 K/(day km), exerting a negative feedback on the atmospheric stability over basin valleys, weakening the ground-based thermal inversions and increasing the dispersal conditions.

  6. High resolution beamforming on large aperture vertical line arrays: Processing synthetic data

    NASA Astrophysics Data System (ADS)

    Tran, Jean-Marie Q.; Hodgkiss, William S.

    1990-09-01

    This technical memorandum studies the beamforming of large aperture line arrays deployed vertically in the water column. The work concentrates on the use of high resolution techniques. Two processing strategies are envisioned: (1) full aperture coherent processing which offers in theory the best processing gain; and (2) subaperture processing which consists in extracting subapertures from the array and recombining the angular spectra estimated from these subarrays. The conventional beamformer, the minimum variance distortionless response (MVDR) processor, the multiple signal classification (MUSIC) algorithm and the minimum norm method are used in this study. To validate the various processing techniques, the ATLAS normal mode program is used to generate synthetic data which constitute a realistic signals environment. A deep-water, range-independent sound velocity profile environment, characteristic of the North-East Pacific, is being studied for two different 128 sensor arrays: a very long one cut for 30 Hz and operating at 20 Hz; and a shorter one cut for 107 Hz and operating at 100 Hz. The simulated sound source is 5 m deep. The full aperture and subaperture processing are being implemented with curved and plane wavefront replica vectors. The beamforming results are examined and compared to the ray-theory results produced by the generic sonar model.

  7. The Geoscience Laser Altimetry/Ranging System (GLARS)

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Degnan, J. J.; Bufton, J. L.; Garvin, J. B.; Abshire, J. B.

    1986-01-01

    The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system.

  8. Retrievals of Jovian Tropospheric Phosphine from Cassini/CIRS

    NASA Technical Reports Server (NTRS)

    Irwin, P. G. J.; Parrish, P.; Fouchet, T.; Calcutt, S. B.; Taylor, F. W.; Simon-Miller, A. A.; Nixon, C. A.

    2004-01-01

    On December 30th 2000, the Cassini-Huygens spacecraft reached the perijove milestone on its continuing journey to the Saturnian system. During an extended six-month encounter, the Composite Infrared Spectrometer (CIRS) returned spectra of the Jovian atmosphere, rings and satellites from 10-1400 cm(exp -1) (1000-7 microns) at a programmable spectral resolution of 0.5 to 15 cm(exp -1). The improved spectral resolution of CIRS over previous IR instrument-missions to Jupiter, the extended spectral range, and higher signal-to-noise performance provide significant advantages over previous data sets. CIRS global observations of the mid-infrared spectrum of Jupiter at medium resolution (2.5 cm(exp -1)) have been analysed both with a radiance differencing scheme and an optimal estimation retrieval model to retrieve the spatial variation of phosphine and ammonia fractional scale height in the troposphere between 60 deg S and 60 deg N at a spatial resolution of 6 deg. The ammonia fractional scale height appears to be high over the Equatorial Zone (EZ) but low over the North Equatorial Belt (NEB) and South Equatorial Belt (SEB) indicating rapid uplift or strong vertical mixing in the EZ. The abundance of phosphine shows a similar strong latitudinal variation which generally matches that of the ammonia fractional scale height. However while the ammonia fractional scale height distribution is to a first order symmetric in latitude, the phosphine distribution shows a North/South asymmetry at mid latitudes with higher amounts detected at 40 deg N than 40 deg S. In addition the data show that while the ammonia fractional scale height at this spatial resolution appears to be low over the Great Red Spot (GRS), indicating reduced vertical mixing above the approx. 500 mb level, the abundance of phosphine at deeper levels may be enhanced at the northern edge of the GRS indicating upwelling.

  9. Thermal structure of the Martian atmosphere retrieved from the IR- spectrometry in the 15 mkm CO2 band

    NASA Astrophysics Data System (ADS)

    Zasova, L.; Formisano, V.; Grassi, D.; Igantiev, N.; Moroz, V.

    Thermal IR spectrometry is one of the methods of the Martian atmosphere investigation below 55 km. The temperature profiles retrieved from the 15 μm CO2 band may be used for MIRA database. This approach gives the vertical resolution of several kilometers and accuracy of several Kelvins. An aerosol abundance, which influences the temperature profiles, is obtained from the continuum of the same spectrum. It is taken into account in the temperature retrieval procedure in a self- consistent way. Although this method has limited vertical resolution it possesses some advantages. For example, the radio occultation method gives the temperature profiles with higher spectral resolution, but the radio observations are sparse in space and local time. Direct measurements, which give the most accurate results, enable to obtain the temperature profiles only for some chosen points (landing places). Actually, the thermal IR-spectrometry is the only method, which allows to monitor the temperature profiles with good coverage both in space and local time. The first measurements of this kind were fulfilled by IRIS, installed on board of Mariner 9. This spectrometer was characterized by rather high spectral resolution (2.4 cm-1). The temperature profiles vs. local time dependencies for different latitudes and seasons were retrieved, including dust storm conditions, North polar night, Tharsis volcanoes. The obtained temperature profiles have been compared with the temperature profiles for the same conditions, taken from Climate Data Base (European GCM). The Planetary Fourier Spectrometer onboard Mars Express (which is planned to be launched in 2003) has the spectral range 1.2-45 μm and spectral resolution of 1.5 cm- 1. Temperature retrieval is one of the main scientific goals of the experiment. It opens a possibility to get a series of temperature profiles taken for different conditions, which can later be used in MIRA producing.

  10. Reducing representativeness and sampling errors in radio occultation-radiosonde comparisons

    NASA Astrophysics Data System (ADS)

    Gilpin, Shay; Rieckh, Therese; Anthes, Richard

    2018-05-01

    Radio occultation (RO) and radiosonde (RS) comparisons provide a means of analyzing errors associated with both observational systems. Since RO and RS observations are not taken at the exact same time or location, temporal and spatial sampling errors resulting from atmospheric variability can be significant and inhibit error analysis of the observational systems. In addition, the vertical resolutions of RO and RS profiles vary and vertical representativeness errors may also affect the comparison. In RO-RS comparisons, RO observations are co-located with RS profiles within a fixed time window and distance, i.e. within 3-6 h and circles of radii ranging between 100 and 500 km. In this study, we first show that vertical filtering of RO and RS profiles to a common vertical resolution reduces representativeness errors. We then test two methods of reducing horizontal sampling errors during RO-RS comparisons: restricting co-location pairs to within ellipses oriented along the direction of wind flow rather than circles and applying a spatial-temporal sampling correction based on model data. Using data from 2011 to 2014, we compare RO and RS differences at four GCOS Reference Upper-Air Network (GRUAN) RS stations in different climatic locations, in which co-location pairs were constrained to a large circle ( ˜ 666 km radius), small circle ( ˜ 300 km radius), and ellipse parallel to the wind direction ( ˜ 666 km semi-major axis, ˜ 133 km semi-minor axis). We also apply a spatial-temporal sampling correction using European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) gridded data. Restricting co-locations to within the ellipse reduces root mean square (RMS) refractivity, temperature, and water vapor pressure differences relative to RMS differences within the large circle and produces differences that are comparable to or less than the RMS differences within circles of similar area. Applying the sampling correction shows the most significant reduction in RMS differences, such that RMS differences are nearly identical to the sampling correction regardless of the geometric constraints. We conclude that implementing the spatial-temporal sampling correction using a reliable model will most effectively reduce sampling errors during RO-RS comparisons; however, if a reliable model is not available, restricting spatial comparisons to within an ellipse parallel to the wind flow will reduce sampling errors caused by horizontal atmospheric variability.

  11. Measurement of stratospheric trace constituent distributions from balloon-borne far infrared observations

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Carli, B.; Mencaraglia, F.; Bonetti, A.

    1987-01-01

    FIR limb thermal emission spectra obtained from balloon-borne measurements made as a part of the Balloon Intercomparison Campaign (BIC) have been analyzed for retrieval of stratospheric trace-constituent distributions. The measurements were made with a high-resolution Michelson interferometer and covered the 15-180/cm spectral range with an unapodized spectral resolution of 0.0033/cm. The retrieved vertical profiles of O3, H2O, HDO, HCN, CO, and isotopes of O3 are presented. The results are compared with the BIC measurements for O3 and H2O made from the same balloon gondola and with other published data. A comparison of the simultaneously retrieved profiles for several gases with the published data shows good agreement and indicates the validity of the FIR data and retrieval techniques and the accuracy of the inferred profiles.

  12. Relative humidity vertical profiling using lidar-based synergistic methods in the framework of the Hygra-CD campaign

    NASA Astrophysics Data System (ADS)

    Labzovskii, Lev D.; Papayannis, Alexandros; Binietoglou, Ioannis; Banks, Robert F.; Baldasano, Jose M.; Toanca, Florica; Tzanis, Chris G.; Christodoulakis, John

    2018-02-01

    Accurate continuous measurements of relative humidity (RH) vertical profiles in the lower troposphere have become a significant scientific challenge. In recent years a synergy of various ground-based remote sensing instruments have been successfully used for RH vertical profiling, which has resulted in the improvement of spatial resolution and, in some cases, of the accuracy of the measurement. Some studies have also suggested the use of high-resolution model simulations as input datasets into RH vertical profiling techniques. In this paper we apply two synergetic methods for RH profiling, including the synergy of lidar with a microwave radiometer and high-resolution atmospheric modeling. The two methods are employed for RH retrieval between 100 and 6000 m with increased spatial resolution, based on datasets from the HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) campaign conducted in Athens, Greece from May to June 2014. RH profiles from synergetic methods are then compared with those retrieved using single instruments or as simulated by high-resolution models. Our proposed technique for RH profiling provides improved statistical agreement with reference to radiosoundings by 27 % when the lidar-radiometer (in comparison with radiometer measurements) approach is used and by 15 % when a lidar model is used (in comparison with WRF-model simulations). Mean uncertainty of RH due to temperature bias in RH profiling was ˜ 4.34 % for the lidar-radiometer and ˜ 1.22 % for the lidar-model methods. However, maximum uncertainty in RH retrievals due to temperature bias showed that lidar-model method is more reliable at heights greater than 2000 m. Overall, our results have demonstrated the capability of both combined methods for daytime measurements in heights between 100 and 6000 m when lidar-radiometer or lidar-WRF combined datasets are available.

  13. The NEAR laser ranging investigation

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Smith, D. E.; Cheng, A. F.; Cole, T. D.

    1997-10-01

    The objective of the NEAR-Earth Asteriod Rendezvous (NEAR) laser ranging investigation is to obtain high integrity profiles and grids of topography for use in geophysical, geodetic and geological studies of asteroid 433 Eros. The NEAR laser rangefinder (NLR) will determine the slant range of the NEAR spacecraft to the asteroid surface by measuring precisely the round trip time of flight of individual laser pulses. Ranges will be converted to planetary radii measured with respect to the asteroid center of mass by subtracting the spacecraft orbit determined from X band Doppler tracking. The principal components of the NLR include a 1064 nm Cr:Nd:YAG laser, a gold-coated aluminum Dall-Kirkham Cassegrain telescope, an enhanced silicon avalanche photodiode hybrid detector, a 480-MHz crystal oscillator, and a digital processing unit. The instrument has a continuous in-flight calibration capability using a fiber-optic delay assembly. The single shot vertical resolution of the NLR is <6m, and the absolute accuracy of the global grid will be ~10m with respect to the asteroid center of mass. For the current mission orbital scenario, the laser spot size on the surface of Eros will vary from ~4-11m, and the along-track resolution for the nominal pulse repetition rate of 1 Hz will be approximately comparable to the spot size, resulting in contiguous along-track profiles. The across-track resolution will depend on the orbital mapping scenario, but will likely be <500m, which will define the spatial resolution of the global topographic model. Planned science investigations include global-scale analyses related to collisional and impact history and internal density distribution that utilize topographic grids as well as spherical harmonic topographic models that will be analyzed jointly with gravity at commensurate resolution. Attempts will be made to detect possible subtle time variations in internal structure that may be present if Eros is not a single coherent body, by analysis of low degree and order spherical harmonic coefficients. Local- to regional-scale analyses will utilize high-resolution three-dimensional topographic maps of specific surface structures to address surface geologic processes. Results from the NLR investigation will contribute significantly to understanding the origin, structure, and evolution of Eros and other asteroidal bodies.

  14. Azores 2017 Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, Birgit; Chevallier, Karine; Weinhold, Kay

    Aerosol particles play an important role for the regional and global climate. Therefore, a network of measurement sites has been established worldwide, but only a small fraction of them is capturing the marine boundary layer (MBL) while approximately 70% of the Earth’s surface is covered with water. The main focus of this project is to improve the knowledge of sources and exchange processes of aerosol particles in general (German Research Foundation [DFG] project WE 2757/2-1) and of cloud condensation nuclei in particular (DFG project HE 6770/2-1) in the MBL in the northeastern Atlantic Ocean where the influence of local anthropogenicmore » sources is negligible. The main hypothesis of the project is that long-range transport of aerosols from North America as well as new particle formation in the free troposphere (FT) and at cloud edges followed by vertical transport contribute significantly to the aerosol budget in the MBL. The knowledge of sources and sinks of aerosol particles in combination with vertical exchange between FT and MBL is a prerequisite to predict aerosol particle number concentrations in the lowest regions of the MBL and its influence on the formation of clouds. These processes are not sufficiently quantified over the ocean up to now. To verify the hypothesis stated above, vertical exchange processes and particle sources over the Azores will be quantified using data of 17 measurement flights with high spatial resolution using a helicopter-borne platform developed at the Leibniz Institute for Tropospheric Research (TROPOS). Here, aerosol particle number concentration and vertical wind speed have been measured with a temporal resolution allowing the direct estimate of the vertical turbulent flux of aerosol particles in different heights for the first time. In addition, aerosol particle number size distributions, number concentrations of cloud condensation nuclei (CCN), cloud droplet number concentration (CDNC), and particle absorption at three different wavelengths have been determined. The data analysis is ongoing and final results are not available yet. The detailed analysis of these data will be used to conclude sources and origin of the investigated aerosol particles.« less

  15. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    NASA Astrophysics Data System (ADS)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010)

  16. Comparison of stratospheric air parcel trajectories calculated from SSU and LIMS satellite data. [Stratospheric Sounding Unit/Limb Infrared Monitor of Stratosphere

    NASA Technical Reports Server (NTRS)

    Austin, J.

    1986-01-01

    Midstratospheric trajectories for February and March 1979 are calculated using geopotential analyses derived from limb infrared monitor of the stratosphere data. These trajectories are compared with the corresponding results using stratospheric sounding unit data. The trajectories are quasi-isentropic in that a radiation scheme is used to simply cross-isentrope flow. The results show that in disturbed conditions, quantitative agreement the trajectories, that is, within 25 great circle degrees (GCD) (one GCD about 110 km) may be valid for only 3 or 4 days, whereas during quiescent periods, quantitative agreement may last up to 10 days. By comparing trajectories calculated with different data some insight can be gained as to errors due to vertical resolution and horizontal resolution (due to infrequent sampling) in the analyzed geopotential height fields. For the disturbed trajectories described in this paper the horizontal resolution of the data was more important than vertical resolution; however, for the quiescent trajectories, which could be calculated accurately for a longer duration because of the absence of appreciable transients, the vertical resolution of the data was found to be more important than the horizontal resolution. It is speculated that these characteristics are also applicable to trajectories calculated during disturbed and quiescent periods in general. A review of some recently published trajectories shows that the qualitative conclusions of such works remains unaffected when the calculations are repeated using different data.

  17. New constraints on slip-rates, recurrence intervals, and strain partitioning beneath Pyramid Lake, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, Amy

    A high-resolution CHIRP seismic survey of Pyramid Lake, Nevada, located within the northern Walker Lane Deformation Belt, was conducted in summer 2010. Seismic CHIRP data with submeter vertical accuracy, together with piston and gravity cores, were used to calculate Holocene vertical slip rates, relative earthquake timing, and produce the first complete fault map beneath the lake. More than 500 line-kilometers of CHIRP data imaged complex fault patterns throughout the basin. Fault architecture beneath Pyramid Lake highlights a polarity flip, where down-to-the west patterns of sedimentation near the dextral Pyramid Lake fault to the south give way to down-to-the-east geometries tomore » the north within a mostly normal (i.e., Lake Range fault) and transtensional environment. The Lake Range fault predominantly controls extensional deformation within the northern two-thirds of the basin and exhibits varying degrees of asymmetric tilting and divergence due to along-strike segmentation. This observation is likely a combination of fault segments splaying onshore moving the focus of extension away from the lake coupled with some true along-strike differences in slip-rate. The combination of normal and oblique-slip faults in the northern basin gives Pyramid Lake its distinctive “fanning open to the north” tectonic geometry. The dense network of oblique-slip faults in the northwestern region of the lake, in contrast to the well-defined Lake Range fault, are short and discontinuous in nature, and possible represent a nascent shear zone. Preliminary vertical slip-rates measured across the Lake Range and other faults provide new estimates on the extension across the Pyramid Lake basin. A minimum vertical slip rate of ~1.0 mm/yr is estimated along the Lake Range fault, which yields a potential earthquake magnitude range between M6.4 and M7.0. A rapid influx of sediment was deposited shortly after the end of the Tioga glaciation somewhere between 12.5 ka to 9.5 ka and provides a punctuated short-term record of little to no slip on the Lake Range fault. In contrast, for the past 9,500 years, the basin has experienced a decrease in sedimentation rate, but an escalation in earthquake activity on the Lake Range fault, with the potential of 3 or 4 major earthquakes assuming a characteristic offset of 2.5 m per event. Regionally, our CHIRP investigation helps to reveal how strain is partitioned along the boundary between the eastern edge of the Walker Lane Deformation Belt and the northwest Great Basin proper.« less

  18. Muon tomography imaging improvement using optimized limited angle data

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew

    2014-05-01

    Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.

  19. Distributed Temperature Sensing of hyporheic flux patterns in varied space and time around beaver dams

    NASA Astrophysics Data System (ADS)

    Briggs, M.; Lautz, L. K.; McKenzie, J. M.

    2010-12-01

    Small dams enhance hyporheic interaction by creating punctuated head differentials along streams, thereby affecting redox conditions and nutrient cycling in the streambed. As beaver populations return, they create dams that alter hyporheic flowpaths locally, an effect which may integrate at the reach scale to produce a net hydrological and ecological functional change. Streambed heterogeneity around beaver dams combines with varied morphology, head differentials and stream velocities to create patterns of hyporheic seepage flux that vary in both space and time. Heat has been used as a groundwater tracer for many years, but it’s dependence on spatially disperse point measurements has only recently been resolved by the development of Distributed Temperature Sensing (DTS) fiber-optic technology. Modified applications of DTS include wrapping the fiber around a mandrel to increase spatial resolution dramatically. Wrapped configurations can be installed vertically in the streambed to provide data for heat transport modeling of vertical hyporheic flux. The vertically continuous dataset generated with DTS may be more informative regarding subsurface heterogeneity than more commonly used spatially discrete thermocouples. We installed a total of nine wrapped DTS rods with 1.4 cm vertical spatial resolution above two beaver dams in Cherry Creek, a tributary of the Little Popo Agie River in Lander, Wyoming, USA. Data was collected over 20 min periods in dual-ended mode continuously for one month (10-Jul to 10-Aug 2010) during baseflow recession, as discharge dropped from 384 Ls-1 to 211 Ls-1. The temperature rods were installed to at least 0.75 m depth within bed sediments at varied distances upstream of the dams in diverse stream morphological units, which ranged from gravel bars to clay lined pools. Diurnal fluctuations in stream temperature were generally between 4.5 and 5.5 oC in amplitude, imparting a strong potential signal for propagation into the bed due to advective hyporheic flux. In many locations monthly temperature standard deviations at the 10 cm depth were larger than that of the overlying stream water, indicating direct heating of the streambed by solar radiation was an important process, even in that high velocity system. The high-resolution temperature records revealed local heterogeneity in the streambed at each rod and indicated the largest hyporheic flux was within gravel bars close to the dams. The smallest flux was through a gravel bar farther upstream of the dam, and through the deepest portions of pools closer to the dam. High flux regions had monthly temperature standard deviations close to that of the stream (1.5 oC) at shallow depths, while shallow sediments in pools had much more muted temperature oscillations. At 0.5 m depth, all rods had similar, smaller temperature standard deviations, ranging from 0.64-0.80 oC. The extensive and spatially continuous data set generated using DTS allowed us to determine hyporheic flux patterns for virtually any depth and time along the high-resolution temperature rods, a crucial step for understanding transient patterns in biogeochemical processing around beaver dams.

  20. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-03-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modeled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI), elevation and aspect have small and additive effects on improving the spatial scaling between these two resolutions.

  1. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling between these two resolutions.

  2. Retrievability of atmospheric water vapour, temperature and vertical windspeed profiles from proposed sub-millimetre instrument ORTIS.

    NASA Astrophysics Data System (ADS)

    Hurley, Jane; Irwin, Patrick; Teanby, Nicholas; de Kok, Remco; Calcutt, Simon; Irshad, Ranah; Ellison, Brian

    2010-05-01

    The sub-millimetre range of the spectrum has been exploited in the field of Earth observation by many instruments over the years and has provided a plethora of information on atmospheric chemistry and dynamics - however, this spectral range has not been fully explored in planetary science. To this end, a sub-millimetre instrument, the Orbiter Terahertz Infrared Spectrometer (ORTIS), is jointly proposed by the University of Oxford and the Rutherford Appleton Laboratory, to meet the requirements of the European Space Agency's Cosmic Visions Europa Jupiter System Mission (EJSM). ORTIS will consist of an infrared and a sub-millimetre component; however in this study only the sub-millimetre component will be explored. The sub-millimetre component of ORTIS is projected to measure a narrow band of frequencies centred at approximately 2.2 THz, with a spectral resolution varying between approximately 1 kHz and 1 MHz, and having an expected noise magnitude of 2 nW/cm2 sr cm-1. In this spectral region, there are strong water and methane emission lines at most altitudes on Jupiter. The sub-millimetre component of ORTIS is designed to measure the abundance of atmospheric water vapour and atmospheric temperature, as well as vertical windspeed profiles from Doppler-shifted emission lines, measured at high spectral resolution. This study will test to see if, in practice, these science objectives may be met from the planned design, as applied to Jupiter. In order to test the retrievability of atmospheric water vapour, temperature and windspeed with the proposed ORTIS design, it is necessary to have a set of "measurements' for which the input parameters (such as species' concentrations, atmospheric temperature, pressure - and windspeed) are known. This is accomplished by generating a set of radiative transfer simulations using radiative transfer model RadTrans in the spectral range sampled by ORTIS, whereby the atmospheric data pertaining to Jupiter have provided by Cassini-CIRS. These simulations are then convolved with the ORTIS field-of-view response function, yielding "measurements' of Jupiter as would be registered by ORTIS about which all atmospheric parameters are known. A standard optimal estimation retrieval code, the Non-Linear Optimal Estimator for Multivariate Spectral Analysis (NEMESIS), shall be used to retrieve atmospheric water vapour and temperature from such nadir "measurements' taken by ORTIS. The vertical windspeed profiles, as determined from Doppler-shifted emission lines taken at extremely high spectral resolution from limb (or near-limb, 80° emission angle) ORTIS "measurements', shall be determined using an implementation of standard optimal estimation theory. Preliminary analysis indicates that ORTIS should be able to retrieve atmospheric water vapour and temperature, as well as Doppler windspeed profiles on Jupiter to a high degree of accuracy over a large range of altitudes using single nadir or limb/near-limb measurements, respectively.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Shin-Ichi; Ito, Takahiro; Hosaka, Masahito

    A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a {+-}18 deg. acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directlymore » led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (h{nu}/{Delta}h{nu}) and photon flux of the monochromator are typically 1x10{sup 4} and 10{sup 12} photons/s, respectively, with a 100 {mu}m exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.« less

  4. File Specification for the 7-km GEOS-5 Nature Run, Ganymed Release Non-Hydrostatic 7-km Global Mesoscale Simulation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo M.; Putman, William; Nattala, J.

    2014-01-01

    This document describes the gridded output files produced by a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2006 produced with the non-hydrostatic version of GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic sources. A description of the GEOS-5 model configuration used for this simulation can be found in Putman et al. (2014). The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (approximately 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625 deg grid that approximately matches the native cubed-sphere resolution, and another 0.5 deg reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model's native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. Information of the model surface representation can be found in Appendix B. The GEOS-5 product is organized into file collections that are described in detail in Appendix C. Additional details about variables listed in this file specification can be found in a separate document, the GEOS-5 File Specification Variable Definition Glossary. Documentation about the current access methods for products described in this document can be found on the GEOS-5 Nature Run portal: http://gmao.gsfc.nasa.gov/projects/G5NR. Information on the scientific quality of this simulation will appear in a forthcoming NASA Technical Report Series on Global Modeling and Data Assimilation to be available from http://gmao.gsfc.nasa.gov/pubs/tm/.

  5. The Future of Satellite-based Lightning Detection

    NASA Technical Reports Server (NTRS)

    Bocippio, Dennis J.; Christian, Hugh J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The future of satellite-based optical lightning detection, beyond the end of the current TRMM mission, is discussed. Opportunities for new low-earth orbit missions are reviewed. The potential for geostationary observations is significant; such observations provide order-of-magnitude gains in sampling and data efficiency over existing satellite convective observations. The feasibility and performance (resolution, sensitivity) of geostationary measurements using current technology is discussed. In addition to direct and continuous hemispheric observation of lighting, geostationary measurements have the potential (through data assimilation) to dramatically improve short and medium range forecasts, offering benefits to prediction of NOx productions and/or vertical transport.

  6. An overview of the SABER experiment for the TIMED mission

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Russell, James M., III

    1995-01-01

    The Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) experiment has been selected for flight on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) mission expected to fly in the latter part of this decade. The primary science goal of SABER is to achieve fundamental and important advances in understanding of the energetics, chemistry, and dynamics, in the atmospheric region extending from 60 km to 180 km altitude, which has not been comprehensively observed on a global basis. This will be accomplished using the space flight proven experiment approach of broad spectral band limb emission radiometry. SABER will scan the horizon in 12 selected bands ranging from 1.27 microns to 17 microns wavelength. The observed vertical horizon emission profiles will be mathematically inverted in ground data processing to provide vertical profiles with 2 km vertical resolution, of temperature, O3, H2O, NO, NO2, CO, and CO2. SABER will also observe key emissions needed for energetics studies at 1.27 microns (O2((sup 1)delta)), 2 microns (OH(v = 7,8,9)) 1.6 microns (OH(v = 3,4,5)), 4.3 microns (CO2(v(sub 3))) 5.3 microns (NO) 9.6 microns (O3), and 15 microns (CO2(v(sub 2))). These measurements will be used to infer atomic hydrogen and atomic oxygen, the latter inferred three different ways using only SABER observations. Measurements will be made both night and day over the latitude range from the southern to northern polar regions.

  7. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales

    NASA Astrophysics Data System (ADS)

    Tonkin, T. N.; Midgley, N. G.; Graham, D. J.; Labadz, J. C.

    2014-12-01

    Novel topographic survey methods that integrate both structure-from-motion (SfM) photogrammetry and small unmanned aircraft systems (sUAS) are a rapidly evolving investigative technique. Due to the diverse range of survey configurations available and the infancy of these new methods, further research is required. Here, the accuracy, precision and potential applications of this approach are investigated. A total of 543 images of the Cwm Idwal moraine-mound complex were captured from a light (< 5 kg) semi-autonomous multi-rotor unmanned aircraft system using a consumer-grade 18 MP compact digital camera. The images were used to produce a DSM (digital surface model) of the moraines. The DSM is in good agreement with 7761 total station survey points providing a total vertical RMSE value of 0.517 m and vertical RMSE values as low as 0.200 m for less densely vegetated areas of the DSM. High-precision topographic data can be acquired rapidly using this technique with the resulting DSMs and orthorectified aerial imagery at sub-decimetre resolutions. Positional errors on the total station dataset, vegetation and steep terrain are identified as the causes of vertical disagreement. Whilst this aerial survey approach is advocated for use in a range of geomorphological settings, care must be taken to ensure that adequate ground control is applied to give a high degree of accuracy.

  8. Estimations of Vertical Velocities Using the Omega Equation in Different Flow Regimes in Preparation for the High Resolution Observations of the SWOT Altimetry Mission

    NASA Astrophysics Data System (ADS)

    Pietri, A.; Capet, X.; d'Ovidio, F.; Le Sommer, J.; Molines, J. M.; Doglioli, A. M.

    2016-02-01

    Vertical velocities (w) associated with meso and submesoscale processes play an essential role in ocean dynamics and physical-biological coupling due to their impact on the upper ocean vertical exchanges. However, their small intensity (O 1 cm/s) compared to horizontal motions and their important variability in space and time makes them very difficult to measure. Estimations of these velocities are thus usually inferred using a generalized approach based on frontogenesis theories. These estimations are often obtained by solving the diagnostic omega equation. This equation can be expressed in different forms from a simple quasi geostrophic formulation to more complex ones that take into account the ageostrophic advection and the turbulent fluxes. The choice of the method used generally depends on the data available and on the dominant processes in the region of study. Here we aim to provide a statistically robust evaluation of the scales at which the vertical velocity can be resolved with confidence depending on the formulation of the equation and the dynamics of the flow. A high resolution simulation (dx=1-1.5 km) of the North Atlantic was used to compare the calculations of w based on the omega equation to the modelled vertical velocity. The simulation encompasses regions with different atmospheric forcings, mesoscale activity, seasonality and energetic flows, allowing us to explore several different dynamical contexts. In a few years the SWOT mission will provide bi-dimensional images of sea level elevation at a significantly higher resolution than available today. This work helps assess the possible contribution of the SWOT data to the understanding of the submesoscale circulation and the associated vertical fluxes in the upper ocean.

  9. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    NASA Astrophysics Data System (ADS)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  10. Efficient Computation of Atmospheric Flows with Tempest: Development of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2015-12-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods at very high spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At global horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of meso-scale test cases to validate the performance of the SNFEM applied in the vertical. Internal gravity wave, mountain wave, convective, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  11. Sensory factors limiting horizontal and vertical visual span for letter recognition

    PubMed Central

    Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.

    2014-01-01

    Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline. PMID:25187253

  12. Sensory factors limiting horizontal and vertical visual span for letter recognition

    PubMed Central

    Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.

    2014-01-01

    Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline.

  13. Estimation of the rain signal in the presence of large surface clutter

    NASA Technical Reports Server (NTRS)

    Ahamad, Atiq; Moore, Richard K.

    1994-01-01

    The principal limitation for the use of a spaceborne imaging SAR as a rain radar is the surface-clutter problem. Signals may be estimated in the presence of noise by averaging large numbers of independent samples. This method was applied to obtain an estimate of the rain echo by averaging a set of N(sub c) samples of the clutter in a separate measurement and subtracting the clutter estimate from the combined estimate. The number of samples required for successful estimation (within 10-20%) for off-vertical angles of incidence appears to be prohibitively large. However, by appropriately degrading the resolution in both range and azimuth, the required number of samples can be obtained. For vertical incidence, the number of samples required for successful estimation is reasonable. In estimating the clutter it was assumed that the surface echo is the same outside the rain volume as it is within the rain volume. This may be true for the forest echo, but for convective storms over the ocean the surface echo outside the rain volume is very different from that within. It is suggested that the experiment be performed with vertical incidence over forest to overcome this limitation.

  14. Introducing and Validating the New Aura CO Product Derived from Joined TES and MLS Measurements

    NASA Astrophysics Data System (ADS)

    Luo, M.; Schwartz, M. J.; Read, W. G.; Herman, R. L.; Kulawik, S. S.; Worden, J.; Livesey, N. J.; Bowman, K. W.; Sweeney, C.

    2014-12-01

    The new Aura CO product consists of CO vertical profiles derived from TES and MLS measurements. This product has been released to the public. We describe the algorithms for generating the product and the evaluations of it using in-situ measurements. TES and MLS standalone CO profile retrievals are sensitive respectively to lower-mid troposphere and upper troposphere and above. We pair TES nadir and MLS limb tangent locations within 6-8 min and less than 220 km. The paired radiance measurements of the two instruments per location are optimally combined to retrieve a single CO profile along with other interfering species. This combined CO profile has improved vertical resolution and vertical range over the two standalone products, especially in the upper-troposphere/lower-stratosphere. For example, the degree of freedom for signal (DOFS) between surface and 50hPa for TES alone is < 2, and for the combined CO profiles is 2-4. We will present the comparison results between the Aura CO and AirCore, HIPPO, and MOZAIC observations. The new Aura CO product provides a unique data set to studies on tropospheric transport of air pollutants and troposphere-stratospheric exchange processes.

  15. Reanalysis comparisons of upper tropospheric-lower stratospheric jets and multiple tropopauses

    NASA Astrophysics Data System (ADS)

    Manney, Gloria L.; Hegglin, Michaela I.; Lawrence, Zachary D.; Wargan, Krzysztof; Millán, Luis F.; Schwartz, Michael J.; Santee, Michelle L.; Lambert, Alyn; Pawson, Steven; Knosp, Brian W.; Fuller, Ryan A.; Daffer, William H.

    2017-09-01

    The representation of upper tropospheric-lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern-Era Retrospective analysis for Research and Applications), ERA-I (ERA-Interim; the European Centre for Medium-Range Weather Forecasts, ECMWF, interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution - for example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 (the Japanese 55-year Reanalysis) a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterizations. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude Southern Hemisphere (SH) winter upper tropospheric jets and multiple tropopauses as well as in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large-scale climatological features in UTLS jet and multiple tropopause distributions. Quantitative differences may, however, have important consequences for transport and variability studies. Our results highlight the importance of considering reanalyses differences in UTLS studies, especially in relation to resolution and model grids; this is particularly critical when using high-resolution reanalyses as an observational reference for evaluating global chemistry-climate models.

  16. Rayleigh-wave mode separation by high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  17. Recommended aquifer grid resolution for E-Area PA revision transport simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G.

    This memorandum addresses portions of Section 3.5.2 of SRNL (2016) by recommending horizontal and vertical grid resolution for aquifer transport, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision.

  18. Design for and efficient dynamic climate model with realistic geography

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.; Abeles, J.

    1984-01-01

    The long term climate sensitivity which include realistic atmospheric dynamics are severely restricted by the expense of integrating atmospheric general circulation models are discussed. Taking as an example models used at GSFC for this dynamic model is an alternative which is of much lower horizontal or vertical resolution. The model of Heid and Suarez uses only two levels in the vertical and, although it has conventional grid resolution in the meridional direction, horizontal resolution is reduced by keeping only a few degrees of freedom in the zonal wavenumber spectrum. Without zonally asymmetric forcing this model simulates a day in roughly 1/2 second on a CRAY. The model under discussion is a fully finite differenced, zonally asymmetric version of the Heid-Suarez model. It is anticipated that speeds can be obtained a few seconds a day roughly 50 times faster than moderate resolution, multilayer GCM's.

