Sample records for vertical seismic array

  1. Coda-wave and ambient noise interferometry using an offset vertical array at Iwanuma site, northeast Japan

    NASA Astrophysics Data System (ADS)

    Minami, K.; Yamamoto, M.; Nishimura, T.; Nakahara, H.; Shiomi, K.

    2013-12-01

    Seismic interferometry using vertical borehole arrays is a powerful tool to estimate the shallow subsurface structure and its time lapse changes. However, the wave fields surrounding borehole arrays are non-isotropic due to the existence of ground surface and non-uniform distribution of sources, and do not meet the requirements of the seismic interferometry in a strict sense. In this study, to examine differences between wave fields of coda waves and ambient noise, and to estimate their effects on the results of seismic interferometry, we conducted a temporal seismic experiment using zero-offset and offset vertical arrays. We installed two 3-components seismometers (hereafter called Surface1 and Surface2) at the ground surface in the vicinity of NIED Iwanuma site (Miyagi Pref., Japan). Surface1 is placed just above the Hi-net downhole seismometer whose depth is 101 m, and Surface2 is placed 70 m away from Surface1. To extract the wave propagation between these 3 seismometers, we compute the cross-correlation functions (CCFs) of coda-wave and ambient noise for each pair of the zero-offset vertical (Hi-net-Surface1), finite-offset vertical (Hi-net-Surface2), and horizontal (Surface1-Surface2) arrays. We use the frequency bands of 4-8, 8-16 Hz in the CCF computation. The characteristics of obtained CCFs are summarized as follows; (1) in all frequency bands, the peak lag times of CCFs from coda waves are almost the same between the vertical and offset-vertical arrays irrespective of different inter-station distance, and those for the horizontal array are around 0 s. (2) the peak lag times of CCFs from ambient noise show slight differences, that is, those obtained from the vertical array are earlier than those from the offset-vertical array, and those from the horizontal array are around 0.05 s. (3) the peak lag times of CCFs for the vertical array obtained from ambient noise analyses are earlier than those from the coda-wave analyses. These results indicate that wave fields of coda-wave are mainly composed of vertically propagating waves, while those of ambient noise are composed of both vertically and horizontally propagating waves. To explain these characteristics of the CCFs obtained from different wave fields, we conducted a numerical simulation of interferometry based on the concept of stationary phase. Here, we assume isotropic upward incidence of SV-wave into a homogeneous half-space, and compute CCFs for the zero-offset and finite-offset vertical arrays by taking into account the reflection and conversion of P-SV waves at the free surface. Due to the effectively non-isotropic wave field, the simulated CCF for the zero-offset vertical array shows slight delay in peak lag time and its amplitudes decrease in the acausal part. On the other hand, the simulated CCF for finite-offset vertical array shows amplitude decrease and no peak lag time shift. These results are consistent with the difference in peak lag times obtained from coda-wave and ambient noise analyses. Our observations and theoretical consideration suggest that the careful consideration of wave fields is important in the application of seismic interferometry to borehole array data.

  2. An Expedient but Fascinating Geophysical Chimera: The Pinyon Flat Seismic Strain Point Array

    NASA Astrophysics Data System (ADS)

    Langston, C. A.

    2016-12-01

    The combination of a borehole Gladwin Tensor Strain Meter (GTSM) and a co-located three component broadband seismometer (BB) can theoretically be used to determine the propagation attributes of P-SV waves in vertically inhomogeneous media such as horizontal phase velocity and azimuth of propagation through application of wave gradiometry. A major requirement for this to be successful is to have well-calibrated strain and seismic sensors to be able to rely on using absolute wave amplitude from both systems. A "point" seismic array is constructed using the PBO GTSM station B084 and co-located BB seismic stations from an open array experiment deployed by UCSD as well as PFO station at the Pinyon Flat facility. Site amplitude statics for all three ground motion components are found for the 14-element (13 PY stations + PFO), small aperture seismic array using data from 47 teleseisms recorded from 2014 until present. Precision of amplitude measurement at each site is better than 0.2% for vertical components, 0.5% for EW components, and 1% for NS components. Relative amplitudes among sites of the array are often better than 1% attesting to the high quality of the instrumentation and installation. The wavefield and related horizontal strains are computed for the location of B084 using a second order Taylor's expansion of observed waveforms from moderate ( M4) regional events. The computed seismic array areal, differential, and shear strains show excellent correlation in both phase and amplitude with those recorded by B084 when using the calibration matrix previously determined using teleseismic strains from the entire ANZA seismic network. Use of the GTSM-BB "point" array significantly extends the bandwidth of gradiometry calculations over the small-aperture seismic array by nearly two orders of magnitude from 0.5 Hz to 0.01 Hz. In principle, a seismic strain point array could be constructed from every PBO GTSM with a co-located seismometer to help serve earthquake early warning for large regional events on North America's west coast.

  3. Shallow Water Propagation

    DTIC Science & Technology

    2010-02-26

    bottom waveguide. The lower contour plot demonstrates that this method, unlike other parabolic equations, can treat seismic sources. 20100308162...solitons. One illustration in Figure 8 shows depth-averaged data at the Naval Research Laboratory vertical line array (VLA) [dashed blue curves...vertical line array about 15 km from the source. The right panel [blue curves] compares corresponding simulations from a three-dimensional adiabatic mode

  4. Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment

    NASA Astrophysics Data System (ADS)

    Pitarka, A.

    2014-12-01

    Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  5. Vertical Seismic Profiling at riser drilling site in the rupture area of the 1944 Tonankai Earthquake, Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Hino, R.; Kinoshita, M.; Araki, E.; Byrne, T. B.; McNeill, L. C.; Saffer, D. M.; Eguchi, N. O.; Takahashi, K.; Toczko, S.

    2009-12-01

    A series of scientific drilling expeditions is in operation in the Nankai Trough to reveal the faulting mechanism of the magathrust earthquakes, through clarifying composition, fine structure, mechanical behavior, and environmental variables of the seismogenic faults. In the studied area, extensive seismic surveys for site characterization have been made to image detailed geometry of the fault complex in the accretionary prism as well as Vp distribution around the faults. Although these previous surveys provided invaluable information for understanding seismotectonic processes in this subduction zone, more complete knowledge is needed to be acquired to predict dynamic behavior of the faults, such as geometrical irregularities in short wavelength, Vs and seismic attenuation which are sensitive to fluid distribution in and around fault zones. It is expected that estimation of these parameters would be improved considerably by a seismic exploration using a vertical array of seismographs installed in a deep borehole (VSP: vertical seismic profiling). In July 2009, we made a VSP at one of the drilling sites located just above the rupture area of the 1994 Tonankai Earthquake (M 8.1), during the IODP Exp.319. The well site of our VSP was made by the riser drilling of D/V Chikyu. The seismic array, lowered from Chikyu into the hole, was composed of a three-component accelerometer and vertical separation of the array elements was 15.12 m. The VSP was composed of offset VSP and zero-offset VSP. In the offset VSP, a tuned airgun array towed by R/V Kairei was shot along one straight line (walk-away VSP) and another circular line (walk-around VSP) and seismic signals were recorded by an array consisting of 16 elements installed from 907 to 1,135 m in depth from seafloor. The object of the walk-away VSP is to obtain fine image of the faults using reflection arrivals with less attenuation. It is also expected to obtain spatial variation of Vs from arrival time tomography of refracted S waves. For this purpose, we preferred extraordinarily longer (~ 30 km) offset shooting than usual industrial VSPs. Shot spacing was 60 m along the same line as the previous 3D reflection and OBS wide angle surveys. The radius of circle of the walk-around VSP was 3.5 km to detect azimuthal anisotropy of downgoing P and S waves, correlated to stress state around the site. In zero-offset VSP, shots just above the hole were recorded by the 8 element array moving from 0 to 1,135 mbsf along the hole so that seismic structure with comparable vertical resolution as core-log information would be obtained. In the records of the walk-away VSP, clear first arrivals as well as several evident later arrivals were clearly identified. The later phases contain the reflection from the megasplay fault and the refracted S wave through the accretional prism, on both of which we have significant interest. The walk-around VSP also provided us with high S/N records but detailed data reduction, such as velocity analysis using vertical array, are required to derive anisotropic nature of the formation around the hole.

  6. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; Huang, Lianjie

    2015-01-28

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less

  7. Bottom Interaction in Ocean Acoustic Propagation

    DTIC Science & Technology

    2014-09-30

    deep seafloor (greater than the critical depth). What is the relationship between the seismic (ground motion) noise on the seafloor and the acoustic...ocean bottom seismometers (OBSs), but were very weak on the deep vertical line array (Deep VLA), located above 750 m from the seafloor. Stephen et al...was carried out in April-May 2011 near the location of the PhilSea10 Distributed Vertical Line Array (DVLA) (Stephen et al., 2011). The second

  8. Bottom Interaction in Ocean Acoustic Propagation

    DTIC Science & Technology

    2015-09-30

    the deep seafloor (greater than the critical depth). What is the relationship between the seismic (ground motion) noise on the seafloor and the...ocean bottom seismometers (OBSs), but were very weak on the deep vertical line array (Deep VLA), located above 750 m from the seafloor. Stephen et...carried out in April-May 2011 near the location of the PhilSea10 Distributed Vertical Line Array (DVLA) (Stephen et al., 2011). The second experiment

  9. Characterizing Variability in Long Period Horizontal Tilt Noise Through Coherence Analysis

    NASA Astrophysics Data System (ADS)

    Rohde, M. D.; Ringler, A. T.; Hutt, C. R.; Wilson, D.; Holland, A. A.

    2016-12-01

    Tilt induced horizontal noise fundamentally limits a wide variety of seismological studies. This noise source is not well characterized or understood and the spatial variability has yet to be well constrained. Long-period (i.e., greater than 100 seconds period) horizontal seismic noise is generally known to be of greater magnitude than long-period vertical seismic noise due to tilt noise. As a result, many studies only make use of the vertical seismic wavefield as opposed to all three axes. The main source of long-period horizontal seismic noise is hypothesized to be tilt due to atmospheric pressure variation. Reducing horizontal tilt noise could lead to improved resolution of torsional earth modes and other long-period horizontal seismic signals that are often dominated by tilt noise, as well as better construction of seismic isolation systems for sensitive scientific experiments. We looked at a number of small aperture array configurations. For each array we installed eight Streckeisen STS-2 broadband seismometers in the Albuquerque Seismological Laboratory (ASL) underground vault. The data from these array configurations was used to characterize the long period horizontal tilt noise over a spatially small scale. Sensors were installed approximately 1 to 10 meters apart depending on the array configuration. Coherence as a function of frequency was calculated between sensors, of which we examine the frequency band between 10 and 500 seconds. We observed complexity in the pair-wise coherence with respect to frequency, seismometer axis, and time, even for spatially close sensors. We present some possible explanations for the large variability in our coherence observations and demonstrate how these results can be applied to find potentially low horizontal noise locations over small spatial scales, such as in stations with multiple co-located sensors within the Global Seismographic Network.

  10. GFZ Wireless Seismic Array (GFZ-WISE), a Wireless Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring

    PubMed Central

    Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen

    2010-01-01

    Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298

  11. Velocity Model Using the Large-N Seismic Array from the Source Physics Experiment (SPE)

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.

    2016-12-01

    The Source Physics Experiment (SPE) is a multi-institutional, multi-disciplinary project that consists of a series of chemical explosions conducted at the Nevada National Security Site (NNSS). The goal of SPE is to understand the complicated effect of geological structures on seismic wave propagation and source energy partitioning, develop and validate physics-based modeling, and ultimately better monitor low-yield nuclear explosions. A Large-N seismic array was deployed at the SPE site to image the full 3D wavefield from the most recent SPE-5 explosion on April 26, 2016. The Large-N seismic array consists of 996 geophones (half three-component and half vertical-component sensors), and operated for one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources (a large hammer). This study uses Large-N array recordings of the SPE-5 chemical explosion to develop high resolution images of local geologic structures. We analyze different phases of recorded seismic data and construct a velocity model based on arrival times. The results of this study will be incorporated into the large modeling and simulation efforts as ground-truth further validating the models.

  12. Seismic fiber optic multiplexed sensors for exploration and reservoir management

    NASA Astrophysics Data System (ADS)

    Houston, Mark H.

    2000-12-01

    Reliable downhole communications, control and sensor networks will dramatically improve oil reservoir management practices and will enable the construction of intelligent or smart-well completions. Fiber optic technology will play a key role in the implementation of these communication, control and sensing systems because of inherent advantages of power, weight and reliability over more conventional electronic-based systems. Field test data, acquired using an array of fiber optic seismic hydrophones within a steam-flood, heavy oil- production filed, showed a significant improvement (10X in this specific case) in subsurface resolution as compared to conventional surface seismic acquisition. These results demonstrate the viability of using multiplexed fiber optic sensors for exploration and reservoir management in 3D vertical seismic profiling (VSP) surveys and in permanent sensor arrays for 4D surveys.

  13. Interpretation of Microseismicity Observed From Surface and Borehole Seismic Arrays During Hydraulic Fracturing in Shale - Bedding Plane Slip Model

    NASA Astrophysics Data System (ADS)

    Stanek, F.; Jechumtalova, Z.; Eisner, L.

    2017-12-01

    We present a geomechanical model explaining microseismicity induced by hydraulic fracturing in shales developed from many datasets acquired with two most common types of seismic monitoring arrays, surface and dual-borehole arrays. The geomechanical model explains the observed source mechanisms and locations of induced events from two stimulated shale reservoirs. We observe shear dip-slip source mechanisms with nodal planes aligned with location trends. We show that such seismicity can be explained as a shearing along bedding planes caused by aseismic opening of vertical hydraulic fractures. The source mechanism inversion was applied only to selected high-quality events with sufficient signal-to-noise ratio. We inverted P- and P- and S-wave arrival amplitudes to full-moment tensor and decomposed it to shear, volumetric and compensated linear vector dipole components. We also tested an effect of noise presented in the data to evaluate reliability of non-shear components. The observed seismicity from both surface and downhole monitoring of shale stimulations is very similar. The locations of induced microseismic events are limited to narrow depth intervals and propagate along distinct trend(s) showing fracture propagation in direction of maximum horizontal stress from injection well(s). The source mechanisms have a small non-shear component which can be partly explained as an effect of noise in the data, i.e. events represent shearing on faults. We observe predominantly dip-slip events with a strike of the steeper (almost vertical) nodal plane parallel to the fracture propagation. Therefore the other possible nodal plane is almost horizontal. The rake angles of the observed mechanisms divide these dip-slips into two groups with opposite polarities. It means that we observe opposite movements on the nearly identically oriented faults. Realizing a typical structural weakness of shale in horizontal planes, we interpret observed microseismicity as a result of shearing along bedding planes caused by seismically silent (aseismic) vertical fracture opening.

  14. Recordings from the deepest borehole in the New Madrid Seismic Zone

    USGS Publications Warehouse

    Wang, Z.; Woolery, E.W.

    2006-01-01

    The recordings at the deepest vertical strong-motion array (VSAS) from three small events, the 21 October 2004 Tiptonville, Tennessee, earthquake; the 10 February 2005 Arkansas earthquake; and the 2 June 2005 Ridgely, Tennessee, earthquake show some interesting wave-propagation phenomena through the soils: the S-wave is attenuated from 260 m to 30 m depth and amplified from 30 m to the surface. The S-wave arrival times from the three events yielded different shear-wave velocity estimates for the soils. These different estimates may be the result of different incident angles of the S-waves due to different epicentral distances. The epicentral distances are about 22 km, 110 km, and 47 km for the Tiptonville, Arkansas, and Ridgely earthquakes, respectively. These recordings show the usefulness of the borehole strong-motion array. The vertical strong-motion arrays operated by the University of Kentucky have started to accumulate recordings that will provide a database for scientists and engineers to study the effects of the near-surface soils on the strong ground motion in the New Madrid Seismic Zone. More information about the Kentucky Seismic and Strong-Motion Network can be found at www.uky.edu/KGS/geologichazards. The digital recordings are available at ftp://kgsweb.uky.edu.

  15. Inverting near-surface models from virtual-source gathers (SM Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Vossen, Caron; Paulssen, Hanneke

    2017-04-01

    The Groningen gas field is a massive natural gas accumulation in the north-east of the Netherlands. Decades of production have led to significant compaction of the reservoir rock. The (differential) compaction is thought to have reactivated existing faults and to be the main driver of induced seismicity. The potential damage at the surface is largely affected by the state of the near surface. Thin and soft sedimentary layers can lead to large amplifications. By measuring the wavefield at different depth levels, near-surface properties can directly be estimated from the recordings. Seismicity in the Groningen area is monitored primarily with an array of vertical arrays. In the nineties a network of 8 boreholes was deployed. Since 2015, this network has been expanded with 70 new boreholes. Each new borehole consists of an accelerometer at the surface and four downhole geophones with a vertical spacing of 50 m. We apply seismic interferometry to local seismicity, for each borehole individually. Doing so, we obtain the responses as if there were virtual sources at the lowest geophones and receivers at the other depth levels. From the retrieved direct waves and reflections, we invert for P- & S- velocity and Q models. We discuss different implementations of seismic interferometry and the subsequent inversion. The inverted near-surface properties are used to improve both the source location and the hazard assessment.

  16. Characteristic Analysis of Air-gun Source Wavelet based on the Vertical Cable Data

    NASA Astrophysics Data System (ADS)

    Xing, L.

    2016-12-01

    Air guns are important sources for marine seismic exploration. Far-field wavelets of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.

  17. Structure of the North Anatolian Fault Zone from the Auto-Correlation of Ambient Seismic Noise Recorded at a Dense Seismometer Array

    NASA Astrophysics Data System (ADS)

    Taylor, D. G.; Rost, S.; Houseman, G.

    2015-12-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.

  18. Earthquake source parameters determined using the SAFOD Pilot Hole vertical seismic array

    NASA Astrophysics Data System (ADS)

    Imanishi, K.; Ellsworth, W. L.; Prejean, S. G.

    2003-12-01

    We determined source parameters of microearthquakes occurring at Parkfield, CA, using the SAFOD Pilot Hole vertical seismic array. The array consists of 32 stations with 3-component 15 Hz geophones at 40 meter spacing (856 to 2096 m depth) The site is about 1.8 km southwest of a segment of the San Andreas fault characterized by a combination of aseismic creep and repeating microearthquakes. We analyzed seismograms recorded at sample rates of 1kHz or 2kHz. Spectra have high signal-to-noise ratios at frequencies up to 300-400 Hz, showing these data include information on source processes of microearthquakes. By comparing spectra and waveforms at different levels of the array, we observe how attenuation and scattering in the shallow crust affect high-frequency waves. We estimated spectral level (Ω 0), corner frequency (fc) and path-averaged attenuation (Q) at each level of the array by fitting an omega squared model to displacement spectra. While the spectral level changes smoothly with depth, there is significant scatter in fc and Q due to the strong trade-off between these parameters. Because we expect source parameters to vary systematically with depth, we impose a smoothness constraint on Q, Ω 0 and fc as a function of depth. For some of the nearby events, take-off angles to the different levels of the array span a significant part of the focal sphere. Therefore corner frequencies should also change with depth. We smooth measurements using a linear first-difference operator that links Q, Ω 0 and fc at one level to the levels above and below, and use Akaike_fs Bayesian Information Criterion (ABIC) to weight the smoothing operators. We applied this approach to events with high signal-to-noise ratios. For the results with the minimum ABIC, fc does not scatter and Q decreases with decreasing depth. Seismic moments were determined by the spectral level and range from 109 and 1012 Nm. Source radii were estimated from the corner frequency using the circular crack model of Sato and Hirasawa (1973). Estimated values of static stress drop were roughly 1 MPa and do not vary with seismic moment. Q values from all earthquakes were averaged at each level of the array. Average Qp and Qs range from 250 to 350 and from 300 to 400 between the top and bottom of the array, respectively. Increasing Q values as a function of depth explain well the observed decrease in high-frequency content as waves propagate toward the surface. Thus, by jointly analyzing the entire vertical array we can both accurately determine source parameters of microearthquakes and make reliable Q estimates while suppressing the trade-off between fc and Q.

  19. Instrument Correction and Dynamic Site Profile Validation at the Central United States Seismic Observatory, New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Brengman, C.; Woolery, E. W.; Wang, Z.; Carpenter, S.

    2016-12-01

    The Central United States Seismic Observatory (CUSSO) is a vertical seismic array located in southwestern Kentucky within the New Madrid seismic zone. It is intended to describe the effects of local geology, including thick sediment overburden, on seismic-wave propagation, particularly strong-motion. The three-borehole array at CUSSO is composed of seismic sensors placed on the surface, and in the bedrock at various depths within the 585 m thick sediment overburden. The array's deep borehole provided a unique opportunity in the northern Mississippi embayment for the direct geological description and geophysical measurement of the complete late Cretaceous-Quaternary sediment column. A seven layer, intra-sediment velocity model is interpreted from the complex, inhomogeneous stratigraphy. The S- and P-wave sediment velocities range between 160 and 875 m/s and between 1000 and 2300 m/s, respectively, with bedrock velocities of 1452 and 3775 m/s, respectively. Cross-correlation and direct comparisons were used to filter out the instrument response and determine the instrument orientation, making CUSSO data ready for analysis, and making CUSSO a viable calibration site for other free-field sensors in the area. The corrected bedrock motions were numerically propagated through the CUSSO soil profile (transfer function) and compared, in terms of both peak acceleration and amplitude spectra, to the recorded surface observations. Initial observations reveal a complex spectral mix of amplification and de-amplification across the array, indicating the site effect in this deep sediment setting is not simply generated by the shallowest layers.

  20. Noise-Based Seismic Measurements of Tidal-Induced Velocity Changes from Large-N Arrays at the Piton de la Fournaise Volcano

    NASA Astrophysics Data System (ADS)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Stehly, L.; Hillers, G.

    2016-12-01

    We measure the relative seismic velocity changes due to the periodic tidal deformation of the crust at Piton de la Fournaise (PdF) Volcano, La Réunion, where the velocity is expected to be highly sensitive to stress changes because of the low effective pressure resulting from volcanic fluids. We use ambient noise data from the VolcArray experiment at PdF [Brenguier et al, 2016], which includes continuous records of three dense arrays for 30 days in July 2014. Each array consists of 7 x 7 grid points of vertical-component geophones with spacing of about 80 m. We compute hourly cross-correlations of the ambient seismic wavefield to recover the Green's functions, and apply the curvelet filter to improve the signal to noise ratio at high frequency. The travel time variations of multiple-scattered body waves are calculated by the doublet analysis. Taking advantage of the stack of over 1200 station pairs for each array, the relative velocity changes are obtained with a time resolution of up to 1 hour. We remove the long period velocity variations associated with precipitation and deformation related to magma migration using a polynomial interpolation. The remaining velocity fluctuations are of the order of 0.01%. We compare the temporal changes to the vertical accelerations recorded by the nearby very long period seismic station RER, and the simulations of the volumetric tidal strain by SPOTL [Agnew, 2012]. Dominant peaks at around 12 hours and 24 hours are found very consistent in the spectrums of all three series, while small peaks at higher frequency also appear. The phases of dv/v temporal variations match well with the tidal signals during periods of large amplitudes. This experiment shows the feasibility of continuous noise-based measurements of tidal-induced seismic velocity changes with hourly resolution. REFERENCE: [1] Brenguier, F., et al. (2016), Towards 4-D noise-based seismology: First results of a Large-N array experiment on Piton de la Fournaise volcano, Seismol. Res. Lett., 87(1), 15-25, doi:10.1785/0220150173. [2] Agnew, D. C. (2012). SPOTL: Some Programs for Ocean-Tide Loading, SIO Technical Report, Scripps Institution of Oceanography

  1. Vertical directivities of seismic arrays on the ground surface

    NASA Astrophysics Data System (ADS)

    Shiraishi, H.; Asanuma, H.

    2012-12-01

    Microtremor survey method (MSM) is a technique to estimate subsurface velocity structures by inverting phase velocities of the surface waves in the microtremors. We can explorer the S-wave velocity structures at significantly lower expenses by the MSM than the conventional geophysical techniques because of its passive nature. Coherent waves across an array are identified in the MSM, and, therefore, all the existing velocity inversion methods have been deduced under an implicit assumption of horizontal velocity structure. However, it is expected that the development of the 3D inversion theory would drastically enhance applicability and reliability of the MSM. We, hence, investigated the characteristics of vertical directivities of the arrays deployed on the ground surface as an initial step for deriving the 3D MSM. We have firstly examined the response of an elemental two sensor array to which plane waves propagates from the deep crust with a certain angle of incident, and then examined the characteristics of several types of arrays, including triangular and circular arrays to clarify the characteristics of practical arrays. Real part of the complex coherence function, which has been derived to evaluate coherence of the Rayleigh wave between sensors for plane waves (Shiraishi et al., 2006), has been applied for this investigation. Our results showed that the directivity varies according to a parameter kr ( k : wave number, r : separation of the sensors ). A vertical directivity of two sensor array at kr = π shows a rotationally-symmetrical shape (Figure (a)). In contrast, an equilateral triangle array has a conspicuous directivity toward the vertical direction (cf. Figure (b)). This divergence suggests that the shape of the vertical directivity significantly depend on the geometry, and a sharp directivity toward just beneath the array can be realized by designing the vertical directivity. We concluded from this study that 3D MSM is feasible and further study to investigate measurement and processing theories will be made by the authors. An example of the vertical directivity at kr=π. Red circles represent the sensors.

  2. Infrasonic and seismic signals from earthquakes and explosions observed with Plostina seismo-acoustic array

    NASA Astrophysics Data System (ADS)

    Ghica, D.; Ionescu, C.

    2012-04-01

    Plostina seismo-acoustic array has been recently deployed by the National Institute for Earth Physics in the central part of Romania, near the Vrancea epicentral area. The array has a 2.5 km aperture and consists of 7 seismic sites (PLOR) and 7 collocated infrasound instruments (IPLOR). The array is being used to assess the importance of collocated seismic and acoustic sensors for the purposes of (1) seismic monitoring of the local and regional events, and (2) acoustic measurement, consisting of detection of the infrasound events (explosions, mine and quarry blasts, earthquakes, aircraft etc.). This paper focuses on characterization of infrasonic and seismic signals from the earthquakes and explosions (accidental and mining type). Two Vrancea earthquakes with magnitude above 5.0 were selected to this study: one occurred on 1st of May 2011 (MD = 5.3, h = 146 km), and the other one, on 4th October 2011 (MD = 5.2, h = 142 km). The infrasonic signals from the earthquakes have the appearance of the vertical component of seismic signals. Because the mechanism of the infrasonic wave formation is the coupling of seismic waves with the atmosphere, trace velocity values for such signals are compatible with the characteristics of the various seismic phases observed with PLOR array. The study evaluates and characterizes, as well, infrasound and seismic data recorded from the explosion caused by the military accident produced at Evangelos Florakis Naval Base, in Cyprus, on 11th July 2011. Additionally, seismo-acoustic signals presumed to be related to strong mine and quarry blasts were investigated. Ground truth of mine observations provides validation of this interpretation. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one is the automatic detector DFX-PMCC, applied for infrasound detection and characterization, while the other one, which is used for seismic data, is based on array processing techniques (beamforming and frequency-wave number analysis). Spectrograms of the recorded infrasonic and seismic data were examined, showing that an earthquake produces acoustic signals with a high energy in the 1 to 5 Hz frequency range, while, for the explosion, this range lays below 0.6 Hz. Using the combined analysis of the seismic and acoustic data, Plostina array can greatly enhance the event detection and localization in the region. The analysis can be, as well, particularly important in identifying sources of industrial explosion, and therefore, in monitoring of the hazard created both by earthquakes and anthropogenic sources of pollution (chemical factories, nuclear and power plants, refineries, mines).

  3. Depth-Dependent Earthquake Properties Beneath Long-Beach, CA: Implications for the Rheology at the Brittle-Ductile Transition Zone

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Clayton, R. W.; Ampuero, J. P.

    2015-12-01

    Except for a few localities, seismicity along faults in southern California is generally confined to depths shallower than 15 km. Among faults hosting deep seismicity, the Newport-Inglewood Fault (NIF), which traverses the Los-Angeles basin, has an exceptionally mild surface expression and low deformation rates. Moreover, the NIF structure is not as well resolved as other, less well instrumented faults because of poor signal-to-noise ratio. Here we use data from three temporary dense seismic arrays, which were deployed for exploration purposes and contain up to several thousands of vertical geophones, to investigate the properties of deep seismicity beneath Long-Beach (LB), Compton and Santa-Fe Springs (SFS). The latter is located 15 km northeast of the NIF, presumably above a major detachment fault underthrusting the basin.Event detection is carried out using a new approach for microseismic multi-channel picking, in which downward-continued data are back-projected onto the volume beneath the arrays, and locations are derived from statistical analysis of back-projection images. Our technique reveals numerous, previously undetected events along the NIF, and confirms the presence of an active shallow structure gently dipping to the north beneath SFS. Seismicity characteristics vary along the NIF strike and dip. While LB seismicity is uncorrelated with the mapped trace of the NIF, Compton seismicity illuminates a sub-vertical fault that extends down to about 20 km. This result, along with the reported high flux of mantle Helium along the NIF (Boles et al., 2015), suggests that the NIF is deeply rooted and acts as a major conduit for mantle fluids. We find that the LB size distribution obeys the typical power-law at shallow depths, but falls off exponentially for events occurring below 20 km. Because deep seismicity occurs uniformly beneath LB, this transition is attributed to a reduction in seismic asperity density with increasing depth, consistent with a transition to a diffuse deformation regime.

  4. Seismic Readings from the Deepest Borehole in the New Madrid Seismic Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolery, Edward W; Wang, Zhenming; Sturchio, Neil C

    2006-03-01

    Since the 1980s, the research associated with the UK network has been primarily strong-motion seismology of engineering interest. Currently the University of Kentucky operates a strong-motion network of nine stations in the New Madrid Seismic Zone. A unique feature of the network is the inclusions of vertical strong-motion arrays, each with one or two downhole accelerometers. The deepest borehole array is 260 m below the surfaces at station VASA in Fulton County, Kentucky. A preliminary surface seismic refraction survey was conducted at the site before drilling the hole at VSAS (Woolery and Wang, 2002). The depth to the Paleozoic bedrockmore » at the site was estimated to be approximately 595 m, and the depth to the first very stiff layer (i.e. Porters Creek Clay) was found to be about 260 m. These depths and stratigraphic interpretation correlated well with a proprietary seismic reflection line and the Ken-Ten Oil Exploration No. 1 Sanger hole (Schwalb, 1969), as well as our experience in the area (Street et al., 1995; Woolery et al., 1999).« less

  5. Large-N Nodal Seismic Deployment at Mount St Helens

    NASA Astrophysics Data System (ADS)

    Hansen, S. M.; Schmandt, B.; Vidale, J. E.; Creager, K. C.; Levander, A.; Kiser, E.; Barklage, M.; Hollis, D.

    2014-12-01

    In late July of 2014 over 900 autonomous short period seismometers were deployed within 12 km of the summit crater at Mount St Helens. In concert with the larger iMUSH experiment, these data constitute the largest seismic interrogation of an active volcano ever conducted. The array was deployed along the road and trail system of the national volcanic monument and adjacent regions with an average station spacing of 250 meters and included several station clusters with increased sampling density. The 10 Hz phones recorded the vertical component wavefield continuously at 250 Hz sampling rate over a period of approximately two weeks. During the recording time, the Pacific Northwest Seismic Network detected ~65 earthquakes within the array footprint ranging in magnitude from -0.9 to 1.1, the majority of which were located beneath the crater at less than 10 km depth. In addition to the natural seismicity, 23 explosion sources from the iMUSH active source experiment were recorded, several of which exceeded magnitude 2. Preliminary results for this project will include an expanded event catalog as the array should significantly reduce the detection threshold. The sheer number of instruments allows for stacking of station clusters producing high signal-to-noise beam traces which can be used for event triggering and for creating waveform templates to measure relative travel-times across the array via cross-correlation. The ability of the array to estimate focal mechanisms from event radiation patterns and delineate complex path effects will also be investigated. The density and azimuthal coverage provide by this array offers an excellent opportunity to investigate short-wavelength variations of the seismic wavefield in a complex geologic environment. Previous seismic tomography results suggest the presence of a shallow magma chamber at 1-3 km depth near the region of shallow seismicity as evidenced by a P wave low-velocity anomaly of at least -5.5% [Waite and Moran, 2009]. The proximity of the array as well as the event distribution make it possible to investigate wavefield distortion and scattering due to the potential magma chamber, including s-wave blockage as has been observed in other systems.

  6. High-Resolution Fault Zone Monitoring and Imaging Using Long Borehole Arrays

    NASA Astrophysics Data System (ADS)

    Paulsson, B. N.; Karrenbach, M.; Goertz, A. V.; Milligan, P.

    2004-12-01

    Long borehole seismic receiver arrays are increasingly used in the petroleum industry as a tool for high--resolution seismic reservoir characterization. Placing receivers in a borehole avoids the distortion of reflected seismic waves by the near-surface weathering layer which leads to greatly improved vector fidelity and a much higher frequency content of 3-component recordings. In addition, a borehole offers a favorable geometry to image near-vertically dipping or overturned structure such as, e.g., salt flanks or faults. When used for passive seismic monitoring, long borehole receiver arrays help reducing depth uncertainties of event locations. We investigate the use of long borehole seismic arrays for high-resolution fault zone characterization in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD). We present modeling scenarios to show how an image of the vertically dipping fault zone down to the penetration point of the SAFOD well can be obtained by recording surface sources in a long array within the deviated main hole. We assess the ability to invert fault zone reflections for rock physical parameters by means of amplitude versus offset or angle (AVO/AVA) analyzes. The quality of AVO/AVA studies depends on the ability to illuminate the fault zone over a wide range of incidence angles. We show how the length of the receiver array and the receiver spacing within the borehole influence the size of the volume over which reliable AVO/AVA information could be obtained. By means of AVO/AVA studies one can deduce hydraulic properties of the fault zone such as the type of fluids that might be present, the porosity, and the fluid saturation. Images of the fault zone obtained from a favorable geometry with a sufficient illumination will enable us to map fault zone properties in the surrounding of the main hole penetration point. One of the targets of SAFOD is to drill into an active rupture patch of an earthquake cluster. The question of whether or not this goal has indeed been achieved at the time the fault zone is penetrated can only be answered if the rock properties found at the penetration point can be compared to the surrounding volume. This task will require mapping of rock properties inverted from AVO/AVA analyzes of fault zone reflections. We will also show real data examples of a test deployment of a 4000 ft, 80-level clamped 3-component receiver array in the SAFOD main hole in 2004.

  7. Modeling the Excitation of Seismic Waves by the Joplin Tornado

    NASA Astrophysics Data System (ADS)

    Valovcin, Anne; Tanimoto, Toshiro

    2017-10-01

    Tornadoes generate seismic signals when they contact the ground. Here we examine the signals excited by the Joplin tornado, which passed within 2 km of a station in the Earthscope Transportable Array. We model the tornado-generated vertical seismic signal at low frequencies (0.01-0.03 Hz) and solve for the strength of the seismic source. The resulting source amplitude is largest when the tornado was reported to be strongest (EF 4-5), and the amplitude is smallest when the tornado was weak (EF 0-2). A further understanding of the relationship between source amplitude and tornado intensity could open up new ways to study tornadoes from the ground.

  8. Preliminary results of receiver function analysis of seismic data recorded from a broadband deployment across the Gulf Coast Plain

    NASA Astrophysics Data System (ADS)

    Gurrola, H.; Pratt, K. W.; Pulliam, J.; Dunbar, J. A.

    2011-12-01

    In summer of 2010, 21 broadband seismographs were installed at 16-18 km spacing along a transect running from Johnson City, TX, (on the Edwards Plateau), to Matagorda Island to study the current structure of this rifted passive margin. The large magnetic anomaly that parallels the coast throughout the Gulf region moves on-shore beneath our transect such that we will be able to investigate the source of this anomaly. A second important target that will be imaged in this Balcones fault which is associated with the Ouachita front. This project is funded by a grant from the Norman Hackerman Advanced Research Program (NHARP), a biannual competition among Texas Universities to support research, and makes use of Texas Tech, Baylor, and UT Austin equipment. As a result, the deployment includes a less uniform array of seismic equipment, (10 Trillium compact seismometers and 10 Guralps; including 40Ts, 3Ts and 3ESPs), than projects supported by the IRIS PASSCAL center. Our vault construction was similar to Flexible array vaults, but Gulf Coast provides a more challenging environment for deployment than most encountered in the western US. The shallow water table and loose sediment can become almost fluid when storms deluge the area with rain. In dry periods, mud cracks near the vaults cause the vaults to tilt. As a result, even high quality, shallow seismic vaults can "float" or shift sufficiently to cause one or two components of the seismic stations to drift against their stops in days or weeks. As a result, the only data consistently available from all our stations, are vertical components. Horizontal component data from the summer of 2010 can be hit and miss due to the tilting of the vaults. These issues have been reduced in the summer of 2011 due to the drought. To address the data's shortcomings, we will average the vertical components from our stations and nearby EarthScope TA stations, (up 300 km away), to isolate the cleanest representation of the incoming P-wave, (with local PPp reverberations averaged out). This is essentially beam forming for the optimal teleseismic ray path. The clean P-wave will then be deconvolved from the vertical components at each station to produce a vertical component receiver function that will enable us to model and stack local P-wave reverberations to produce a 2-D image of lithospheric structure. To produce traditional receiver functions from time periods where one component is lost from several stations, we will treat neighboring stations as arrays and recover an "array averaged three-component seismogram" for each loacation. These "beamed" seismograms will allow imaging of the crust, lithospheric mantle, and transition zone beneath the broadband array using traditional receiver function stacking or migration.

  9. Characterization of a complex near-surface structure using well logging and passive seismic measurements

    NASA Astrophysics Data System (ADS)

    Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara

    2016-04-01

    We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.

  10. Fault geometries illuminated from seismicity in central Taiwan: Implications for crustal scale structural boundaries in the northern Central Range

    NASA Astrophysics Data System (ADS)

    Gourley, Jonathan R.; Byrne, Timothy; Chan, Yu-Chang; Wu, Francis; Rau, Ruey-Juin

    2007-12-01

    Data sets of collapsed earthquake locations, earthquake focal mechanisms, GPS velocities and geologic data are integrated to constrain the geometry and kinematics of a crustal block within the accreted continental margin rocks of Taiwan's northeastern Central Range. This block is laterally extruding and exhuming towards the north-northeast. The block is bound on the west-southwest by the previously recognized Sanyi-Puli seismic zone and on the east by a vertical seismic structure that projects to the eastern mountain front of the Central Range. Focal mechanisms from the Broadband Array of Taiwan Seismicity (BATS) catalog consistently show west-side-up reverse displacements for this fault zone. A second vertical structure is recognized beneath the Slate Belt-Metamorphic Belt boundary as a post-Chi-Chi relaxation oblique normal fault. BATS focal mechanisms show east-side-up, normal displacements with a minor left-lateral component. The vertical and lateral extrusion of this crustal block may be driven by the current collision between the Philippine Sea Plate and the Puli basement high indenter on the Eurasian Plate and/or trench rollback along the Ryukyu subduction zone. In addition, the vertical extent of the two shear zones suggests that a basal décollement below the eastern Central Range is deeper than previously proposed and may extend below the brittle-ductile transition.

  11. Infrasound from thunder: A natural seismic source

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2007-07-01

    A small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones was built to investigate thunder-induced ground motions. Data from two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen as examples of data collected by the array. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters at the site. Although the depth of the borehole is relatively shallow compared to a seismic wave wavelength, velocity amplitude in the radial component decays as much as 63 percent with depth but vertical component amplitudes are unaffected consistent with air-coupled Rayleigh wave excitation. Naturally occurring thunder appears to be a useful seismic source to empirically determine site resonance characteristics for hazards assessments.

  12. Dynamic strain and rotation ground motions of the 2011 Tohoku earthquake from dense high-rate GPS observations in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.

    2017-12-01

    Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.

  13. Quantifying the similarity of seismic polarizations

    NASA Astrophysics Data System (ADS)

    Jones, Joshua P.; Eaton, David W.; Caffagni, Enrico

    2016-02-01

    Assessing the similarities of seismic attributes can help identify tremor, low signal-to-noise (S/N) signals and converted or reflected phases, in addition to diagnosing site noise and sensor misalignment in arrays. Polarization analysis is a widely accepted method for studying the orientation and directional characteristics of seismic phases via computed attributes, but similarity is ordinarily discussed using qualitative comparisons with reference values or known seismic sources. Here we introduce a technique for quantitative polarization similarity that uses weighted histograms computed in short, overlapping time windows, drawing on methods adapted from the image processing and computer vision literature. Our method accounts for ambiguity in azimuth and incidence angle and variations in S/N ratio. Measuring polarization similarity allows easy identification of site noise and sensor misalignment and can help identify coherent noise and emergent or low S/N phase arrivals. Dissimilar azimuths during phase arrivals indicate misaligned horizontal components, dissimilar incidence angles during phase arrivals indicate misaligned vertical components and dissimilar linear polarization may indicate a secondary noise source. Using records of the Mw = 8.3 Sea of Okhotsk earthquake, from Canadian National Seismic Network broad-band sensors in British Columbia and Yukon Territory, Canada, and a vertical borehole array at Hoadley gas field, central Alberta, Canada, we demonstrate that our method is robust to station spacing. Discrete wavelet analysis extends polarization similarity to the time-frequency domain in a straightforward way. Time-frequency polarization similarities of borehole data suggest that a coherent noise source may have persisted above 8 Hz several months after peak resource extraction from a `flowback' type hydraulic fracture.

  14. Deployment of a seismic array for volcano monitoring during the ongoing submarine eruption at El Hierro, Canary Islands

    NASA Astrophysics Data System (ADS)

    Abella, R.; Almendros, J.; Carmona, E.; Martin, R.

    2012-04-01

    On 17 July 2011 there was an important increase of the seismic activity at El Hierro (Canary Islands, Spain). This increase was detected by the Volcano Monitoring Network (Spanish national seismic network) run by the Instituto Geográfico Nacional (IGN). As a consequence, the IGN immediately deployed a dense, complete monitoring network that included seismometers, GPS stations, geochemical equipment, magnetometers, and gravity meters. During the first three months of activity, the seismic network recorded over ten thousand volcano-tectonic earthquakes, with a maximum magnitude of 4.6. On 10 October 2011 an intense volcanic tremor started. It was a monochromatic signal, with variable amplitude and frequency content centered at about 1-2 Hz. The tremor onset was correlated with the initial stages of the submarine eruption that occurred from a vent located south of El Hierro island, near the village of La Restinga. At that point the IGN, in collaboration with the Instituto Andaluz de Geofísica, deployed a seismic array intended for volcanic tremor monitoring and analysis. The seismic array is located about 7 km NW of the submarine vent. It has a 12-channel, 24-bit data acquisition system sampling each channel at 100 sps. The array is composed by 1 three-component and 9 vertical-component seismometers, distributed in a flat area with an aperture of 360 m. The data provided by the seismic array are going to be processed using two different approaches: (1) near-real-time, to produce information that can be useful in the management of the volcanic crisis; and (2) detailed investigations, to study the volcanic tremor characteristics and relate them to the eruption dynamics. At this stage we are mostly dedicated to produce fast, near-real-time estimates. Preliminary results have been obtained using the maximum average cross-correlation method. They indicate that the tremor wavefronts are highly coherent among array stations and propagate across the seismic array with an apparent slowness of ~0.8 s/km and a back-azimuth of 135°N. These estimates have remained approximately constant since the onset of volcanic tremor, indicating a unique source and thus a single, continuing eruptive center.

  15. Ambient Seismic Noise Monitoring of Time-lapse Velocity Changes During CO2 Injection at Otway, South Australia

    NASA Astrophysics Data System (ADS)

    Saygin, E.; Lumley, D. E.

    2017-12-01

    We use continuous seismic data recorded with an array of 909 buried geophones at Otway, South Australia, to investigate the potential of using ambient seismic noise for time-lapse monitoring of the subsurface. The array was installed prior to a 15,000 ton CO2 injection in 2016-17, in order to detect and monitor the evolution of the injected CO2 plume, and any associated microseismic activity. Continuously recorded data from the vertical components of the geophone array were cross-correlated to retrieve the inter-station Green's functions. The dense collection of Green's functions contains diving body waves and surface Rayleigh waves. Green's Functions were then compared with each other at different time frames including the pre-injection period to track subtle changes in the travel times due to the CO2 injection. Our results show a clear change in the velocities of Green's functions at the start of injection for both body waves and surface waves for wave paths traversing the injection area, whereas the observed changes are much smaller for areas which are far from the injection well.

  16. Thunder-induced ground motions: 1. Observations

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2009-04-01

    Acoustic pressure from thunder and its induced ground motions were investigated using a small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones. We used the array to constrain wave parameters of the incident acoustic and seismic waves. The incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Using slowness inferred from ground motions is preferable to obtain the seismic source parameters. We propose a source equalization procedure for acoustic/seismic deconvolution to generate the time domain transfer function, a procedure similar to that of obtaining teleseismic earthquake receiver functions. The time domain transfer function removes the incident pressure time history from the seismogram. An additional vertical-to-radial ground motion transfer function was used to identify the Rayleigh wave propagation mode of induced seismic waves complementing that found using the particle motions and amplitude variations in the borehole. The initial motions obtained by the time domain transfer functions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series at frequencies near 5 Hz. This gives an empirical measure of site resonance that depends on the ratio of the layer velocity to layer thickness for earthquake P and S waves. The time domain transfer function approach by transferring a spectral division into the time domain provides an alternative method for studying acoustic-to-seismic coupling.

  17. Illuminating sesmic discontinuities with receiver functions from a dense array in Mexico City

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.; Rodríguez-Domínguez, M. Á.; González-López, A.; Espindola, V. H.; Quintanar, L.; Ramirez-Guzman, L.

    2017-12-01

    Mexico City, with close to 10 million inhabitants, has grown over a sedimentary basin, from an old dried lake. This has been a big factor in amplifying the seismic waves from large subduction earthquakes, located > 300 km away on the Pacific coast, which represents a significant hazard. For this reason, it is of great interest to improve the knowledge of the seismic structure of the city and its details on spatial variations to reduce the uncertainty in ground motion modeling. In May 2017, such array started its way in Mexico City. It consists of 18 broadband stations, that record in place for 3-5 days, moving then to a new location. In total, the city will be covered with 343 recording sites. In this work, we present preliminary results of receiver functions obtained in such array and in permanent stations of the Seismic Network of the Valley of Mexico. Despite the few teleseismic events, the small spacing between stations ( 500 m) allows identification of converted Ps phases from the Moho discontinuity, as well as other converted phases, which might be related to subtle changes in the vertical and lateral seismic structure. This Project was funded by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  18. Shallow velocity structure above the Socorro Magma Body from ambient noise tomography using the large-N Sevilleta array, central Rio Grande Rift, New Mexico

    NASA Astrophysics Data System (ADS)

    Worthington, L. L.; Ranasinghe, N. R.; Schmandt, B.; Jiang, C.; Finlay, T. S.; Bilek, S. L.; Aster, R. C.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest recognized active mid-crustal magma intrusions globally. Inflation of the SMB drives sporadically seismogenic uplift at rates of up to of few millimeters per year. We examine the upper crustal structure of the northern section of the SMB region using ambient noise seismic data collected from the Sevilleta Array and New Mexico Tech (NMT) seismic network to constrain basin structure and identify possible upper crustal heterogeneities caused by heat flow and/or fluid or magma migration to shallower depths. The Sevilleta Array comprised 801 vertical-component Nodal seismic stations with 10-Hz seismometers deployed within the Sevilleta National Wildlife Refuge in the central Rio Grande rift north of Socorro, New Mexico, for a period of 12 days during February 2015. Five short period seismic stations from the NMT network located south of the Sevilleta array are also used to improve the raypath coverage outside the Sevilleta array. Inter-station ambient noise cross-correlations were computed from all available 20-minute time windows and stacked to obtain estimates of the vertical component Green's function. Clear fundamental mode Rayleigh wave energy is observed from 3 to 6 s period. Beamforming indicates prominent noise sources from the southwest, near Baja California, and the southeast, in the Gulf of Mexico. The frequency-time analysis method was implemented to measure fundamental mode Rayleigh wave phase velocities and the resulting inter-station travel times were inverted to obtain 2-D phase velocity maps. One-dimensional sensitivity kernels indicate that the Rayleigh wave phase velocity maps are sensitive to a depth interval of 1 to 8 km, depending on wave period. The maps show (up to 40%) variations in phase velocity within the Sevilleta Array, with the largest variations found for periods of 5-6 seconds. Holocene to upper Pleistocene, alluvial sediments found in the Socorro Basin consistently show lower phase velocities than the basin-bounding ranges. Two areas of localized low velocities will be the focus of future work and interpretation. One low velocity zone appears to be co-located with the area of maximum InSAR-observed uplift related to the SMB. A second low velocity zone surrounds the Paleogene-aged Black Butte Volcano.

  19. Applications of seismic spatial wavefield gradient and rotation data in exploration seismology

    NASA Astrophysics Data System (ADS)

    Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.

    2017-12-01

    Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C recordings, a total of 49 components of the seismic wavefield can be excited and recorded. Such data potentially allow to further improve wavefield separation and may find application in directional imaging and coherent noise suppression.

  20. On the potential of seismic rotational motion measurements for extraterrestrial seismology

    NASA Astrophysics Data System (ADS)

    Schmelzbach, Cedric; Sollberger, David; Khan, Amir; Greenhalgh, Stewart; Van Renterghem, Cederic; Robertsson, Johan

    2017-04-01

    Classically, seismological recordings consist of measurements of translational ground motion only. However, in addition to three vector components of translation there are three components of rotation to consider, leading to six degrees of freedom. Of particular interest is thereby the fact that measuring rotational motion means isolating shear (S) waves. Recording the rotational motion requires dedicated rotational sensors. Alternatively, since the rotational motion is given by the curl of the vectorial displacements, the rotational motion around the two horizontal axes can be computed from the horizontal spatial gradients of vertical translational recordings if standard translational seismometers are placed in an areal array at the free surface. This follows from the zero stress free surface condition. Combining rotational and translational motion measurements opens up new ways of analyzing seismic data, such as facilitating much improved arrival identification and wavefield separation (e.g., P-/S-wave separation), and local slowness (arrival direction and velocity) determination. Such combined measurements maximize the seismic information content that a single six-component station or a small station array can provide, and are of particular interest for sparse or single-station measurements such as in extraterrestrial seismology. We demonstrate the value of the analysis of combined translational and rotational recordings by re-evaluating data from the Apollo 17 lunar seismic profiling experiment (LSPE). The LSPE setup consisted of four vertical-component geophones arranged in a star-like geometry. This areal receiver layout enables computing the horizontal spatial gradients by spatial finite differencing of the vertical-component data for two perpendicular directions and, hence, the estimation of rotational motion around two horizontal axes. Specifically, the recorded seismic waveform data originated from eight explosive packages as well as from continuously listening to the natural lunar seismic activity of moonquakes. As an example, the combined analysis of translational and rotational motion from the active-source LSPE data provides, for the first time, the possibility to extract S-wave information from the enigmatic and reverbatory lunar seismic waveform data, which hithertofore had masked later arriving S-waves. The identification of S-waves enables to characterize the shallow lunar crust in a full elastic sense. The resultant Poisson's ratio profile allows discriminating shallow basalt layers of different degree of fracturing. Our successful analysis of the Apollo 17 data highlights the anticipated significant value of rotational measurements for future extraterrestrial seismology missions.