  19. An Overview of Numerical Weather Prediction on Various Scales

    NASA Astrophysics Data System (ADS)

    Bao, J.-W.

    2009-04-01

    The increasing public need for detailed weather forecasts, along with the advances in computer technology, has motivated many research institutes and national weather forecasting centers to develop and run global as well as regional numerical weather prediction (NWP) models at high resolutions (i.e., with horizontal resolutions of ~10 km or higher for global models and 1 km or higher for regional models, and with ~60 vertical levels or higher). The need for running NWP models at high horizontal and vertical resolutions requires the implementation of non-hydrostatic dynamic core with a choice of horizontal grid configurations and vertical coordinates that are appropriate for high resolutions. Development of advanced numerics will also be needed for high resolution global and regional models, in particular, when the models are applied to transport problems and air quality applications. In addition to the challenges in numerics, the NWP community is also facing the challenges of developing physics parameterizations that are well suited for high-resolution NWP models. For example, when NWP models are run at resolutions of ~5 km or higher, the use of much more detailed microphysics parameterizations than those currently used in NWP model will become important. Another example is that regional NWP models at ~1 km or higher only partially resolve convective energy containing eddies in the lower troposphere. Parameterizations to account for the subgrid diffusion associated with unresolved turbulence still need to be developed. Further, physically sound parameterizations for air-sea interaction will be a critical component for tropical NWP models, particularly for hurricane predictions models. In this review presentation, the above issues will be elaborated on and the approaches to address them will be discussed.

  20. Spectral domain optical coherence tomography with extended depth-of-focus by aperture synthesis

    NASA Astrophysics Data System (ADS)

    Bo, En; Liu, Linbo

    2016-10-01

    We developed a spectral domain optical coherence tomography (SD-OCT) with an extended depth-of-focus (DOF) by synthetizing aperture. For a designated Gaussian-shape light source, the lateral resolution was determined by the numerical aperture (NA) of the objective lens and can be approximately maintained over the confocal parameter, which was defined as twice the Rayleigh range. However, the DOF was proportional to the square of the lateral resolution. Consequently, a trade-off existed between the DOF and lateral resolution, and researchers had to weigh and judge which was more important for their research reasonably. In this study, three distinct optical apertures were obtained by imbedding a circular phase spacer in the sample arm. Due to the optical path difference between three distinct apertures caused by the phase spacer, three images were aligned with equal spacing along z-axis vertically. By correcting the optical path difference (OPD) and defocus-induced wavefront curvature, three images with distinct depths were coherently summed together. This system digitally refocused the sample tissue and obtained a brand new image with higher lateral resolution over the confocal parameter when imaging the polystyrene calibration beads.

  1. Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; McClain, Charles R.

    2010-01-01

    Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.

  2. Probabilistic description of ice-supersaturated layers in low resolution profiles of relative humidity N. C. Dickson, K. Gierens, H. L. Rogers, R. L. Jones

    NASA Astrophysics Data System (ADS)

    Dickson, N.

    2009-12-01

    The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensations trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. A robust assessment of the global distribution of ISSR will further this debate, and ISS event occurrence, frequency and spatial scales have recently attracted significant attention. The mean horizontal size of ISSR is 150 km (±250km) although 12-14% of ISS events occur on horizontal scales of less than 5km. The average vertical thickness of ISS layers is 600-800m (±575m) but layers ranging from 25m to 3000m have been observed, with up to one third of ISS layers thought to be less than 100m deep. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Specifically each radiosonde profile is divided into 50 and 100 hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve describing the ISS fraction in any average relative humidity pressure layer. An empirical investigation has shown that this one curve is statistically valid for mid-latitude locations, irrespective of season and altitude, however, pressure layer depth is an important variable. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Here the statistical distributions of actual high resolution RHi observations in any thick pressure layer, along with an error function, are used to mathematically describe the s-shape. Two models were developed to represent both 50 and 100 hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.

  3. On the impact of the resolution on the surface and subsurface Eastern Tropical Atlantic warm bias

    NASA Astrophysics Data System (ADS)

    Martín-Rey, Marta; Lazar, Alban

    2016-04-01

    The tropical variability has a great importance for the climate of adjacent areas. Its sea surface temperature anomalies (SSTA) affect in particular the Brazilian Nordeste and the Sahelian region, as well as the tropical Pacific or the Euro-Atlantic sector. Nevertheless, the state-of the art climate models exhibits very large systematic errors in reproducing the seasonal cycle and inter-annual variability in the equatorial and coastal Africa upwelling zones (up to several °C for SST). Theses biases exist already, in smaller proportions though, in forced ocean models (several 1/10th of °C), and affect not only the mixed layer but also the whole thermocline. Here, we present an analysis of the impact of horizontal and vertical resolution changes on these biases. Three different DRAKKAR NEMO OGCM simulations have been analysed, associated to the same forcing set (DFS4.4) with different grid resolutions: "REF" for reference (1/4°, 46 vertical levels), "HH" with a finer horizontal grid (1/12°, 46 v.l.) and "HV" with a finer vertical grid (1/4°, 75 v.l.). At the surface, a more realistic seasonal SST cycle is produced in HH in the three upwellings, where the warm bias decreases (by 10% - 20%) during boreal spring and summer. A notable result is that increasing vertical resolution in HV causes a shift (in advance) of the upwelling SST seasonal cycles. In order to better understand these results, we estimate the three upwelling subsurface temperature errors, using various in-situ datasets, and provide thus a three-dimensional view of the biases.

  4. A geospatial framework for improving the vertical accuracy of elevation models in Florida's coastal Everglades

    NASA Astrophysics Data System (ADS)

    Cooper, H.; Zhang, C.; Sirianni, M.

    2016-12-01

    South Florida relies upon the health of the Everglades, the largest subtropical wetland in North America, as a vital source of water. Since the late 1800's, this imperiled ecosystem has been highly engineered to meet human needs of flood control and water use. The Comprehensive Everglades Restoration Plan (CERP) was initiated in 2000 to restore original water flows to the Everglades and improve overall ecosystem health, while also aiming to achieve balance with human water usage. Due to subtle changes in the Everglades terrain, better vertical accuracy elevation data are needed to model groundwater and surface water levels that are integral to monitoring the effects of restoration under impacts such as sea-level rise. The current best available elevation datasets for the coastal Everglades include High Accuracy Elevation Data (HAED) and Florida Department of Emergency Management (FDEM) Light Detection and Ranging (LiDAR). However, the horizontal resolution of the HAED data is too coarse ( 400 m) for fine scale mapping, and the LiDAR data does not contain an accuracy assessment for coastal Everglades' vegetation communities. The purpose of this study is to develop a framework for generating better vertical accuracy and horizontal resolution Digital Elevation Models in the Flamingo District of Everglades National Park. In the framework, field work is conducted to collect RTK GPS and total station elevation measurements for mangrove swamp, coastal prairies, and freshwater marsh, and the proposed accuracy assessment and elevation modeling methodology is integrated with a Geographical Information System (GIS). It is anticipated that this study will provide more accurate models of the soil substrate elevation that can be used by restoration planners to better predict the future state of the Everglades ecosystem.

  5. Pelagic origin and fate of sedimenting particles in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Bathmann, Ulrich V.; Peinert, Rolf; Noji, Thomas T.; Bodungen, Bodo V.

    A 17 month record of vertical particle flux of dry weight, carbonate and organic carbon were 25.8, 9.4 and 2.4g.m -2y -1, respectively. Parallel to trap deployments, pelagic system structure was recorded with high vertical and temporal resolution. Within a distinct seasonal cycle of vertical particle flux, zooplankton faecal pellets of various sizes, shapes and contents were collected by the traps in different proportions and quantities throughout the year (range: 0-4,500 10 3m -2d -1). The remains of different groups of organisms showed distinct seasonal variations in abundance. In early summer there was a small maximum in the diatom flux and this was followed by pulses of tinntinids, radiolarians, foraminiferans and pteropods between July and November. Food web interactions in the water column were important in controlling the quality and quantity of sinking materials. For example, changes in the population structure of dominant herbivores, the break-down of regenerating summer populations of microflagellates and protozooplankton and the collapse of a pteropod dominated community, each resulted in marked sedimentation pulses. These data from the Norwegian Sea indicate those mechanisms which either accelerate or counteract loss of material via sedimentation. These involve variations in the structure of the pelagic system and they operatè on long (e.g. annual plankton succession) and short (e.g. the end of new production, sporadic grazing of swarm feeders) time scales. Connecting investigation of the water column with a high resolution in time in parallel with drifting sediment trap deployments and shipboard experiments with the dominant zooplankters is a promising approach for giving a better understanding of both the origin and the fate of material sinking to the sea floor.

  6. The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution

    NASA Astrophysics Data System (ADS)

    O'Dea, Enda; Furner, Rachel; Wakelin, Sarah; Siddorn, John; While, James; Sykes, Peter; King, Robert; Holt, Jason; Hewitt, Helene

    2017-08-01

    We describe the physical model component of the standard Coastal Ocean version 5 configuration (CO5) of the European north-west shelf (NWS). CO5 was developed jointly between the Met Office and the National Oceanography Centre. CO5 is designed with the seamless approach in mind, which allows for modelling of multiple timescales for a variety of applications from short-range ocean forecasting to climate projections. The configuration constitutes the basis of the latest update to the ocean and data assimilation components of the Met Office's operational Forecast Ocean Assimilation Model (FOAM) for the NWS. A 30.5-year non-assimilating control hindcast of CO5 was integrated from January 1981 to June 2012. Sensitivity simulations were conducted with reference to the control run. The control run is compared against a previous non-assimilating Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) hindcast of the NWS. The CO5 control hindcast is shown to have much reduced biases compared to POLCOMS. Emphasis in the system description is weighted to updates in CO5 over previous versions. Updates include an increase in vertical resolution, a new vertical coordinate stretching function, the replacement of climatological riverine sources with the pan-European hydrological model E-HYPE, a new Baltic boundary condition and switching from directly imposed atmospheric model boundary fluxes to calculating the fluxes within the model using a bulk formula. Sensitivity tests of the updates are detailed with a view toward attributing observed changes in the new system from the previous system and suggesting future directions of research to further improve the system.

  7. Characterizing seasonal and diel vertical movement and habitat use of lake whitefish (Coregonus clupeaformis) in Clear Lake, Maine

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Gorsky, Dimitry; Balsey, David

    2016-01-01

    Seasonal and daily vertical activity of lake whitefish Coregonus clupeaformis was studied in Clear Lake, Maine (253 ha), using acoustic telemetry from November 2004 to June 2009. Twenty adult lake whitefish were tagged with acoustic tags that had either a depth sensor or both depth and temperature sensors to assess vertical habitat use at a seasonal and daily resolution. Vertical habitat selection varied seasonally and was strongly influenced by temperature. Between December and April, when the lake was covered with ice, surface temperature was below 2°C and tagged individuals occupied deep areas of the lake (∼15 m). After ice-out, fish ascended into shallow waters (∼5 m), responding to increased water temperature and possibly to greater foraging opportunity. When surface water temperatures exceeded 20°C, fish descended below the developing thermocline (∼9 m), where they remained until surface temperatures fell below 20°C; fish then ascended into shallower depths, presumably for feeding and spawning. Through the winter, fish remained in thermal habitats that were warmer than the surface temperatures; in the summer, they selected depths with thermal habitats below 15°C. Though the amplitude varied greatly across seasons, lake whitefish displayed a strong diurnal pattern of activity as measured by vertical velocities. Fish were twofold more active during spring, summer, and fall than during winter. Lake whitefish exhibited diel vertical migrations, rising in the water column during nighttime and occupying deeper waters during the day. This pattern was more pronounced in the spring and fall and far less prominent during winter and summer. The strong linkage between temperature and habitat use may limit the current range of lake whitefish and may be directly impacted by climatic change.

  8. Optimal design of waveform digitisers for both energy resolution and pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Cang, Jirong; Xue, Tao; Zeng, Ming; Zeng, Zhi; Ma, Hao; Cheng, Jianping; Liu, Yinong

    2018-04-01

    Fast digitisers and digital pulse processing have been widely used for spectral application and pulse shape discrimination (PSD) owing to their advantages in terms of compactness, higher trigger rates, offline analysis, etc. Meanwhile, the noise of readout electronics is usually trivial for organic, plastic, or liquid scintillator with PSD ability because of their poor intrinsic energy resolution. However, LaBr3(Ce) has been widely used for its excellent energy resolution and has been proven to have PSD ability for alpha/gamma particles. Therefore, designing a digital acquisition system for such scintillators as LaBr3(Ce) with both optimal energy resolution and promising PSD ability is worthwhile. Several experimental research studies about the choice of digitiser properties for liquid scintillators have already been conducted in terms of the sampling rate and vertical resolution. Quantitative analysis on the influence of waveform digitisers, that is, fast amplifier (optional), sampling rates, and vertical resolution, on both applications is still lacking. The present paper provides quantitative analysis of these factors and, hence, general rules about the optimal design of digitisers for both energy resolution and PSD application according to the noise analysis of time-variant gated charge integration.

  9. Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations of ethyl acetate

    NASA Astrophysics Data System (ADS)

    Śmialek, Malgorzata A.; Łabuda, Marta; Guthmuller, Julien; Hubin-Franskin, Marie-Jeanne; Delwiche, Jacques; Hoffmann, Søren Vrønning; Jones, Nykola C.; Mason, Nigel J.; Limão-Vieira, Paulo

    2016-06-01

    The high-resolution vacuum ultraviolet photoabsorption spectrum of ethyl acetate, C4H8O2, is presented over the energy range 4.5-10.7 eV (275.5-116.0 nm). Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Also, the photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the upper stratosphere (20-50 km). Calculations have also been carried out to determine the ionisation energies and fine structure of the lowest ionic state of ethyl acetate and are compared with a newly recorded photoelectron spectrum (from 9.5 to 16.7 eV). Vibrational structure is observed in the first photoelectron band of this molecule for the first time.

  10. Errors and improvements in the use of archived meteorological data for chemical transport modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology

    NASA Astrophysics Data System (ADS)

    Yu, Karen; Keller, Christoph A.; Jacob, Daniel J.; Molod, Andrea M.; Eastham, Sebastian D.; Long, Michael S.

    2018-01-01

    Global simulations of atmospheric chemistry are commonly conducted with off-line chemical transport models (CTMs) driven by archived meteorological data from general circulation models (GCMs). The off-line approach has the advantages of simplicity and expediency, but it incurs errors due to temporal averaging in the meteorological archive and the inability to reproduce the GCM transport algorithms exactly. The CTM simulation is also often conducted at coarser grid resolution than the parent GCM. Here we investigate this cascade of CTM errors by using 222Rn-210Pb-7Be chemical tracer simulations off-line in the GEOS-Chem CTM at rectilinear 0.25° × 0.3125° (≈ 25 km) and 2° × 2.5° (≈ 200 km) resolutions and online in the parent GEOS-5 GCM at cubed-sphere c360 (≈ 25 km) and c48 (≈ 200 km) horizontal resolutions. The c360 GEOS-5 GCM meteorological archive, updated every 3 h and remapped to 0.25° × 0.3125°, is the standard operational product generated by the NASA Global Modeling and Assimilation Office (GMAO) and used as input by GEOS-Chem. We find that the GEOS-Chem 222Rn simulation at native 0.25° × 0.3125° resolution is affected by vertical transport errors of up to 20 % relative to the GEOS-5 c360 online simulation, in part due to loss of transient organized vertical motions in the GCM (resolved convection) that are temporally averaged out in the 3 h meteorological archive. There is also significant error caused by operational remapping of the meteorological archive from a cubed-sphere to a rectilinear grid. Decreasing the GEOS-Chem resolution from 0.25° × 0.3125° to 2° × 2.5° induces further weakening of vertical transport as transient vertical motions are averaged out spatially and temporally. The resulting 222Rn concentrations simulated by the coarse-resolution GEOS-Chem are overestimated by up to 40 % in surface air relative to the online c360 simulations and underestimated by up to 40 % in the upper troposphere, while the tropospheric lifetimes of 210Pb and 7Be against aerosol deposition are affected by 5-10 %. The lost vertical transport in the coarse-resolution GEOS-Chem simulation can be partly restored by recomputing the convective mass fluxes at the appropriate resolution to replace the archived convective mass fluxes and by correcting for bias in the spatial averaging of boundary layer mixing depths.

  11. Development of Deep-tow Autonomous Cable Seismic (ACS) for Seafloor Massive Sulfides (SMSs) Exploration.

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Saito, Shutaro; Lee, Sangkyun; Tara, Kenji; Kato, Masafumi; Jamali Hondori, Ehsan; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami

    2017-04-01

    Within the EEZ of Japan, numerous surveys exploring ocean floor resources have been conducted. The exploration targets are gas hydrates, mineral resources (manganese, cobalt or rare earth) and especially seafloor massive sulphide (SMS) deposits. These resources exist in shallow subsurface areas in deep waters (>1500m). For seismic explorations very high resolution images are required. These cannot be effectively obtained with conventional marine seismic techniques. Therefore we have been developing autonomous seismic survey systems which record the data close to the seafloor to preserve high frequency seismic energy. Very high sampling rate (10kHz) and high accurate synchronization between recording systems and shot time are necessary. We adopted Cs-base atomic clock considering its power consumption. At first, we developed a Vertical Cable Seismic (VCS) system that uses hydrophone arrays moored vertically from the ocean bottom to record close to the target area. This system has been successfully applied to SMS exploration. Specifically it fixed over known sites to assess the amount of reserves with the resultant 3D volume. Based on the success of VCS, we modified the VCS system to use as a more efficient deep-tow seismic survey system. Although there are other examples of deep-tow seismic systems, signal transmission cables present challenges in deep waters. We use our autonomous recording system to avoid these problems. Combining a high frequency piezoelectric source (Sub Bottom Profiler:SBP) that automatically shots with a constant interval, we achieve the high resolution deep-tow seismic without data transmission/power cable to the board. Although the data cannot be monitored in real-time, the towing system becomes very simple. We have carried out survey trial, which showed the systems utility as a high-resolution deep-tow seismic survey system. Furthermore, the frequency ranges of deep-towed source (SBP) and surface towed sparker are 700-2300Hz and 10-200Hz respectively. Therefore we can use these sources simultaneously and distinguish the records of each source in the data processing stage. We have developed new marine seismic survey systems with autonomous recording for the exploration of the ocean floor resources. The applications are vertical cable seismic (VCS) and deep-tow seismic (ACS). These enable us the recording close to the seafloor and give the high resolution results with a simple, cost-effective configuration.

  12. Near-surface tomography of southern California from noise cross-correlation H/V measurements

    NASA Astrophysics Data System (ADS)

    Muir, J. B.; Tsai, V. C.

    2016-12-01

    The development of noise cross-correlation techniques constitutes one of the major advances in observational seismology in the past 15 years. The first data derived from noise cross correlations were surface wave phase velocities, but as the technique matures many more observables of noise cross-correlations are being used in seismic studies. One such observable is the horizontal-to-vertical amplitude ratio (H/V) of noise cross-correlations. We interpret the H/V ratio of noise cross correlations in terms of Rayleigh wave ellipticity. We have inverted the H/V of Rayleigh waves observed in noise cross-correlation signals to develop a 3D tomogram of Southern California. This technique has recently been employed (e.g. Lin et al. 2014) on a continental scale, using data from the Transportable Array in the period range of 8-24s. The finer inter-station spacing of the SCSN allows retrieval of high signal-to-noise ratio Rayleigh waves at a period of as low as 2s, significantly improving the vertical resolution of the resulting tomography. In addition, horizontal resolution is naturally improved by increased station density. This study constitutes a useful addition to traditional phase-velocity based tomographic inversions due to the localized sensitivity of H/V measurements to the near surface of the measurement station site. The continuous data of 222 permanent broadband stations of the Southern California Seismic Network (SCSN) were used in production of noise cross-correlation waveforms, resulting in a spatially dense set of measurements for the Southern California region in the 2-15s period band. Tectonic sub-regions including the LA Basin and Salton Trough are clearly visible due to their high short-period H/V ratios, whilst the Transverse and Peninsular ranges exhibit low H/V at all periods.

  13. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  14. Development of a metrological atomic force microscope with a tip-tilting mechanism for 3D nanometrology

    NASA Astrophysics Data System (ADS)

    Kizu, Ryosuke; Misumi, Ichiko; Hirai, Akiko; Kinoshita, Kazuto; Gonda, Satoshi

    2018-07-01

    A metrological atomic force microscope with a tip-tilting mechanism (tilting-mAFM) has been developed to expand the capabilities of 3D nanometrology, particularly for high-resolution topography measurements at the surfaces of vertical sidewalls and for traceable measurements of nanodevice linewidth. In the tilting-mAFM, the probe tip is tilted from vertical to 16° at maximum such that the probe tip can touch and trace the vertical sidewall of a nanometer-scale structure; the probe of a conventional atomic force microscope cannot reach the vertical surface because of its finite cone angle. Probe displacement is monitored in three axes by using high-resolution laser interferometry, which is traceable to the SI unit of length. A central-symmetric 3D scanner with a parallel spring structure allows probe scanning with extremely low interaxial crosstalk. A unique technique for scanning vertical sidewalls was also developed and applied. The experimental results indicated high repeatability in the scanned profiles and sidewall angle measurements. Moreover, the 3D measurement of a line pattern was demonstrated, and the data from both sidewalls were successfully stitched together with subnanometer accuracy. Finally, the critical dimension of the line pattern was obtained.

  15. Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.; Wind, G.; Platnick, S.; Menzel, W. P.

    2010-01-01

    The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with ocean, particularly in the tropics and summer hemisphere.

  16. A method for measuring vertical accretion, elevation, and compaction of soft, shallow-water sediments

    USGS Publications Warehouse

    Cahoon, D.R.; Marin, P.E.; Black, B.K.; Lynch, J.C.

    2000-01-01

    High-resolution measures of vertical accretion, elevation, and compaction of shallow-water sediments are fundamental to understanding the processes that control elevation change and the mechanisms of progradation (e.g., development of mudflats and intertidal wetlands) in coastal systems. Yet, measurements of elevation by traditional survey methods often are of low accuracy because of the compressible nature of the substrates. Nor do they provide measures of vertical accretion or sediment compaction. This paper evaluates the use in shallow-water systems of an approach designed to measure these variables in vegetated wetlands. The approach employs simultaneous measures of elevation from temporary benchmarks using a sedimentation-erosion table (SET) and vertical accretion from marker horizons with sediment cores collected with a cryogenic coring apparatus. The measures are made with a level of resolution sufficient to distinguish between the influence of surface and subsurface processes on elevation, thus providing quantitative estimates of shallow subsidence. The SET-marker horizon approach was evaluated on a developing splay created by an artificial crevasse of a distributary in the Mississippi River delta. The approach provided high-resolution measures of vertical accretion (48.3 ' 2.0 cm.) and elevation (36.7 ' 1.6 cm) over a 4-year period, with the difference between the two indicating the amount of shallow subsidence. In addition, by laying new marker horizons in later years, the approach provided rates not only of shallow subsidence (3.9 ' 0.5 cm y-1) but also compaction of newly deposited seiments (2.1 ' 0.6 cm y-1) and compaction of underlying sediments (1.8 ' 2.0 cm y-1 ) over a two-year period. Hence, the SET-marker horizon approach has widespread applicability in both emergent wetland and shallow water environments for providing high resolution measures of the processes controlling elevation change.

  17. A conjunct near-surface spectroscopy system for fix-angle and multi-angle continuous measurements of canopy reflectance and sun-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Fan, Yifeng; Zhang, Yongguang; Chou, Shuren; Ju, Weimin; Chen, Jing M.

    2016-09-01

    An automated spectroscopy system, which is divided into fix-angle and multi-angle subsystems, for collecting simultaneous, continuous and long-term measurements of canopy hyper-spectra in a crop ecosystem is developed. The fix-angle subsystem equips two spectrometers: one is HR2000+ (OceanOptics) covering the spectral range 200-1100 nm with 1.0 nm spectral resolution, and another one is QE65PRO (OceanOptics) providing 0.1 nm spectral resolution within the 730-780 nm spectral range. Both spectrometers connect a cosine-corrected fiber-optic fixed up-looking to collect the down-welling irradiance and a bare fiber-optic to measure the up-welling radiance from the vegetation. An inline fiber-optic shutter FOS-2x2-TTL (OceanOptics) is used to switch between input fibers to collect the signal from either the canopy or sky at one time. QE65PRO is used to permit estimation of vegetation Sun-Induced Fluorescence (SIF) in the O2-A band. The data collection scheme includes optimization of spectrometer integration time to maximize the signal to noise ratio and measurement of instrument dark currency. The multi-angle subsystem, which can help understanding bidirectional reflectance effects, alternatively use HR4000 (OceanOptics) providing 0.1 nm spectral resolution within the 680-800 nm spectral range to measure multi-angle SIF. This subsystem additionally includes a spectrometer Unispec-DC (PPSystems) featuring both up-welling and down-welling channels with 3 nm spectral resolution covering the 300-1100 nm spectral range. Two down-looking fiber-optics are mounted on a rotating device PTU-D46 (FLIR Systems), which can rotate horizontally and vertically at 10° angular step widths. Observations can be used to calculate canopy reflectance, vegetation indices and SIF for monitoring plant physiological processes.

  18. Polymeric spatial resolution test patterns for mass spectrometry imaging using nano-thermal analysis with atomic force microscopy

    DOE PAGES

    Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei; ...

    2017-05-11

    As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.

  19. Polymeric spatial resolution test patterns for mass spectrometry imaging using nano-thermal analysis with atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei

    As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.

  20. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  1. Ice shelf basal melt rates around Antarctica from simulations and observations

    NASA Astrophysics Data System (ADS)

    Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.

    2016-02-01

    We introduce an explicit representation of Antarctic ice shelf cavities in the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean retrospective analysis; and compare resulting basal melt rates and patterns to independent estimates from satellite observations. Two simulations are carried out: the first is based on the original ECCO2 vertical discretization; the second has higher vertical resolution particularly at the depth range of ice shelf cavities. The original ECCO2 vertical discretization produces higher than observed melt rates and leads to a misrepresentation of Southern Ocean water mass properties and transports. In general, thicker levels at the base of the ice shelves lead to increased melting because of their larger heat capacity. This strengthens horizontal gradients and circulation within and outside the cavities and, in turn, warm water transports from the shelf break to the ice shelves. The simulation with more vertical levels produces basal melt rates (1735 ± 164 Gt/a) and patterns that are in better agreement with observations. Thinner levels in the sub-ice-shelf cavities improve the representation of a fresh/cold layer at the ice shelf base and of warm/salty water near the bottom, leading to a sharper pycnocline and reduced vertical mixing underneath the ice shelf. Improved water column properties lead to more accurate melt rates and patterns, especially for melt/freeze patterns under large cold-water ice shelves. At the 18 km grid spacing of the ECCO2 model configuration, the smaller, warm-water ice shelves cannot be properly represented, with higher than observed melt rates in both simulations.

  2. GLORIA observations of de-/nitrification during the Arctic winter 2015/16 POLSTRACC campaign

    NASA Astrophysics Data System (ADS)

    Braun, Marleen; Woiwode, Wolfgang; Höpfner, Michael; Johansson, Sören; Friedl-Vallon, Felix; Oelhaf, Hermann; Preusse, Peter; Ungermann, Jörn; Grooß, Jens-Uwe; Jurkat, Tina; Khosrawi, Farahnaz; Kirner, Ole; Marsing, Andreas; Sinnhuber, Björn-Martin; Voigt, Christiane; Ziereis, Helmut; Orphal, Johannes

    2017-04-01

    Denitrification, the condensation and sedimentation of HNO3-containing particles in the winter stratosphere at high latitudes, is an important process affecting the deactivation of ozone-depleting halogen species. It modulates the vertical partitioning of chemically active NOy and the vertical redistribution of HNO3 can affect low stratospheric altitudes under sufficiently cold conditions. The capability of associated nitrification to disturb the NOy budget of the climate-relevant lowermost stratosphere (LMS) has hardly been investigated in detail and represents a challenge for model simulations. The Arctic winter 2015/16 was characterized by exceptionally cold stratospheric temperatures and widespread polar stratospheric clouds (PSCs) that were observed from mid-December 2015 until the end of February 2016 down to the LMS. Observations by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) spectrometer during the POLSTRACC (Polar Stratosphere in a Changing Climate) aircraft mission allow us to study the development of nitrification of the Arctic LMS during and after the 2015/16 PSC period with high vertical resolution. The vertical cross-sections of HNO3 distribution along the HALO (High Altitude and LOng range research aircraft) flight tracks derived from GLORIA observations show the result of significant vertical redistribution of NOy with strong nitrification of up to 6 ppbv in the LMS. We compare the results of the GLORIA observations with simulations by the state-of-the-art chemical-transport model CLaMS and the climate-chemistry model EMAC and discuss the capability of these models to reproduce nitrification of the Arctic LMS.

  3. Clouds in ECMWF's 30 KM Resolution Global Atmospheric Forecast Model (TL639)

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Morcrette, J. J.

    1999-01-01

    Global models of the general circulation of the atmosphere resolve a wide range of length scales, and in particular cloud structures extend from planetary scales to the smallest scales resolvable, now down to 30 km in state-of-the-art models. Even the highest resolution models do not resolve small-scale cloud phenomena seen, for example, in Landsat and other high-resolution satellite images of clouds. Unresolved small-scale disturbances often grow into larger ones through non-linear processes that transfer energy upscale. Understanding upscale cascades is of crucial importance in predicting current weather, and in parameterizing cloud-radiative processes that control long term climate. Several movie animations provide examples of the temporal and spatial variation of cloud fields produced in 4-day runs of the forecast model at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, England, at particular times and locations of simultaneous measurement field campaigns. model resolution is approximately 30 km horizontally (triangular truncation TL639) with 31 vertical levels from surface to stratosphere. Timestep of the model is about 10 minutes, but animation frames are 3 hours apart, at timesteps when the radiation is computed. The animations were prepared from an archive of several 4-day runs at the highest available model resolution, and archived at ECMWF. Cloud, wind and temperature fields in an approximately 1000 km X 1000 km box were retrieved from the archive, then approximately 60 Mb Vis5d files were prepared with the help of Graeme Kelly of ECMWF, and were compressed into MPEG files each less than 3 Mb. We discuss the interaction of clouds and radiation in the model, and compare the variability of cloud liquid as a function of scale to that seen in cloud observations made in intensive field campaigns. Comparison of high-resolution global runs to cloud-resolving models, and to lower resolution climate models is leading to better understanding of the upscale cascade and suggesting new cloud-radiation parameterizations for climate models.

  4. High-resolution neutron powder diffractometer SPODI at research reactor FRM II

    NASA Astrophysics Data System (ADS)

    Hoelzel, M.; Senyshyn, A.; Juenke, N.; Boysen, H.; Schmahl, W.; Fuess, H.

    2012-03-01

    SPODI is a high-resolution thermal neutron diffractometer at the research reactor Heinz Maier-Leibnitz (FRM II) especially dedicated to structural studies of complex systems. Unique features like a very large monochromator take-off angle of 155° and a 5 m monochromator-sample distance in its standard configuration achieve both high-resolution and a good profile shape for a broad scattering angle range. Two dimensional data are collected by an array of 80 vertical position sensitive 3He detectors. SPODI is well suited for studies of complex structural and magnetic order and disorder phenomena at non-ambient conditions. In addition to standard sample environment facilities (cryostats, furnaces, magnet) specific devices (rotatable load frame, cell for electric fields, multichannel potentiostat) were developed. Thus the characterisation of functional materials at in-operando conditions can be achieved. In this contribution the details of the design and present performance of the instrument are reported along with its specifications. A new concept for data reduction using a 2 θ dependent variable height for the intensity integration along the Debye-Scherrer lines is introduced.

  5. Research on Inversion Models for Forest Height Estimation Using Polarimetric SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Duan, B.; Zou, B.

    2017-09-01

    The forest height is an important forest resource information parameter and usually used in biomass estimation. Forest height extraction with PolInSAR is a hot research field of imaging SAR remote sensing. SAR interferometry is a well-established SAR technique to estimate the vertical location of the effective scattering center in each resolution cell through the phase difference in images acquired from spatially separated antennas. The manipulation of PolInSAR has applications ranging from climate monitoring to disaster detection especially when used in forest area, is of particular interest because it is quite sensitive to the location and vertical distribution of vegetation structure components. However, some of the existing methods can't estimate forest height accurately. Here we introduce several available inversion models and compare the precision of some classical inversion approaches using simulated data. By comparing the advantages and disadvantages of these inversion methods, researchers can find better solutions conveniently based on these inversion methods.

  6. Application of a silicon photodiode array for solar edge tracking in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. S.; Mayo, L. S.

    1985-01-01

    The optical and electronic design of the Halogen Occultation Experiment (HALOE) elevation sunsensor is described. This system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned, monolithic charge coupled device. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the HALOE science instantaneous-field-of-view (IFOV) across the vertical solar diameter during instrument calibration, and then maintain the science IFOV four arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 0.7 micrometer operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability. The HALOE instrument is a gas correlation radiometer that is now being developed by NASA Langley Research Center for the Upper Atmospheric Research Satellite.

  7. Retrieving vertical ozone profiles from measurements of global spectral irradiance

    NASA Astrophysics Data System (ADS)

    Bernhard, Germar; Petropavlovskikh, Irina; Mayer, Bernhard

    2017-12-01

    A new method is presented to determine vertical ozone profiles from measurements of spectral global (direct Sun plus upper hemisphere) irradiance in the ultraviolet. The method is similar to the widely used Umkehr technique, which inverts measurements of zenith sky radiance. The procedure was applied to measurements of a high-resolution spectroradiometer installed near the centre of the Greenland ice sheet. Retrieved profiles were validated with balloon-sonde observations and ozone profiles from the space-borne Microwave Limb Sounder (MLS). Depending on altitude, the bias between retrieval results presented in this paper and MLS observations ranges between -5 and +3 %. The magnitude of this bias is comparable, if not smaller, to values reported in the literature for the standard Dobson Umkehr method. Total ozone columns (TOCs) calculated from the retrieved profiles agree to within 0.7±2.0 % (±1σ) with TOCs measured by the Ozone Monitoring Instrument on board the Aura satellite. The new method is called the Global-Umkehr method.

  8. Scanning mass spectrometer for quantitative reaction studies on catalytically active microstructures.

    PubMed

    Roos, M; Kielbassa, S; Schirling, C; Häring, T; Bansmann, J; Behm, R J

    2007-08-01

    We describe an apparatus for spatially resolving scanning mass spectrometry which is able to measure the gas composition above catalytically active microstructures or arrays of these microstructures with a lateral resolution of better than 100 mum under reaction conditions and which allows us to quantitatively determine reaction rates on individual microstructures. Measurements of the three-dimensional gas composition at different vertical distances and separations between active structures allow the evaluation of gas phase mass transport effects. The system is based on a piezoelectrically driven positioning substage for controlled lateral and vertical positioning of the sample under a rigidly mounted capillary probe connecting to a mass spectrometer. Measurements can be performed at pressures in the range of <10(-2)-10 mbars and temperatures between room temperature and 450 degrees C. The performance of the setup is demonstrated using the CO oxidation reaction on Pt microstructures on Si with sizes between 100 and 300 mum and distances in the same order of magnitude, evaluating CO(2) formation and CO consumption above the microstructures. The rapidly decaying lateral resolution with increasing distance between sample and probe underlines the effects of (lateral) gas transport in the room between sample and probe. The reaction rates and apparent activation energy obtained from such measurements agree with previous data on extended surfaces, demonstrating the feasibility of determining absolute reaction rates on individual microstructures.

  9. Long-range transport of Siberian forest fire smoke to Canada's west coast identified by Lidar observations

    NASA Astrophysics Data System (ADS)

    Strawbridge, Kevin; Cottle, Paul; McKendry, Ian

    2014-05-01

    During the summer of 2012, forest fire smoke wasdetected by two CORALNet lidar systems operated by Environment Canada along Canada's west coast. Based on satellite, model and back trajectory analysis it is thought the smoke originated in Boreal Asia as a result of unusually large amounts of Siberian wildfire activity. The CORALNet lidar systems operate autonomously, measuring the vertical profile of aerosols from near ground to 18 km at a vertical resolution of 3 m and 7.5 m and a temporal resolution of 10 s and 60 s at 1064 nm and 532 nm wavelengths respectively. The lidar also measures the depolarization ratio at 532 nm: and indicator of particle shape. The lidars, located at the University of British Columbia in Vancouver and in the village of Whistler, British Columbia observed an increase in the aerosol backscatter ratio in the free troposphere as the Siberian forest fire smoke was transported across the Pacific Ocean into the region. Of particular importance was the increase in ground level particulate due to the mixing of the smoke into the boundary layer, impacting the air quality in southwestern British Columbia. Lidar depolarization ratios in the boundary layer and the free troposphere were consistent with high concentrations of smoke. Detailed lidar observations will be presented along with supporting satellite, model and ground observations revealing the magnitude of the impact on the region.

  10. The effects of vertical motion on the performance of current meters

    USGS Publications Warehouse

    Thibodeaux, K.G.; Futrell, J. C.

    1987-01-01

    A series of tests to determine the correction coefficients for Price type AA and Price type OAA current meters, when subjected to vertical motion in a towing tank, have been conducted. During these tests, the meters were subjected to vertical travel that ranged from 1.0 to 4.0 ft and vertical rates of travel that ranged from 0.33 to 1.20 ft/sec while being towed through the water at speeds ranging from 0 to 8 ft/sec. The tests show that type AA and type OAA current meters are affected adversely by the rate of vertical motion and the distance of vertical travel. In addition, the tests indicate that when current meters are moved vertically, correction coefficients must be applied to the observed meter velocities to correct for the registration errors that are induced by the vertical motion. The type OAA current meter under-registers and the type AA current meter over-registers in observed meter velocity. These coefficients for the type OAA current meter range from 0.99 to 1.49 and for the type AA current meter range from 0.33 to 1.07. When making current meter measurements from a boat or a cableway, errors in observed current meter velocity will occur when the bobbing of a boat or cableway places the current meter into vertical motion. These errors will be significant when flowing water is < 2 ft/sec and the rate of vertical motion is > 0.3 ft/sec. (Author 's abstract)

  11. Skill of Predicting Heavy Rainfall Over India: Improvement in Recent Years Using UKMO Global Model

    NASA Astrophysics Data System (ADS)

    Sharma, Kuldeep; Ashrit, Raghavendra; Bhatla, R.; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.

    2017-11-01

    The quantitative precipitation forecast (QPF) performance for heavy rains is still a challenge, even for the most advanced state-of-art high-resolution Numerical Weather Prediction (NWP) modeling systems. This study aims to evaluate the performance of UK Met Office Unified Model (UKMO) over India for prediction of high rainfall amounts (>2 and >5 cm/day) during the monsoon period (JJAS) from 2007 to 2015 in short range forecast up to Day 3. Among the various modeling upgrades and improvements in the parameterizations during this period, the model horizontal resolution has seen an improvement from 40 km in 2007 to 17 km in 2015. Skill of short range rainfall forecast has improved in UKMO model in recent years mainly due to increased horizontal and vertical resolution along with improved physics schemes. Categorical verification carried out using the four verification metrics, namely, probability of detection (POD), false alarm ratio (FAR), frequency bias (Bias) and Critical Success Index, indicates that QPF has improved by >29 and >24% in case of POD and FAR. Additionally, verification scores like EDS (Extreme Dependency Score), EDI (Extremal Dependence Index) and SEDI (Symmetric EDI) are used with special emphasis on verification of extreme and rare rainfall events. These scores also show an improvement by 60% (EDS) and >34% (EDI and SEDI) during the period of study, suggesting an improved skill of predicting heavy rains.

  12. A high-resolution and observationally constrained OMI NO 2 satellite retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less

  13. A high-resolution and observationally constrained OMI NO 2 satellite retrieval

    DOE PAGES

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; ...

    2017-09-26

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less

  14. A high-resolution and observationally constrained OMI NO2 satellite retrieval

    NASA Astrophysics Data System (ADS)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; Swartz, William H.; Lu, Zifeng; Streets, David G.

    2017-09-01

    This work presents a new high-resolution NO2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO2 vertical profile shape factors from a 1.25° × 1° (˜ 110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situ aircraft observations to recalculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime in the eastern US. In this new product, OMI NO2 tropospheric columns increase by up to 160 % in city centers and decrease by 20-50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO2 and Airborne Compact Atmospheric Mapper (ACAM) NO2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in the new product vs. r2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NOx emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO2 satellite retrievals.

  15. Cassini limb images of hazes in Saturn’s northern hemisphere

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, Agustin M.; Garcia, Daniel; del Rio-Gaztelurrutia, Teresa; Garcia-Muñoz, Antonio; Perez-Hoyos, Santiago; Hueso, Ricardo

    2017-10-01

    We have used high resolution Cassini ISS images of the limb of Saturn to study the vertical distribution, altitude location, thickness and optical properties of the haze layers in the northern hemisphere (1°S to 82°N) in 2013 and 2015. The images cover an ample spectral range from the ultraviolet (UV1 filter, 264 nm) to the near infrared (CB3 filter, 938 nm) including methane absorption bands at 619 nm, 724 nm and 890 nm. Spatial resolution ranges from 1.6 to 13 km/pixel depending on wavelength and latitude. Three latitude bands were selected for the analysis according to the background zonal wind profile measured at cloud level and known dynamical activity: (a) North Polar Region encompassing the Hexagon latitude (74°N) (b) Mid-latitudes (45°N-52°N), and (3) Equator (1°N-3°S). The best defined haze structures and most extended haze layers were found at the latitude of the Hexagon. Up to 6-8 haze layers extending up to 400 km in altitude above clouds (in the pressure range from about 0.7 bar to 0.1 mbar) were detected. The vertical thickness of the layers is in the range 3-15 km compared to the scale height which is about 40 km. The spectral reflectivity is relatively uniform between the layers in the blue and red continuum wavelengths coming from the backward light scattering from the haze particles, while the brightness in the methane bands (relative to red continuum) and in the ultraviolet shows the effects of methane absorption and Rayleigh scattering by the gas, respectively. At mid-latitudes 3-4 haze layers are found spanning up to altitudes 200 km above the clouds. At the Equator 5-6 layers are found extending up to altitudes 250 km above the clouds (up to 2 mbar in pressure level) in a region of great dynamical interest because of the particular structure of the zonal winds and their known oscillations. We comment on the possible nature of the haze layers on the basis of condensing species and photochemistry.

  16. PolarCube: A High Resolution Passive Microwave Satellite for Sounding and Imaging at 118 GHz

    NASA Astrophysics Data System (ADS)

    Weaver, R. L.; Gallaher, D. W.; Gasiewski, A. J.; Sanders, B.; Periasamy, L.; Hwang, K.; Alvarenga, G.; Hickey, A. M.

    2013-12-01

    PolarCube is a 3U CubeSat hosting an eight-channel passive microwave spectrometer operating at the 118.7503 GHz oxygen resonance that is currently in development. The project has an anticipated launch date in early 2015. It is currently being designed to operate for approximately12 months on orbit to provide the first global 118-GHz spectral imagery of the Earth over full seasonal cycle and to sound Arctic vertical temperature structure. The principles used by PolarCube for temperature sounding are well established in number of peer-reviewed papers going back more than two decades, although the potential for sounding from a CubeSat has never before been demonstrated in space. The PolarCube channels are selected to probe atmospheric emission over a range of vertical levels from the surface to lower stratosphere. This capability has been available operationally for over three decades, but at lower frequencies and higher altitudes that do not provide the spatial resolution that will be achieved by PolarCube. While the NASA JPSS ATMS satellite sensor provides global coverage at ~32 km resolution, the PolarCube will improve on this resolution by a factor of two, thus facilitating the primary science goal of determining sea ice concentration and extent while at the same time collecting profile data on atmospheric temperature. Additionally, we seek to correlate freeze-thaw line data from SMAP with our near simultaneously collected atmospheric temperature data. In addition to polar science, PolarCube will provide a first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey. PolarCube 118-GHz passive microwave spectrometer in deployed configuration

  17. An Observation-based Assessment of Instrument Requirements for a Future Precipitation Process Observing System

    NASA Astrophysics Data System (ADS)

    Nelson, E.; L'Ecuyer, T. S.; Wood, N.; Smalley, M.; Kulie, M.; Hahn, W.

    2017-12-01

    Global models exhibit substantial biases in the frequency, intensity, duration, and spatial scales of precipitation systems. Much of this uncertainty stems from an inadequate representation of the processes by which water is cycled between the surface and atmosphere and, in particular, those that govern the formation and maintenance of cloud systems and their propensity to form the precipitation. Progress toward improving precipitation process models requires observing systems capable of quantifying the coupling between the ice content, vertical mass fluxes, and precipitation yield of precipitating cloud systems. Spaceborne multi-frequency, Doppler radar offers a unique opportunity to address this need but the effectiveness of such a mission is heavily dependent on its ability to actually observe the processes of interest in the widest possible range of systems. Planning for a next generation precipitation process observing system should, therefore, start with a fundamental evaluation of the trade-offs between sensitivity, resolution, sampling, cost, and the overall potential scientific yield of the mission. Here we provide an initial assessment of the scientific and economic trade-space by evaluating hypothetical spaceborne multi-frequency radars using a combination of current real-world and model-derived synthetic observations. Specifically, we alter the field of view, vertical resolution, and sensitivity of a hypothetical Ka- and W-band radar system and propagate those changes through precipitation detection and intensity retrievals. The results suggest that sampling biases introduced by reducing sensitivity disproportionately affect the light rainfall and frozen precipitation regimes that are critical for warm cloud feedbacks and ice sheet mass balance, respectively. Coarser spatial resolution observations introduce regime-dependent biases in both precipitation occurrence and intensity that depend on cloud regime, with even the sign of the bias varying within a single storm system. It is suggested that the next generation spaceborne radar have a minimum sensitivity of -5 dBZ and spatial resolution of at least 3 km at all frequencies to adequately sample liquid and ice phase precipitation processes globally.

  18. Estimates of lower-tropospheric divergence and average vertical motion in the Southern Great Plains region

    NASA Astrophysics Data System (ADS)

    Muradyan, P.; Coulter, R.; Kotamarthi, V. R.; Wang, J.; Ghate, V. P.

    2016-12-01

    Large-scale mean vertical motion affects the atmospheric stability and is an important component in cloud formation. Thus, the analysis of temporal variations in the long-term averages of large-scale vertical motion would provide valuable insights into weather and climate patterns. 915-MHz radar wind profilers (RWP) provide virtually unattended and almost uninterrupted long-term wind speed measurements. We use five years of RWP wind data from the Atmospheric Boundary Layer Experiments (ABLE) located within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site from 1999 to 2004. Wind speed data from a triangular array of SGP A1, A2, and A5 ancillary sites are used to calculate the horizontal divergence field over the profiler network area using the line integral method. The distance between each vertex of this triangle is approximately 60km. Thus, the vertical motion profiles deduced from the divergence/convergence of horizontal winds over these spatial scales are of relevance to mesoscale dynamics. The wind data from RWPs are averaged over 1 hour time slice and divergence is calculated at each range gate from the lowest at 82 m to the highest at 2.3 km. An analysis of temporal variations in the long-term averages of the atmospheric divergence and vertical air motion for the months of August/September indicates an overall vertical velocity of -0.002 m/s with a standard deviation of 0.013 m/s, agreeing well with previous studies. Overall mean of the diurnal variation of vertical velocity for the study period from surface to 500 m height is 0.0018 m/s with a standard error of 0.00095 m/s. Seasonal mean daytime vertical winds suggest generally downward motion in Winter and upward motion in Summer. Validation of the derived divergence and vertical motion against a regional climate model (Weather Forecast and Research, WRF) at a spatial resolution of 12 km, as well as clear-sky vs. cloudy conditions comparisons will also be presented.

  19. 640x480 PtSi Stirling-cooled camera system

    NASA Astrophysics Data System (ADS)

    Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; Coyle, Peter J.; Feder, Howard L.; Gilmartin, Harvey R.; Levine, Peter A.; Sauer, Donald J.; Shallcross, Frank V.; Demers, P. L.; Smalser, P. J.; Tower, John R.

    1992-09-01

    A Stirling cooled 3 - 5 micron camera system has been developed. The camera employs a monolithic 640 X 480 PtSi-MOS focal plane array. The camera system achieves an NEDT equals 0.10 K at 30 Hz frame rate with f/1.5 optics (300 K background). At a spatial frequency of 0.02 cycles/mRAD the vertical and horizontal Minimum Resolvable Temperature are in the range of MRT equals 0.03 K (f/1.5 optics, 300 K background). The MOS focal plane array achieves a resolution of 480 TV lines per picture height independent of background level and position within the frame.

  20. Remote Sensing Studies Of The Current Martian Climate

    NASA Astrophysics Data System (ADS)

    Taylor, F. W.; McCleese, D. J.; Schofield, J. T.; Calcutt, S. B.; Moroz, V. I.

    A systematic and detailed experimental study of the Martian atmosphere remains to be carried out, despite many decades of intense interest in the nature of the Martian climate system, its interactions, variability and long-term stability. Such a study is planned by the 2005 Mars Reconnaissance Orbiter, using limb-scanning infrared radiometric techniques similar to those used to study trace species in the terrestrial stratosphere. For Mars, the objectives are temperature, humidity, dust and condensate abundances with high vertical resolution and global coverage in the 0 to 80 km height range. The paper will discuss the experiment and its methodology and expectations for the results.

  1. Climatology and trends of mesospheric (58-90) temperatures based upon 1982-1986 SME limb scattering profiles

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Rusch, David W.

    1989-01-01

    Atmospheric temperature profiles for the altitude range 58-90 km were calculated using data on global UV limb radiances from the SME satellite. The major elements of this climatology include a high vertical resolution (about 4 km) and the coverage of the 70-90 km altitude region. The analysis of this extensive data set provides a global definition of mesospheric-lower thermospheric temperature trends over the 1982-1986 period. The observations suggest a pattern of 1-2 K/year decreases in temperatures at 80-90-km altitudes accompanied by 0.5-1.5 K/year increases in temperatures at 65-80-km altitudes.

  2. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Technical Reports Server (NTRS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-01-01

    Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  3. The Spectral Element Method for Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Taylor, Mark

    1998-11-01

    We will describe SEAM, a Spectral Element Atmospheric Model. SEAM solves the 3D primitive equations used in climate modeling and medium range forecasting. SEAM uses a spectral element discretization for the surface of the globe and finite differences in the vertical direction. The model is spectrally accurate, as demonstrated by a variety of test cases. It is well suited for modern distributed-shared memory computers, sustaining over 24 GFLOPS on a 240 processor HP Exemplar. This performance has allowed us to run several interesting simulations in full spherical geometry at high resolution (over 22 million grid points).

  4. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  5. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.

    2016-03-01

    A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the microstructure of rain both in stratiform and convective conditions.

  6. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

  7. A New Approach for 3D Ocean Reconstruction from Limited Observations

    NASA Astrophysics Data System (ADS)

    Xiao, X.

    2014-12-01

    Satellites can measure ocean surface height and temperature with sufficient spatial and temporal resolution to capture mesoscale features across the globe. Measurements of the ocean's interior, however, remain sparse and irregular, thus the dynamical inference of subsurface flows is necessary to interpret surface measurements. The most common (and accurate) approach is to incorporate surface measurements into a data-assimilating forward ocean model, but this approach is expensive and slow, and thus completely impractical for time-critical needs, such as offering guidance to ship-based observational campaigns. Two recently-developed approaches have made use of the apparent partial consistency of upper ocean dynamics with quasigeostrophic flows that take into account surface buoyancy gradients (i.e. the "surface quasigeostrophic" (SQG) model) to "reconstruct" the interior flow from knowledge of surface height and buoyancy. Here we improve on these methods in three ways: (1) we adopt a modal decomposition that represents the surface and interior dynamics in an efficient way, allowing the separation of surface energy from total energy; (2) we make use of instantaneous vertical profile observations (e.g. from ARGO data) to improve the reconstruction of eddy variables at depth; and (3) we use advanced statistical methods to choose the optimal modes for the reconstruction. The method is tested using a series of high horizontal and vertical resolution quasigeostrophic simulation, with a wide range of surface buoyancy and interior potential vorticity gradient combinations. In addtion, we apply the method to output from a very high resolution primitive equation simulation of a forced and dissipated baroclinic front in a channel. Our new method is systematically compared to the existing methods as well. Its advantages and limitations will be discussed.

  8. Characterization of the Boundary Layer Wind and Turbulence in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Pichugina, Y. L.; Banta, R. M.; Choukulkar, A.; Brewer, A.; Hardesty, R. M.; McCarty, B.; Marchbanks, R.

    2014-12-01

    A dataset of ship-borne Doppler lidar measurements taken in the Gulf of Mexico was analyzed to provide insight into marine boundary-layer (BL) features and wind-flow characteristics, as needed for offshore wind energy development. This dataset was obtained as part of the intensive Texas Air Quality Study in summer of 2006 (TexAQS06). During the project, the ship, the R/V Ronald H. Brown, cruised in tracks in the Gulf of Mexico along the Texas coast, in Galveston Bay, and in the Houston Ship Channel obtaining air chemistry and meteorological data, including vertical profile measurements of wind and temperature. The primary observing system used in this paper is NOAA/ESRL's High Resolution Doppler Lidar (HRDL), which features high-precision and high-resolution wind measurements and a motion compensation system to provide accurate wind data despite ship and wave motions. The boundary layer in this warm-water region was found to be weakly unstable typically to a depth of 300 m above the sea surface. HRDL data were analyzed to provide 15-min averaged profiles of wind flow properties (wind speed, direction, and turbulence) from the water surface up to 2.5 km at a vertical resolution of 15 m. The paper will present statistics and distributions of these parameters over a wide range of heights and under various atmospheric conditions. Detailed analysis of the BL features including LLJs, wind and directional ramps, and wind shear through the rotor level heights, along with examples of hub-height and equivalent wind will be presented. The paper will discuss the diurnal fluctuations of all quantities critical to wind energy and their variability along the Texas coast.

  9. Empirical Study of Horizontal and Vertical Resolution of Teleseismic Receiver Function Data for Shallow Crustal Imagery.

    NASA Astrophysics Data System (ADS)

    Subasic, S.; Piana Agostinetti, N.; Bean, C. J.

    2017-12-01

    Passive seismic methods as a tool in exploration geophysics are relatively cheap, and offer the prospect of 3D imagery at a fraction of the cost of an active survey. Outputs from passive seismic surveys can also be used as a test and guide for subsequent targeted higher resolution studies, and they offer a strategic alternative in areas where an active survey would be a difficult or impossible task. In order to test the horizontal and vertical resolution of teleseismic receiver functions, we perform a complete receiver function analysis and inversion of the teleseismic data from the La Barge array. The La Barge Passive Seismic Experiment is composed of 55 instruments deployed in western Wyoming, recording continuously between November 2008 and June 2009. The close interstation distance used during the deployment (250m, up to two orders of magnitude smaller than in typical receiver function studies) makes this open-access data set a perfect test-case for the aim of this study. Receiver functions (RF) are calculated for earthquakes with Mw ≥ 5.5, at epicentral distances ranging from 30° to 100°. We use the frequency domain deconvolution method proposed by Di Bona (1998). This method includes estimations of variances for individual receiver functions, and considers both the pre-signal noise, as well as the noise involved in the deconvolution itself. We perform harmonic decomposition of the receiver function dataset. The zero-order harmonic, representing the bulk isotropic variation of seismic velocities with depth, is used in the inversion. The RF inversion scheme follows a reversible jump Markov Chain Monte Carlo algorithm, developed by Piana Agostinetti and Malinverno (2010). The results can be compared with the measurements from nearby wells.

  10. Forecasting the Northern African Dust Outbreak Towards Europe in April 2011: A Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Huneeus, N.; Basart, S.; Fiedler, S.; Morcrette, J.-J.; Benedetti, A.; Mulcahy, J.; Terradellas, E.; Pérez García-Pando, C.; Pejanovic, G.; Nickovic, S.

    2016-01-01

    In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 hours using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distribution was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. Our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.

  11. The study of the martian atmosphere from top to bottom with SPICAM light on mars express

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Fonteyn, D.; Korablev, O.; Chassefière, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, B.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    2000-10-01

    SPICAM Light is a small UV-IR instrument selected for Mars Express to recover most of the science that was lost with the demise of Mars 96, where the SPICAM set of sensors was dedicated to the study of the atmosphere of Mars (Spectroscopy for the investigation of the characteristics of the atmosphere of mars). The new configuration of SPICAM Light includes optical sensors and an electronics block. A UV spectrometer (118-320 nm, resolution 0.8 nm) is dedicated to Nadir viewing, limb viewing and vertical profiling by stellar occultation (3.8 kg). It addresses key issues about ozone, its coupling with H 2O, aerosols, atmospheric vertical temperature structure and ionospheric studies. An IR spectrometer (1.2- 4.8 μm, resolution 0.4-1 nm) is dedicated to vertical profiling during solar occultation of H 2O, CO 2, CO, aerosols and exploration of carbon compounds (3.5 kg). A nadir looking sensor for H 2O abundances (1.0- 1.7 μm, resolution 0.8 nm) is recently included in the package (0.8 kg). A simple data processing unit (DPU, 0.9 kg) provides the interface of these sensors with the spacecraft. In nadir orientation, SPICAM UV is essentially an ozone detector, measuring the strongest O 3 absorption band at 250 nm in the spectrum of the solar light scattered back from the ground. In the stellar occultation mode the UV Sensor will measure the vertical profiles of CO 2, temperature, O 3, clouds and aerosols. The density/temperature profiles obtained with SPICAM Light will constrain and aid in the development of the meteorological and dynamical atmospheric models, from the surface to 160 km in the atmosphere. This is essential for future missions that will rely on aerocapture and aerobraking. UV observations of the upper atmosphere will allow study of the ionosphere through the emissions of CO, CO +, and CO 2+, and its direct interaction with the solar wind. Also, it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight into the long-term evolution of the atmosphere. The SPICAM Light IR sensor is inherited from the IR solar part of the SPICAM solar occultation instrument of Mars 96. Its main scientific objective is the global mapping of the vertical structure of H 2O, CO 2, CO, HDO, aerosols, atmospheric density, and temperature by the solar occultation. The wide spectral range of the IR spectrometer and its high spectral resolution allow an exploratory investigation addressing fundamental question of the possible presence of carbon compounds in the Martian atmosphere. Because of severe mass constraints this channel is still optional. An additional nadir near IR channel that employs a pioneering technology acousto-optical tuneable filter (AOTF) is dedicated to the measurement of water vapour column abundance in the IR simultaneously with ozone measured in the UV. It will be done at much lower telemetry budget compared to the other instrument of the mission, planetary fourier spectrometer (PFS).

  12. High-Frequency Focused Water-Coupled Ultrasound Used for Three-Dimensional Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2001-01-01

    To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).

  13. Monitoring the Vertical Distribution of Rainfall-Induced Strain Changes in a Landslide Measured by Distributed Fiber Optic Sensing With Rayleigh Backscattering

    NASA Astrophysics Data System (ADS)

    Kogure, Tetsuya; Okuda, Yudai

    2018-05-01

    Distributed fiber optic sensing with Rayleigh backscattering, which has been recognized as a novel technique for measuring differences in temperature or strain, was adopted in a borehole to a depth of 16 m in an actual landslide to detect a vertical profile of strain changes. Strain changes were measured every 6 hr from 19 June 2017 to 18 October 2017 with a spatial resolution of 10 cm and strain resolution of 1.87 μɛ. The measurements provided a clear-cut vertical profile of the strain changes caused by rainfalls that cannot be detected by conventional methods. The results show that there are two types of deformation in the landslide mass: (1) sliding at the boundary between tuff and mudstone and (2) creep in mudstone layers. Activation of deeper sections of the landslide by heavy rainfalls has also been detected.

  14. Color-binding errors during rivalrous suppression of form.

    PubMed

    Hong, Sang Wook; Shevell, Steven K

    2009-09-01

    How does a physical stimulus determine a conscious percept? Binocular rivalry provides useful insights into this question because constant physical stimulation during rivalry causes different visual experiences. For example, presentation of vertical stripes to one eye and horizontal stripes to the other eye results in a percept that alternates between horizontal and vertical stripes. Presentation of a different color to each eye (color rivalry) produces alternating percepts of the two colors or, in some cases, a color mixture. The experiments reported here reveal a novel and instructive resolution of rivalry for stimuli that differ in both form and color: perceptual alternation between the rivalrous forms (e.g., horizontal or vertical stripes), with both eyes' colors seen simultaneously in separate parts of the currently perceived form. Thus, the colors presented to the two eyes (a) maintain their distinct neural representations despite resolution of form rivalry and (b) can bind separately to distinct parts of the perceived form.

  15. Intraseasonal to interannual variability of Kelvin wave momentum fluxes as derived from high-resolution radiosonde data

    DOE PAGES

    Sjoberg, Jeremiah P.; Birner, Thomas; Johnson, Richard H.

    2017-07-26

    Observational estimates of Kelvin wave momentum fluxes in the tropical lower stratosphere remain challenging. Here we extend a method based on linear wave theory to estimate daily time series of these momentum fluxes from high-resolution radiosonde data. Daily time series are produced for sounding sites operated by the US Department of Energy (DOE) and from the recent Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign. Our momentum flux estimates are found to be robust to different data sources and processing and in quantitative agreement with estimates from prior studies. Testing the sensitivity to vertical resolution, our estimated momentum fluxes aremore » found to be most sensitive to vertical resolution greater than 1 km, largely due to overestimation of the vertical wavelength. Climatological analysis is performed over a selected 11-year span of data from DOE Atmospheric Radiation Measurement (ARM) radiosonde sites. Analyses of this 11-year span of data reveal the expected seasonal cycle of momentum flux maxima in boreal winter and minima in boreal summer, and variability associated with the quasi-biennial oscillation of maxima during easterly phase and minima during westerly phase. Comparison between periods with active convection that is either strongly or weakly associated with the Madden–Julian Oscillation (MJO) suggests that the MJO provides a nontrivial increase in the lowermost stratospheric momentum fluxes.« less

  16. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    NASA Astrophysics Data System (ADS)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  17. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  18. High-resolution bottom-loss estimation using the ambient-noise vertical coherence function.

    PubMed

    Muzi, Lanfranco; Siderius, Martin; Quijano, Jorge E; Dosso, Stan E

    2015-01-01

    The seabed reflection loss (shortly "bottom loss") is an important quantity for predicting transmission loss in the ocean. A recent passive technique for estimating the bottom loss as a function of frequency and grazing angle exploits marine ambient noise (originating at the surface from breaking waves, wind, and rain) as an acoustic source. Conventional beamforming of the noise field at a vertical line array of hydrophones is a fundamental step in this technique, and the beamformer resolution in grazing angle affects the quality of the estimated bottom loss. Implementation of this technique with short arrays can be hindered by their inherently poor angular resolution. This paper presents a derivation of the bottom reflection coefficient from the ambient-noise spatial coherence function, and a technique based on this derivation for obtaining higher angular resolution bottom-loss estimates. The technique, which exploits the (approximate) spatial stationarity of the ambient-noise spatial coherence function, is demonstrated on both simulated and experimental data.

  19. Direct measurements of vertical heat flux and Na flux in the mesosphere and lower thermosphere by lidar at Boulder (40°N, 105°W), Colorado

    NASA Astrophysics Data System (ADS)

    Huang, W.; Chu, X.; Gardner, C. S.; Barry, I. F.; Smith, J. A.; Fong, W.; Yu, Z.; Chen, C.

    2014-12-01

    The vertical transport of heat and constituent by gravity waves and tides plays a fundamental role in establishing the thermal and constituent structures of the mesosphere and lower thermosphere (MLT), but has not been thoroughly investigated by observations. In particular, direct measurements of vertical heat flux and metal constituent flux caused by dissipating waves are extremely rare, which demand precise measurements with high spatial and temporal resolutions over a long period. Such requirements are necessary to overcome various uncertainties to reveal the small quantities of the heat and constituent fluxes induced by dissipating waves. So far such direct observations have only been reported for vertical heat and Na fluxes using a Na Doppler lidar at Starfire Optical Range (SOR) in Albuquerque, New Mexico. Furthermore, estimate of eddy heat and constituent fluxes from the turbulent mixing generated by breaking waves is even more challenging due to the even smaller temporal and spatial scales of the eddy. Consequently, the associated coefficients of thermal (kH) and constituent (kzz) diffusion have not been well characterized and remain as large uncertainties in models. We attempt to address these issues with direct measurements by a Na Doppler lidar with exceptional high-resolution measurement capabilities. Since summer 2010, we have been operating a Na Doppler lidar at Boulder, Colorado. The efficiency of the lidar has been greatly improved in summer of 2011 and achieved generally over 1000 counts of Na signal per lidar pulse in winter. In 2013, we made extensive Na lidar observations in 98 nights. These data covering each month of a full year will be used to characterize the seasonal variations of heat and Na fluxes and to be compared with the pioneering observations at SOR. In November 2013, we further upgraded the lidar with two new frequency shifters and a new data acquisition scheme, which are optimized for estimating eddy fluxes and reducing the measurement bias. Since then, we have been making observations in order to directly measure the eddy heat and Na fluxes for the first time. Such lidar observations at Boulder will certainly help advance the understanding on the vertical transport in the MLT region and provide crucial observational references to the models.

  20. Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.

    2017-08-01

    Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a realistic coastal region.

  1. A New Satellite Aerosol Retrieval Using High Spectral Resolution Oxygen A-Band Measurements

    NASA Astrophysics Data System (ADS)

    Winker, D. M.; Zhai, P.

    2014-12-01

    Efforts to advance current satellite aerosol retrieval capabilities have mostly focused on polarimetric techniques. While there has been much interest in recent decades in the use of the oxygen A-band for retrievals of cloud height or surface pressure, these techniques are mostly based on A-band measurements with relatively low spectral resolution. We report here on a new aerosol retrieval technique based on high-resolution A-band spectra. Our goal is the development of a technique to retrieve aerosol absorption, one of the critical parameters affecting the global radiation budget and one which is currently poorly constrained by satellite measurements. Our approach relies on two key factors: 1) the use of high spectral resolution measurements which resolve the A-band line structure, and 2) the use of co-located lidar profile measurements to constrain the vertical distribution of scatterers. The OCO-2 satellite, launched in July this year and now flying in formation with the CALIPSO satellite, carries an oxygen A-band spectrometer with a spectral resolution of 21,000:1. This is sufficient to resolve the A-band line structure, which contains information on atmospheric photon path lengths. Combining channels with oxygen absorption ranging from weak to strong allows the separation of atmospheric and surface scattering. An optimal estimation algorithm for simultaneous retrieval of aerosol optical depth, aerosol absorption, and surface albedo has been developed. Lidar profile data is used for scene identification and to provide constraints on the vertical distribution of scatterers. As calibrated OCO-2 data is not expected until the end of this year, the algorithm has been developed and tested using simulated OCO-2 spectra. The simulations show that AOD and surface albedo can be retrieved with high accuracy. Retrievals of aerosol single scatter albedo are encouraging, showing good performance when AOD is larger than about 0.15. Retrieval performance improves as the albedo of the underlying surface increases. Thus, the technique shows great promise for retrieving the absorption optical depth of aerosols located above clouds. This presentation will discuss the basis of the approach and results of the A-band/lidar retrievals based on simulated data.

  2. Simultaneous microwave measurements of middle atmospheric ozone and temperature during sudden stratospheric warming

    NASA Astrophysics Data System (ADS)

    Kulikov, M. Y.; Krasil'nikov, A. A.; Shvetsov, A. A.; Mukhin, D. N.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Karashtin, D. A.; Kukin, L. M.; Feigin, A. M.

    2012-04-01

    At the present time we carry out the experimental campaign aimed to study the response of middle atmosphere on current sudden stratospheric warming above Nizhny Novgorod, Russia (56N, 44E). The equipment consists of two room-temperature radiometers which specially have been designed to detect emission ozone line at 110.8 GHz and atmospheric radiation in the frequency range 52.5 - 54.5 GHz accordingly. Two digital fast Fourier transform spectroanalyzers developed by "Acqiris" are employed for signal analysis in the intermediate frequency range 0.05-1 GHz with the effective resolution 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we apply novel method based on Bayesian approach to inverse problems which assumes a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we are going to introduce the fist results of the campaign in comparison with Aura MLS data and temperature maps from High Resolution Transport Model MIMOSA. The work was done under support of the RFBR (projects 11-05-97050 and 12-05-00999).

  3. Stochastic Forcing for High-Resolution Regional and Global Ocean and Atmosphere-Ocean Coupled Ensemble Forecast System

    NASA Astrophysics Data System (ADS)

    Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.

    2017-12-01

    An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.