  1. Offset-vertical seismic profiling for marine gas hydrate exploration: Is it a suitable technique? First results from ODP Leg 164

    USGS Publications Warehouse

    Pecher, I.A.; Holbrook, W.S.; Stephen, R.A.; Hoskins, H.; Lizarralde, D.; Hutchinson, D.R.; Wood, W.T.

    1997-01-01

    Walkaway vertical seismic profiles were acquired during Ocean Drilling Project (ODP) Leg 164 at the Blake Ridge to investigate seismic properties of hydrate-bearing sediments and the zone of free gas beneath them. An evaluation of compressional (P-) wave arrivals Site 994 indicates P-wave anisotrophy in the sediment column. We identified several shear (S-) wave arrivals in the horizontal components of the geophone array in the borehole and in data recorded with an ocean bottom seismometer deployed at the seafloor. S-waves were converted from P-waves at several depth levels in the sediment column. One of the most prominent conversion points appears to be the bottom simulating reflector (BSR). It is likely that other conversion points are located in the zone of low P-wave reflectivity above the BSR. Modeling suggests that a change of the shear modulus is sufficient to cause significant shear conversion without a significant normal-incidence P-wave reflection.

  2. Laboratory scale micro-seismic monitoring of rock faulting and injection-induced fault reactivation

    NASA Astrophysics Data System (ADS)

    Sarout, J.; Dautriat, J.; Esteban, L.; Lumley, D. E.; King, A.

    2017-12-01

    The South West Hub CCS project in Western Australia aims to evaluate the feasibility and impact of geosequestration of CO2 in the Lesueur sandstone formation. Part of this evaluation focuses on the feasibility and design of a robust passive seismic monitoring array. Micro-seismicity monitoring can be used to image the injected CO2plume, or any geomechanical fracture/fault activity; and thus serve as an early warning system by measuring low-level (unfelt) seismicity that may precede potentially larger (felt) earthquakes. This paper describes laboratory deformation experiments replicating typical field scenarios of fluid injection in faulted reservoirs. Two pairs of cylindrical core specimens were recovered from the Harvey-1 well at depths of 1924 m and 2508 m. In each specimen a fault is first generated at the in situ stress, pore pressure and temperature by increasing the vertical stress beyond the peak in a triaxial stress vessel at CSIRO's Geomechanics & Geophysics Lab. The faulted specimen is then stabilized by decreasing the vertical stress. The freshly formed fault is subsequently reactivated by brine injection and increase of the pore pressure until slip occurs again. This second slip event is then controlled in displacement and allowed to develop for a few millimeters. The micro-seismic (MS) response of the rock during the initial fracturing and subsequent reactivation is monitored using an array of 16 ultrasonic sensors attached to the specimen's surface. The recorded MS events are relocated in space and time, and correlate well with the 3D X-ray CT images of the specimen obtained post-mortem. The time evolution of the structural changes induced within the triaxial stress vessel is therefore reliably inferred. The recorded MS activity shows that, as expected, the increase of the vertical stress beyond the peak led to an inclined shear fault. The injection of fluid and the resulting increase in pore pressure led first to a reactivation of the pre-existing fault. However, with increasing slip, a second conjugate fault progressively appeared, which ultimately accommodated all of the imposed vertical displacement. The inferred structural changes resemble fault branching and dynamic slip transfer processes seen in large-scale geology. This project was funded by the ANLEC R&D in partnership with the WA Government.

  3. Monitoring daily and sub-daily variations in crustal strain with seismic arrays

    NASA Astrophysics Data System (ADS)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Hillers, G.

    2017-12-01

    We demonstrate that we can monitor deformation of the shallow crust (with hourly temporal resolution) directly with seismic waves, by measuring relative seismic wave speed changes (dv/v) due to relatively known periodical forcing (tides and changes in atmospheric temperature) at Piton de la Fournaise Volcano (PdF), La Réunion. We use ambient seismic noise recorded (for one month) at VolcArray, an experiment with three arrays of 49 vertical-component geophones deployed on a 7x7 grid of approximately 80 m spacing. Through noise-based coda wave interferometry we infer for each array the average relative changes in propagation speed of seismic waves (dv/v) as a function of time, which relate to temporal changes in medium properties within 100m depth. The variations in dv/v ( 0.05%) on time-scales longer than a day are best explained by effects of precipitation on pore pressure. In contrast, the (weaker) daily and sub-daily fluctuations of dv/v ( 0.01%) are likely to be caused by tidal and thermal effects. We verify that the inferred variations of dv/v are unrelated to spatiotemporal changes of noise wavefields. We further compare the power spectrum of dv/v with spectra of simulated tide-induced volumetric strain, temperature records, very broadband (VBB) seismograms, and borehole tilt records. In all five types of data, dominant peaks are found at around diurnal, semi-diurnal, and ter-diurnal frequencies. A comparison of phase and spectra of the data suggests that the tidal and thermal effects on dv/v are of similar magnitude but vary with frequency. Theoretical modeling of tide- and temperature-induced strain in different frequency bands agrees with the relative magnitude of the two effects on dv/v from passive monitoring.

  4. Seismic Tomography and the Development of a State Velocity Profile

    NASA Astrophysics Data System (ADS)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  5. Exploring Seismic Noise with the USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Busby, R. W.; Simpson, D. W.

    2009-12-01

    The large number of seismic stations that comprise the EarthScope USArray Transportable Array (TA) seismic network provide an unparalleled opportunity for studying how seismic noise evolves with time over a large portion of the North American continent. Power spectra for every station in the TA data are computed automatically, for every hour of every station-day, by the Quality Analysis Control Kit (QUACK) system at the IRIS Data Management Center. The power spectra utilize hour-long data segments, with 50% overlap between segments, providing spectral values in the band between 20 Hz and 172 s. Thus, at any in-band frequency one can construct a continuous two-year time history of seismic noise for every TA station. When the time variation of the power spectra values across the array are rendered as individual movie frames one can examine the evolution of seismic noise across the full spatio-temporal extent of the TA. Overall, the background noise levels (especially at periods below 10 s) are remarkably uniform across the entire array. Numerous expected features are present, including diurnal and annual variations, enhanced noise levels at coastal stations, transients related to large storms, and episodes when the observations of background noise are dominated by earthquake energy. Upgrades to the TA station instrumentation will provide the capability to measure additional physical factors relevant to seismic noise. All TA stations deployed after August 2009 include MEMS barometers that can measure atmospheric pressure from DC to approximately 0.1 Hz. In additional, several stations have been temporarily equipped with infrasound sensors. Previous research has highlighted the direct effect of atmospheric pressure fluctuations on very long period vertical seismometers. The relationship to noise observed on horizontal seismometers is more complex. However, with a large number of uniform installations it may be possible to make further progress. We will present analyses of the spatio-temporal evolution of noise observed on the TA stations and present preliminary results from the barometers and infrasound sensors that have been deployed with TA stations so far. We will discuss opportunities for augmenting TA stations with additional sensors that may further elucidate seismic noise processes.

  6. Detection of seismic anisotropy using ocean bottom seismometers: a case study from the northern headwall of the Storegga Slide

    NASA Astrophysics Data System (ADS)

    Exley, R. J. K.; Westbrook, G. K.; Haacke, R. R.; Peacock, S.

    2010-10-01

    Azimuthal seismic anisotropy has been identified from the analysis of S-waves generated by P to S mode conversion in the Pleistocene sediments that form the northern headwall of the Storegga Slide, which were investigated with a seismic experiment employing a seabed array of ocean-bottom seismometers and a grid of airgun shots. The principal technique used to detect the anisotropy was azimuthal stacking of the radial and transverse horizontal geophone components, after the application of moveout, to show the variations in amplitude, phase and cumulative traveltime effects of S-waves, ultimately providing information that identified the `fast' and `slow' S-wave polarization orientations. Particle-motion analysis was used to corroborate the results and provide further information on the magnitudes of cumulative S-wave splitting. A 2-D ray-traced inversion of the traveltimes of pre-critical P and PS arrivals provided a velocity model from which the variation with depth of Vp, Vs and anisotropy could be compared with lithological and stratigraphic data from a borehole at the centre of the OBS array. Increased anisotropic response was observed to be coincident with high velocity units, which have high mica but low water content and are interpreted to be of glacial origin. The analysis of azimuthal seismic anisotropy shows clear evidence for horizontal transverse isotropy or an orthorhombic symmetry. The distribution in orientations of the fast plane of symmetry is broadly bimodal (E-W and NE-SW) across the OBS array. The E-W group showed correlation with the headwalls of old, buried slides and other faults visible within coherency attributes calculated from an accompanying 3-D seismic data set and with the strike of some of the headwalls of slides shown in multibeam bathymetry. However, the pattern of headwall fractures shown in the bathymetry is complicated and reticulate, and the NE-SW orientation is also well represented. We infer that the cause of the anisotropy is the presence of vertical to sub-vertical, fluid-filled fractures and micro-cracks, partially held open by high pore-fluid pressure. The fracture orientations are controlled primarily by the present-day gravitationally induced down-slope stress, which is mediated by the heterogeneous nature of sub-surface, causing local changes in the orientation of the principal stresses at the margins of incipient or failed slides. The fractures, if connected, are likely to increase vertical permeability within the sediment column significantly, and influence the distribution of gas hydrate within the strata.

  7. Dynamic characterization of the Chamousset rock column before its fall

    NASA Astrophysics Data System (ADS)

    Levy, C.; Baillet, L.; Jongmans, D.

    2009-04-01

    The rockfall of Chamousset (volume of 21000m3 ) occurred on November 10, 2007, affecting the 300 m high Urgonian cliff of the southern Vercors massif, French Alps. This event took place when the Vercors plateau was covered by snow. The unstable column was previously detected by observations on the development of a 30 m long fracture back on the plateau. Two aerial Lidar scans of the cliff were acquired before and after the failure, allowing the geometry of the column and of the broken plane to be determined. A temporary seismic array along with two extensometers was installed from July to November 2007. The seismic array consisted of 7 short period seismometers (1 three-components and 6 vertical-component). One vertical seismometer was installed on the column while the other 6 were deployed on the plateau with an array aperture of about 70 m. During the last two months of record, short period seismometers were replaced by 4.5 Hz geophones. The monitoring system recorded in a continuous mode (1000 Hz of frequency sampling) but it stopped to work two weeks before the fall, after the solar panels were covered by snow. During the running period, the seismic array recorded hundreds of local seismic events, from short (less than 0.5 s) impulsive signals to events with a long duration (a few tens of seconds). Our study was first focused on the dynamic response of the column and on the seismic noise frequency content. Fourier spectra of the seismic noise signals recorded on the column and the corresponding spectral ratios showed the presence of several resonance frequencies of the column. The first resonance frequency was measured at 3.6 Hz in July 2007 and it decreases regularly with time to reach 2.6 Hz two weeks before the fall. In parallel, extensometer measurements show that the fracture aperture increased with time during the same period. The dynamic response of a block which separates from a rock mass was 2D numerically modelled. Finite element computations showed that the progressive block decoupling, resulting from a crack propagation inside the mass, generates a decrease of the natural frequency, as it was measured on the site. These results highlight the interest to study the dynamic response of an unstable column for hazard assessment purposes. In a second phase, we studied the recorded impulsive signals in which we were able to identify P and S waves. Seismic experiments were performed in September 2008 on the plateau in order to constrain the ground velocity structure. Preliminary event location shows that the signal sources were located along the broken plane and probably result from micro-cracks along rock bridges.

  8. Hydraulic Tomography and High-Resolution Slug Testing to Determine Hydraulic Conductivity Distributions

    DTIC Science & Technology

    2011-02-01

    19 HRST Techniques ………………………………..…….…………… 20 CPT Techniques ………………………………..…….………….…. 22 Vertical Sensor Array ...and to predict water flood performance (Pierce, 1977). Other pulse test examples include tidal, seismic , and oil field methods. The changes in...induced by seismic waves were presented by Cooper et al. (1965). The pressure head fluctuations controlling water levels are a result of the

  9. Hydraulic Tomography and High-Resolution Slug Testing to Determine Hydraulic Conductivity Distributions - Year 3

    DTIC Science & Technology

    2007-12-01

    28 Vertical Sensor Array ………………..……….…………………………….. 30 MOGs Spring and Summer 2007 ……………….………………………….. 32 New Wells Installed...performance (Pierce, 1977). Other pulse test examples include tidal, seismic and oil field methods. The changes in groundwater levels as a result of...inland through an aquifer are related to aquifer storativity and transmissivity. Solutions to water level fluctuations induced by seismic waves were

  10. Development of a Single Station 6C-Approach for Array Analysis and Microzonation: Using Vertical Rotation Rate to Estimate Love-Wave Disperion Curves and Direction Finding

    NASA Astrophysics Data System (ADS)

    Wassermann, J. M.; Wietek, A.; Hadziioannou, C.; Igel, H.

    2014-12-01

    Microzonation, i.e. the estimation of (shear) wave velocity profiles of the upper few 100m in dense 2D surface grids is one of the key methods to understand the variation in seismic hazard caused by ground shaking events. In this presentation we introduce a novel method for estimating the Love-wave phase velocity dispersion by using ambient noise recordings. We use the vertical component of rotational motions inherently present in ambient noise and the well established relation to simultaneous recordings of transverse acceleration. In this relation the frequency dependent phase velocity of a plane SH (or Love)-type wave acts as a proportionality factor between the anti-correlated amplitudes of both measures. In a first step we used synthetic data sets with increasing complexity to evaluate the proposed technique and the developed algorithm to extract the direction and amplitude of the incoming ambient noise wavefield measured at a single site. Since reliable weak rotational motion sensors are not yet readily available, we apply array derived rotation measurements in order to test our method. We next use the technique to analyze different real data sets of ambient noise measurements as well as seismic recordings at active volcanoes and compare these results with findings of the Spatial AutoCorrelation technique which was applied to the same data set. We demonstrate that the newly developed technique shows comparable results to more classical, strictly array based methods. Furthermore, we show that as soon as portable weak motion rotational motion sensors are available, a single 6C-station approach will be feasible, not only for microzonation but also for general array applications, with performance comparable to more classical techniques. An important advantage, especially in urban environments, is that with this approach, the number of seismic stations needed is drastically reduced.

  11. Determination of Rayleigh wave ellipticity across the Earthscope Transportable Array using single-station and array-based processing of ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Workman, Eli; Lin, Fan-Chi; Koper, Keith D.

    2017-01-01

    We present a single station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 s the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 s, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher (˜2 per cent) and significantly higher (>20 per cent), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e. Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves and tilt noise.

  12. Sled-Mounted Geophone Arrays for Near-Surface (0-4m) Seismic Profiling in Highly-attenuating Sedimentary Facies: Atchafalaya Basin Indian Bayou, Louisiana

    NASA Astrophysics Data System (ADS)

    Lorenzo, J. M.; Saanumi, A. A.; Westbrook, C. C.; Egnew, S. F.; Bentley, S. J.

    2004-12-01

    Towed land-geophone seismic arrays have the potential to increase markedly the efficiency for collecting near-surface (0-100m) high-resolution seismic data, but viable cases are few and have been limited to a narrow range of near-surface sedimentary facies. During November 2003 through June 2004 we conducted extensive seismic tests with traditional geophones mounted on low-cost Π -shaped sleds. We targeted human habitation surfaces within the upper few meters of a crevasse splay complex in the Atchafalaya Basin study area, Indian Bayou Wildlife Management Area, Louisiana, U.S. For seismic-to-core correlation, sealed, continuous test cores were run through a multi-sensor to test for magnetic susceptibility, bulk sediment density and electrical resistivity. We compared 24-channel seismic data using a variety of seismic source-receiver combinations. Sources comprised a 12-gauge pipe-gun, a 0.22 caliber-powered piston gun, an accelerated weight drop, and a small claw hammer. Commercial blanks, 2g-black-powder, and primer-only shells were fired by the pipe gun. Receivers included 100-Hz vertical-, and 14-Hz-horizontal-component geophones. For comparison, both ground-planted and geophones mounted on wooden and iron sleds 0.3 and 1.2m long respectively. Geophones mounted on steel sleds produced data of adequate quality. Whereas traditional ground-planted geophones showed better data quality, time and cost efficiency make mounted phones more feasible for regional studies as traditional arrays are prohibitively expensive. Because of the high seismic attenuation, only horizontal-component geophones mounted on heavy (9-kg) steel sleds provided useful data, although the shallowest reflection observed in the shear wave data came from a boundary at ~ 19m depth, too far below the target depth of 4-5 m. Instead, we forward-modeled refraction traveltime data to derive the acoustic and SH velocity structure.

  13. Single-station 6C beamforming

    NASA Astrophysics Data System (ADS)

    Nakata, N.; Hadziioannou, C.; Igel, H.

    2017-12-01

    Six-component measurements of seismic ground motion provide a unique opportunity to identify and decompose seismic wavefields into different wave types and incoming azimuths, as well as estimate structural information (e.g., phase velocity). By using the relationship between the transverse component and vertical rotational motion for Love waves, we can find the incident azimuth of the wave and the phase velocity. Therefore, when we scan the entire range of azimuth and slownesses, we can process the seismic waves in a similar way to conventional beamforming processing, without using a station array. To further improve the beam resolution, we use the distribution of amplitude ratio between translational and rotational motions at each time sample. With this beamforming, we decompose multiple incoming waves by azimuth and phase velocity using only one station. We demonstrate this technique using the data observed at Wettzell (vertical rotational motion and 3C translational motions). The beamforming results are encouraging to extract phase velocity at the location of the station, apply to oceanic microseism, and to identify complicated SH wave arrivals. We also discuss single-station beamforming using other components (vertical translational and horizontal rotational components). For future work, we need to understand the resolution limit of this technique, suitable length of time windows, and sensitivity to weak motion.

  14. Walkaway-VSP survey using distributed optical fiber in China oilfield

    NASA Astrophysics Data System (ADS)

    Wu, Junjun; Yu, Gang; Zhang, Qinghong; Li, Yanpeng; Cai, Zhidong; Chen, Yuanzhong; Liu, Congwei; Zhao, Haiying; Li, Fei

    2017-10-01

    Distributed acoustic sensing (DAS) is a new type of replacement technology for geophysical geophone. DAS system is similar to high-density surface seismic geophone array. In the stage of acquisition, DAS can obtain the full well data with one shot. And it can provide enhanced vertical seismic profile (VSP) imaging and monitor fluids and pressures changes in the hydrocarbon production reservoir. Walkaway VSP data acquired over a former producing well in north eastern China provided a rich set of very high quality data. A standard VSP data pre-processing workflow was applied, followed by pre-stack Kirchhoff time migration. In the DAS pre-processing step we were faced with additional and special challenges: strong coherent noise due to cable slapping and ringing along the borehole casing. The single well DAS Walkaway VSP images provide a good result with higher vertical and lateral resolution than the surface seismic in the objective area. This paper reports on lessons learned in the handling of the wireline cable and subsequent special DAS data processing steps developed to remediate some of the practical wireline deployment issues. Optical wireline cable as a conveyance of fiber optic cables for VSP in vertical wells will open the use of the DAS system to much wider applications.

  15. Possible Non-volcanic Tremor Discovered in the Reelfoot Fault Zone, Northern Tennessee

    NASA Astrophysics Data System (ADS)

    Langston, C. A.; Williams, R. A.; Magnani, M.; Rieger, D. M.

    2007-12-01

    A swarm of ~80 microearthquakes was fortuitously detected in 20, 14 second-duration long-offset vibroseis shotgathers collected for a seismic reflection experiment near Mooring, TN, directly over the Reelfoot fault zone on the afternoon of 16 November 2006. These natural events show up in the shotgathers as near-vertically incident P waves with a dominant frequency of 10-15 Hz. The reflection line was 715m in length consisting of 144 channels with a sensor spacing of 5m, 8Hz vertical geophones, and recording using a Geometrics 24bit Geode seismograph. Small variations in event moveout across the linear array indicate that the seismicity was not confined to the same hypocenter and probably occurred at depths of approximately 10 km. The largest events in the series are estimated to have local magnitudes of ~-1 if at 10 km distance from the array. This is about 2.5 magnitude units lower than the threshold for local events detected and located by the CERI cooperative network in the area. The seismicity rate was ~1000 events per hour based on the total time duration of the shotgathers. The expected number of earthquakes of ML greater than or equal to -1 for the entire central United States is only 1 per hour. This detection of microseismic swarms in the Reelfoot fault zone indicates active physical processes that may be similar to non-volcanic tremor seen in the Cascadia and San Andreas fault zones and merits long-term monitoring to understand its source.

  16. Development of Deep-tow Autonomous Cable Seismic (ACS) for Seafloor Massive Sulfides (SMSs) Exploration.

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Saito, Shutaro; Lee, Sangkyun; Tara, Kenji; Kato, Masafumi; Jamali Hondori, Ehsan; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami

    2017-04-01

    Within the EEZ of Japan, numerous surveys exploring ocean floor resources have been conducted. The exploration targets are gas hydrates, mineral resources (manganese, cobalt or rare earth) and especially seafloor massive sulphide (SMS) deposits. These resources exist in shallow subsurface areas in deep waters (>1500m). For seismic explorations very high resolution images are required. These cannot be effectively obtained with conventional marine seismic techniques. Therefore we have been developing autonomous seismic survey systems which record the data close to the seafloor to preserve high frequency seismic energy. Very high sampling rate (10kHz) and high accurate synchronization between recording systems and shot time are necessary. We adopted Cs-base atomic clock considering its power consumption. At first, we developed a Vertical Cable Seismic (VCS) system that uses hydrophone arrays moored vertically from the ocean bottom to record close to the target area. This system has been successfully applied to SMS exploration. Specifically it fixed over known sites to assess the amount of reserves with the resultant 3D volume. Based on the success of VCS, we modified the VCS system to use as a more efficient deep-tow seismic survey system. Although there are other examples of deep-tow seismic systems, signal transmission cables present challenges in deep waters. We use our autonomous recording system to avoid these problems. Combining a high frequency piezoelectric source (Sub Bottom Profiler:SBP) that automatically shots with a constant interval, we achieve the high resolution deep-tow seismic without data transmission/power cable to the board. Although the data cannot be monitored in real-time, the towing system becomes very simple. We have carried out survey trial, which showed the systems utility as a high-resolution deep-tow seismic survey system. Furthermore, the frequency ranges of deep-towed source (SBP) and surface towed sparker are 700-2300Hz and 10-200Hz respectively. Therefore we can use these sources simultaneously and distinguish the records of each source in the data processing stage. We have developed new marine seismic survey systems with autonomous recording for the exploration of the ocean floor resources. The applications are vertical cable seismic (VCS) and deep-tow seismic (ACS). These enable us the recording close to the seafloor and give the high resolution results with a simple, cost-effective configuration.

  17. Geophysical character of the intraplate Wabash Fault System from the Wabash EarthScope FlexArray

    NASA Astrophysics Data System (ADS)

    Conder, J. A.; Zhu, L.; Wood, J. D.

    2017-12-01

    The Wabash Seismic Array was an EarthScope funded FlexArray deployment across the Wabash Fault System. The Wabash system is long known for oil and gas production. The fault system is often characterized as an intraplate seismic zone as it has produced several earthquakes above M4 in the last 50 years and potentially several above M7 in the Holocene. While earthquakes are far less numerous in the Wabash system than in the nearby New Madrid seismic zone, the seismic moment is nearly twice that of New Madrid over the past 50 years. The array consisted of 45 broadband instruments deployed across the axis to study the larger structure and 3 smaller phased arrays of 9 short-period instruments each to get a better sense of the local seismic output of smaller events. First results from the northern phased array indicate that seismicity in the Wabash behaves markedly differently than in New Madrid, with a low b-value around 0.7. Receiver functions show a 50 km thick crust beneath the system, thickening somewhat to the west. A variable-depth, positive-amplitude conversion in the deep crust gives evidence for a rift pillow at the base of the system within a dense lowermost crustal layer. Low Vs and a moderate negative amplitude conversion in the mid crust suggest a possible weak zone that could localize deformation. Shear wave splitting shows fast directions consistent with absolute plate motion across the system. Split times drop in magnitude to 0.5-0.7 seconds within the valley while in the 1-1.5 second range outside the valley. This magnitude decrease suggests a change in mantle signature beneath the fault system, possibly resulting from a small degree of local flow in the asthenosphere either along axis (as may occur with a thinned lithosphere) or by vertical flow (e.g., from delamination or dripping). We are building a 2D tomographic model across the region, relying primarily on teleseismic body waves. The tomography will undoubtedly show variations in crustal structure that will give additional context to the receiver function results. Possibly more importantly, the lithospheric structure will discriminate between hypotheses of mantle flow required to give the observed shear wave splitting signature.

  18. Initial results from seismic monitoring at the Aquistore CO 2 storage site, Saskatchewan, Canada

    DOE PAGES

    White, D. J.; Roach, L. A.N.; Roberts, B.; ...

    2014-12-31

    The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO 2 storage projects in the world that is designed to demonstrate CO 2 storage in a deep saline aquifer. Starting in 2014, CO 2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO 2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will hostmore » the injected CO 2 has been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m 3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO 2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO 2. Prior to the onset of CO 2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D survey data from 2012 shows excellent repeatability (NRMS less than 10%) which will provide enhanced monitoring sensitivity to smaller amounts of CO 2. The permanent array also provides continuous passive monitoring for injection-related microseismicity. Passive monitoring has been ongoing since the summer of 2012 in order to establish levels of background seismicity before CO 2 injection starts in 2014. Microseismic monitoring was augmented in 2013 by the installation of 3 broadband seismograph stations surrounding the Aquistore site. These surface installations should provide a detection capability of seismic events with magnitudes as low as ~0. Downhole seismic methods are also being utilized for CO 2 monitoring at the Aquistore site. Baseline crosswell tomographic images depict details (meters-scale) of the reservoir in the 150-m interval between the observation and injection wells. This level of resolution is designed to track the CO 2 migration between the wells during the initial injection period. A baseline 3D vertical seismic profile (VSP) was acquired in the fall of 2013 to provide seismic images with resolution on a scale between that provided by the surface seismic array and the downhole tomography. The 3D VSP was recorded simultaneously using both a conventional array of downhole geophones (60-levels) and an optical fibre system. The latter utilized an optical fiber cable deployed on the outside of the monitor well casing and cemented in place. A direct comparison of these two methodologies will determine the suitability of using the fiber cable for ongoing time-lapse VSP monitoring.« less

  19. Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays?

    NASA Astrophysics Data System (ADS)

    J, Gibbons, Steven; Kværna, Tormod; Mykkeltveit, Svein

    2015-04-01

    The infrasound stations of the International Monitoring System are arrays consisting of up to 15 sites and with apertures of up to 3 km. The arrays are distributed remarkably uniformly over the globe and provide excellent coverage of South America, Africa, and Antarctica. This is to say that there are many infrasound arrays in regions many thousands of kilometers from the closest seismic array. Several infrasound arrays are in the immediate vicinity of existing 3-component seismic stations and these provide us with examples of how typical seismic signals look at these locations. We can make idealized estimates of the predicted performance of seismic arrays, consisting of seismometers at each site of the infrasound arrays, by duplicating the signals from the 3-C stations at all sites of the array. However, the true performance of seismic arrays at these sites will depend both upon Signal-to-Noise Ratios of seismic signals and the coherence of both signal and noise between sensors. These properties can only be determined experimentally. Recording seismic data of sufficient quality at many of these arrays may require borehole deployments since the microbarometers in the infrasound arrays are often situated in vaults placed in soft sediments. The geometries of all the current IMS infrasound arrays are examined and compared and we demonstrate that, from a purely geometrical perspective, essentially all the array configurations would provide seismic arrays with acceptable slowness resolution for both regional and teleseismic phase arrivals. Seismic arrays co-located with the infrasound arrays in many regions would likely enhance significantly the seismic monitoring capability in parts of the world where only 3-component stations are currently available. Co-locating seismic and infrasound sensors would facilitate the development of seismic arrays that share the infrastructure of the infrasound arrays, reducing the development and operational costs. Hosting countries might find such added capabilities valuable from a national perspective. In addition, the seismic recordings may also help to identify the sources of infrasound signals with consequences for improved event screening and evaluating models of infrasound propagation and atmospheric properties.

  20. Resolving the tectonic transition between ancestral North America and the northern Cordillera

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Audet, P.; Lebedev, S.

    2015-12-01

    The northern Cordillera, situated in the Canadian northwest, is one of the most actively deforming regions in Canada and host to the highest earthquake activity in the country. Furthermore, it presents a largely contiguous snapshot through almost 4 Gyr of Earth's history across a zone <2000 km in linear extent. Deformation is thought to be driven by tectonic forces transferred from the Alaska-Pacific plate collision eastwards to the Cordilleran Deformation Front (CDF), where the westward edge of the Canadian Shield acts as a rigid backstop. Past studies in the southern Yukon indicate a sharp transition into the craton underlying the CDF and evidence of craton growth through shallow subduction. Further north the proximity of the craton edge to the CDF remains largely unresolved; based on studies of the southern Cordillera and Alaska, significant variations in lithospheric architecture are expected. Additionally, significant seismicity is observed further north off the Beaufort Shelf; however, its relationship to the regional stress fields and associated tectonic forcing is unclear. Despite the high seismicity levels across, detailed study of this region has been limited by insufficient coverage of seismological infrastructure, hindering resolution in past models. With the deployment of the USArray Transportable Array in Alaska over the last several years, combined with regional arrays such as the Yukon-Northwest Seismic Network (YNSN), Banks Island Seismic Network (BISN) and Mackenzie Mountains Experiment, new studies will leverage these datasets enabling more detailed imaging of the structure and seismicity across the region. Here we present a new high-resolution, vertically polarized shear speed and azimuthal model of northwestern Canada and Alaska, constrained by vertical component seismogram fits computed using the Automated Multimode Inversion of Surface, S, and multiple-S waveforms. With this new model, we aim to address key questions relating to the dynamics of the northern Cordillera, including how far west the craton edge extends at depth, in addition to the crustal thickness, velocity structure, and pattern of crustal fabrics around major faults throughout the region.

  1. Brady's Geothermal Field DAS Vibroseis Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    2016-03-25

    The submitted data correspond to the monitored vibrations caused by a vibroseis seismically exciting the ground in the vertical direction and captured by the DAS horizontal and vertical arrays during the PoroTomo Experiment. The data also include a file with the acceleration record at the Vibroseis. Vibroseis Sweep Details: Sweep on location T84 Stage 4 (Mode P 60 s long record ) Time: 2016-03-25 14:01:15 (UTC) Location: 39.80476089N, -119.0027625W Elevation: 1272.0M (on ground surface at the site) Sweep length: 20 seconds Frequencies: 5 Hz to 20 Hz

  2. Virtual source reflection imaging of the Socorro Magma Body, New Mexico, using a dense seismic array

    NASA Astrophysics Data System (ADS)

    Finlay, T. S.; Worthington, L. L.; Schmandt, B.; Hansen, S. M.; Bilek, S. L.; Aster, R. C.; Ranasinghe, N. R.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest known actively inflating continental magmatic intrusions. Previous studies have relied on sparse instrument coverage to determine its spatial extent, depth, and seismic signature, which characterized the body as a thin sill with a surface at 19 km below the Earth's surface. However, over the last two decades, InSAR and magneto-telluric (MT) studies have shed new light on the SMB and invigorated the scientific debate of the spatial distribution and uplift rate of the SMB. We return to seismic imaging of the SMB with the Sevilleta Array, a 12-day deployment of approximately 800 vertical component, 10-Hz geophones north of Socorro, New Mexico above and around the estimated northern half of the SMB. Teleseismic virtual source reflection profiling (TVR) employs the free surface reflection off of a teleseismic P as a virtual source in dense arrays, and has been used successfully to image basin structure and the Moho in multiple tectonic environments. The Sevilleta Array recorded 62 teleseismic events greater than M5. Applying TVR to the data collected by the Sevilleta Array, we present stacks from four events that produced the with high signal-to-noise ratios and simple source-time functions: the February 11, 2015 M6.7 in northern Argentina, the February 19, 2015 M5.4 in Kamchatka, Russia, and the February 21, 2015 M5.1 and February 22, 2015 M5.5 in western Colombia. Preliminary results suggest eastward-dipping reflectors at approximately 5 km depth near the Sierra Ladrones range in the northwestern corner of the array. Further analysis will focus on creating profiles across the area of maximum SMB uplift and constraining basin geometry.

  3. Downhole Microseismic Monitoring at a Carbon Capture, Utilization, and Storage Site, Farnsworth Unit, Ochiltree County, Texas

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Balch, R. S.; van Wijk, J.

    2015-12-01

    Farnsworth Oil Field in North Texas hosts an ongoing carbon capture, utilization, and storage project. This study is focused on passive seismic monitoring at the carbon injection site to measure, locate, and catalog any induced seismic events. A Geometrics Geode system is being utilized for continuous recording of the passive seismic downhole bore array in a monitoring well. The array consists of 3-component dual Geospace OMNI-2400 15Hz geophones with a vertical spacing of 30.5m. Downhole temperature and pressure are also monitored. Seismic data is recorded continuously and is produced at a rate of over 900GB per month, which must be archived and reviewed. A Short Term Average/Long Term Average (STA/LTA) algorithm was evaluated for its ability to search for events, including identification and quantification of any false positive events. It was determined that the algorithm was not appropriate for event detection with the background level of noise at the field site and for the recording equipment as configured. Alternatives are being investigated. The final intended outcome of the passive seismic monitoring is to mine the continuous database and develop a catalog of microseismic events/locations and to determine if there is any relationship to CO2 injection in the field. Identifying the location of any microseismic events will allow for correlation with carbon injection locations and previously characterized geological and structural features such as faults and paleoslopes. Additionally, the borehole array has recorded over 1200 active sources with three sweeps at each source location that were acquired during a nearby 3D VSP. These data were evaluated for their usability and location within an effective radius of the array and were stacked to improve signal-noise ratio and are used to calibrate a full field velocity model to enhance event location accuracy. Funding for this project is provided by the U.S. Department of Energy under Award No. DE-FC26-05NT42591.

  4. Fiber-Optic Network Observations of Earthquake Wavefields

    NASA Astrophysics Data System (ADS)

    Lindsey, Nathaniel J.; Martin, Eileen R.; Dreger, Douglas S.; Freifeld, Barry; Cole, Stephen; James, Stephanie R.; Biondi, Biondo L.; Ajo-Franklin, Jonathan B.

    2017-12-01

    Our understanding of subsurface processes suffers from a profound observation bias: seismometers are sparse and clustered on continents. A new seismic recording approach, distributed acoustic sensing (DAS), transforms telecommunication fiber-optic cables into sensor arrays enabling meter-scale recording over tens of kilometers of linear fiber length. We analyze cataloged earthquake observations from three DAS arrays with different horizontal geometries to demonstrate some possibilities using this technology. In Fairbanks, Alaska, we find that stacking ground motion records along 20 m of fiber yield a waveform that shows a high degree of correlation in amplitude and phase with a colocated inertial seismometer record at 0.8-1.6 Hz. Using an L-shaped DAS array in Northern California, we record the nearly vertically incident arrival of an earthquake from The Geysers Geothermal Field and estimate its backazimuth and slowness via beamforming for different phases of the seismic wavefield. Lastly, we install a fiber in existing telecommunications conduits below Stanford University and show that little cable-to-soil coupling is required for teleseismic P and S phase arrival detection.

  5. Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulsson, Bjorn N.P.

    2015-02-28

    To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important –more » a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less

  6. Spatial wavefield gradient-based seismic wavefield separation

    NASA Astrophysics Data System (ADS)

    Van Renterghem, C.; Schmelzbach, C.; Sollberger, D.; Robertsson, J. OA

    2018-03-01

    Measurements of the horizontal and vertical components of particle motion combined with estimates of the spatial gradients of the seismic wavefield enable seismic data to be acquired and processed using single dedicated multicomponent stations (e.g. rotational sensors) and/or small receiver groups instead of large receiver arrays. Here, we present seismic wavefield decomposition techniques that use spatial wavefield gradient data to separate land and ocean bottom data into their upgoing/downgoing and P/S constituents. Our method is based on the elastodynamic representation theorem with the derived filters requiring local measurements of the wavefield and its spatial gradients only. We demonstrate with synthetic data and a land seismic field data example that combining translational measurements with spatial wavefield gradient estimates allows separating seismic data recorded either at the Earth's free-surface or at the sea bottom into upgoing/downgoing and P/S wavefield constituents for typical incidence angle ranges of body waves. A key finding is that the filter application only requires knowledge of the elastic properties exactly at the recording locations and is valid for a wide elastic property range.

  7. The SAFOD Pilot Hole seismic array: Wave propagation effects as a function of sensor depth and source location

    NASA Astrophysics Data System (ADS)

    Chavarria, J. Andres; Malin, Peter E.; Shalev, Eylon

    2004-05-01

    In July 2002 we installed a vertical array of seismometers in the San Andreas Fault Observatory at Depth (SAFOD) Pilot Hole (PH). The bottom of this 32 level, 1240 m long array of 3- components is located at a depth of ~2100 m below ground. Surface-explosion and microearthquake seismograms recorded by the array give valuable insights into the structure of the SAFOD site. The ratios of P- and S-wave velocities (Vp/Vs) along the array suggest the presence of two faults intersecting the PH. The Vp/Vs ratios also depend on source location, with high values to the NW, and lower ones to the SE, correlating with high and low creep rates along the SAF, respectively. Since higher ratios can be produced by increasing fluid saturation, we suggest that this effect might account for both our observations and their correlation with the creep distribution.

  8. Structural Imaging around the SMS Deposit by the Multi-Source ZVCS Survey Method in the Izena Hole, Mid-Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Tara, K.; Asakawa, E.; Murakami, F.; Tsukahara, H.; Saito, S.; Lee, S.; Katou, M.; Jamali Hondori, E.; Sumi, T.; Kadoshima, K.; Kose, M.

    2017-12-01

    Seafloor Massive Sulfide (SMS) deposits typically show rugged topography such as abundant chimney structures and sulfide mounds. However, buried SMS deposits are not well studied because of few efficient methods to detect and characterize them. Therefore, we proposed a Zero-offset Vertical Cable Seismic (ZVCS) survey using a Sparker and a Remotely Operated Vehicle (ROV) which was equipped with autonomous hydrophone arrays and a sub-bottom profiler (SBP). Zero-offset shooting and near-bottom recording can acquire high resolution acoustic data that could separate the reflection and scattered wave by vertically towed hydrophone arrays. We conducted the multi-source ZVCS survey in the Hakurei site, where the existence of the exposed and the buried SMS deposits has been reported, in Izena Hole, the Mid-Okinawa Trough, during the exploration cruise JM16-04. We obtained the two source's cross-sections of the buried SMS that enabled us to identify the area from the viewpoint of seismic facies. Buried SMS area is characterized by wavy to subparallel internal configuration and semi-continuously reflections. These features suggest that results from collapse of original sedimentary structure and hydrothermal alteration. Previous our exploration of the entire Izena Hole by the Autonomous Cable Seismic (ACS) were conducted in the JM16-02. Comparison between the ZVCS and ACS results gave us not only structural features in the surrounding area of SMS, but also the hydrothermal system of the Izena Hole. These results suggest that the hydrothermal circulation in the Izena Hole is vertically limited to the fracture zone caused by the depression and the buried SMS occurs in a sedimentary layer in the fracture zone. We conclude that ZVCS and ACS imaging of the shallow sub-seafloor structures will be useful for discussion about the geological background of SMS deposits.

  9. New constraints on micro-seismicity and stress state in the western part of the North Anatolian Fault Zone: Observations from a dense seismic array

    NASA Astrophysics Data System (ADS)

    Altuncu Poyraz, Selda; Teoman, M. Uğur; Türkelli, Niyazi; Kahraman, Metin; Cambaz, Didem; Mutlu, Ahu; Rost, Sebastian; Houseman, Gregory A.; Thompson, David A.; Cornwell, David; Utkucu, Murat; Gülen, Levent

    2015-08-01

    With the aim of extensively investigating the crustal structure beneath the western segment of the North Anatolian Fault Zone where it splays into northern and southern branches, a temporary seismic network (dense array for North Anatolia-DANA) consisting of 70 stations was deployed in early May 2012 and operated for 18 months in the Sakarya region during the FaultLab experiment. Out of 2437 events contaminated by explosions, we extracted 1371 well located earthquakes. The enhanced station coverage having a nominal station spacing of 7 km, lead to a minimum magnitude calculation of 0.1. Horizontal and vertical location uncertainties within the array do not exceed 0.8 km and 0.9 km, respectively. We observe considerable seismic activity along both branches of the fault where the depth of the seismogenic zone was mostly confined to 15 km. Using our current earthquake catalog we obtained a b-value of 1. We also mapped the b-value variation with depth and observed a gradual decrease. Furthermore, we determined the source parameters of 41 earthquakes with magnitudes greater than 1.8 using P-wave first motion polarity method. Regional Moment Tensor Inversion method was also applied to earthquakes with magnitudes greater than 3.0. Focal mechanism solutions confirm that Sakarya and its vicinity is stressed by a compressional regime showing a primarily oblique-slip motion character. Stress tensor analysis indicates that the maximum principal stress is aligned in WNW-ESE direction and the tensional axis is aligned in NNE-SSW direction.

  10. Noise reduction in long‐period seismograms by way of array summing

    USGS Publications Warehouse

    Ringler, Adam; Wilson, David; Storm, Tyler; Marshall, Benjamin T.; Hutt, Charles R.; Holland, Austin

    2016-01-01

    Long‐period (>100  s period) seismic data can often be dominated by instrumental noise as well as local site noise. When multiple collocated sensors are installed at a single site, it is possible to improve the overall station noise levels by applying stacking methods to their traces. We look at the noise reduction in long‐period seismic data by applying the time–frequency phase‐weighted stacking method of Schimmel and Gallart (2007) as well as the phase‐weighted stacking (PWS) method of Schimmel and Paulssen (1997) to four collocated broadband sensors installed in the quiet Albuquerque Seismological Laboratory underground vault. We show that such stacking methods can improve vertical noise levels by as much as 10 dB over the mean background noise levels at 400 s period, suggesting that greater improvements could be achieved with an array involving multiple sensors. We also apply this method to reduce local incoherent noise on horizontal seismic records of the 2 March 2016 Mw 7.8 Sumatra earthquake, where the incoherent noise levels at very long periods are similar in amplitude to the earthquake signal. To maximize the coherency, we apply the PWS method to horizontal data where relative azimuths between collocated sensors are estimated and compared with a simpler linear stack with no azimuthal rotation. Such methods could help reduce noise levels at various seismic stations where multiple high‐quality sensors have been deployed. Such small arrays may also provide a solution to improving long‐period noise levels at Global Seismographic Network stations.

  11. Feasibility of the Scalable, Automated, Semipermanent Seismic Array (SASSA) to Monitor Possible Carbon Dioxide Migration

    NASA Astrophysics Data System (ADS)

    Livers, A. J.; Burnison, S. A.; Salako, O.; Barajas-Olalde, C.; Hamling, J. A.; Gorecki, C. D.

    2016-12-01

    The feasibility of monitoring potential carbon dioxide (CO2) migration in a reservoir using a sparse seismic array is being evaluated by the Energy & Environmental Research Center (EERC) at the Denbury Onshore LLC-operated Bell Creek oil field in Montana, which is undergoing commercial CO2 enhanced oil recovery (EOR). This new method may provide an economical means of continuously monitoring the CO2 plume edge and the CO2 reservoir boundaries and/or to interpret vertical or lateral out-of-reservoir CO2 migration. A 96-station scalable, automated, semipermanent seismic array (SASSA) was deployed in October 2015 to detect and track CO2 plume migration not by imaging, but by monitoring discrete source-receiver midpoints. Midpoints were strategically located within and around four injector-producer patterns covering approximately one square mile. Three-dimensional (3-D) geophysical ray tracing was used to determine surface receiver locations. Receivers used were FairfieldNodal Zland three-component, autonomous, battery-powered nodes. A GISCO ESS850 accelerated weight drop source located in a secure structure was remotely fired on a weekly basis for one calendar year, including a two-month period prior to initiation of CO2 injection to establish a baseline. Fifty shots were fired one day each week to facilitate increased signal-to-noise through novel receiver domain processing and vertical stacking. Receiver domain processing allowed for individualization of processing parameters to maximize signal enhancement and noise attenuation. Reflection events in the processed SASSA data correlate well to 3-D surface survey data collected in the field. Preliminary time-lapse data results for several individual SASSA receivers show a phase shift in the reflection events below the reservoir after injection, suggesting possible migration of the CO2 in the reservoir to the corresponding midpoint locations. This work is supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. FE0012665.

  12. Determination of Rayleigh wave ellipticity using single-station and array-based processing of ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Workman, Eli Joseph

    We present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher ( 2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves.

  13. Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments

    DTIC Science & Technology

    2012-01-01

    acoustic field experiment (FAF06) conducted in July 2006 off the west coast of Italy. Dr. Heechun Song of the Scripps Institution of Oceanography...from seismic surveying and whale calls recorded on a vertical array with 12 elements. The whale call frequencies range from 100 to 500 Hz and the water...underway. Together Ms. Abadi and Dr. Thode had considerable success simulating the experimental environment, deconvolving whale calls, ranging the

  14. Development of a time synchronization methodology for a wireless seismic array

    NASA Astrophysics Data System (ADS)

    Moure-García, David; Torres-González, Pedro; del Río, Joaquín; Mihai, Daniel; Domínguez Cerdeña, Itahiza

    2017-04-01

    Seismic arrays have multiple applications. In the past, the main use was nuclear tests monitoring that began in mid-twentieth century. The major difference with a seismic network is the hypocenter location procedure. With a seismic network the hypocenter's 3D coordinates are calculated while using an array, the source direction of the seismic signal is determined. Seismic arrays are used in volcanology to obtain the source azimuth of volcanic signals related to fluids movement, magma and/or gases, that do not show a clear seismic phases' onset. A key condition in the seismic array operativity is the temporal synchronization of all the sensors, better than 1 microsecond. Because of that, usually all sensors are connected to the acquisition system by cable to ensure an identical sampling time. In this work we present the design of a wireless low-cost and low-power consumption volcanic monitoring seismic array where all nodes (sensors) acquire data synchronously and transmit them to the center node where a coherent signal is pursued in near real time.

  15. Earth's interior. Dehydration melting at the top of the lower mantle.

    PubMed

    Schmandt, Brandon; Jacobsen, Steven D; Becker, Thorsten W; Liu, Zhenxian; Dueker, Kenneth G

    2014-06-13

    The high water storage capacity of minerals in Earth's mantle transition zone (410- to 660-kilometer depth) implies the possibility of a deep H2O reservoir, which could cause dehydration melting of vertically flowing mantle. We examined the effects of downwelling from the transition zone into the lower mantle with high-pressure laboratory experiments, numerical modeling, and seismic P-to-S conversions recorded by a dense seismic array in North America. In experiments, the transition of hydrous ringwoodite to perovskite and (Mg,Fe)O produces intergranular melt. Detections of abrupt decreases in seismic velocity where downwelling mantle is inferred are consistent with partial melt below 660 kilometers. These results suggest hydration of a large region of the transition zone and that dehydration melting may act to trap H2O in the transition zone. Copyright © 2014, American Association for the Advancement of Science.

  16. First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-04-01

    We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic material showing high (>0.4 down to 60 m) Poisson's ratios. Our new model can be used in future studies to better constrain the deep interior of the Moon. Given the rich information derived from the minimalistic recording configuration, our results demonstrate that wavefield gradient analysis should be critically considered for future space missions that aim to explore the interior structure of extraterrestrial objects by seismic methods. Additionally, we anticipate that the proposed shear wave identification methodology can also be applied to the routinely recorded vertical component data from land seismic exploration on Earth.

  17. Vertical Cable Seismic Survey for Hydrothermal Deposit

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2012-04-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques. We have carried out two field surveys in FY2011. One is a 3D survey with a boomer for a high-resolution surface source and the other one for an actual field survey in the Izena Cauldron an active hydrothermal area in the Okinawa Trough. Through these surveys, the VCS will become a practical exploration tool for the exploration of seafloor hydrothermal deposits.

  18. Development of a 300°C 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulsson, Bjorn N.P.

    2016-06-29

    To address the critical site characterization and monitoring needs for Enhance Geothermal Systems (EGS) programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2011 a contract to design, build and test a high temperature fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying a large number of 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor podmore » design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-4.0 at frequencies over 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The data telemetry fibers used for the seismic vector sensors in the system are also used to simultaneously record Distributed Temperature Sensor (DTS) and Distributed Acoustic Sensor (DAS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less

  19. Seismic anisotropy in the vicinity of the Alpine fault, New Zealand, estimated by seismic interferometry

    NASA Astrophysics Data System (ADS)

    Takagi, R.; Okada, T.; Yoshida, K.; Townend, J.; Boese, C. M.; Baratin, L. M.; Chamberlain, C. J.; Savage, M. K.