  4. High-resolution TEM Studies of Carbon Nanotubes and Catalyst Nanoparticles Produced During CVD from Metal Multilayer Films

    NASA Astrophysics Data System (ADS)

    Howe, Jane Y.; Puretzky, Alex A.; Geohegan, David B.; Cui, Hongtao; Eres, Varela; Maria, Alex A.; Lowndes, Douglas H.

    2003-03-01

    The structure of single-wall and multiwall carbon nanotubes and associated metal catalyst nanoparticles produced during chemical vapor deposition from multilayered metal films deposited on Si and Mo substrates were studied by high-resolution TEM and EDS. Electron beam-evaporated metal multilayer films (e.g. Al-Fe-Mo, typically 11-50 nm total thickness) roughen upon heat treatment to form a variety of catalyst particle sizes suitable for carbon nanotube growth by chemical vapor deposition using acetylene, hydrogen, and argon flow gases. This study investigates these nanoparticles, the type of nanotubes grown, their wall, tip, and basal structures, as well as the associated amounts of amorphous carbon deposited on their walls in different temperature and pressure ranges. Mixtures of SWNT and MWNT are found even for low growth temperatures (650-700 C), while rapid growth of vertically-aligned multiwall nanotubes (VA-MWNTs) predominate in a narrow temperature range at a given pressure. Arrested growth experiments were performed to determine the time periods for SWNT vs. MWNT growth. The nature of the catalyst nanoparticles, their support structure, and insights on the mechanisms of growth will be discussed.

  5. Extended axial imaging range, widefield swept source optical coherence tomography angiography.

    PubMed

    Liu, Gangjun; Yang, Jianlong; Wang, Jie; Li, Yan; Zang, Pengxiao; Jia, Yali; Huang, David

    2017-11-01

    We developed a high-speed, swept source OCT system for widefield OCT angiography (OCTA) imaging. The system has an extended axial imaging range of 6.6 mm. An electrical lens is used for fast, automatic focusing. The recently developed split-spectrum amplitude and phase-gradient angiography allow high-resolution OCTA imaging with only two B-scan repetitions. An improved post-processing algorithm effectively removed trigger jitter artifacts and reduced noise in the flow signal. We demonstrated high contrast 3 mm×3 mm OCTA image with 400×400 pixels acquired in 3 seconds and high-definition 8 mm×6 mm and 12 mm×6 mm OCTA images with 850×400 pixels obtained in 4 seconds. A widefield 8 mm×11 mm OCTA image is produced by montaging two 8 mm×6 mm scans. An ultra-widefield (with a maximum of 22 mm along both vertical and horizontal directions) capillary-resolution OCTA image is obtained by montaging six 12 mm×6 mm scans. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics

    NASA Technical Reports Server (NTRS)

    Lamarque, J.-F.; Shindell, D. T.; Naik, V.; Plummer, D.; Josse, B.; Righi, M.; Rumbold, S. T.; Schulz, M.; Skeie, R. B.; Strode, S.; hide

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to- model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.

  7. Spectral analysis of temperature and Brunt-Vaisala frequency fluctuations observed by radiosondes

    NASA Technical Reports Server (NTRS)

    Tsuda, T.; Vanzandt, T. E.; Kato, S.; Fukao, S.; Sato, T.

    1989-01-01

    Recent studies have revealed that vertical wave number spectra of wind velocity and temperture fluctuations in the troposphere and the lower stratosphere are fairly well explained by a saturated gravity wave spectrum. But N(2) (N:Brunt-Vaisala (BV) frequency) spectra seem to be better for testing the scaling of the vertical wave number spectra in layers with different stratifications, beause its energy density is proportional only to the background value of N(2), while that for temperature depends on both the BV frequency and the potential temperature. From temperature profiles observed in June to August 1987 over the MU Observatory, Japan, by using a radiosonde with 30 m height resolution, N(2) spectra are determined in the 2 to 8.5 km (troposphere) and 18.5 to 25 km (lower stratosphere) ranges. Although individual spectra show fairly large day-by-day variability, the slope of the median of 34 spectra agrees reasonably with the theoretical value of -1 in the wave number range of 6 x 10(-4) similar to 3 x 10(-3) (c/m). The ratio of the spectral energy between these two height regions is about equal to the ratio of N(2), consistent with the prediction of saturated gravity wave theory.

  8. Coplanar Doppler Lidar Retrieval of Rotors from T-REX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Michael; Calhoun, Ron; Fernando, H. J. S.

    2010-03-01

    Two coherent Doppler lidars were deployed during the Terrain-induced Rotor EXperiment (T-REX). Coplanar Range Height Indicator (RHI) scans by the lidars (along the same azimuthal angle) allowed retrieval of two-dimensional velocity vectors on a vertical/cross-barrier plane using the least squares method. Vortices are shown to evolve and advect in the flow field, allowing analysis of their behavior in the mountain-wave-boundary layer system. The locations, magnitudes, and evolution of the vortices can be studied through calculated fields of velocity, vorticity, streamlines, and swirl. Two classes of vortical motions are identified: rotors and sub-rotors, which differ in scale and behavior. The levelmore » of coordination of the two lidars and the nature of the output (i.e., in range-gates) creates inherent restrictions on the spatial and temporal resolution of retrieved fields.« less

  9. Coordination Logic for Repulsive Resolution Maneuvers

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Dutle, Aaron M.

    2016-01-01

    This paper presents an algorithm for determining the direction an aircraft should maneuver in the event of a potential conflict with another aircraft. The algorithm is implicitly coordinated, meaning that with perfectly reliable computations and information, it will in- dependently provide directional information that is guaranteed to be coordinated without any additional information exchange or direct communication. The logic is inspired by the logic of TCAS II, the airborne system designed to reduce the risk of mid-air collisions between aircraft. TCAS II provides pilots with only vertical resolution advice, while the proposed algorithm, using a similar logic, provides implicitly coordinated vertical and horizontal directional advice.

  10. A High-Resolution, Three-Dimensional Model of Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    Cho, James Y.-K.; delaTorreJuarez, Manuel; Ingersoll, Andrew P.; Dritschel, David G.

    2001-01-01

    The turbulent flow at the periphery of the Great Red Spot (GRS) contains many fine-scale filamentary structures, while the more quiescent core, bounded by a narrow high- velocity ring, exhibits organized, possibly counterrotating, motion. Past studies have neither been able to capture this complexity nor adequately study the effect of vertical stratification L(sub R)(zeta) on the GRS. We present results from a series of high-resolution, three-dimensional simulations that advect the dynamical tracer, potential vorticity. The detailed flow is successfully captured with a characteristic value of L(sub R) approx. equals 2000 km, independent of the precise vertical stratification profile.

  11. An Idealized Test of the Response of the Community Atmosphere Model to Near-Grid-Scale Forcing Across Hydrostatic Resolutions

    NASA Astrophysics Data System (ADS)

    Herrington, A. R.; Reed, K. A.

    2018-02-01

    A set of idealized experiments are developed using the Community Atmosphere Model (CAM) to understand the vertical velocity response to reductions in forcing scale that is known to occur when the horizontal resolution of the model is increased. The test consists of a set of rising bubble experiments, in which the horizontal radius of the bubble and the model grid spacing are simultaneously reduced. The test is performed with moisture, through incorporating moist physics routines of varying complexity, although convection schemes are not considered. Results confirm that the vertical velocity in CAM is to first-order, proportional to the inverse of the horizontal forcing scale, which is consistent with a scale analysis of the dry equations of motion. In contrast, experiments in which the coupling time step between the moist physics routines and the dynamical core (i.e., the "physics" time step) are relaxed back to more conventional values results in severely damped vertical motion at high resolution, degrading the scaling. A set of aqua-planet simulations using different physics time steps are found to be consistent with the results of the idealized experiments.

  12. Investigating Water Movement Within and Near Wells Using Active Point Heating and Fiber Optic Distributed Temperature Sensing

    PubMed Central

    Selker, Frank; Selker, John S.

    2018-01-01

    There are few methods to provide high-resolution in-situ characterization of flow in aquifers and reservoirs. We present a method that has the potential to quantify lateral and vertical (magnitude and direction) components of flow with spatial resolution of about one meter and temporal resolution of about one day. A fiber optic distributed temperature sensor is used with a novel heating system. Temperatures before heating may be used to evaluate background geothermal gradient and vertical profile of thermal diffusivity. The innovation presented is the use of variable energy application along the well, in this case concentrated heating at equally-spaced (2 m) localized areas (0.5 m). Relative to uniform warming this offers greater opportunity to estimate water movement, reduces required heating power, and increases practical length that can be heated. Numerical simulations are presented which illustrate expected behaviors. We estimate relative advection rates near the well using the times at which various locations diverge from a heating trajectory expected for pure conduction in the absence of advection. The concept is demonstrated in a grouted 600 m borehole with 300 heated patches, though evidence of vertical water movement was not seen. PMID:29596339

  13. Investigating Water Movement Within and Near Wells Using Active Point Heating and Fiber Optic Distributed Temperature Sensing.

    PubMed

    Selker, Frank; Selker, John S

    2018-03-29

    There are few methods to provide high-resolution in-situ characterization of flow in aquifers and reservoirs. We present a method that has the potential to quantify lateral and vertical (magnitude and direction) components of flow with spatial resolution of about one meter and temporal resolution of about one day. A fiber optic distributed temperature sensor is used with a novel heating system. Temperatures before heating may be used to evaluate background geothermal gradient and vertical profile of thermal diffusivity. The innovation presented is the use of variable energy application along the well, in this case concentrated heating at equally-spaced (2 m) localized areas (0.5 m). Relative to uniform warming this offers greater opportunity to estimate water movement, reduces required heating power, and increases practical length that can be heated. Numerical simulations are presented which illustrate expected behaviors. We estimate relative advection rates near the well using the times at which various locations diverge from a heating trajectory expected for pure conduction in the absence of advection. The concept is demonstrated in a grouted 600 m borehole with 300 heated patches, though evidence of vertical water movement was not seen.

  14. Fourier Domain Optical Coherence Tomography With 3D and En Face Imaging of the Punctum and Vertical Canaliculus: A Step Toward Establishing a Normative Database.

    PubMed

    Kamal, Saurabh; Ali, Mohammad Javed; Ali, Mohammad Hasnat; Naik, Milind N

    2016-01-01

    To report the features of Fourier domain optical coherence tomography imaging of the normal punctum and vertical canaliculus. Prospective, interventional series of consecutive healthy and asymptomatic adults, who volunteered for optical coherence tomography imaging, were included in the study. Fourier domain optical coherence tomography images of the punctum and vertical canaliculus along with 3D and En face images were captured using the RTVue scanner with a corneal adaptor module and a wide-angled lens. Maximum punctal diameter, mid-canalicular diameter, and vertical canalicular height were calculated. Statistical analysis was performed using Pearson correlation test, and scatter plot matrices were analyzed. A total of 103 puncta of 52 healthy subjects were studied. Although all the images could depict the punctum and vertical canaliculus and all the desired measurements could be obtained, occasional tear debris within the canaliculus was found to be interfering with the imaging. The mean maximum punctal diameter, mid-canalicular diameter, and vertical canalicular height were recorded as 214.71 ± 73 μm, 125.04 ± 60.69 μm, and 890.41 ± 154.76 μm, respectively, with an insignificant correlation between them. The maximum recorded vertical canalicular height in all the cases was far less than the widely reported depth of 2 mm. High-resolution 3D and En face images provided a detailed topography of punctal surface and overview of vertical canaliculus. Fourier domain optical coherence tomography with 3D and En face imaging is a useful noninvasive modality to image the proximal lacrimal system with consistently reproducible high-resolution images. This is likely to help clinicians in the management of proximal lacrimal disorders.

  15. Observations and Modeling of Composition of Upper Troposphere/Lower Stratosphere (UTILS): Isentropic Mixing Events and Morphology of HNO3 as Observed by HIRDLS and Comparison with Results from Global Modeling Initiative

    NASA Technical Reports Server (NTRS)

    Rodriquez, J. M.; Douglass, A.R.; Yoshida, Y.; Strahan, S.; Duncan, B.; Olsen, M.; Gille, J.; Yudin, V.; Nardi, B.

    2008-01-01

    isentropic exchange of air masses between the tropical upper troposphere and mid-latitude lowermost stratosphere (the so-called "middle world") is an important pathway for stratospheric-tropospheric exchange. A seasonal, global view of this process has been difficult to obtain, in part due to the lack of the vertical resolution in satellite observations needed to capture the laminar character of these events. Ozone observations at a resolution of about 1 km from the High Resolution Dynamic Limb Sounder (HIRDLS) on NASA's Aura satellite show instances of these intrusions. Such intrusions should also be observable in HN03 observations; however, the abundances of nitric acid could be additionally controlled by chemical processes or incorporation and removal into ice clouds. We present a systematic examination of the HIRDLS data on O3 and HNO3 to determine the seasonal and spatial characteristics of the distribution of isentropic intrusions. At the same time, we compare the observed distributions with those calculated by the Global Modeling Initiative combined tropospheric-stratospheric model, which has a vertical resolution of about I km. This Chemical Transport Model (CTM) is driven by meteorological fields obtained from the GEOS-4 system of NASA/Goddard Global Modeling and Assimilation Office (GMAO), for the Aura time period, at a vertical resolution of about 1 km. Such comparison brings out the successes and limitations of the model in representing isentropic stratospheric-tropospheric exchange, and the different processes controlling HNO3 in the UTAS.

  16. High-resolution diapycnal mixing map of the Alboran Sea thermocline from seismic reflection images

    NASA Astrophysics Data System (ADS)

    Mojica, Jhon F.; Sallarès, Valentí; Biescas, Berta

    2018-06-01

    The Alboran Sea is a dynamically active region where the salty and warm Mediterranean water first encounters the incoming milder and cooler Atlantic water. The interaction between these two water masses originates a set of sub-mesoscale structures and a complex sequence of processes that entail mixing close to the thermocline. Here we present a high-resolution map of the diapycnal diffusivity around the thermocline depth obtained using acoustic data recorded with a high-resolution multichannel seismic system. The map reveals a patchy thermocline, with spots of strong diapycnal mixing juxtaposed with areas of weaker mixing. The patch size is of a few kilometers in the horizontal scale and of 10-15 m in the vertical one. The comparison of the obtained maps with the original acoustic images shows that mixing tends to concentrate in areas where internal waves, which are ubiquitous in the surveyed area, become unstable and shear instabilities develop, enhancing energy transfer towards the turbulent regime. These results are also compared with others obtained using more conventional oceanographic probes. The values estimated based on the seismic data are within the ranges of values obtained from oceanographic data analysis, and they are also consistent with reference theoretical values. Overall, our results demonstrate that high-resolution seismic systems allow the remote quantification of mixing at the thermocline depth with unprecedented resolution.

  17. Enabling Characteristics Of Optical Autocovariance Lidar For Global Wind And Aerosol Profiling

    NASA Astrophysics Data System (ADS)

    Grund, C. J.; Stephens, M.; Lieber, M.; Weimer, C.

    2008-12-01

    Systematic global wind measurements with 70 km horizontal resolution and, depending on altitude from the PBL to stratosphere, 250m-2km vertical resolution and 0.5m/s - 2 m/s velocity precision are recognized as key to the understanding and monitoring of complex climate modulations, validation of models, and improved precision and range for weather forecasts. Optical Autocovariance Wind Lidar (OAWL) is a relatively new interferometric direct detection Doppler lidar approach that promises to meet the required wind profile resolution at substantial mass, cost, and power savings, and at reduced technical risk for a space-based system meeting the most demanding velocity precision and spatial and temporal resolution requirements. A proof of concept Optical Autocovariance Wind Lidar (OAWL) has been demonstrated, and a robust multi- wavelength, field-widened (more than 100 microR) lidar system suitable for high altitude (over 16km) aircraft demonstration is under construction. Other advantages of the OAWL technique include insensitivity to aerosol/molecular backscatter mixing ratio, freedom from complex receiver/transmitter optical frequency lock loops, prospects for practical continuous large-area coverage wind profiling from GEO, and the availability of simultaneous multiple wavelength High Spectral Resolution Lidar (OA-HSRL) for aerosol identification and optical property measurements. We will discuss theory, development and demonstration status, advantages, limitations, and space-based performance of OAWL and OA-HSRL, as well as the potential for combined mission synergies.

  18. Relationship between Hard X-Ray Footpoint Sources and Photospheric Electric Currents in Solar Flares: a Statistical Study

    NASA Astrophysics Data System (ADS)

    Zimovets, I. V.; Sharykin, I. N.; Wang, R.; Liu, Y. D.; Kosovichev, A. G.

    2017-12-01

    It is believed that solar flares are a result of release of free magnetic energy contained in electric currents (ECs) flowing in active regions (ARs). However, there are still debates whether the primary energy release and acceleration of electrons take place in coronal current sheets or in chromospheric footpoints of current-carrying magnetic flux tubes (loops). We present results of an observational statistical study of spatial relationship between hard X-ray (HXR; EHXR≥50keV) footpoint sources detected by RHESSI and vertical photospheric ECs calculated using vector magnetograms obtained from the SDO/HMI data. We found that for a sample of 47 flares (from C3.0 to X3.1 class) observed on the solar disk by both instruments in 2010-2016, at least one HXR source was in a region of strong (within 20% of the maximum EC density in the corresponding ARs) vertical ECs having the form of a ribbon (79%) or an island (21%). The total vertical ECs in such HXR sources are in the range of 1010-1013 A. The EC density is in the range of 0.01-1.0 A/m2. We found no correlation between intensity of the HXR sources and the EC density. By comparing pre-flare and post-flare EC maps we did not find evidences of significant dissipation of vertical ECs in the regions corresponding to the HXR sources. In some cases, we found amplification of ECs during flares. We discuss effects of sensitivity and angular resolution of RHESSI and SDO/HMI. In general, the results indicate that there is a link between the flare HXR footpoint sources and enhanced vertical ECs in the photosphere. However, the results do not support a concept of electron acceleration by the electric field excited in footpoints of current-carrying loops due to some (e.g. Rayleigh-Taylor) instabilities (Zaitsev et al., 2016), since strong correlation between the HXR intensity and the EC density is expected in such concept.

  19. Global-mean BC lifetime as an indicator of model skill? Constraining the vertical aerosol distribution using aircraft observations

    NASA Astrophysics Data System (ADS)

    Lund, M. T.; Samset, B. H.; Skeie, R. B.; Berntsen, T.

    2017-12-01

    Several recent studies have used observations from the HIPPO flight campaigns to constrain the modeled vertical distribution of black carbon (BC) over the Pacific. Results indicate a relatively linear relationship between global-mean atmospheric BC residence time, or lifetime, and bias in current models. A lifetime of less than 5 days is necessary for models to reasonably reproduce these observations. This is shorter than what many global models predict, which will in turn affect their estimates of BC climate impacts. Here we use the chemistry-transport model OsloCTM to examine whether this relationship between global BC lifetime and model skill also holds for a broader a set of flight campaigns from 2009-2013 covering both remote marine and continental regions at a range of latitudes. We perform four sets of simulations with varying scavenging efficiency to obtain a spread in the modeled global BC lifetime and calculate the model error and bias for each campaign and region. Vertical BC profiles are constructed using an online flight simulator, as well by averaging and interpolating monthly mean model output, allowing us to quantify sampling errors arising when measurements are compared with model output at different spatial and temporal resolutions. Using the OsloCTM coupled with a microphysical aerosol parameterization, we investigate the sensitivity of modeled BC vertical distribution to uncertainties in the aerosol aging and scavenging processes in more detail. From this, we can quantify how model uncertainties in the BC life cycle propagate into uncertainties in its climate impacts. For most campaigns and regions, a short global-mean BC lifetime corresponds with the lowest model error and bias. On an aggregated level, sampling errors appear to be small, but larger differences are seen in individual regions. However, we also find that model-measurement discrepancies in BC vertical profiles cannot be uniquely attributed to uncertainties in a single process or parameter, at least in this model. Model development therefore needs to focus on improvements to individual processes, supported by a broad range of observational and experimental data, rather than tuning individual, effective parameters such as global BC lifetime.

  20. New temperature and pressure retrieval algorithm for high-resolution infrared solar occultation spectroscopy: analysis and validation against ACE-FTS and COSMIC

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Toon, Geoffrey C.; Boone, Chris D.; Strong, Kimberly

    2016-03-01

    Motivated by the initial selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars on the ExoMars Trace Gas Orbiter, we have been developing algorithms for retrieving volume mixing ratio vertical profiles of trace gases, the primary component of which is a new algorithm and software for retrieving vertical profiles of temperature and pressure from the spectra. In contrast to Earth-observing instruments, which can rely on accurate meteorological models, a priori information, and spacecraft position, Mars retrievals require a method with minimal reliance on such data. The temperature and pressure retrieval algorithms developed for this work were evaluated using Earth-observing spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple measurements during an occultation, separated in altitude by 1.5-5 km, and we analyse 10 CO2 vibration-rotation bands at each altitude, each with a different usable altitude range. We describe the algorithms and present results of their application and their comparison to the ACE-FTS data products. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) provides vertical profiles of temperature up to 40 km with high vertical resolution. Using six satellites and GPS radio occultation, COSMIC's data product has excellent temporal and spatial coverage, allowing us to find coincident measurements with ACE with very tight criteria: less than 1.5 h and 150 km. We present an intercomparison of temperature profiles retrieved from ACE-FTS using our algorithm, that of the ACE Science Team (v3.5), and from COSMIC. When our retrievals are compared to ACE-FTS v3.5, we find mean differences between -5 and +2 K and that our retrieved profiles have no seasonal or zonal biases but do have a warm bias in the stratosphere and a cold bias in the mesosphere. When compared to COSMIC, we do not observe a warm/cool bias and mean differences are between -4 and +1 K. COSMIC comparisons are restricted to below 40 km, where our retrievals have the best agreement with ACE-FTS v3.5. When comparing ACE-FTS v3.5 to COSMIC we observe a cold bias in COSMIC of 0.5 K, and mean differences are between -0.9 and +0.6 K.

  1. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias

    2014-01-01

    RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width)more » setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 um. Conclusions: A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry.« less

  2. Transmission geometry laser ablation into a non-contact liquid vortex capture probe for mass spectrometry imaging.

    PubMed

    Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias; Van Berkel, Gary J

    2014-08-15

    Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) set up to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V™ ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. The estimated capture efficiency of laser-ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~2.8 mm(2) ) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution not only of particulates, but also of gaseous products of the laser ablation. The use of DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 µm was demonstrated for stamped ink on DIRECTOR(®) slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 µm. A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. Dust storm from Syria- a potential new aerosol source in the E. Mediterranean- A ceilometer and synoptic study

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; Egert, Smadar; Uzan, Leenes

    2017-04-01

    On 7 Sep 2015 an unprecedented huge dust plume approached the SE Mediterranean basin from the northeast- Syria region. According to the Israeli meteorological service it is the first time in 75 years of measurements, that a dust storm reaches Israel early September, lasts several days and dust concentrations reach values 100 times the normal (1700µg/m3). Dust storms are normally monitored in the east Mediterranean using satellites and surface PM data. Obviously, these cannot show the vertical evolution of the dust including penetration, sinking and cleaning since vertical profiles are not available. High-resolution, micro Lidar Ceilometer network is gradually established in Israel. A few instruments of this network were already operational during the dust storm. The most crucial vertical information, monitored by these Ceilometers with 10m resolution vertically, every 16s, is analyzed. The difference in the cloud-layers allow the investigation of the high altitude of 1000m dust penetration, its sinking into the complex structured 250-500m mixed layer and the gradual 3D cleaning. This finding contradicts the conventional understanding that cleaning is due to gradual descent and shows not only the vertical fluctuation during the entire event but also the vertical rise to 2000m at the end of the event. The vertical information showed that the actual event period duration was 7 days, compared to only 90 hours based on traditional detectors. Is it a new dust source in the E. Mediterranean-long and short term trends?

  4. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    NASA Astrophysics Data System (ADS)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C.

    2009-08-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and spatial resolution of the assimilated data also presents a case dependence. It also shows a significant sensitivity of the results of the observation nudging to the specific choice of the values of coefficient weight and vertical ratio of the ingested observations.

  5. Evaluating the CALIOPE air quality modelling system: dynamics and chemistry over Europe and Iberian Peninsula for 2004 at high horizontal resolution

    NASA Astrophysics Data System (ADS)

    Piot, M.; Pay, M. T.; Jorba, O.; Baldasano, J. M.; Jiménez-Guerrero, P.; López, E.; Pérez, C.; Gassó, S.

    2009-04-01

    Often in Europe, population exposure to air pollution exceeds standards set by the EU and the World Health Organization (WHO). Urban/suburban areas are predominantly impacted upon, although exceedances of particulate matter (PM10 and PM2.5) and Ozone (O3) also take place in rural areas. In the frame of the CALIOPE project (Baldasano et al., 2008a), a high-resolution air quality forecasting system, WRF-ARW/HERMES/CMAQ/DREAM, has been developed and applied to the European domain (12km x 12km, 1hr) as well as to the Iberian Peninsula domain (4km x 4km, 1hr) to provide air quality forecasts for Spain (http://www.bsc.es/caliope/). The simulation of such high-resolution model system has been made possible by its implementation on the MareNostrum supercomputer. To reassure potential users and reduce uncertainties, the model system must be evaluated to assess its performances in terms of air quality levels and dynamics reproducibility. The present contribution describes a thorough quantitative evaluation study performed for a reference year (2004). The CALIOPE modelling system is configured with 38 vertical layers reaching up to 50 hPa for the meteorological core. Atmospheric initial and boundary conditions are obtained from the NCEP final analysis data. The vertical resolution of the CMAQ chemistry-transport model for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Gas phase boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model (see Hauglustaine et al., 2004). The DREAM model simulates long-range transport of mineral dust over the domains under study. For the European simulation, emissions are disaggregated from the EMEP expert emission inventory for 2004 to the utilized resolution using the criteria implemented in the HERMES emission model (Baldasano et al., 2008b). The HERMES model system, using a bottom-up approach, was adopted to estimate emissions for the Iberian Peninsula simulation at 4 km horizontal resolution, every hour. In order to evaluate the performances of the CALIOPE system, model simulations were compared with ground-based measurements from the EMEP and Spanish air quality networks. For the European domain, 45 stations have been used to evaluate NO2, 60 for O3, 39 for SO2, 25 for PM10 and 16 for PM2.5. On the other hand, the Iberian Peninsula domain has been evaluated against 75 NO2 stations, 84 O3 stations, 69 for SO2, and 46 for PM10. Such large number of observations allows us to provide a detailed discussion of the model skills over quite different geographical locations and meteorological situations. The model simulation for Europe satisfactorily reproduces O3 concentrations throughout the year with relatively small errors: MNGE values range from 13% to 24%, and MNBE values show a slight negative bias ranging from -15% to 0%. These values lie within the range defined by the US-EPA guidelines (MNGE: +/- 30-35%; MNBE: +/- 10-15%). NO2 is less accurately simulated, with a mean MNBE of -47% caused by an overall underestimation in concentrations. The reproduction of SO2 concentrations is relatively correct but false peaks are reported (mean MNBE=22%). The simulated variation of particulate matter is reliable, with a mean correlation of 0.5. False peaks were reduced by use of an improved 8-bin aerosol description in the DREAM dust model, but mean aerosol levels are still underestimated. This problem is most probably related to uncertainties in our knowledge of the sources and in the description of the sulfate chemistry. The model simulation for Europe will be used to force the nested high-resolution simulation of the Iberian Peninsula. The performances of the latter will be also presented. Such high resolution simulation will allow analysing the small scale features observed over Spain. REFERENCES Baldasano J.M, P. Jiménez-Guerrero, O. Jorba, C. Pérez, E. López, P. Güereca, F. Martin, M. García-Vivanco, I. Palomino, X. Querol, M. Pandolfi, M.J. Sanz and J.J. Diéguez, 2008a: CALIOPE: An operational air quality forecasting system for the Iberian Peninsula, Balearic Islands and Canary Islands- First annual evaluation and ongoing developments. Adv. Sci. and Res., 2: 89-98. Baldasano J.M., L. P. Güereca, E. López, S. Gassó, P. Jimenez-Guerrero, 2008b: Development of a high-resolution (1 km x 1 km, 1 h) emission model for Spain: the High-Elective Resolution Modelling Emission System (HERMES). Atm. Environ., 42 (31): 7215-7233. Hauglustaine, D. A. and F. Hourdin and L. Jourdain and M.A. Filiberti and S. Walters and J. F. Lamarque and E. A. Holland, 2004: Interactive chemistry in the Laboratoire de Meteorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation. J. Geophys. Res., doi:10.1029/2003JD003,957.

  6. Some properties of the two-body effective interaction in the /sup 208/Pb region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groleau, R.

    The (/sup 3/He,d) and (/sup 4/He,t) single proton transfer reactions on /sup 208/Pb and /sup 209/Bi were studied using 30 and 40 MeV He beams from the Princeton Cyclotron Laboratory. The outgoing d and t were detected by a position sensitive proportional counter in the focal plane of a Q-3D spectrometer. The resolution varied between 10 and 14 keV (FWHM). Using the ratio of the cross-sections for the (/sup 3/He,d) and (/sup 4/He,t) reactions to determine the magnitude of the angular momentum transfers, the spectroscopic factors for the reaction on /sup 209/Bi have been measured relative to the transitions tomore » the single particle states in these reactions on /sup 208/Pb. Sum rules as developed by Bansal and French are used to study the configurations vertical bar h/sub 9/2 x h/sub 9/2/>, vertical bar h/sub 9/2/ x f/sub 7/2/>, vertical bar h/sub 9/2 x i/sub 13/2/>, vertical bar h/sub 9/2/ x f/sub 5/2/>and part of vertical bar h/sub 9/2/ x p/sub 3/2/> and vertical bar h/sub 9/2/ x p/sub 1/2>. Using the linear energy weighted sum rule, the diagonal matrix elements of the effective interaction between valence protons around the /sup 208/Pb core are deduced. The matrix elements obtained from a simple empirical interaction V/sub I//sup T=1/ of a pure Wigner type are compared to the extracted matrix elements. The interaction is characterized by an attractive short-range (0.82j and a repulsive long-range (8.2fm) potential: V/sub I//sup T = 1/ (MeV =-/96 e/sup - (r/0.82) /sup 2// + 0.51 e/sup -(r/8.2)/sup 2/. The core polarization is studied using the experimental static electric quadrupole and magnetic dipole moments of the nuclei in the /sup 208/Pb region. In general, the magnetic moments of multiple valence nucleon nuclei are well predicted by simple rules of Racah algebra. The three and four valence proton spectra (/sup 211/At and /sup 212/Rn) calculated with the experimental two particle matrix elements agree well with the experimental spectra.« less

  7. Integrated Sedimentological Approach to Assess Reservoir Quality and Architecture of Khuff Carbonates: Outcrop Analog, Central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Osman, Mutsim; Abdullatif, Osman

    2017-04-01

    The Permian to Triassic Khuff carbonate reservoirs (and equivalents) in the Middle East are estimated to contain about 38.4% of the world's natural gas reserves. Excellent exposed outcrops in central Saudi Arabia provide good outcrop equivalents to subsurface Khuff reservoirs. This study conduct high resolution outcrop scale investigations on an analog reservoir for upper Khartam of Khuff Formation. The main objective is to reconstruct litho- and chemo- stratigraphic outcrop analog model that may serve to characterize reservoir high resolution (interwell) heterogeneity, continuity and architecture. Given the fact of the limitation of subsurface data and toolsin capturing interwell reservoir heterogeneity, which in turn increases the value of this study.The methods applied integrate sedimentological, stratigraphic petrographic, petrophysical data and chemical analyses for major, trace and rare earth elements. In addition, laser scanning survey (LIDAR) was also utilized in this study. The results of the stratigraphic investigations revealed that the lithofacies range from mudstone, wackestone, packestone and grainstone. These lithofacies represent environments ranging from supratidal, intertidal, subtidal and shoal complex. Several meter-scale and less high resolution sequences and composite sequences within 4th and 5th order cycles were also recognized in the outcrop analog. The lithofacies and architectural analysis revealed several vertically and laterally stacked sequences at the outcrop as revealed from the stratigraphic sections and the lidar scan. Chemostratigraphy is effective in identifying lithofacies and sequences within the outcrop analog. Moreover, different chemical signatures were also recognized and allowed establishing and correlating high resolution lithofacies, reservoir zones, layers and surfaces bounding reservoirs and non-reservoir zones at scale of meters or less. The results of this high resolution outcrop analog study might help to understand and evaluate Khuff reservoir heterogeneity, quality and architecture. It might also help to fill the gap in knowledge in reservoir characterization models based on low resolution subsurface data alone.

  8. Visualizing Epithelial Expression in Vertical and Horizontal Planes With Dual Axes Confocal Endomicroscope Using Compact Distal Scanner.

    PubMed

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D

    2017-07-01

    The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.

  9. Impacts of model spatial resolution on the vertical structure of convection in the tropics

    NASA Astrophysics Data System (ADS)

    Bui, Hien Xuan; Yu, Jia-Yuh; Chou, Chia

    2018-02-01

    This study examined the impacts of model horizontal resolution on vertical structures of convection in the tropics by performing sensitivity experiments with the NCAR CESM1. It was found that contributions to the total precipitation between top-heavy and bottom-heavy convection are different among various resolutions. A coarser resolution tends to produce a greater contribution from top-heavy convection and, as a result, stronger precipitation in the western Pacific ITCZ; while there is less contribution from bottom-heavy convection and weaker precipitation in the eastern Pacific ITCZ. In the western Pacific ITCZ, where the convection is dominated by a top-heavy structure, the stronger precipitation in coarser resolution experiments is due to changes in temperature and moisture profiles associated with a warmer environment (i.e., thermodynamical effect). In the eastern Pacific ITCZ, where the convection is dictated by a bottom-heavy structure, the stronger precipitation in finer resolution experiments comes from changes in convection structure (i.e., dynamic effect) which favors a greater contribution of bottom-heavy convection as the model resolution goes higher. The moisture budget analysis further suggested that the very different behavior in precipitation tendencies in response to model resolution changes between the western and eastern Pacific ITCZs are determined mainly by changes in convective structure rather than changes in convective strength. This study pointed out the importance of model spatial resolution in reproducing a reasonable contribution to the total precipitation between top-heavy and bottom-heavy structure of convection in the tropical Pacific ITCZs.

  10. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-01-01

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified. PMID:29649173

  11. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor.

    PubMed

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-04-12

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified.

  12. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  13. Large High Resolution Displays for Co-Located Collaborative Sensemaking: Display Usage and Territoriality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradel, Lauren; Endert, Alexander; Koch, Kristen

    2013-08-01

    Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional textual intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the space management strategies of users partitioned by type of tool philosophy followed (visualization- or text-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with information on the display (integrated or independent workspaces). Next,more » we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we offer design suggestions for building future co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays.« less

  14. A new scheme for the parameterization of the turbulent planetary boundary layer in the GLAS fourth order GCM

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1985-01-01

    Methods being used to increase the horizontal and vertical resolution and to implement more sophisticated parameterization schemes for general circulation models (GCM) run on newer, more powerful computers are described. Attention is focused on the NASA-Goddard Laboratory for Atmospherics fourth order GCM. A new planetary boundary layer (PBL) model has been developed which features explicit resolution of two or more layers. Numerical models are presented for parameterizing the turbulent vertical heat, momentum and moisture fluxes at the earth's surface and between the layers in the PBL model. An extended Monin-Obhukov similarity scheme is applied to express the relationships between the lowest levels of the GCM and the surface fluxes. On-line weather prediction experiments are to be run to test the effects of the higher resolution thereby obtained for dynamic atmospheric processes.

  15. Study for online range monitoring with the interaction vertex imaging method.

    PubMed

    Finck, Ch; Karakaya, Y; Reithinger, V; Rescigno, R; Baudot, J; Constanzo, J; Juliani, D; Krimmer, J; Rinaldi, I; Rousseau, M; Testa, E; Vanstalle, M; Ray, C

    2017-11-21

    Ion beam therapy enables a highly accurate dose conformation delivery to the tumor due to the finite range of charged ions in matter (i.e. Bragg peak (BP)). Consequently, the dose profile is very sensitive to patients anatomical changes as well as minor mispositioning, and so it requires improved dose control techniques. Proton interaction vertex imaging (IVI) could offer an online range control in carbon ion therapy. In this paper, a statistical method was used to study the sensitivity of the IVI technique on experimental data obtained from the Heidelberg Ion-Beam Therapy Center. The vertices of secondary protons were reconstructed with pixelized silicon detectors. The statistical study used the [Formula: see text] test of the reconstructed vertex distributions for a given displacement of the BP position as a function of the impinging carbon ions. Different phantom configurations were used with or without bone equivalent tissue and air inserts. The inflection points in the fall-off region of the longitudinal vertex distribution were computed using different methods, while the relation with the BP position was established. In the present setup, the resolution of the BP position was about 4-5 mm in the homogeneous phantom under clinical conditions (10 6 incident carbon ions). Our results show that the IVI method could therefore monitor the BP position with a promising resolution in clinical conditions.

  16. Study for online range monitoring with the interaction vertex imaging method

    NASA Astrophysics Data System (ADS)

    Finck, Ch; Karakaya, Y.; Reithinger, V.; Rescigno, R.; Baudot, J.; Constanzo, J.; Juliani, D.; Krimmer, J.; Rinaldi, I.; Rousseau, M.; Testa, E.; Vanstalle, M.; Ray, C.

    2017-12-01

    Ion beam therapy enables a highly accurate dose conformation delivery to the tumor due to the finite range of charged ions in matter (i.e. Bragg peak (BP)). Consequently, the dose profile is very sensitive to patients anatomical changes as well as minor mispositioning, and so it requires improved dose control techniques. Proton interaction vertex imaging (IVI) could offer an online range control in carbon ion therapy. In this paper, a statistical method was used to study the sensitivity of the IVI technique on experimental data obtained from the Heidelberg Ion-Beam Therapy Center. The vertices of secondary protons were reconstructed with pixelized silicon detectors. The statistical study used the χ2 test of the reconstructed vertex distributions for a given displacement of the BP position as a function of the impinging carbon ions. Different phantom configurations were used with or without bone equivalent tissue and air inserts. The inflection points in the fall-off region of the longitudinal vertex distribution were computed using different methods, while the relation with the BP position was established. In the present setup, the resolution of the BP position was about 4-5 mm in the homogeneous phantom under clinical conditions (106 incident carbon ions). Our results show that the IVI method could therefore monitor the BP position with a promising resolution in clinical conditions.

  17. The Three-Dimensional Point Spread Function of Aberration-Corrected Scanning Transmission Electron Microscopy

    PubMed Central

    Lupini, A.R.; de Jonge, N.

    2012-01-01

    Aberration-correction reduces the depth of field in scanning transmission electron microscopy (STEM) and thus allows three-dimensional imaging by depth-sectioning. This imaging mode offers the potential for sub-Ångstrom lateral resolution and nanometer-scale depth sensitivity. For biological samples, which may be many microns across and where high lateral resolution may not always be needed, optimizing the depth resolution even at the expense of lateral resolution may be desired, aiming to image through thick specimens. Although there has been extensive work examining and optimizing the probe formation in two-dimensions, there is less known about the probe shape along the optical axis. Here the probe shape is examined in three-dimensions in an attempt to better understand the depth-resolution in this mode. Examples are presented of how aberrations change the probe shape in three-dimensions, and it is found that off-axial aberrations may need to be considered for focal series of large areas. It is shown that oversized or annular apertures theoretically improve the vertical resolution for 3D imaging of nanoparticles. When imaging nanoparticles of several nanometer size, regular STEM can thereby be optimized such that the vertical full width at half maximum approaches that of the aberration corrected STEM with a standard aperture. PMID:21878149

  18. 3-D profilometer using a CCD linear image sensor: application to skin surface topography measurement.

    PubMed

    Nita, D; Mignot, J; Chuard, M; Sofa, M

    1998-08-01

    Measurement of cutaneous surface topography can be made by three-dimensional (3-D) profilometry. Different equipment is used for this measurement. The magnitude of the vertical scale required, which can vary from several tens of micrometers (microrelief) to several millimeters (skin pathologies), depends also on the precision required and the duration of acquisition time. Over the last few years, different apparatuses have been produced, with a vertical range that is most frequently used for classical industrial applications, i.e., 0-1000 μm. The system developed here has a wide range of about 7 mm and is accurate enough to analyse each of the different skin surfaces that fall in this range without changing magnification. An optical principle, operating without any contact with a skin replica, allows a precise measurement with a high scanning speed. The profilometer has a vertical sensitivity of 4 μm within a vertical range of 7 mm. This sensitivity is lower than that of a mechanical or focusing profilometer, but the vertical range is wider. The system has several advantages: because of its verticale range, it can measure large surfaces with great roughness variations; the initial position of the replica beneath the profilometer must be within the 7 mm vertical range; and skin topography can be quantified, without contact, in a short time.

  19. High resolution tsunami inversion for 2010 Chile earthquake

    NASA Astrophysics Data System (ADS)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  20. Anatomy of small-scale mixing along a Northeast Atlantic transect

    NASA Astrophysics Data System (ADS)

    Jurado, Elena; Dijkstra, Henk A.; van der Woerd, Hans; Brussaard, Corina

    2010-05-01

    The study of turbulence occurring at the smallest scales, in the energy dissipation range, is required when evaluating interrelations between turbulent mixing and phytoplankton distribution. To derive microturbulent parameters, microstructure profiler surveys, consisting in high resolution temperature, salinity or velocity vertical profiles have been performed in localized regions of the open ocean. However, they are very localized and based on few datasets, difficult to extrapolate to other regions due to the dependence on the local background conditions. During the STRATIPHYT-I cruise (July-August 2009) from Las Palmas (Gran Canaria) to Reykjavik (Iceland), high resolution measurements of both turbulent mixing (with a Self Contained Autonomous Micro Profiler, SCAMP) and phytoplankton have been carried out in the top 100 m of the ocean. With these data, the gradient from a more stratified, warmer surface water tropical environment to a less stratified subpolar ocean environment is covered. Adding up a total of 15 stations and 148 profiles, it constitutes the most extensive dataset of directly derived vertical mixing coefficients in a latitudinal transect of the Northeast Atlantic. In the presentation, the focus is on the explanation of the changes in turbulent mixing along the cruise section, recalling in its latitudinal gradient and presenting parameters that can further help to evaluate effects in the phytoplankton distribution. Side issues such as the encountered disagreement between heat and density eddy diffusivities and an analysis of the main source of instabilities through GOTM model and an internal wave analysis, are also treated in detail.

  1. Ice Fog and Light Snow Measurements Using a High-Resolution Camera System

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Gultepe, Ismail

    2016-09-01

    Ice fog, diamond dust, and light snow usually form over extremely cold weather conditions, and they affect both visibility and Earth's radiative energy budget. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges due to measurement issues. These phenomena need to be better represented in forecast and climate models; therefore, in addition to remote sensing accurate measurements using ground-based instrumentation are required. An imaging instrument, aimed at measuring ice fog and light snow particles, has been built and is presented here. The ice crystal imaging (ICI) probe samples ice particles into a vertical, tapered inlet with an inlet flow rate of 11 L min-1. A laser beam across the vertical air flow containing the ice crystals allows for their detection by a photodetector collecting the scattered light. Detected particles are then imaged with high optical resolution. An illuminating LED flash and image capturing are triggered by the photodetector. In this work, ICI measurements collected during the fog remote sensing and modeling (FRAM) project, which took place during Winter of 2010-2011 in Yellowknife, NWT, Canada, are summarized and challenges related to measuring small ice particles are described. The majority of ice particles during the 2-month-long campaign had sizes between 300 and 800 μm. During ice fog events the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm.

  2. In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.

    2016-03-01

    Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.

  3. Neutral atmosphere composition from SOIR measurements on board Venus Express

    NASA Astrophysics Data System (ADS)

    Mahieux, A.; Drummond, R.; Wilquet, V.; Vandaele, A. C.; Federova, A.; Belyaev, D.; Korablev, O.; Villard, E.; Montmessin, F.; Bertaux, J.-L.

    2009-04-01

    The SOIR instrument performs solar occultation measurements in the IR region (2.2 - 4.3 m) at a resolution of 0.12 cm-1, the highest on board Venus Express. It combines an echelle spectrometer and an AOTF (Acousto-Optical Tunable Filter) for the order selection [1,2]. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer with an emphasis on vertical distribution of the gases. Measurements of HDO, H2O, HCl, HF, CO and CO2 vertical profiles have been routinely performed, as well as those of their isotopologues [3,4]. We will discuss the improvements introduced in the analysis algorithm of the SOIR spectra. This discussion will be illustrated by presenting new results of retrievals of minor constituents of the Venus mesosphere, in terms of vertical profiles and geographical distribution. CO2 is the major constituent of the Venus atmosphere and was therefore observed in many solar occultations, leading to a good geographical coverage, although limited by the geometry of the orbit. Depending on the abundance of the absorbing isotopologue and on the intensity of the band measured, we will show that the SOIR instrument is able to furnish CO2 vertical profiles ranging typically from 65 to 150 km, reaching in some conditions 185 km altitude. This information is important in the frame of compiling, in collaboration with other teams, a new Venus Atmosphere Model. 1. A. Mahieux, S. Berkenbosch, R. Clairquin, D. Fussen, N. Mateshvili, E. Neefs, D. Nevejans, B. Ristic, A. C. Vandaele, V. Wilquet, D. Belyaev, A. Fedorova, O. Korablev, E. Villard, F. Montmessin and J.-L. Bertaux, "In-Flight performance and calibration of SPICAV SOIR on board Venus Express", Applied Optics 47 (13), 2252-65 (2008). 2. D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois and E. Villard, "Compact high-resolution space-borne echelle grating spectrometer with AOTF based on order sorting for the infrared domain from 2.2 to 4.3 micrometer", Applied Optics 45 (21), 5191-5206 (2006). 3. A. Fedorova, O. Korablev, A. C. Vandaele, J.-L. Bertaux, D. Belyaev, A. Mahieux, E. Neefs, V. Wilquet, R. Drummond, F. Montmessin and E. Villard, "HDO and H2O vertical distribution and isotopic ratio in the Venus mesosphere by SOIR spectrometer on board Venus Express", JGR, doi:10.1029/2008JE003146 (2008). 4. A. C. Vandaele, M. De Mazière, R. Drummond, A. Mahieux, E. Neefs, V. Wilquet, D. Belyaev, A. Fedorova, O. Korablev, F. Montmessin and J.-L. Bertaux, "Composition of the Venus mesosphere measured by SOIR on board Venus Express", J. Geophysic. Res., doi:10.1029/2008JE003140 (2008).

  4. Can Assimilation of Satellite Ozone Data Contribute to the Understanding of the Lower Stratospheric Ozone?

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Pawson, S.; Hayashi, H.; Chang, L.-P.; Rood, R.

    2004-01-01

    We study the quality of lower stratospheric ozone fields from a three- dimensional global ozone assimilation system. Ozone in this region is important for the forcing of climate, but its global distribution is not fully known because of its large temporal and vertical variability. Modeled fields often have biases due to the inaccurate representation of transport processes in this region with strong gradients. Accurate ozonesonde or satellite occultation measurements have very limited coverage. Nadir measurements, such as those from the Solar Backscatter Ultraviolet/2 (SBUV/2) instrument that provide wide latitudinal coverage, lack the vertical resolution needed to represent sharp vertical features. Limb measurements, such as those from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), provide a finer vertical resolution. We show that assimilation of MIPAS data in addition to SBUV/2 data leads to better estimates of ozone in comparison with independent high quality satellite, aircraft, and ozone sonde measurements. Other modifications to the statistical analysis that have an impact on the lower stratospheric ozone will be mentioned: error covariance modeling and data selection. Direct and indirect impacts of transport and chemistry models will be discussed. Implications for multi-year analyses and short-tern prediction will be addressed.

  5. High-Performance Organic Vertical Thin Film Transistor Using Graphene as a Tunable Contact.

    PubMed

    Liu, Yuan; Zhou, Hailong; Weiss, Nathan O; Huang, Yu; Duan, Xiangfeng

    2015-11-24

    Here we present a general strategy for the fabrication of high-performance organic vertical thin film transistors (OVTFTs) based on the heterostructure of graphene and different organic semiconductor thin films. Utilizing the unique tunable work function of graphene, we show that the vertical carrier transport across the graphene-organic semiconductor junction can be effectively modulated to achieve an ON/OFF ratio greater than 10(3). Importantly, with the OVTFT design, the channel length is determined by the organic thin film thickness rather than by lithographic resolution. It can thus readily enable transistors with ultrashort channel lengths (<200 nm) to afford a delivering current greatly exceeding that of conventional planar TFTs, thus enabling a respectable operation frequency (up to 0.4 MHz) while using low-mobility organic semiconductors and low-resolution lithography. With this vertical device architecture, the entire organic channel is sandwiched and naturally protected between the source and drain electrodes, which function as the self-passivation layer to ensure stable operation of both p- and n-type OVTFTs in ambient conditions and enable complementary circuits with voltage gain. The creation of high-performance and highly robust OVTFTs can open up exciting opportunities in large-area organic macroelectronics.

  6. Multibeam monopulse radar for airborne sense and avoid system

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-10-01

    The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.

  7. Simulation and optimization of the SIRIUS IPE soft x-ray beamline

    NASA Astrophysics Data System (ADS)

    Meyer, Bernd C.; Rocha, Tulio C. R.; Luiz, Sergio A. L.; C. Pinto, Artur; Westfahl, Harry

    2017-08-01

    The soft X-ray beamline IPE is one of the first phase SIRIUS beamlines at the LNLS, Brazil. Divided into two branches, IPE is designed to perform ambient pressure X-ray photo-electron spectroscopy (AP-XPS) and high resolution resonant inelastic X-ray scattering (RIXS) for samples in operando/environmental conditions inside cells and liquid jets. The aim is to maximize the photon flux in the energy range 200-1400 eV generated by an elliptically polarizing undulator source (EPU) and focus it to a 1 μm vertical spot size at the RIXS station and 10 μm at the AP-XPS station. In order to achieve the required resolving power (40.000 at 930 eV) for RIXS both the dispersion properties of the plane grating monochromator (PGM) and the thermal deformation of the optical elements need special attention. The grating parameters were optimized with the REFLEC code to maximize the efficiency at the required resolution. Thermal deformation of the PGM plane mirror limits the possible range of cff parameters depending of the photon energy used. Hence, resolution of the PGM and thermal deformation effects define the boundary conditions of the optical concept and the simulations of the IPE beamline. We compare simulations performed by geometrical ray-tracing (SHADOW) and wave front propagation (SRW) and show that wave front diffraction effects (apertures, optical surface error profiles) has a small effect on the beam spot size and shape.

  8. A flexible touch-pressure sensor array with wireless transmission system for robotic skin

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping

    2016-06-01

    Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.

  9. A flexible touch-pressure sensor array with wireless transmission system for robotic skin.

    PubMed

    Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping

    2016-06-01

    Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.

  10. High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary

    NASA Astrophysics Data System (ADS)

    Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.

    2012-04-01

    Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by offline coupling with the wind forecast models. Modelled surface currents show good correlation with CODAR observed currents and the resolution of the surface wind data is shown to be important for model accuracy.

  11. Open Path and Solar Sourced Atmospheric Spectra are Analyzed Yielding Concentration Profiles and Temporal Variation Results

    NASA Astrophysics Data System (ADS)

    Hager, John; Steill, Jeff; Compton, Robert

    2004-11-01

    A high-resolution FTIR Bomem DA8 spectrometer has been installed at the University of Tennessee and has been successfully coupled with a suntracker and open path optics. Solar absorption spectra were recorded on 75 days in the last 18 months over a large spectral range. The high-resolution spectra provide information on the vertical concentration profiles of trace gases in the atmosphere. The HITRAN data base was used along with SFIT2 in order to retrieve concentration profiles of different trace gases. Many atmospheric constituents are open to this analysis. Tropospheric Ozone in the Knoxville area is rated as the worst in the nation by the American Lung Association. Sunlight, pollutants and hot weather cause ground-level ozone to form in harmful concentrations in the air. Seasonal and daily trends of ozone show correlation with other sources such as the EPA, and recent efforts to correlate solar spectra with open-path spectra will be discussed.

  12. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Śmiałek, M. A., E-mail: smialek@pg.gda.pl; Łabuda, M.; Guthmuller, J.

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). Newmore » vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)« less

  13. Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Theys, Nicolas; Yu, Huan; Danckaert, Thomas; Lerot, Christophe; Compernolle, Steven; Van Roozendael, Michel; Richter, Andreas; Hilboll, Andreas; Peters, Enno; Pedergnana, Mattia; Loyola, Diego; Beirle, Steffen; Wagner, Thomas; Eskes, Henk; van Geffen, Jos; Folkert Boersma, Klaas; Veefkind, Pepijn

    2018-04-01

    On board the Copernicus Sentinel-5 Precursor (S5P) platform, the TROPOspheric Monitoring Instrument (TROPOMI) is a double-channel, nadir-viewing grating spectrometer measuring solar back-scattered earthshine radiances in the ultraviolet, visible, near-infrared, and shortwave infrared with global daily coverage. In the ultraviolet range, its spectral resolution and radiometric performance are equivalent to those of its predecessor OMI, but its horizontal resolution at true nadir is improved by an order of magnitude. This paper introduces the formaldehyde (HCHO) tropospheric vertical column retrieval algorithm implemented in the S5P operational processor and comprehensively describes its various retrieval steps. Furthermore, algorithmic improvements developed in the framework of the EU FP7-project QA4ECV are described for future updates of the processor. Detailed error estimates are discussed in the light of Copernicus user requirements and needs for validation are highlighted. Finally, verification results based on the application of the algorithm to OMI measurements are presented, demonstrating the performances expected for TROPOMI.

  14. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Astrophysics Data System (ADS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-09-01

    Using high-resolution time-sequence photographs of solar granulation from the SOUP experiment on Spacelab 2 the authors observed large-scale horizontal flows in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into the surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  15. Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton-proton collisions at the LHC.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Lopez, S Calvente; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duffield, E M; Duflot, L; Duguid, L; Dührssen, M; Dumancic, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heidegger, K K; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyko, A M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A S; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Outschoorn, V I Martinez; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Rodriguez, L Pacheco; Aranda, C Padilla; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Palma, A; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Martinez, V Sanchez; Pineda, A Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valéry, L; Valkar, S; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, W; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zwalinski, L

    2017-01-01

    This paper presents the method and performance of primary vertex reconstruction in proton-proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of [Formula: see text] TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about [Formula: see text] is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than [Formula: see text] and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing.

  16. Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton-proton collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zwalinski, L.

    2017-05-01

    This paper presents the method and performance of primary vertex reconstruction in proton-proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √{s} = 8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing.

  17. Scanning laser beam displays based on a 2D MEMS

    NASA Astrophysics Data System (ADS)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  18. The Reference Elevation Model of Antarctica (REMA): A High Resolution, Time-Stamped Digital Elevation Model for the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Howat, I.; Noh, M. J.; Porter, C. C.; Smith, B. E.; Morin, P. J.

    2017-12-01

    We are creating the Reference Elevation Model of Antarctica (REMA), a continuous, high resolution (2-8 m), high precision (accuracy better than 1 m) reference surface for a wide range of glaciological and geodetic applications. REMA will be constructed from stereo-photogrammetric Digital Surface Models (DSM) extracted from pairs of submeter resolution DigitalGlobe satellite imagery and vertically registred to precise elevations from near-coincident airborne LiDAR, ground-based GPS surveys and Cryosat-2 radar altimetry. Both a seamless mosaic and individual, time-stamped DSM strips, collected primarily between 2012 and 2016, will be distributed to enable change measurement. These data will be used for mapping bed topography from ice thickness, measuring ice thickness changes, constraining ice flow and geodynamic models, mapping glacial geomorphology, terrain corrections and filtering of remote sensing observations, and many other science tasks. Is will also be critical for mapping ice traverse routes, landing sites and other field logistics planning. REMA will also provide a critical elevation benchmark for future satellite altimetry missions including ICESat-2. Here we report on REMA production progress, initial accuracy assessment and data availability.

  19. Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-05-19

    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s = 8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of aboutmore » 30 μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20 μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing.« less

  20. Development of a hybrid 3-D hydrological model to simulate hillslopes and the regional unconfined aquifer system in Earth system models

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.

    2015-12-01

    The terrestrial hydrological system, including surface and subsurface water, is an essential component of the Earth's climate system. Over the past few decades, land surface modelers have built one-dimensional (1D) models resolving the vertical flow of water through the soil column for use in Earth system models (ESMs). These models generally have a relatively coarse model grid size (~25-100 km) and only account for sub-grid lateral hydrological variations using simple parameterization schemes. At the same time, hydrologists have developed detailed high-resolution (~0.1-10 km grid size) three dimensional (3D) models and showed the importance of accounting for the vertical and lateral redistribution of surface and subsurface water on soil moisture, the surface energy balance and ecosystem dynamics on these smaller scales. However, computational constraints have limited the implementation of the high-resolution models for continental and global scale applications. The current work presents a hybrid-3D hydrological approach is presented, where the 1D vertical soil column model (available in many ESMs) is coupled with a high-resolution lateral flow model (h2D) to simulate subsurface flow and overland flow. H2D accounts for both local-scale hillslope and regional-scale unconfined aquifer responses (i.e. riparian zone and wetlands). This approach was shown to give comparable results as those obtained by an explicit 3D Richards model for the subsurface, but improves runtime efficiency considerably. The h3D approach is implemented for the Delaware river basin, where Noah-MP land surface model (LSM) is used to calculated vertical energy and water exchanges with the atmosphere using a 10km grid resolution. Noah-MP was coupled within the WRF-Hydro infrastructure with the lateral 1km grid resolution h2D model, for which the average depth-to-bedrock, hillslope width function and soil parameters were estimated from digital datasets. The ability of this h3D approach to simulate the hydrological dynamics of the Delaware River basin will be assessed by comparing the model results (both hydrological performance and numerical efficiency) with the standard setup of the NOAH-MP model and a high-resolution (1km) version of NOAH-MP, which also explicitly accounts for lateral subsurface and overland flow.

  1. A multi-resolution approach to electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu

    2018-07-01

    We present a multi-resolution approach for 3-D magnetotelluric forward modelling. Our approach is motivated by the fact that fine-grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. With a conventional structured finite difference grid, the fine discretization required to adequately represent rapid variations near the surface is continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modelling is especially important for solving regularized inversion problems. We implement a multi-resolution finite difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of subgrids, with each subgrid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modelling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modelling operators on interfaces between adjacent subgrids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models shows that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.

  2. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    USGS Publications Warehouse

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  3. Near Surface Magnetic Survey for Investigating the Cultural Relics in Suchon, Gongju, Korea

    NASA Astrophysics Data System (ADS)

    Islam, M. R.; Tiampo, K.; Suh, M.; Abdallatif, T. F.

    2009-05-01

    A magnetic study by the FM256 Fluxgate Gradiometer was conducted in Suchon, Gongju to measure the vertical magnetic gradient of the Earth's magnetic field and to give further details of the shallow section. The region was divided into two separate areas. The first study area measured 40m by 20m while the second study area was 20m x 20m. Each was subsequently divided into four grids of dimension 20m by 10m and 10m by 10m respectively. Measurements of the vertical magnetic gradient were conducted through successive zigzag traverses. The sample-interval and the traverse-interval were set to specifically record small anomalies at a high resolution. A total of 3200 readings were measured at the first study area and 1600 at the second study area. The data have been downloaded, presented and processed through the Geoplot software to remove the spikes, grid discontinuities, and traverses stripes, and also to enhance the display and smooth the data using the Gaussian low-pass filtering techniques. The vertical gradient of the processed data over the second study area ranges from -34nT to + 21nT, while it ranges from -36nT to + 62nT at the first study area. The gradiometer results defined several positive and negative magnetic anomalies, which revealed the existence of several subsurface features of different shapes and sizes. A comparison between the processed magnetic images suggest that the subsurface features may include a room structure (e.g. hut), a cave-shaped stone chamber tomb, an accumulation of potteries and porcelains common in the Baekje period in the ancient Korean history. The biggest anomaly (3 m in diameter) may illuminate a quartzite tomb chamber. As a result, the study area has great archaeological interest.

  4. Forecasting the northern African dust outbreak towards Europe in April 2011: A model intercomparison

    DOE PAGES

    Huneeus, N.; Basart, S.; Fiedler, S.; ...

    2016-04-21

    In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 h using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distributionmore » was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. In this paper, our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.« less

  5. Data Impact of the DMSP F18 SSULI UV Data on the Operational GAIM Model

    NASA Astrophysics Data System (ADS)

    Dandenault, P. B.; Metzler, C. A.; Nicholas, A. C.; Coker, C.; Budzien, S. A.; Chua, D. H.; Finne, T. T.; Dymond, K.; Walker, P. W.; Schunk, R. W.; Scherliess, L.; Gardner, L. C.

    2011-12-01

    The Naval Research Laboratory (NRL) has developed five ultraviolet remote sensing instruments for the United States Air Force (USAF) Defense Meteorological Satellite Program (DMSP). The DMSP satellites are launched in a near-polar, sun-synchronous orbit at an altitude of approximately 830 km. Each Special Sensor Ultraviolet Limb Imager (SSULI) instrument measures vertical profiles of the natural airglow radiation from atoms, molecules and ions in the upper atmosphere and ionosphere by viewing the earth's limb within a tangent altitude range of approximately 50 km to 750 km. Limb observations are made from the extreme ultraviolet (EUV) to the far ultraviolet (FUV) over the wavelength range of 80 nm to 170 nm, with 1.8 nm resolution. Data products from SSULI observations include nightglow and dayglow Sensor Data Records (SDRs), as well as Environmental Data Records (EDRs) which contain vertical profiles of electron (Ne) densities, N2, O2, O, O+, and Temperature, hmF2, NmF2 and vertical Total Electron Content (TEC). On October 18, 2009, the third SSULI sensor launched from Vandenberg Air Force Base aboard the DMSP F18 spacecraft. The Calibration and Validation of the F18 instrument has completed and the SSULI program is scheduled to go operational at the Air Force Weather Agency (AFWA) in Fall 2011. The SSULI F18 data are ingested by the Global Assimilation of Ionospheric Measurements (GAIM) space weather model, which was developed by Utah State University and has been used operationally at AFWA since February 2006. A brief overview of the SSULI F18 SDR data assimilation process with GAIM is provided and the impact of the SSULI 1356 Å emission on the GAIM model is examined for spring and summer 2011 nightside data in the low-latitude region.

  6. Impact of the Number of Applied Current Meter Sensors on the Accuracy of Flow Rate Measurements across a Range of Hydroelectric Facilities Indicative of the Domestic Hydroelectric Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Mark H; Hadjerioua, Boualem; Lee, Kyutae

    2015-01-01

    The following paper represents the results of an investigation into the impact of the number and placement of Current Meter (CM) flow sensors on the accuracy to which they are capable of predicting the overall flow rate. Flow measurement accuracy is of particular importance in multiunit plants because it plays a pivotal role in determining the operational efficiency characteristics of each unit, allowing the operator to select the unit (or combination of units) which most efficiently meet demand. Several case studies have demonstrated that optimization of unit dispatch has the potential to increase plant efficiencies from between 1 to 4.4more » percent [2] [3]. Unfortunately current industry standards do not have an established methodology to measure the flow rate through hydropower units with short converging intakes (SCI); the only direction provided is that CM sensors should be used. The most common application of CM is horizontally, along a trolley which is incrementally lowered across a measurement cross section. As such, the measurement resolution is defined horizontally and vertically by the number of CM and the number of measurement increments respectively. There has not been any published research on the role of resolution in either direction on the accuracy of flow measurement. The work below investigates the effectiveness of flow measurement in a SCI by performing a case study in which point velocity measurements were extracted from a physical plant and then used to calculate a series of reference flow distributions. These distributions were then used to perform sensitivity studies on the relation between the number of CM and the accuracy to which the flow rate was predicted. The following research uncovered that a minimum of 795 plants contain SCI, a quantity which represents roughly 12% of total domestic hydropower capacity. In regards to measurement accuracy, it was determined that accuracy ceases to increase considerably due to strict increases in vertical resolution beyond the application of 49 transects. Moreover the research uncovered that the application of 5 CM (when applied at 49 vertical transects) resulted in an average accuracy of 95.6% and the application of additional sensors resulted in a linear increase in accuracy up to 17 CM which had an average accuracy of 98.5%. Beyond 17 CM incremental increases in accuracy due to the addition of CM was found decrease exponentially. Future work that will be performed in this area will investigate the use of computational fluid dynamics to acquire a broader range of flow fields within SCI.« less

  7. Demonstration of Tuning to Stimulus Orientation in the Human Visual Cortex: A High-Resolution fMRI Study with a Novel Continuous and Periodic Stimulation Paradigm

    PubMed Central

    Sun, Pei; Gardner, Justin L.; Costagli, Mauro; Ueno, Kenichi; Waggoner, R. Allen; Tanaka, Keiji; Cheng, Kang

    2013-01-01

    Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception. PMID:22661413

  8. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  9. Development of a multiplexing fingerprint and high wavenumber Raman spectroscopy technique for real-time in vivo tissue Raman measurements at endoscopy

    NASA Astrophysics Data System (ADS)

    Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei

    2013-03-01

    We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm-1 1750 to 3600 cm-1) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm-1 within 1.0 s with a spectral resolution of 3 to 6 cm-1 during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.

  10. SUSANS With Polarized Neutrons.

    PubMed

    Wagh, Apoorva G; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang

    2005-01-01

    Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10(-4) nm(-1) to 10(-3) nm(-1) afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 10(4) A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10(-3) nm(-1) range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples.

  11. Initial Performance Assessment of CALIOP

    NASA Technical Reports Server (NTRS)

    Winker, David; Hunt, Bill; McGill, Matthew

    2007-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, pronounced the same as "calliope") is a spaceborne two-wavelength polarizatio n lidar that has been acquiring global data since June 2006. CALIOP p rovides high resolution vertical profiles of clouds and aerosols, and has been designed with a very large linear dynamic range to encompas s the full range of signal returns from aerosols and clouds. CALIOP is the primary instrument carried by the Cloud-Aerosol Lidar and Infrar ed Pathfinder Satellite Observations (CALIPSO) satellite, which was l aunched on April, 28 2006. CALIPSO was developed within the framework of a collaboration between NASA and the French space agency, CNES. I nitial data analysis and validation intercomparisons indicate the qua lity of data from CALIOP meets or exceeds expectations. This paper presents a description of the CALIPSO mission, the CALIOP instrument, an d an initial assessment of on-orbit measurement performance.

  12. A Ground-Based Profiling Differential Absorption LIDAR System for Measuring CO2 in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James

    2002-01-01

    Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.

  13. Infrared spectrometry of Venus: IR Fourier spectrometer on Venera 15 as a precursor of PFS for Venus express

    NASA Astrophysics Data System (ADS)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.

    2004-01-01

    Thermal infrared spectrometry in the range 6-40 μm with spectral resolution of 4.5-6.5 cm -1 was realized onboard of Venera 15 for the middle atmosphere of Venus investigations. The 3-D temperature and zonal wind fields ( h, ϕ, LT) in the range 55-100 km and the 3-D aerosol field ( h, ϕ, LT) in the range 55-70 km were retrieved and analyzed. The solar related waves at isobaric levels, generated by the absorbed solar energy, were investigated. In the thermal IR spectral range the, ν1, ν2 and ν3 SO 2 and the H 2O rotational (40 μm) and vibro-rotational (6.3 μm) absorption bands are observed and used for minor compounds retrieval. An advantage of the thermal infrared spectrometry method is that both the temperature and aerosol profiles, which need for retrieval of the vertical profiles of minor compounds, are evaluated from the same spectrum. The Fourier spectrometer on Venera-15 may be considered as a precursor of the Planetary Fourier Spectrometer (PI Prof. V. Formisano), which is included in the payload of the planned Venus Express mission. It has a spectral range 0.9-45 μm, separated into two channels: a short wavelength channel (SWC) in the range 0.9-5 μm and a long wavelength channel (LWC) from 6 to 45 μm, and spectral resolution of 1-2 cm -1. In the history of planetary Fourier spectrometry the PFS is a unique instrument, which possesses a short wavelength channel. A functioning of this instrument on the polar orbit with a good spatial and local time coverage will advance our knowledge in the fundamental problems of the Venus atmosphere.

  14. The impact of vertical resolution in mesoscale model AROME forecasting of radiation fog

    NASA Astrophysics Data System (ADS)

    Philip, Alexandre; Bergot, Thierry; Bouteloup, Yves; Bouyssel, François

    2015-04-01

    Airports short-term forecasting of fog has a security and economic impact. Numerical simulations have been performed with the mesoscale model AROME (Application of Research to Operations at Mesoscale) (Seity et al. 2011). Three vertical resolutions (60, 90 and 156 levels) are used to show the impact of radiation fog on numerical forecasting. Observations at Roissy Charles De Gaulle airport are compared to simulations. Significant differences in the onset, evolution and dissipation of fog were found. The high resolution simulation is in better agreement with observations than a coarser one. The surface boundary layer and incoming long-wave radiations are better represented. A more realistic behaviour of liquid water content evolution allows a better anticipation of low visibility procedures (ceiling < 60m and/or visibility < 600m). The case study of radiation fog shows that it is necessary to have a well defined vertical grid to better represent local phenomena. A statistical study over 6 months (October 2011 - March 2012 ) using different configurations was carried out. Statistically, results were the same as in the case study of radiation fog. Seity Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, V. Masson, 2011: The AROME-France convective scale operational model. Mon.Wea.Rev., 139, 976-991.