    2016-12-01

    We estimate shear wave velocity anisotropy in shallow crust near the Alpine fault using seismic interferometry of borehole vertical arrays. We utilized four borehole observations: two sensors are deployed in two boreholes of the Deep Fault Drilling Project in the hanging wall side, and the other two sites are located in the footwall side. Surface sensors deployed just above each borehole are used to make vertical arrays. Crosscorrelating rotated horizontal seismograms observed by the borehole and surface sensors, we extracted polarized shear waves propagating from the bottom to the surface of each borehole. The extracted shear waves show polarization angle dependence of travel time, indicating shear wave anisotropy between the two sensors. In the hanging wall side, the estimated fast shear wave directions are parallel to the Alpine fault. Strong anisotropy of 20% is observed at the site within 100 m from the Alpine fault. The hanging wall consists of mylonite and schist characterized by fault parallel foliation. In addition, an acoustic borehole imaging reveals fractures parallel to the Alpine fault. The fault parallel anisotropy suggest structural anisotropy is predominant in the hanging wall, demonstrating consistency of geological and seismological observations. In the footwall side, on the other hand, the angle between the fast direction and the strike of the Alpine fault is 33-40 degrees. Since the footwall is composed of granitoid that may not have planar structure, stress induced anisotropy is possibly predominant. The direction of maximum horizontal stress (SHmax) estimated by focal mechanisms of regional earthquakes is 55 degrees of the Alpine fault. Possible interpretation of the difference between the fast direction and SHmax direction is depth rotation of stress field near the Alpine fault. Similar depth rotation of stress field is also observed in the SAFOD borehole at the San Andreas fault.

  20. RAPID DETERMINATION OF FOCAL DEPTH USING A GLOBAL NETWORK OF SMALL-APERTURE SEISMIC ARRAYS

    NASA Astrophysics Data System (ADS)

    Seats, K.; Koper, K.; Benz, H.

    2009-12-01

    The National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS) operates 24 hours a day, 365 days a year with the mission of locating and characterizing seismic events around the world. A key component of this task is quickly determining the focal depth of each seismic event, which has a first-order effect on estimates of ground shaking used in the impact assessment applications of emergency response activities. Current methods of depth estimation used at the NEIC include arrival time inversion both with and without depth phases, a Bayesian depth constraint based on historical seismicity (1973-present), and moment tensor inversion primarily using P- and S-wave waveforms. In this study, we explore the possibility of automated modeling of waveforms from vertical-component arrays of the International Monitoring System (IMS) to improve rapid depth estimation at NEIC. Because these arrays are small-aperture, they are effective at increasing signal to noise ratios for frequencies of 1 Hz and higher. Currently, NEIC receives continuous real-time data from 23 IMS arrays. Following work done by previous researchers, we developed a technique that acts as an array of arrays. For a given epicentral location we calculate fourth root beams for each IMS array in the distance range of 30 to 95 degrees at the expected slowness vector of the first arrival. Because the IMS arrays are small-aperture, these beams highlight energy that has slowness similar to the first arrival, such as depth phases. The beams are rectified by taking the envelope and then automatically aligned on the largest peak within 5 seconds of the expected arrival time. The station beams are then combined into network beams assuming a range of depths varying from 10 km to 700 km in increments of 1 km. The network beams are computed assuming both pP and sP propagation, and a measure of beam power is output as a function of depth for both propagation models, as well as their sum. We validated this approach using several hundred seismic events in the magnitude range 4.5-6.5 mb that occurred in 2008 and 2009. In most cases, clear spikes in the network beam power existed at depths around those estimated by the NEIC using traditional location procedures. However, in most cases there was also a bimodality in the network beam power because of the ambiguity between assuming pP or sP propagation for later arriving energy. There were only a handful of cases in which a seismic event generated both sP and pP phases with sizes large enough to resolve the ambiguity. We are currently working to include PKP arrivals into the network beams and experimenting with various tuning parameters to improve the efficiency of the algorithm. This promising approach will allow NEIC to significantly and systematically improve the quality of hypocentral locations reported in the PDE and provide NEIC with additional valuable information on seismic source parameters needed in emergency response applications.

  1. Shear-wave velocity profile and seismic input derived from ambient vibration array measurements: the case study of downtown L'Aquila

    NASA Astrophysics Data System (ADS)

    Di Giulio, Giuseppe; Gaudiosi, Iolanda; Cara, Fabrizio; Milana, Giuliano; Tallini, Marco

    2014-08-01

    Downtown L'Aquila suffered severe damage (VIII-IX EMS98 intensity) during the 2009 April 6 Mw 6.3 earthquake. The city is settled on a top flat hill, with a shear-wave velocity profile characterized by a reversal of velocity at a depth of the order of 50-100 m, corresponding to the contact between calcareous breccia and lacustrine deposits. In the southern sector of downtown, a thin unit of superficial red soils causes a further shallow impedance contrast that may have influenced the damage distribution during the 2009 earthquake. In this paper, the main features of ambient seismic vibrations have been studied in the entire city centre by using array measurements. We deployed six 2-D arrays of seismic stations and 1-D array of vertical geophones. The 2-D arrays recorded ambient noise, whereas the 1-D array recorded signals produced by active sources. Surface-wave dispersion curves have been measured by array methods and have been inverted through a neighbourhood algorithm, jointly with the H/V ambient noise spectral ratios related to Rayleigh waves ellipticity. We obtained shear-wave velocity (Vs) profiles representative of the southern and northern sectors of downtown L'Aquila. The theoretical 1-D transfer functions for the estimated Vs profiles have been compared to the available empirical transfer functions computed from aftershock data analysis, revealing a general good agreement. Then, the Vs profiles have been used as input for a deconvolution analysis aimed at deriving the ground motion at bedrock level. The deconvolution has been performed by means of EERA and STRATA codes, two tools commonly employed in the geotechnical engineering community to perform equivalent-linear site response studies. The waveform at the bedrock level has been obtained deconvolving the 2009 main shock recorded at a strong motion station installed in downtown. Finally, this deconvolved waveform has been used as seismic input for evaluating synthetic time-histories in a strong-motion target site located in the middle Aterno river valley. As a target site, we selected the strong-motion station of AQV 5 km away from downtown L'Aquila. For this site, the record of the 2009 L'Aquila main shock is available and its surface stratigraphy is adequately known making possible to propagate the deconvolved bedrock motion back to the surface, and to compare recorded and synthetic waveforms.

  2. Passive seismic imaging based on seismic interferometry: method and its application to image the structure around the 2013 Mw6.6 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Gu, N.; Zhang, H.

    2017-12-01

    Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.

  3. On the composition of earth's short-period seismic noise field

    USGS Publications Warehouse

    Koper, K.D.; Seats, K.; Benz, H.

    2010-01-01

    In the classic microseismic band of 5-20 sec, seismic noise consists mainly of fundamental mode Rayleigh and Love waves; however, at shorter periods seismic noise also contains a significant amount of body-wave energy and higher mode surface waves. In this study we perform a global survey of Earth's short-period seismic noise field with the goal of quantifying the relative contributions of these propagation modes. We examined a year's worth of vertical component data from 18 seismic arrays of the International Monitoring System that were sited in a variety of geologic environments. The apertures of the arrays varied from 2 to 28 km, constraining the periods we analyzed to 0.25-2.5 sec. Using frequency-wavenumber analysis we identified the apparent velocity for each sample of noise and classified its mode of propagation. The dominant component was found to be Lg, occurring in about 50% of the noise windows. Because Lg does not propagate across ocean-continent boundaries, this energy is most likely created in shallow water areas near coastlines. The next most common component was P-wave energy, which accounted for about 28% of the noise windows. These were split between regional P waves (Pn=Pg at 6%), mantle bottoming P waves (14%), and core-sensitive waves (PKP at 8%). This energy is mostly generated in deep water away from coastlines, with a region of the North Pacific centered at 165?? W and 40?? N being especially prolific. The remainder of the energy arriving in the noise consisted of Rg waves (28%), a large fraction of which may have a cultural origin. Hence, in contrast to the classic micro-seismic band of 5-20 sec, at shorter periods fundamental mode Rayleigh waves are the least significant component.

  4. Epicenter Location of Regional Seismic Events Using Love Wave and Rayleigh Wave Ambient Seismic Noise Green's Functions

    NASA Astrophysics Data System (ADS)

    Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.

    2011-12-01

    We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.

  5. Estimating Local and Near-Regional Velocity and Attenuation Structure from Seismic Noise

    DTIC Science & Technology

    2008-09-30

    seismic array in Costa Rica and Nicaragua from ambient seismic noise using two independent methods, noise cross correlation and beamforming. The noise...Mean-phase velocity-dispersion curves are calculated for the TUCAN seismic array in Costa Rica and Nicaragua from ambient seismic noise using two...stations of the TUCAN seismic array (Figure 4c) using a method similar to Harmon et al. (2007). Variations from Harmon et al. (2007) include removing the

  6. Using Ambient Noise for Investigating Cultural Heritage Sites and Evaluating Seismic Site Response

    NASA Astrophysics Data System (ADS)

    D'Amico, S.; Farrugia, D.; Galea, P. M.; Ruben, B. P., Sr.

    2016-12-01

    Recordings of ambient noise as well as use of the HVSR technique represent a common tool for evaluating seismic site response. In this study we applied such techniques to several cultural heritage sites located on the Maltese archipelago (Central Mediterranean). In particular, two of the Maltese watchtowers, built by the Knights of St. John between 1637 and 1659, were investigated together with the megalithic temple site of Mnajdra. Array data were acquired using the Micromed SoilSpy Rosina™ equipped with 4.5 Hz vertical geophones, setting the array in an L-shaped configuration. The Extended Spatial Autocorrelation (ESAC) technique was used to extract Rayleigh-wave dispersion curves. Moreover, single-station data close to the array was collected using a Tromino 3-component seismograph (www.tromino.eu), and the H/V curves were extracted. The dispersion curves and the H/V curves were jointly inverted using the Genetic Algorithm (GA) to obtain the shear-wave velocity profile. A fixed number of layers was used in the inversion and ranges for the layer thickness, P-wave and S-wave velocity, and density were specified. The obtained velocity profiles were used to compute the amplification function for the site based on the square root of the effective seismic impedance, also known as the quarter-wavelength approximation. This was used in the simulation of ground motion parameters at the site for various earthquakes using the stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM). In addition, the fundamental period and the damping ratio of the watchtowers was obtained by recording ambient vibrations. In the megalithic temples we were also able to evaluate the coverage of the soil deposits within the structure, comparing our results with previous study that used different geophysical techniques. In conclusion, this study enables us to map the seismic amplification hazard and provides primary data on the seismic risk assessment of each cultural heritage site.

  7. Structure of the North Anatolian Fault Zone from the Autocorrelation of Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Taylor, George; Rost, Sebastian; Houseman, Gregory

    2016-04-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquakes or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct body wave images for the entire crust and the shallow upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using autocorrelations of the vertical component of ground motion, P-wave reflections can be retrieved from the wavefield to constrain crustal structure. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the northern branch of the fault zone, indicating that the NAFZ reaches the upper mantle as a narrow structure. The southern branch has a less clear effect on crustal structure. We also see evidence of several discontinuities in the mid-crust in addition to an upper mantle reflector that we interpret to represent the Hales discontinuity.

  8. Imaging a Fault Boundary System Using Controlled-Source Data Recorded on a Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Paschall, O. C.; Chen, T.; Snelson, C. M.; Ralston, M. D.; Rowe, C. A.

    2016-12-01

    The Source Physics Experiment (SPE) is a series of chemical explosions conducted in southern Nevada with an objective of improving nuclear explosion monitoring. Five chemical explosions have occurred thus far in granite, the most recent being SPE-5 on April 26, 2016. The SPE series will improve our understanding of seismic wave propagation (primarily S-waves) due to explosions, and allow better discrimination of background seismicity such as earthquakes and explosions. The Large-N portion of the project consists of 996 receiver stations. Half of the stations were vertical component and the other half were three-component geophones. All receivers were deployed for 30 days and recorded the SPE-5 shot, earthquakes, noise, and an additional controlled-source: a large weight-drop, which is a 13,000 kg modified industrial pile driver. In this study, we undertake reflection processing of waveforms from the weight-drop, as recorded by a line of sensors extracted from the Large-N array. The profile is 1.2 km in length with 25 m station spacing and 100 m shot point spacing. This profile crosses the Boundary Fault that separates granite body and an alluvium basin, a strong acoustic impedance boundary that scatters seismic energy into S-waves and coda. The data were processed with traditional seismic reflection processing methods that include filtering, deconvolution, and stacking. The stack will be used to extract the location of the splays of the Boundary Fault and provide geologic constraints to the modeling and simulation teams within the SPE project.

  9. Seismic reflection and refraction data acquired in Canada Basin, Northwind Ridge and Northwind Basin, Arctic Ocean in 1988, 1992 and 1993

    USGS Publications Warehouse

    Grantz, Arthur; Hart, Patrick E.; May, Steven D.

    2004-01-01

    Seismic reflection and refraction data were collected in generally ice-covered waters of the Canada Basin and the eastern part of the Chukchi Continental Borderland of the Amerasia Basin, Arctic Ocean, during the late summers of 1988, 1992, and 1993. The data were acquired from a Polar class icebreaker, the U.S. Coast Guard Cutter Polar Star, using a seismic reflection system designed by the U.S. Geological Survey (USGS). The northernmost data extend to 78? 48' N latitude. In 1988, 155 km of reflection data were acquired with a prototype system consisting of a single 195 cubic inch air gun seismic source and a two-channel hydrophone streamer with a 150-m active section. In 1992 and 1993, 500 and 1,900 km, respectively, of seismic reflection profile data were acquired with an improved six air gun, 674 to 1303 cubic inch tuned seismic source array and the same two-channel streamer. In 1993, a 12-channel streamer with a 150-m active section was used to record five of the reflection lines and one line was acquired using a three air gun, 3,000 cubic inch source. All data were recorded with a DFS-V digital seismic recorder. Processed sections feature high quality vertical incidence images to more than 6 km of sub-bottom penetration in the Canada Basin. Refraction data were acquired with U.S. Navy sonobuoys recorded simultaneously with the seismic reflection profiles. In 1988 eight refraction profiles were recorded with the single air gun, and in 1992 and 1993 a total of 47 refraction profiles were recorded with the six air gun array. The sonobuoy refraction records, with offsets up to 35 km, provide acoustic velocity information to complement the short-offset reflection data. The report includes trackline maps showing the location of the data, as well as both digital data files (SEG-Y) and images of all of the profiles.

  10. Seasonality of P wave microseisms from NCF-based beamforming using ChinArray

    NASA Astrophysics Data System (ADS)

    Wang, Weitao; Gerstoft, Peter; Wang, Baoshan

    2018-06-01

    Teleseismic P wave microseisms produce interference signals with high apparent velocity in noise cross-correlation functions (NCFs). Sources of P wave microseisms can be located with NCFs from seismic arrays. Using the vertical-vertical component NCFs from a large-aperture array in southwestern China (ChinArray), we studied the P wave source locations and their seasonality of microseisms at two period bands (8-12 and 4-8 s) with an NCF-based beamforming method. The sources of P, PP and PKPbc waves are located. The ambiguity between P and PP source locations is analysed using averaged significant ocean wave height and sea surface pressure as constraints. The results indicate that the persistent P wave sources are mainly located in the deep oceans such as the North Atlantic, North Pacific and Southern Ocean, in agreement with previous studies. The Gulf of Alaska is found to generate P waves favouring the 8-12 s period band. The seasonality of P wave sources is consistent with the hemispheric storm pattern, which is stronger in local winter. Using the identified sources, arrival times of the interference signals are predicted and agree well with observations. The interference signals exhibit seasonal variation, indicating that body wave microseisms in southwestern China are from multiple seasonal sources.

  11. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not more than 2000 meters are planned. The prototype must be modified and adapted to the conditions in deep boreholes with respect to pressure and temperature. This project is funded by the German Federal Environment Ministry.

  12. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    NASA Astrophysics Data System (ADS)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  13. Small aperture seismic arrays for studying planetary interiors and seismicity

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.

    2017-12-01

    Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure (layering, scattering bodies, density and velocity variations) in the vicinity of the array, as well as the ability to improve the signal to noise ratio of distant body waves by additive methods such as stacking and velocity-slowness analysis. These results will inform future missions on the surfaces of objects throughout the Solar System.

  14. Study of Rayleigh-Love coupling from Spatial Gradient Observation

    NASA Astrophysics Data System (ADS)

    Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.

    2017-12-01

    We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.

  15. Diverse Seismic Imaging Created by the Seismic Explosion Experiment of the TAIGER Project

    NASA Astrophysics Data System (ADS)

    Wang, C.; Okaya, D.; Wu, F.; Yen, H.; Huang, B.; Liang, W.

    2008-12-01

    The TAIGER (TAiwan Integrated GEodynamics Research) project which examines the Taiwan orogeny includes five experiments: natural earthquake recording, man-made explosion recording, Magnetotelluic imaging, marine MCS and sea-land shooting, and deformation evolution modeling. During Feb-Mar 2008, the explosion experiment was carried out. Ten sources with 500~3000kg dynamite were detonated along two transects across northern and southern Taiwan. Over 600 PASSCAL Texans and 40 R-130 instruments record the signals over 100~300 km range. Additional arrays with 100 seismometers were deployed to collect north-south line and fan shoot data for 3D imaging. Furthermore, there are 9 ocean bottom seismometers (OBS) in the Taiwan Strait and two lines with 20 seismometers deployed on the mainland China side. A large volume of qualified data has been created. Except explosion signals, numerous local and regional earthquakes were also recorded even by the Texan instruments. The rich earthquake-explosion dataset now exists at the Institute of Earth Sciences, Academia Sinica operated by the Taiwan Earthquake Center (TEC). Preliminary examination of the data reveal crustal Pg, PmP, Pn and intermediate crustal reflection phases within the transect profiles and in the 3D cross-arrays. These data provide direct seismic imaging of the continental Moho under Taiwan and the sharp Moho root configuration associated with mountain building. Seismic tomography and raytrace methods reveal velocity structure consistent with convergence and vertical exhumation of the Central Ranges.

  16. Active and passive seismic imaging of a hydraulic fracture in diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinegar, H.J.; Wills, P.B.; De Martini, D.C.

    1992-01-01

    This paper reports on a comprehensive set of experiments including remote- and treatment-well microseismic monitoring, interwell shear-wave shadowing, and surface tiltmeter arrays, that was used to monitor the growth of a hydraulic fracture in the Belridge diatomite. To obtain accurate measurements, and extensive subsurface network of geophones was cemented spanning the diatomite formation in three closely spaced observation wells around the well to be fracture treated. Data analysis indicates that the minifracture and main hydraulic fracture stimulations resulted in a nearly vertical fracture zone (striking N26{degrees}E) vertically segregated into two separate elements, the uppermost of which grew 60 ft abovemore » the perforated interval. The interwell seismic effects are consistent with a side process zone of reduced shear velocity, which remote-well microseismic data independently suggest may be as wide as 40 ft. The experiments indicate complicated processes occurring during hydraulic fracturing that have significant implications for stimulation, waterflooding, in fill drilling, and EOR. These processes are neither well understood nor included in current hydraulic fracture models.« less

  17. Application of the Spatial Auto-Correlation Method for Shear-Wave Velocity Studies Using Ambient Noise

    NASA Astrophysics Data System (ADS)

    Asten, M. W.; Hayashi, K.

    2018-07-01

    Ambient seismic noise or microtremor observations used in spatial auto-correlation (SPAC) array methods consist of a wide frequency range of surface waves from the frequency of about 0.1 Hz to several tens of Hz. The wavelengths (and hence depth sensitivity of such surface waves) allow determination of the site S-wave velocity model from a depth of 1 or 2 m down to a maximum of several kilometres; it is a passive seismic method using only ambient noise as the energy source. Application usually uses a 2D seismic array with a small number of seismometers (generally between 2 and 15) to estimate the phase velocity dispersion curve and hence the S-wave velocity depth profile for the site. A large number of methods have been proposed and used to estimate the dispersion curve; SPAC is the one of the oldest and the most commonly used methods due to its versatility and minimal instrumentation requirements. We show that direct fitting of observed and model SPAC spectra generally gives a superior bandwidth of useable data than does the more common approach of inversion after the intermediate step of constructing an observed dispersion curve. Current case histories demonstrate the method with a range of array types including two-station arrays, L-shaped multi-station arrays, triangular and circular arrays. Array sizes from a few metres to several-km in diameter have been successfully deployed in sites ranging from downtown urban settings to rural and remote desert sites. A fundamental requirement of the method is the ability to average wave propagation over a range of azimuths; this can be achieved with either or both of the wave sources being widely distributed in azimuth, and the use of a 2D array sampling the wave field over a range of azimuths. Several variants of the method extend its applicability to under-sampled data from sparse arrays, the complexity of multiple-mode propagation of energy, and the problem of precise estimation where array geometry departs from an ideal regular array. We find that sparse nested triangular arrays are generally sufficient, and the use of high-density circular arrays is unlikely to be cost-effective in routine applications. We recommend that passive seismic arrays should be the method of first choice when characterizing average S-wave velocity to a depth of 30 m ( V s30) and deeper, with active seismic methods such as multichannel analysis of surface waves (MASW) being a complementary method for use if and when conditions so require. The use of computer inversion methodology allows estimation of not only the S-wave velocity profile but also parameter uncertainties in terms of layer thickness and velocity. The coupling of SPAC methods with horizontal/vertical particle motion spectral ratio analysis generally allows use of lower frequency data, with consequent resolution of deeper layers than is possible with SPAC alone. Considering its non-invasive methodology, logistical flexibility, simplicity, applicability, and stability, the SPAC method and its various modified extensions will play an increasingly important role in site effect evaluation. The paper summarizes the fundamental theory of the SPAC method, reviews recent developments, and offers recommendations for future blind studies.

  18. Application of the Spatial Auto-Correlation Method for Shear-Wave Velocity Studies Using Ambient Noise

    NASA Astrophysics Data System (ADS)

    Asten, M. W.; Hayashi, K.

    2018-05-01

    Ambient seismic noise or microtremor observations used in spatial auto-correlation (SPAC) array methods consist of a wide frequency range of surface waves from the frequency of about 0.1 Hz to several tens of Hz. The wavelengths (and hence depth sensitivity of such surface waves) allow determination of the site S-wave velocity model from a depth of 1 or 2 m down to a maximum of several kilometres; it is a passive seismic method using only ambient noise as the energy source. Application usually uses a 2D seismic array with a small number of seismometers (generally between 2 and 15) to estimate the phase velocity dispersion curve and hence the S-wave velocity depth profile for the site. A large number of methods have been proposed and used to estimate the dispersion curve; SPAC is the one of the oldest and the most commonly used methods due to its versatility and minimal instrumentation requirements. We show that direct fitting of observed and model SPAC spectra generally gives a superior bandwidth of useable data than does the more common approach of inversion after the intermediate step of constructing an observed dispersion curve. Current case histories demonstrate the method with a range of array types including two-station arrays, L-shaped multi-station arrays, triangular and circular arrays. Array sizes from a few metres to several-km in diameter have been successfully deployed in sites ranging from downtown urban settings to rural and remote desert sites. A fundamental requirement of the method is the ability to average wave propagation over a range of azimuths; this can be achieved with either or both of the wave sources being widely distributed in azimuth, and the use of a 2D array sampling the wave field over a range of azimuths. Several variants of the method extend its applicability to under-sampled data from sparse arrays, the complexity of multiple-mode propagation of energy, and the problem of precise estimation where array geometry departs from an ideal regular array. We find that sparse nested triangular arrays are generally sufficient, and the use of high-density circular arrays is unlikely to be cost-effective in routine applications. We recommend that passive seismic arrays should be the method of first choice when characterizing average S-wave velocity to a depth of 30 m (V s30) and deeper, with active seismic methods such as multichannel analysis of surface waves (MASW) being a complementary method for use if and when conditions so require. The use of computer inversion methodology allows estimation of not only the S-wave velocity profile but also parameter uncertainties in terms of layer thickness and velocity. The coupling of SPAC methods with horizontal/vertical particle motion spectral ratio analysis generally allows use of lower frequency data, with consequent resolution of deeper layers than is possible with SPAC alone. Considering its non-invasive methodology, logistical flexibility, simplicity, applicability, and stability, the SPAC method and its various modified extensions will play an increasingly important role in site effect evaluation. The paper summarizes the fundamental theory of the SPAC method, reviews recent developments, and offers recommendations for future blind studies.

  19. Triggered MEQ Events on LBNL Permanent Seismic Array, Brady's EGS, March 2016

    DOE Data Explorer

    Michelle Robertson

    2016-06-01

    List of triggered events recorded on LBNL's permanent EGS seismic array at Brady's geothermal field. This submission also includes links to the NCEDC EGS Earthquake Catalog Search page and to the metadata for the seismic array installed at Brady's Geothermal Field.

  20. Seismic array observations for monitoring phreatic eruptions in Iwojima Island, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Kawaguchi, R.; Chiba, K.; Fujita, E.; Tanada, T.

    2015-12-01

    Iwojima is an active volcanic island located within a 10 km wide submarine caldera about 1250 km to the south of Tokyo, Japan. The volcanic activity is characterized by intensive earthquake activity associated with an island-wide uplift with high uplift rate (30~40 cm/year) and hydrothermal activity. In the last 10 years, phreatic eruptions took place in and near the island in 2012, 2013, and 2015. In such restless volcano, predictions and detections of occurrence points of phreatic eruptions are important for ensuring safety of residents. In the previous studies, we found that the earthquake activity of Iwojima highly correlates with the island wide large uplift, but the precursory activity of the phreatic eruption in 2012 was deviated from the correlation (Ueda et al. 2013 AGU Fall Meeting). For prediction of occurrence points of phreatic eruptions and investigation of the eruption mechanism, we began observation by seismic arrays at two areas in December 2014. The seismic arrays enable to locate epicenters of volcanic tremors, which are not well located by existing seismic stations. In May and June 2015, Japan Maritime Self-Defense Force stayed in Iwojima and a live camera of Japan Meteorological Agency found very small phreatic eruptions occurred at the northern beach. Existing seismic stations could not detect seismic signals related with the eruptions. The seismic array could detect weak seismic signals related with the eruptions. Although the seismic arrays could not detect precursory signals because of too small eruption, we expect the seismic arrays can detect precursory seismic signals suggesting occurrence points of small or medium-sized phreatic eruptions. The seismic arrays also detected epicenters of harmonic and monotonic tremors took place at an active fumarolic field in the north earthen part of Iwojima. The apparent velocity of seismic waves (~1km/s) strongly suggests that the tremors relate with hydrothermal activity near ground surface.

  1. Seismicity of Central Asia as Observed on Three IMS Stations

    DTIC Science & Technology

    2008-09-01

    and BVAR are all high-quality seismic arrays . Noise levels at the stations are generally acceptable for the period reviewed, except during the...following conditions: (1) a 4.5-Hz intermittent noise source at MKAR, (2) periodic high-frequency bursts on portions of the SONM array , and (3) a...seismic events (including single station events) observable on three central Asian IMS seismic array stations: Makanchi, Kazakhstan (MKAR); Songino

  2. Observations and interpretation of fundamental mode Rayleigh wavefields recorded by the Transportable Array (USArray)

    USGS Publications Warehouse

    Pollitz, F.F.

    2008-01-01

    Broadband recordings of the dense Transportable Array (TA) in the western United States provide unparalleled detailed images of long-period seismic surface wavefields. With 400 stations spanning most of the western United States, wavefronts of fundamental mode Rayleigh waves may be visualized coherently across the array at periods ???40 s. In order to constrain the Rayleigh wave phase velocity structure in the western United States, I assemble a data set of vertical component seismograms from 53 teleseismic events recorded by the TA from April 2006 to October 2007. Complex amplitude spectra from these recordings at peni ods 27-100 s are interpreted using the multiplane wave tomographic method of Friederich and Wielandt (1995) and Pollitz (1999). This analysis yields detailed surface wave phase velocity and three-dimensional shear wave velocity patterns across the North American plate boundary zone, elucidating the active processes in the highly heterogeneous western U.S. upper mantle.

  3. Towards the Wetness Characterization of Soil Subsurface Using Fibre Optic Distributed Acoustic Sensing

    NASA Astrophysics Data System (ADS)

    Ciocca, F.; Bodet, L.; Simon, N.; Karaulanov, R.; Clarke, A.; Abesser, C.; Krause, S.; Chalari, A.; Mondanos, M.

    2017-12-01

    Active seismic methods combined with detectors deployed at the soil surface, such as vertical collinear geophones, have revealed great potential for hydrogeophysical characterization of the soil vadose zone. In particular, recent findings have highlighted a clear dependence of both P-waves arrival times and surface-wave dispersion on the local degree of soil saturation, visible at laboratory as well as at field scale. In this study, we investigate the sensitivity of a fibre optic Distributed Acoustic Sensor (DAS) to different soil saturation. In vertical seismic applications, DAS have proven to offer equal and often better performance compared to the geophones, with the advantage that a fibre optic cable, whose length can reach 40 km, replaces the array of geophones as sensing element. We present the response to active seismic tests of 20 m of fibre optic cable buried in a poorly permeable bare soil. Tests were conducted in different moments of the year, with saturation monitored by means of independent dielectric probes. Body-wave travel times as well as surface-wave dispersion are compared. Finally, we discuss the possibility to determine a site-specific relation between the Poisson ratio and the soil saturation. This research has been performed in the framework of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and of the Marie Curie H2020 Research and Innovation Staff Exchange (RISE) consortium Hi-Freq.

  4. Imaging Crustal Structure with Waveform and HV Ratio of Body-wave Receiver Function

    NASA Astrophysics Data System (ADS)

    Chong, J.; Chu, R.; Ni, S.; Meng, Q.; Guo, A.

    2017-12-01

    It is known that receiver function has less constraint on the absolute velocity, and joint inversion of receiver function and surface wave dispersion has been widely applied to reduce the non-uniqueness of velocity and interface depth. However, some studies indicate that the receiver function itself is capable for determining the absolute shear wave velocity. In this study, we propose to measure the receiver function HV ratio which takes advantage of the amplitude information of the radial and vertical receiver functions to constrain the shear-wave velocity. Numerical analysis indicates that the receiver function HV ratio is sensitive to the average shear wave velocity in the depth range it samples, and can help to reduce the non-uniqueness of receiver function waveform inversion. A joint inversion scheme has been developed, and both synthetic tests and real data application proved the feasibility of the joint inversion. The method has been applied to the dense seismic array of ChinArray program in SE Tibet during the time period from August 2011 to August 2012 in SE Tibet (ChinArray-Himalaya, 2011). The measurements of receiver function HV ratio reveals the lateral variation of the tectonics in of the study region. And main features of the velocity structure imagined by the new joint inversion method are consistent with previous studies. KEYWORDS: receiver function HV ratio, receiver function waveform inversion, crustal structure ReferenceChinArray-Himalaya. 2011. China Seismic Array waveform data of Himalaya Project. Institute of Geophysics, China Earthquake Administration. doi:10.12001/ChinArray.Data. Himalaya. Jiajun Chong, Risheng Chu*, Sidao Ni, Qingjun Meng, Aizhi Guo, 2017. Receiver Function HV Ratio, a New Measurement for Reducing Non-uniqueness of Receiver Function Waveform Inversion. (under revision)

  5. Analysis of volcano-related seismicity to constrain the magmatic plumbing system beneath Fogo, Cape Verde, by (multi-)array techniques

    NASA Astrophysics Data System (ADS)

    Dietrich, Carola; Wölbern, Ingo; Faria, Bruno; Rümpker, Georg

    2017-04-01

    Fogo is the only island of the Cape Verde archipelago with regular occurring volcanic eruptions since its discovery in the 15th century. The volcanism of the archipelago originates from a mantle plume beneath an almost stationary tectonic plate. With an eruption interval of approximately 20 years, Fogo belongs to the most active oceanic volcanoes. The latest eruption started in November 2014 and ceased in February 2015. This study aims to characterize and investigate the seismic activity and the magmatic plumbing system of Fogo, which is believed to be related to a magmatic source close to the neighboring island of Brava. According to previous studies, using conventional seismic network configurations, most of the seismic activity occurs offshore. Therefore, seismological array techniques represent powerful tools in investigating earthquakes and other volcano-related events located outside of the networks. Another advantage in the use of seismic arrays is their possibility to detect events of relatively small magnitude and to locate seismic signals without a clear onset of phases, such as volcanic tremors. Since October 2015 we have been operating a test array on Fogo as part of a pilot study. This array consists of 10 seismic stations, distributed in a circular shape with an aperture of 700 m. The stations are equipped with Omnirecs CUBE dataloggers, and either 4.5 Hz geophones (7 stations) or Trillium-Compact broad-band seismometers (3 stations). In January 2016 we installed three additional broad-band stations distributed across the island of Fogo to improve the capabilities for event localization. The data of the pilot study is dominated by seismic activity around Brava, but also exhibit tremors and hybrid events of unknown origin within the caldera of Fogo volcano. The preliminary analysis of these events includes the characterization and localization of the different event types using seismic array processing in combination with conventional localization methods. In the beginning of August 2016, a "seismic crisis" occurred on the island of Brava which led to the evacuation of a village. The seismic activity recorded by our instruments on Fogo exhibits more than 40 earthquakes during this time. Locations and magnitudes of these events will be presented. In January 2017 the pilot project discussed here will be complemented by three additional seismic arrays (two on Fogo, one on Brava) to improve seismic event localization and structural imaging based on scattered seismic phases by using multi-array techniques. Initial recordings from the new arrays are expected to be available by April 2017.

  6. Detection of buried mines with seismic sonar

    NASA Astrophysics Data System (ADS)

    Muir, Thomas G.; Baker, Steven R.; Gaghan, Frederick E.; Fitzpatrick, Sean M.; Hall, Patrick W.; Sheetz, Kraig E.; Guy, Jeremie

    2003-10-01

    Prior research on seismo-acoustic sonar for detection of buried targets [J. Acoust. Soc. Am. 103, 2333-2343 (1998)] has continued with examination of the target strengths of buried test targets as well as targets of interest, and has also examined detection and confirmatory classification of these, all using arrays of seismic sources and receivers as well as signal processing techniques to enhance target recognition. The target strengths of two test targets (one a steel gas bottle, the other an aluminum powder keg), buried in a sand beach, were examined as a function of internal mass load, to evaluate theory developed for seismic sonar target strength [J. Acoust. Soc. Am. 103, 2344-2353 (1998)]. The detection of buried naval and military targets of interest was achieved with an array of 7 shaker sources and 5, three-axis seismometers, at a range of 5 m. Vector polarization filtering was the main signal processing technique for detection. It capitalizes on the fact that the vertical and horizontal components in Rayleigh wave echoes are 90 deg out of phase, enabling complex variable processing to obtain the imaginary component of the signal power versus time, which is unique to Rayleigh waves. Gabor matrix processing of this signal component was the main technique used to determine whether the target was man-made or just a natural target in the environment. [Work sponsored by ONR.

  7. Surface and downhole shear wave seismic methods for thick soil site investigations

    USGS Publications Warehouse

    Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.

    2002-01-01

    Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.

  8. Adaptive Sensor Tuning for Seismic Event Detection in Environment with Electromagnetic Noise

    NASA Astrophysics Data System (ADS)

    Ziegler, Abra E.

    The goal of this research is to detect possible microseismic events at a carbon sequestration site. Data recorded on a continuous downhole microseismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project, were evaluated using machine learning and reinforcement learning techniques to determine their effectiveness at seismic event detection on a dataset with electromagnetic noise. The data were recorded from a passive vertical monitoring array consisting of 16 levels of 3-component 15 Hz geophones installed in the field and continuously recording since January 2014. Electromagnetic and other noise recorded on the array has significantly impacted the utility of the data and it was necessary to characterize and filter the noise in order to attempt event detection. Traditional detection methods using short-term average/long-term average (STA/LTA) algorithms were evaluated and determined to be ineffective because of changing noise levels. To improve the performance of event detection and automatically and dynamically detect seismic events using effective data processing parameters, an adaptive sensor tuning (AST) algorithm developed by Sandia National Laboratories was utilized. AST exploits neuro-dynamic programming (reinforcement learning) trained with historic event data to automatically self-tune and determine optimal detection parameter settings. The key metric that guides the AST algorithm is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The effects that changes in neighborhood configuration have on signal detection were explored, as it was determined that neighborhood-based detections significantly reduce the number of both missed and false detections in ground-truthed data. The performance of the AST algorithm was quantitatively evaluated during a variety of noise conditions and seismic detections were identified using AST and compared to ancillary injection data. During a period of CO2 injection in a nearby well to the monitoring array, 82% of seismic events were accurately detected, 13% of events were missed, and 5% of detections were determined to be false. Additionally, seismic risk was evaluated from the stress field and faulting regime at FWU to determine the likelihood of pressure perturbations to trigger slip on previously mapped faults. Faults oriented NW-SE were identified as requiring the smallest pore pressure changes to trigger slip and faults oriented N-S will also potentially be reactivated although this is less likely.

  9. One to Large N Gradiometry

    NASA Astrophysics Data System (ADS)

    Langston, C. A.

    2017-12-01

    The seismic wave gradient tensor can be derived from a variety of field observations including measurements of the wavefield by a dense seismic array, strain meters, and rotation meters. Coupled with models of wave propagation, wave gradients along with the original wavefield can give estimates of wave attributes that can be used to infer wave propagation directions, apparent velocities, spatial amplitude behavior, and wave type. Compact geodetic arrays with apertures of 0.1 wavelength or less can be deployed to provide wavefield information at a localized spot similar to larger phased arrays with apertures of many wavelengths. Large N, spatially distributed arrays can provide detailed information over an area to detect structure changes. Key to accurate computation of spatial gradients from arrays of seismic instruments is knowledge of relative instrument responses, particularly component sensitivities and gains, along with relative sensor orientations. Array calibration has been successfully performed for the 14-element Pinyon Flat, California, broadband array using long-period teleseisms to achieve relative precisions as small as 0.2% in amplitude and 0.35o in orientation. Calibration has allowed successful comparison of horizontal seismic strains from local and regional seismic events with the Plate Boundary Observatory (PBO) borehole strainmeter located at the facility. Strains from the borehole strainmeter in conjunction with ground velocity from a co-located seismometer are used as a "point" array in estimating wave attributes for the P-SV components of the wavefield. An effort is underway to verify the calibration of PBO strainmeters in southern California and their co-located borehole seismic sensors to create an array of point arrays for use in studies of regional wave propagation and seismic sources.

  10. Investigating the seismic signal of elephants: using seismology to mitigate elephant human conflict

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Manzi, M.; Naidoo, A.; Raveloson, A.

    2015-12-01

    Human interactions with wild elephants are often a source of conflict, as elephants invade inhabited lands looking for sustenance. In order to mitigate these interactions, a number of elephant defense systems are under development. These include electric fences, bees and the playback of warning calls recorded from elephants. With the discovery that elephants use seismic signals to communicate (O'Connell-Rodwell et al., 2006, Behav. Ecol. Sociobiol.), it is hoped that seismic signals can also be used to help reduce conflict. Our current research project investigates the spectral content of the elephant seismic signal that travels through the ground using a variety of geophones and seismometers. Our experimental setup used a Geometrics Geode 24 channel seismic system with an array of 24 geophones spaced 1 m apart in an area of compact soil overlying weathered granites. Initially we used 14 Hz vertical geophones. The ground and ambient noise conditions were characterized by recording several hammer shots. These were used to identify the air wave, wind noise, and the direct wave, which had a dominant frequency of ~50 Hz. Several trained elephants that 'rumble' on command were then deployed ~5 m perpendicular to a line of 24 (14 Hz) vertical geophones between the 1 and 10 m geophone positions. We recorded a number of different elephants and configurations, and digitally recorded video for comparison. An additional deployment of 20 (14 Hz) horizontal geophones was also used. For all data, the sample interval was 0.25 ms and the recording length was 16 s as the timing of the rumbles could not be precisely controlled. We were able to identify the airwave due to the elephant's rumble with velocities between 305-310 m/s and the ground seismic signal due to the rumble with frequencies between 20-30 Hz. Our next experiment will include broadband seismometers at a further distance, to more fully characterize the frequency content of the elephant signal.

  11. Microtremor exploration for shallow S-wave velocity structure in Bandung Basin, Indonesia

    NASA Astrophysics Data System (ADS)

    Pramatadie, Andi Muhamad; Yamanaka, Hiroaki; Chimoto, Kosuke; Afnimar Collaboration; Koketsu, Kazuki; Sakaue, Minoru; Miyake, Hiroe; Sengara, I. Wayan; Sadisun, Imam A.

    2017-05-01

    We have conducted a microtremor survey for shallow S-wave velocity profiles to be used for seismic hazard evaluation in the Bandung Basin, Indonesia. In the survey, two arrays were deployed temporarily at each of 29 sites, by installing seven vertical sensors in triangular configurations with side lengths from 1 to 16 m. Records of vertical microtremors from each array were used to estimate Rayleigh wave phase velocity spectra using the spatial autocorrelation method, as well as the horizontal-to-vertical spectral ratio obtained at the centre of the arrays. Phase velocities at sites on the basin margin exhibit higher values than those obtained in the central part of the basin, in a frequency range of 7 to 30 Hz. The phase velocity data were used to deduce S-wave velocity profiles of shallow soil using a hybrid heuristic inversion method. We validated our inversion models by comparing observed horizontal-to-vertical spectral ratios with ellipticities of the fundamental mode of Rayleigh waves, calculated for the inversion models. The S-wave velocity profiles in the area can be characterised by two soft layers over a firm engineering basement that has an S-wave velocity of 500 m/s. The S-wave velocities of the two layers are 120 and 280 m/s on average. The distribution of the averaged S-wave velocity in the top 30 m clearly indicates low values in the eastern central part and high values in the edge of the basin. The amplification is large in the areas with low velocity layers. In addition, we have proposed an empirical relation between the amplification factor and the topographical slope in the area.

  12. Porosity, Fracturing and Alteration of Young Oceanic Crust: New Seismic Analyses at Borehole 504B

    NASA Astrophysics Data System (ADS)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.

    2017-12-01

    DSDP/ODP borehole 504B, drilled 2111 m into 6.9 Ma oceanic crust, provides in-situ core and logging measurements of the lithology, fracturing and porosity of crust originally formed at the Costa Rica Rift and its subsequent alteration by hydrothermal fluids. A recent active seismic survey over the borehole and surrounding area reveals wider spatial variations in velocity that can be related to this porosity and fracturing. Over 10,000 airgun shots were fired in a 30 x 30 km grid over the borehole region, using both high-frequency and low-frequency airgun arrays. The shots were recorded on a 4.5 km-long streamer and 24 ocean-bottom seismographs, each equipped with a three-component geophone and an hydrophone. A vertical hydrophone array recorded the downgoing source wavelet, and underway gravity, magnetic field and multibeam bathymetry data were also recorded. This combined dataset enables the most comprehensive geophysical analysis of this area of crust to date, while the ground-truthing provided by 504B enables us to address the questions of what do the seismic oceanic crustal layers represent and what controls their characteristics as the crust ages? Wide-angle seismic modelling with a Monte Carlo based uncertainty analysis reveals new 2D and 3D Vp and Vs models of the area, which show relatively homogeneous crust around borehole 504B, and place the seismic layer 2B/2C, and seismic layer 2/3 boundaries coincident with fracturing and alteration fronts rather than the lithological boundaries between lavas and dykes, and dykes and gabbros, respectively. Analysis of Poisson's ratio, seismic anisotropy and particle motions reveal patterns in fracturing and porosity across the survey area, and locate possible fossilised hydrothermal circulation cells. These cells appear to have influenced the porosity of the crust through alteration and mineralisation processes, with faults inherited from initial crustal accretion influencing basement topographic highs and providing conduits for mineralising fluids to flow. This research is part of a major, interdisciplinary NERC-funded research collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).

  13. Multi-mode phase speed measurements with array-based analysis: Application to the North American continent

    NASA Astrophysics Data System (ADS)

    Matsuzawa, H.; Yoshizawa, K.

    2017-12-01

    Recent high-density broad-band seismic networks allow us to construct improved 3-D upper mantle models with unprecedented horizontal resolution using surface waves. Such dispersion measurements have been primarily based on the analysis of fundamental mode. Higher-mode information can be of help in enhancing vertical resolution of 3-D models, but their dispersion analysis is intrinsically difficult, since wave-packets of several modes are overlapped each other in an observed seismogram. In this study, we measure phase dispersion of multi-mode surface waves with an array-based analysis. Our method is modeled on a one-dimensional frequency-wavenumber method originally developed by Nolet (1975, GRL), which can be applied to a set of broadband seismic records observed in a linear array along a great circle path. Through this analysis, we can obtain a spectrogram in c-T (phase speed - period) domain, which is characterized by mode-branch dispersion curves and relative spectral powers for each mode. Synthetic experiments indicate that we can separate the modal contribution using a long linear array with typical array length of about 2000 to 4000 km. The method is applied to a large data set from USArray using nearly 400 seismic events in 2007 - 2014 with Mw 6.5 or greater. Our phase-speed maps for the fundamental-mode Love and Rayleigh waves and the first higher-mode Rayleigh waves match well with the earlier models. The phase speed maps reflect typical large-scale features of regional seismic structure in North America, but smaller-scale variations are less constrained in our model, since our measured phase speeds represent path-average features over a long path (about a few thousands kilometers). Our multi-mode dispersion measurements can also be used for the extraction of mode-branch waveforms for the first a few modes. This can be done by applying a narrow filter around the dispersion curves of a target mode in c-T spectrogram. The mode-branch waveforms can then be reconstructed based on a linear Radon transform (e.g., Luo et al., 2015, GJI). Synthetic experiments suggest that we can successfully retrieve the mode-branch waveforms for several mode branches, which can be used in the secondary analysis for constraining local-scale heterogeneity with enhanced depth resolution.

  14. Using Cross-Correlation Methods to Characterize Earthquakes Associated with the Socorro Magma Body

    NASA Astrophysics Data System (ADS)

    Vieceli, R.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.; Dodge, D. A.; Pyle, M. L.; Walter, W. R.

    2017-12-01

    The Socorro Magma Body (SMB), a thin, sill-like body with a top surface-depth of 19 km situated within the Rio Grande Rift in central New Mexico, is one of the largest recognized continental mid-crustal magma bodies in the world by area. SMB-associated inflation leads to slow regional uplift of a few mm/yr and has been linked to longstanding concentrated shallow seismicity (< 10 km depth) with variable spatial and temporal occurrence, including early 20th century events of magnitude 5.5 - 6. Recent small earthquakes (magnitudes 3 to -1) have been monitored with a variety of broadband and short-term local seismic networks over the past several decades, but these routine catalogs have not been relocated or fully interpreted in terms of newer models of the structure, or its emplacement and history. In February 2015 seismic data were collected above the northern and most rapidly uplifting region of the SMB with a densely spaced temporary array, consisting of seven broadband and 804 short period Fairfield nodal vertical component seismographs. The total array area was 50 x 25 km with typical node spacing of 300 m along a road network. In this study, we exploit all available seismic network data in a cross-correlation framework developed at Lawrence Livermore National Laboratory to detect events and characterize earthquake swarms, clusters, and patterns occurring over the last 15 years. We use a power detector to build an initial catalog of small magnitude earthquakes, including 33 events (M <= 2.5) recorded during the February 2015 deployment, as templates to detect additional events. We also develop an updated shallow velocity model for the region and refine event hypocenters using Bayesloc, a bayesian, multiple-event location algorithm. This enhanced seismicity catalog will be utilized in interpreting the recent seismicity of the SMB. LLNL-ABS-735529

  15. Developing and Exploiting a Unique Seismic Data Set from South African Gold Mines for Source Characterization and Wave Propagation

    DTIC Science & Technology

    2007-09-01

    The data are recorded at depth (1–5 km) by arrays of three-component geophones operated by AngloGold Ashanti, Ltd. and Integrated Seismic Systems...case-based event identification using regional arrays , Bull. Seism. Soc. Am. 80: 1874–1892. Bennett, T. J. and J. R. Murphy, Analysis of seismic ... seismic event classification at the NORESS array : seismological measurements and the use of trained neural networks, Bull. Seism. Soc. Am. 80: 1910

  16. Reflection Response of the Parnaíba Basin (NE Brazil) from Seismic Ambient Noise Autocorrelation Functions

    NASA Astrophysics Data System (ADS)

    Julià, Jordi; Schimmel, Martin; Cedraz, Victória

    2017-04-01

    Reflected-wave interferometry relies on the recording of transient seismic signals from random wavefields located beneath recording stations. Under vertical incidence, the recordings contain the full transmission response, which includes the direct wave as well as multiple reverberations from seismic discontinuities located between the wavefields and the receiver. It has been shown that, under those assumptions, the reflection response of the medium can be recovered from the autocorrelation function (ACF) of the transmission response at a given receiver, as if the wavefields had originated themselves at the free surface. This passive approach to seismic reflection profiling has the obvious advantage of being low-cost and non-invasive when compared to its active-source counterpart, and it has been successfully utilized in other sedimentary basins worldwide. In this paper we evaluate the ability of the autocorrelation of ambient seismic noise recorded in the Parnaíba basin - a large Paleozoic basin in NE Brazil - to recover the reflection response of the basin. The dataset was acquired by the Universidade Federal do Rio Grande do Norte during 2015 and 2016 under the Parnaíba Basin Analysis Project (PBAP), a multi-disciplinary and multi-institutional effort funded by BP Energy do Brasil aimed at improving our current understanding of the architecture of this cratonic basin. The dataset consists of about 1 year of continuous ground motion data from 10 short-period, 3-component stations located in the central portion of the basin. The stations were co-located with an existing (active-source) seismic reflection profile that was shot in 2012, making a linear array of about 100 km in aperture and about 10 km inter-station spacing. To develop the autocorrelation at a given station we considered the vertical component of ground motion only, which should result in the P-wave response. The vertical recordings were first split into 10 min-long windows, demeaned, de-trended, re-sampled, and band-pass filtered between 8 and 16 Hz before autocorrelation, and then stacked with phase-weighting to enhance coherency of the retrieved signal. The ACFs show coherent signal is recovered at lag times between 0.5 and 2 s, which we interpret as P- and S-wave energy reflected on top of an intra-sedimentary discontinuity. Our results are consistent, to first-order, with a previously developed active-source reflection response of the basin.

  17. Seismic Imaging of a Prospective Geothermal Play, Using a Dense Geophone Array

    NASA Astrophysics Data System (ADS)

    Trow, A.; Pankow, K. L.; Wannamaker, P. E.; Lin, F. C.; Ward, K. M.

    2017-12-01

    In the summer of 2016 a dense array of 48 Nodal Seismic geophones was deployed near Beaver, Utah on the eastern flank of the Mineral Mountains. The array aperture was approximately 20 kilometers and recorded continuous seismic data for 30 days. Geophones were centered on a previously known shallow (5km depth) magnetolluric (MT) low-resistivity body. This region of low resistivity was interpreted to possibly contain hydrothermal/geothermal fluids and was targeted for further seismic investigation. The seismic array geometry was designed to optimize seismic event detection for small (magnitude of completeness zero) earthquakes and to facilitate seismic imaging at depths of 5 km and deeper. For the duration of the experiment, one ML 1 earthquake was detected underneath the array with 15 other earthquakes detected to the east and south in the more seismically active Pavant Range. Different passive imaging techniques, including ambient noise and earthquake tomography are being explored in order to produce a seismic velocity image. Understanding the subsurface, specifically the fracture network and fluid content of the bedrock is important for characterization of a geothermal prospect. If it is rich in fluids, it can be assumed that some fracture network is in place to accommodate such fluids. Both fractures and fluid content of the prospect will have an effect on the seismic velocities in the basement structure. These properties can help determine the viability of a geothermal system for power production.