  15. Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction

    NASA Technical Reports Server (NTRS)

    Li, Zhijin; Chao, Yi; Li, P. Peggy

    2012-01-01

    A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.

  16. VESPA-22: a ground-based microwave spectrometer for long-term measurements of polar stratospheric water vapor

    NASA Astrophysics Data System (ADS)

    Mevi, Gabriele; Muscari, Giovanni; Bertagnolio, Pietro Paolo; Fiorucci, Irene; Pace, Giandomenico

    2018-02-01

    The new ground-based 22 GHz spectrometer, VESPA-22 (water Vapor Emission Spectrometer for Polar Atmosphere at 22 GHz) measures the 22.23 GHz water vapor emission line with a bandwidth of 500 MHz and a frequency resolution of 31 kHz. The integration time for a measurement ranges from 6 to 24 h, depending on season and weather conditions. Water vapor spectra are collected using the beam-switching technique. VESPA-22 is designed to operate automatically with little maintenance; it employs an uncooled front-end characterized by a receiver temperature of about 180 K and its quasi-optical system presents a full width at half maximum of 3.5°. Every 30 min VESPA-22 measures also the sky opacity using the tipping curve technique. The instrument calibration is performed automatically by a noise diode; the emission temperature of this element is estimated twice an hour by observing alternatively a black body at ambient temperature and the sky at an elevation of 60°. The retrieved profiles obtained inverting 24 h integration spectra present a sensitivity larger than 0.8 from about 25 to 75 km of altitude during winter and from about 30 to 65 km during summer, a vertical resolution from about 12 to 23 km (depending on altitude), and an overall 1σ uncertainty lower than 7 % up to 60 km altitude and rapidly increasing to 20 % at 75 km. In July 2016, VESPA-22 was installed at the Thule High Arctic Atmospheric Observatory located at Thule Air Base (76.5° N, 68.8° W), Greenland, and it has been operating almost continuously since then. The VESPA-22 water vapor mixing ratio vertical profiles discussed in this work are obtained from 24 h averaged spectra and are compared with version 4.2 of concurrent Aura/Microwave Limb Sounder (MLS) water vapor vertical profiles. In the sensitivity range of VESPA-22 retrievals, the intercomparison from July 2016 to July 2017 between VESPA-22 dataset and Aura/MLS dataset convolved with VESPA-22 averaging kernels shows an average difference within 1.4 % up to 60 km altitude and increasing to about 6 % (0.2 ppmv) at 72 km.

  17. An analysis of Solar Mesospheric Explorer temperatures for the upper stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Rusch, David W.

    1993-01-01

    We proposed to analyze Solar Mesosphere Explorer (SME) limb profiles of Rayleigh scattered solar flux at wavelengths of 304, 313, and 443 nm to retrieve atmospheric temperature profiles over the 40-65 km altitude region. These temperatures can be combined with the previous analysis of SME 296 nm limb radiances to construct a monthly average climatology of atmospheric temperatures over the 40-90 km, upper stratosphere-mesosphere region, with approximately 4 km vertical resolution. We proposed to investigate the detailed nature of the global temperature structure of this poorly measured region, based on these 1982-1986 SME temperatures. The average vertical structure of temperatures between the stratopause and mesopause has never been determined globally with vertical resolution sufficient to retrieve even scale-height structures. Hence, the SME temperatures provided a unique opportunity to study the detailed thermal structure of the mesosphere, in advance of Upper Atmosphere Research Satellite (UARS) measurements and the Thermosphere Ionosphere Mesosphere Energy and Dynamics (TIMED) mission.

  18. Hvr-Gs at MT. Graham:. Optical Turbulence Vertical Distribution with Standard and High Resolution

    NASA Astrophysics Data System (ADS)

    Masciadri, E.; Stoesz, J.; Lascaux, F.; Hagelin, S.

    2009-09-01

    Since a few years measurements of the optical turbulence vertical distribution have been done at Mt. Graham with a Generalized Scidar (GS) located at the focus of the 1.75 m Vatican Advance Technological Telescope (VATT). Such a telescope is placed on the summit of Mt. Graham (Arizona) at around 250 m far away from the Large Binocular Telescope (LBT). Thanks to a new technique1 that we recently proposed based on the GS observations of wide-binaries (30-35 arcsec), measurements of CN2 profiles characterized by a vertical resolution as high as 20-30 m in the first 600 m have been also collected. The statistic sample of measurements consists, at present, of 43 nights distributed in different periods of the year. In this contribution we present the main scientific motivations as well as the analysis of this extended survey and new insights into the turbulence characterization achieved so far by this on-going activity.

  19. Combining Direct Broadcast Polar Hyper-spectral Soundings with Geostationary Multi-spectral Imagery for Producing Low Latency Sounding Products

    NASA Astrophysics Data System (ADS)

    Smith, W.; Weisz, E.; McNabb, J. M. C.

    2017-12-01

    A technique is described which enables the combination of high vertical resolution (1 to 2-km) JPSS hyper-spectral soundings (i.e., from AIRS, CrIS, and IASI) with high horizontal (2-km) and temporal (15-min) resolution GOES multi-spectral imagery (i.e., provided by ABI) to produce low latency sounding products with the highest possible spatial and temporal resolution afforded by the instruments.

  20. Software-based stacking techniques to enhance depth of field and dynamic range in digital photomicrography.

    PubMed

    Piper, Jörg

    2010-01-01

    Several software solutions are powerful tools to enhance the depth of field and improve focus in digital photomicrography. By these means, the focal depth can be fundamentally optimized so that three-dimensional structures within specimens can be documented with superior quality. Thus, images can be created in light microscopy which will be comparable with scanning electron micrographs. The remaining sharpness will no longer be dependent on the specimen's vertical dimension or its range in regional thickness. Moreover, any potential lack of definition associated with loss of planarity and unsteadiness in the visual accommodation can be mitigated or eliminated so that the contour sharpness and resolution can be strongly enhanced.Through the use of complementary software, ultrahigh ranges in brightness and contrast (the so-called high-dynamic range) can be corrected so that the final images will also be free from locally over- or underexposed zones. Furthermore, fine detail in low natural contrast can be visualized in much higher clarity. Fundamental enhancements of the global visual information will result from both techniques.

  1. A sensitivity analysis of cloud properties to CLUBB parameters in the single-column Community Atmosphere Model (SCAM5)

    DOE PAGES

    Guo, Zhun; Wang, Minghuai; Qian, Yun; ...

    2014-08-13

    In this study, we investigate the sensitivity of simulated shallow cumulus and stratocumulus clouds to selected tunable parameters of Cloud Layers Unified by Binormals (CLUBB) in the single column version of Community Atmosphere Model version 5 (SCAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is adopted to study the responses of simulated cloud fields to tunable parameters. One stratocumulus and two shallow convection cases are configured at both coarse and fine vertical resolutions in this study.. Our results show that most of the variance in simulated cloudmore » fields can be explained by a small number of tunable parameters. The parameters related to Newtonian and buoyancy-damping terms of total water flux are found to be the most influential parameters for stratocumulus. For shallow cumulus, the most influential parameters are those related to skewness of vertical velocity, reflecting the strong coupling between cloud properties and dynamics in this regime. The influential parameters in the stratocumulus case are sensitive to the choice of the vertical resolution while little sensitivity is found for the shallow convection cases, as eddy mixing length (or dissipation time scale) plays a more important role and depends more strongly on the vertical resolution in stratocumulus than in shallow convections. The influential parameters remain almost unchanged when the number of tunable parameters increases from 16 to 35. This study improves understanding of the CLUBB behavior associated with parameter uncertainties.« less

  2. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-09-01

    Vorticity-driven lateral fire spread (VLS) is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep leeward slope in a direction approximately transverse to the background winds. VLS is often accompanied by a downwind extension of the active flaming region and intense pyro-convection. In this study, the WRF-Fire (WRF stands for Weather Research and Forecasting) coupled atmosphere-fire model is used to examine the sensitivity of resolving VLS to both the horizontal and vertical grid spacing, and the fire-to-atmosphere coupling from within the model framework. The atmospheric horizontal and vertical grid spacing are varied between 25 and 90 m, and the fire-to-atmosphere coupling is either enabled or disabled. At high spatial resolutions, the inclusion of fire-to-atmosphere coupling increases the upslope and lateral rate of spread by factors of up to 2.7 and 9.5, respectively. This increase in the upslope and lateral rate of spread diminishes at coarser spatial resolutions, and VLS is not modelled for a horizontal and vertical grid spacing of 90 m. The lateral fire spread is driven by fire whirls formed due to an interaction between the background winds and the vertical circulation generated at the flank of the fire front as part of the pyro-convective updraft. The laterally advancing fire fronts become the dominant contributors to the extreme pyro-convection. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to model VLS with WRF-Fire.

  3. Fine resolution 3D temperature fields off Kerguelen from instrumented penguins

    NASA Astrophysics Data System (ADS)

    Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André

    2004-12-01

    The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen Plateau.

  4. High Resolution Simulations of Pollution Vertical Stratification over Santiago and its Transport to the Chilean Andes

    NASA Astrophysics Data System (ADS)

    Orfanoz-Cheuquelaf, A. P.; Gallardo, L.; Huneeus, N.; Lambert, F.

    2015-12-01

    Santiago, Chile (33.5 S, 70.5 W, 500 m.a.s.l., population 7 millions) is a large city situated in a basin surrounded by the Andes in the East and smaller mountain ranges to the North, West, and South. It is plagued by abnormally high pollution levels for its size due to climatological and topological features. To date, it is unclear how far the urban pollution plume reaches up the mountain. Here we explore the region's complex atmospheric circulation and particularly the transport of black carbon (BC) using a state of the art numerical model (WRF-Chem, Weather Research and Forecasting model).Observations indicate the presence of multiple layers within the boundary layer, as well as the occurrence of uncoupled layers above the boundary layer. Here we explore mechanisms within our simulation that may explain these features. Our results suggest that they may correspond to residual layers that are produced by recirculation along mountain slopes due to the complex terrain around the city.In late August 2013, a short multi-platform measuring campaign (DIVERSOL) took place in the Santiago basin, providing the first vertical profiles of BC, accompanied by meteorological soundings. We analyze the dispersion of a quasi-passive tracer (carbon monoxide) of black carbon in our simulation to improve our understanding of the governing mixing and transport processes. We also perform sensitivity studies with respect to vertical resolution and turbulence schemes, contrasting our results against DIVERSOL data. Our simulations suggest that pollutants emitted in Santiago could reach the high regions of Andes mountains during the afternoon circulation, thus affecting local glaciers. With an entire year of simulation we find that the stratification of pollutants within the basin displays a seasonal signal, as well as a capacity to reach the Chilean Andes and affect the Andean cryosphere.

  5. The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP)

    NASA Astrophysics Data System (ADS)

    Chepfer, H.; Bony, S.; Winker, D.; Cesana, G.; Dufresne, J. L.; Minnis, P.; Stubenrauch, C. J.; Zeng, S.

    2010-01-01

    This article presents the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP) designed to evaluate the cloudiness simulated by general circulation models (GCMs). For this purpose, Cloud-Aerosol Lidar with Orthogonal Polarization L1 data are processed following the same steps as in a lidar simulator used to diagnose the model cloud cover that CALIPSO would observe from space if the satellite was flying above an atmosphere similar to that predicted by the GCM. Instantaneous profiles of the lidar scattering ratio (SR) are first computed at the highest horizontal resolution of the data but at the vertical resolution typical of current GCMs, and then cloud diagnostics are inferred from these profiles: vertical distribution of cloud fraction, horizontal distribution of low, middle, high, and total cloud fractions, instantaneous SR profiles, and SR histograms as a function of height. Results are presented for different seasons (January-March 2007-2008 and June-August 2006-2008), and their sensitivity to parameters of the lidar simulator is investigated. It is shown that the choice of the vertical resolution and of the SR threshold value used for cloud detection can modify the cloud fraction by up to 0.20, particularly in the shallow cumulus regions. The tropical marine low-level cloud fraction is larger during nighttime (by up to 0.15) than during daytime. The histograms of SR characterize the cloud types encountered in different regions. The GOCCP high-level cloud amount is similar to that from the TIROS Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). The low-level and middle-level cloud fractions are larger than those derived from passive remote sensing (International Satellite Cloud Climatology Project, Moderate-Resolution Imaging Spectroradiometer-Cloud and Earth Radiant Energy System Polarization and Directionality of Earth Reflectances, TOVS Path B, AIRS-Laboratoire de Météorologie Dynamique) because the latter only provide information on the uppermost cloud layer.

  6. Fine-resolution repeat topographic surveying of dryland landscapes using UAS-based structure-from-motion photogrammetry: Assessing accuracy and precision against traditional ground-based erosion measurements

    USGS Publications Warehouse

    Gillian, Jeffrey K.; Karl, Jason W.; Elaksher, Ahmed; Duniway, Michael C.

    2017-01-01

    Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS) imagery is an emerging tool for repeat topographic surveying of dryland erosion. These methods are particularly appealing due to the ability to cover large landscapes compared to field methods and at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been explored in many studies, typically by comparing image coordinates to surveyed check points or LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution DTMs derived from fixed-wing UAS imagery with a traditional ground-based method of measuring soil surface change called erosion bridges. We assessed accuracy by comparing the elevation values between DTMs and erosion bridges along thirty topographic transects each 6.1 m long. Comparisons occurred at two points in time (June 2014, February 2015) which enabled us to assess vertical accuracy with 3314 data points and vertical precision (i.e., repeatability) with 1657 data points. We found strong vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and February 2015, respectively) and high vertical precision for the DTMs (RMSE 2.8 cm). Our results from comparing SfM-generated DTMs to check points, and strong agreement with erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some studies. However, while collecting the UAS imagery and generating the SfM DTMs for this study was faster than collecting erosion bridge measurements, technical challenges related to the need for ground control networks and image processing requirements must be addressed before this technique could be applied effectively to large landscapes.

  7. A porewater - based stable isotope approach for the investigation of subsurface hydrological processes

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Külls, C.; Weiler, M.

    2011-10-01

    Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid moutainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of porewater at various points along a fall line of a pasture hillslope in the southern Black Forest, Germany. The Porewater Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along two transects at the hillslopes. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in stream water during base flow. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.

  8. Organic permeable-base transistors - superb power efficiency at highest frequencies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Klinger, Markus P.; Fischer, Axel; Kaschura, Felix; Scholz, Reinhard; Lüssem, Björn; Kheradmand-Boroujeni, Bahman; Ellinger, Frank; Kasemann, Daniel; Leo, Karl

    2016-11-01

    Organic field-effect transistors (OFET) are important elements in thin-film electronics, being considered for flat-panel or flexible displays, radio frequency identification systems, and sensor arrays. To optimize the devices for high-frequency operation, the channel length, defined as the horizontal distance between the source and the drain contact, can be scaled down. Here, an architecture with a vertical current flow, in particular the Organic Permeable-Base Transistors (OPBT), opens up new opportunities, because the effective transit length in vertical direction is precisely tunable in the nanometer range by the thickness of the semiconductor layer. We present an advanced OPBT, competing with best OFETs while a low-cost, OLED-like fabrication with low-resolution shadow masks is used (Klinger et al., Adv. Mater. 27, 2015). Its design consists of a stack of three parallel electrodes separated by two semiconductor layers of C60 . The vertical current flow is controlled by the middle base electrode with nano-sized openings passivated by an native oxide. Using insulated layers to structure the active area, devices show an on/off ratio of 10⁶ , drive 11 A/cm² at an operation voltage of 1 V, and have a low subthreshold slope of 102 mV/decade. These OPBTs show a unity current-gain transit frequency of 2.2 MHz and off-state break-down fields above 1 MV/cm. Thus, our optimized setup does not only set a benchmark for vertical organic transistors, but also outperforms best lateral OFETs using similar low-cost structuring techniques in terms of power efficiency at high frequencies.

  9. The magnetic field inside a protoplanetary disc gap opened by planets of different masses

    NASA Astrophysics Data System (ADS)

    Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W.

    2017-12-01

    We perform magnetohydrodynamic simulations of protoplanetary disc gaps opened by planets of various masses, with the aim of calculating the strength of the vertical magnetic field threading such gaps. We introduce a gravitational potential at the centre of a shearing box to compute the tidal interaction between the planets and the disc gas, which is turbulent due to the magnetorotational instability. Two types of simulations are executed: 1) In type 'Z', the initial magnetic field has only a uniform, vertical component, and ten planet masses between 0.66 and 6.64 thermal masses are used; 2) In type 'YZ', the initial magnetic field has both toroidal and vertical components, and five planet masses covering the same mass range are used. Our results show that, for low planet masses, higher values of the vertical magnetic field occur inside the gaps than outside, in agreement with the previous work. However, for massive planets, we find that the radial profiles of the field show dips near the gap centre. The interior of the Hill sphere of the most massive planet in the Z runs contains more low-plasma β values (i.e. high magnetic pressure) compared to lower-mass planets. Values of β at a distance of one Hill radius from each planet show a moderate decrease with planet mass. These results are relevant for the magnetic structure of circumplanetary discs and their possible outflows, and may be refined to aid future observational efforts to infer planet masses from high-resolution polarimetric observations of discs with gaps.

  10. Vertical Accuracy Evaluation of Aster GDEM2 Over a Mountainous Area Based on Uav Photogrammetry

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Qu, Y.; Guo, D.; Cui, T.

    2018-05-01

    Global digital elevation models (GDEM) provide elementary information on heights of the Earth's surface and objects on the ground. GDEMs have become an important data source for a range of applications. The vertical accuracy of a GDEM is critical for its applications. Nowadays UAVs has been widely used for large-scale surveying and mapping. Compared with traditional surveying techniques, UAV photogrammetry are more convenient and more cost-effective. UAV photogrammetry produces the DEM of the survey area with high accuracy and high spatial resolution. As a result, DEMs resulted from UAV photogrammetry can be used for a more detailed and accurate evaluation of the GDEM product. This study investigates the vertical accuracy (in terms of elevation accuracy and systematic errors) of the ASTER GDEM Version 2 dataset over a complex terrain based on UAV photogrammetry. Experimental results show that the elevation errors of ASTER GDEM2 are in normal distribution and the systematic error is quite small. The accuracy of the ASTER GDEM2 coincides well with that reported by the ASTER validation team. The accuracy in the research area is negatively correlated to both the slope of the terrain and the number of stereo observations. This study also evaluates the vertical accuracy of the up-sampled ASTER GDEM2. Experimental results show that the accuracy of the up-sampled ASTER GDEM2 data in the research area is not significantly reduced by the complexity of the terrain. The fine-grained accuracy evaluation of the ASTER GDEM2 is informative for the GDEM-supported UAV photogrammetric applications.

  11. a Borehole-Dilution Method for Quantifying Vertical Darcy Fluxes in the Hyporheic Zone

    NASA Astrophysics Data System (ADS)

    Augustine, S. D.; Annable, M. D.; Cho, J.

    2017-12-01

    The borehole dilution method has consistently and successfully been used for estimating local water fluxes, however, this method can be relatively labor intensive and expensive. The focus of this research is aimed at developing a low-cost, borehole dilution method for quantifying vertical water fluxes in the hyporheic zone at the surface-groundwater interface. This would allow for the deployment of multiple units within a targeted surface water body and thus produce high-resolution, spatially distributed data on the infiltration rates over a short period of time with minimal set-up requirements. The device consists of a 2-inch, inner diameter PVC pipe containing short, screened sections in its upper and lower segments. The working unit is driven into the sediment and acts as a continuous flow reactor creating a pathway between the subsurface pore-water and the overlying surface water where the presence of a hydraulic gradient facilitates vertical movement. We developed a simple electrode and tracer-injection system housed within the unit to inject and measure salt tracer concentrations at the desired intervals while monitoring and storing those measurements using open-source Arduino technology. Preliminary lab and field scale trials provided data that was fit to both zero and first order reaction rate functions for analysis. The field test was conducted over approximately one day within a wet retention basin. The initial results estimated a vertical Darcy flux of 113.5 cm/d. Additional testing over a range of expected Darcy fluxes will be presented along with an evaluation considering enhanced water flow due to the high hydraulic conductivity of the device.

  12. A multidisciplinary-based conceptual model of a fractured sedimentary bedrock aquitard: improved prediction of aquitard integrity

    NASA Astrophysics Data System (ADS)

    Runkel, Anthony C.; Tipping, Robert G.; Meyer, Jessica R.; Steenberg, Julia R.; Retzler, Andrew J.; Parker, Beth L.; Green, Jeff A.; Barry, John D.; Jones, Perry M.

    2018-06-01

    A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.

  13. Atmospheric QBO and ENSO indices with high vertical resolution from GNSS radio occultation temperature measurements

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, Hallgeir; Ladstädter, Florian; Scherllin-Pirscher, Barbara; Steiner, Andrea K.

    2018-03-01

    We provide atmospheric temperature variability indices for the tropical troposphere and stratosphere based on global navigation satellite system (GNSS) radio occultation (RO) temperature measurements. By exploiting the high vertical resolution and the uniform distribution of the GNSS RO temperature soundings we introduce two approaches, both based on an empirical orthogonal function (EOF) analysis. The first method utilizes the whole vertical and horizontal RO temperature field from 30° S to 30° N and from 2 to 35 km altitude. The resulting indices, the leading principal components, resemble the well-known patterns of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the tropics. They provide some information on the vertical structure; however, they are not vertically resolved. The second method applies the EOF analysis on each altitude level separately and the resulting indices contain information on the horizontal variability at each densely available altitude level. They capture more variability than the indices from the first method and present a mixture of all variability modes contributing at the respective altitude level, including the QBO and ENSO. Compared to commonly used variability indices from QBO winds or ENSO sea surface temperature, these new indices cover the vertical details of the atmospheric variability. Using them as proxies for temperature variability is also of advantage because there is no further need to account for response time lags. Atmospheric variability indices as novel products from RO are expected to be of great benefit for studies on atmospheric dynamics and variability, for climate trend analysis, as well as for climate model evaluation.

  14. Reversible Solid Adhesion for Defense Applications

    DTIC Science & Technology

    2008-01-31

    sensitive. Referring to Fig. 2(a), using the two closed-loop piezoelectric ( PZT ) actuators, the vertical and horizontal velocities of the...approaching/retracting contacting surfaces can be independently controlled. The displacement resolution of the vertical PZT actuator is 0.6 nm, and the total...interfacial forces are measured using the prototype custom-made capacity-type force transducer which is attached directly on the upper PZT actuator. In order

  15. Imaging Gravity Waves in Lower Stratospheric AMSU-A Radiances. Part 1: Simple Forward Model

    DTIC Science & Technology

    2006-08-14

    brightening” of microwave radiances acquired from purely vertical background temperature profiles by cross- track scanners. Waves propagating along track...three-dimensional wave fields. For example, some limb sensors return high- resolution vertical temperature profiles with wave oscilla- tions...provide only ver- tical profiles of wave oscillations, similar to radiosonde and rocketsonde data. Similarly, limb-tracking measurements from the

  16. Determining Titan surface topography from Cassini SAR data

    USGS Publications Warehouse

    Stiles, Bryan W.; Hensley, Scott; Gim, Yonggyu; Bates, David M.; Kirk, Randolph L.; Hayes, Alex; Radebaugh, Jani; Lorenz, Ralph D.; Mitchell, Karl L.; Callahan, Philip S.; Zebker, Howard; Johnson, William T.K.; Wall, Stephen D.; Lunine, Jonathan I.; Wood, Charles A.; Janssen, Michael; Pelletier, Frederic; West, Richard D.; Veeramacheneni, Chandini

    2009-01-01

    A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan. SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage. We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.

  17. An approach for retrieval of atmospheric trace gases CO II, CH 4 and CO from the future Canadian micro earth observation satellite (MEOS)

    NASA Astrophysics Data System (ADS)

    Trishchenko, Alexander P.; Khlopenkov, Konstantin V.; Wang, Shusen; Luo, Yi; Kruzelecky, Roman V.; Jamroz, Wes; Kroupnik, Guennadi

    2007-10-01

    Among all trace gases, the carbon dioxide and methane provide the largest contribution to the climate radiative forcing and together with carbon monoxide also to the global atmospheric carbon budget. New Micro Earth Observation Satellite (MEOS) mission is proposed to obtain information about these gases along with some other mission's objectives related to studying cloud and aerosol interactions. The miniature suit of instruments is proposed to make measurements with reduced spectral resolution (1.2nm) over wide NIR range 0.9μm to 2.45μm and with high spectral resolution (0.03nm) for three selected regions: oxygen A-band, 1.5μm-1.7μm band and 2.2μm-2.4μm band. It is also planned to supplement the spectrometer measurements with high spatial resolution imager for detailed characterization of cloud and surface albedo distribution within spectrometer field of view. The approaches for cloud/clear-sky identification and column retrievals of above trace gases are based on differential absorption technique and employ the combination of coarse and high-resolution spectral data. The combination of high and coarse resolution spectral data is beneficial for better characterization of surface spectral albedo and aerosol effects. An additional capability for retrieval of the vertical distribution amounts is obtained from the combination of nadir and limb measurements. Oxygen A-band path length will be used for normalization of trace gas retrievals.

  18. A Wide-Range Tunable Level-Keeper Using Vertical Metal-Oxide-Semiconductor Field-Effect Transistors for Current-Reuse Systems

    NASA Astrophysics Data System (ADS)

    Tanoi, Satoru; Endoh, Tetsuo

    2012-04-01

    A wide-range tunable level-keeper using vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed for current-reuse analog systems. The design keys for widening tunable range of the operation are a two-path feed-back and a vertical MOSFET with back-bias-effect free. The proposed circuit with the vertical MOSFETs shows the 1.23-V tunable-range of the input level with the 2.4-V internal-supply voltage (VDD) in the simulation. This tunable-range of the proposed circuit is 4.7 times wider than that of the conventional. The achieved current efficiency of the proposed level-keeper is 66% at the 1.2-V output with the 2.4-V VDD. This efficiency of the proposed circuit is twice higher than that of the traditional voltage down converter.

  19. Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Cofield, Richard; Kasl, Eldon P.

    2010-01-01

    We describe the fabrication and thermal-stability analysis and test of a composite demonstration model of the Scanning Microwave Limb Sounder (SMLS) primary reflector, having full 4m height and 1/3 the width planned for flight. SMLS is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission between 180 and 660 GHz. Current MLS instruments in low Earth orbit scan pencil-beam antennas (sized to resolve about one scale height) vertically over the atmospheric limb. SMLS, planned for the Global Atmospheric Composition Mission of the NRC Decadal Survey, adds azimuthal scanning for better horizontal and temporal resolution and coverage than typical orbit spacing provides. SMLS combines the wide scan range of the parabolic torus with unblocked offset Cassegrain optics. The resulting system is diffraction-limited in the vertical plane but highly astigmatic in the horizontal, having a beam aspect ratio [tilde operator]1:20. Symmetry about the nadir axis ensures that beam shape is nearly invariant over +/-65(white bullet) azimuth. The a feeds a low-noise SIS receiver whose FOV is swept over the reflector system by a small scanning mirror. Using finiteelement models of antenna reflectors and structure, we evaluate thermal deformations and the resulting optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during wide-range (ambient+[-97,+75](white bullet) C) thermal soak tests of the primary in a chamber. This range exceeds predicted orbital soak ranges by large factors, implying in-orbit thermal stability of 0.21(mu)m rms/(white bullet)C, which meets SMLS requirements.

  20. PFS: the Planetary Fourier Spectrometer for Mars Express

    NASA Astrophysics Data System (ADS)

    Formisano, V.; Grassi, D.; Orfei, R.; Biondi, D.; Mencarelli, E.; Mattana, A.; Nespoli, F.; Maturilli, A.; Giuranna, M.; Rossi, M.; Maggi, M.; Baldetti, P.; Chionchio, G.; Saggin, B.; Angrilli, F.; Bianchini, G.; Piccioni, G.; di Lellis, A.; Cerroni, P.; Capaccioni, F.; Capria, M. T.; Coradini, A.; Fonti, S.; Orofino, V.; Blanco, A.; Colangeli, L.; Palomba, E.; Esposito, F.; Patsaev, D.; Moroz, V.; Zasova, L.; Ignatiev, N.; Khatuntsev, I.; Moshkin, B.; Ekonomov, A.; Grigoriev, A.; Nechaev, V.; Kiselev, A.; Nikolsky, Y.; Gnedykh, V.; Titov, D.; Orleanski, P.; Rataj, M.; Malgoska, M.; Jurewicz, A.; Blecka, M. I.; Hirsh, H.; Arnold, G.; Lellouch, E.; Marten, A.; Encrenaz, T.; Lopez Moreno, J.; Atreya, S., Gobbi, P.

    2004-08-01

    The Planetary Fourier Spectrometer (PFS) for the Mars Express mission is optimised for atmospheric studies, covering the IR range of 1.2-45 μm in two channels. The apodised spectral resolution is 2 cm-1, while the sampling is 1 cm-1. The FOV is about 2° for the short wavelength (SW) channel and 4° for the long wavelength (LW) channel, corresponding to spatial resolutions of 10 km and 20 km, respectively, from an altitude of 300 km. PFS will also provide unique data on the surface-atmosphere interaction and the mineralogical composition of the surface. It will be the first Fourier spectrometer covering 1-5 μm to orbit the Earth or Mars. The experiment has real-time onboard Fast Fourier Transform (FFT) in order to select the spectral range of interest for data transmission to ground. Measurement of the 15-μm CO2 band is very important. Its profile gives, via a complex temperature-profile retrieval technique, the vertical pressure temperature relation, which is the basis of the global atmospheric study. The SW channel uses a PbSe detector cooled to 200-220K, while the LW channel is based on a pyroelectric (LiTaO3) device working at room temperature. The interferogram is measured at every 150 nm displacement step of the corner cube retroreflectors (corresponding to 600 nm optical path difference) via a laser diode monochromatic interferogram (a sine wave), with the zero crossings controlling the double pendulum motion. PFS will operate for about 1.5 h around the pericentre of the orbit. With a measurement every 10 s, 600 measurements per orbit will be acquired, corresponding to 224 Mbit. Onboard compression will reduce it to 125 Mbit or less, depending on the allocated data volume per day. An important requirement is to observe at all local times in order to include night-side vertical temperature profiles. Total instrument mass is 31.2 kg.

  1. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates.

    PubMed

    Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O

    2014-12-01

    The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding the achievability of water quality targets. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure.

    PubMed

    Choudhary, Nitin; Park, Juhong; Hwang, Jun Yeon; Chung, Hee-Suk; Dumas, Kenneth H; Khondaker, Saiful I; Choi, Wonbong; Jung, Yeonwoong

    2016-05-05

    Two-dimensional (2D) van der Waal (vdW) heterostructures composed of vertically-stacked multiple transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are envisioned to present unprecedented materials properties unobtainable from any other material systems. Conventional fabrications of these hybrid materials have relied on the low-yield manual exfoliation and stacking of individual 2D TMD layers, which remain impractical for scaled-up applications. Attempts to chemically synthesize these materials have been recently pursued, which are presently limited to randomly and scarcely grown 2D layers with uncontrolled layer numbers on very small areas. Here, we report the chemical vapor deposition (CVD) growth of large-area (>2 cm(2)) patterned 2D vdW heterostructures composed of few layer, vertically-stacked MoS2 and WS2. Detailed structural characterizations by Raman spectroscopy and high-resolution/scanning transmission electron microscopy (HRTEM/STEM) directly evidence the structural integrity of two distinct 2D TMD layers with atomically sharp vdW heterointerfaces. Electrical transport measurements of these materials reveal diode-like behavior with clear current rectification, further confirming the formation of high-quality heterointerfaces. The intrinsic scalability and controllability of the CVD method presented in this study opens up a wide range of opportunities for emerging applications based on the unconventional functionalities of these uniquely structured materials.

  3. Uplift of the Western Transverse Ranges and Ventura Area of Southern California: A Four-Technique Geodetic Study Combining GPS, InSAR, Leveling, and Tide Gauges

    NASA Astrophysics Data System (ADS)

    Hammond, William C.; Burgette, Reed J.; Johnson, Kaj M.; Blewitt, Geoffrey

    2018-01-01

    We estimate the rate of vertical land motion (VLM) in the region around the Western Transverse Ranges (WTR), Ventura, and Big Bend of the San Andreas Fault (SAF) of southern California using data from four geodetic techniques: GPS, interferometric synthetic aperture radar (InSAR), leveling, and tide gauges. We use a new analysis technique called GPS Imaging to combine the techniques and leverage the synergy between (1) high geographic resolution of InSAR, (2) precision, stability, and geocentric reference frame of GPS, (3) decades long observation of VLM with respect to the sea surface from tide gauges, and (4) relative VLM along dense leveling lines. The uncertainty in the overall rate field is 1 mm/yr, though some individual techniques have uncertainties as small as 0.2 mm/yr. The most rapid signals are attributable to subsidence in aquifers and groundwater changes. Uplift of the WTR is geographically continuous, adjacent to the SAF and appears related to active crustal contraction across Pacific/North America plate boundary fault system. Uplift of the WTR and San Gabriel Mountains is 2 mm/yr and is asymmetrically focused west of the SAF, consistent with interseismic strain accumulation across thrust faults in the Ventura area and Santa Barbara channel that accommodate contraction against the near vertical SAF.

  4. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning

    USGS Publications Warehouse

    McCoy, S.W.; Kean, J.W.; Coe, J.A.; Staley, D.M.; Wasklewicz, T.A.; Tucker, G.E.

    2010-01-01

    Many theoretical and laboratory studies have been undertaken to understand debris-flow processes and their associated hazards. However, complete and quantitative data sets from natural debris flows needed for confirmation of these results are limited. We used a novel combination of in situ measurements of debris-flow dynamics, video imagery, and pre- and postflow 2-cm-resolution digital terrain models to study a natural debris-flow event. Our field data constrain the initial and final reach morphology and key flow dynamics. The observed event consisted of multiple surges, each with clear variation of flow properties along the length of the surge. Steep, highly resistant, surge fronts of coarse-grained material without measurable pore-fluid pressure were pushed along by relatively fine-grained and water-rich tails that had a wide range of pore-fluid pressures (some two times greater than hydrostatic). Surges with larger nonequilibrium pore-fluid pressures had longer travel distances. A wide range of travel distances from different surges of similar size indicates that dynamic flow properties are of equal or greater importance than channel properties in determining where a particular surge will stop. Progressive vertical accretion of multiple surges generated the total thickness of mapped debris-flow deposits; nevertheless, deposits had massive, vertically unstratified sedimentological textures. ?? 2010 Geological Society of America.

  5. Present day vertical deformation of Pico and Faial islands revealed by merged INSAR and GPS data

    NASA Astrophysics Data System (ADS)

    Catalao, Joao; Nico, Giovanni; Catita, Cristina

    2010-05-01

    In this paper we investigate the problem of the integration of repeated GPS geodetic measurements and interferometric Synthetic Aperture Radar (SAR) observations for the determination of high resolution vertical deformation maps. The Faial and Pico islands in the Azores archipelago were chosen as study area. These islands are characterized by a intense volcanic and seismic activity. Both islands are covered by huge vegetation and have very unstable atmospheric conditions which negatively influence the interferometric processing. In this work, we apply the advanced interferometric SAR processing based on Persistent Scatterers. However, the small number of man made structures reduces the density of Persistent Scatterers. Furthermore, the different ascending and descending acquisition geometries give different sets of Persistent Scatterers, with complementary spatial coverage, and different line-of-sight velocities. The estimated velocities are relative to the master image (different from ascending and descending) and must be referred to an absolute velocity (in the sense of referred to a geodetic reference frame). The strategy used to overcome the aforementioned problems is based on the combination of sparse GPS 3D-velocities with two sets of Persistent Scatterers determined from ascending and descending passes. The input data are: a set of GPS - 3D velocities relative to ITRF05 (18 Stations) and two sets of Persistent Scatterers corresponding to the descending and ascending orbits. A dataset of 60 interferometric repeat-pass ASAR/ENVISAT images were acquired over the Faial and Pico islands, from 2006 to 2008, along ascending and descending passes. Each interferogram obtained by this dataset was corrected for atmospheric artefacts using a Weather Forecasting model. Initially, the horizontal velocity component (east and north) is assigned to each PS from interpolation of available GPS observations. Then, the vertical component of the velocity is determined from the SAR line-of-sight velocity and the GPS horizontal velocity component. Later, the vertical velocity offsets are numerically determined by comparison between GPS (ITRF velocities) and PS (the two ascending and descending sets) measurements. These values are then used to create the vertical deformation map of Faial and Pico islands with considerably better resolution and accuracy than using a single set of observations. The vertical deformation map has identified a large continuous area of subsidence on the west of Faial island, on the flank of Capelinhos eruption cone, with a maximum subsidence range of 10 mm/yr. It has also revealed the subsidence of the summit crater of Pico island (9 mm/yr) and a large area of subsidence on the west of the island, corresponding mostly to creep movement. Key words: SAR Interferometry, GPS-INSAR integration, Volcano, subsidence

  6. Assessment of particle emissions inventories in northeastern U.S., using remote sensing, Lidar technology, air pollution sensors, and a Lagrangian particle dispersion model

    NASA Astrophysics Data System (ADS)

    Barrera, Y.; Swofsy, S. C.; Li, L.; Hegarty, J. D.; Nehrkorn, T.; Koutrakis, P.

    2017-12-01

    In the most recent issue of the New England Journal of Medicine, a new study found that 95% of Medicare beneficiaries over the age of 65 showed an increased risk of mortality, even at fine particulate matter (PM2.5) levels below the National Ambient Air Quality Standards (NAAQS). This new finding suggests that although a state may be designated under attainment for meeting the primary and secondary PM2.5 NAAQS, sensitive populations dispersed throughout the region may still be experiencing adverse health effects. To conduct accurate public health impact assessments, reliable information regarding PM2.5 concentrations in cities are required at high spatial and temporal resolutions. A newly developed particle emissions inventory using remote sensing (PEIRS) captured both primary and secondary formation in northeastern U.S. at a 1km x 1km spatial resolution during the period 2002-2014 (Tang et al., 2017). The PEIRS annual emissions inventory used the MODIS satellite to fill-in the spatial gaps where, EPA monitoring stations were not available. However, simulations of the planetary boundary layer (PBL) were a key factor in estimating PM2.5 concentrations on the ground and hence, testing PEIRS products with observationally based quantifications are critical. Recent advances in light ranging and detection (Lidar) technology allow us to estimate PBL heights in cities. This study combines information from a network of Mini Micropulse Lidar (MPL) instruments, meteorological and air pollution measuring sensors, and a Lagrangian particle dispersion model to test the performance of PEIRS at the neighborhood and urban scale. MPL observations were processed using image recognition and fuzzy logic to estimate PBL heights that were inputted into PEIRS to predict daily PM2.5 concentrations. To compare vertical distribution of aerosols, we use our LPDM model "footprints" to predict vertical profiles of PM2.5 distribution at our Lidar locations. Our model-data assimilation improved the temporal resolution of the 2013-2014 PEIRS products at the neighborhood and urban scale. Results of our work would enhance our understanding of vertical aerosol distribution in cities while providing a daily product to conduct public health assessments of PM2.5 concentrations with the diurnal evolution of the PBL.

  7. Age accuracy and resolution of Quaternary corals used as proxies for sea level

    NASA Astrophysics Data System (ADS)

    Edinger, E. N.; Burr, G. S.; Pandolfi, J. M.; Ortiz, J. C.

    2007-01-01

    The accuracy of global eustatic sea level curves measured from raised Quaternary reefs, using radiometric ages of corals at known heights, may be limited by time-averaging, which affects the variation in coral age at a given height. Time-averaging was assessed in uplifted Holocene reef sequences from the Huon Peninsula, Papua New Guinea, using radiocarbon dating of coral skeletons in both horizontal transects and vertical sequences. Calibrated 2σ age ranges varied from 800 to 1060 years along horizontal transects, but weighted mean ages calculated from 15-18 dates per horizon were accurate to a resolution within 154-214 yr. Approximately 40% of the variability in age estimate resulted from internal variability inherent to 14C estimates, and 60% was due to time-averaging. The accuracy of age estimates of sea level change in studies using single dated corals as proxies for sea level is probably within 1000 yr of actual age, but can be resolved to ≤ 250 yr if supported by dates from analysis of a statistical population of corals at each stratigraphic interval. The range of time-averaging among reef corals was much less than that for shelly benthos. Ecological time-averaging dominated over sedimentological time averaging for reef corals, opposite to patterns reported from shelly benthos in siliciclastic environments.

  8. Glacier Melt Detection in Complex Terrain Using New AMSR-E Calibrated Enhanced Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record

    NASA Astrophysics Data System (ADS)

    Ramage, J. M.; Brodzik, M. J.; Hardman, M.

    2016-12-01

    Passive microwave (PM) 18 GHz and 36 GHz horizontally- and vertically-polarized brightness temperatures (Tb) channels from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) have been important sources of information about snow melt status in glacial environments, particularly at high latitudes. PM data are sensitive to the changes in near-surface liquid water that accompany melt onset, melt intensification, and refreezing. Overpasses are frequent enough that in most areas multiple (2-8) observations per day are possible, yielding the potential for determining the dynamic state of the snow pack during transition seasons. AMSR-E Tb data have been used effectively to determine melt onset and melt intensification using daily Tb and diurnal amplitude variation (DAV) thresholds. Due to mixed pixels in historically coarse spatial resolution Tb data, melt analysis has been impractical in ice-marginal zones where pixels may be only fractionally snow/ice covered, and in areas where the glacier is near large bodies of water: even small regions of open water in a pixel severely impact the microwave signal. We use the new enhanced-resolution Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record product's twice daily obserations to test and update existing snow melt algorithms by determining appropriate melt thresholds for both Tb and DAV for the CETB 18 and 36 GHz channels. We use the enhanced resolution data to evaluate melt characteristics along glacier margins and melt transition zones during the melt seasons in locations spanning a wide range of melt scenarios, including the Patagonian Andes, the Alaskan Coast Range, and the Russian High Arctic icecaps. We quantify how improvement of spatial resolution from the original 12.5 - 25 km-scale pixels to the enhanced resolution of 3.125 - 6.25 km improves the ability to evaluate melt timing across boundaries and transition zones in diverse glacial environments.

  9. High-spatial-resolution TOVS observations for the FIRE/SRB Wisconsin experiment region from October 14 through November 2, 1986

    NASA Technical Reports Server (NTRS)

    Whitlock, Charles H.; Wylie, Donald P.; Lecroy, Stuart R.

    1988-01-01

    Maps and concise tables are presented which show TOVS (TIROS Operational Vertical Sounder) HIRS/2 (High Resolution Infrared Sounder) data products, resolution size, and sounding location for the FIRE/SRB (First ISCCP Experiment/Surface Radiation Budget) Wisconsin experiment region from October 14 through November 2, 1986. The data presented are the result of a special analysis of the HIRS/2 sounder from the NOAA-9 and -10 satellites.

  10. Quality of terrestrial data derived from UAV photogrammetry: a case study of the Hetao irrigation district in northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongming; Baartman, Jantiene E. M.; Yang, Xiaomei; Gai, Lingtong; Geissen, Violette

    2017-04-01

    Most crops in northern China are irrigated, but the topography affects water use, soil erosion, runoff and yields,. Technologies for collecting high-resolution topographic data are essential for adequately assessing these effects. Ground surveys and techniques of light detection and ranging have good accuracy, but data acquisition can be time-consuming and expensive for large catchments. Recent rapid technological development has provided new, flexible, high-resolution methods for collecting topographic data, such as photogrammetry using unmanned aerial vehicles (UAVs). The accuracy of UAV photogrammetry for generating high-resolution digital elevation models (DEMs) and for determining the width of irrigation channels, however, has not been assessed. We used a fixed-wing UAV for collecting high-resolution (0.15 m) topographic data for the Hetao irrigation district, the third largest irrigation district in China. We surveyed 112 ground checkpoints (GCPs) using a real-time kinematic global positioning system to evaluate the accuracy of the DEMs and channel widths. A comparison of manually measured channel widths with the widths derived from the DEMs indicated that the DEM-derived widths had vertical and horizontal root mean square errors of 13.0 and 7.9 cm, respectively. UAV photogrammetric data can thus be used for land surveying, digital mapping, calculating channel capacity, monitoring crops, and predicting yields, with the advantages of economy, speed, and ease.

  11. Retrieval of trace gas concentrations over Summit Station, Greenland using moderate-resolution spectral infrared radiances

    NASA Astrophysics Data System (ADS)

    Bahramvash Shams, S.; Walden, V. P.; Turner, D. D.

    2017-12-01

    Measurements of trace gases at high temporal resolution are important for understanding variations and trends at high latitudes. Trace gases over Greenland can be influenced by both long-range transport from pollution sources as well as local chemical processes. Satellite retrievals are an important data source in the polar regions, but accurate ground-based measurements are needed for proper validation, especially in data sparse regions. A moderate-resolution (0.5 cm-1) Fourier transform infrared spectrometer (FTIR), the Polar Atmospheric Emitted Radiance Interferometer (P-AERI), has been operated at Summit Station, Greenland as part of the ICECAPS project since 2010. In this study, trace gas concentrations, including ozone, nitrous oxide, and methane are retrieved using different optimal estimation retrieval codes. We first present results of retrieved gases using synthetic spectra (from a radiative transfer model) that mimic P-AERI measurements to evaluate systematic errors in the inverse models. We also retrieve time series of trace gas concentrations during periods of clear skies over Summit. We investigate the amount of vertical information that can be obtained with moderate resolution spectra for each of the trace gases, and also the impact of the seasonal variation of atmospheric water vapor on the retrievals. Data from surface observations and ozonesondes obtained by the NOAA Global Monitoring Division are used to improve the retrievals and as validation.

  12. A study on characterization of stratospheric aerosol and gas parameters with the spacecraft solar occultation experiment

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1977-01-01

    Spacecraft remote sensing of stratospheric aerosol and ozone vertical profiles using the solar occultation experiment has been analyzed. A computer algorithm has been developed in which a two step inversion of the simulated data can be performed. The radiometric data are first inverted into a vertical extinction profile using a linear inversion algorithm. Then the multiwavelength extinction profiles are solved with a nonlinear least square algorithm to produce aerosol and ozone vertical profiles. Examples of inversion results are shown illustrating the resolution and noise sensitivity of the inversion algorithms.

  13. Measurements of the vertical profile of water vapor abundance in the Martian atmosphere from Mars Observer

    NASA Technical Reports Server (NTRS)

    Schofield, J. T.; Mccleese, Daniel J.

    1988-01-01

    An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.

  14. Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data

    NASA Astrophysics Data System (ADS)

    Peukert, Anne; Schoening, Timm; Alevizos, Evangelos; Köser, Kevin; Kwasnitschka, Tom; Greinert, Jens

    2018-04-01

    In this study, ship- and autonomous underwater vehicle (AUV)-based multibeam data from the German ferromanganese-nodule (Mn-nodule) license area in the Clarion-Clipperton Zone (CCZ; eastern Pacific) are linked to ground-truth data from optical imaging. Photographs obtained by an AUV enable semi-quantitative assessments of nodule coverage at a spatial resolution in the range of meters. Together with high-resolution AUV bathymetry, this revealed a correlation of small-scale terrain variations ( < 5 m horizontally, < 1 m vertically) with nodule coverage. In the presented data set, increased nodule coverage could be correlated with slopes > 1.8° and concave terrain. On a more regional scale, factors such as the geological setting (existence of horst and graben structures, sediment thickness, outcropping basement) and influence of bottom currents seem to play an essential role for the spatial variation of nodule coverage and the related hard substrate habitat. AUV imagery was also successfully employed to map the distribution of resettled sediment following a disturbance and sediment cloud generation during a sampling deployment of an epibenthic sledge. Data from before and after the disturbance allow a direct assessment of the impact. Automated image processing analyzed the nodule coverage at the seafloor, revealing nodule blanketing by resettling of suspended sediment within 16 h after the disturbance. The visually detectable impact was spatially limited to a maximum of 100 m distance from the disturbance track, downstream of the bottom water current. A correlation with high-resolution AUV bathymetry reveals that the blanketing pattern varies in extent by tens of meters, strictly following the bathymetry, even in areas of only slightly undulating seafloor ( < 1 m vertical change). These results highlight the importance of detailed terrain knowledge when engaging in resource assessment studies for nodule abundance estimates and defining mineable areas. At the same time, it shows the importance of high-resolution mapping for detailed benthic habitat studies that show a heterogeneity at scales of 10 to 100 m. Terrain knowledge is also needed to determine the scale of the impact by seafloor sediment blanketing during mining operations.

  15. Lidar-revised geologic map of the Olalla 7.5' quadrangle, King, Kitsap, and Pierce Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Haugerud, Ralph A.; Booth, Derek B.; Troost, Kathy Goetz

    2013-01-01

    The Olalla 7.5' quadrangle, which lies almost in the center of the Puget Lowland, displays the broad range of geologic environments typical of the region. The upland plain is fluted by the passage of the great continental ice sheet that last covered the area about 17,000 (14,000 radiocarbon) years ago. The plain is cut by channel deposits, both late glacial and postglacial in age, and it is cleaved even more deeply by one of the major arms of Puget Sound, Colvos Passage, which here separates the west coast of Vashon Island from the Kitsap Peninsula. Beneath the deposits of the last ice sheet is a complex sequence of older Quaternary-age sediments that extends about 400 m below the modern ground surface. These older sediments are best exposed along the shorelines and beach cliffs of Puget Sound, where wave action and landslides maintain relatively fresh exposures. The older sediments typically are compact, having been loaded by ice during one or more episodes of glaciation subsequent to their deposition. Locally these sediments are also cemented by iron and manganese oxides and hydroxides, a consequence of many tens or hundreds of thousands of years of weathering and groundwater movement. Our map is an interpretation of a 6-ft resolution lidar-derived digital elevation model combined with the geology depicted on the "Geologic map of the Olalla 7.5' quadrangle, King, Kitsap, and Pierce Counties, Washington," by Booth and Troost (2005), which was described, interpreted, and located on the 1953 1:24,000-scale topographic map of the Olalla 7.5-minute quadrangle. The original topographic base map, derived from 1951 aerial photographs, has 20-ft contours, nominal horizontal resolution of circa 40 ft (12 m), and nominal mean vertical accuracy of circa 13 ft (4 m). This new DEM has a horizontal resolution of 6 ft (2 m) and mean vertical accuracy circa 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM facilitated a much-improved interpretation of many aspects of the surficial geology, especially the distribution and relative age of landforms and the materials inferred to comprise them.

  16. Atmospheric parameterization schemes for satellite cloud property retrieval during FIRE IFO 2

    NASA Technical Reports Server (NTRS)

    Titlow, James; Baum, Bryan A.

    1993-01-01

    Satellite cloud retrieval algorithms generally require atmospheric temperature and humidity profiles to determine such cloud properties as pressure and height. For instance, the CO2 slicing technique called the ratio method requires the calculation of theoretical upwelling radiances both at the surface and a prescribed number (40) of atmospheric levels. This technique has been applied to data from, for example, the High Resolution Infrared Radiometer Sounder (HIRS/2, henceforth HIRS) flown aboard the NOAA series of polar orbiting satellites and the High Resolution Interferometer Sounder (HIS). In this particular study, four NOAA-11 HIRS channels in the 15-micron region are used. The ratio method may be applied to various channel combinations to estimate cloud top heights using channels in the 15-mu m region. Presently, the multispectral, multiresolution (MSMR) scheme uses 4 HIRS channel combination estimates for mid- to high-level cloud pressure retrieval and Advanced Very High Resolution Radiometer (AVHRR) data for low-level (is greater than 700 mb) cloud level retrieval. In order to determine theoretical upwelling radiances, atmospheric temperature and water vapor profiles must be provided as well as profiles of other radiatively important gas absorber constituents such as CO2, O3, and CH4. The assumed temperature and humidity profiles have a large effect on transmittance and radiance profiles, which in turn are used with HIRS data to calculate cloud pressure, and thus cloud height and temperature. For large spatial scale satellite data analysis, atmospheric parameterization schemes for cloud retrieval algorithms are usually based on a gridded product such as that provided by the European Center for Medium Range Weather Forecasting (ECMWF) or the National Meteorological Center (NMC). These global, gridded products prescribe temperature and humidity profiles for a limited number of pressure levels (up to 14) in a vertical atmospheric column. The FIRE IFO 2 experiment provides an opportunity to investigate current atmospheric profile parameterization schemes, compare satellite cloud height results using both gridded products (ECMWF) and high vertical resolution sonde data from the National Weather Service (NWS) and Cross Chain Loran Atmospheric Sounding System (CLASS), and suggest modifications in atmospheric parameterization schemes based on these results.

  17. Edge technique lidar for high accuracy, high spatial resolution wind measurement in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Gentry, Bruce M.

    1995-01-01

    The goal of the Army Research Office (ARO) Geosciences Program is to measure the three dimensional wind field in the planetary boundary layer (PBL) over a measurement volume with a 50 meter spatial resolution and with measurement accuracies of the order of 20 cm/sec. The objective of this work is to develop and evaluate a high vertical resolution lidar experiment using the edge technique for high accuracy measurement of the atmospheric wind field to meet the ARO requirements. This experiment allows the powerful capabilities of the edge technique to be quantitatively evaluated. In the edge technique, a laser is located on the steep slope of a high resolution spectral filter. This produces large changes in measured signal for small Doppler shifts. A differential frequency technique renders the Doppler shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is also relatively insensitive to the laser spectral width for widths less than the width of the edge filter. Thus, the goal is to develop a system which will yield a substantial improvement in the state of the art of wind profile measurement in terms of both vertical resolution and accuracy and which will provide a unique capability for atmospheric wind studies.

  18. Challenges in the development of very high resolution Earth System Models for climate science

    NASA Astrophysics Data System (ADS)

    Rasch, Philip J.; Xie, Shaocheng; Ma, Po-Lun; Lin, Wuyin; Wan, Hui; Qian, Yun

    2017-04-01

    The authors represent the 20+ members of the ACME atmosphere development team. The US Department of Energy (DOE) has, like many other organizations around the world, identified the need for an Earth System Model capable of rapid completion of decade to century length simulations at very high (vertical and horizontal) resolution with good climate fidelity. Two years ago DOE initiated a multi-institution effort called ACME (Accelerated Climate Modeling for Energy) to meet this an extraordinary challenge, targeting a model eventually capable of running at 10-25km horizontal and 20-400m vertical resolution through the troposphere on exascale computational platforms at speeds sufficient to complete 5+ simulated years per day. I will outline the challenges our team has encountered in development of the atmosphere component of this model, and the strategies we have been using for tuning and debugging a model that we can barely afford to run on today's computational platforms. These strategies include: 1) evaluation at lower resolutions; 2) ensembles of short simulations to explore parameter space, and perform rough tuning and evaluation; 3) use of regionally refined versions of the model for probing high resolution model behavior at less expense; 4) use of "auto-tuning" methodologies for model tuning; and 5) brute force long climate simulations.

  19. A multimodel intercomparison of resolution effects on precipitation: simulations and theory

    NASA Astrophysics Data System (ADS)

    Rauscher, Sara A.; O'Brien, Travis A.; Piani, Claudio; Coppola, Erika; Giorgi, Filippo; Collins, William D.; Lawston, Patricia M.

    2016-10-01

    An ensemble of six pairs of RCM experiments performed at 25 and 50 km for the period 1961-2000 over a large European domain is examined in order to evaluate the effects of resolution on the simulation of daily precipitation statistics. Application of the non-parametric two-sample Kolmorgorov-Smirnov test, which tests for differences in the location and shape of the probability distributions of two samples, shows that the distribution of daily precipitation differs between the pairs of simulations over most land areas in both summer and winter, with the strongest signal over southern Europe. Two-dimensional histograms reveal that precipitation intensity increases with resolution over almost the entire domain in both winter and summer. In addition, the 25 km simulations have more dry days than the 50 km simulations. The increase in dry days with resolution is indicative of an improvement in model performance at higher resolution, while the more intense precipitation exceeds observed values. The systematic increase in precipitation extremes with resolution across all models suggests that this response is fundamental to model formulation. Simple theoretical arguments suggest that fluid continuity, combined with the emergent scaling properties of the horizontal wind field, results in an increase in resolved vertical transport as grid spacing decreases. This increase in resolution-dependent vertical mass flux then drives an intensification of convergence and resolvable-scale precipitation as grid spacing decreases. This theoretical result could help explain the increasingly, and often anomalously, large stratiform contribution to total rainfall observed with increasing resolution in many regional and global models.

  20. The power spectrum of solar convection flows from high-resolution observations and 3D simulations

    NASA Astrophysics Data System (ADS)

    Yelles Chaouche, L.; Moreno-Insertis, F.; Bonet, J. A.

    2014-03-01

    Context. Understanding solar surface magnetoconvection requires the study of the Fourier spectra of the velocity fields. Nowadays, observations are available that resolve very small spatial scales, well into the subgranular range, almost reaching the scales routinely resolved in numerical magnetoconvection simulations. Comparison of numerical and observational data at present can provide an assessment of the validity of the observational proxies. Aims: Our aims are: (1) to obtain Fourier spectra for the photospheric velocity fields using the spectropolarimetric observations with the highest spatial resolution so far (~120 km), thus reaching for the first time spatial scales well into the subgranular range; (2) to calculate corresponding Fourier spectra from realistic 3D numerical simulations of magnetoconvection and carry out a proper comparison with their observational counterparts considering the residual instrumental degradation in the observational data; and (3) to test the observational proxies on the basis of the numerical data alone, by comparing the actual velocity field in the simulations with synthetic observations obtained from the numerical boxes. Methods: (a) For the observations, data from the SUNRISE/IMaX spectropolarimeter are used. (b) For the simulations, we use four series of runs obtained with the STAGGER code for different average signed vertical magnetic field values (0, 50, 100, and 200 G). Spectral line profiles are synthesized from the numerical boxes for the same line observed by IMaX (Fe I 5250.2 Å) and degraded to match the performance of the IMaX instrument. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (LCT, for the horizontal component). Fourier power spectra are calculated and a comparison between the synthetic and observational data sets carried out. (c) For the internal comparison of the numerical data, velocity values on constant optical depth surfaces are used instead of on horizontal planes. Results: A very good match between observational and simulated Fourier power spectra is obtained for the vertical velocity data for scales between 200 km and 6 Mm. Instead, a clear vertical shift is obtained when the synthetic observations are not degraded to emulate the degradation in the IMaX data. The match for the horizontal velocity data is much less impressive because of the inaccuracies of the LCT procedure. Concerning the internal comparison of the direct velocity values of the numerical boxes with those from the synthetic observations, a high correlation (0.96) is obtained for the vertical component when using the velocity values on the log τ500 = -1 surface in the box. The corresponding Fourier spectra are near each other. A lower maximum correlation (0.5) is reached (at log τ500 = 0) for the horizontal velocities as a result of the coarseness of the LCT procedure. Correspondingly, the Fourier spectra for the LCT-determined velocities is well below that from the actual velocity components. Conclusions: As measured by the Fourier spectra, realistic numerical simulations of surface magnetoconvection provide a very good match to the observational proxies for the photospheric velocity fields at least on scales from several Mm down to around 200 km. Taking into account the spatial and spectral instrumental blurring is essential for the comparison between simulations and observations. Dopplergrams are an excellent proxy for the vertical velocities on constant-τ isosurfaces, while LCT is a much less reliable method of determining the horizontal velocities.

  1. Measuring large-scale vertical motion in the atmosphere with dropsondes

    NASA Astrophysics Data System (ADS)

    Bony, Sandrine; Stevens, Bjorn

    2017-04-01

    Large-scale vertical velocity modulates important processes in the atmosphere, including the formation of clouds, and constitutes a key component of the large-scale forcing of Single-Column Model simulations and Large-Eddy Simulations. Its measurement has also been a long-standing challenge for observationalists. We will show that it is possible to measure the vertical profile of large-scale wind divergence and vertical velocity from aircraft by using dropsondes. This methodology was tested in August 2016 during the NARVAL2 campaign in the lower Atlantic trades. Results will be shown for several research flights, the robustness and the uncertainty of measurements will be assessed, ands observational estimates will be compared with data from high-resolution numerical forecasts.

  2. Modeling the CAPTEX Vertical Tracer Concentration Profiles.

    NASA Astrophysics Data System (ADS)

    Draxler, Roland R.; Stunder, Barbara J. B.

    1988-05-01

    Perfluorocarbon tracer concentration profiles measured by aircraft 600-900 km downwind of the release locations during CAPTEX are discussed and compared with some model results. In general, the concentrations decreased with height in the upper half of the boundary layer where the aircraft measurements were made. The results of a model sensitivity study suggested that the shape of the profile was primarily due to winds increasing with height and relative position of the sampling with respect to the upwind and downwind edge of the plume. Further modeling studies showed that relatively simple vertical mixing parameterizations could account for the complex vertical plume structure when the model had sufficient vertical resolution. In general, the model performed better with slower winds and corresponding longer transport times.

  3. High-resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean-bottom receiver data

    NASA Astrophysics Data System (ADS)

    Attias, Eric; Weitemeyer, Karen; Hölz, Sebastian; Naif, Samer; Minshull, Tim A.; Best, Angus I.; Haroon, Amir; Jegen-Kulcsar, Marion; Berndt, Christian

    2018-06-01

    We present high-resolution resistivity imaging of gas hydrate pipe-like structures, as derived from marine controlled-source electromagnetic (CSEM) inversions that combine towed and ocean-bottom electric field receiver data, acquired from the Nyegga region, offshore Norway. Two-dimensional CSEM inversions applied to the towed receiver data detected four new prominent vertical resistive features that are likely gas hydrate structures, located in proximity to a major gas hydrate pipe-like structure, known as the CNE03 pockmark. The resistivity model resulting from the CSEM data inversion resolved the CNE03 hydrate structure in high resolution, as inferred by comparison to seismically constrained inversions. Our results indicate that shallow gas hydrate vertical features can be delineated effectively by inverting both ocean-bottom and towed receiver CSEM data simultaneously. The approach applied here can be utilised to map and monitor seafloor mineralisation, freshwater reservoirs, CO2 sequestration sites and near-surface geothermal systems.

  4. Characterization of turbulent processes by the Raman lidar system BASIL during the HD(CP)2 observational prototype experiment - HOPE

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Behrendt, Andreas; Wulfmeyer, Volker

    2017-02-01

    Measurements carried out by the Raman lidar system BASIL are reported to demonstrate the capability of this instrument to characterize turbulent processes within the Convective Boundary Layer (CBL). In order to resolve the vertical profiles of turbulent variables, high resolution water vapour and temperature measurements, with a temporal resolution of 10 sec and a vertical resolution of 90 and 30 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of spectral and auto-covariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (IOP 5, 20 April 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. The noise errors are demonstrated to be small enough to allow the derivation of up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations with sufficient accuracy.

  5. Eliminating the rugosity effect from compensated density logs by geometrical response matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaum, C.; Holenka, J.M.; Case, C.R.

    1991-06-01

    A theoretical and experimental effort to understand the effects of borehole rugosity on individual detector responses yielded an improved method of processing compensated density logs. Historically, the spine/ribs technique for obtaining borehole and mudcake compensation of dual-detector, gamma-gamma density logs has been very successful as long as the borehole and other environmental effects vary slowly with depth and the interest in limited to vertical features broader than several feet. With the increased interest in higher vertical resolution, a more detailed analysis of the effect of such quickly varying environmental effects as rugosity was required. A laboratory setup simulating the effectmore » of rugosity on Schlumberger Litho-Density{sup SM} tools (LDT) was used to study vertical response in the presence of rugosity. The data served as the benchmark for the Nonte Carlo models used to generate synthetic density logs in the presence of more complex rugosity patterns. The results provided in this paper show that proper matching of the two detector responses before application of conventional compensation methods can eliminate rugosity effects without degrading the measurements vertical resolution. The accuracy of the results is a good as the obtained in a parallel mudcake or standoff with the conventional method. Application to both field and synthetic log confirmed the validity of these results.« less

  6. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  7. Image characterization metrics for muon tomography

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt

    2014-05-01

    Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.

  8. Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field

    NASA Astrophysics Data System (ADS)

    Chavanne, C. P.; Klein, P.

    2016-02-01

    A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.

  9. Velocity and sediment surge: What do we see at times of very shallow water on intertidal mudflats?

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Gong, Zheng; Zhang, Changkuan; Townend, Ian; Jin, Chuang; Li, Huan

    2016-02-01

    A self-designed "bottom boundary layer hydrodynamic and suspended sediment concentration (SSC) measuring system" was built to observe the hydrodynamic and the SSC processes over the intertidal mudflats at the middle part of the Jiangsu coast during August 8-10, 2013. Velocity profiles within 10 cm of the mudflat surface were obtained with a vertical resolution as fine as 1 mm. An ADCP was used to extend the profile over the full water depth with a resolution of 10 cm and the vertical SSC profile was measured at intervals using Optical Backscatter Sensors (OBS). At the same time, water levels and wave conditions were measured with a Tide and Wave Recorder. Measured data suggested that the vertical structure of velocity profiles within 10 cm above the bed maintains a logarithmic distribution during the whole tidal cycle except the slack-water periods. Shallow flows during both the early-flood period and the later-ebb period are characterized by a relatively large vertical velocity gradient and a "surge" feature. We conclude that the very shallow water stages are transient and may not contribute much to the whole water and sediment transport, while they can play a significant role in the formation and evolution of micro-topographies on tidal flats.

  10. Global and Regional Radiative Forcing from 20 Reductions in BC, OC and SO4 an HTAP2 Multi-Model Study

    NASA Technical Reports Server (NTRS)

    Stjern, Camilla Weum; Samset, Bjorn Hallvard; Myhre, Gunnar; Bian, Huisheng; Chin, Mian; Davila, Yanko; Dentener, Frank; Emmons, Louisa; Flemming, Johannes; Haslerud, Amund Sovde; hide

    2016-01-01

    In the Hemispheric Transport of Air Pollution Phase 2 (HTAP2) exercise, a range of global atmospheric general circulation and chemical transport models performed coordinated perturbation experiments with 20% reductions in emissions of anthropogenic aerosols, or aerosol precursors, in a number of source regions. Here, we compare the resulting changes in the atmospheric load and vertically resolved profiles of black carbon (BC), organic aerosols (OA) and sulfate (SO4/ from 10 models that include treatment of aerosols. We use a set of temporally, horizontally and vertically resolved profiles of aerosol forcing efficiency (AFE) to estimate the impact of emission changes in six major source regions on global radiative forcing (RF) pertaining to the direct aerosol effect, finding values between. 51.9 and 210.8mW/sq m/Tg for BC, between -2.4 and -17.9mW/sq m/Tg for OA and between -3.6 and -10.3W/sq m/Tg for SO4. In most cases, the local influence dominates, but results show that mitigations in south and east Asia have substantial impacts on the radiative budget in all investigated receptor regions, especially for BC. In Russia and the Middle East, more than 80 % of the forcing for BC and OA is due to extra-regional emission reductions. Similarly, for North America, BC emissions control in east Asia is found to be more important than domestic mitigations, which is consistent with previous findings. Comparing fully resolved RF calculations to RF estimates based on vertically averaged AFE profiles allows us to quantify the importance of vertical resolution to RF estimates. We find that locally in the source regions, a 20% emission reduction strengthens the radiative forcing associated with SO4 by 25% when including the vertical dimension, as the AFE for SO4 is strongest near the surface. Conversely, the local RF from BC weakens by 37% since BC AFE is low close to the ground. The fraction of BC direct effect forcing attributable to intercontinental transport, on the other hand, is enhanced by one-third when accounting for the vertical aspect, because long-range transport primarily leads to aerosol changes at high altitudes, where the BC AFE is strong. While the surface temperature response may vary with the altitude of aerosol change, the analysis in the present study is not extended to estimates of temperature or precipitation changes.

  11. Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations

    NASA Astrophysics Data System (ADS)

    Graizer, V.

    2017-12-01

    Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt spectrum. Amplitudes of rotations at the site depend upon the size of the base and usually decrease with depth. They are also amplified by soft material. Earthquake data used in this study were downloaded from the Center for Engineering Strong Motion Data at http://www.strongmotioncenter.org/.

  12. Saturation of the magnetorotational instability in the unstratified shearing box with zero net flux: convergence in taller boxes

    NASA Astrophysics Data System (ADS)

    Shi, Ji-Ming; Stone, James M.; Huang, Chelsea X.