  18. Active-Source Seismic Tomography at Bradys Geothermal Field, Nevada, with Dense Nodal and Fiber-Optic Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Parker, L.; Li, P.; Fratta, D.; Zeng, X.; Feigl, K. L.; Ak, E.; Lord, N.

    2017-12-01

    We deployed a dense seismic array to image the shallow structure in the injection area of the Brady Hot Springs geothermal site in Nevada. The array was composed of 238 5 Hz, three-component nodal instruments and 8,700 m of distributed acoustic sensing (DAS) fiber-optic cable installed in surface trenches plus about 400 m installed in a borehole. The geophone array had about 60 m instrument spacing in the target zone, whereas DAS channel separations were about 1 m. The acquisition systems provided 15 days of continuous records including active source and ambient noise signals. A large vibroseis truck (T-Rex) was operated at 196 locations, exciting a swept-frequency signal from 5 to 80 Hz over 20 seconds using three vibration modes. Sweeps were repeated up to four times during different modes of geothermal plant operation: normal operation, shut-down, high and oscillatory injection and production, and normal operation again. The cross-correlation method was utilized to remove the sweep signal from the geophone records. The first P arrivals were automatically picked from the cross-correlation functions using a combination of methods, and the travel times were used to invert for the 3D P-wave velocity structure. Models with 100 m and 50 m horizontal node spacing were obtained, with vertical node spacing of 10 to 50 m. The travel time data were fit to about 30 ms, close to our estimated picking uncertainty. We will present our 3D Vp model and the result of our search for measurable temporal changes, along with preliminary results for a 3D Vs model. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.

  19. Effects on Chilean Vertical Reference Frame due to the Maule Earthquake co-seismic and post-seismic effects

    NASA Astrophysics Data System (ADS)

    Montecino, Henry D.; de Freitas, Silvio R. C.; Báez, Juan C.; Ferreira, Vagner G.

    2017-12-01

    The Maule Earthquake (Mw = 8.8) of February 27, 2010 is among the strongest earthquakes that occurred in recent years throughout the world. The crustal deformation caused by this earthquake has been widely studied using GNSS, InSAR and gravity observations. However, there is currently no estimation of the possible vertical deformations produced by co-seismic and post-seismic effects in segments of the Chilean Vertical Reference Frame (CHVRF). In this paper, we present an estimation of co-seismic and post-seismic deformations on the CHVRF using an indirect approach based on GNSS and Gravity Recovery and Climate Experiment (GRACE) data as well as by applying a trajectory model. GNSS time series were used from 10 continuous GNSS stations in the period from 2007 to 2015, as well as 28 GNSS temporary stations realized before and after the earthquake, and 34 vertical deformation vectors in the region most affected by the earthquake. We considered a set of 147 monthly solutions of spherical harmonic gravity field that were expanded up to degree, as well as order 96 of the GRACE mission provided by Center for Space Research, University of Texas at Austin (UT-CSR) process center. The magnitude of vertical deformation was estimated in part of the Chilean vertical network due to the co-seismic and post-seismic effects. Once we evaluated the hydrological effect, natural and artificial jumps, and the effect of glacial isostatic adjustment in GNSS and GRACE time series, the maximum values associated to co- and post-seismic deformations on orthometric height were found to be ∼-34 cm and 5 cm, respectively. Overall, the deformation caused by the Maule earthquake in orthometric heights is almost entirely explained by the variation in the ellipsoidal heights (over 85% in co-seismic jump); however, coseismic jump in the geoid reached -3.3 mm, and could influence the maintenance of a modern vertical reference network in a medium to long term. We evaluated the consistency for a segment of the CHVRF after the earthquake and recommended precautions for using the CHVRF in the region.

  20. Accurately determining direction of arrival by seismic array based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, H.; Yu, H.

    2016-12-01

    Seismic array analysis method plays an important role in detecting weak signals and determining their locations and rupturing process. In these applications, reliably estimating direction of arrival (DOA) for the seismic wave is very important. DOA is generally determined by the conventional beamforming method (CBM) [Rost et al, 2000]. However, for a fixed seismic array generally the resolution of CBM is poor in the case of low-frequency seismic signals, and in the case of high frequency seismic signals the CBM may produce many local peaks, making it difficult to pick the one corresponding to true DOA. In this study, we develop a new seismic array method based on compressive sensing (CS) to determine the DOA with high resolution for both low- and high-frequency seismic signals. The new method takes advantage of the space sparsity of the incoming wavefronts. The CS method has been successfully used to determine spatial and temporal earthquake rupturing distributions with seismic array [Yao et al, 2011;Yao et al, 2013;Yin 2016]. In this method, we first form the problem of solving the DOA as a L1-norm minimization problem. The measurement matrix for CS is constructed by dividing the slowness-angle domain into many grid nodes, which needs to satisfy restricted isometry property (RIP) for optimized reconstruction of the image. The L1-norm minimization is solved by the interior point method. We first test the CS-based DOA array determination method on synthetic data constructed based on Shanghai seismic array. Compared to the CBM, synthetic test for data without noise shows that the new method can determine the true DOA with a super-high resolution. In the case of multiple sources, the new method can easily separate multiple DOAs. When data are contaminated by noise at various levels, the CS method is stable when the noise amplitude is lower than the signal amplitude. We also test the CS method for the Wenchuan earthquake. For different arrays with different apertures, we are able to obtain reliable DOAs with uncertainties lower than 10 degrees.

  1. Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.

  2. Infrasound and seismic array analysis of snow avalanches: results from the 2015-2017 experiment in Dischma valley above Davos, Switzerland

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; van Herwijnen, Alec; Ripepe, Maurizio

    2017-04-01

    While flowing downhill a snow avalanche radiates seismic and infrasonic waves being coupled both with the ground and the atmosphere. Infrasound waves are mostly generated by the powder cloud of the avalanche, while seismic waves are mostly generated by the dense flowing snow mass on the ground, resulting in different energy partitioning between seismic and infrasound for different kinds of avalanches. This results into a general uncertainty on the efficiency of seismic and infrasound monitoring, in terms of the size and source-to-receiver distance of detectable events. Nevertheless, both seismic and infrasound have been used as monitoring systems for the remote detection of snow avalanches, being the reliable detection of snow avalanches of crucial importance to better understand triggering mechanisms, identify possible precursors, or improve avalanche forecasting. We present infrasonic and seismic array data collected during the winters of 2015- 2016 and 2016-2017 in the Dischma valley above Davos, Switzerland, where a five element infrasound array and a 7 element seismic array had been deployed at short distance from each other and with several avalanche paths nearby. Avalanche observation in the area is performed through automatic cameras providing additional information on the location, type (dry or wet), size and occurrence time of the avalanches released. The use of arrays instead of single sensors allows increasing the signal-to-noise ratio and identifying events in terms of back-azimuth and apparent velocity of the wave-field, thus providing indication on the source position of the recorded signal. For selected snow avalanches captured with automatic cameras, we therefore perform seismic and infrasound array processing to constrain the avalanche path and dynamics and investigate the partitioning of seismic and infrasound energy for the different portions of the avalanche path. Moreover we compare results of seismic and infrasound array processing for the whole 2015-2016 winter season in order to investigate the ability of the two monitoring systems to identify and characterize snow avalanches and the benefit of the combined seismo-acoustic analysis.

  3. 3-D Characterization of Seismic Properties at the Smart Weapons Test Range, YPG

    DTIC Science & Technology

    2001-10-01

    confidence limits around each interpolated value. Ground truth was accomplished through cross-hole seismic measurements and borehole logs. Surface wave... seismic method, as well as estimating the optimal orientation and spacing of the seismic array . A variety of sources and receivers was evaluated...location within the array is partially related to at least two seismic lines. Either through good fortune or foresight by the designers of the SWTR site

  4. Vertical displacements inherited from pre-Neogene time in the Gulfes of Sigacik and Kusadasi (Western Anatolia) by multi channel seismic and chirp data

    NASA Astrophysics Data System (ADS)

    Gurcay, S.; Cifci, G.; Dondurur, D.; Sozbilir, H.

    2012-12-01

    Gulfes of Sigacik and Kusadasi (Western Anatolia) are located south of the Middle Eastern Aegean depression which formed by vertical displacements along the NB- to N-trending structural planes. This study consists of the results of the multi-channel seismic reflection and chirp data acquisition by K. Piri Reis, research vessel of Dokuz Eylül University (Izmir-TURKEY), in Sigacik Gulf and Kusadasi Gulf (West Anatolia) in August-2005 and in March-2008. Data were acquired approximately along the 1300km seismic lines. Two main seismic units, lower unit (Pre-Neogene) and upper unit (Neogene), can easily be determined on multi channel seismic sections. It is also observed on seismic sections that there are many active faults deform these units. Two main submarine basins can be determined from multi-channel seismic sections, Sigacik Basin and Kusadasi Basin. The upper unit in Sigacik Basin is deformed generally by strike slip faults. But there are some faults that have sharp vertical movements on lower unit. Some of these vertical movements are followed by strike-slip active faults along the upper unit indicating that these normal movements have changed to lateral movements, recently.

  5. Seismic structure and segmentation of the axial valley of the Mid-Cayman Spreading Center

    NASA Astrophysics Data System (ADS)

    Van Avendonk, Harm J. A.; Hayman, Nicholas W.; Harding, Jennifer L.; Grevemeyer, Ingo; Peirce, Christine; Dannowski, Anke

    2017-06-01

    We report the results of a two-dimensional tomographic inversion of marine seismic refraction data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity model shows variations in the thickness and properties of the young oceanic crust that are consistent with the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5-2.0 km), which we interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system has been found in the southern half of the MCSC.

  6. Empirical Study of Horizontal and Vertical Resolution of Teleseismic Receiver Function Data for Shallow Crustal Imagery.

    NASA Astrophysics Data System (ADS)

    Subasic, S.; Piana Agostinetti, N.; Bean, C. J.

    2017-12-01

    Passive seismic methods as a tool in exploration geophysics are relatively cheap, and offer the prospect of 3D imagery at a fraction of the cost of an active survey. Outputs from passive seismic surveys can also be used as a test and guide for subsequent targeted higher resolution studies, and they offer a strategic alternative in areas where an active survey would be a difficult or impossible task. In order to test the horizontal and vertical resolution of teleseismic receiver functions, we perform a complete receiver function analysis and inversion of the teleseismic data from the La Barge array. The La Barge Passive Seismic Experiment is composed of 55 instruments deployed in western Wyoming, recording continuously between November 2008 and June 2009. The close interstation distance used during the deployment (250m, up to two orders of magnitude smaller than in typical receiver function studies) makes this open-access data set a perfect test-case for the aim of this study. Receiver functions (RF) are calculated for earthquakes with Mw ≥ 5.5, at epicentral distances ranging from 30° to 100°. We use the frequency domain deconvolution method proposed by Di Bona (1998). This method includes estimations of variances for individual receiver functions, and considers both the pre-signal noise, as well as the noise involved in the deconvolution itself. We perform harmonic decomposition of the receiver function dataset. The zero-order harmonic, representing the bulk isotropic variation of seismic velocities with depth, is used in the inversion. The RF inversion scheme follows a reversible jump Markov Chain Monte Carlo algorithm, developed by Piana Agostinetti and Malinverno (2010). The results can be compared with the measurements from nearby wells.

  7. Shear-wave velocities beneath the Harrat Rahat volcanic field, Saudi Arabia, using ambient seismic noise analysis

    NASA Astrophysics Data System (ADS)

    Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.

    2017-12-01

    We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.

  8. Quantitative Understanding on the Amplitude Decay Characteristic of the Evanescent Electromagnetic Waves Generated by Seismoelectric Conversion

    NASA Astrophysics Data System (ADS)

    Ren, Hengxin; Huang, Qinghua; Chen, Xiaofei

    2018-03-01

    We conduct numerical simulations and theoretical analyses to quantitatively study the amplitude decay characteristic of the evanescent electromagnetic (EM) waves, which has been neglected in previous studies on the seismoelectric conversion occurring at a porous-porous interface. Time slice snapshots of seismic and EM wave-fields generated by a vertical single force point source in a two-layer porous model show that evanescent EM waves can be induced at a porous-porous interface. The seismic and EM wave-fields computed for a receiver array located in a vertical line nearby the interface are investigated in detail. In addition to the direct and interface-response radiation EM waves, we identify three groups of coseismic EM fields and evanescent EM waves associated with the direct P, refracted SV-P and direct SV waves, respectively. Thereafter, we derive the mathematical expression of the amplitude decay factor of the evanescent EM waves. This mathematical expression is further validated by our numerical simulations. It turns out the amplitude decay of the evanescent EM waves generated by seismoelectric conversion is greatly dependent on the horizontal wavenumber of seismic waves. It is also found the evanescent EM waves have a higher detectability at a lower frequency range. This work provides a better understanding on the EM wave-fields generated by seismoelectric conversion, which probably will help improve the interpretation of the seismoelectric coupling phenomena associated with natural earthquakes or possibly will inspire some new ideas on the application of the seismoelectric coupling effect.

  9. Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing

    USGS Publications Warehouse

    Sileny, J.; Hill, D.P.; Eisner, Leo; Cornet, F.H.

    2009-01-01

    We have inverted polarity and amplitude information of representative microearthquakes to investigate source mechanisms of seismicity induced by hydraulic fracturing in the Carthage Cotton Valley, east Texas, gas field. With vertical arrays of four and eight three-component geophones in two monitoring wells, respectively, we were able to reliably determine source mechanisms of the strongest events with the best signal-to-noise ratio. Our analysis indicates predominantly non-double-couple source mechanisms with positive volumetric component consistent with opening cracks oriented close to expected hydraulic fracture orientation. Our observations suggest the induced events are directly the result of opening cracks by fluid injection, in contrast to many previous studies where the seismicity is interpreted to be primarily shearing caused by pore pressure diffusion into the surrounding rock or associated with shear stresses created at the hydraulic fracture tip. Copyright 2009 by the American Geophysical Union.

  10. Hybridization of Guided Surface Acoustic Modes in Unconsolidated Granular Media by a Resonant Metasurface

    NASA Astrophysics Data System (ADS)

    Palermo, Antonio; Krödel, Sebastian; Matlack, Kathryn H.; Zaccherini, Rachele; Dertimanis, Vasilis K.; Chatzi, Eleni N.; Marzani, Alessandro; Daraio, Chiara

    2018-05-01

    We investigate the interaction of guided surface acoustic modes (GSAMs) in unconsolidated granular media with a metasurface, consisting of an array of vertical oscillators. We experimentally observe the hybridization of the lowest-order GSAM at the metasurface resonance, and note the absence of mode delocalization found in homogeneous media. Our numerical studies reveal how the stiffness gradient induced by gravity in granular media causes a down-conversion of all the higher-order GSAMs, which preserves the acoustic energy confinement. We anticipate these findings to have implications in the design of seismic-wave protection devices in stratified soils.

  11. The KRISP 90 seismic experiment-a technical review

    USGS Publications Warehouse

    Prodehl, C.; Mechie, J.; Achauer, U.; Keller, Gordon R.; Khan, M.A.; Mooney, W.D.; Gaciri, S.J.; Obel, J.D.

    1994-01-01

    On the basis of a preliminary experiment in 1985 (KRISP 85), a seismic refraction/wide-angle reflection survey and a teleseismic tomography experiment were jointly undertaken to study the lithospheric structure of the Kenya rift down to depths of greater than 200 km. This report serves as an introduction to a series of subsequent papers and will focus on the technical description of the seismic surveys of the main KRISP 90 effort. The seismic refraction/wide-angle reflection survey was carried out in a 4-week period in January and February 1990. It consisted of three profiles: one extending along the rift valley from Lake Turkana to Lake Magadi, one crossing the rift at Lake Baringo, and one located on the eastern flank of the rift proper. A total of 206 mobile vertical-component seismographs, with an average station interval of about 2 km, recorded the energy of underwater and borehole explosions to distances of up to about 550 km. During the teleseismic survey an array of 65 seismographs was deployed to record teleseismic, regional and local events for a period of about 7 months from October 1989 to April 1990. The elliptical array spanned the central portion of the rift, with Nakuru at its center, and covered an area about 300 ?? 200 km, with an average station spacing of 10-30 km. Major scientific goals of the project were to reveal the detailed crustal and upper-mantle structure under the Kenya rift, to study the relationship between deep crustal and mantle structure and the development of sedimentary basins and volcanic features within the rift, to understand the role of the Kenya rift within the Afro-Arabian rift system, and to answer fundamental questions such as the mode and mechanism of continental rifting. ?? 1994.

  12. Sweetwater, Texas Large N Experiment

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.

    2015-12-01

    From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.

  13. Seismic anisotropy in gas-hydrate- and gas-bearing sediments on the Blake Ridge, from a walkaway vertical seismic profile

    USGS Publications Warehouse

    Pecher, I.A.; Holbrook, W.S.; Sen, M.K.; Lizarralde, D.; Wood, W.T.; Hutchinson, D.R.; Dillon, William P.; Hoskins, H.; Stephen, R.A.

    2003-01-01

    We present results from an analysis of anisotropy in marine sediments using walkaway vertical seismic profiles from the Blake Ridge, offshore South Carolina. We encountered transverse isotropy (TI) with a vertical symmetry axis in a gas-hydrate-bearing unit of clay and claystone with Thomsen parameters ?? = 0.05 ?? 0.02 and ?? = 0.04 ?? 0.06. TI increased to ?? = 0.16 ?? 0.04 and ?? = 0.19 ?? 0.12 in the underlying gas zone. Rock physics modeling suggests that the observed TI is caused by a partial alignment of clay particles rather than high-velocity gas-hydrate veins. Similarly, the increase of TI in the gas zone is not caused by thin low-velocity gas layers but rather, we speculate, by the sharp contrast between seismic properties of an anisotropic sediment frame and elongated gas-bearing pore voids. Our results underscore the significance of anisotropy for integrating near-vertical and wide-angle seismic data.

  14. Exploring Sedimentary Basins with High Frequency Receiver Function: the Dublin Basin Case Study

    NASA Astrophysics Data System (ADS)

    Licciardi, A.; Piana Agostinetti, N.

    2015-12-01

    The Receiver Function (RF) method is a widely applied seismological tool for the imaging of crustal and lithospheric structures beneath a single seismic station with one to tens kilometers of vertical resolution. However, detailed information about the upper crust (0-10 km depth) can also be retrieved by increasing the frequency content of the analyzed RF data-set (with a vertical resolution lower than 0.5km). This information includes depth of velocity contrasts, S-wave velocities within layers, as well as presence and location of seismic anisotropy or dipping interfaces (e.g., induced by faulting) at depth. These observables provides valuable constraints on the structural settings and properties of sedimentary basins both for scientific and industrial applications. To test the RF capabilities for this high resolution application, six broadband seismic stations have been deployed across the southwestern margin of the Dublin Basin (DB), Ireland, whose geothermal potential has been investigated in the last few years. With an inter-station distance of about 1km, this closely spaced array has been designed to provide a clear picture of the structural transition between the margin and the inner portion of the basin. In this study, a Bayesian approach is used to retrieve the posterior probability distributions of S-wave velocity at depth beneath each seismic station. A multi-frequency RF data-set is analyzed and RF and curves of apparent velocity are jointly inverted to better constrain absolute velocity variations. A pseudo 2D section is built to observe the lateral changes in elastic properties across the margin of the basin with a focus in the shallow portion of the crust. Moreover, by means of the harmonic decomposition technique, the azimuthal variations in the RF data-set are isolated and interpreted in terms of anisotropy and dipping interfaces associated with the major fault system in the area. These results are compared with the available information from previous seismic active surveys in the area, including boreholes data.

  15. Wide-angle seismic recordings from the 1998 Seismic Hazards Investigation of Puget Sound (SHIPS), western Washington and British Columbia

    USGS Publications Warehouse

    Brocher, Thomas M.; Parsons, Tom; Creager, Ken C.; Crosson, Robert S.; Symons, Neill P.; Spence, George D.; Zelt, Barry C.; Hammer, Philip T.C.; Hyndman, Roy D.; Mosher, David C.; Tréhu, Anne M.; Miller, Kate C.; ten Brink, Uri S.; Fisher, Michael A.; Pratt, Thomas L.; Alvarez, Marcos G.; Beaudoin, Bruce C.; Louden, Keith E.; Weaver, Craig S.

    1999-01-01

    This report describes the acquisition and processing of deep-crustal wide-angle seismic reflection and refraction data obtained in the vicinity of Puget Lowland, the Strait of Juan de Fuca, and Georgia Strait, western Washington and southwestern British Columbia, in March 1998 during the Seismic Hazards Investigation of Puget Sound (SHIPS). As part of a larger initiative to better understand lateral variations in crustal structure along the Cascadia margin, SHIPS participants acquired 1000 km of deep-crustal multichannel seismic-reflection profiles and 1300 km of wideangle airgun shot lines in this region using the R/V Thompson and R/V Tully. The Tully was used to record airgun shots fired by the Thompson in two different geometries: (1) expanding spread profiles (ESPs) and (2) constant offset profiles (COPs). Prior to this reflection survey, we deployed 257 Reftek and 15 ocean-bottom seismic recorders to record the airgun signals at far offsets. All data were recorded digitally on large-capacity hard disks. Although most of these stations only recorded the vertical component of motion, 95 of these seismographs recorded signals from an oriented 3-component seismometer. By recording signals generated by the Thompson's marine air gun array, operated in two differing geometries having a total volume of 110 and 79 liters (6730 and 4838 cu. in.), respectively, the arrays of wide-angle recorders were designed to (1) image the crustal structure, particularly in the vicinity of crustal faults and Cenozoic sedimentary basins, (2) determine the geometry of the Moho, and (3) image the subducting Gorda and Juan de Fuca plates. Nearly 33,300 air gun shots were recorded along several seismic lines. In this report, we illustrate the expanding spread profiles acquired using the Thompson and Tully, describe the land and ocean-bottom recording of the air gun signals, discuss the processing of the land recorder data into common receiver gathers, and illustrate the processed wide-angle seismic data collected using the Refteks and ocean-bottom seismometers. We also describe the format and content of the archival tapes containing the SEGY-formated, common-receiver gathers for the Reftek data. Data quality is variable but SHIPS appears to have successfully obtained useful data from almost all the stations deployed to record the airgun shots. Several interesting arrivals were observed: including refractions from the sedimentary basin fill in several basins, refractions from basement rocks forming the upper crust, Pg, refractions from the upper mantle, Pn, as well as reflections from within the crust and from the top of the upper mantle, PmP. We separately archived more than 30 local earthquakes recorded by the Reftek array during our deployment.

  16. Probabilistic seismic hazard assessment for the effect of vertical ground motions on seismic response of highway bridges

    NASA Astrophysics Data System (ADS)

    Yilmaz, Zeynep

    Typically, the vertical component of the ground motion is not considered explicitly in seismic design of bridges, but in some cases the vertical component can have a significant effect on the structural response. The key question of when the vertical component should be incorporated in design is answered by the probabilistic seismic hazard assessment study incorporating the probabilistic seismic demand models and ground motion models. Nonlinear simulation models with varying configurations of an existing bridge in California were considered in the analytical study. The simulation models were subjected to the set of selected ground motions in two stages: at first, only horizontal components of the motion were applied; while in the second stage the structures were subjected to both horizontal and vertical components applied simultaneously and the ground motions that produced the largest adverse effects on the bridge system were identified. Moment demand in the mid-span and at the support of the longitudinal girder and the axial force demand in the column are found to be significantly affected by the vertical excitations. These response parameters can be modeled using simple ground motion parameters such as horizontal spectral acceleration and vertical spectral acceleration within 5% to 30% error margin depending on the type of the parameter and the period of the structure. For a complete hazard assessment, both of these ground motion parameters explaining the structural behavior should also be modeled. For the horizontal spectral acceleration, Abrahamson and Silva (2008) model was used within many available standard model. A new NGA vertical ground motion model consistent with the horizontal model was constructed. These models are combined in a vector probabilistic seismic hazard analyses. Series of hazard curves developed and presented for different locations in Bay Area for soil site conditions to provide a roadmap for the prediction of these features for future earthquakes. Findings from this study will contribute to the development of revised guidelines to address vertical ground motion effects, particularly in the near fault regions, in the seismic design of highway bridges.

  17. Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991-2007

    USGS Publications Warehouse

    Koper, K.D.; De Foy, B.; Benz, H.

    2009-01-01

    We analyze seismic noise recorded on the 18 short-period, vertical component seismometers of the Yellowknife Seismic Array (YKA). YKA has an aperture of 23 km and is sited on cratonic lithosphere in an area with low cultural noise. These properties make it ideal for studying natural seismic noise at periods of 1-3 s. We calculated frequency-wave number spectra in this band for over 6,000 time windows that were extracted once per day for 17 years (1991-2007). Slowness analysis reveals a rich variety of seismic phases originating from distinct source regions: Rg waves from the Great Slave Lake; Lg waves from the Atlantic, Pacific, and Arctic Oceans; and teleseismic P waves from the north Pacific and equatorial mid-Atlantic regions. The surface wave energy is generated along coastlines, while the body wave energy is generated at least in part in deep-water, pelagic regions. Surface waves tend to dominate at the longer periods and, just as in earthquake seismograms, Lg is the most prominent arrival. Although the periods we study are slightly shorter than the classic double-frequency microseismic band of 4-10 s, the noise at YKA has clear seasonal behavior that is consistent with the ocean wave climate in the Northern Hemisphere. The temporal variation of most of the noise sources can be well fit using just two Fourier components: yearly and biyearly terms that combine to give a fast rise in microseismic power from mid-June through mid-October, followed by a gradual decline. The exception is the Rg energy from the Great Slave Lake, which shows a sharp drop in noise power over a 2-week period in November as the lake freezes. The L g noise from the east has a small but statistically significant positive slope, perhaps implying increased ocean wave activity in the North Atlantic over the last 17 years. Copyright 2009 by the American Geophysical Union.

  18. Crustal anisotropy from Moho converted Ps wave splitting and geodynamic implications in Northeastern margin of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Wu, Q.; Zhang, R.

    2017-12-01

    Collision between Indian and Eurasian result in intense deformation and crustal shortening in the Tibetan Plateau. NE margin of Tibetan Plateau experienced complex deformation between Qilian orogen and its adjacent blocks, Alxa Block in the north and Ordos Block in the east. We focus on if there any evidences exist in the NE margin of Tibetan Plateau, which can support crustal channel flow model. China Earthquake Administration had deployed temporary seismic array which is called ChinaArray Phase Ⅱ, dense seismic stations covered NE margin of Tibetan Plateau. Seismic data recorded by 81 seismic stations is applied in this research. We calculated receiver functions with time-domain deconvolution. We selected RFs which have clear Ps phase both in radial and transverse components to measure Ps splitting owing to crustal anisotropy, and 130 pairs of anisotropy parameters of 51 seismic stations were obtained. We would like to discuss about dynamic mechanism of this area using crustal anisotropy associated with the result of SKS-splitting and surface constrains like GPS velocity. The result can be summarized as follows. The large scale of delay time imply that the crustal anisotropy mainly derives from middle to lower crust rather than upper crust. In the southeastern part of the research area, crustal anisotropy is well agree with the result computed form SKS-splitting and GPS velocity directions trending NWW-SEE or E-W direction. This result imply a vertically coherent deformation in the area as the directions of crustal anisotropy trend to be perpendicular to the direction of normal stress. In the middle and north part of the research area, the fast polarization direction of crustal anisotropy is NEE-SWW or E-W direction, parallels with direction of GPS velocity, but differ to the direction of the result of SKS-splitting. This result may imply that decoupled deformation in this area associated with middle to lower crustal flow.

  19. Long period seismic noise modulated by atmospheric tides

    NASA Astrophysics Data System (ADS)

    Custódio, Susana; Helffrich, George

    2016-04-01

    The amplitudes of long-period (LP) seismic noise often exhibit a daily modulation, which is particularly visible on data recorded by temporary stations and horizontal components. These daily variations of the LP noise have been associated with temperature fluctuations. Temperature has been suggested to affect the noise recorded by seismometers by means of thermal convection around the sensor or by causing thermally induced tilts. Recently, we observed a semi-diurnal (12.0 hr) modulation of LP seismic noise amplitudes in seismometers in Portugal, SW Europe. This modulation was associated with the variation of atmospheric pressure, the only environmental signal to display a dominant 12-hr periodicity (at some locations). In this presentation we will present an analysis of this semi-diurnal modulation of long-period seismic noise. We show that the modulation: 1) is not instrument dependent, being recorded in a variety of sensors; 2) is observed in stations in mainland Portugal, Madeira island (N Atlantic), Florida (USA) and Mozambique, where it is strongest; 3) is seen only at a minority of sites without a clear geographical association, thus appearing to be strongly site-dependent; 5) is stronger during the Summer than during the Winter; and 6) is more clearly seen on vertical components. We will use data from the Transportable Array (EarthScope, USA) to investigate the admittance between LP seismic noise variations and co-located atmospheric pressure measurements.

  20. Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Coughlin, M.; Mukund, N.; Harms, J.; Driggers, J.; Adhikari, R.; Mitra, S.

    2016-12-01

    Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings.

  1. A Centerless Circular Array Method: Extracting Maximal Information on Phase Velocities of Rayleigh Waves From Microtremor Records From a Simple Seismic Array

    NASA Astrophysics Data System (ADS)

    Cho, I.; Tada, T.; Shinozaki, Y.

    2005-12-01

    We have developed a Centerless Circular Array (CCA) method of microtremor exploration, an algorithm that enables to estimate phase velocities of Rayleigh waves by analyzing vertical-component records of microtremors that are obtained with an array of three or five seismic sensors placed around a circumference. Our CCA method shows a remarkably high performance in long-wavelength ranges because, unlike the frequency-wavenumber spectral method, our method does not resolve individual plane-wave components in the process of identifying phase velocities. Theoretical considerations predict that the resolving power of our CCA method in long-wavelength ranges depends upon the SN ratio, or the ratio of power of the propagating components to that of the non-propagating components (incoherent noise) contained in the records from the seismic array. The applicability of our CCA method to small-sized arrays on the order of several meters in radius has already been confirmed in our earlier work (Cho et al., 2004). We have deployed circular seismic arrays of different sizes at test sites in Japan where the underground structure is well documented through geophysical exploration, and have applied our CCA method to microtremor records to estimate phase velocities of Rayleigh waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. For arrays of 5, 25, 300 and 600 meters in radii, the estimated and model phase velocities demonstrated fine agreement within a broad wavelength range extending from a little larger than 3r (r: the array radius) up to at least 40r, 14r, 42r and 9r, respectively. This demonstrates the applicability of our CCA method to arrays on the order of several to several hundreds of meters in radii, and also illustrates, in a typical way, the markedly high performance of our CCA method in long-wavelength ranges. We have also invented a mathematical model that enables to evaluate the SN ratio in a given microtremor field, and have applied it to real data. Theory predicts that our CCA method underestimates the phase velocities when noise is present. Using the evaluated SN ratio and the phase velocity dispersion curve model, we have calculated the apparent values of phase velocities which theory expects should be obtained by our CCA method in long-wavelength ranges, and have confirmed that the outcome agreed very well with the phase velocities estimated from real data. This demonstrates that the mathematical assumptions, on which our CCA method relies, remains valid over a wide range of wavelengths which we are examining, and also implies that, even in the absence of a priori knowledge of the phase velocity dispersion curve, the SN ratio evaluated with our mathematical model could be used to identify the resolution limit of our CCA method in long-wavelength ranges. We have thus been able to demonstrate, on the basis of theoretical considerations and real data analysis, both the capabilities and limitations of our CCA method.

  2. Application of the H/V and SPAC Method to Estimate a 3D Shear Wave Velocity Model, in the City of Coatzacoalcos, Veracruz.

    NASA Astrophysics Data System (ADS)

    Morales, L. E. A. P.; Aguirre, J.; Vazquez Rosas, R.; Suarez, G.; Contreras Ruiz-Esparza, M. G.; Farraz, I.

    2014-12-01

    Methods that use seismic noise or microtremors have become very useful tools worldwide due to its low costs, the relative simplicity in collecting data, the fact that these are non-invasive methods hence there is no need to alter or even perforate the study site, and also these methods require a relatively simple analysis procedure. Nevertheless the geological structures estimated by this methods are assumed to be parallel, isotropic and homogeneous layers. Consequently precision of the estimated structure is lower than that from conventional seismic methods. In the light of these facts this study aimed towards searching a new way to interpret the results obtained from seismic noise methods. In this study, seven triangular SPAC (Aki, 1957) arrays were performed in the city of Coatzacoalcos, Veracruz, varying in sizes from 10 to 100 meters. From the autocorrelation between the stations of each array, a Rayleigh wave phase velocity dispersion curve was calculated. Such dispersion curve was used to obtain a S wave parallel layers velocity (VS) structure for the study site. Subsequently the horizontal to vertical ratio of the spectrum of microtremors H/V (Nogoshi and Igarashi, 1971; Nakamura, 1989, 2000) was calculated for each vertex of the SPAC triangular arrays, and from the H/V spectrum the fundamental frequency was estimated for each vertex. By using the H/V spectral ratio curves interpreted as a proxy to the Rayleigh wave ellipticity curve, a series of VS structures were inverted for each vertex of the SPAC array. Lastly each VS structure was employed to calculate a 3D velocity model, in which the exploration depth was approximately 100 meters, and had a velocity range in between 206 (m/s) to 920 (m/s). The 3D model revealed a thinning of the low velocity layers. This proved to be in good agreement with the variation of the fundamental frequencies observed at each vertex. With the previous kind of analysis a preliminary model can be obtained as a first approximation, so that more careful studies can be conducted to assess a detailed geological characterization of a specific site. The continuous development of the methods that use microtremors, create many areas of interest in the seismic engineering study field. This and other reasons are why these methods have acquired more presence all over the globe.

  3. Seismo-acoustic analysis of the near quarry blasts using Plostina small aperture array

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Stancu, Iulian; Ionescu, Constantin

    2013-04-01

    Seismic and acoustic signals are important to recognize different type of industrial blasting sources in order to discriminate between them and natural earthquakes. We have analyzed the seismic events listed in the Romanian catalogue (Romplus) for the time interval between 2011 and 2012, and occurred in the Dobrogea region, in order to determine detection seismo-acoustic signals of quarry blasts by Plostina array stations. Dobrogea is known as a seismic region characterized by crustal earthquakes with low magnitudes; at the same time, over 40 quarry mines are located in the area, being sources of blasts recorded both with the seismic and infrasound sensors of the Romanian Seismic Network. Plostina seismo-acoustic array, deployed in the central part of Romania, consists of 7 seismic sites (3C broad-band instruments and accelerometers) collocated with 7 infrasound instruments. The array is particularly used for the seismic monitoring of the local and regional events, as well as for the detection of infrasonic signals produced by various sources. Considering the characteristics of the infrasound sensors (frequency range, dynamic, sensibility), the array proved its efficiency in observing the signals produced by explosions, mine explosion and quarry blasts. The quarry mines included for this study cover distances of two hundreds of kilometers from the station and routinely generate explosions that are detected as seismic and infrasonic signals with Plostina array. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one, applied for the seismic signal identification, is based on array processing techniques (beamforming and frequency-wave number analysis), while the other one, which is used for infrasound detection and characterization, is the automatic detector DFX-PMCC (Progressive Multi-Channel Correlation Method). Infrasonic waves generated by quarry blasts have frequencies ranging from 0.05 Hz up to at least 6 Hz and amplitudes below 5 Pa. Seismic data analysis shows that the frequency range of the signals are above 2 Hz. Surface explosions such as quarry blasts are useful sources for checking detection and location efficiency, when seismic measurements are added. The process is crucial for discrimination purposes and for establishing of a set of ground-truth infrasound events. Ground truth information plays a key role in the interpretation of infrasound signals, by including near-field observations from industrial blasts.

  4. Seismic Velocity Structure of the Pacific Upper Mantle in the NoMelt Region from Finite-Frequency Traveltime Tomography

    NASA Astrophysics Data System (ADS)

    Hung, S. H.; Lin, P. Y.; Gaherty, J. B.; Russell, J. B.; Jin, G.; Collins, J. A.; Lizarralde, D.; Evans, R. L.; Hirth, G.

    2017-12-01

    Surface wave dispersion and magnetotelluric survey from the NoMelt Experiment conducted on 70 Ma central Pacific seafloor revealed an electrically resistive, high shear wave velocity lid of 80 km thick underlain by a non-highly conductive, low-velocity layer [Sarafian et al., 2015; Lin et al., 2016]. The vertical structure of the upper mantle consistent with these observational constraints suggests a plausible convection scenario, where the seismically fast, dehydrated lithosphere preserving very strong fossil spreading fabric moves at a constant plate speed over the hydrated, melt-free athenospheric mantle with the presence of either pressure-driven return flow or thermally-driven small scale circulation. To explore 3-D variations in compressional shear wave velocities related to the lithospheric and asthenospheric mantle dynamics, we employ a multichannel cross correlation method to measure relative traveltime residuals based on the vertical P and traverse S waveforms filtered at 10-33 s from telseismic earthquakes at epicentral distance between 30 and 98 degrees. The obtained P and S residuals show on average peak-to-peak variations of ±0.5 s and ±1 s, respectively, across the NoMelt OBS array. Particularly, the P residuals for most of the events display an asymmetrical pattern with respect to an axis oriented nearly N-S to NE-SW through the array. Preliminary ray-based P tomography results reveal similar asymmetric variations in the uppermost 100 km mantle. To verify the resulting structural features, we will further perform both the P and S traveltime tomography and resolution tests based on a multiscale finite-frequency approach which properly takes into account both the 3D off-path sensitivities of the measured residuals and data-adaptive resolution of the model.

  5. Vertical Cable Seismic Survey for SMS exploration

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hotoshi; Mizohata, Shigeharu

    2014-05-01

    The Vertical Cable Seismic (VCS) survey is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by sea-surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because the VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed it for the SMS survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We have been developing the VCS survey system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of these surveys are from 100m up to 2100 m. Through these experiments, our VCS data acquisition system has been also completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system is available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed a new approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In 2013, we have carried out the second VCS survey using the surface-towed high-voltage sparker and ocean bottom source in the Izena Cauldron, which is one of the most promising SMS areas around Japan. The positions of ocean bottom source estimated by this method are consistent with the VCS field records. The VCS data with the sparker have been processed with 3D PSTM. It gives the very high resolution 3D volume deeper than two hundred meters. Our VCS system has been demonstrated as a promising survey tool for the SMS exploration.

  6. Analysis of Complex Marine Hazards on the Romanian Black Sea Shelf Using Combined Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Samoila, I. V.; Radulescu, V.; Moise, G.; Diaconu, A.; Radulescu, R.

    2017-12-01

    Combined geophysical acquisition technologies including High Resolution 2D Seismic (HR2D), Multi-Beam Echo-Sounding (MBES), Sub-Bottom Profiling (SBP) and Magnetometry were used in the Western Black Sea (offshore Romania) to identify possible geohazards, such as gas escaping surface sediments and tectonic hazard areas up to 1 km below the seafloor. The National Project was funded by the Research and Innovation Ministry of Romania, and has taken place over 1.5 years with the purpose of creating risk maps for the surveyed pilot area. Using an array of geophysical methods and creating a workflow to identify geohazard susceptible areas on the Romanian Black Sea continental shelf is important and beneficial for future research projects. The SBP and MBES data show disturbed areas that can be interpreted as gas escapes on the surface of the seafloor, and some escapes were confirmed on the HR2D profiles. Shallow gas indicators like gas chimneys and acoustic blanking are usually delimited by vertical, sub-vertical and/or quasi-horizontal faults that mark possible hazard areas on shallow sedimentary sections. Interpreted seismic profiles show three main markers: one delimiting the Pliocene-Quaternary boundary and two for the Miocene (Upper and Lower). Vertical and quasi-horizontal faults are characteristic for the Upper Miocene, while the Lower Miocene has NW-SE horizontal faults. Faults and possible hazard areas were marked on seismic sections and were further correlated with the MBES, SBP, Magnetometry and previously recorded data, such as earthquake epicenters scattered offshore in the Western Black Sea. The main fault systems likely to cause those earthquakes also aid the migration of gas if the faults are not sealed. We observed that the gas escapes were correlated with faults described on the recent seismic profiles. Mapping hazard areas will have an important contribution to better understand the recent evolution of the Western Black Sea basin but also for projecting the future offshore infrastructures. The resulting correlations in the geophysical data allowed us to create a workflow that shows desirable results for this area, and can be applied to other interest areas successfully and cost effectively.

  7. Detection of small earthquakes with dense array data: example from the San Jacinto fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Meng, Haoran; Ben-Zion, Yehuda

    2018-01-01

    We present a technique to detect small earthquakes not included in standard catalogues using data from a dense seismic array. The technique is illustrated with continuous waveforms recorded in a test day by 1108 vertical geophones in a tight array on the San Jacinto fault zone. Waveforms are first stacked without time-shift in nine non-overlapping subarrays to increase the signal-to-noise ratio. The nine envelope functions of the stacked records are then multiplied with each other to suppress signals associated with sources affecting only some of the nine subarrays. Running a short-term moving average/long-term moving average (STA/LTA) detection algorithm on the product leads to 723 triggers in the test day. Using a local P-wave velocity model derived for the surface layer from Betsy gunshot data, 5 s long waveforms of all sensors around each STA/LTA trigger are beamformed for various incident directions. Of the 723 triggers, 220 are found to have localized energy sources and 103 of these are confirmed as earthquakes by verifying their observation at 4 or more stations of the regional seismic network. This demonstrates the general validity of the method and allows processing further the validated events using standard techniques. The number of validated events in the test day is >5 times larger than that in the standard catalogue. Using these events as templates can lead to additional detections of many more earthquakes.

  8. Results From a Borehole Seismometer Array I: Microseismicity at a Productive Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Shalev, E.; Malin, P.; Kaleikini, M.; Dahl, G.

    2008-12-01

    Borehole seismometer arrays have proven successful in both the exploration and monitoring of geothermal fields. Because the seismometers are located at depth, they are isolated from human noise and record microearthquakes with clearly identifiable seismic phases that can be used for event location. Further analysis of these events can be used to resolve earthquake clouds into identifiable faults. The local fault and dike structures in Puna, in southeastern Hawaii, are of interest both in terms of electricity production and volcanic hazard monitoring. The geothermal power plant at Puna has a 30MW capacity and is built on a section of the Kilauea Lower East Rift Zone where lava flows erupted as recently as 1955. In order to improve seismic monitoring in this area, we installed eight 3-component borehole seismometers. The instrument depths range from 24 to 210 m (80 to 690 ft); the shallower instruments have 2 Hz geophones and the deepest have 4.5 Hz geophones. The seismometers are located at the vertices of two rhombs, 2 km wide x 4 km long and 4 km wide x 8 km long, both centered at the power plant. Since June 2006, we have located >4500 earthquakes; P- and S-wave arrivals were hand picked and events located using Hypoinverse-2000. Most of the earthquakes occurred at depths between 2.5 and 3 km. The large majority of events were M-0.5 to M0.5; the Gutenberg-Richter b-value is 1.4, which is consistent with microearthquake swarms. Frequency analysis indicates a 7-day periodicity; a Schuster diagram confirms increased seismicity on a weekly cycle. The location, depth, and period of the microearthquakes suggest that power plant activity affects local seismicity. Southwest of the geothermal facility, up-rift towards the Kilauea summit, earthquakes were progressively deeper at greater distances. Depths also increased towards the south, which is consistent with the eastern extension of the south-dipping, east-striking Hilina fault system. To the northeast, down-rift of the array, there is a sudden cessation of seismicity not accounted for by known geologic structures. This borehole seismometer network is providing essential data for the detailed characterization of the Kilauea Lower East Rift Zone and the Puna geothermal field.

  9. High-resolution Teleseismic Tomography Reveals a Complex Lithospheric Structure Beneath the North Anatolian Fault

    NASA Astrophysics Data System (ADS)

    Papaleo, E.; Cornwell, D. G.; Rawlinson, N.

    2016-12-01

    We present high-resolution tomography images of a major active continental strike slip fault zone, the North Anatolian Fault (NAF) in northern Turkey. Historical seismic records show that the NAF, with a length of 1500 km and a current slip rate of 25 mm/yr, is capable of producing large magnitude earthquakes that have activated different segments of the fault in a westward progression towards the study region, where the devastating Izmit and Düzce events occurred in 1999. The NAF poses a major seismic hazard to the city of Istanbul, situated close to one of the two strands into which the fault splays east of the Sea of Marmara. In order to improve our understanding of the lower crust and upper mantle properties that influence fault dynamics throughout the seismic cycle, we constrain NAF structure across the Moho in unprecedented detail by applying teleseismic tomography to data recorded by an array of 70 temporary seismic stations deployed with 7 km spacing (Dense Array for North Anatolia, DANA). High quality recordings of teleseismic earthquakes combined with the dense nature of the array allow high-resolution (i.e. horizontal and vertical resolution of 8 and 15 km, respectively) 3D seismic imaging of the velocity structure beneath the NAF. The northern branch of the NAF coincides with an abrupt change between opposite polarity velocity anomalies and can be traced to at least Moho depths ( 36 km) with a width of ≤8 km. A similar pattern of antithetic anomalies occurs over a horizontal distance of 30-50 km below the Moho and may indicate a widening shear zone as it passes from the crust into the upper mantle. We find evidence for significant along-strike variation in NAF structure over distances of ≤20 km and interpret an east-to-west narrowing of upper mantle slow velocity anomalies (from 50 to 30 km) to represent laterally variable strain focussing within the lithosphere. Our observations are consistent with the notion that the NAF marks the boundary between compositionally distinct lithospheres with different tectonic histories and reactivates the pre-existing Intra-Pontide suture zone. We discuss our results in terms of the influence of lithosphere heterogeneity on the development and evolution of global continental strike-slip fault zones and assess the applicability of current shear zone deformation models.

  10. South-Central Tibetan Seismicity from HiCLIMB Seismic Array Data

    NASA Astrophysics Data System (ADS)

    Carpenter, S.; Nabelek, J.; Braunmiller, J.

    2010-12-01

    The HiCLIMB broadband passive seismic experiment (2002-2005) operated 233 sites along a 800-km long north-south array extending from the Himalayan foreland into the Central Tibetan Plateau and a flanking 350x350 km lateral array in southern Tibet and eastern Nepal. We use data from the experiment’s second phase (June 2004 to August 2005), when stations operated in Tibet, to locate earthquakes in south-central Tibet, a region with no permanent seismic network where little is known about its seismicity. We used the Antelope software for automatic detection and arrival time picking, event-arrival association and event location. Requiring a low detection and event association threshold initially resulted in ~110,000 declared events. The large database size rendered manual inspection unfeasible and we developed automated post-processing modules to weed out spurious detections and erroneous phase and event associations, which stemmed, e.g., from multiple coincident earthquakes within the array or misplaced seismicity from the great 2004 Sumatra earthquake. The resulting database contains ~32,000 events within 5° distance from the closest station. We consider ~7,600 events defined by more than 30 P and S arrivals well located and discuss them here. Seismicity in the subset correlates well with mapped faults and structures seen on satellite imagery attesting to high location quality. This is confirmed by non-systematic, kilometer-scale differences between automatic and manual locations for selected events. Seismicity in south-central Tibet is intense north of the Yarlung-Tsangpo Suture. Almost 90% of events occurred in the Lhasa Terrane mainly along north-south trending rifts. Vigorous activity (>4,800 events) accompanied two M>6 earthquakes in the Payang Basin (84°E), ~100 km west of the linear array. The Tangra-Yum Co (86.5°E) and Pumqu-Xianza (88°E) rifts were very active (~1,000 events) without dominant main shocks indicating swarm like-behavior possibly related to shallow magmatic or geothermal activity. Seismicity in the Qiangtang Terrane accounts for less than 10% of activity; seismicity is distributed and, except for the Yibuk-Caka Rift (87°E), difficult to associate with known structures. Lower seismicity may be apparent and simply reflect a larger distance to the array. Fewer than 5% of events occurred south of the Yarlong Tsangpo Suture in the Tethyan Himalaya, the only region where in addition to shallow seismicity a significant number of deep (mantle) events was located. Hypocenter depth, particularly for shallow events, is usually not well constrained due to array geometry and large distances to closest sites. The nature of deep events inside the array, though, is resolved.

  11. Automated Sensor Tuning for Seismic Event Detection at a Carbon Capture, Utilization, and Storage Site, Farnsworth Unit, Ochiltree County, Texas

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Balch, R. S.; Knox, H. A.; Van Wijk, J. W.; Draelos, T.; Peterson, M. G.

    2016-12-01

    We present results (e.g. seismic detections and STA/LTA detection parameters) from a continuous downhole seismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project. Specifically, we evaluate data from a passive vertical monitoring array consisting of 16 levels of 3-component 15Hz geophones installed in the field and continuously recording since January 2014. This detection database is directly compared to ancillary data (i.e. wellbore pressure) to determine if there is any relationship between seismic observables and CO2 injection and pressure maintenance in the field. Of particular interest is detection of relatively low-amplitude signals constituting long-period long-duration (LPLD) events that may be associated with slow shear-slip analogous to low frequency tectonic tremor. While this category of seismic event provides great insight into dynamic behavior of the pressurized subsurface, it is inherently difficult to detect. To automatically detect seismic events using effective data processing parameters, an automated sensor tuning (AST) algorithm developed by Sandia National Laboratories is being utilized. AST exploits ideas from neuro-dynamic programming (reinforcement learning) to automatically self-tune and determine optimal detection parameter settings. AST adapts in near real-time to changing conditions and automatically self-tune a signal detector to identify (detect) only signals from events of interest, leading to a reduction in the number of missed legitimate event detections and the number of false event detections. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Additional support has been provided by site operator Chaparral Energy, L.L.C. and Schlumberger Carbon Services. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    NASA Astrophysics Data System (ADS)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  13. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    USGS Publications Warehouse

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  14. Ground Motion Analysis of Co-Located DAS and Seismometer Sensors

    NASA Astrophysics Data System (ADS)

    Wang, H. F.; Fratta, D.; Lord, N. E.; Lancelle, C.; Thurber, C. H.; Zeng, X.; Parker, L.; Chalari, A.; Miller, D.; Feigl, K. L.; Team, P.

    2016-12-01

    The PoroTomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench and 400-meters in a borehole at Brady Hot Springs, Nevada in March 2016 together with an array of 246, three-component geophones. The seismic sensors occupied a natural laboratory 1500 x 500 x 400 meters overlying the Brady geothermal field. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100-meters in length and geophones were spaced at approximately 50-m intervals. In several line segments, geophones were co-located within one meter of the DAS cable. Both DAS and the conventional geophones recorded continuously over 15 days. A large Vibroseis truck (T-Rex) provided the seismic source at approximately 250 locations outside and within the array. The Vibroseis protocol called for excitation in one vertical and two orthogonal horizontal directions at each location. For each mode, three, 5-to-80-Hz upsweeps were made over 20 seconds. In addition, a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km away. Several DAS line segments with co-located geophone stations were used to test relationships between the strain rate recorded by DAS and ground velocity recorded by the geophones.

  15. Shear wave velocities in the upper mantle of the Western Alps: new constraints using array analysis of seismic surface waves

    NASA Astrophysics Data System (ADS)

    Lyu, Chao; Pedersen, Helle A.; Paul, Anne; Zhao, Liang; Solarino, Stefano

    2017-07-01

    It remains challenging to obtain absolute shear wave velocities of heterogeneities of small lateral extension in the uppermost mantle. This study presents a cross-section of Vs across the strongly heterogeneous 3-D structure of the western European Alps, based on array analysis of data from 92 broad-band seismic stations from the CIFALPS experiment and from permanent networks in France and Italy. Half of the stations were located along a dense sublinear array. Using a combination of these stations and off-profile stations, fundamental-mode Rayleigh wave dispersion curves were calculated using a combined frequency-time beamforming approach. We calculated dispersion curves for seven arrays of approximately 100 km aperture and 14 arrays of approximately 50 km aperture, the latter with the aim of obtaining a 2-D vertical cross-section of Vs beneath the western Alps. The dispersion curves were inverted for Vs(z), with crustal interfaces imposed from a previous receiver function study. The array approach proved feasible, as Vs(z) from independent arrays vary smoothly across the profile length. Results from the seven large arrays show that the shear velocity of the upper mantle beneath the European plate is overall low compared to AK135 with the lowest velocities in the internal part of the western Alps, and higher velocities east of the Alps beneath the Po plain. The 2-D Vs model is coherent with (i) a ∼100 km thick eastward-dipping European lithosphere west of the Alps, (ii) very high velocities beneath the Po plain, coherent with the presence of the Alpine (European) slab and (iii) a narrow low-velocity anomaly beneath the core of the western Alps (from the Briançonnais to the Dora Maira massif), and approximately colocated with a similar anomaly observed in a recent teleseismic P-wave tomography. This intriguing anomaly is also supported by traveltime variations of subvertically propagating body waves from two teleseismic events that are approximately located on the profile great circle.

  16. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    NASA Astrophysics Data System (ADS)

    LI, B.; Ghosh, A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response and hazard assessment after destructive large earthquakes. Existing multiple global seismic arrays, when properly calibrated and used in combinations, provide a high resolution image of rupture of large earthquakes and spatiotemporal distribution of aftershocks.

  17. Analysis of seismic waves crossing the Santa Clara Valley using the three-component MUSIQUE array algorithm

    NASA Astrophysics Data System (ADS)

    Hobiger, Manuel; Cornou, Cécile; Bard, Pierre-Yves; Le Bihan, Nicolas; Imperatori, Walter

    2016-10-01

    We introduce the MUSIQUE algorithm and apply it to seismic wavefield recordings in California. The algorithm is designed to analyse seismic signals recorded by arrays of three-component seismic sensors. It is based on the MUSIC and the quaternion-MUSIC algorithms. In a first step, the MUSIC algorithm is applied in order to estimate the backazimuth and velocity of incident seismic waves and to discriminate between Love and possible Rayleigh waves. In a second step, the polarization parameters of possible Rayleigh waves are analysed using quaternion-MUSIC, distinguishing retrograde and prograde Rayleigh waves and determining their ellipticity. In this study, we apply the MUSIQUE algorithm to seismic wavefield recordings of the San Jose Dense Seismic Array. This array has been installed in 1999 in the Evergreen Basin, a sedimentary basin in the Eastern Santa Clara Valley. The analysis includes 22 regional earthquakes with epicentres between 40 and 600 km distant from the array and covering different backazimuths with respect to the array. The azimuthal distribution and the energy partition of the different surface wave types are analysed. Love waves dominate the wavefield for the vast majority of the events. For close events in the north, the wavefield is dominated by the first harmonic mode of Love waves, for farther events, the fundamental mode dominates. The energy distribution is different for earthquakes occurring northwest and southeast of the array. In both cases, the waves crossing the array are mostly arriving from the respective hemicycle. However, scattered Love waves arriving from the south can be seen for all earthquakes. Combining the information of all events, it is possible to retrieve the Love wave dispersion curves of the fundamental and the first harmonic mode. The particle motion of the fundamental mode of Rayleigh waves is retrograde and for the first harmonic mode, it is prograde. For both modes, we can also retrieve dispersion and ellipticity curves. Wave motion simulations for two earthquakes are in good agreement with the real data results and confirm the identification of the wave scattering formations to the south of the array, which generate the scattered Love waves visible for all earthquakes.

  18. 4-D permafrost thaw observations from ambient road traffic noise and a very dense distributed fiber optic sensing array

    NASA Astrophysics Data System (ADS)

    Lindsey, N.; Dou, S.; Martin, E. R.; Wagner, A. M.; Ajo Franklin, J. B.

    2017-12-01

    How does frozen soil thaw? The answer to this question affects hydrology, ecology, climate, and human infrastructure. We are using the local ambient noise field from a road recorded on a distributed fiber optic acoustic sensing (DAS) array to monitor the evolution in seismic parameters related to the top-down permafrost thaw process in the upper 10 m. Our field experiment demonstrates the advantages of "Large N" ambient noise studies using DAS, particularly to probe near surface critical zone dynamics. Over 60 days beginning in August 2016, we made continuous seismic recordings with a >4000 channel trenched fiber optic DAS dataset above a controlled permafrost warming demonstration experiment in Fairbanks, AK. The warming experiment accelerated the state of permafrost degradation by approximately two decades in a small 15 m x 20 m area, deepening the permafrost table from 4 m to 5.5 m. Continuous seismic DAS recording of high frequency surface waves (5-30 Hz) generated by vehicles traveling along a nearby road enables our investigation of hypothesized shear wave speed and attenuation changes, which lab measurements suggest may result from decreasing shear modulus and increasing saturation. We develop daily auto- and crosscorrelation function estimates using combinations of horizontal inline, collinear, and crossline DAS sensor orientations and vertical component geophone data, and then invert for maps of Love and Rayleigh wave speed that are sensitive to the upper 30 m. Many issues related to the accuracy, stability, and repeatability of the recovered empirical Green's tensor, as well as the sensitivity of the DAS sensor network will be considered.

  19. High-resolution imaging of the low velocity layer in Alaskan subduction zone with scattered waves and interferometry

    NASA Astrophysics Data System (ADS)

    Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.

    2017-12-01

    The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.

  20. Deep Structures of The Angola Margin

    NASA Astrophysics Data System (ADS)

    Moulin, M.; Contrucci, I.; Olivet, J.-L.; Aslanian, D.; Géli, L.; Sibuet, J.-C.

    1 Ifremer Centre de Brest, DRO/Géosciences Marines, B.P. 70, 29280 Plouzané cedex (France) mmoulin@ifremer.fr/Fax : 33 2 98 22 45 49 2 Université de Bretagne Occidentale, Institut Universitaire Europeen de la Mer, Place Nicolas Copernic, 29280 Plouzane (France) 3 Total Fina Elf, DGEP/GSR/PN -GEOLOGIE, 2,place de la Coupole-La Defense 6, 92078 Paris la Defense Cedex Deep reflection and refraction seismic data were collected in April 2000 on the West African margin, offshore Angola, within the framework of the Zaiango Joint Project, conducted by Ifremer and Total Fina Elf Production. Vertical multichannel reflection seismic data generated by a « single-bubble » air gun array array (Avedik et al., 1993) were recorded on a 4.5 km long, digital streamer, while refraction and wide angle reflection seismic data were acquired on OBSs (Ocean Bottom Seismometers). Despite the complexity of the margin (5 s TWT of sediment, salt tectonics), the combination of seismic reflection and refraction methods results in an image and a velocity model of the ground structures below the Aptian salt layer. Three large seismic units appear in the reflection seismic section from the deep part on the margin under the base of salt. The upper seismic unit is layered with reflectors parallel to the base of the salt ; it represents unstructured sediments, filling a basin. The middle unit is seismically transparent. The lower unit is characterized by highly energetic reflectors. According to the OBS refraction data, these two units correspond to the continental crust and the base of the high energetic unit corresponds to the Moho. The margin appears to be divided in 3 domains, from east to west : i) a domain with an unthinned, 30 km thick, continental crust ; ii) a domain located between the hinge line and the foot of the continental slope, where the crust thins sharply, from 30 km to less than 7 km, this domain is underlain by an anormal layer with velocities comprising between 7,2 and 7,4 km/s. The maximum thickness of this layer is located where the crust shows the strongest thinning at the foot of the continental slope ; and iii) a transitional domain, 160 km wide, with an average crustal thickness of 6 km. Moreover, no tilted blocks nor detachment faults are observed on the reflection seismic sections. The consequences of these observations on the models of crustal thinning classically used in the litterature are examined. Avedik, F., V. Renard, J-P. Allenou, B. Morvan, "Single bubble" air gun for deep exploration, Geophysics, 58, 366-382, 1993.

  1. Geophysical Monitoring at the CO2SINK Site: Combining Seismic and Geoelectric Data

    NASA Astrophysics Data System (ADS)

    Giese, R.; Lüth, S.; Cosma, C.; Juhlin, C.; Kiessling, D.; Schütt, H.; Schöbel, B.; Schmidt-Hattenberger, C.; Schilling, F.; Co2SINK Group

    2009-04-01

    The CO2SINK project at the German town of Ketzin (near Berlin), is aimed at a pilot storage of CO2, and at developing and testing efficient integrated monitoring procedures (physical, chemical, and biological observations) for assessing the processes triggered within the reservoir by a long term injection operation. In particular, geophysical methods as seismic and geoelectric measurements have delivered the structural framework, and they enable to observe the reaction of the reservoir and the caprock to CO2 propagation at locations which are not accessible for direct observations. We report on the seismic monitoring program of the CO2SINK project which comprises baseline and repeat observations at different scales in time and space, combined with comprehensive geoelectrical monitoring performed in the Ketzin wells and on the surface. The main objectives of the 3D seismic survey (carried out in spring 2005) were to provide the structural model around the location of the Ketzin wells, to verify earlier geologic interpretations of structure based on vintage 2D seismic and borehole data, as well as providing a baseline for future seismic surveys. The uppermost 1000 m are well imaged and show an anticlinal structure with an east-west striking central graben on its top. The 3D baseline survey was extended by VSP (vertical seismic profiling), MSP (moving source profiling) on 7 profiles, and crosshole tomographic measurements. 2D "star" measurements were carried out on the 7 MSP profiles in order to tie-in the down-hole surveys with the 3D baseline survey. These measurements provide enhanced resolution in time (faster and more cost effective than a full 3D survey) and space (higher source and receiver frequencies). Three crosshole measurements were performed, one baseline survey in May 2008, and two repeats in July and August 2008, respectively. A third crosshole repeat is planned for a later stage in the project when a steady state situation has been reached in the reservoir between the two observation boreholes Ktzi 200 and Ktzi 202. The interpretation of the time lapse crosshole seismic measurements is still work in progress. A time lapse effect can be recognized on cross correlations of baseline and repeat data indicating that considering the full wave form of the recordings does have the potential to locate subtle changes in the seismic properties of the reservoir due to CO2 injection. In addition, we show the results of the site-specific geoelectrical monitoring concept VERA (Vertical Electrical Resistivity Array), which covers electrical resistivity measurements in all three Ketzin wells. The array consists of 45 permanent electrodes (15 in each well), placed on the electrically insulated casings of the wells in the 600 m to 750 m depth range with a spacing of 10 m. This layout has been designed according to numerical forward modeling assuming electrical properties of pre- and post-injection scenarios. In addition to the geoelectric downhole measurement setup, surface to surface, and surface to downhole measurements are added in order to enlarge the area of observation between the three Ketzin wells to a hemispherical area (with a radius of about 1.5 km) around the wells. First results of the Electrical Resistivity Tomography (ERT) fit the expected reservoir behaviour. Higher resistivity values (presently up to factor 3 compared to other horizons) represent the intervals of the sandstone reservoir as preferred pathways of the CO2 propagation.

  2. Structure of the Suasselkä postglacial fault in northern Finland obtained by analysis of local events and ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; Dafne/Finland Working Group

    2017-04-01

    Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low-velocity region as a non-healed mechanically weak fault damage zone (FDZ) formed due to the last major earthquake that occurred after the last glaciation.

  3. Crustal seismic structure beneath the southwest Yunnan region from joint inversion of body-wave and surface wave data

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Thurber, C. H.; Zeng, X.; Zhang, L.

    2016-12-01

    Data from 71 broadband stations of a dense transportable array deployed in southwest Yunnan makes it possible to improve the resolution of the seismic model in this region. Continuous waveforms from 12 permanent stations of the China National Seismic Network were also used in this study. We utilized one-year continuous vertical component records to compute ambient noise cross-correlation functions (NCF). More than 3,000 NCFs were obtained and used to measure group velocities between 5 and 25 seconds with the frequency-time analysis method. This frequency band is most sensitive to crustal seismic structure, especially the upper and middle crust. The group velocity at short-period shows a clear azimuthal anisotropy with a north-south fast direction. The fast direction is consistent with previous seismic results revealed from shear wave splitting. More than 2,000 group velocity measurements were employed to invert the surface wave dispersion data for group velocity maps. We applied a finite difference forward modeling algorithm with an iterative inversion. A new body-wave and surface wave joint inversion algorithm (Fang et al., 2016) was utilized to improve the resolution of both P and S models. About 60,000 P wave and S wave arrivals from 1,780 local earthquakes, which occurred from May 2011 to December 2013 with magnitudes larger than 2.0, were manually picked. The new high-resolution seismic structure shows good consistency with local geological features, e.g. Tengchong Volcano. The earthquake locations also were refined with our new velocity model.

  4. SPREE: A Successful Seismic Array by a Failed Rift System; Analysis of Seismic Noise in the Seismically Quiet Mid-continent

    NASA Astrophysics Data System (ADS)

    Wolin, E.; van der Lee, S.; Bollmann, T. A.; Revenaugh, J.; Aleqabi, G. I.; Darbyshire, F. A.; Frederiksen, A. W.; Wiens, D.; Shore, P.

    2014-12-01

    The Superior Province Rifting Earthscope Experiment (SPREE) completed its field recording phase last fall with over 96% data return. While 60% of the stations returned data 100% of the time, only 9 performed below 90% and one station had questionable timing. One station was vandalized, another stolen. One station continued recording after its solar panels were pierced by a bullet, while another two stations survived a wildfire and a blow-down, respectively. The blow-down was an extreme wind event that felled hundreds of thousands of trees around the station. SPREE stations recorded many hundreds of earthquakes. Two regional earthquakes and over 400 teleseismic earthquakes had magnitudes over 5.5 and three, smaller local earthquakes had magnitudes over 2.5. We have calculated power spectral estimates between 0.1-1000 s period for the ~2.5-year lifespan of all 82 SPREE stations. Vertical channels performed quite well across the entire frequency range, falling well below the high noise model of Peterson (1993) and usually within 10-15 dB of nearby Transportable Array stations. SPREE stations' horizontal components suffer from long-period (> 30 s) noise. This noise is quietest at night and becomes up to 30 dB noisier during the day in the summer months. We explore possible causes of this variation, including thermal and atmospheric pressure effects. One possibility is that stations are insulated by snow during the winter, reducing temperature variations within the vault. Spring snowmelt creates instability at many of the SPREE stations, evidenced by frequent recenterings and enhanced long-period noise. For all channels, power in the microseismic band (4-16 s) is strongest in the winter, corresponding to storm season in the Northern Hemisphere, and approximately 20 dB weaker during the summer. The power spectrum and temporal variation of microseismic energy is consistent across the entire SPREE array.

  5. Discriminating different type waves from pressure and ground motion observation in the seafloor by DONET cabled observation network.

    NASA Astrophysics Data System (ADS)

    Araki, E.; Kawaguchi, K.; Kaneda, Y.

    2011-12-01

    We developed and deployed seafloor cabled observatory called "Dense Ocean-floor Network for Earthquake and Tsunamis (DONET)" in the Nankai Trough, south of Japan. The main purpose of the DONET network is to observe large earthquake such as Tonankai earthquake in the deployed seafloor and associate Tsunamis in real-time to help disaster mitigation, and as well to monitor inter-seismic crustal activities such as micro earthquakes, very low frequency earthquakes, and slower crustal deformation. In each DONET seafloor observatory, high-sensitive broadband set of instruments for seismic and seafloor pressure monitoring, consisted from Guralp CMG3T broadband seismometer, Metrozet TSA100S accelerometer, Paroscientific 8B7000-2 pressure gauge, a deep-sea differential pressure gauge, a hydrophone, and a seawater thermometer, are installed. The density of seafloor observatories are 20 observatories distributed in 15-30 km interval which is optimized for monitoring of events in the plate boundary beneath the network. DONET may be regarded as a large-scale, high sensitive high density seismic array for monitoring teleseismic events in the Philippine Sea and the Pacific Ocean. The DONET seafloor observatories are situated in wide range of seafloor depth between 1800m and 4500m, from the seafloor basin about 50 km off Japanese Island through the slope of accerecionary prism to the deep trench axis 150 km off the coast, that may also regarded as a vertical array in the 4.5km thick ocean. This variation of depths helps identify T-phases from the array record. In data analysis, it is necessary to identify propagation mode of each observed wave which may often be mixed together. In our design of DONET observation system, we took care to help identification of seismic phase by obtaining both ground motion and seafloor pressure in the same location. This is simply achieved by combining seafloor pressure gauges and seismometer in a single observatory package, but care was taken to observe both in the similar level of sensitivity and dynamic range in wide frequencies from near DC to over 100 Hz. In the case of DONET, the broadband seismometer and the differential pressure gauge have similar level of sensitivity in 0.005 - 10 Hz, and similarly the accelerometer and the hydrophone cover between 1-100Hz, in total covering most frequencies of our interest, 0.005 Hz to 100 Hz. With both ground motion and seafloor pressure measurement, we may distinguish types of waves relatively easily, and it is also possible to filter particular types of waves from the array dataset to help our data analysis. For example, it has been commonly practiced to distinguish up-going and down-going seismic phases from pressure and ground motion, but this is relatively difficult only with sparse seismometer array. This technique may also be applied to correct teleseismic record with sea surface reflection in receiver function analysis for exploring deep crustal structure.

  6. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardage, Bob A.; DeAngelo, Michael V.; Ermolaeva, Elena

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sedimentmore » were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.« less

  7. Development of guidelines for incorporation of vertical ground motion effects in seismic design of highway bridges.

    DOT National Transportation Integrated Search

    2008-05-01

    This study was undertaken with the objective of assessing the current provisions in SDC-2006 for incorporating : vertical effects of ground motions in seismic evaluation and design of ordinary highway bridges. A : comprehensive series of simulations ...

  8. A 80 OBS and 30 Land 3-component seismometers array encompassing the 280 km segment of the Lesser Antilles subduction megathrust seismogenic zone: view of current seismicity

    NASA Astrophysics Data System (ADS)

    Laigle, Mireille; Sapin, Martine; Ruiz, Mario; Diaz, Jordi; Kissling, Edi; Charvis, Philippe; Flueh, Ernst; Hirn, Alfred

    2010-05-01

    An extensive onshore and offshore seismic station array in the Lesser Antilles subduction zone allows to monitor microearthquake activity for a period of 4 months in a region previously outside of reach for detailed observation. Such a network has been possible thanks to a cluster of 3 seismic surveys (TRAIL - F/S Merian, SISMANTILLESII - N/O Atalante, and OBSANTILLES - N/O Antea) for deploying and recovering the instruments from several pools (Geoazur, INSU-IPGP, IFM-GEOMAR, AWI ). It has been followed by an additional deployment of the 28 GeoAzur OBSs (OBSANTILLES - N/O Antea) during 5 months in the south-western half. These operations have been carried out for the seismic investigation of the Antilles megathrust seismogenic zone in the framework of the THALES WAS RIGHT european project, and with also the financial support of the french ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI) and by the EU SALVADOR Programme of IFM-GEOMAR. Onshore, 30 3-components land stations (CSIC Barcelone, IPG Paris, INSU-RLBM and -LITHOSCOPE) have been temporarily deployed. The deep seismic structure of the whole area has been investigated during these seismic surveys by wide-angle reflection and refraction seismics recorded by these instruments as well as multi-channel reflection seismic imaging (MCS) along a dense grid of crossing profiles at the OBS positions providing excellent velocity information for the upper plate. Both the location and the interpretation of the recorded earthquake activity require constraints on the deep seismic structure, which will be discussed with respect to the 3D geometry of the interplate boundary and oceanic Moho, as well as those of the forearc basement and Moho. Preliminary locations have been obtained within a simple 1D velocity model by taking into account corrections for the variable thickness of the mud- and sediments layers beneath each OBS. The latter are estimated for both P- and S-waves to compensate for the huge structural heterogeneity on the arrival times and their effects will be discussed in map and along vertical cross-sections aligned with the seismic profiles. A first order result is that the previously unsampled seaward region remains aseismic through the whole period of observation. Another main result, at least in a model not yet accounting for deep structural heterogeneity, is that the seismicity is principally located deeper than the contact between the forearc crust and the subducting oceanic crust as derived from the refraction-reflection approaches in the general project, and in both plates. Data are being prepared for a joint inversion of earthquake locations, shot first arrival times and 3D heterogeneity.

  9. Improved Phase Characterization of Far-Regional Body Wave Arrivals in Central Asia

    DTIC Science & Technology

    2009-09-30

    array processing techniques. The regional seismic arrays that have been built in the last fifteen years should be a rich data source for the study of...far-regional phase behavior. The arrays are composed of high-quality borehole seismometers that make high fidelity, low-noise recordings. However...that propagate from the different seismic regions of South-Central Asia, utilizing recordings from the Makanchi (MKAR) and Karatau (KKAR) arrays in

  10. Complex Rayleigh Waves Produced by Shallow Sedimentary Basins and their Potential Effects on Mid-Rise Buildings

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.

    2017-12-01

    Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of these.

  11. Excitation of seismic waves by a tornado

    NASA Astrophysics Data System (ADS)

    Valovcin, A.; Tanimoto, T.; Twardzik, C.

    2016-12-01

    Tornadoes are among the most common natural disasters to occur in the United States. Various methods are currently used in tornado forecasting, including surface weather stations, weather balloons and satellite and Doppler radar. These methods work for detecting possible locations of tornadoes and funnel clouds, but knowing when a tornado has touched down still strongly relies on reports from spotters. Studying tornadoes seismically offers an opportunity to know when a tornado has touched down without requiring an eyewitness report. With the installation of Earthscope's Transportable Array (TA), there have been an increased number of tornadoes that have come within close range of seismometers. We have identified seismic signals corresponding to three tornadoes that occurred in 2011 in the central US. These signals were recorded by the TA station closest to each of the tornado tracks. For each tornado, the amplitudes of the seismic signals increase when the storm is in contact with the ground, and continue until the tornado lifts off some time later. This occurs at both high and low frequencies. In this study we will model the seismic signal generated by a tornado at low frequencies (below 0.1 Hz). We will begin by modeling the signal from the Joplin tornado, an EF5 rated tornado which occurred in Missouri on May 22, 2011. By approximating the tornado as a vertical force, we model the generated signal as the tornado moves along its track and changes in strength. By modeling the seismic waveform generated by a tornado, we can better understand the seismic-excitation process. It could also provide a way to quantitatively compare tornadoes. Additional tornadoes to model include the Calumet-El Reno-Piedmont-Guthrie (CEPG) and Chickasa-Blanchard-Newcastle (CBN) tornadoes, both of which occurred on May 24, 2011 in Oklahoma.

  12. Acquisition and deconvolution of seismic signals by different methods to perform direct ground-force measurements

    NASA Astrophysics Data System (ADS)

    Poletto, Flavio; Schleifer, Andrea; Zgauc, Franco; Meneghini, Fabio; Petronio, Lorenzo

    2016-12-01

    We present the results of a novel borehole-seismic experiment in which we used different types of onshore-transient-impulsive and non-impulsive-surface sources together with direct ground-force recordings. The ground-force signals were obtained by baseplate load cells located beneath the sources, and by buried soil-stress sensors installed in the very shallow-subsurface together with accelerometers. The aim was to characterize the source's emission by its complex impedance, function of the near-field vibrations and soil stress components, and above all to obtain appropriate deconvolution operators to remove the signature of the sources in the far-field seismic signals. The data analysis shows the differences in the reference measurements utilized to deconvolve the source signature. As downgoing waves, we process the signals of vertical seismic profiles (VSP) recorded in the far-field approximation by an array of permanent geophones cemented at shallow-medium depth outside the casing of an instrumented well. We obtain a significant improvement in the waveform of the radiated seismic-vibrator signals deconvolved by ground force, similar to that of the seismograms generated by the impulsive sources, and demonstrates that the results obtained by different sources present low values in their repeatability norm. The comparison evidences the potentiality of the direct ground-force measurement approach to effectively remove the far-field source signature in VSP onshore data, and to increase the performance of permanent acquisition installations for time-lapse application purposes.

  13. The underground seismic array of Gran Sasso (UNDERSEIS), central Italy

    NASA Astrophysics Data System (ADS)

    Scarpa, R.; Muscente, R.; Tronca, F.; Fischione, C.; Rotella, P.; Abril, M.; Alguacil, G.; Martini, M.; de Cesare, W.

    2003-04-01

    Since early May, 2002, a small aperture seismic array has been installed in the underground Physics Laboratories of Gran Sasso, located near seismic active faults of central Apennines, Italy. This array is presently composed by 21 three-component short period seismic stations (Mark L4C-3D), with average distance 90 m and semi-circular aperture of 400 m x 600 m. It is intersecting a main seismogenic fault where the presence of slow earthquakes has been recently detected through two wide band geodetic laser interferometers. The underground Laboratories are shielded by a limestone rock layer having 1400 m thickness. Each seismometer is linked, through a 24 bits A/D board, to a set of 6 industrial PC via a serial RS-485 standard. The six PC transmit data to a server through an ethernet network. Time syncronization is provided by a Master Oscillator controlled by an atomic clock. Earthworm package is used for data selection and transmission. High quality data have been recorded since May 2002, including local and regional earthquakes. In particular the 31 October, 2002, Molise (Mw=5.8 earthquake) and its aftershocks have been recorded at this array. Array techniques such as polarisation and frequency-slowness analyses with the MUSIC noise algorithm indicate the high performance of this array, as compared to the national seismic network, for identifying the basic source parameters for earthquakes located at distance of few hundreds of km.

  14. Monitoring Fluid Flow in Fractured Carbonate Rocks Using Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Li, W.; Pyrak-Nolte, L. J.

    2008-12-01

    The physical properties of carbonate rock are strongly influenced by the rock fabric which depends on the depositional environment, diagenetic and tectonic processes. The most common form of heterogeneity is layering caused by a variation in porosity among layers and within layers. The variation in porosity among layers leads to anisotropic behavior in the hydraulic, mechanical and seismic properties of carbonate rocks. We present the results of a laboratory study to examine the effect of fabric-controlled layering on fluid flow and seismic wave propagation through intact and fractured carbonate rock. Experiments were performed on cubic samples of Austin Chalk Cordova Cream. Samples AC1, AC5 and AC6 are cubic samples that measure 100 mm on edge. The samples were sealed and contained three inlet and three outlet ports for fluid invasion experiments. Two orthogonal seismic arrays were used to record both compressional and shear wave transmission through intact and fractured samples. The arrays used piezoelectric contact transducers with a central frequency 1.0 MHz. Between the two arrays, sixteen sources and sixteen receivers were used. Seismic measurements were made on the samples as a function of stress and during fluid saturation. The location of the invading fluid front as a function of time was monitored by using the peak-to-peak amplitude of the transmitted signals. The front was assumed to be between a source-receiver pair when the signal amplitude decreased by 50% over the initial value. The hydraulic gradient was parallel and perpendicular to the layers for AC5 and AC6, respectively. Sample AC1 was fractured and flow ports were established on the edges of the fracture plane. The weakly directed fabric controlled the rate at which fluid flowed through the samples. From the seismic data on AC6, the fluid first spread vertically along a layer before flowing across the layers. For AC6, it took the fluid two and half hours to flow between the inlet and the outlet across the layers. However, for AC5, the water flowed quickly along the layers and crossed the entire sample in one and a half hours. From the seismic data on fractured sample AC1, the water initially took more than 15 hours to transverse the sample though portions of the fracture were invaded after two hours. No water was produced at the outlet over a 15 hour period. Upon inspection, chemical precipitation was observed along the fracture plane and fracture- matrix interaction controlled the saturation of the matrix. Seismic monitoring of the fluid-front during saturation indicates that fine bedding affects the hydraulic properties of the sample while geochemical interactions in fractures affect fracture-matrix communication. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DEFG02-97ER14785 08) and by Exxon Mobil Upstream Research Company.

  15. SeisCORK Engineering Design Study

    DTIC Science & Technology

    2006-05-01

    Stephen, R. A., et al. (1994a), The seafloor borehole array seismic system (SEABASS) and VLF ambient noise, Marine Geophysical Researches, 16, 243...286. Stephen, R. A., et al. (1994b), The Seafloor Borehole Array Seismic System (SEABASS) and VLF Ambient Noise, Marine Geophysical Researches, 16, 243...Contents Executive Summary 4 Introduction 5 General Science Goals and Justification for Borehole Seismology in the Seafloor 6 Validating Surface Seismic

  16. Detecting Noisy Events Using Waveform Cross-Correlation at Superarrays of Seismic Stations

    NASA Astrophysics Data System (ADS)

    von Seggern, D. H.; Tibuleac, I. M.

    2007-12-01

    Cross-correlation using master events, followed by stacking of the correlation series, has been shown to dramatically improve detection thresholds of small-to-medium seismic arrays. With the goal of lowering the detection threshold, determining relative magnitudes or moments, and characterizing sources by empirical Green's functions, we extend the cross-correlation methodology to include "superarrays" of seismic stations. The superarray concept naturally brings further benefits over conventional arrays and single-stations due to the fact that many distances and azimuths can be sampled. This extension is straightforward given the ease with which regional or global data from various stations or arrays can be currently accessed and combined into a single database. We demonstrate the capability of superarrays to detect and analyze events which lie below the detection threshold. This is aided by applying an F-statistic detector to the superarray cross-correlation stack and its components. Our first example illustrates the use of a superarray consisting of the Southern Great Basin Digital Seismic Network, a small-aperture array (NVAR) in Mina, Nevada and the Earthscope Transportable Array to detect events in California-Nevada areas. In our second example, we use a combination of small-to-medium arrays and single stations to study the rupture of the great Sumatra earthquake of 26 December 2004 and to detect its early aftershocks. The location and times of "detected" events are confirmed using a frequency- wavenumber method at the small-to-medium arrays. We propose that ad hoc superarrays can be used in many studies where conventional approaches previously used only single arrays or groups of single stations. The availability of near-real-time data from many networks and of archived data from, for instance, IRIS makes possible the easy assembly of superarrays. Furthermore, the continued improvement of seismic data availability and the continued growth in the number of world-wide seismic sensors will increasingly make superarrays an attractive choice for many studies.

  17. Performance of 3-Component Nodes in the IRIS Community Wavefield Demonstration Experiment

    NASA Astrophysics Data System (ADS)

    Sweet, J. R.; Anderson, K. R.; Woodward, R.

    2017-12-01

    In June 2016, a field crew of 50 students, faculty, industry personnel, and IRIS staff deployed a total of 390 stations as part of a community seismic experiment above an active seismic lineament in north-central Oklahoma. The goals of the experiment were to test new instrumentation and deployment strategies that record the full seismic wavefield, and to advance understanding of earthquake source processes and regional lithospheric structure. The crew deployed 363 3-component, 5Hz Generation 2 Fairfield Z-Land nodes along three seismic lines and in a seven-layer nested gradiometer array. The seismic lines spanned a region 13 km long by 5 km wide. A broadband, 18 station "Golay 3x6" array with an aperture of approximately 5 km was deployed around the gradiometer and seismic lines to collect waveform data from local and regional events. In addition, 9 infrasound stations were deployed in order to capture and identify acoustic events that might be recorded by the seismic array. The variety and geometry of instrumentation deployed was intended to capture the full seismic wavefield generated by the local and regional seismicity beneath the array and the surrounding region. Additional details on the instrumentation and how it was deployed can be found by visiting our website www.iris.edu/wavefields. We present a detailed analysis of noise across the array—including station performance, as well as noise from nearby sources (wind turbines, automobiles, etc.). We report a clear reduction in noise for buried 3-component nodes compared to co-located surface nodes (see Figure). Using the IRIS DMC's ISPAQ client, we present a variety of metrics to evaluate the network's performance. We also present highlights from student projects at the recently-held IRIS advanced data processing short course, which focused on analyzing the wavefield dataset using array processing techniques.

  18. Goal-seismic computer programs in BASIC: Part I; Store, plot, and edit array data

    USGS Publications Warehouse

    Hasbrouck, Wilfred P.

    1979-01-01

    Processing of geophysical data taken with the U.S. Geological Survey's coal-seismic system is done with a desk-top, stand-alone computer. Programs for this computer are written in an extended BASIC language specially augmented for acceptance by the Tektronix 4051 Graphic System. This report presents five computer programs used to store, plot, and edit array data for the line, cross, and triangle arrays commonly employed in our coal-seismic investigations. * Use of brand names in this report is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey.

  19. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics

    PubMed Central

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°). PMID:25435833

  20. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.

    PubMed

    Kayes, Md Imrul; Leu, Paul W

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).

  1. A seismic search for the paleoshorelines of Lake Otero beneath White Sands Dune Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Wagner, P. F.; Reece, R.; Ewing, R. C.

    2014-12-01

    The Tularosa Basin, which now houses White Sands Dune Field, was once occupied by Pleistocene Lake Otero. Several paleoshorelines of Lake Otero have been identified throughout the basin by field surveys and remote sensing using digital elevation models. Up to four shorelines may be buried beneath White Sands Dune Field and it has been posited that the current upwind margin of White Sands coincides with a one of these shorelines. Here we employ a novel geophysical instrument and method to image the subsurface: the seismic land streamer. The land streamer utilizes weighted base plates and one-component vertical geophones in a towed array. With a seisgun acoustic source, we imaged in the Alkali Flats area near the upwind margin, one potential location of paleoshorelines, as well as the Film Lot closer to the center of the dune field. Surfaces in both locations are indurated gypsum playa, which made seismic imaging possible and successful. We collected one SW-NE trending seismic line at each location, which matches the dominant wind and dune migration directions. Based on initial data analysis we find some subsurface structure that may coincide with the paleo lake bed of Lake Otero. The successful demonstration of this new method provides the foundation for an expanded regional subsurface study to image the strata and structure of the Tularosa Basin.

  2. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    DOEpatents

    Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  3. Seismic surveys test on Innerhytta Pingo, Adventdalen, Svalbard Islands

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; Rossi, Giuliana; Petronio, Lorenzo; Accaino, Flavio; Romeo, Roberto; Wheeler, Walter

    2015-04-01

    We present the preliminary results of an experimental full-wave seismic survey test conducted on the Innnerhytta a Pingo, located in the Adventdalen, Svalbard Islands, Norway. Several seismic surveys were adopted in order to study a Pingo inner structure, from classical reflection/refraction arrays to seismic tomography and surface waves analysis. The aim of the project IMPERVIA, funded by Italian PNRA, was the evaluation of the permafrost characteristics beneath this open-system Pingo by the use of seismic investigation, evaluating the best practice in terms of logistic deployment. The survey was done in April-May 2014: we collected 3 seismic lines with different spacing between receivers (from 2.5m to 5m), for a total length of more than 1 km. We collected data with different vertical geophones (with natural frequency of 4.5 Hz and 14 Hz) as well as with a seismic snow-streamer. We tested different seismic sources (hammer, seismic gun, fire crackers and heavy weight drop), and we verified accurately geophone coupling in order to evaluate the different responses. In such peculiar conditions we noted as fire-crackers allow the best signal to noise ratio for refraction/reflection surveys. To ensure the best geophones coupling with the frozen soil, we dug snow pits, to remove the snow-cover effect. On the other hand, for the surface wave methods, the very high velocity of the permafrost strongly limits the generation of long wavelengths both with these explosive sources as with the common sledgehammer. The only source capable of generating low frequencies was a heavy drop weight system, which allows to analyze surface wave dispersion below 10 Hz. Preliminary data analysis results evidence marked velocity inversions and strong velocity contrasts in depth. The combined use of surface and body waves highlights the presence of a heterogeneous soil deposit level beneath a thick layer of permafrost. This is the level that hosts the water circulation from depth controlling the Pingo structure evolution.

  4. Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.

    2014-12-01

    Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.

  5. Using Building Seismic Strong-Motion Data to Quantify Urban Blast Pressure Fields

    NASA Astrophysics Data System (ADS)

    Massari, A.; Kohler, M. D.; Heaton, T. H.; Kanamori, H.; Hauksson, E.; Clayton, R. W.; Guy, R.; Bunn, J.; Chandy, M.

    2015-12-01

    The use of building vibrations to measure blast wave propagation in a city is examined in this case study. The Exxon Mobil Corp. oil refinery in Torrance, California experienced an explosion on February 18, 2015 causing ground shaking equivalent to a magnitude 1.9 earthquake. The impulse response for the source was computed from Southern California Seismic Network data for a multi-orthogonal force system with a value of 2×105 kN vertically downward. The pressure wave excited by the explosion traveled through the city of Los Angeles, and was detected by a dense accelerometer array in a 52-story building also in downtown Los Angeles 22.8 km from the explosion. The array is part of the Community Seismic Network (CSN) and consists of three-component class-C MEMs sensors located on each floor of the building. The detection was verified by the nearly simultaneous arrival times of acceleration pulses on multiple floors of the building, corresponding to an average wave speed near the speed of sound in air. The pressure wave peak magnitude from the air blast was determined using accelerometer data collected on every floor of the building coupled with the elastic response of the structure as a whole. . Making use of high-fidelity finite element modeling of the building validated by previous low-level seismicity and ambient noise data, a procedure is outlined for pressure wave detection and quantification on well instrumented buildings. This case study for a 52 story building, instrumented by the CSN, acts as a proxy for blast wave quantification in dense urban environments. This type of information can be used to understand the flow of blast waves through a cityscape as well as enhance procedures for estimating blast source magnitude. Better understanding of the propagation of pressure waves in urban environments will lead to the development of improved countermeasures in those environments.

  6. Upper crustal fault reactivation and the potential of triggered earthquakes on the Atacama Fault System, N-Chile

    NASA Astrophysics Data System (ADS)

    Victor, Pia; Ewiak, Oktawian; Thomas, Ziegenhagen; Monika, Sobiesiak; Bernd, Schurr; Gabriel, Gonzalez; Onno, Oncken

    2016-04-01

    The Atacama Fault System (AFS) is an active trench-parallel fault system, located in the forearc of N-Chile directly above the subduction zone interface. Due to its well-exposed position in the hyper arid forearc of N-Chile it is the perfect target to investigate the interaction between the deformation cycle in the overriding forearc and the subduction zone seismic cycle of the underlying megathrust. Although the AFS and large parts of the upper crust are devoid of any noteworthy seismicity, at least three M=7 earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. We apply a two-fold approach to explore fault activation and reactivation patterns through time and to investigate the triggering potential of upper crustal faults. 1) A new methodology using high-resolution topographic data allows us to investigate the number of past earthquakes for any given segment of the fault system as well as the amount of vertical displacement of the last increment. This provides us with a detailed dataset of past earthquake rupture of upper plate faults which is potentially linked to large subduction zone earthquakes. 2) The IPOC Creepmeter array (http://www.ipoc-network.org/index.php/observatory/creepmeter.html) provides us with high-resolution time series of fault displacement accumulation for 11 stations along the 4 most active branches of the AFS. This array monitors the displacement across the fault with 2 samples/min with a resolution of 1μm. Collocated seismometers record the seismicity at two of the creepmeters, whereas the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the fault do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip caused by local or remote earthquakes. The 2014 Mw=8.2 Pisagua Earthquake, located close to the creepmeter array, triggered large displacement events on all stations. Another event recorded on all stations was the 2010 Mw=8.8 Maule earthquake located 1500km south of the array. Exploring observations from both datasets, we can clearly state that triggering of upper crustal faults is observed for small-scale displacements. These findings allow us to speculate that the observed larger events in the past are likely being triggered events that require a critically prestressed condition of the target fault that is unclamped by stress changes triggered by large or potentially even small subduction zone earthquakes.

  7. Analysis and Modeling of the Wavefield Generated by Explosions at the San Andreas Fault Observatory at Depth

    DTIC Science & Technology

    2010-09-01

    method to ~ 4 Hz wave propagation using SAFOD borehole seismometers and the Parkfield Array Seismic Observatory (PASO) array (Thurber et al., 2004...limitations in mind, we apply our method to ~ 4 Hz wave propagation using SAFOD borehole seismometers and the Parkfield Array Seismic Observatory (PASO...Proposal No. BAA09-69 ABSTRACT Surface array and deep borehole recordings of chemical explosions in the near-source (0-20 km) region are studied to

  8. Cluster Computing For Real Time Seismic Array Analysis.

    NASA Astrophysics Data System (ADS)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by a pro- gram which reads data from disk files and send them to a remote host by using the Internet protocols.

  9. Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield

    USGS Publications Warehouse

    Hole, J.A.; Catchings, R.D.; St. Clair, K.C.; Rymer, M.J.; Okaya, D.A.; Carney, B.J.

    2001-01-01

    Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70° to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.

  10. Structure of Suasselkä Postglacial Fault in northern Finland obtained by analysis of ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Afonin, Nikita; Kozlovskaya, Elena

    2016-04-01

    Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011-May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate correspondent surface wave dispersion curves. After that S-wave velocity models were obtained as a result of dispersion curves inversion using Geopsy software. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low velocity region as a non-healed mechanically weak fault damage zone (FDZ) remained after the last major earthquake that occurred after the last glaciation. Seismic instruments for the DAFNE/FINLAND experiment were provided by the institute of Seismology of the University of Helsinki and by the Sodankylä Geophysical Observatory. The study was partly funded by Posiva Oy and Geological Survey of Finland. DAFNE/FINLAND Working Group: Ilmo Kukkonen Pekka Heikkinen Kari Komminaho Elena Kozlovskaya Riitta Hurskainen Tero Raita Hanna Silvennoinen

  11. Flexural-gravity Wave Attenuation in a Thick Ice Shelf

    NASA Astrophysics Data System (ADS)

    Stephen, R. A.; Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    A thirty-four station broadband seismic array was deployed on the Ross Ice Shelf, Antarctica from November 2014 to November 2017. Analyses indicate that phase speeds of infra-gravity wave and tsunami excitation in the 0.003 to 0.02 Hz band are 70 m/s, corresponding to the low frequency limit of flexural-gravity waves. Median spectral amplitudes in this band decay exponentially with distance from the shelf edge in a manner consistent with intrinsic attenuation. Seismic Q is typically 7-9, with an RMS amplitude decay of 0.04-0.05dB/km and an e-folding distance of 175-220 km. Amplitudes do not appear to drop crossing crevasse fields. Vertical and horizontal acceleration levels at stations on the floating ice shelf are 50 dB higher than those on grounded ice. Horizontal accelerations are about 15 dB higher than vertical accelerations. Median spectral levels at 0.003 Hz are within 6 dB for stations from 2 to 430 km from the shelf edge. In contrast, the levels drop by 90 dB at 0.02 Hz. Ocean gravity wave excitation has been proposed as a mechanism that can weaken ice shelves and potentially trigger disintegration events. These measurements indicate that the propensity for shelf weakening and disintegration decays exponentially with distance from the ice front for gravity waves in the 0.003 to 0.02Hz band.

  12. Studies of infrasound propagation using the USArray seismic network (Invited)

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.

    2010-12-01

    Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.

  13. The discrimination of man-made explosions from earthquakes using seismo-acoustic analysis in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Jeon, Jeong-Soo

    2010-05-01

    Korea Institute of Geoscience and Mineral Resources (KIGAM) operates an infrasound network consisting of seven seismo-acoustic arrays in South Korea. Development of the arrays began in 1999, partially in collaboration with Southern Methodist University, with the goal of detecting distant infrasound signals from natural and anthropogenic phenomena in and around the Korean Peninsula. The main operational purpose of this network is to discriminate man-made seismic events from seismicity including thousands of seismic events per year in the region. The man-made seismic events are major cause of error in estimating the natural seismicity, especially where the seismic activity is weak or moderate such as in the Korean Peninsula. In order to discriminate the man-made explosions from earthquakes, we have applied the seismo-acoustic analysis associating seismic and infrasonic signals generated from surface explosion. The observations of infrasound at multiple arrays made it possible to discriminate surface explosion, because small or moderate size earthquake is not sufficient to generate infrasound. Till now we have annually discriminated hundreds of seismic events in seismological catalog as surface explosions by the seismo-acoustic analysis. Besides of the surface explosions, the network also detected infrasound signals from other sources, such as bolide, typhoons, rocket launches, and underground nuclear test occurred in and around the Korean Peninsula. In this study, ten years of seismo-acoustic data are reviewed with recent infrasonic detection algorithm and association method that finally linked to the seismic monitoring system of the KIGAM to increase the detection rate of surface explosions. We present the long-term results of seismo-acoustic analysis, the detection capability of the multiple arrays, and implications for seismic source location. Since the seismo-acoustic analysis is proved as a definite method to discriminate surface explosion, the analysis will be continuously used for estimating natural seismicity and understanding infrasonic sources.

  14. Actively dewatering fluid-rich zones along the Costa Rica plate boundary fault

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J. W.; Ranero, C. R.; von Huene, R.

    2012-12-01

    New 3D seismic reflection data reveal distinct evidence for active dewatering above a 12 km wide segment of the plate boundary fault within the Costa Rica subduction zone NW of the Osa Peninsula. In the spring of 2011 we acquired a 11 x 55 km 3D seismic reflection data set on the R/V Langseth using four 6,000 m streamers and two 3,300 in3 airgun arrays to examine the structure of the Costa Rica margin from the trench into the seismogenic zone. We can trace the plate-boundary interface from the trench across our entire survey to where the plate-boundary thrust lies > 10 km beneath the margin shelf. Approximately 20 km landward of the trench beneath the mid slope and at the updip edge of the seismogenic zone, a 12 km wide zone of the plate-boundary interface has a distinctly higher-amplitude seismic reflection than deeper or shallower segments of the fault. Directly above and potentially directly connected with this zone are high-amplitude, reversed-polarity fault-plane reflections that extend through the margin wedge and into overlying slope sediment cover. Within the slope cover, high-amplitude reversed-polarity reflections are common within the network of closely-spaced nearly vertical normal faults and several broadly spaced, more gently dipping thrust faults. These faults appear to be directing fluids vertically toward the seafloor, where numerous seafloor fluid flow indicators, such as pockmarks, mounds and ridges, and slope failure features, are distinct in multibeam and backscatter images. There are distinctly fewer seafloor and subsurface fluid flow indicators both updip and downdip of this zone. We believe these fluids come from a 12 km wide fluid-rich segment of the plate-boundary interface that is likely overpressured and has relatively low shear stress.

  15. Seismotectonics and fault structure of the California Central Coast

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2010-01-01

    I present and interpret new earthquake relocations and focal mechanisms for the California Central Coast. The relocations improve upon catalog locations by using 3D seismic velocity models to account for lateral variations in structure and by using relative arrival times from waveform cross-correlation and double-difference methods to image seismicity features more sharply. Focal mechanisms are computed using ray tracing in the 3D velocity models. Seismicity alignments on the Hosgri fault confirm that it is vertical down to at least 12 km depth, and the focal mechanisms are consistent with right-lateral strike-slip motion on a vertical fault. A prominent, newly observed feature is an ~25 km long linear trend of seismicity running just offshore and parallel to the coastline in the region of Point Buchon, informally named the Shoreline fault. This seismicity trend is accompanied by a linear magnetic anomaly, and both the seismicity and the magnetic anomaly end where they obliquely meet the Hosgri fault. Focal mechanisms indicate that the Shoreline fault is a vertical strike-slip fault. Several seismicity lineations with vertical strike-slip mechanisms are observed in Estero Bay. Events greater than about 10 km depth in Estero Bay, however, exhibit reverse-faulting mechanisms, perhaps reflecting slip at the top of the remnant subducted slab. Strike-slip mechanisms are observed offshore along the Hosgri–San Simeon fault system and onshore along the West Huasna and Rinconada faults, while reverse mechanisms are generally confined to the region between these two systems. This suggests a model in which the reverse faulting is primarily due to restraining left-transfer of right-lateral slip.

  16. Strike-slip earthquakes can also be detected in the ionosphere

    NASA Astrophysics Data System (ADS)

    Astafyeva, Elvira; Rolland, Lucie M.; Sladen, Anthony

    2014-11-01

    It is generally assumed that co-seismic ionospheric disturbances are generated by large vertical static displacements of the ground during an earthquake. Consequently, it is expected that co-seismic ionospheric disturbances are only observable after earthquakes with a significant dip-slip component. Therefore, earthquakes dominated by strike-slip motion, i.e. with very little vertical co-seismic component, are not expected to generate ionospheric perturbations. In this work, we use total electron content (TEC) measurements from ground-based GNSS-receivers to study ionospheric response to six recent largest strike-slip earthquakes: the Mw7.8 Kunlun earthquake of 14 November 2001, the Mw8.1 Macquarie earthquake of 23 December 2004, the Sumatra earthquake doublet, Mw8.6 and Mw8.2, of 11 April 2012, the Mw7.7 Balochistan earthquake of 24 September 2013 and the Mw 7.7 Scotia Sea earthquake of 17 November 2013. We show that large strike-slip earthquakes generate large ionospheric perturbations of amplitude comparable with those induced by dip-slip earthquakes of equivalent magnitude. We consider that in the absence of significant vertical static co-seismic displacements of the ground, other seismological parameters (primarily the magnitude of co-seismic horizontal displacements, seismic fault dimensions, seismic slip) may contribute in generation of large-amplitude ionospheric perturbations.