    2016-03-01

    Previous studies of the non-linear regime of the magnetorotational instability in one particular type of shearing box model - unstratified with no net magnetic flux - find that without explicit dissipation (viscosity and resistivity) the saturation amplitude decreases with increasing numerical resolution. We show that this result is strongly dependent on the vertical aspect ratio of the computational domain Lz/Lx. When Lz/Lx ≲ 1, we recover previous results. However, when the vertical domain is extended Lz/Lx ≳ 2.5, we find the saturation level of the stress is greatly increased (giving a ratio of stress to pressure α ≳ 0.1), and moreover the results are independent of numerical resolution. Consistent with previous results, we find that saturation of the magnetorotational (MRI) in this regime is controlled by a cyclic dynamo which generates patches of strong toroidal field that switches sign on scales of Lx in the vertical direction. We speculate that when Lz/Lx ≲ 1, the dynamo is inhibited by the small size of the vertical domain, leading to the puzzling dependence of saturation amplitude on resolution. We show that previous toy models developed to explain the MRI dynamo are consistent with our results, and that the cyclic pattern of toroidal fields observed in stratified shearing box simulations (leading to the so-called butterfly diagram) may also be related. In tall boxes the saturation amplitude is insensitive to whether or not explicit dissipation is included in the calculations, at least for large magnetic Reynolds and Prandtl number. Finally, we show MRI turbulence in tall domains has a smaller critical Pmc, and an extended lifetime compared to Lz/Lx ≲ 1 boxes.

  13. The Effect of Incidence Angle on Stereo DTM Quality: Simulations in Support of Europa Clipper

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Jorda, L.

    2014-12-01

    Many quality factors for digital topographic models (DTMs) from stereo imaging can be predicted geometrically. For example, pixel scale is related to instantaneous field of view and to range. DTM resolution can be no better than a few times this pixel scale. Even vertical precision is a known function of the pixel scale and convergence angle, providedthe image quality is high enough that automated image matching reaches its optimal precision (~0.2 pixel). The influence of incidence angle is harder to predict. Reduced quality is expected both at low incidence (where topographic shading disappears) and high incidence (where signal/noise ratio is low and shadows occur). This problem is of general interest, but especially critical for the Europa Clipper mission profile. Clipper would obtain a radar sounding profile on each Europa flyby. Stereo images collected simultaneously would be used to produce a DTM needed to distinguish off-nadir surface echos (clutter) from subsurface features. The question is, how much of this DTM strip will be useful, given that incidence angle will vary substantially? We are using simulations to answer this question. We produced a 210 m/post DTM of the Castalia Macula region of Europa from 6 Galileo images by photoclinometry. A low-incidence image was used to correct for albedo variations before photoclinometry. We are using the image simulation software OASIS to generate synthetic stereopairs of the region at a full range of incidence angles. These images will be realistic in terms of image resolution, noise, photometry including albedo variations (based on the low incidence image), and cast shadows. The pairs will then be analyzed with the commercial stereomapping software SOCET SET (® BAE Systems), which we have used for a wide variety of planetary mapping projects. Comparing the stereo-derived DTMs to the input ("truth") DTM will allow us to quantify the dependence of true DTM resolution and vertical precision on illumination, and to document the qualitative ways that DTMs degrade at high and low incidence angles. This methodology is immediately applicable to other planetary targets, and in particular can be used to address how much difference in illumination can be tolerated in stereopairs that are not (as for Clipper) acquired simultaneously.

  14. ARC-1989-AC89-7038

    NASA Image and Video Library

    1989-08-26

    P-34709 Range: 157,000 kilometers (98,000 miles) This Voyager 2 high resolution color image, taken 2 hours before closest approach, provides obvious evidence of vertical relief in Neptune's bright cloud streaks. These clouds were observed at a latitude of 29° N near Neptune's east terminator. The linear cloud forms are stretched approximately along lines of constant latitude and the sun is toward the lower left. The bright sides of the clouds that face the sun are brighter than the surrounding cloud deck because they are more directly exposed to the sun. Shadows can be seen on the side directly opposite the sun. These shadows are less distinct at short wavelengths (violet filter) and more distinct at long wavelengths (orange filter). This can be understood if the underlying cloud deck on which the shadow is cast is at a relatively great depth, in which case scattering by molecules in the overlying atmopsphere will diffuse light into the shadow. Because molecules scatter blue light much more efficiently than red light, the shadows will be darkest at the longest (reddest) wavelengths, and will appear blue under white illumination. The resolution of this image is 11 kilometers (6.8 miles per pixel). The width of the cloud streaks range from 50 to 200 kilometers (31 to 124 miles), and their shadow widths range from 30 to 50 kilometers (18 to 31 miles). Cloud heights appear to be of the order of 50 kilometers (31 miles). This corresponds to 2 scale heights.

  15. Site characterisation in north-western Turkey based on SPAC and HVSR analysis of microtremor noise

    NASA Astrophysics Data System (ADS)

    Asten, Michael W.; Askan, Aysegul; Ekincioglu, E. Ezgi; Sisman, F. Nurten; Ugurhan, Beliz

    2014-02-01

    The geology of the north-western Anatolia (Turkey) ranges from hard Mesozoic bedrock in mountainous areas to large sediment-filled, pull-apart basins formed by the North Anatolian Fault zone system. Düzce and Bolu city centres are located in major alluvial basins in the region, and both suffered from severe building damage during the 12 November 1999 Düzce earthquake (Mw = 7.2). In this study, a team consisting of geophysicists and civil engineers collected and interpreted passive array-based microtremor data in the cities of Bolu and Düzce, both of which are localities of urban development located on topographically flat, geologically young alluvial basins of Miocene age. Interpretation of the microtremor data under an assumption of dominant fundamental-mode Rayleigh-wave noise allowed derivation of the shear-wave velocity (Vs) profile. The depth of investigation was ~100 m from spatially-averaged coherency (SPAC) data alone. High-frequency microtremor array data to 25 Hz allows resolution of a surface layer with Vs < 200 m/s and thickness 5 m (Bolu) and 6 m (Düzce). Subsequent inclusion of spectral ratios between horizontal and vertical components of microtremor data (HVSR) in the curve fitting process extends useful frequencies up to a decade lower than those for SPAC alone. This allows resolution of two interfaces of moderate Vs contrasts in soft Miocene and Eocene sediments, first, at a depth in the range 136-209 m, and second, at a depth in the range 2000 to 2200 m.

  16. MOLA TOPOGRAPHIC MAP

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The context image shows the latest MOLA topographic map of Mars' from latitude 55o S to the south pole. Values of elevation on the color scale are in meters. The along-track resolution of MOLA profiles is 330 m. Vertical precision of individual elevations approaches 37 cm. Absolute accuracy of the grid with respect to Mars' center of mass is <10 m. Note that there is a gap in data within 2.8o of the south pole due to the inclination of the MGS orbit. This gap will be filled in later this month by tilting the MGS spacecraft to an off-nadir ranging configuration. The MPL landing site region is between latitudes 72o and 78o S and longitudes 130o to 190o E.

  17. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  18. Atmospheric aerosol profiling with a bistatic imaging lidar system.

    PubMed

    Barnes, John E; Sharma, N C Parikh; Kaplan, Trevor B

    2007-05-20

    Atmospheric aerosols have been profiled using a simple, imaging, bistatic lidar system. A vertical laser beam is imaged onto a charge-coupled-device camera from the ground to the zenith with a wide-angle lens (CLidar). The altitudes are derived geometrically from the position of the camera and laser with submeter resolution near the ground. The system requires no overlap correction needed in monostatic lidar systems and needs a much smaller dynamic range. Nighttime measurements of both molecular and aerosol scattering were made at Mauna Loa Observatory. The CLidar aerosol total scatter compares very well with a nephelometer measuring at 10 m above the ground. The results build on earlier work that compared purely molecular scattered light to theory, and detail instrument improvements.

  19. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a hurricane were made with the airborne Doppler lidar. Potential applications and plans for improvement will also be described.

  20. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we contend that creating believable soil carbon predictions requires a robust, transparent, and community-available benchmarking framework. I will present an ILAMB evaluation of several of the above-mentioned approaches in ACME, and attempt to motivate community adoption of this evaluation approach.

  1. Effects of the bottom boundary condition in numerical investigations of dense water cascading on a slope

    NASA Astrophysics Data System (ADS)

    Berntsen, Jarle; Alendal, Guttorm; Avlesen, Helge; Thiem, Øyvind

    2018-05-01

    The flow of dense water along continental slopes is considered. There is a large literature on the topic based on observations and laboratory experiments. In addition, there are many analytical and numerical studies of dense water flows. In particular, there is a sequence of numerical investigations using the dynamics of overflow mixing and entrainment (DOME) setup. In these papers, the sensitivity of the solutions to numerical parameters such as grid size and numerical viscosity coefficients and to the choices of methods and models is investigated. In earlier DOME studies, three different bottom boundary conditions and a range of vertical grid sizes are applied. In other parts of the literature on numerical studies of oceanic gravity currents, there are statements that appear to contradict choices made on bottom boundary conditions in some of the DOME papers. In the present study, we therefore address the effects of the bottom boundary condition and vertical resolution in numerical investigations of dense water cascading on a slope. The main finding of the present paper is that it is feasible to capture the bottom Ekman layer dynamics adequately and cost efficiently by using a terrain-following model system using a quadratic drag law with a drag coefficient computed to give near-bottom velocity profiles in agreement with the logarithmic law of the wall. Many studies of dense water flows are performed with a quadratic bottom drag law and a constant drag coefficient. It is shown that when using this bottom boundary condition, Ekman drainage will not be adequately represented. In other studies of gravity flow, a no-slip bottom boundary condition is applied. With no-slip and a very fine resolution near the seabed, the solutions are essentially equal to the solutions obtained with a quadratic drag law and a drag coefficient computed to produce velocity profiles matching the logarithmic law of the wall. However, with coarser resolution near the seabed, there may be a substantial artificial blocking effect when using no-slip.

  2. Waves in the Turbulent Layer during the Morning Transition to the Convective Boundary Layer at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Petenko, Igor; Argentini, Stefania; Mastrantonio, Giangiuseppe; Kallistratova, Margarita; Viola, Angelo; Sozzi, Roberto; Casasanta, Giampietro; Conidi, Alessandro

    2015-04-01

    During January-February 2014, observations were carried out at the Concordia station, Dome C, Antarctica to study the behaviour of atmospheric turbulence in lower two hundred meters. The behaviour of thermal turbulence was observed remotely using a specially developed high-resolution sodar. In contrast to the all previous observations, in this experiment the turbulence pattern in the boundary layer was observed by sodar beginning from the lowest height of ≈2 m and with vertical resolution < 2 m. Sodar measurements were accompanied by in-situ measurements of the relevant meteorological variables as well as of some turbulent characteristics. Typical patterns of the diurnal evolution of the spatial and temporal distribution of turbulence detected by sodar were analysed. This study focuses on the transition period between stable stratification and the developed convective activity under the capping temperature inversion layer. Thank to the high resolution of sodar measurements, for the first time it was found that during developing the convection near the surface, above, in the elevated turbulent layer, a clear wave activity occurs. Undulation inside the elevating turbulent layer was observed during the significant part of the time. Mainly, the form of these waves can be classified as "cat eyes". Oscillations of wavy layers indicated with intense thermal turbulence inside them were characterized by the use of the methods of spectral and correlation analysis. The main characteristics (spatial and temporal scales, vertical extension) of the undulation structures were determined. The prevailing periodicity of the observed undulations is estimated to be 40-50 s. A descend rate of wavy fine turbulent layers was estimated by different ways and varies in the range 1-2 m s-1. The time behaviour of the top and the bottom of wavy layers were determined for the whole observational period.

  3. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    NASA Technical Reports Server (NTRS)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  4. Spectroscopy of Solid State Laser Materials

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1994-01-01

    We retrieved the vertical distribution of ozone from a series 0.005-0.013/cm resolution infrared solar spectra recorded with the McMath Fourier Transform spectrometer at the Kitt Peak National Solar Observatory. The analysis is based on a multi-layer line-by-line forward model and a semi-empirical version of the optimal estimation inversion method by Rodgers. The 1002.6-1003.2/cm spectral interval has been selected for the analysis on the basis of synthetic spectrum calculations. The characterization and error analysis of the method have been performed. It was shown that for the Kitt Peak spectral resolution and typical signal-to-noise ratio (greater than or equal to 100) the retrieval is stable, with the vertical resolution of approximately 5 km attainable near the surface degrading to approximately 10 km in the stratosphere. Spectra recorded from 1980 through 1993 have been analyzed. The retrieved total ozone and vertical profiles have been compared with total ozone mapping spectrometer (TOMS) satellite total columns for the location and dates of the Kitt Peak Measurements and about 100 ozone ozonesoundings and Brewer total column measurements from Palestine, Texas, from 1979 to 1985. The total ozone measurements agree to +/- 2%. The retrieved profiles reproduce the seasonally averaged variations with altitude, including the ozone spring maximum and fall minimum measured by Palestine sondes, but up to 15% differences in the absolute values are obtained.

  5. Imaging of Cell-Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics

    PubMed Central

    Jang, Joon Hee; Huang, Yu; Zheng, Peilin; Jo, Myeong Chan; Bertolet, Grant; Qin, Lidong; Liu, Dongfang

    2015-01-01

    The immunological synapse (IS) is one of the most pivotal communication strategies in immune cells. Understanding the molecular basis of the IS provides critical information regarding how immune cells mount an effective immune response. Fluorescence microscopy provides a fundamental tool to study the IS. However, current imaging techniques for studying the IS cannot sufficiently achieve high resolution in real cell-cell conjugates. Here we present a new device that allows for high-resolution imaging of the IS with conventional confocal microscopy in a high-throughput manner. Combining micropits and single cell trap arrays, we have developed a new microfluidic platform that allows visualization of the IS in vertically “stacked” cells. Using this vertical cell pairing (VCP) system, we investigated the dynamics of the inhibitory synapse mediated by an inhibitory receptor, programed death protein-1 (PD-1) and the cytotoxic synapse at the single cell level. In addition to the technique innovation, we demonstrated novel biological findings by this VCP device, including novel distribution of F-actin and cytolytic granules at the IS, PD-1 microclusters in the NK IS, and kinetics of cytotoxicity. We propose that this high-throughput, cost-effective, easy-to-use VCP system, along with conventional imaging techniques, can be used to address a number of significant biological questions in a variety of disciplines. PMID:26123352

  6. Spatial Heterodyne Observations of Water (SHOW) vapour in the upper troposphere and lower stratosphere from a high altitude aircraft: Modelling and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Langille, J. A.; Letros, D.; Zawada, D.; Bourassa, A.; Degenstein, D.; Solheim, B.

    2018-04-01

    A spatial heterodyne spectrometer (SHS) has been developed to measure the vertical distribution of water vapour in the upper troposphere and the lower stratosphere with a high vertical resolution (∼500 m). The Spatial Heterodyne Observations of Water (SHOW) instrument combines an imaging system with a monolithic field-widened SHS to observe limb scattered sunlight in a vibrational band of water (1363 nm-1366 nm). The instrument has been optimized for observations from NASA's ER-2 aircraft as a proof-of-concept for a future low earth orbit satellite deployment. A robust model has been developed to simulate SHOW ER-2 limb measurements and retrievals. This paper presents the simulation of the SHOW ER-2 limb measurements along a hypothetical flight track and examines the sensitivity of the measurement and retrieval approach. Water vapour fields from an Environment and Climate Change Canada forecast model are used to represent realistic spatial variability along the flight path. High spectral resolution limb scattered radiances are simulated using the SASKTRAN radiative transfer model. It is shown that the SHOW instrument onboard the ER-2 is capable of resolving the water vapour variability in the UTLS from approximately 12 km - 18 km with ±1 ppm accuracy. Vertical resolutions between 500 m and 1 km are feasible. The along track sampling capability of the instrument is also discussed.

  7. Variability of Coastal and Ocean Water Temperature in the Upper 700 m along the Western Iberian Peninsula from 1975 to 2006

    PubMed Central

    Santos, Fran; Gómez-Gesteira, Moncho; deCastro, Maite; Álvarez, Inés

    2012-01-01

    Temperature is observed to have different trends at coastal and ocean locations along the western Iberian Peninsula from 1975 to 2006, which corresponds to the last warming period in the area under study. The analysis was carried out by means of the Simple Ocean Data Assimilation (SODA). Reanalysis data are available at monthly scale with a horizontal resolution of 0.5°×0.5° and a vertical resolution of 40 levels, which allows obtaining information beneath the sea surface. Only the first 21 vertical levels (from 5.0 m to 729.35 m) were considered here, since the most important changes in heat content observed for the world ocean during the last decades, correspond to the upper 700 m. Warming was observed to be considerably higher at ocean locations than at coastal ones. Ocean warming ranged from values on the order of 0.3°C dec−1 near surface to less than 0.1°C dec−1 at 500 m, while coastal warming showed values close to 0.2°C dec−1 near surface, decreasing rapidly below 0.1°C dec−1 for depths on the order of 50 m. The heat content anomaly for the upper 700 m, showed a sharp increase from coast (0.46 Wm−2) to ocean (1.59 Wm−2). The difference between coastal and ocean values was related to the presence of coastal upwelling, which partially inhibits the warming from surface of near shore water. PMID:23226533

  8. Vertical Accuracy Assessment of 30-M Resolution Alos, Aster, and Srtm Global Dems Over Northeastern Mindanao, Philippines

    NASA Astrophysics Data System (ADS)

    Santillan, J. R.; Makinano-Santillan, M.

    2016-06-01

    The ALOS World 3D - 30 m (AW3D30), ASTER Global DEM Version 2 (GDEM2), and SRTM-30 m are Digital Elevation Models (DEMs) that have been made available to the general public free of charge. An important feature of these DEMs is their unprecedented horizontal resolution of 30-m and almost global coverage. The very recent release of these DEMs, particularly AW3D30 and SRTM- 30 m, calls for opportunities for the conduct of localized assessment of the DEM's quality and accuracy to verify their suitability for a wide range of applications in hydrology, geomorphology, archaelogy, and many others. In this study, we conducted a vertical accuracy assessment of these DEMs by comparing the elevation of 274 control points scattered over various sites in northeastern Mindanao, Philippines. The elevations of these control points (referred to the Mean Sea Level, MSL) were obtained through 3rd order differential levelling using a high precision digital level, and their horizontal positions measured using a global positioning system (GPS) receiver. These control points are representative of five (5) land-cover classes namely brushland (45 points), built-up (32), cultivated areas (97), dense vegetation (74), and grassland (26). Results showed that AW3D30 has the lowest Root Mean Square Error (RMSE) of 5.68 m, followed by SRTM-30 m (RMSE = 8.28 m), and ASTER GDEM2 (RMSE = 11.98 m). While all the three DEMs overestimated the true ground elevations, the mean and standard deviations of the differences in elevations were found to be lower in AW3D30 compared to SRTM-30 m and ASTER GDEM2. The superiority of AW3D30 over the other two DEMS was also found to be consistent even under different landcover types, with AW3D30's RMSEs ranging from 4.29 m (built-up) to 6.75 m (dense vegetation). For SRTM-30 m, the RMSE ranges from 5.91 m (built-up) to 10.42 m (brushland); for ASTER GDEM2, the RMSE ranges from 9.27 m (brushland) to 14.88 m (dense vegetation). The results of the vertical accuracy assessment suggest that the AW3D30 is more accurate than SRTM-30 m and ASTER GDEM2, at least for the areas considered in this study. On the other hand, the tendencies of the three DEMs to overestimate true ground elevation can be considered an important finding that users of the DEMs in the Philippines should be aware of, and must be considered into decisions regarding use of these data products in various applications.

  9. Direct Imaging of Protein Organization in an Intact Bacterial Organelle Using High-Resolution Atomic Force Microscopy

    PubMed Central

    2016-01-01

    The function of bioenergetic membranes is strongly influenced by the spatial arrangement of their constituent membrane proteins. Atomic force microscopy (AFM) can be used to probe protein organization at high resolution, allowing individual proteins to be identified. However, previous AFM studies of biological membranes have typically required that curved membranes are ruptured and flattened during sample preparation, with the possibility of disruption of the native protein arrangement or loss of proteins. Imaging native, curved membranes requires minimal tip–sample interaction in both lateral and vertical directions. Here, long-range tip–sample interactions are reduced by optimizing the imaging buffer. Tapping mode AFM with high-resonance-frequency small and soft cantilevers, in combination with a high-speed AFM, reduces the forces due to feedback error and enables application of an average imaging force of tens of piconewtons. Using this approach, we have imaged the membrane organization of intact vesicular bacterial photosynthetic “organelles”, chromatophores. Despite the highly curved nature of the chromatophore membrane and lack of direct support, the resolution was sufficient to identify the photosystem complexes and quantify their arrangement in the native state. Successive imaging showed the proteins remain surprisingly static, with minimal rotation or translation over several-minute time scales. High-order assemblies of RC-LH1-PufX complexes are observed, and intact ATPases are successfully imaged. The methods developed here are likely to be applicable to a broad range of protein-rich vesicles or curved membrane systems, which are an almost ubiquitous feature of native organelles. PMID:28114766

  10. Optical and morphological properties of Cirrus clouds determined by the high spectral resolution lidar during FIRE

    NASA Technical Reports Server (NTRS)

    Grund, Christian John; Eloranta, Edwin W.

    1990-01-01

    Cirrus clouds reflect incoming solar radiation and trap outgoing terrestrial radiation; therefore, accurate estimation of the global energy balance depends upon knowledge of the optical and physical properties of these clouds. Scattering and absorption by cirrus clouds affect measurements made by many satellite-borne and ground based remote sensors. Scattering of ambient light by the cloud, and thermal emissions from the cloud can increase measurement background noise. Multiple scattering processes can adversely affect the divergence of optical beams propagating through these clouds. Determination of the optical thickness and the vertical and horizontal extent of cirrus clouds is necessary to the evaluation of all of these effects. Lidar can be an effective tool for investigating these properties. During the FIRE cirrus IFO in Oct. to Nov. 1986, the High Spectral Resolution Lidar (HSRL) was operated from a rooftop site on the campus of the University of Wisconsin at Madison, Wisconsin. Approximately 124 hours of fall season data were acquired under a variety of cloud optical thickness conditions. Since the IFO, the HSRL data set was expanded by more than 63.5 hours of additional data acquired during all seasons. Measurements are presented for the range in optical thickness and backscattering phase function of the cirrus clouds, as well as contour maps of extinction corrected backscatter cross sections indicating cloud morphology. Color enhanced images of range-time indicator (RTI) displays a variety of cirrus clouds with approximately 30 sec time resolution are presented. The importance of extinction correction on the interpretation of cloud height and structure from lidar observations of optically thick cirrus are demonstrated.

  11. Boundary Layer Remote Sensing with Combined Active and Passive Techniques: GPS Radio Occultation and High-Resolution Stereo Imaging (WindCam) Small Satellite Concept

    NASA Technical Reports Server (NTRS)

    Mannucci, A.J.; Wu, D.L.; Teixeira, J.; Ao, C.O.; Xie, F.; Diner, D.J.; Wood, R.; Turk, Joe

    2012-01-01

    Objective: significant progress in understanding low-cloud boundary layer processes. This is the Single largest uncertainty in climate projections. Radio occultation has unique features suited to boundary layer remote sensing (1) Cloud penetrating (2) Very high vertical resolution (approximately 50m-100m) (3) Sensitivity to thermodynamic variables

  12. LFNet: A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution.

    PubMed

    Wang, Yunlong; Liu, Fei; Zhang, Kunbo; Hou, Guangqi; Sun, Zhenan; Tan, Tieniu

    2018-09-01

    The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate contextual information from multiple scales for super-resolution reconstruction. The implicitly multi-scale fusion scheme is then incorporated into bidirectional recurrent convolutional neural network, which aims to iteratively model spatial relations between horizontally or vertically adjacent sub-aperture images of light-field data. Within the network, the recurrent convolutions are modified to be more effective and flexible in modeling the spatial correlations between neighboring views. A horizontal sub-network and a vertical sub-network of the same network structure are ensembled for final outputs via stacked generalization. Experimental results on synthetic and real-world data sets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in peak signal-to-noise ratio and gray-scale structural similarity indexes, which also achieves superior quality for human visual systems. Furthermore, the proposed method can enhance the performance of light field applications such as depth estimation.

  13. The Probe Profile and Lateral Resolution of Scanning Transmission Electron Microscopy of Thick Specimens

    PubMed Central

    Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels

    2012-01-01

    Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in the CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile, and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens. PMID:22564444

  14. Super-resolution fusion of complementary panoramic images based on cross-selection kernel regression interpolation.

    PubMed

    Chen, Lidong; Basu, Anup; Zhang, Maojun; Wang, Wei; Liu, Yu

    2014-03-20

    A complementary catadioptric imaging technique was proposed to solve the problem of low and nonuniform resolution in omnidirectional imaging. To enhance this research, our paper focuses on how to generate a high-resolution panoramic image from the captured omnidirectional image. To avoid the interference between the inner and outer images while fusing the two complementary views, a cross-selection kernel regression method is proposed. First, in view of the complementarity of sampling resolution in the tangential and radial directions between the inner and the outer images, respectively, the horizontal gradients in the expected panoramic image are estimated based on the scattered neighboring pixels mapped from the outer, while the vertical gradients are estimated using the inner image. Then, the size and shape of the regression kernel are adaptively steered based on the local gradients. Furthermore, the neighboring pixels in the next interpolation step of kernel regression are also selected based on the comparison between the horizontal and vertical gradients. In simulation and real-image experiments, the proposed method outperforms existing kernel regression methods and our previous wavelet-based fusion method in terms of both visual quality and objective evaluation.

  15. A 20 GeVs transparent neutrino astronomy from the North Pole?

    NASA Astrophysics Data System (ADS)

    Fargion, D.; D'Armiento, D.

    2011-03-01

    Muon neutrino astronomy is drown within a polluted atmospheric neutrino noise: indeed recent ICECUBE neutrino records at (TeVs) couldn't find any muon neutrino point source [R. Abbasi et al. (IceCube Collaboration), arXiv:1010.3980v1] being blurred by such a noisy sky. However at 24 GeV energy atmospheric muon neutrinos, while rising vertically along the terrestrial diameter, should disappear (or be severely depleted) while converting into tau flavor: any rarest vertical E≃12 GeV muon track at South Pole Deep Core volume, pointing back to North Pole, might be tracing mostly a noise-free astrophysical signal. The corresponding Deep Core 6 - 7 - 8 - 9 channels trigger maybe point in those directions and inside that energy range without much background. Analogous ν suppression do not occur so efficiently elsewhere (as SuperKamiokande) because of a much smaller volume, an un-ability to test the muon birth place, its length, its expected energy. Also the smearing of the terrestrial rotation makes Deep Core ideal: along the South-North Pole the solid angle is almost steady, the flavor ν↦ν conversion persist while the Earth is spinning around the stable poles-axis. Therefore Deep Core detector at South Pole, may scan at E≃18-27 GeV energy windows, into a narrow vertical cone Δθ≃30° for a novel ν, ν astronomy almost noise-free, pointing back toward the North Pole. Unfortunately muon (at E≃12 GeV) trace their arrival direction mostly spread around an unique string in a zenith-cone solid angle. To achieve also an azimuth angular resolution a two string detection at once is needed. Therefore the doubling of the Deep Core string number, (two new arrays of six string each, achieving an average detection distance of 36.5 m), is desirable, leading to a larger Deep Core detection mass (more than double) and a sharper zenith and azimuth angular resolution by two-string vertical axis detection. Such an improvement may show a noise free (at least factor ten) muon neutrino astronomy. This enhancement may also be a crucial probe of a peculiar anisotropy foreseen for atmospheric anti-muon, in CPT violated physics versus conserved one, following a hint by recent Minos results.

  16. NIOZ high-resolution moored temperature observations: benefits and new challenges.

    NASA Astrophysics Data System (ADS)

    Cimatoribus, Andrea; Gostiaux, Louis; Cyr, Frederic; van Haren, Hans

    2016-04-01

    The Royal Netherlands Institute for Sea Research has been developing for several years a family of temperature sensors (NIOZ1 to NIOZ5). In the latest iterations of this project, these instruments are precise (10-3 K or better), have a very low noise level (below 10-3 K), are relatively fast (sampling rate of 1Hz) and can measure for extended periods of time (several months). Being also compact and lightweight, several thermistors can be attached on a single line at a fine vertical spacing (20cm or more). When mounted on a cable, the instruments are all synchronised to a single clock, thus providing simultaneous measurements throughout the depth range of the mooring (usually in the order of 100m). Recently, the instruments have also been deployed in a group of 5 lines approximately 5m apart from each other, providing a unique view on the three-dimensional temperature field. After almost 10 years of successful deployments at sea, we try to draw some conclusions from this effort, from the scientific and technical point of view. This observational system provides temperature measurements with vertical spatial resolution comparable to that of microstructure profilers, but in comparison to ship-borne systems it offers some distinctive features: providing instantaneous measurements throughout the mooring, observations of waves and overturning structures are not influenced by the time delay between measurements at different depths; the very low noise level and high precision enables the study of the deep, weakly stratified ocean; by using a heavy ballast at the bottom and a high net buoyancy at the top of the mooring, Eulerian measurements are effectively obtained; continuous, high sampling rate Eulerian measurements enable to assess the intermittent, sporadic nature of turbulence and wave activity in the ocean; the large range of time scales included in the observations (100 - 106 s) allows to study a large portion of the turbulence inertial range, the full internal wave spectrum, modulation by submesoscale and mesoscale activity and seasonal variations. These features have been exploited for characterising the internal wave spectrum in the open ocean, for evaluating turbulence parameters above seamounts, and to characterise the statistics of temperature fluctuations. Main results include the observational demonstration of extreme inhomogeneity in space and intermittency in time of turbulence, and evidence of the importance of convective activity within strong geophysical turbulence. The data collected challenges the classical methods of turbulence parameters estimation in the ocean. Classical "Thorpe scale" methods have been adapted to the particular characteristics of the data, and efforts have been made to adapt other methods, providing higher detail on the vertical and temporal modulation of turbulence. The large datasets have also enabled the application on observational data of analysis methods previously used on laboratory data alone.

  17. Natural Environment Characterization Using Hybrid Tomographic Aproaches

    NASA Astrophysics Data System (ADS)

    Huang, Yue; Ferro-Famil, Laurent; Reigber, Andreas

    2011-03-01

    SAR tomography (SARTOM) is the extension of conventional two-dimensional SAR imaging principle to three dimensions [1]. A real 3D imaging of a scene is achieved by the formation of an additional synthetic aperture in elevation and the coherent combination of images acquired from several parallel flight tracks. This imaging technique allows a direct localization of multiple scattering contributions in a same resolution cell, leading to a refined analysis of volume structures, like forests or dense urban areas. In order to improve the vertical resolution with respect to classical Fourier-based methods, High-Resolution (HR) approaches are used in this paper to perform SAR tomography. Both nonparametric spectral estimators, like Beamforming and Capon and parametric ones, like MUSIC, Maximum Likelihood, are applied to real data sets and compared in terms of scatterer location accuracy and resolution. It is known that nonparametric approaches are in general more robust to focusing artefacts, whereas parametric approaches are characterized by a better vertical resolution. It has been shown [2], [3] that the performance of these spectral analysis approaches is conditioned by the nature of the scattering response of the observed objects. In the scenario of hybrid environments where objects with a deterministic response are embedded in a speckle affected environment, the parameter estimation for this type of scatterers becomes a problem of mixed-spectrum estimation. The impenetrable medium like the ground or object, possesses an isolated localized phase center in the vertical direction, leading to a discrete (line) spectrum. This type of scatterers can be considered as 'h-localized', named 'Isolated Scatterers' (IS). Whereas natural environments consist of a large number of elementary scatterers successively distributed in the vertical direction. This type of scatterers can be described as 'h-distributed' scatterers and characterized by a continuous spectrum. Therefore, the usual spectral estimators may reach some limitations due to their lack of adaptation to both the statistical features of the backscattered information and the type of spectrum of the considered media. In order to overcome this problem, a tomographic focusing approach based on hybrid spectral estimators is introduced and extended to the polarimetric case. It contains two parallel procedures: one is to detect and localize isolated scatterers and the other one is to characterize the natural environment by estimating the heights of the ground and the tree top. These two decoupled procedures permit to more precisely characterize the scenario of hybrid environments.

  18. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    NASA Astrophysics Data System (ADS)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by georeferenced geological field data acquired along mountain trail transects, mainly using the MVE Field Move software application. In our experience, vertical aerophotos were sufficient to generate precise surface models in all but the steepest mountain cliffs. Therefore, using existing vertical photoimagery (where available) is a very cost-effective alternative to organizing shooting campaigns with rented aircraft. For handling reasonably large models (cca 3 x 3 km, up to 10 million triangles), a low-end computer workstation with mid-range professional 3D graphic card is sufficient. The biggest bottleneck is the photogrammetric processing step which is time-consuming (10s of hrs) and has large RAM requirements, although those can be offset by dividing models into smaller parts. The major problem with geological modeling software like Gocad or Move is that it at present does not handle well projecting of phototextures. Whereas Photoscan-generated orthophotos can be vertically projected onto mesh models, this results in unacceptable distortions and gaps in subvertical or overhanging parts of the mountain cliff models. A real 3D UV texture mapping method, such as implemented in Photoscan, would be required to realistically model such areas. This limitations notwithstanding, digital geological mapping of photogrammetric models of mountains is a very promising, cost- and time-effective method for rapid structural interpretation and mapping of barren mountainous terrains, particularly when it is complemented by field measurements and observations.

  19. Poster 8: ALMA observations of Titan : Vertical and spatial distributions of nitriles

    NASA Astrophysics Data System (ADS)

    Moreno, Raphael; Lellouch, Emmanuel; Vinatier, Sandrine; Gurwell, Mark; Moullet, Arielle; Lara, Luisa; Hidayat, Taufiq

    2016-06-01

    We report submm observations of Titan performed with the ALMA interferometer centered at the rotational frequencies of HCN(4-3) and HNC(4-3), i.e. 354 and 362 GHz. These measurements yielded disk-resolved emission spectra of Titan with an angular resolution of ˜0.47". Titan's angular surface diameter was 0.77". Data were acquired in summer 2012 near the greatest eastern and western elongations of Titan at a spectral resolution of 122 kHz (λ/dλ = 3106). We will present radiative transfer analysis of the acquired spectra. With the combination of all the detected rotational lines, we will constrain the atmospheric temperature, the spatial and vertical distribution HCN, HC3N, CH3CN, HNC, C2H5CN, as well as isotopic ratios.

  20. Fatigue Effects on Human Performance in Combat: A Literature Review. Volume 1

    DTIC Science & Technology

    1991-08-01

    sleep data to assess if there was a tie between sleep patterns/levels and the subjectively rated unit performance. HTI also examined pro- and post ...vertical functional systems. This choice of "level of resolution" is based upon a requirement to represent the fact that not all subunits of, for example ...were initiated, in particular, engagement and synchronization across vertical functional systems. NTC results also provided examples of the extreme

Top