  17. 3D shallow velocity model in the area of Pozzo Pitarrone, NE flank of Mt. Etna Volcano, by using SPAC array method.

    NASA Astrophysics Data System (ADS)

    Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio; Contrafatto, Danilo; Galluzzo, Danilo; Rapisarda, Salvatore

    2016-04-01

    In volcanic environment the propagation of seismic signals through the shallowest layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Therefore tracing a seismic ray from the recording site back to the source is a complex matter, with obvious implications for the source location. For this reason the knowledge of the shallow velocity structure may improve the location of shallow volcano-tectonic earthquakes and volcanic tremor, thus contributing to improve the monitoring of volcanic activity. This work focuses on the analysis of seismic noise and volcanic tremor recorded in 2014 by a temporary array installed around Pozzo Pitarrone, NE flank of Mt. Etna. Several methods permit a reliable estimation of the shear wave velocity in the shallowest layers through the analysis of stationary random wavefield like the seismic noise. We have applied the single station HVSR method and SPAC array method to seismic noise to investigate the local shallow structure. The inversion of dispersion curves produced a shear wave velocity model of the area reliable down to depth of about 130 m. We also applied the Beam Forming array method in the 0.5 Hz - 4 Hz frequency range to both seismic noise and volcanic tremor. The apparent velocity of coherent tremor signals fits quite well the dispersion curve estimated from the analysis of seismic noise, thus giving a further constrain on the estimated velocity model. Moreover, taking advantage of a borehole station installed at 130 m depth in the same area of the array, we obtained a direct estimate of the P-wave velocity by comparing the borehole recordings of local earthquakes with the same event recorded at surface. Further insight on the P-wave velocity in the upper 130 m layer comes from the surface reflected wave visible in some cases at the borehole station. From this analysis we obtained an average P-wave velocity of about 1.2 km/s, in good agreement with the shear wave velocity found from the analysis of seismic noise. To better constrain the inversion we used the HVSR computed at each array station, which also give a lateral extension to the final 3D velocity model. The obtained results indicate that site effects in the investigate area are quite homogeneous among the array stations.

  18. Armored umbilical apparatus for towing a marine seismic air gun sub array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrage, E.C.

    1985-06-25

    An armored umbilical and termination housing is disclosed for towing a sub-array of seismic air guns used in marine seismic surveying comprising a single air hose for supplying all the high pressure air to the individual air guns surrounded by all the electrical control cables needed to operate the air guns in the sub-array. Protective coatings are applied around the electrical control cables and stress members for carrying the load of towing the sub-array are incorporated within the umbilical. A termination housing is provided on the end of the umbilical for terminating the single air hose and all the electricalmore » control lines to common connectors so that individual electrical control lines and air hoses can run from the termination housing to each individual air gun in the sub-array. Air shut off valves are provided so that the high pressure air can be shut off to the individual air guns within the sub-array remotely from the survey vessel.« less

  19. Using Network Theory to Understand Seismic Noise in Dense Arrays

    NASA Astrophysics Data System (ADS)

    Riahi, N.; Gerstoft, P.

    2015-12-01

    Dense seismic arrays offer an opportunity to study anthropogenic seismic noise sources with unprecedented detail. Man-made sources typically have high frequency, low intensity, and propagate as surface waves. As a result attenuation restricts their measurable footprint to a small subset of sensors. Medium heterogeneities can further introduce wave front perturbations that limit processing based on travel time. We demonstrate a non-parametric technique that can reliably identify very local events within the array as a function of frequency and time without using travel-times. The approach estimates the non-zero support of the array covariance matrix and then uses network analysis tools to identify clusters of sensors that are sensing a common source. We verify the method on simulated data and then apply it to the Long Beach (CA) geophone array. The method exposes a helicopter traversing the array, oil production facilities with different characteristics, and the fact that noise sources near roads tend to be around 10-20 Hz.

  20. Aleutian Array of Arrays (A-cubed) to probe a broad spectrum of fault slip under the Aleutian Islands

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; LI, B.

    2016-12-01

    Alaska-Aleutian subduction zone is one of the most seismically active subduction zones in this planet. It is characterized by remarkable along-strike variations in seismic behavior, more than 50 active volcanoes, and presents a unique opportunity to serve as a natural laboratory to study subduction zone processes including fault dynamics. Yet details of the seismicity pattern, spatiotemporal distribution of slow earthquakes, nature of interaction between slow and fast earthquakes and their implication on the tectonic behavior remain unknown. We use a hybrid seismic network approach and install 3 mini seismic arrays and 5 stand-alone stations to simultaneously image subduction fault and nearby volcanic system (Makushin). The arrays and stations are strategically located in the Unalaska Island, where prolific tremor activity is detected and located by a solo pilot array in summer 2012. The hybrid network is operational between summer 2015 and 2016 in continuous mode. One of the three arrays starts in summer 2014 and provides additional data covering a longer time span. The pilot array in the Akutan Island recorded continuous seismic data for 2 months. An automatic beam-backprojection analysis detects almost daily tremor activity, with an average of more than an hour per day. We imaged two active sources separated by a tremor gap. The western source, right under the Unalaska Island shows the most prolific activity with a hint of steady migration. In addition, we are able to identify more than 10 families of low frequency earthquakes (LFEs) in this area. They are located within the tremor source area as imaged by the bean-backprojection technique. Application of a match filter technique reveals that intervals between LFE activities are shorter during tremor activity and longer during quiet time period. We expect to present new results from freshly obtained data. The experiment A-cubed is illuminating subduction zone processes under Unalaska Island in unprecedented detail.

  1. Seismo-volcano source localization with triaxial broad-band seismic array

    NASA Astrophysics Data System (ADS)

    Inza, L. A.; Mars, J. I.; Métaxian, J. P.; O'Brien, G. S.; Macedo, O.

    2011-10-01

    Seismo-volcano source localization is essential to improve our understanding of eruptive dynamics and of magmatic systems. The lack of clear seismic wave phases prohibits the use of classical location methods. Seismic antennas composed of one-component (1C) seismometers provide a good estimate of the backazimuth of the wavefield. The depth estimation, on the other hand, is difficult or impossible to determine. As in classical seismology, the use of three-component (3C) seismometers is now common in volcano studies. To determine the source location parameters (backazimuth and depth), we extend the 1C seismic antenna approach to 3Cs. This paper discusses a high-resolution location method using a 3C array survey (3C-MUSIC algorithm) with data from two seismic antennas installed on an andesitic volcano in Peru (Ubinas volcano). One of the main scientific questions related to the eruptive process of Ubinas volcano is the relationship between the magmatic explosions and long-period (LP) swarms. After introducing the 3C array theory, we evaluate the robustness of the location method on a full wavefield 3-D synthetic data set generated using a digital elevation model of Ubinas volcano and an homogeneous velocity model. Results show that the backazimuth determined using the 3C array has a smaller error than a 1C array. Only the 3C method allows the recovery of the source depths. Finally, we applied the 3C approach to two seismic events recorded in 2009. Crossing the estimated backazimuth and incidence angles, we find sources located 1000 ± 660 m and 3000 ± 730 m below the bottom of the active crater for the explosion and the LP event, respectively. Therefore, extending 1C arrays to 3C arrays in volcano monitoring allows a more accurate determination of the source epicentre and now an estimate for the depth.

  2. Static Corrections to Improve Seismic Monitoring of the North Korean Nuclear Test Site with Regional Arrays

    NASA Astrophysics Data System (ADS)

    Wilkins, N.; Wookey, J. M.; Selby, N. D.

    2017-12-01

    Seismology is an important part of the International Monitoring System (IMS) installed to detect, identify, and locate nuclear detonations in breach of the Comprehensive nuclear Test Ban Treaty (CTBT) prior to and after its entry into force. Seismic arrays in particular provide not only a means of detecting and locating underground nuclear explosions, but in discriminating them from naturally occurring earthquakes of similar magnitude. One potential discriminant is the amplitude ratio of high frequency (> 2 Hz) P waves to S waves (P/S) measured at regional distances (3 - 17 °). Accurate measurement of such discriminants, and the ability to detect low-magnitude seismicity from a suspicious event relies on high signal-to-noise ratio (SNR) data. A correction to the slowness vector of the incident seismic wavefield, and static corrections applied to the waveforms recorded at each receiver within the array can be shown to improve the SNR. We apply codes we have developed to calculate slowness-azimuth station corrections (SASCs) and static corrections to the arrival time and amplitude of the seismic waveform to seismic arrays regional to the DPRK nuclear test site at Punggye-ri, North Korea. We use the F-statistic to demonstrate the SNR improvement to data from the nuclear tests and other seismic events in the vicinity of the test site. We also make new measurements of P/S with the corrected waveforms and compare these with existing measurements.

  3. Evidence for non-self-similarity of microearthquakes recorded at a Taiwan borehole seismometer array

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Yu; Ma, Kuo-Fong; Kanamori, Hiroo; Song, Teh-Ru Alex; Lapusta, Nadia; Tsai, Victor C.

    2016-08-01

    We investigate the relationship between seismic moment M0 and source duration tw of microearthquakes by using high-quality seismic data recorded with a vertical borehole array installed in central Taiwan. We apply a waveform cross-correlation method to the three-component records and identify several event clusters with high waveform similarity, with event magnitudes ranging from 0.3 to 2.0. Three clusters—Clusters A, B and C—contain 11, 8 and 6 events with similar waveforms, respectively. To determine how M0 scales with tw, we remove path effects by using a path-averaged Q. The results indicate a nearly constant tw for events within each cluster, regardless of M0, with mean values of tw being 0.058, 0.056 and 0.034 s for Clusters A, B and C, respectively. Constant tw, independent of M0, violates the commonly used scaling relation {t_w} ∝ M_0^{1/3}. This constant duration may arise either because all events in a cluster are hosted on the same isolated seismogenic patch, or because the events are driven by external factors of constant duration, such as fluid injections into the fault zone. It may also be related to the earthquake nucleation size.

  4. Studies of the seismic coda using an earthquake cluster as a deeply buried seismograph array

    NASA Astrophysics Data System (ADS)

    Spudich, Paul; Bostwick, Todd

    1987-09-01

    Loosely speaking, the principle of Green's function reciprocity means that the source and receiver positions in a seismic experiment can be exchanged without affecting the observed seismograms. Consequently, the seismograms observed at a single observation location o and caused by a cluster of microearthquakes at locations {ei} are identical to the time series that would be measured by an array of stress meters emplaced at positions {ei}, recording waves generated by a source acting at o. By applying array analysis techniques like slant stacking and frequency-wave number analysis to these seismograms, we can determine the directions and velocities of the component waves as they travel in the earthquake focal region rather than at the surface. We have developed a computationally rapid plane-wave decomposition which we have applied to single-station recordings of aftershocks of the 1984 Morgan Hill, California, earthquake. The analysis is applied to data from three seismic stations having considerably different site geologies. One is a relatively hard rock station situated on Franciscan metamorphics, one is within the Calaveras fault zone, and one is on semiconsolidated sand and gravels. We define the early coda to be the part of the coda initiating immediately after the direct S wave and ending at twice the S wave lapse time. The character of the S wave and early coda varies from being impulsive at the first station to highly reverberative at the last. We examine waves in sequential time windows starting at the S wave and continuing through the early part of the coda. At all seismic stations the early coda is dominated by a persistent signal that must be caused by multiple scattering, probably within 2 km of each seismic station. Despite clear station-to-station differences in the character of the early coda, coda Q values measured in the late coda (greater than twice the S lapse time) agree well among stations, implying that the mechanisms causing the varying behavior of the early coda do not control the coda decay rate at the stations we have considered. Coda Q values measured on horizontal components of motion agree within a factor of 2 with those measured on vertical components. We have not been able to determine the composition of the late coda because of a low signal-to-noise ratio. Our analysis technique, however, is quite appropriate for such a task.

  5. Analysis of the applicability of geophysical methods and computer modelling in determining groundwater level

    NASA Astrophysics Data System (ADS)

    Czaja, Klaudia; Matula, Rafal

    2014-05-01

    The paper presents analysis of the possibilities of application geophysical methods to investigation groundwater conditions. In this paper groundwater is defined as liquid water flowing through shallow aquifers. Groundwater conditions are described through the distribution of permeable layers (like sand, gravel, fractured rock) and impermeable or low-permeable layers (like clay, till, solid rock) in the subsurface. GPR (Ground Penetrating Radar), ERT(Electrical Resistivity Tomography), VES (Vertical Electric Soundings) and seismic reflection, refraction and MASW (Multichannel Analysis of Surface Waves) belong to non - invasive, surface, geophysical methods. Due to differences in physical parameters like dielectric constant, resistivity, density and elastic properties for saturated and saturated zones it is possible to use geophysical techniques for groundwater investigations. Few programmes for GPR, ERT, VES and seismic modelling were applied in order to verify and compare results. Models differ in values of physical parameters such as dielectric constant, electrical conductivity, P and S-wave velocity and the density, layers thickness and the depth of occurrence of the groundwater level. Obtained results for computer modelling for GPR and seismic methods and interpretation of test field measurements are presented. In all of this methods vertical resolution is the most important issue in groundwater investigations. This require proper measurement methodology e.g. antennas with frequencies high enough, Wenner array in electrical surveys, proper geometry for seismic studies. Seismic velocities of unconsolidated rocks like sand and gravel are strongly influenced by porosity and water saturation. No influence of water saturation degree on seismic velocities is observed below a value of about 90% water saturation. A further saturation increase leads to a strong increase of P-wave velocity and a slight decrease of S-wave velocity. But in case of few models only the relationship between differences in density and P-wave and S-wave velocity were observed. This is probably due to the way the modelling program calculates the wave field. Trace by trace should be analyzed during GPR interpretation, especially changes in signal amplitude. High permittivity of water results in higher permittivity of material and high reflection coefficient of electromagnetic wave. In case of electrical studies groundwater mineralization has the highest influence. When the layer thickness is small VES gives much better results than ERT.

  6. Upper-Mantel Earthquakes in the Australia-Pacific Plate Boundary Zone and the Roots of the Alpine Fault

    NASA Astrophysics Data System (ADS)

    Boese, C. M.; Warren-Smith, E.; Townend, J.; Stern, T. A.; Lamb, S. H.

    2016-12-01

    Seismicity in the upper mantle in continental collision zones is relatively rare, but observed around the world. Temporary seismometer deployments have repeatedly detected mantle earthquakes at depths of 40-100 km within the Australia-Pacific plate boundary zone beneath the South Island of New Zealand. Here, the transpressive Alpine Fault constitutes the primary plate boundary structure linking subduction zones of opposite polarity farther north and south. The Southern Alps Microearthquake Borehole Array (SAMBA) has been operating continuously since November 2008 along a 50 km-long section of the central Alpine Fault, where the rate of uplift of the Southern Alps is highest. To date it has detected more than 40 small to moderate-sized mantle events (1≤ML≤3.9). The Central Otago Seismic Array (COSA) has been in operation since late 2012 and detected 15 upper mantle events along the sub-vertical southern Alpine Fault. Various mechanisms have been proposed to explain the occurrence of upper mantle seismicity in the South Island, including intra-continental subduction (Reyners 1987, Geology); high shear-strain gradients due to depressed geotherms and viscous deformation of mantle lithosphere (Kohler and Eberhart-Phillips 2003, BSSA); high strain rates resulting from plate bending (Boese et al. 2013, EPSL), and underthrusting of the Australian plate (Lamb et al. 2015, G3). Focal mechanism analysis reveals a variety of mechanisms for the upper mantle events but predominantly strike-slip and reverse faulting. In this study, we apply spectral analysis to better constrain source parameters for these mantle events. These results are interpreted in conjunction with new information about crustal structure and low-frequency earthquakes near the Moho and in light of existing velocity, attenuation and resistivity models.

  7. Preliminary results of the Source China Sea passive source OBS array experiment

    NASA Astrophysics Data System (ADS)

    Yang, T.; Liu, C.; Pei, Y.; Xia, S.

    2013-12-01

    The Scarborough, or Huangyan, Seamount chain in South China Sea (SCS) represents an extreme case of the global mid-ocean ridge system where the magmatism continues for many million years after the cessation of spreading. To understand this unique process, the South China Sea Deep (SCSD) program funded an experiment deploying a passive source OBS array to image the lithospheric structure beneath the extinct ridge. In April 2012, 18 passive source OBSs, including 15 Guralp CMG-40T OBS and 3 I-4C OBS, were deployed around the Huangyan Island for one year. 11 OBSs were successfully recovered this April, and their data are being processed. Here we present some preliminary results from analyses of this dataset, including the general quality of three-component seismograms, characteristics of seafloor ambient noise spectra, determining the OBS orientation from the Rayleigh wave polarization, and the dispersion analysis of Rayleigh waves. We found that, for most stations, seismograms from teleseismic, regional and local events are generally good with the horizontal records being comparable with vertical component. The noise levels in these seafloor stations are much higher than land-based stations, especially in shorter periods, likely suggesting the direct and stronger impact from the tempestuous SCS. Applications of more sophisticated seismic techniques such as surface wave tomography, seismic anisotropy, receiver function and ambient noise cross-correlation are underway. In addition to the low recovery rate, there are other lessons learned from this experiment. For example, at least two stations have detectable timing problems; Airgun shots should have been used to constrain the timings and orientations in both deployment and recovery. It is still challenging and costly to carry out long-term passive source seismic observations in deep sea.

  8. Crustal and Uppermost Mantle Structure beneath the Western United States from USArray Regional Phase Analysis

    NASA Astrophysics Data System (ADS)

    Buehler, Janine Sylvia

    The aim of this dissertation is to improve our understanding of the crust and uppermost mantle structure in the western United States, profiting from the wealth of regional phase data recorded at USArray stations. USArray, a transportable seismic array of ˜400 seismometers, has greatly increased seismic data coverage across the United States in the past few years, and allows imaging of the lithosphere of the North American continent with better resolution and new methods. The regional phases are often challenging to analyze, especially in a tectonically-active region like the western United States, because of their sensitivities to the heterogeneities of the crust and uppermost mantle. However, knowledge of the seismic structure of the lithosphere is not only essential in order to accurately image the velocity structure at greater depths, but also for constraining geodynamic models that reconstruct the tectonic evolution of the continent, and hence the information that is carried by the regional phases is very valuable. The data set used in this study consists mostly of the regional seismic phases Pn and Sn, which propagate horizontally along the Moho in the mantle lid and constrain the seismic velocity structure at a confined depth. We applied traditional tomographic methods that profit from the improved ray coverage through USArray, but also employed array-based techniques that take advantage of the regular station spacing of the transportable array and don't depend on regularization. In addition, we used stacking methods to image the propagation efficiency of the Sn phase, which is often highly attenuated in tectonically active regions, on a regional scale. The results complement other seismic studies that average over greater depth intervals, such as surface- and body-wave tomographies and anisotropy analysis from shear-wave splitting, to provide information on temperature, composition, and tectonic processes at depth. Comparisons between Pn azimuthal anisotropy and fast polarization direction from shear wave splitting suggest significant vertical changes in anisotropy in several regions of the upper mantle beneath the western United States. Sn can in theory further constrain the nature of anisotropy in the mantle lid. However, we have so far been unable to resolve shear-wave splitting directly in the Sn waveforms as the phase is often attenuated and difficult to detect. Still, we obtained evidence for Sn propagation in several regions of the western United States such as the central Great Basin and the northeastern part of the Colorado Plateau. We found that there are enough quality Sn picks for joint Pn-Sn tomography and identified prominent Vp/Vs anomalies, such as large high Vp/Vs regions --- typically associated with partial melt --- below the Snake River Plain and the Colorado Plateau.

  9. Development of Vertical Cable Seismic System (2)

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Ishikawa, K.

    2012-12-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have carried out two field surveys in 2011. One is a 3D survey with a boomer for a high-resolution surface source and the other one for an actual field survey in the Izena Cauldron an active hydrothermal area in the Okinawa Trough. Through these surveys, we have confirmed that the uncertainty in the locations of the source and of the hydrophones in water could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures an accurate positioning and a deployment techniques. In case of shooting on sea surface, GPS navigation system are available, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging as requested for the SMS survey. We will incorporate the accurate LBL navigation systems with VCs. The LBL navigation system has been developed by IIS of the University of Tokyo. The error is estimated less than 10cm at the water depth of 3000m. Another approach is that the shot points can be calculated using the first break of the VCS after the VCS locations are estimated by slant-ranging from the sea surface. Our VCS system has been designed as a survey tool for hydrothermal deposit, but it will be also applicable for deep water site surveys or geohazard assessment such as active faults.

  10. Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    DTIC Science & Technology

    2007-09-01

    March 17, 2005. The seismic signals from both master and detected events are followed by infrasound arrivals. Note the long duration of the...correlation coefficient traces with a significant array -gain. A detected event that is co-located with the master event will record the same time-difference...estimating the detection threshold reduction for a range of highly repeating seismic sources using arrays of different configurations and at different

  11. Seismic While Drilling Case Study in Shengli Oilfield, Eastern China

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, H.; Tong, S.; Zou, Z.

    2015-12-01

    Seismic while drilling (SWD) is a promising borehole seismic technique with reduction of drilling risk, cost savings and increased efficiency. To evaluate the technical and economic benefits of this new technique, we carried out SWD survey at well G130 in Shengli Oilfield of Eastern China. Well G130 is an evaluation well, located in Dongying depression at depth more than 3500m. We used an array of portable seismometers to record the surface SWD-data, during the whole drilling progress. The pilot signal was being recorded continuously, by an accelerometer mounted on the top of the drill string. There were also two seismometers buried in the drill yard, one near diesel engine and another near derrick. All the data was being recorded continuously. According to mud logging data, we have processed and analyzed all the data. It demonstrates the drill yard noise is the primary noise among the whole surface wavefield and its dominant frequency is about 20Hz. Crosscorrelation of surface signal with the pilot signal shows its SNR is severely low and there is no any obvious event of drill-bit signals. Fortunately, the autocorrelation of the pilot signal shows clear BHA multiple and drill string multiple. The period of drill string multiple can be used for establishing the reference time (so-called zero time). We identified and removed different noises from the surface SWD-data, taking advantages of wavefield analysis. The drill-bit signal was retrieved from surface SWD-data, using seismic interferometry. And a reverse vertical seismic profile (RVSP) data set for the continuous drilling depth was established. The subsurface images derived from these data compare well with the corresponding images of 3D surface seismic survey cross the well.

  12. Seismic reflection images of shallow faulting, northernmost Mississippi embayment, north of the New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Nelson, W.J.

    2001-01-01

    High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.

  13. OBS records of Whale vocalizations from Lucky-strike segment of the Mid-Atlantic Ridge during 2007-2008

    NASA Astrophysics Data System (ADS)

    Chauhan, A.; Rai, A.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.

    2009-12-01

    Passive seismic experiments to study seismicity require a long term deployment of ocean-bottom seismometers (OBSs). These instruments also record a large amount of non-seismogenic signals such as movement of large ships, air-gun shots, and marine mammal vocalizations. We report a bi-product of our passive seismic experiment (BBMOMAR) conducted around the Lucky-strike hydrothermal field of the slow-spreading mid-Atlantic ridge. Five multi-component ocean-bottom seismometers (recording two horizontal, one vertical and one pressure channel) were deployed during 2007-2008. During 13 months of deployment, abundant vocalizations of marine mammals have been recorded by all the five equipments. By analyzing the frequency content of data and their pattern of occurrence, we conclude that these low-frequency vocalizations (~20-40 Hz) typically corresponds to blue and fin-whales. These signals if not identified, could be mis-interpreted as underwater seismic/hydrothermal activity. Our data show an increase in the number of vocalizations recorded during the winter season relative to the summer. As part of the seismic monitoring of the Lucky-strike site, we anticipate to extend this study to the 2008-2009 and 2009-2010 periods, after the recovery and deployment of the array during the BATHYLUCK09 cruise. Long-term and continuous records of calls of marine mammals provide valuable information that could be used to identify the species, study their seasonal behaviour and their migration paths. Our study suggestes that passive experiments such as ocean-bottom seismometers deployed at key locations, could provide useful secondary infromation about oceanic species besides recording seismicity, which is otherwise not possible without harming or interfering with their activity.

  14. Exploration geophysics calculator programs for use on Hewlett-Packard models 67 and 97 programmable calculators

    USGS Publications Warehouse

    Campbell, David L.; Watts, Raymond D.

    1978-01-01

    Program listing, instructions, and example problems are given for 12 programs for the interpretation of geophysical data, for use on Hewlett-Packard models 67 and 97 programmable hand-held calculators. These are (1) gravity anomaly over 2D prism with = 9 vertices--Talwani method; (2) magnetic anomaly (?T, ?V, or ?H) over 2D prism with = 8 vertices?Talwani method; (3) total-field magnetic anomaly profile over thick sheet/thin dike; (4) single dipping seismic refractor--interpretation and design; (5) = 4 dipping seismic refractors--interpretation; (6) = 4 dipping seismic refractors?design; (7) vertical electrical sounding over = 10 horizontal layers--Schlumberger or Wenner forward calculation; (8) vertical electric sounding: Dar Zarrouk calculations; (9) magnetotelluric planewave apparent conductivity and phase angle over = 9 horizontal layers--forward calculation; (10) petrophysics: a.c. electrical parameters; (11) petrophysics: elastic constants; (12) digital convolution with = 10-1ength filter.

  15. 2015 Volcanic Tsunami Earthquake near Torishima Island: Array analysis of ocean bottom pressure gauge records

    NASA Astrophysics Data System (ADS)

    Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.; Sandanbata, O.; Watada, S.; Satake, K.

    2016-12-01

    An array of ocean bottom pressure gauges was deployed off east of Aogashima island of the Izu-Bonin arc from May 2014 to May 2015. The array consists of 10 ocean bottom pressure gauges using ParoScientific quartz resonators which can measure absolute water pressure at 7000m depth with nano-resolution. The array configures equilateral triangles with minimum and maximum lengths of 10 and 30km. This array recorded seismic and tsunami waves from the CLVD-type earthquake (M5.7) of May 02, 2015, that occurred near Torishima Island 100 km distant from the array. Comparison with records of ordinary thrust earthquakes with similar magnitudes at similar distances indicates that this event generated anomalously large tsunamis relative to seismic waves. We made an array analysis for the phase speed, propagating azimuth and travel time of tsunami wave in a frequency range 1-10 mHz, where the dispersion effect is significant. The results show excellent agreements with the frequency-dependent ray-tracing calculations. The tsunami trace apparently starts with positive onset (pressure increase) and reaches a maximum amplitude of about 200Pa (≈2cm in tsunami height). A closer inspection, however, shows a preceding negative small pulse (Fig. 1), suggesting that the seafloor deformation at the tsunami source consists of a central large uplift and a peripheral small depression. This mode of deformation is qualitatively consistent with a finite CLVD source uniformly shortened laterally and uniformly stretched vertically without volume change. The detection of weak initial motions is indebted to the array deployment of sensitive pressure gauges far away from coastal regions. The bandpass-filtered waveform is drastically different between the lower and higher frequency ranges. The waveform is single-peaked in the lower frequency range (<5 mHz) but is ringing in the higher frequency range (>5 mHz), corresponding to the tsunami spectrum that consists of the broad primary peak around 3.5 mHz and the sharp double peaks at around 6.5 and 9 mHz. We interpret the broad primary peak as due to the tsunami source associated with seafloor deformation and the sharp double peaks as due to wave resonance (seiche) inside the Smith Caldera.

  16. Basic Research on Seismic and Infrasonic Monitoring of the European Arctic

    DTIC Science & Technology

    2007-09-01

    detected with a high signal -to-noise ratio (SNR) on the ARCES array ; secondly they register very stable azimuth estimates on the detection lists; and...exploiting the data from the Swedish infrasound array network, which provides a useful supplement to the seismic and infrasonic arrays in Norway and NW...infrasonic phase associations. Furthermore, we plan to generate an infrasonic event bulletin using only the estimated azimuths and detection times of

  17. Improved Phase Characterization of Far-Regional Body Wave Arrivals in Central Asia

    DTIC Science & Technology

    2008-09-30

    developing array -based methods that can more accurately characterize far-regional (14*-29*) seismic wavefield structure. Far- regional (14*-29*) seismograms...arrivals with the primary arrivals. These complexities can be region and earthquake specific. The regional seismic arrays that have been built in the last...fifteen years should be a rich data source for the study of far-regional phase behavior. The arrays are composed of high-quality borehole seismometers

  18. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.

    PubMed

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-06-20

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.

  19. Research on Seismic Wave Attenuation in Gas Hydrates Layer Using Vertical Cable Seismic Data

    NASA Astrophysics Data System (ADS)

    Wang, Xiangchun; Liang, Lunhang; Wu, Zhongliang

    2018-06-01

    Vertical cable seismic (VCS) data are the most suitable seismic data for estimating the quality factor Q values of layers under the sea bottom by now. Here the quality factor Q values are estimated using the high-precision logarithmic spectrum ratio method for VCS data. The estimated Q values are applied to identify the layers with gas hydrates and free gas. From the results it can be seen that the Q value in layer with gas hydrates becomes larger and the Q value in layer with free gas becomes smaller than layers without gas hydrates or free gas. Additionally, the estimated Q values are used for inverse Q filtering processing to compensate the attenuated seismic signal's high-frequency component. From the results it can be seen that the main frequency of seismic signal is improved and the frequency band is broadened, the resolution of the VCS data is improved effectively.

  20. Triple seismic source, double research ship, single ambitious goal: integrated imaging of young oceanic crust in the Panama Basin

    NASA Astrophysics Data System (ADS)

    Wilson, Dean; Peirce, Christine; Hobbs, Richard; Gregory, Emma

    2016-04-01

    Understanding geothermal heat and mass fluxes through the seafloor is fundamental to the study of the Earth's energy budget. Using geophysical, geological and physical oceanography data we are exploring the interaction between the young oceanic crust and the ocean in the Panama Basin. We acquired a unique geophysical dataset that will allow us to build a comprehensive model of young oceanic crust from the Costa Rica Ridge axis to ODP borehole 504B. Data were collected over two 35 x 35 km2 3D grid areas, one each at the ridge axis and the borehole, and along three 330 km long 2D profiles orientated in the spreading direction, connecting the two grids. In addition to the 4.5 km long multichannel streamer and 75 ocean-bottom seismographs (OBS), we also deployed 12 magnetotelluric (MT) stations and collected underway swath bathymetry, gravity and magnetic data. For the long 2D profiles we used two research vessels operating synchronously. The RRS James Cook towed a high frequency GI-gun array (120 Hz) to image the sediments, and a medium frequency Bolt-gun array (50 Hz) for shallow-to-mid-crustal imaging. The R/V Sonne followed the Cook, 9 km astern and towed a third seismic source; a low frequency, large volume G-gun array (30 Hz) for whole crustal and upper mantle imaging at large offsets. Two bespoke vertical hydrophone arrays recorded real far field signatures that have enabled us to develop inverse source filters and match filters. Here we present the seismic reflection image, forward and inverse velocity-depth models and a density model along the primary 330 km north-south profile, from ridge axis to 6 Ma crust. By incorporating wide-angle streamer data from our two-ship, synthetic aperture acquisition together with traditional wide-angle OBS data we are able to constrain the structure of the upper oceanic crust. The results show a long-wavelength trend of increasing seismic velocity and density with age, and a correlation between velocity structure and basement roughness. Increased basement roughness leads to a non-uniform distribution of sediments, which we hypothesise influences the pattern of hydrothermal circulation and ultimately the secondary alteration of the upper crust. A combination of the complimentary wide-angle and normal incidence datasets and their individual models act as a starting point for joint inversion of seismic, gravity and MT data. The joint inversion produces a fully integrated model, enabling us to better understand how the oceanic crust evolves as a result of hydrothermal fluid circulation and cooling, as it ages from zero-age at the ridge-axis to 6 Ma at borehole 504B. Ultimately, this model can be used to undertake full waveform inversion to produce a high-resolution velocity model of the oceanic crust in the Panama Basin. This research is part of a major, interdisciplinary NERC-funded research collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).

  1. 3D imaging of geological structures by R-VSP utilizing vibrations caused by shaft excavations at the Mizunami Underground Research Laboratory in Japan

    NASA Astrophysics Data System (ADS)

    Matsuoka, T.; Hodotsuka, Y.; Ishigaki, K.; Lee, C.

    2009-12-01

    Japan Atomic Energy Agency is now conducting the Mizunami Underground Research Laboratory (MIU) project. The MIU consists of two shafts (main shaft: 6.5m, ventilation shaft: 4.5m diameter) and horizontal research galleries, in sedimentary and granitic rocks at Mizunami City, Central Japan. The MIU project is a broad scientific study of the deep geological environment providing the basis for research and development for geological disposal of high level radioactive waste. One of the main goals is to establish techniques for investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. As a part of the MIU project, we carried out the Reverse-Vertical Seismic Profile (R-VSP) using vibrations from the blasting for the shaft excavations and drilling of boreholes in the horizontal research galleries and examined the applicability of this method to imaging of geological structures around underground facilities, such as the unconformity between the sedimentary rocks and the basal granite, and faults and fracture zones in the granite. R-VSP method is a seismic method utilizing the receiver arrays on surface and seismic sources underground (e.g. in boreholes). This method is advantageous in that planning of 3-dimensional surveys is easy compared with reflection seismic surveying and conventional VSP because seismic source arrays that are major constraint for conducting surveys on surface are unnecessary. The receiver arrays consist of six radial lines on surface with a central focus on the main shaft. Seven blast rounds for the main shaft excavation from GL-52.8m to GL-250m and the borehole drilling in the GL-200m horizontal research gallery were observed. Three types of data processing, conventional VSP data processing (VSP-CDP transform and VSP migration), Reflection data processing utilizing Seismic interferometry method (“Seismic interferometry”) and Reflection mapping utilizing Image Point transform method (“IP transform”), were performed to obtain reflection images from heterogeneous geological structure. As the results, the reflective events that seemed to correspond with sedimentary layers, the unconformity between sedimentary rocks and granite, and fracture zones in granite could be detected by reflection profiles using “conventional VSP data processing” and “Seismic interferometry”. However, it is difficult to identify the faults around the MIU because they are generally at a high-angle. “IP transform” is one type of Radon transform which change common shot gather to IP domain. Image Points are defined through geometries of sources and reflectors. Reflection signals in time domain can be accumulated and enhanced in IP domain by “IP transform” on the condition of the right angle to a fault. So, by a search of the direction that reflection signals are enhanced using “IP transform”, the locations of faults can be inferred. By this method, the distribution of faults that correspond with faults in the current geological model constructed from investigation data in the MIU project could be detected.

  2. An adaptive Bayesian inversion for upper-mantle structure using surface waves and scattered body waves

    NASA Astrophysics Data System (ADS)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-07-01

    We present a methodology for 1-D imaging of upper-mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parametrization based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  3. A report on upgraded seismic monitoring stations in Myanmar: Station performance and site response

    USGS Publications Warehouse

    Thiam, Hrin Nei; Min Htwe, Yin Myo; Kyaw, Tun Lin; Tun, Pa Pa; Min, Zaw; Htwe, Sun Hninn; Aung, Tin Myo; Lin, Kyaw Kyaw; Aung, Myat Min; De Cristofaro, Jason; Franke, Mathias; Radman, Stefan; Lepiten, Elouie; Wolin, Emily; Hough, Susan E.

    2017-01-01

    Myanmar is in a tectonically complex region between the eastern edge of the Himalayan collision zone and the northern end of the Sunda megathrust. Until recently, earthquake monitoring and research efforts have been hampered by a lack of modern instrumentation and communication infrastructure. In January 2016, a major upgrade of the Myanmar National Seismic Network (MNSN; network code MM) was undertaken to improve earthquake monitoring capability. We installed five permanent broadband and strong‐motion seismic stations and real‐time data telemetry using newly improved cellular networks. Data are telemetered to the MNSN hub in Nay Pyi Taw and archived at the Incorporated Research Institutions for Seismology Data Management Center. We analyzed station noise characteristics and site response using noise and events recorded over the first six months of station operation. Background noise characteristics vary across the array, but indicate that the new stations are performing well. MM stations recorded more than 20 earthquakes of M≥4.5 within Myanmar and its immediate surroundings, including an M 6.8 earthquake located northwest of Mandalay on 13 April 2016 and the Mw 6.8 Chauk event on 24 August 2016. We use this new dataset to calculate horizontal‐to‐vertical spectral ratios, which provide a preliminary characterization of site response of the upgraded MM stations.

  4. Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design

    NASA Astrophysics Data System (ADS)

    Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush

    2017-12-01

    Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.

  5. An adaptive Bayesian inversion for upper mantle structure using surface waves and scattered body waves

    NASA Astrophysics Data System (ADS)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-04-01

    We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  6. Analysis and Modeling of Shear Waves Generated by Explosions at the San Andreas Fault Observatory at Depth

    DTIC Science & Technology

    2011-09-01

    No. BAA09-69 ABSTRACT Using multiple deployments of an 80-element, three-component borehole seismic array stretching from the surface to 2.3 km...NNSA). 14. ABSTRACT Using multiple deployments of an 80-element, three-component borehole seismic array stretching from the surface to 2.3 km depth...generated using the direct Green’s function (DGF) method of Friederich and Dalkolmo (1995). This method synthesizes the seismic wavefield for a spherically

  7. Relocation of Groningen seismicity using refracted waves

    NASA Astrophysics Data System (ADS)

    Ruigrok, E.; Trampert, J.; Paulssen, H.; Dost, B.

    2015-12-01

    The Groningen gas field is a giant natural gas accumulation in the Northeast of the Netherlands. The gas is in a reservoir at a depth of about 3 km. The naturally-fractured gas-filled sandstone extends roughly 45 by 25 km laterally and 140 m vertically. Decades of production have led to significant compaction of the sandstone. The (differential) compaction is thought to have reactivated existing faults and being the main driver of induced seismicity. Precise earthquake location is difficult due to a complicated subsurface, and that is the likely reason, the current hypocentre estimates do not clearly correlate with the well-known fault network. The seismic velocity model down to reservoir depth is quite well known from extensive seismic surveys and borehole data. Most to date earthquake detections, however, were made with a sparse pre-2015 seismic network. For shallow seismicity (<5 km depth) horizontal source-receiver distances tend to be much larger than vertical distances. Consequently, preferred source-receiver travel paths are refractions over high-velocity layers below the reservoir. However, the seismic velocities of layers below the reservoir are poorly known. We estimated an effective velocity model of the main refracting layer below the reservoir and use this for relocating past seismicity. We took advantage of vertical-borehole recordings for estimating precise P-wave (refraction) onset times and used a tomographic approach to find the laterally varying velocity field of the refracting layer. This refracting layer is then added to the known velocity model, and the combined model is used to relocate the past seismicity. From the resulting relocations we assess which of the faults are being reactivated.

  8. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  9. Seismo-acoustic Signals Recorded at KSIAR, the Infrasound Array Installed at PS31

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Che, I. Y.; Jeon, J. S.; Chi, H. C.; Kang, I. B.

    2014-12-01

    One of International Monitoring System (IMS)'s primary seismic stations, PS31, called Korea Seismic Research Station (KSRS), was installed around Wonju, Korea in 1970s. It has been operated by US Air Force Technical Applications Center (AFTAC) for more than 40 years. KSRS is composed of 26 seismic sensors including 19 short period, 6 long period and 1 broad band seismometers. The 19 short period sensors were used to build an array with a 10-km aperture while the 6 long period sensors were used for a relatively long period array with a 40-km aperture. After KSRS was certified as an IMS station in 2006 by Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), Korea Institute of Geoscience and Mineral Resources (KIGAM) which is the Korea National Data Center started to take over responsibilities on the operation and maintenance of KSRS from AFTAC. In April of 2014, KIGAM installed an infrasound array, KSIAR, on the existing four short period seismic stations of KSRS, the sites KS05, KS06, KS07 and KS16. The collocated KSIAR changed KSRS from a seismic array into a seismo-acoustic array. The aperture of KSIAR is 3.3 km. KSIAR also has a 100-m small aperture infrasound array at KS07. The infrasound data from KSIAR except that from the site KS06 is being transmitted in real time to KIGAM with VPN and internet line. An initial analysis on seismo-acoustic signals originated from local and regional distance ranges has been performed since May 2014. The analysis with the utilization of an array process called Progressive Multi-Channel Correlation (PMCC) detected seismo-acoustic signals caused by various sources including small explosions in relation to constructing local tunnels and roads. Some of them were not found in the list of automatic bulletin of KIGAM. The seismo-acoustic signals recorded by KSIAR are supplying a useful information for discriminating local and regional man-made events from natural events.

  10. 3-component beamforming analysis of ambient seismic noise field for Love and Rayleigh wave source directions

    NASA Astrophysics Data System (ADS)

    Juretzek, Carina; Hadziioannou, Céline

    2014-05-01

    Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.

  11. kISMET: Stress and fracture characterization in a deep mine

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Dobson, P. F.; Daley, T. M.; Birkholzer, J. T.; Cook, P. J.; Ajo Franklin, J. B.; Rutqvist, J.; Siler, D.; Kneafsey, T. J.; Nakagawa, S.; Wu, Y.; Guglielmi, Y.; Ulrich, C.; Marchesini, P.; Wang, H. F.; Haimson, B. C.; Sone, H.; Vigilante, P.; Roggenthen, W.; Doe, T.; Lee, M.; Mattson, E.; Huang, H.; Johnson, T. C.; Morris, J.; White, J. A.; Johnson, P. A.; Coblentz, D. D.; Heise, J.

    2016-12-01

    We are developing a community facility called kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) at the Sanford Underground Research Facility (SURF) in Lead, SD. The purpose of kISMET is to investigate stress and the effects of rock fabric on hydraulic fracturing. Although findings from kISMET may have broad applications that inform stress and fracturing in anisotropic rock, results will be most applicable to improving control of hydraulic fracturing for enhanced geothermal systems (EGS) in crystalline rock. At the kISMET site on the 4850 ft (1480 m depth) level of SURF, we have drilled and cored an array of nearly vertical boreholes in Precambrian phyllite. The array consists of four 50-m deep monitoring boreholes surrounding one 100-m deep borehole forming a 6 m-wide five-spot pattern at a depth of 1530 m. Previous investigations of the stress field at SURF suggest that the principal stress s1 is nearly vertical. By aligning the kISMET boreholes approximately with σ1, fractures created in the center borehole should in theory be perpendicular to σ3, the least principal horizontal stress. But the phyllite at kISMET has a strong fabric (foliation) that could influence fracturing. Stress measurements and stimulation using hydraulic fracturing will be carried out in the center borehole using a straddle packer and high-pressure pump. We will use an impression packer and image logs after stress testing and stimulation to determine fracture orientation and extent at the center borehole. In order to study the control of stress, rock fabric, and stimulation approach on size, aperture, and orientation of hydraulic fractures, we will carefully monitor the stress measurements and stimulation. For example, we will use continuous active source seismic (CASSM) in two of the monitoring boreholes to measure changes in seismic-wave velocity as water fills the fracture. Second, near real-time electrical resistance tomography (ERT) will be used in the other two boreholes to monitor the changes in resistivity during stress measurement and stimulation. Finally, accelerometers placed nearby on the 4850 level will monitor induced microseismicity. Results of pre-test fracturing simulations, laboratory tests on core, stress testing, and stimulation and associated monitoring will be presented.

  12. Array seismological investigation of the South Atlantic 'Superplume'

    NASA Astrophysics Data System (ADS)

    Hempel, Stefanie; Gassmöller, Rene; Thomas, Christine

    2015-04-01

    We apply the axisymmetric, spherical Earth spectral elements code AxiSEM to model seismic compressional waves which sample complex `superplume' structures in the lower mantle. High-resolution array seismological stacking techniques are evaluated regarding their capability to resolve large-scale high-density low-velocity bodies including interior structure such as inner upwellings, high density lenses, ultra-low velocity zones (ULVZs), neighboring remnant slabs and adjacent small-scale uprisings. Synthetic seismograms are also computed and processed for models of the Earth resulting from geodynamic modelling of the South Atlantic mantle including plate reconstruction. We discuss the interference and suppression of the resulting seismic signals and implications for a seismic data study in terms of visibility of the South Atlantic `superplume' structure. This knowledge is used to process, invert and interpret our data set of seismic sources from the Andes and the South Sandwich Islands detected at seismic arrays spanning from Ethiopia over Cameroon to South Africa mapping the South Atlantic `superplume' structure including its interior structure. In order too present the model of the South Atlantic `superplume' structure that best fits the seismic data set, we iteratively compute synthetic seismograms while adjusting the model according to the dependencies found in the parameter study.

  13. Seismic-geodynamic constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle

    USGS Publications Warehouse

    Forte, A.M.; Woodward, R.L.

    1997-01-01

    Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.

  14. SKS splitting results in central Italy and Dinaric region inside the AlpArray-CASE project

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Prevolnik, S.; Pondrelli, S.; Molinari, I.; Stipcevic, J.; Kissling, E.; Šipka, V.; Herak, M.

    2017-12-01

    In the framework of the AlpArray project (AlpArray Seismic Network, 2015), the complementary "Central Adriatic Seismic Experiment" (CASE; AlpArray Seismic Network, 2016) was established as collaboration between ETH Zürich, University of Zagreb, INGV and Republic Hydrometeorological Service of Republic of Srpska. The CASE project consists of 9 temporary stations, installed in October 2016, located in Bosnia and Herzegovina, Croatia and Italy. Temporary broadband seismic stations, with the permanent stations present in the region shared by the Croatian Seismological Service and INGV, make an almost continuous transect cutting the Central-Southern Appenines, the central Adriatic region, central External Dinarides and finishing at the eastern margin of the Internal Dinarides. The presence of the the Apenninic and Dinarides slabs, verging in opposite directions and plunging along the opposite sides of the Adriatic plate, make this area a peculiar spot to understand the complex dynamic of the region. Various tomographic images (e.g. Bijwaard and Spakman, 2000; Piromallo and Morelli, 2003) shows not continuous slabs under the Appenines and the Dinarides, suggesting the presence of slab-gaps right beneath the region covered by the CASE experiment. Here we present the preliminary results of the SKS splitting analysis performed on the data recorded by the temporary and permanent seismic stations included in the CASE project. The new results, in combination with previous interpretation, will provide clues about how Northern and Southern Apennines are connected at depth, how the slab rollback of the Apennines thrust belt acted and if and how the Apennines are in relation with the Dinaric region. Together with the measurements from previous studies and from the AlpArray project, our new data will support the mapping of the seismic anisotropy deformation pattern from Western Alps to Pannonian region.

  15. Seismic performance for vertical geometric irregularity frame structures

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Mahmud, N. A.; Ishak, I. S.

    2018-04-01

    This research highlights the result of vertical geometric irregularity frame structures. The aid of finite element analysis software, LUSAS was used to analyse seismic performance by focusing particularly on type of irregular frame on the differences in height floors and continued in the middle of the building. Malaysia’s building structures were affected once the earthquake took place in the neighbouring country such as Indonesia (Sumatera Island). In Malaysia, concrete is widely used in building construction and limited tension resistance to prevent it. Analysing structural behavior with horizontal and vertical static load is commonly analyses by using the Plane Frame Analysis. The case study of this research is to determine the stress and displacement in the seismic response under this type of irregular frame structures. This study is based on seven-storey building of Clinical Training Centre located in Sungai Buloh, Selayang, Selangor. Since the largest earthquake occurs in Acheh, Indonesia on December 26, 2004, the data was recorded and used in conducting this research. The result of stress and displacement using IMPlus seismic analysis in LUSAS Modeller Software under the seismic response of a formwork frame system states that the building is safe to withstand the ground and in good condition under the variation of seismic performance.

  16. Evidence of unfrozen liquids and seismic anisotropy at the base of the polar ice sheets

    NASA Astrophysics Data System (ADS)

    Wittlinger, Gérard; Farra, Véronique

    2015-03-01

    We analyze seismic data from broadband stations located on the Antarctic and Greenland ice sheets to determine polar ice seismic velocities. P-to-S converted waves at the ice/rock interface and inside the ice sheets and their multiples (the P-receiver functions) are used to estimate in-situ P-wave velocity (Vp) and P-to-S velocity ratio (Vp/Vs) of polar ice. We find that the polar ice sheets have a two-layer structure; an upper layer of variable thickness (about 2/3 of the total thickness) with seismic velocities close to the standard ice values, and a lower layer of approximately constant thickness with standard Vp but ∼25% smaller Vs. The lower layer ceiling corresponds approximately to the -30 °C isotherm. Synthetic modeling of P-receiver functions shows that strong seismic anisotropy and low vertical S velocity are needed in the lower layer. The seismic anisotropy results from the preferred orientation of ice crystal c-axes toward the vertical. The low vertical S velocity may be due to the presence of unfrozen liquids resulting from premelting at grain joints and/or melting of chemical solutions buried in the ice. The strongly preferred ice crystal orientation fabric and the unfrozen fluids may facilitate polar ice sheet basal flow.

  17. Vertical electromagnetic profiling (VEMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytle, R.J.

    1984-08-01

    Vertical seismic profiling (VSP) is based upon reception measurements performed in a borehole with a source near the ground surface. This technology has seen a surge in application and development in the last decade. The analogous concept of vertical electromagnetic profiling (VEMP) consists of reception measurements performed in a borehole with a source near the ground surface. Although the electromagnetic concept has seen some application, this technology has not been as systematically developed and applied as VSP. Vertical electromagnetic profiling provides distinct and complementary data due to sensing different physical parameters than seismic profiling. Certain of the advantages of VEMPmore » are presented. 28 references, 7 figures.« less

  18. Imaging Critical Zone Using High Frequency Rayleigh Wave Group Velocity Measurements Extracted from Ambient Seismic Fields Gathered With 2400 Seismic Nodes in Southeastern Wyoming.

    NASA Astrophysics Data System (ADS)

    Keifer, I. S.; Dueker, K. G.

    2016-12-01

    In an effort to characterize critical zone development in varying regions, seismologist conduct seismic surveys to assist in the realization of critical zone properties e.g. porosity and regolith thickness. A limitation of traditional critical zone seismology is that data is normally collected along lines, to generate two dimensional transects of the subsurface seismic velocity, even though the critical zone structure is 3D. Hence, we deployed six seismic 2D arrays in southeastern Wyoming to gather ambient seismic fields so that 3D shear velocity models could be produced. The arrays were made up of nominally 400 seismic stations arranged in a 200-meter square grid layout. Each array produced a half Terabyte data volume, so a premium was placed on computational efficiency throughout this study, to handle the roughly 65 billion samples recorded by each array. The ambient fields were cross-correlated on the Yellowstone Super-Computer using the pSIN code (Chen et al., 2016), which decreased correlation run times by a factor of 300 with respect to workstation computers. Group delay times extracted from cross-correlations using 8 Hz frequency bands from 10 Hz to 100 Hz show frequency dispersion at sites with shallow regolith underlain by granite bedrock. Dimensionally, the group velocity map inversion is overdetermined, even after extensive culling of spurious group delay times. Model Resolution matrices for our six arrays show values > 0.7 for most of the modal domain, approaching unity at the center of the model domain; we are then confident that we have an adequate number of rays covering our array space, and should experience minimal smearing of our resultant model due to application of inverse solution on the data. After inverting for the group velocity maps, a second inversion is performed of the group velocity maps for the 3D shear velocity model. This inversion is underdetermined and a second order Tikhonov regularization is used to obtain stable inverse images. Results will be presented.

  19. Improving detection and identification of seismic signals due to landslides: a methodology based on field scale controlled experiments

    NASA Astrophysics Data System (ADS)

    Yfantis, G.; Carvajal, H. E.; Pytharouli, S.; Lunn, R. J.

    2013-12-01

    A number of published studies use seismic sensors to understand the physics involved in slope deformation. In this research we artificially induce failure to two meter scaled slopes in the field and use 12 short period 3D seismometers to monitor the failure. To our knowledge there has been no previous controlled experiments that can allow calibration and validation of the interpreted seismic signals. Inside the body of one of the artificial landslides we embed a pile of glass shards. During movement the pile deforms emitting seismic signals due to friction among the glass shards. Our aim is twofold: First we investigate whether the seismic sensors can record pre-cursory and failure signals. Secondly, we test our hypothesis that the glass shards produce seismic signals with higher amplitudes and a distinct frequency pattern, compared to those emitted by common landslide seismicity and local background noise. Two vertical faces, 2m high, were excavated 3m apart in high porous tropical clay. This highly attenuating material makes the detection of weak seismic signals challenging. Slope failure was induced by increasing the vertical load at the landslide's crown. Special care was taken in the design of all experimental procedures to not add to the area's seismic noise. Measurements took place during 18 hours (during afternoon and night) without any change in soil and weather conditions. The 3D sensors were placed on the ground surface close to the crown, forming a dense microseismic network with 5-to-10m spacing and two nanoseismic arrays, with aperture sizes of 10 and 20 m. This design allowed a direct comparison of the recorded signals emitted by the two landslides. The two faces failed for loading between 70 and 100kN and as a result the pile of glass shards was horizontally deformed allowing differential movement between the shards. After the main failure both landslides were continuing to deform due to soil compaction and horizontal displacement. We apply signal processing techniques to identify and locate the emitted signals related to slope movement, despite high background noise levels and high attenuating geological conditions. Results were groundproofed by visual observations. Our study shows that short period seismic sensors can successfully monitor the brittle behaviour of dry clays for deformations larger than 1 centimetre, as well as weak ground failures. The use of glass, or any other coarse and brittle material, has advantages over soil only, since the friction among the glass shards allows for a more distinct frequency pattern. This makes detection of slope movements easier at heterogeneous environments were signals are emitted following movements of different material types as well as in areas characterised by high background noise levels. Our results provide information on the slope behaviour, a powerful tool for geotechnical engineering applications.

  20. Locating hydrothermal acoustic sources at Old Faithful Geyser using Matched Field Processing

    NASA Astrophysics Data System (ADS)

    Cros, E.; Roux, P.; Vandemeulebrouck, J.; Kedar, S.

    2011-10-01

    In 1992, a large and dense array of geophones was placed around the geyser vent of Old Faithful, in the Yellowstone National Park, to determine the origin of the seismic hydrothermal noise recorded at the surface of the geyser and to understand its dynamics. Old Faithful Geyser (OFG) is a small-scale hydrothermal system where a two-phase flow mixture erupts every 40 to 100 min in a high continuous vertical jet. Using Matched Field Processing (MFP) techniques on 10-min-long signal, we localize the source of the seismic pulses recorded at the surface of the geyser. Several MFP approaches are compared in this study, the frequency-incoherent and frequency-coherent approach, as well as the linear Bartlett processing and the non-linear Minimum Variance Distorsionless Response (MVDR) processing. The different MFP techniques used give the same source position with better focalization in the case of the MVDR processing. The retrieved source position corresponds to the geyser conduit at a depth of 12 m and the localization is in good agreement with in situ measurements made at Old Faithful in past studies.

  1. Modeling Wide-Angle Seismic Data from the Hi-CLIMB Experiment in Tibet

    NASA Astrophysics Data System (ADS)

    Nowack, R. L.; Griffin, J. D.; Tseng, T.; Chen, W.

    2009-12-01

    Using data from local and regional events recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes, including arrival times, Hilbert amplitudes and pulse frequencies, to constrain structures of seismic wave speed and attenuation in the crust and the upper mantle in western China. We construct more than 30 high-quality, regional seismic profiles, and select 14 of these, which show excellent crustal and Pn arrivals, for further analysis. Travel-times from events at regional distances constrain large-scale velocity structures, and four close-in events provide further details on crustal structure. We use the 3-D ray tracer, CRT, to model the travel-times. Initial results indicate that the Moho beneath the Lhasa terrane of southern Tibet is over 73 km deep with a high Pn speed of about 8.2 km/s. In contrast, the Qiangtang terrane farther north shows a thinner crust, by up to 10 km, and a low Pn speed of 7.8-7.9 km/s. Preliminary estimates of upper mantle velocity gradients are between .003 and .004 km/s per km, consistent with previous results by Phillips et al. (2007). We also use P to SV conversions from teleseismic earthquakes to independently constrain variations in speeds of Pn and depths of the Moho. For instance, amplitudes of the SsPmP phase, when its last reflection off the Moho is near-critical, are particularly sensitive to the contrast in seismic wave speeds across the crust-mantle interface; and results from these additional data are consistent with those from modeling of travel-times. Additional seismic attributes, extracted from wave-trains containing Pn and major crustal phases, are being compared with results of numerical modeling based on the spectral element method and asymptotic calculations in laterally varying media, where both lateral and vertical gradients in seismic wave speeds can strongly affect Pn amplitudes and pulse frequencies.

  2. A Suite of Discriminants for Ground-Truth Mining Events in the Western U.S. and Its Implications for Discrimination Capability in Russia

    DTIC Science & Technology

    2008-09-01

    of up to 1000 individual boreholes is filled with 5000 to 10,000 lbs of material and delay fired over several seconds. The explosive array is...delay-fired mining events using seismic arrays : Application to the PDAR array in Wyoming, USA, Bull. Seism. Soc. Am. 97: pp .989–1001. Arrowsmith...regional seismic stations in monitoring areas of interest, particularly in countries where mining efforts are significant to the economy. As with other

  3. Strategy for the deployment of a dense broadband temporary array in the Alps: lessons learnt from the CIFALPS experiment

    NASA Astrophysics Data System (ADS)

    Coralie, Aubert; Anne, Paul; Stefano, Solarino; Sandrine, Roussel; Simone, Salimbeni; Pierre, Zangelmi; Glenn, Cougoulat; Yinshuang, Ai; Weiwei, Xu; Yumei, He; Liang, Zhao

    2013-04-01

    The CIFALPS (China-Italy-France Alps seismic survey) experiment is a common project of IGGCAS (China), ISTerre (France) and INGV (Italy). It aims at getting new high-resolution passive seismic data on the crustal and upper mantle structure of the southwestern Alps. In this framework, we have installed a temporary broadband seismic array across the southwestern Alps from the Rhône valley (France) to the Po plain (Italy). The main sub-array of CIFALPS is a 350-km long roughly linear profile of 46 stations trending WSW-ENE from Bollène (France) to north of Alessandria (Italy). The average station spacing is 10 km in the outer parts of the belt, and it reduces to 5 km in the internal Alps. Nine additional temporary stations located ~40 km to the north and south of the main profile complement the permanent broadband networks to improve the 3-D constraints on the deep structures. Stations are equipped with Nanometrics Taurus data acquisition systems, and Trillium 120P/A, CMG3-ESP or CMG40T broadband sensors. The array was installed in the summer of 2012 and will be operated at least to April 2013. Because our schedule was tight, we had to achieve site selections in only 3-4 months in spite of strong constraints on site location related to short interstation spacing. Most sites are located in basements of buildings for security reasons and mains power supply. As most sensors are true broadband (90s or 120s), we put much effort on vault design to insure good thermal insulation and low noise at long periods. The vaults also had to be easily and rapidly built and they should be easily and totally removed at the end of the experiment. We used the PQLX software for quality control of our sites and vault design. The performances of our vaults are good for the vertical component with noise levels at 100s period in the range -185 dB (low noise model) to -165 dB. They are less good for horizontal components (noise level close to high noise model at periods > 20s) due to atmospheric pressure and temperature variations. Stations located outside buildings do not have better performances at 100s than stations located in basements. Two of our six stations installed outside buildings are prone to mass centering problems due to tilting of the concrete slab in soft soil. For state-of-health control and data transmission, we are testing 2G and 3G communication modems at 4 remote stations but with limited success. Database preparation and management benefitted from the expertise of engineers of the seismic datacenter of ISTerre. The experience gained on all technical aspects of a temporary experiment will provide valuable input for the preparation of the future AlpArray project.

  4. Performance of the Broadband Golay 3x6 Array Associated with the 2016 IRIS Community Wavefields Experiment

    NASA Astrophysics Data System (ADS)

    Bolarinwa, O. J.; Langston, C. A.; Sweet, J. R.; Anderson, K. R.; Woodward, R.

    2017-12-01

    A 6 km aperture regional array in the Golay 3x6 configuration was fielded as part of the IRIS Community Wavefields Experiment near Enid, Oklahoma from June 26 through November 12, 2016. The array consisted of 18 broadband CMG-3T seismometers deployed using a PASSCAL insulated vault design and RT130 data recorders. The Golay geometry is unusual in that it features 6 tripartite arrays in an open arrangement. Spacing and orientation of each tripartite array is such that the array uniformly samples the wavefield in space as determined from the co-array diagram even though the interior of the array configuration contains no seismic stations. The short wavelength performance of this array requires a high degree of phase correlation across its entire aperture, a characteristic that has been difficult to achieve for other regional array designs because of velocity heterogeneity in the earth. Located within an area of high regional seismicity, the IRIS experiment offered an opportunity to examine the slowness-frequency performance of a real-world Golay 3x6 array that was subject to constraints on land usage during deployment. Individual tripartite arrays fit well within a land survey quarter section but it proved difficult to match the ideal spacing between each subarray because of permitting problems. Nevertheless, these unavoidable geometry perturbations caused only minor changes to the theoretical array response. More surprisingly, observations of high frequency regional P and S phases show very high correlation over the array aperture that gives rise to precise array responses that are close to theoretical. Both the array geometry and relatively homogeneous structure under the array produces an exceptional facility that can be used for high-resolution studies of regional seismic waves.

  5. Broadband spectra of seismic survey air-gun emissions, with reference to dolphin auditory thresholds.

    PubMed

    Goold, J C; Fish, P J

    1998-04-01

    Acoustic emissions from a 2120 cubic in air-gun array were recorded through a towed hydrophone assembly during an oil industry 2-D seismic survey off the West Wales Coast of the British Isles. Recorded seismic pulses were sampled, calibrated, and analyzed post-survey to investigate power levels of the pulses in the band 200 Hz-22 kHz at 750-m, 1-km, 2.2-km, and 8-km range from source. At 750-m range from source, seismic pulse power at the 200-Hz end of the spectrum was 140 dB re: 1 microPa2/Hz, and at the 20-kHz end of the spectrum seismic pulse power was 90 dB re: 1 microPa2/Hz. Although the background noise levels of the seismic recordings were far in excess of ambient, due to the proximity of engine, propeller, and flow sources of the ship towing the hydrophone, seismic power dominated the entire recorded bandwidth of 200 Hz-22 kHz at ranges of up to 2 km from the air-gun source. Even at 8-km range seismic power was still clearly in excess of the high background noise levels up to 8 kHz. Acoustic observations of common dolphins during preceding seismic surveys suggest that these animals avoided the immediate vicinity of the air-gun array while firing was in progress, i.e., localized disturbance occurred during seismic surveying. Although a general pattern of localized disturbance is suggested, one specific observation revealed that common dolphins were able to tolerate the seismic pulses at 1-km range from the air-gun array. Given the high broadband seismic pulse power levels across the entire recorded bandwidth, and known auditory thresholds for several dolphin species, we consider such seismic emissions to be clearly audible to dolphins across a bandwidth of tens on kilohertz, and at least out to 8-km range.

  6. Seismic array processing and computational infrastructure for improved monitoring of Alaskan and Aleutian seismicity and volcanoes

    NASA Astrophysics Data System (ADS)

    Lindquist, Kent Gordon

    We constructed a near-real-time system, called Iceworm, to automate seismic data collection, processing, storage, and distribution at the Alaska Earthquake Information Center (AEIC). Phase-picking, phase association, and interprocess communication components come from Earthworm (U.S. Geological Survey). A new generic, internal format for digital data supports unified handling of data from diverse sources. A new infrastructure for applying processing algorithms to near-real-time data streams supports automated information extraction from seismic wavefields. Integration of Datascope (U. of Colorado) provides relational database management of all automated measurements, parametric information for located hypocenters, and waveform data from Iceworm. Data from 1997 yield 329 earthquakes located by both Iceworm and the AEIC. Of these, 203 have location residuals under 22 km, sufficient for hazard response. Regionalized inversions for local magnitude in Alaska yield Msb{L} calibration curves (logAsb0) that differ from the Californian Richter magnitude. The new curve is 0.2\\ Msb{L} units more attenuative than the Californian curve at 400 km for earthquakes north of the Denali fault. South of the fault, and for a region north of Cook Inlet, the difference is 0.4\\ Msb{L}. A curve for deep events differs by 0.6\\ Msb{L} at 650 km. We expand geographic coverage of Alaskan regional seismic monitoring to the Aleutians, the Bering Sea, and the entire Arctic by initiating the processing of four short-period, Alaskan seismic arrays. To show the array stations' sensitivity, we detect and locate two microearthquakes that were missed by the AEIC. An empirical study of the location sensitivity of the arrays predicts improvements over the Alaskan regional network that are shown as map-view contour plots. We verify these predictions by detecting an Msb{L} 3.2 event near Unimak Island with one array. The detection and location of four representative earthquakes illustrates the expansion of geographic coverage from array processing. Measurements at the arrays of systematic azimuth residuals, between 5sp° and 50sp° from 203 Aleutian events, reveal significant effects of heterogeneous structure on wavefields. Finally, algorithms to automatically detect earthquakes in continuous array data are demonstrated with the detection of an Aleutian earthquake.

  7. Impact of wind on ambient noise recorded by the "13 BB star" seismic array in northern Poland

    NASA Astrophysics Data System (ADS)

    Lepore, Simone; Markowicz, Krzysztof; Grad, Marek

    2016-04-01

    Seismic interferometry and beam forming techniques were applied to ambient noise recorded during January 2014 at the "13 BB star" array, composed of thirteen seismic stations located in northern Poland, with the aim of evaluating the azimuth of noise sources and the velocities of surface waves. After normalizing the raw recordings in time and frequency domain, the spectral characteristics of the ambient noise were studied to choose a frequency band suitable for the waves' retrieval. To get the velocity of surface waves by seismic interferometry, the crosscorrelation between all station pairs was analysed for the vertical and horizontal components in the 0.05-0.1 Hz, 0.1-1 Hz and 1 10 Hz frequency bands. For each pair, the crosscorrelation was applied to one hour recordings extracted from the ambient noise. The obtained traces were calculated for a complete day, and then summed together: the daily results were stacked for the whole January 2014. In the lowest frequency range, most of the energy is located around the 3.0 km/s line, meaning that the surface waves coming from the uppermost mantle will be retrieved. The intermediate frequency range shows most of the energy between the 2.0 km/s and 1.5 km/s lines: consequently, surface waves originating from the crust will be retrieved. In the highest frequency range, the surface waves are barely visible on the crosscorrelation traces, implying that the associated energy is strongly attenuated. The azimuth variation associated to the noise field was evaluated by means of the beam forming method, using the data from the whole array for all the three components. To that, the beam power was estimated in a small range of frequencies every day for the whole month. For each day, one hour long results of beam forming applications were stacked together. To avoid aliasing and near field effects, the minimum frequency was set at 0.05 Hz and the maximum to 0.1 Hz. In this frequency band, the amplitude maximum was sought corresponding to the best fit between phase slowness and back azimuth. The azimuth was mainly associated to the angle of the highest peak on the vertical component; however, if the related energy was not large enough, the angle of the main noise source on the horizontal component was employed. In some cases, the azimuth of the secondary peak was taken into account, if its energy was strong enough. The results were related to the daily mean wind speed around Europe recorded during the same month. A significant correlation between the daily average level of ambient noise and the mean wind speed was found. The main source of the ambient noise was located in the Atlantic Ocean and in the North Sea: some weaker sources, however, were identified as the Barents, Baltic, Mediterranean, and Black Seas. National Science Centre Poland provided financial support for this work by NCN grant DEC 2011/02/A/ST10/00284.

  8. Significance and interest of dense seismic arrays for understanding the mechanics of clayey landslides: a test case of 150 nodes at Super-Sauze landslide

    NASA Astrophysics Data System (ADS)

    Provost, Floriane; Malet, Jean-Philippe; Hibert, Clément; Vergne, Jérôme

    2017-04-01

    Clayey landslides present various seismic sources generated by the slope deformation (rockfall, slidequakes, tremors, fluid transfers). However, the characterization of the micro-seismicity and the construction of advanced catalogs (classification of the seismic source, time, and location) are complex for such objects because of the variety of recorded signals, the low signal to noise ratios, the highly attenuating medium, and the small size of the object that limits the picking of the P and S-waves. A full understanding of the seismic sources is hence often difficult because of the few number of seismometers, the large distance source-to-sensor (> 50m) and because of the lack of a continous spatially distributed record of the slope deformation. Recent progress in the geophysical instrumentation allowed the deployment of a dense network of 150 ZLand nodes (Tesla Corp.) combined with a Ground-Based InSAR sensor (IDS, IBIS-FM) for a period of ca. 2 months at the Super-Sauze clayey landslide (South French Alps). The Zland nodes are vertical wireless seismometers with 12 days autonomy. Three nodes were co-located at 50 locations in the most active part of the landslide and above the main scarp with a sensor-to-sensor distance of ca. 50m and a sample frequency of 400Hz. The Ground-Based InSAR sensor was installed in front of the landslide at a distance of ca. 800m and acquired an image every 15 minutes. The seismic events are detected automatically based on their spectrogram content with Signal-to-Noise Ratio (SNR) larger than 1.5 and automatically classified using the Random Forest algorithm. The landslide endogenous sources are then located by optimization of the inter-trace correlation of the first arrivals. This experiment aims to document the deformation of the landslide by combining surface and in depth information and provides a new insight into the seismic sources interpretation. The spatial distribution of the deformation is compared to the location of the endogenous seismic events in order to analyze seismic vs. aseismic deformation.

  9. Wind seismic noise introduced by external infrastructure: field data and transfer mechanism

    NASA Astrophysics Data System (ADS)

    Martysevich, Pavel; Starovoyt, Yuri

    2017-04-01

    Background seismic noise generated by wind was analyzed at six co-located seismic and infrasound arrays with the use of the wind speed data. The main factors affecting the noise level were identified as (a) external structures as antenna towers for intrasite communication, vegetation and heavy solar panels fixtures, (b) borehole casing and (c) local lithology. The wind-induced seismic noise peaks in the spectra can be predicted by combination of inverted pendulum model for antenna towers and structures used to support solar panels, free- or clamped-tube resonance of the borehole casing and is dependent on the type of sedimentary upper layer. Observed resonance frequencies are in agreement with calculated clamped / free tube modes for towers and borehole casings. Improvement of the seismic data quality can be achieved by minimizing the impact of surrounding structures close to seismic boreholes. The need and the advantage of the borehole installation may vanish and appear to be even not necessary at locations with non-consolidated sediments because the impact of surrounding structures on seismic background may significantly deteriorate the installation quality and therefore the detection capability of the array. Several IMS arrays where the radio telemetry antennas are used for data delivery to the central site may benefit from the redesign of the intrasite communication system by its substitute with the fiber-optic net as less harmful engineering solution.

  10. Seismic Monitoring of Permafrost During Controlled Thaw: An Active-Source Experiment Using a Surface Orbital Vibrator and Fiber-Optic DAS Arrays

    NASA Astrophysics Data System (ADS)

    Dou, S.; Wood, T.; Lindsey, N.; Ajo Franklin, J. B.; Freifeld, B. M.; Gelvin, A.; Morales, A.; Saari, S.; Ekblaw, I.; Wagner, A. M.; Daley, T. M.; Robertson, M.; Martin, E. R.; Ulrich, C.; Bjella, K.

    2016-12-01

    Thawing of permafrost can cause ground deformations that threaten the integrity of civil infrastructure. It is essential to develop early warning systems that can identify critically warmed permafrost and issue warnings for hazard prevention and control. Seismic methods can play a pivotal role in such systems for at least two reasons: First, seismic velocities are indicative of mechanical strength of the subsurface and thus are directly relevant to engineering properties; Second, seismic velocities in permafrost systems are sensitive to pre-thaw warming, which makes it possible to issue early warnings before the occurrence of hazardous subsidence events. However, several questions remain: What are the seismic signatures that can be effectively used for early warning of permafrost thaw? Can seismic methods provide enough warning times for hazard prevention and control? In this study, we investigate the feasibility of using permanently installed seismic networks for early warnings of permafrost thaw. We conducted continuous active-source seismic monitoring of permafrost that was under controlled heating at CRREL's Fairbanks permafrost experiment station. We used a permanently installed surface orbital vibrator (SOV) as source and surface-trenched DAS arrays as receivers. The SOV is characterized by its excellent repeatability, automated operation, high energy level, and the rich frequency content (10-100 Hz) of the generated wavefields. The fiber-optic DAS arrays allow continuous recording of seismic data with dense spatial sampling (1-meter channel spacing), low cost, and low maintenance. This combination of SOV-DAS provides unique seismic datasets for observing time-lapse changes of warming permafrost at the field scale, hence providing an observational basis for design and development of early warning systems for permafrost thaw.

  11. Seismicity of the Wabash Valley, Ste. Genevieve, and Rough Creek Graben Seismic Zones from the Earthscope Ozarks-Illinois-Indiana-Kentucky (OIINK) FlexArray Experiment

    NASA Astrophysics Data System (ADS)

    Shirley, Matthew Richard

    I analyzed seismic data from the Ozarks-Illinois-Indiana-Kentucky (OIINK) seismic experiment that operated in eastern Missouri, southern Illinois, southern Indiana, and Kentucky from July 2012 through March 2015. A product of this analysis is a new catalog of earthquake locations and magnitudes for small-magnitude local events during this study period. The analysis included a pilot study involving detailed manual analysis of all events in a ten-day test period and determination of the best parameters for a suite of automated detection and location programs. I eliminated events that were not earthquakes (mostly quarry and surface mine blasts) from the output of the automated programs, and reprocessed the locations for the earthquakes with manually picked P- and S-wave arrivals. This catalog consists of earthquake locations, depths, and local magnitudes. The new catalog consists of 147 earthquake locations, including 19 located within the bounds of the OIINK array. Of these events, 16 were newly reported events, too small to be reported in the Center for Earthquake Research and Information (CERI) regional seismic network catalog. I compared the magnitudes reported by CERI for corresponding earthquakes to establish a magnitude calibration factor for all earthquakes recorded by the OIINK array. With the calibrated earthquake magnitudes, I incorporate the previous OIINK results from Yang et al. (2014) to create magnitude-frequency distributions for the seismic zones in the region alongside the magnitude-frequency distributions made from CERI data. This shows that Saint Genevieve and Wabash Valley seismic zones experience seismic activity at an order magnitude lower rate than the New Madrid seismic zone, and the Rough Creek Graben experiences seismic activity two orders of magnitude less frequently than New Madrid.

  12. Detailed study of upper mantle anisotropy in the upper mantle of eastern North America

    NASA Astrophysics Data System (ADS)

    Chen, X.; Levin, V. L.; Li, Y.

    2016-12-01

    We collected observations of core-refracted shear waves on a 1300 km long array crossing the eastern part of the North American continent from James Bay to the Fundy Basin. We combine data from the Earthscope Transportable Array, Canadian and US permanent observatories, and the recently completed Earthscope FlexArray QMIII.Past studies found ample evidence for directional dependence (anisotropy) of seismic wave speed in the upper mantle of this region. However, to date the lateral spacing of seismic observatories made direct comparisons between anisotropic structure and tectonic divisions evident on the surface challenging. With instruments spacing 50 km, and less near major tectonic boundaries such as the Grenville Front and the Appalachian Front, we can discriminate between gradual changes in anisotropic properties due to asthenospheric flow variations, and abrupt and localized changes likely to arise from juxtaposition of distinct lithospheric blocks.To insure lateral consistency of measurements we selected core-refracted shear waves that were observed over the entire length of our array. Also, since directional dependence of splitting parameters is a well recognized signature of vertical changes in anisotropic properties we examine observations from different directions, and look for systematic changes.Most locations show evidence for some degree of splitting in observed shear waves. Delays between fast and slow components estimated using rotation-correlation method range from 0.3 to 1.5 s. At most sites delay values vary considerably between individual phases measured. Fast polarizations are predominantly NE-SW, which agrees with numerous past studies of the region. Systematic directional dependence of fast polarization is seen at all sites we studied. Furthermore, the values of fast polarization appear to be similar along the entire array for individual events but vary from event to event. Both of these observations are consistent with the previously proposed notion of layered anisotropy in the upper mantle of the North American continent. We find localized changes in splitting parameters at the Grenville Front. The Appalachian Front, or the internal divisions of the Appalachian Orogen do not have obvious changes in splitting parameters associated with them.

  13. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea

    PubMed Central

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-01-01

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1–2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs. PMID:24948180

  14. The information content of high-frequency seismograms and the near-surface geologic structure of "hard rock" recording sites

    USGS Publications Warehouse

    Cranswick, E.

    1988-01-01

    Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.

  15. Three-Dimensional Variation of the Slab Geometry Along Strike and Along Dip in the Cascadia Subduction

    NASA Astrophysics Data System (ADS)

    Gao, H.

    2017-12-01

    The crust and upper mantle seismic structure, spanning from the Juan de Fuca and Gorda spreading centers to the Cascade arc, is imaged with full-wave propagation simulation and ambient noise tomography. To retrieve Rayleigh-wave Empirical Green's Functions between station pairs, we process the vertical component of continuous seismic data recorded between 2004 and 2015 by about 800 stations, including three offshore seismic networks (the Cascadia Initiative Amphibious Array, the Blanco Transform OBS experiment, and the Gorda Deformation Zone OBS experiment) and all available broadband inland stations. The spreading centers have anomalously low shear-wave velocity beneath the oceanic lithosphere. Around the Cobb axial seamount, we observe a low velocity anomaly underlying a relatively thin oceanic lithosphere, indicating its influence on the Juan de Fuca ridge. The tomographic imaging reveals great details of the seismic feature of the oceanic lithosphere prior to and after subduction, which varies significantly along strike and along dip. On average, the thickness of the oceanic lithosphere is about 30-45 km. The Juan de Fuca lithosphere appears to be relatively thin around the ridge, especially beneath the Cobb axial seamount, and then gradually thickens with increasing distance from the ridge. The thickness of the Gorda plate appears to be constant, which is probably due to the small size of the subduction system from formation to subduction. It is noteworthy that the oceanic plate is imaged relatively weaker beneath the trench compared to other parts of the plate. We suggest that in addition to the possible hydration of the oceanic mantle lithosphere, other mechanisms must be considered to explain the observed seismic feature around the trench. Further landward, very low velocity anomalies are observed above the plate interface along the Cascade forearc, indicative of subducted sediments.

  16. Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina

    NASA Astrophysics Data System (ADS)

    Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.

    2008-07-01

    In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.

  17. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  18. Borehole prototype for seismic high-resolution exploration

    NASA Astrophysics Data System (ADS)

    Giese, Rüdiger; Jaksch, Katrin; Krauß, Felix; Krüger, Kay; Groh, Marco; Jurczyk, Andreas

    2014-05-01

    Target reservoirs for the exploitation of hydrocarbons or hot water for geothermal energy supply can comprise small layered structures, for instance thin layers or faults. The resolution of 2D and 3D surface seismic methods is often not sufficient to determine and locate these structures. Borehole seismic methods like vertical seismic profiling (VSP) and seismic while drilling (SWD) use either receivers or sources within the borehole. Thus, the distance to the target horizon is reduced and higher resolution images of the geological structures can be achieved. Even these methods are limited in their resolution capabilities with increasing target depth. To localize structures more accuracy methods with higher resolution in the range of meters are necessary. The project SPWD -- Seismic Prediction While Drilling aims at s the development of a borehole prototype which combines seismic sources and receivers in one device to improve the seismic resolution. Within SPWD such a prototype has been designed, manufactured and tested. The SPWD-wireline prototype is divided into three main parts. The upper section comprises the electronic unit. The middle section includes the upper receiver, the upper clamping unit as well as the source unit and the lower clamping unit. The lower section consists of the lower receiver unit and the hydraulic unit. The total length of the prototype is nearly seven meters and its weight is about 750 kg. For focusing the seismic waves in predefined directions of the borehole axis the method of phased array is used. The source unit is equipped with four magnetostrictive vibrators. Each can be controlled independently to get a common wave front in the desired direction of exploration. Source signal frequencies up to 5000 Hz are used, which allows resolutions up to one meter. In May and September 2013 field tests with the SPWD-wireline prototype have been carried out at the KTB Deep Crustal Lab in Windischeschenbach (Bavaria). The aim was to proof the pressure-tightness and the functionality of the hydraulic system components of the borehole device. To monitor the prototype four cameras and several moisture sensors were installed along the source and receiver units close to the extendable coupling stamps where an infiltration of fluid is most probably. The tests lasted about 48 hours each. It was possible to extend and to retract the coupling stamps of the prototype up to a depth of 2100 m. No infiltration of borehole fluids in the SPWD-tool was observed. In preparation of the acoustic calibration measurements in the research and education mine of the TU Bergakademie Freiberg seismic sources and receivers as well as the recording electronic devices were installed in the SPWD-wireline prototype at the GFZ. Afterwards, the SPWD-borehole device was transported to the GFZ-Underground-Lab and preliminary test measurements to characterize the radiation pattern characteristics have been carried out in the newly drilled vertical borehole in December 2013. Previous measurements with a laboratory borehole prototype have demonstrated a dependency of the radiated seismic energy from the predefined amplification direction, the wave type and the signal frequencies. SPWD is funded by the German Federal Environment Ministry

  19. Improved earthquake monitoring in the central and eastern United States in support of seismic assessments for critical facilities

    USGS Publications Warehouse

    Leith, William S.; Benz, Harley M.; Herrmann, Robert B.

    2011-01-01

    Evaluation of seismic monitoring capabilities in the central and eastern United States for critical facilities - including nuclear powerplants - focused on specific improvements to understand better the seismic hazards in the region. The report is not an assessment of seismic safety at nuclear plants. To accomplish the evaluation and to provide suggestions for improvements using funding from the American Recovery and Reinvestment Act of 2009, the U.S. Geological Survey examined addition of new strong-motion seismic stations in areas of seismic activity and addition of new seismic stations near nuclear power-plant locations, along with integration of data from the Transportable Array of some 400 mobile seismic stations. Some 38 and 68 stations, respectively, were suggested for addition in active seismic zones and near-power-plant locations. Expansion of databases for strong-motion and other earthquake source-characterization data also was evaluated. Recognizing pragmatic limitations of station deployment, augmentation of existing deployments provides improvements in source characterization by quantification of near-source attenuation in regions where larger earthquakes are expected. That augmentation also supports systematic data collection from existing networks. The report further utilizes the application of modeling procedures and processing algorithms, with the additional stations and the improved seismic databases, to leverage the capabilities of existing and expanded seismic arrays.

  20. The behavioural response of migrating humpback whales to a full seismic airgun array.

    PubMed

    Dunlop, Rebecca A; Noad, Michael J; McCauley, Robert D; Kniest, Eric; Slade, Robert; Paton, David; Cato, Douglas H

    2017-12-20

    Despite concerns on the effects of noise from seismic survey airguns on marine organisms, there remains uncertainty as to the biological significance of any response. This study quantifies and interprets the response of migrating humpback whales ( Megaptera novaeangliae ) to a 3130 in 3 (51.3l) commercial airgun array. We compare the behavioural responses to active trials (array operational; n = 34 whale groups), with responses to control trials (source vessel towing the array while silent; n = 33) and baseline studies of normal behaviour in the absence of the vessel ( n = 85). No abnormal behaviours were recorded during the trials. However, in response to the active seismic array and the controls , the whales displayed changes in behaviour. Changes in respiration rate were of a similar magnitude to changes in baseline groups being joined by other animals suggesting any change group energetics was within their behavioural repertoire. However, the reduced progression southwards in response to the active treatments, for some cohorts, was below typical migratory speeds. This response was more likely to occur within 4 km from the array at received levels over 135 dB re 1 µPa 2 s. © 2017 The Author(s).

  1. Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J; Twilley, K; Murvosh, H

    2003-03-03

    For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals.more » Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.« less

  2. Anatomy of Old Faithful hydrothermal system from subsurface seismic imaging of the Yellowstone Upper Geyser Basin

    NASA Astrophysics Data System (ADS)

    Wu, S. M.; Lin, F. C.; Farrell, J.; Ward, K. M.; Karplus, M. S.; Smith, R. B.

    2017-12-01

    The Upper Geyser Basin (UGB) in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful Geyser (OFG). Although this system has been the focus of many geological, geochemical, and geophysical studies, the shallow (<200 m) subsurface structure and the hydrothermal tremor behavior remain poorly characterized. To probe the detailed structure that relates to the hydrothermal plumbing of the UGB, we deployed dense arrays of 3-C 5-Hz geophones in both November of 2015 and 2016, composed of 133 stations with 50 m spacing, and 519 station locations, with an 20 m spacing, respectively. By applying seismic interferometry techniques, we extracted Rayleigh-wave signals between 1-10 Hz via seismic signals excited by nearby hydrothermal features (e.g. geysers and pools). We observe a clear lateral velocity boundary at 3.3 Hz frequency that delineates a higher phase velocity of 1.6 km/sec in the NE and a lower phase velocity of 1.0 km/sec in the SW corresponding to the local geologic formation of rhyolitic and glacial deposits, respectively. We also image a relatively shallow (20-60 m deep) large reservoir with an estimated porosity 30% located 100 meters southwest of the OFG from the significant spatial-dependent waveform distortions and delays between 5-10 Hz frequency. This reservoir is likely controlled by the local geology with a rhyolitic deposit in the NE acting as a relatively impermeable barrier to vertical fluid ascent. To understand the pre-eruption tremor signals from OFG, we first study the seismic waveforms recorded at the closest station to the OFG cone. Many highly repetitive seismic pulses associated with bubble collapse, which compose the tremor signal, can be identified. Using a reference event template and the cross-correlation method, we can determine the onset of each individual bubbling event using a cross-correlation coefficient threshold of 0.8. Based on the detected timing, we then inspect the spatial and temporal variation of the event waveforms across the dense arrays. Clear correlation between temporal waveform variation and air temperature is observed. In this presentation, we will discuss the potential mechanisms of tremor waveform variation and how that can be used to improve our understanding of geyser dynamics.

  3. Seismarmara 2001: A Marine Seismic Survey and Offshore-onshore Artificial Source and Natural Earthquakes In The Seismogenic Region of The Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Hirn, A.; Singh, S.; Charvis, P.; Géli, L.; Laigle, M.; Lépine, J.-C.; de Voogd, B.; Saatcilar, R.; Taymaz, T.; Ozalaybey, S.; Shimamura, H.; Selvi, O.; Karabulut, H.; Murai, Y.; Nishimura, Y.; Yamada, A.; Vigner, A.; Bazin, S.; Tan, O.; Yolsal, S.; Aktar, M.; Galvé, A.; Sapin, M.; Marthelot, J.-M.; Imren, C.; Ergin, M.; Tapirdamaz, C.; Koçaoglu, A.; Tarancioglu, A.; Diaz, J.; Verhille, J.; Auffret, Y.; Cetin, S.; Oçakoglu, N.; Karakoç, F.; Klien, E.; Ricolleau, A.; Selvigen, V.; Demirbag, E.; Hakyemez, Y.; Sarikawak, K.

    SEISMARMARA is a Turkish-French survey carried out in July-October 2001 as a multi-method approach of seismic structure and activity of the Sea of Marmara. This is the segment of the North Anatolian Fault system that continues the one that produced the two destructive earthquakes in 1999 to the East, and is prone to future major earth- quakes as it has experienced in the past. Aims of the programme are to shed light on the regional tectonics and recent evolution at crustal scale, image faults by their structure and seismic activity, and provide a model and reference to improve loca- tion of earthquakes and focal mechanism studies. The programme bases on marine multichannel reflection seismics (MCS), ocean bottom seismometers (OBS) and land stations recording of wide-angle reflection-refraction from the same source, as well as recording of local earthquakes for tomography and stress/strain distribution. The French N/O Le Nadir acquired 4000 km of MCS profiles in the northern Sea of Mar- mara, using a 4.5 km long digital streamer with 360-channels and sources of 8100 cu. in., or 2900 cu. in., provided by a 12-airgun array in single-bubble mode. Navigation safety was provided by a vessel of the Turkish Coast Guards (Sahil Güvenlik), Leg 1 comprises 4 E-W lines and 30 cross-lines in the whole Marmara Trough, leg 2 has 1 been devoted to a very dense grid of lines in the Cinarcik basin and its margins, record- ing over 80 dip-lines at 0.6-0.9 km spacing At sea-bottom 38 OBS, with 3-component sensors and continuous recording over 1 to 2-month in order to also record natural earthquakes were deployed and collected by the Turkish ship MTA Sismik-1. On land the permanent array has been complemented by as many temporary stations, in par- ticular over 30 continuous recording 3-component 2 Hz stations. Refraction seismics from offshore to onshore was further implemented by short-duration deployments of vertical component lightweight instruments with short recording capacity. A teleseis- mic recording effort with temporary stations, tested in the previous year concentrated on a line through the NAF East of Izmit 2

  4. Shear-wave reflection imaging using a MEMS-based 3C landstreamer and a vertical impact source - an esker study in SW Finland

    NASA Astrophysics Data System (ADS)

    Brodic, Bojan; Malehmir, Alireza; Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti

    2017-04-01

    Higher resolution of S-wave seismic data compared to the P-wave ones are attractive for the researches working with the seismic methods. This is particularly true for near-surface applications due to significantly lower shear-wave velocities of unconsolidated sediments. Shear-wave imaging, however, poses certain restrictions on both source and receiver selections and also processing strategies. With three component (3C) seismic receivers becoming more affordable and used, shear-wave imaging from vertical sources is attracting more attention for near-surface applications. Theoretically, a vertical impact source will always excite both P- and S-waves although the excited S-waves are radially polarized (SV). There is an exchange of seismic energy between the vertical and radial component of the seismic wavefield. Additionally, it is theoretically accepted that there is no energy conversion or exchange from vertical into the transverse (or SH) component of the seismic wavefield, and the SH-waves can only be generated using SH sources. With the objectives of imaging esker structure (glacial sediments), water table and depth to bedrock, we conducted a seismic survey in Virttaankangas, in southwestern Finland. A bobcat-mounted vertical drop hammer (500 kg) was used as the seismic source. To obtain better source coupling, a 75×75×1.5 cm steel plate was mounted at the bottom of the hammer casing and all the hits made on this plate after placing it firmly on the ground at every shot point. For the data recording, we used a state-of-the-art comprising of 100 units, 240 m-long, 3C MEMS (micro electro-mechanical system) based seismic landstreamer developed at Uppsala University. Although the focus of the study was on the vertical component data, careful inspection of the transverse (SH) component of the raw data revealed clear shear wave reflections (normal moveout velocities ranging from 280-350 m/s at 50 m depth) on several shot gathers. This indicated potential for their analysis, hence shear-wave reflection imaging was carried out. Results show an excellent correspondence between the drilled depth to bedrock and the one independently obtained using P-wave first arrivals traveltime tomography with a reflection imaged on the stacked section of the SH component data. Aside from this reflection that follows the undulating bedrock topography, additional reflections are also observed on the stacked section that might be related to the sedimentary structures at the site. The section shows much finer resolution compared to the P-wave stacked section processed independently and reported earlier this year. This study illustrates the importance of 3C data recording and shows the potential of the landstreamer in imaging shallow subsurface using both P- and SH-waves generated from a vertical impact source. Whether the strong SH-wave energy observed is generated immediately at the source-ground contact, possible sliding of the base plate on which the impacts were made, an effect of near-surface heterogeneities or other factors remains to be carefully investigated. Acknowledgments: A contribution from Trust 2.2 project (http://trust-geoinfra.se) sponsored by Formas, BeFo, SBUF, SGU, Skanska, Tyréns, FQM, and NGI. We thank Turku Water Company, GTK and University of Turku, Department of Geography and Geology for supporting the data acquisition.

  5. Seismic gradiometry using ambient seismic noise in an anisotropic Earth

    NASA Astrophysics Data System (ADS)

    de Ridder, S. A. L.; Curtis, A.

    2017-05-01

    We introduce a wavefield gradiometry technique to estimate both isotropic and anisotropic local medium characteristics from short recordings of seismic signals by inverting a wave equation. The method exploits the information in the spatial gradients of a seismic wavefield that are calculated using dense deployments of seismic arrays. The application of the method uses the surface wave energy in the ambient seismic field. To estimate isotropic and anisotropic medium properties we invert an elliptically anisotropic wave equation. The spatial derivatives of the recorded wavefield are evaluated by calculating finite differences over nearby recordings, which introduces a systematic anisotropic error. A two-step approach corrects this error: finite difference stencils are first calibrated, then the output of the wave-equation inversion is corrected using the linearized impulse response to the inverted velocity anomaly. We test the procedure on ambient seismic noise recorded in a large and dense ocean bottom cable array installed over Ekofisk field. The estimated azimuthal anisotropy forms a circular geometry around the production-induced subsidence bowl. This conforms with results from studies employing controlled sources, and with interferometry correlating long records of seismic noise. Yet in this example, the results were obtained using only a few minutes of ambient seismic noise.

  6. Constraints on Shear Wave Velocity Heterogeneity and Anisotropy in D' from Finite-Frequency Differential Traveltime Residual Analysis

    NASA Astrophysics Data System (ADS)

    Liao, T.; Hung, S.; Andrad, E. D.; Liu, Q.

    2013-12-01

    The D'' region which lies in the lowermost ~250 km of the mantle has long been postulated as a major thermo-chemical boundary layer in the earth's dynamic evolution, where the upwelling plumes most likely originate and the downwelling cold slabs terminate. Numerous seismological investigations have found seismically distinct features, revealing the presence of both strong velocity heterogeneity and anisotropy near the core-mantle boundary. In recent years, the rapid growth of broadband seismograph array data and the advent of array processing methods and finite-frequency wave theory hold great promise for improving global coverage of seismic constraints for refinement of the details and complexity of the D' structure. In this study, we collect all recorded and available broadband waveforms from earthquakes with epicentral distances of 40-145o and magnitudes greater than 5.8 during 2002-2012. A cluster analysis (Houser at al. 2008) is then adopted to simultaneously group the seismic phases of interest with similar waveforms together as clusters and measure relative traveltime shifts between them in the same cluster by waveform cross correlation. We construct a dataset of differential traveltime residuals from composite phases, S(Sdiff), SKS, SKKS, ScS and multiply-reflected ScS phases commonly used to constrain both elastic wave speed heterogeneity and anisotropy in the lowermost mantle. While the splitting of Sdiff phases between the vertically (SV) and transversely (SH) polarized components after correcting for upper mantle anisotropy constrained by SKS/SKKS splitting has been identified as evidence for seismic anisotropy in the D' layer, distinct difference in finite-frequency sensitivity for SVdiff and SHdiff waves may lead to apparent splitting in the isotropic heterogeneous earth (Komatitsch et al. 2010). Finite-frequency sensitivity kernels for measured Sdiff traveltime anomalies, constructed with the interactions of forward and adjoint wavefields accurately calculated by a numerical spectral element method, will be utilized to investigate their contribution to the observed splitting times between the SH and SV components and characterize the inherent elastic anisotropy in D'.

  7. Deformation of the Pacific Plate above the Alpine fault ramp and its relationship to expulsion of metamorphic fluids: An array of backshears

    NASA Astrophysics Data System (ADS)

    Wightman, Ruth H.; Little, Timothy A.

    A ˜2 km-wide array of near-vertical backshears in the central Southern Alps, New Zealand, is interpreted to have slipped in an escalator-like way to up-ramp the Pacific Plate onto the Alpine Fault ramp, and to play an important role in channelling metamorphic fluids upward through this active orogen. The oblique-slip backshears formed in the lower crust, are evenly spaced (˜30 cm), and have an average offset of 14 cm that is brittle to ductile and extend over 500 m in vertical length. Cumulative vertical displacements suggest that the causative ramp-step in the Alpine Fault at depth had an angle of 22±8°. Microscale shearing between the backshears probably accomplished additional crustal tilting to ˜45°. We infer this shearing was focused above the basal ramp-step, was transient, and aseismic. Focal mechanisms of earthquakes in the Southern Alps suggest that similar backshearing may be accumulating at depth today, where it is linked to seismic-slip on upper crustal faults. Fluid was integral to the formation and accumulation of shear along the backshears. Near-lithostatic fluid pressures triggered deep, brittle shear failure (>20 km). The steep, dilative backshears allowed these fluids to escape upwards through low permeability (1 × 10-18m2) schist. Fluid expulsion may thus have accomplished a devolatilisation and rheological strengthening along the Alpine mylonite source region at depth, while also causing a hydrolytic weakening of the fluid-invaded rocks (especially quartz veins) in the Pacific Plate. These coupled strength changes may have enhanced the local partitioning of deformation onto steep planes in the Alpine Fault hangingwall.

  8. The geometry and volume of melt beneath Ethiopia

    NASA Astrophysics Data System (ADS)

    Kendall, J. M.; Hammond, J. O. S.

    2016-12-01

    A range of seismic measurements can be used to map melt distribution in the crust and uppermost mantle. These include seismic P- and S-wave velocities derived from surface- and body-wave tomography, Vp/Vs ratios obtained from receiver functions, and estimates of seismic anisotropy and attenuation. The most obvious melt parameter that seismic data might be sensitive to is volume fraction. However, such data are more sensitive to the aspect ratio of melt inclusions, which is controlled by the melt wetting angle or in other words the shape of the melt inclusion. To better understand this we perform numerical modelling, varying the shape and amount of melt, to show how various seismic phases are effected by melt. To consider the effects on seismic anisotropy we assume that the melt can be stored in pockets of melt that are either horizontally or vertically aligned (e.g., sills versus dykes). We then consider a range of seismic observations from the rifting environment of Ethiopia. Recent studies of P- and S-wave tomography, Rayleigh and Love waves, and Pn or wide angle P-wave refractions provide provide complimentary constraints on melt volume, orientation and inclusion aspect ratio. Furthermore, receiver functions and shear-wave splitting in body waves show strong anisotropy in this region and can be used to constrain the strike of vertically-aligned partial melt. We show that melt in the mantle beneath Ethiopia is likely stored in low aspect ratio disk-like inclusions, suggesting melt is not in textural equilibrium. We estimate that 2-7% vertically aligned melt is stored beneath the Main Ethiopian Rift, >6% horizontally and vertically aligned melt is stored beneath the Afar-region of the Red Sea Rift and 1-6% horizontally aligned melt is stored beneath the Danakil microplate. This supports ideas of strong shear-derived segregation of melt in narrow parts of the rift and large volumes of melt beneath Afar.

  9. Development of Vertical Cable Seismic System (3)

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.

    2013-12-01

    The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of shot points and receiver points in the field include the errors. We use these data as initial guesses, we invert iteratively shot and receiver positions to match the travel time data. After several iterations we could finally estimate the most probable positions. Integration of the constraint of VCS hydrophone positions, such as the spacing is 10m, can accelerate the convergence of the iterative inversion and improve results. The accuracy of the estimated positions from the travel time date is enough for the VCS data processing.

  10. Analysis and Modeling of the Shear Waves Generated by Explosions at the San Andreas Fault Observatory at Depth

    DTIC Science & Technology

    2012-09-01

    09NA29328 Proposal No. BAA09-69 ABSTRACT Using a deep deployment of an 80-element, 3-component borehole seismic array stretching from 1.5 to 2.3...Administration (NNSA). 14. ABSTRACT Using a deep deployment of an 80-element, 3-component borehole seismic array stretching from 1.5 to 2.3 kilometer (km) depth...in the lower half of the borehole array . The strong velocity discontinuity at 2.0 km depth gives rise to another converted S wave, best seen in

  11. 76 FR 26255 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ..., the R/V Marcus G. Langseth (Langseth) and a seismic airgun array to collect seismic reflection and... possible, depending on logistics and weather. The proposed seismic survey will collect seismic reflection... Shillington, Spahr Webb, and Mladen Nedimovic, all of L-DEO. The vessel will be self-contained, and the crew...

  12. Depth determination and source characteristics of the North Korean Nuclear Tests (2006, 2009, 2013 and 2016) using local and teleseismic arrays

    NASA Astrophysics Data System (ADS)

    Kim, S. G.

    2016-12-01

    Depth determination and source characteristics of the North Korea Nuclear tests (2006, 2009, 2013 and 2016) using seismic arrays with azimuthal optium coverage So Gu Kim1,*, Yefim Gitterman2, Václav Vavryčuk3 and Seoung-kyu Lee1 1Korea Seismological Institute, Goyang 10332, Republic of Korea 2Seismology Division, Geophysical Institute of Israel, P.O.B. 182, Lod 71100, Israel 3Institute of Geophysics, Academy of Sciences, Prague 14100, Czech Republic Abstract The source depths for the North Korean nuclear tests (2006, 2009, 2013 and 2016) were determined using depth phases (pP, sP, pPn and sPn) and Rayleigh wave spectra from local and global arrays. The emplacement depths were estimated at 2.21, 2.10, 2.10 and 2.08 km for the 2006, 2009. 2013 and 2016 nuclear tests respectively. It was also found that the mechanism of the 2006 test generated roughly a reverse faulting accompanying mostly Rayleigh waves, whereas the 2009 and 2013 tests were an oblique-reverse faulting generating SH and Love waves as well as Rayleigh waves. The generation of SH and Love waves for the 2009 and 2013 nuclear tests was attributed to not only release of tectonic stress but also other factors such as relaxation of cavity fractures, source configuration and source mechanism. We infer that the 2009, 2013 and 2016 tests must have well contained nuclear debris through long winding horizontal drifts in the light of the absence of radioisotopes to the atmosphere compared with 2006 test which may have been conducted in the vertical shift as a vertically distributed source. ______________________________________________ *Corresponding author: So Gu Kim (sogukim@hanmail.net)

  13. Pattern Informatics Approach to Earthquake Forecasting in 3D

    NASA Astrophysics Data System (ADS)

    Toya, Y.; Tiampo, K. F.; Rundle, J. B.; Chen, C.; Li, H.; Klein, W.

    2009-05-01

    Natural seismicity is correlated across multiple spatial and temporal scales, but correlations in seismicity prior to a large earthquake are locally subtle (e.g. seismic quiescence) and often prominent in broad scale (e.g., seismic activation), resulting in local and regional seismicity patterns, e.g. a Mogi's donut. Recognizing that patterns in seismicity rate are reflecting the regional dynamics of the directly unobservable crustal stresses, the Pattern Informatics (PI) approach was introduced by Tiampo et al. in 2002 [Europhys. Lett., 60 (3), 481-487,] Rundle et al., 2002 [PNAS 99, suppl. 1, 2514-2521.] In this study, we expand the PI approach to forecasting earthquakes into the third, or vertical dimension, and illustrate its further improvement in the forecasting performance through case studies of both natural and synthetic data. The PI characterizes rapidly evolving spatio-temporal seismicity patterns as angular drifts of a unit state vector in a high dimensional correlation space, and systematically identifies anomalous shifts in seismic activity with respect to the regional background. 3D PI analysis is particularly advantageous over 2D analysis in resolving vertically overlapped seismicity anomalies in a highly complex tectonic environment. Case studies will help to illustrate some important properties of the PI forecasting tool. [Submitted to: Concurrency and Computation: Practice and Experience, Wiley, Special Issue: ACES2008.

  14. Ambient seismic noise monitoring of the Super-Sauze landslide from a very dense temporary seismic array

    NASA Astrophysics Data System (ADS)

    Chtouki, Toufik; Vergne, Jerome; Provost, Floriane; Malet, Jean-Philippe; Burtin, Arnaud; Hibert, Clément

    2017-04-01

    The Super-Sauze landslide is located on the southern part of the Barcelonnette Basin (French Alps) and has developed in a soft clay-shale environment. It is one of the four sites continuously monitored through a wide variety of geophysical and hydro-geological techniques in the framework of the OMIV French national landslide observatory. From early June to mid-July 2016, a temporary dense seismic array has been installed in the most active part of the landslide and at its surroundings. 50 different sites with an average inter-station distance of 50m have been instrumented with 150 miniaturized and autonomous seismic stations (Zland nodes), allowing a continuous record of the seismic signal at frequencies higher than 0.2Hz over an almost regular grid. Concurrently, a Ground-Based InSAR device allowed for a precise and continuous monitoring of the surface deformation. Overall, this experiment is intended to better characterize the spatio-temporal evolution of the deformation processes related to various type of forcing. We analyze the continuous records of ambient seismic noise recorded by the dense array. Using power spectral densities, we characterize the various types of natural and anthropogenic seismic sources, including the effect of water turbulence and bedload transport in the small nearby torrents. We also compute the correlation of the ambient diffuse seismic noise in various frequency bands for the 2448 station pairs to recover the empirical Green functions between them. The temporal evolution of the coda part of these noise correlation functions allows monitoring and localizing shear wave velocity variations in the sliding mass. Here we present some preliminary results of this analysis and compare the seismic variations to meteorological data and surface deformation.

  15. Evaluation of high frequency ghost cavitation emissions for two different seismic air-gun arrays using numerical modelling

    NASA Astrophysics Data System (ADS)

    Khodabandeloo, Babak; Landrø, Martin

    2017-04-01

    Sound is deployed by marine mammals for variety of vital purposes such as finding food, communication, echolocation, etc. On the other hand human activities generate underwater noise. One major type of acoustic source is marine seismic acquisition which is carried out to image layers beneath the seabed exploiting reflected acoustic and elastic waves. Air-gun arrays are the most common and efficient marine seismic sources. Field measurements using broad band hydrophones have revealed that acoustic energies emitted by air-gun arrays contains frequencies from a few Hz up to tens of kHz. Frequencies below 200 Hz benefit seismic imaging and the rest is normally considered as wasted energy. On the other hand, the high frequency range (above 200 Hz) overlaps with hearing curves of many marine mammals and especially toothed whales and may have an impact on their behavior. A phenomenon called ghost cavitation is recently recognized to be responsible for a major part of these high frequencies (> 5 kHz). Acoustic pressure waves of individual air guns reflected from sea surface can cause the hydrostatic pressure to drop towards zero close to the source array. In these regions there is a high probability for water vapor cavity growth and subsequent collapse. We have simulated ghost cavitation cloud using numerical modelling and the results are validated by comparing with field measurements. The model is used to compare the amount of high frequency noise due to ghost cavitation for two different air gun arrays. Both of the arrays have three subarrays but the array distance for the one with 2730 in3 air volume is 6 meters and for the slightly bigger array (3250 in3 in air volume) the subarrays are separated by 8 meters. Simulation results indicate that the second array, despite larger subarray distance, generates stronger ghost cavitation signal.

  16. Near- Source, Seismo-Acoustic Signals Accompanying a NASCAR Race at the Texas Motor Speedway

    NASA Astrophysics Data System (ADS)

    Stump, B. W.; Hayward, C.; Underwood, R.; Howard, J. E.; MacPhail, M. D.; Golden, P.; Endress, A.

    2014-12-01

    Near-source, seismo-acoustic observations provide a unique opportunity to characterize urban sources, remotely sense human activities including vehicular traffic and monitor large engineering structures. Energy separately coupled into the solid earth and atmosphere provides constraints on not only the location of these sources but also the physics of the generating process. Conditions and distances at which these observations can be made are dependent upon not only local geological conditions but also atmospheric conditions at the time of the observations. In order to address this range of topics, an empirical, seismo-acoustic study was undertaken in and around the Texas Motor Speedway in the Dallas-Ft. Worth area during the first week of April 2014 at which time a range of activities associated with a series of NASCAR races occurred. Nine, seismic sensors were deployed around the 1.5-mile track for purposes of documenting the direct-coupled seismic energy from the passage of the cars and other vehicles on the track. Six infrasound sensors were deployed on a rooftop in a rectangular array configuration designed to provide high frequency beam forming for acoustic signals. Finally, a five-element infrasound array was deployed outside the track in order to characterize how the signals propagate away from the sources in the near-source region. Signals recovered from within the track were able to track and characterize the motion of a variety of vehicles during the race weekend including individual racecars. Seismic data sampled at 1000 sps documented strong Doppler effects as the cars approached and moved away from individual sensors. There were faint seismic signals that arrived at seismic velocity but local acoustic to seismic coupling as supported by the acoustic observations generated the majority of seismic signals. Actual seismic ground motions were small as demonstrated by the dominance of regional seismic signals from a magnitude 4.0 earthquake that arrived at the local seismometers as the race began. The infrasound arrays recorded a variety of atmosphere only processes including substantial helicopter traffic although the array outside the track did not capture the details of the race as a result of the rapid attenuation of high frequency signals.

  17. Application of Seismic Array Processing to Tsunami Early Warning

    NASA Astrophysics Data System (ADS)

    An, C.; Meng, L.

    2015-12-01

    Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800 instruments) and the Earthscope USArray Transportable Array (~400 instruments), are established.

  18. Improving slowness estimate stability and visualization using limited sensor pair correlation on seismic arrays

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Näsholm, S. P.; Ruigrok, E.; Kværna, T.

    2018-04-01

    Seismic arrays enhance signal detection and parameter estimation by exploiting the time-delays between arriving signals on sensors at nearby locations. Parameter estimates can suffer due to both signal incoherence, with diminished waveform similarity between sensors, and aberration, with time-delays between coherent waveforms poorly represented by the wave-front model. Sensor-to-sensor correlation approaches to parameter estimation have an advantage over direct beamforming approaches in that individual sensor-pairs can be omitted without necessarily omitting entirely the data from each of the sensors involved. Specifically, we can omit correlations between sensors for which signal coherence in an optimal frequency band is anticipated to be poor or for which anomalous time-delays are anticipated. In practice, this usually means omitting correlations between more distant sensors. We present examples from International Monitoring System seismic arrays with poor parameter estimates resulting when classical f-k analysis is performed over the full array aperture. We demonstrate improved estimates and slowness grid displays using correlation beamforming restricted to correlations between sufficiently closely spaced sensors. This limited sensor-pair correlation (LSPC) approach has lower slowness resolution than would ideally be obtained by considering all sensor-pairs. However, this ideal estimate may be unattainable due to incoherence and/or aberration and the LSPC estimate can often exploit all channels, with the associated noise-suppression, while mitigating the complications arising from correlations between very distant sensors. The greatest need for the method is for short-period signals on large aperture arrays although we also demonstrate significant improvement for secondary regional phases on a small aperture array. LSPC can also provide a robust and flexible approach to parameter estimation on three-component seismic arrays.

  19. Scanning Seismic Intrusion Detector

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1982-01-01

    Scanning seismic intrusion detector employs array of automatically or manually scanned sensors to determine approximate location of intruder. Automatic-scanning feature enables one operator to tend system of many sensors. Typical sensors used with new system are moving-coil seismic pickups. Detector finds uses in industrial security systems.

  20. Waveform tomography of crustal structure in the south San Francisco Bay region

    USGS Publications Warehouse

    Pollitz, F.F.; Fletcher, J.P.

    2005-01-01

    We utilize a scattering-based seismic tomography technique to constrain crustal tructure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional-scale studies. Using fully three-dimensional kernels, this technique is here applied to observed P, S, and surface waves of intermediate period (3-4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short-period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth-dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km. Copyright 2005 by the American Geophysical Union.

  1. A Volcano Monitoring Seismo-Acoustic Network in the CNMI

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Crippen, S. E.; Hayward, C.; Quick, J. E.

    2011-12-01

    In late spring and early summer of 2011, a seismo-acoustic network was installed in the Commonwealth of the Northern Mariana Islands (CNMI) for volcano monitoring. The network consists of a seismo-acoustic array on Saipan, an acoustic array on Sarigan with one seismometer, and a seismic network on Anatahan. On Saipan the array consists of a central site and 3 embedded triangular arrays with apertures of 100 m, 300 m and 1000 m. Four 50-foot porous hoses in a clover-leaf arrangement are used for spatial filtering at each acoustic site. Broadband seismometers were installed at the central site and the 1000 m sites. The Sarigan Array consists of a central acoustic site with 5 surrounding sites evenly spaced at 50 m radius, and one broadband seismic station. Two hoses were used for each site on Sarigan. Four broadband seismic stations were also installed on Anatahan which last erupted in 2005. Data from each array is sent by radio telemetry to the Emergency Management Office on Saipan, where it is routed to the USGS and SMU. Data will be used for volcano monitoring which will allow the CNMI to resume economic activity in the uninhabited northern islands. Initial data streams show high seismic noise levels as expected for an island installation. The Sarigan acoustic sites are also noisy as a result of being more exposed to wind than the Saipan sites. Many small events have already been observed in the infrasound data. This network was installed through the collaborative efforts of CNMI, USGS and SMU.

  2. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group

    2018-05-01

    Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.

  3. Stress Orientations and Strain Rates in the Upper Plate of a `Locked' subduction zone, at southernmost North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Evanzia, D. A. D.; Lamb, S. H.; Savage, M. K.

    2017-12-01

    The southern North Island, New Zealand is located at the southern Hikurangi Margin, where the Pacific Plate is obliquely subducting westward underneath the Australian Plate. The orientations of the principle stresses in the overriding plate are determined from microseismic focal mechanisms detected and located using the temporary SAHKE and permanent GeoNet seismic array operating during 2009-2010. The microseismic earthquakes are located with the NonLinLoc method, using a New Zealand specific 3D velocity model; only those earthquakes located above the modelled subduction plate interface are used. Strain rate parameters calculations are calculated using cGPS velocities from 56 stations located from the central North Island to the northernmost South Island, New Zealand. In the region west of the Tararua-range-bounding Wairarapa fault (the Western region), the orientations of stresses indicate a normal regime (S1: vertical; S2 & S3: horizontal), with SHmax trending ENE. In the Central Basin region (east of the Wairarapa fault) the orientations of the stresses indicate a reverse regime (S3: vertical; S1 & S2: horizontal), with SHmax orientated NW. The low seismicity rates in the Eastern region make the results unreliable. There is a distinct difference between the strain rate and vorticity on either side the Wairarapa fault. Strain rate and vorticity rates increase west and decreased east of the Wairarapa; this correlates well with the pattern of observed seismicity. The southern North Island is predominately contracting, except for a region on the West coast, where some expansion is occurs. This pattern of expansion in the West and contraction in the center of the study area, calculated from cGPS, is similar the stress inversion results calculated from focal mechanisms. These similarities suggest that the present stress and strain rates are collinear, as occurs in isotropic media.

  4. An ocean bottom seismometer study of shallow seismicity near the Mid- America Trench offshore Guatemala ( Pacific).

    USGS Publications Warehouse

    Ambos, E.L.; Hussong, D.M.; Holman, C.E.

    1985-01-01

    Five ocean bottom seismometers recorded seismicity near the Mid-America Trench offshore Guatemala for 27 days in 1979. The array was emplaced in the lower slope region, just above the topographic trench. Approximately 170 events were recorded by 3 or more seismometers, and almost half were located with statistical hypocentral errors of <10 km. Most epicenters were located immediately landward of the trench axis, and many were further confined to a zone NW of the array. In terms of depth, most events were located within the subducting Cocos plate rather than in the overlying plate or at the plate-plate boundary. Most magnitudes ranged between 3.0 and 4.0 mb, and the threshold magnitude of locatable events was about 2.8 mb. Two distinct composite focal mechanisms were determined. One appears to indicate high- angle reverse faulting in the subducting plate, in a plane parallel to trench axis strike. The other, constructed for some earthquakes in the zone NW of the array, seems to show normal faulting along possible fault planes oriented quasi-perpendicular to the trench axis. Projection of our seismicity sample and of well-located WWSSN events from 1954 to 1980 onto a plane perpendicular to the trench axis shows a distinct gap between the shallow seismicity located by our array, and the deeper Wadati-Benioff zone seismicity located by the WWSSN. We tentatively ascribe this gap to inadequate sampling.-from Authors

  5. Seismicity in Oklahoma Before Prague

    NASA Astrophysics Data System (ADS)

    Delorey, A. A.; Johnson, P. A.

    2017-12-01

    The 2011 M5.7 Prague earthquake was the first large anthropogenically induced earthquake in Oklahoma. Since then, three more M5+ earthquakes followed it near Fairview, Pawnee, and Cushing. Oklahoma induced seismicity has garnered a lot of attention from both the media and the scientific community. But, little is known about seismicity in Oklahoma prior to the Prague earthquake due to a lack of instrumentation. We ask the question, "Was there any indication in the geophysical record prior to the Prague earthquake that bigger earthquakes were becoming more likely?" Fortunately, stations from Earthscope's Transportable Array were in Oklahoma during 2010 and 2011 providing a sparse, but still useful data set. Using our microseismicity detector called Interstation Seismic Coherence, we were able to catalog over 3000 earthquakes with a magnitude of completeness around 2.0 in northeastern Oklahoma over 17 months between June 2010 and the Prague earthquake in November 2011. During this period of time there are less than 200 earthquakes in the ANSS Comprehensive Catalog and 900 in the catalog produced by the Array Network Facility at the UCSD using Transportable Array stations. The M>5 earthquakes occurred in a region where stress conditions and seismicity rates were evolving much faster than they do in many natural systems presenting an opportunity to study the time dependence of upper crustal behavior. A clustering analysis shows that earthquakes occurring in northeastern Oklahoma during 2010-2011 are highly correlated with the magnitude of solid earth tides. Although some aftershocks and clusters were recorded following the Prague earthquake using temporary arrays, regional seismicity is not well recorded again until later in 2013. Of note, after 2013, we no longer observe tidal correlation suggesting the ensemble of fault criticality has evolved. One explanation for this change in earthquake behavior is a change in poroelastic conditions.

  6. ActiveSeismoPick3D - automatic first arrival determination for large active seismic arrays

    NASA Astrophysics Data System (ADS)

    Paffrath, Marcel; Küperkoch, Ludger; Wehling-Benatelli, Sebastian; Friederich, Wolfgang

    2016-04-01

    We developed a tool for automatic determination of first arrivals in active seismic data based on an approach, that utilises higher order statistics (HOS) and the Akaike information criterion (AIC), commonly used in seismology, but not in active seismics. Automatic picking is highly desirable in active seismics as the number of data provided by large seismic arrays rapidly exceeds of what an analyst can evaluate in a reasonable amount of time. To bring the functionality of automatic phase picking into the context of active data, the software package ActiveSeismoPick3D was developed in Python. It uses a modified algorithm for the determination of first arrivals which searches for the HOS maximum in unfiltered data. Additionally, it offers tools for manual quality control and postprocessing, e.g. various visualisation and repicking functionalities. For flexibility, the tool also includes methods for the preparation of geometry information of large seismic arrays and improved interfaces to the Fast Marching Tomography Package (FMTOMO), which can be used for the prediction of travel times and inversion for subsurface properties. Output files are generated in the VTK format, allowing the 3D visualization of e.g. the inversion results. As a test case, a data set consisting of 9216 traces from 64 shots was gathered, recorded at 144 receivers deployed in a regular 2D array of a size of 100 x 100 m. ActiveSeismoPick3D automatically checks the determined first arrivals by a dynamic signal to noise ratio threshold. From the data a 3D model of the subsurface was generated using the export functionality of the package and FMTOMO.

  7. Investigation of Nonlinear Site Response and Seismic Compression from Case History Analysis and Laboratory Testing

    NASA Astrophysics Data System (ADS)

    Yee, Eric

    In this thesis I address a series of issues related to ground failure and ground motions during earthquakes. A major component is the evaluation of cyclic volumetric strain behavior of unsaturated soils, more commonly known as seismic compression, from advanced laboratory testing. Another major component is the application of nonlinear and equivalent linear ground response analyses to large-strain problems involving highly nonlinear dynamic soil behavior. These two components are merged in the analysis of a truly unique and crucial field case history of nonlinear site response and seismic compression. My first topic concerns dynamic soil testing for relatively small strain dynamic soil properties such as threshold strains, gammatv. Such testing is often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, I extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses in the small strain range. I utilize linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. I utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strain response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains. My second topic concerns the seismic compression characteristics of non-plastic and low-plasticity silty sands with varying fines content (10 ≤ FC ≤ 60%). Simple shear testing was performed on various sand-fines mixtures at a range of modified Proctor relative compaction levels ( RC) and degrees-of-saturation (S). Aside from the expected strong influence of RC, increasing fines content is found to generally decrease volume change for fines fractions consisting of silts and clayey silts with moderate to low plasticity. With truly non-plastic fines (rock flour), cyclic volume change increases with FC. Some materials also exhibit an effect of as-compacted saturation in which moderate saturation levels associated with high matric suction cause volume change to decrease. A preliminary empirical model to capture these effects is presented. The balance of the dissertation is related to a case history of strongly nonlinear site response and seismic compression associated with a free-field downhole array installed near the Service Hall at the Kashiwazaki-Kariwa nuclear power plant, which recorded strong ground motions from the Mw 6.6 2007 Niigata-ken Chuetsu-oki earthquake. Site conditions at the array consist of about 70 m of medium-dense sands overlying clayey bedrock, with ground water located at 45 m. Ground shaking at the bedrock level had geometric mean peak accelerations of 0.55 g which is reduced to 0.4 g at the ground surface, indicating nonlinear site response. Ground settlements of approximately 15+/-5 cm occurred at the site. A site investigation was performed to develop relevant soil properties for ground response and seismic compression analysis, including shear wave velocities, shear strength, relative density, and modulus reduction and damping curves. (Abstract shortened by UMI.)

  8. Crust and lithosphere structure in the eastern segment of the Xing-Meng orogenic belt from S-receiver function

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Wu, Q.

    2013-12-01

    From 2009 to 2011, a 60 station broadband seismic array extending over 1200km was deployed in northeast China (NEC) by the Institute of geophysics, China Earthquake Administration (CEA). The recently linear deployment of seismic array in Northeast China (NEC) facilitated collection of more high-quality broadband data, thus provide us an opportunity to use S-wave receiver functions to investigate its crustal and mantle lithosphere structure with high resolution. Two distinct signals with large amplitude can be identified in our imaged S receiver functions. The strong positive one from the Moho can be observed continuously at depths from 40 km beneath Great Xing'an Range to less than 30 km beneath the Songliao Basin. The imaged Moho agrees with previous estimate of crustal thickness, and the lateral variations correlate to its surface tomography. The deep negative Sp phase interpreted as from the lithosphere-asthenosphere boundary (LAB) is as shallow as ~100km in the Songliao basin, down to 140-160km in the westward of Xingmeng block. The boundary is less prominent east of the Songliao Basin. The imaged Moho and LAB structure indicate the crust and lithosphere thinning in the Songliao Basin, and the vertical thinning of LAB is more obvious, evidence in a depth variation up to 50 km. The Songliao Basin is a continental rifting where a large amount of extension occurs, and the coupling of thinning between in the crust and underlying lithosphere indicated that the lithosphere stretching may be involved to the crustal rifting. The stretching can be more explained by the pure shear regime proposed in extensional tectonics. Acknowledgments. Seismic data were collected by the by the Institute of Geophysics, China Earthquake Administration. This work was supported by the NSF of China (grants 40974061, 90814013), the Chinese government's executive program (SinoProbe-02-03) and the international cooperation project of the Ministry of Science and Technology of China (2011DFB20120).

  9. A progress report on the ARRA-funded geotechnical site characterization project

    NASA Astrophysics Data System (ADS)

    Martin, A. J.; Yong, A.; Stokoe, K.; Di Matteo, A.; Diehl, J.; Jack, S.

    2011-12-01

    For the past 18 months, the 2009 American Recovery and Reinvestment Act (ARRA) has funded geotechnical site characterizations at 189 seismographic station sites in California and the central U.S. This ongoing effort applies methods involving surface-wave techniques, which include the horizontal-to-vertical spectral ratio (HVSR) technique and one or more of the following: spectral analysis of surface wave (SASW), active and passive multi-channel analysis of surface wave (MASW) and passive array microtremor techniques. From this multi-method approach, shear-wave velocity profiles (VS) and the time-averaged shear-wave velocity of the upper 30 meters (VS30) are estimated for each site. To accommodate the variability in local conditions (e.g., rural and urban soil locales, as well as weathered and competent rock sites), conventional field procedures are often modified ad-hoc to fit the unanticipated complexity at each location. For the majority of sites (>80%), fundamental-mode Rayleigh wave dispersion-based techniques are deployed and where complex geology is encountered, multiple test locations are made. Due to the presence of high velocity layers, about five percent of the locations require multi-mode inversion of Rayleigh wave (MASW-based) data or 3-D array-based inversion of SASW dispersion data, in combination with shallow P-wave seismic refraction and/or HVSR results. Where a strong impedance contrast (i.e. soil over rock) exists at shallow depth (about 10% of sites), dominant higher modes limit the use of Rayleigh wave dispersion techniques. Here, use of the Love wave dispersion technique, along with seismic refraction and/or HVSR data, is required to model the presence of shallow bedrock. At a small percentage of the sites, surface wave techniques are found not suitable for stand-alone deployment and site characterization is limited to the use of the seismic refraction technique. A USGS Open File Report-describing the surface geology, VS profile and the calculated VS30 for each site-will be prepared after the completion of the project in November 2011.

  10. Surface wave tomography of the Ontong Java Plateau: Seismic probing of the largest igneous province

    NASA Astrophysics Data System (ADS)

    Richardson, William Philip

    1998-12-01

    Large igneous provinces (LIP), such as the gigantic Cretaceous oceanic plateaus, the Ontong-Java, the Manihiki and the Kerguelen, are part of a globally distributed diverse suite of massive crustal features considered to be episodic representations of mantle dynamics (Coffin and Eldholm, 1994). The Ontong Java Plateau in the central western Pacific is by far the largest (and presumably thickest) of these provinces and is believed to have been emplaced rapidly in the Aptian, ˜122 Ma (Tarduno et al., 1991). From 1994 to 1996 four PASSCAL broadband seismic stations were deployed in an array north of the OJP. Analysis was conducted on vertical component broadband seismograms from events recorded on the Micronesian Seismic Experiment array between January 1994 and March 1996. The purpose of this experiment is to investigate the crustal and upper mantle structure of the Ontong Java Plateau (OJP) employing surface wave tomographic methods. Using the partitioned waveform inversion method (Nolet, 1990) and earthquakes with published Centroid Moment Tensor (Dziewonski et al., 1981) solutions, we produce waveform fits from source-to-receiver paths that primarily sample the OJP. From these waveform fits, linearized constraints on shear velocity suggest: (1) a massively thickened crust over the center of the OJP-greater than 35km over central areas of the plateau while thinning off-center; (2) a pronounced low-velocity zone down to ˜300km depth-a robust result in agreement with recent geochemical predictions (Neal et al., 1997); (3) the probability of lateral heterogeneity across the OJP. Finally, by combining many single waveform inversions (van der Lee and Nolet, 1997b) a 3-D shear velocity model can be computed for the Ontong Java Plateau and the nearby Caroline Basin. New constraints on the crustal thickness (and hence the volume extruded) are presented, thereby adding to the understanding of the overall tectonic setting and possible emplacement mechanism of the structure.

  11. Amplification Factors for Spectral Acceleration Using Borehole Seismic Array in Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, T. S.; Yih-Min, W.; Chao, W. A.; Chang, C. H.

    2017-12-01

    In order to reduce the noise from surface to get the high-quality seismic recordings, there are 54 borehole seismic arrays have been installed in Taiwan deployed by Central Weather Bureau (CWB) until the end of 2016. Each array includes two force balance accelerometers, one at the surface and other inside the borehole, as well as one broadband seismometer inside the borehole. The downhole instruments are placed at a depth between 120 and 400 m. The background noise level are lower at the borehole stations, but the amplitudes recorded by borehole stations are smaller than surface stations for the same earthquake due to the different geology conditions. Therefore, the earthquake magnitude estimated by borehole station is smaller than surface station. So far, CWB only use the surface stations in the magnitude determination due to this situation. In this study, we investigate the site effects between surface and downhole for borehole seismic arrays. Using the spectral ratio derived by the two-station spectral method as the transfer function, simulated the waveform recorded by borehole stations to the surface stations. In the future, through the transfer function, the borehole stations will be included in the estimation of earthquake magnitude and the results of amplification factors can provide the information of near-surface site effects for the ground motion simulation applications.

  12. Inter-plate and intraplate seismotectonic complex deduced from long-term and short-term records of vertical movements of the Sanriku coast on the Northeast Japan forearc

    NASA Astrophysics Data System (ADS)

    Ishimura, D.; Miyauchi, T.; Kaneda, H.

    2012-12-01

    The 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) was accompanied by wide crustal subsidence (max. 1.2 m) along the Saniku coast on the Northeast Japan forearc, about 150 km distant from the axis of Japan Trench. This fact led us to qualitatively and quantitatively reexamine the component of coseismic, post-seismic and inter-seismic crustal movements in cumulative long-term uplift of the coast on the forearc. We demonstrate a geodynamic diagram of vertical movements of the coast and refer to another possible intraplate earthquake off the coast, based on geomorphological method and subsurface core analysis. Mid-late Pleistocene marine terraces indicating the average uplift rate of 0.2-0.4 mm/yr are well developed along the northern part of the Sanriku coast. Holocene intermittently emergent shoreline topography is partially recognized at two levels, 4 m and 2 m in altitude. The 14C dates and lithofacies of geologic cores indicate the tendency of successive subsidence and the seeming subsidence rate of 3 mm/yr in Holocene. Recent tidal data show the faster subsidence rate of 5-9 mm/yr in the last 50 years. Furthermore, no historical large earthquakes with distinct coastal uplifts are documented in the last 1200 years. Such complex vertical movement of the Sanriku coast suggests that another unusual coseismic uplift different from the 2011's M9 earthquake occurred during continuous inter-seismic crustal subsidence, which was accompanied by vertical uplift of 5 m along the northern Sanriku coast. The seismic source fault is estimated be under a 150 km long flexural scarp, 20 km off the coast. The expected magnitude and recurrence interval of offshore earthquakes are more than M8 and 1500 years, respectively. This episodic co-seismic uplift by intraplate great earthquakes quantitatively excelled the inter-seismic subsidence by the drag of coupling of plates and the coseismic subsidence at gigantic plate boundary earthquakes, and the total plus balance in vertical movements has possibly produced the sequence of Pleistocene marine terraces corresponding to interglacial high sea-level stands.

  13. Mapping Shear-wave Velocity Structures of the "African Anomaly" Along a Northwest to Southeast Arc From New Zealand to the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Frodsham, A. E.; Wen, L.

    2006-12-01

    A previous study [Wang and Wen, 2006] investigated the geometry and shear velocity structure of the "African Anomaly" along a great circle arc from the East Pacific Rise to the Japan Sea, and concluded the anomaly extends 1300 km above the core-mantle boundary, that the sides of the anomaly slope towards the apex and has velocity deviations of -5% in the base and -2% to -3% in the mid-lower mantle. Wang and Wen [2004] also reported on the very low velocity province that forms the base of the "African Anomaly" and its lateral extent, but the northern edge of the anomaly was poorly constrained because of the nature of the seismic data. In this presentation we focus on the nature of the anomaly in a cross-section of the mantle along a great arc, from New Zealand, to the Mid-Atlantic Ridge off the coast of Newfoundland, centered over the anomaly. In particular, we focus on the northern edge of the "African Anomaly" where a paucity of large, deep focus earthquakes makes seismic arrivals from the northwest difficult to analyze. We map the lateral extent, thickness, and shear velocity structures of the "African Anomaly" on the basis of forward travel time and waveform modeling of direct S, ScS, and SKS waves. Seismic data used in this study were collected from PASSCAL arrays: KAAPVAAL seismic array (operating years 1997-1999), Tanzania seismic array (1994- 1995), Ethiopia/Kenya seismic array (2000-2002), and the Global Seismographic Network (1994-2002). We minimize uncertainty from earthquake mislocation by relocation of the earthquakes using a global tomographic shear wave velocity model and also correct for heterogeneities outside the anomaly. We explore various methods of data processing, such as frequency filtration, low fold stacking, and cross correlation, to best interpret the arrival times of the various seismic phases and constrain the nature of the "African Anomaly" along a northwest to southeast cross-section.

  14. Development and programming of Geophonino: A low cost Arduino-based seismic recorder for vertical geophones

    NASA Astrophysics Data System (ADS)

    Soler-Llorens, J. L.; Galiana-Merino, J. J.; Giner-Caturla, J.; Jauregui-Eslava, P.; Rosa-Cintas, S.; Rosa-Herranz, J.

    2016-09-01

    The commercial data acquisition systems used for seismic exploration are usually expensive equipment. In this work, a low cost data acquisition system (Geophonino) has been developed for recording seismic signals from a vertical geophone. The signal goes first through an instrumentation amplifier, INA155, which is suitable for low amplitude signals like the seismic noise, and an anti-aliasing filter based on the MAX7404 switched-capacitor filter. After that, the amplified and filtered signal is digitized and processed by Arduino Due and registered in an SD memory card. Geophonino is configured for continuous registering, where the sampling frequency, the amplitude gain and the registering time are user-defined. The complete prototype is an open source and open hardware system. It has been tested by comparing the registered signals with the ones obtained through different commercial data recording systems and different kind of geophones. The obtained results show good correlation between the tested measurements, presenting Geophonino as a low-cost alternative system for seismic data recording.

  15. Subspace Dimensionality: A Tool for Automated QC in Seismic Array Processing

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Stead, R. J.; Begnaud, M. L.

    2013-12-01

    Because of the great resolving power of seismic arrays, the application of automated processing to array data is critically important in treaty verification work. A significant problem in array analysis is the inclusion of bad sensor channels in the beamforming process. We are testing an approach to automated, on-the-fly quality control (QC) to aid in the identification of poorly performing sensor channels prior to beam-forming in routine event detection or location processing. The idea stems from methods used for large computer servers, when monitoring traffic at enormous numbers of nodes is impractical on a node-by node basis, so the dimensionality of the node traffic is instead monitoried for anomalies that could represent malware, cyber-attacks or other problems. The technique relies upon the use of subspace dimensionality or principal components of the overall system traffic. The subspace technique is not new to seismology, but its most common application has been limited to comparing waveforms to an a priori collection of templates for detecting highly similar events in a swarm or seismic cluster. In the established template application, a detector functions in a manner analogous to waveform cross-correlation, applying a statistical test to assess the similarity of the incoming data stream to known templates for events of interest. In our approach, we seek not to detect matching signals, but instead, we examine the signal subspace dimensionality in much the same way that the method addresses node traffic anomalies in large computer systems. Signal anomalies recorded on seismic arrays affect the dimensional structure of the array-wide time-series. We have shown previously that this observation is useful in identifying real seismic events, either by looking at the raw signal or derivatives thereof (entropy, kurtosis), but here we explore the effects of malfunctioning channels on the dimension of the data and its derivatives, and how to leverage this effect for identifying bad array elements through a jackknifing process to isolate the anomalous channels, so that an automated analysis system might discard them prior to FK analysis and beamforming on events of interest.

  16. Ambient Vehicular Noise recorded on a 2D Distributed Fiber Optic Sensing Array :Applications to Permafrost Thaw Detection and Imaging

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Wagner, A. M.; Dou, S.; Martin, E. R.; Ekblaw, I.; Ulrich, C.; James, S. R.; Freifeld, B. M.; Daley, T. M.

    2016-12-01

    Distributed Acoustic Sensing (DAS) is a recently developed technique that allows the spatially dense ( 1m) continuous recording of seismic signals on long strands of commercial fiber optic cables. The availability of continuous recording on dense arrays offers unique possibilities for long-term timelapse monitoring of environmental processes in arctic environments. In the absence of a repeatable semi-permanent seismic source, the use of ambient surface wave noise from infrastructure use (e.g. moving vehicles) for seismic imaging allows tomographic monitoring of evolving subsurface systems. Challenges in such scenarios include (1) the processing requirements for dense (1000+ channel) arrays recording weeks to months of seismic data, (2) appropriate methods to retrieve empirical noise correlation functions (NCFs) in environments with non-optimal array geometries and both coherent as well as incoherent noise, and (3) semi-automated approaches to invert timelapse NCFs for near-surface soil properties.We present an exploratory study of data from a sparse 2D DAS array acquisition on 4000 linear meters of trenched fiber deployed in 10 crossing profiles. The dataset, collected during July and August of 2016, covers a zone of permafrost undergoing a controlled thaw induced by an array of resistive heaters. The site, located near a heavily used road, has a high level of infrastructure noise but exhibits distance-dependent variation in both noise amplitude and spectrum. We apply seismic interferometry to retrieve the empirical NCF across array subsections, and use collocated geophone and broadband sensors to measure the NCF against the true impulse response function of the medium. We demonstrate that the combination of vehicle tracking and data windowing allows improved reconstruction of stable NCFs appropriate for dispersion analysis and inversion. We also show both spatial and temporal patterns of background noise at the site using 2D beamforming and spectral analysis. Our results suggest that valuable information can be extracted from ambient noise recorded with DAS, particularly in the context of monitoring transformations in cold region environments.

  17. Interferometric imaging of the San Andreas Fault at Parkfield Using a Massive VSP

    NASA Astrophysics Data System (ADS)

    Chavarria, J.; Goertz, A.; Karrenbach, M.; Paulsson, B.

    2006-12-01

    The San Andreas Fault Observatory at Depth (SAFOD) has the goal of investigating the physical processes controlling earthquakes in central California at Parkfield. The observatory consists of a deep well, that intersected the San Andreas Fault at seismogenic depths of ~3.2 km, where recurring microearthquake activity takes place. Previous to the drilling of Phase II, that intersected the fault at the end of Summer 2005, a long array of seismometers was deployed in the deeper part of the well to characterize the fault structure and to aid the monitoring activities of the natural seismicity. The Massive VSP array consisted of 80 three component seismometers that were deployed during April and May 2005. During this period of time we recorded active data from 13 explosions used to refine the velocity models that improved the locations of target events. In addition to this, we continuously monitored passive data from the natural earthquake activity in the area that was dominated by the Parkfield 2004 event aftershock sequence. During the recording time of this project we were able to record one of the target earthquakes of the SAFOD project as well as recently discovered non-volcanic tremor. The data recorded by this deep array of seismometers has provided important information to characterize the structure of the fault at scale that is comparable to the scale of the geologic observations. These observations, derived during drilling of the well, consist of cores and cuttings as well as geophysical logs. With the use of the borehole array of seismometers we have been able to directly correlate this lithologic information with seismic phases observed in the VSP data. This has lead to better understanding the nature of the scattering that takes place in this complex fault zone. Seismic reflections in the dataset were analyzed with Kirchhoff imaging methods to determine a partial image of the San Andreas Fault at depth. Due to the low density distribution of sources in the study area the illumination volume is limited but still shows clear signals originating from sub-vertical structures associated to the strands of the San Andreas fault inferred from high resolution earthquake location. The existing Kirchhoff imaging methods have been complemented with the use of interferometric imaging by which we extract the Green's function of the data recorded by the array. This takes place with the use of correlation analysis of both active and passive data resulting in a dataset where each downhole receiver acts as a virtual source. This analysis has provided a refined image of the structure of the San Andreas Fault at seismogenic depths with which a better understanding of the system can be achieved.

  18. Investigation of cortical structures at Etna Volcano through the analysis of array and borehole data.

    NASA Astrophysics Data System (ADS)

    Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio Alex; Galluzzo, Danilo; Contrafatto, Danilo; Rapisarda, Salvatore

    2015-04-01

    A continuous monitoring of seismic activity is a fundamental task to detect the most common signals possibly related with volcanic activity, such as volcano-tectonic earthquakes, long-period events, and volcanic tremor. A reliable prediction of the ray-path propagated back from the recording site to the source is strongly limited by the poor knowledge of the local shallow velocity structure. Usually in volcanic environments the shallowest few hundreds meters of rock are characterized by strongly variable mechanical properties. Therefore the propagation of seismic signals through these shallow layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Driven by these motivations, between May and October 2014 we deployed a seismic array in the area called "Pozzo Pitarrone", where two seismic stations of the local monitoring network are installed, one at surface and one borehole at a depth of about 130 meters. The Pitarrone borehole is located in the middle northeastern flank along one of the main intrusion zones of Etna volcano, the so called NE-rift. With the 3D array we recorded seismic signals coming from the summit craters, and also from the seismogenetic fault called Pernicana Fault, which is located nearby. We used array data to analyse the dispersion characteristics of ambient noise vibrations and we derived one-dimensional (1D) shallow shear-velocity profiles through the inversion of dispersion curves measured by autocorrelation methods (SPAC). We observed a one-dimensional variation of shear-velocity between 430 m/s and 700 m/s to a depth of investigation of about 130 m. An abrupt velocity variation was recorded at a depth of about 60 m, probably corresponding to the transition between two different layers. Our preliminary results suggest a good correlation between the velocity model deducted with the stratigraphic section on Etna. The analysis of the entire data set will improve our knowledge about the (i) structure of the top layer and its relationship with geology, (ii) analysis of the signal to noise ratio (SNR) of volcanic signals as a function of frequency, (iii) study of seismic ray-path deformation caused by the interaction of the seismic waves with the free surface, (iv) evaluation of the attenuation of the seismic signals correlated with the volcanic activity. Moreover the knowledge of a shallow velocity model could improve the study of the source mechanism of low frequency events (VLP, LP and volcanic tremor), and give a new contribution to the seismic monitoring of Etna volcano through the detection and location of seismic sources by using 3D array techniques.

  19. Spatial and temporal distribution of the seismicity along two mid-oceanic ridges with contrasted spreading rates in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Tsang-Hin-Sun, E.; Perrot, J.; Royer, J. Y.

    2015-12-01

    The seismicity of the ultra-slow spreading Southwest (14 mm/y) and intermediate spreading Southeast (60 mm/y) Indian ridges was monitored from February 2012 to March 2013 by the OHASISBIO array of 7 autonomous hydrophones. A total of 1471 events were located with 4 instruments or more, inside the array, with a median location uncertainty < 5 km and a completeness magnitude of mb = 3. Both ridges display similar average rates of seismicity, suggesting that there is no systematic relationship between seismicity and spreading rates. Accretion modes do differ, however, by the along-axis distribution of the seismic events. Along the ultra-slow Southwest Indian Ridge, events are sparse but regularly spaced and scattered up to 50 km off-axis. Along the fast Southeast Indian Ridge, events are irregularly distributed, focusing in narrow regions near the ridge axis at segment ends and along transform faults, whereas ridge-segment centers generally appear as seismic gaps (at the level of completeness of the array). Only two clusters, 6 months apart, are identified in a segment-center at 29°S. From the temporal distribution of the clustered events and comparisons with observations in similar mid-oceanic ridge setting, both clusters seem to have a volcanic origin and to be related to a dike emplacement or a possible eruption on the seafloor. Their onset time and migration rate are comparable to volcanic swarms recorded along the Juan de Fuca Ridge. Overall, the rate of seismicity along the two Indian spreading ridges correlates with the large-scale variations in the bathymetry and shear-wave velocity anomaly in the upper mantle, suggesting that the distribution of the low-magnitude seismicity is mainly controlled by along-axis variations in the lithosphere rheology and temperature.

  20. Wave field features of shallow vertical discontinuity and their application in non-destructive detection

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Luo, Y.; Chen, C.; Li, X.; Huang, Y.

    2007-01-01

    The geotechnical integrity of critical infrastructure can be seriously compromised by the presence of fractures or crevices. Non-destructive techniques to accurately detect fractures in critical infrastructure such as dams and highways could be of significant benefit to the geotechnical industry. This paper investigates the application of shallow seismic and georadar methods to the detection of a vertical discontinuity using numerical simulations. The objective is to address the kinematical analysis of a vertical discontinuity, determine the resulting wave field characteristics, and provide the basis for determining the existence of vertical discontinuities based on the recorded signals. Simulation results demonstrate that: (1) A reflection from a vertical discontinuity produces a hyperbolic feature on a seismic or georadar profile; (2) In order for a reflection from a vertical discontinuity to be produced, a reflecting horizon below the discontinuity must exist, the offset between source and receiver (x0) must be non-zero, on the same side of the vertical discontinuity; (3) The range of distances from the vertical discontinuity where a reflection event is observed is proportional to its length and to x0; (4) Should the vertical crevice (or fracture) pass through a reflecting horizon, dual hyperbolic features can be observed on the records, and this can be used as a determining factor that the vertical crevice passes through the interface; and (5) diffractions from the edges of the discontinuity can be recorded with relatively smaller amplitude than reflections and their ranges are not constrained by the length of discontinuity. If the length of discontinuity is short enough, diffractions are the dominant feature. Real-world examples show that the shallow seismic reflection method and the georadar method are capable of recording the hyperbolic feature, which can be interpreted as vertical discontinuity. Thus, these methods show some promise as effective non-destructive detection methods for locating vertical discontinuities (e.g., fractures or crevices) in infrastructure such as dams and highway pavement. ?? 2007 Elsevier B.V. All rights reserved.

  1. Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Matthew T., E-mail: matthew.johnson.9@us.af.mil; Siriani, Dominic F.; Peun Tan, Meng

    2013-11-11

    Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the differential current injection into array elements and the beam steering direction has been established. It is found to be a fundamentally unique beam-steering mechanism with distinct advantages in efficiency, compactness, speed, and phase-sensitivity to current.

  2. Evaluation of site effects in Loja basin (southern Ecuador)

    NASA Astrophysics Data System (ADS)

    Guartán, J.; Navarro, M.; Soto, J.

    2013-05-01

    Site effect assessment based on subsurface ground conditions is often crucial for estimating the urban seismic hazard. In order to evaluate the site effects in the intra-mountain basin of Loja (southern Ecuador), geological and geomorphological survey and ambient noise measurements were carried out. A classification of shallow geologic materials was performed through a geological cartography and the use of geotechnical data and geophysical surveys. Seven lithological formations have been analyzed, both in composition and thickness of existing materials. The shear-wave velocity structure in the center of the basin, composed by alluvial materials, was evaluated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. VS30 structure was estimated and an average value of 346 m s-1 was obtained. This value agrees with the results obtained from SPT N-value (306-368 m s-1). Short-period ambient noise observations were performed in 72 sites on a 500m × 500m dimension grid. The horizontal-to-vertical spectral ratio (HVSR) method was applied in order to determine a ground predominant period distribution map. This map reveals an irregular distribution of predominant period values, ranged from 0.1 to 1.0 s, according with the heterogeneity of the basin. Lower values of the period are found in the harder formation (Quillollaco formation), while higher values are predominantly obtained in alluvial formation. These results will be used in the evaluation of ground dynamic properties and will be included in seismic microzoning of Loja basin. Keywords: Landform classification, Ambient noise, SPAC method, Rayleigh waves, Shear velocity profile, Ground predominant period. ;

  3. Sub-1-V-60 nm vertical body channel MOSFET-based six-transistor static random access memory array with wide noise margin and excellent power delay product and its optimization with the cell ratio on static random access memory cell

    NASA Astrophysics Data System (ADS)

    Ogasawara, Ryosuke; Endoh, Tetsuo

    2018-04-01

    In this study, with the aim to achieve a wide noise margin and an excellent power delay product (PDP), a vertical body channel (BC)-MOSFET-based six-transistor (6T) static random access memory (SRAM) array is evaluated by changing the number of pillars in each part of a SRAM cell, that is, by changing the cell ratio in the SRAM cell. This 60 nm vertical BC-MOSFET-based 6T SRAM array realizes 0.84 V operation under the best PDP and up to 31% improvement of PDP compared with the 6T SRAM array based on a 90 nm planar MOSFET whose gate length and channel width are the same as those of the 60 nm vertical BC-MOSFET. Additionally, the vertical BC-MOSFET-based 6T SRAM array achieves an 8.8% wider read static noise margin (RSNM), a 16% wider write margin (WM), and an 89% smaller leakage. Moreover, it is shown that changing the cell ratio brings larger improvements of RSNM, WM, and write time in the vertical BC-MOSFET-based 6T SRAM array.

  4. Seismic Source Scaling and Discrimination in Diverse Tectonic Environments

    DTIC Science & Technology

    2009-09-30

    3349-3352. Imanishi, K., W. L. Ellsworth, and S. G. Prejean (2004). Earthquake source parameters determined by the SAFOD Pilot Hole seismic array ... seismic discrimination by performing a thorough investigation of* earthquake source scaling using diverse, high-quality datascts from varied tectonic...these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity

  5. Deriving micro- to macro-scale seismic velocities from ice-core c axis orientations

    NASA Astrophysics Data System (ADS)

    Kerch, Johanna; Diez, Anja; Weikusat, Ilka; Eisen, Olaf

    2018-05-01

    One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s-1 for P-wave and 200 m s-1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s-1 for the alpine ice core and 59 m s-1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s-1 for P-wave and 280 m s-1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s-1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s-1 for P wave and more than 200 m s-1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s-1 per 10 cm). Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy, without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.

  6. ANZA Seismic Network- From Monitoring to Science

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local earthquakes, the ANZA network is receiving real-time data from borehole arrays located at the UCSD Thornton Hospital, and from UCSB's Borrego Valley and Garner Valley Downhole Arrays. Finally the ANZA network is acquiring data from seven PBO sites each with 300 meter deep MEMs accelerometers, passive seismometers, and a borehole strainmeter.

  7. Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.

    2010-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.

  8. Constraints on the frequency-magnitude relation and maximum magnitudes in the UK from observed seismicity and glacio-isostatic recovery rates

    NASA Astrophysics Data System (ADS)

    Main, Ian; Irving, Duncan; Musson, Roger; Reading, Anya

    1999-05-01

    Earthquake populations have recently been shown to have many similarities with critical-point phenomena, with fractal scaling of source sizes (energy or seismic moment) corresponding to the observed Gutenberg-Richter (G-R) frequency-magnitude law holding at low magnitudes. At high magnitudes, the form of the distribution depends on the seismic moment release rate Msolar and the maximum magnitude m_max . The G-R law requires a sharp truncation at an absolute maximum magnitude for finite Msolar. In contrast, the gamma distribution has an exponential tail which allows a soft or `credible' maximum to be determined by negligible contribution to the total seismic moment release. Here we apply both distributions to seismic hazard in the mainland UK and its immediate continental shelf, constrained by a mixture of instrumental, historical and neotectonic data. Tectonic moment release rates for the seismogenic part of the lithosphere are calculated from a flexural-plate model for glacio-isostatic recovery, constrained by vertical deformation rates from tide-gauge and geomorphological data. Earthquake focal mechanisms in the UK show near-vertical strike-slip faulting, with implied directions of maximum compressive stress approximately in the NNW-SSE direction, consistent with the tectonic model. Maximum magnitudes are found to be in the range 6.3-7.5 for the G-R law, or 7.0-8.2 m_L for the gamma distribution, which compare with a maximum observed in the time period of interest of 6.1 m_L . The upper bounds are conservative estimates, based on 100 per cent seismic release of the observed vertical neotectonic deformation. Glacio-isostatic recovery is predominantly an elastic rather than a seismic process, so the true value of m_max is likely to be nearer the lower end of the quoted range.

  9. Analysis the Source model of the 2009 Mw 7.6 Padang Earthquake in Sumatra Region using continuous GPS data

    NASA Astrophysics Data System (ADS)

    Amertha Sanjiwani, I. D. M.; En, C. K.; Anjasmara, I. M.

    2017-12-01

    A seismic gap on the interface along the Sunda subduction zone has been proposed among the 2000, 2004, 2005 and 2007 great earthquakes. This seismic gap therefore plays an important role in the earthquake risk on the Sunda trench. The Mw 7.6 Padang earthquake, an intraslab event, was occurred on September 30, 2009 located at ± 250 km east of the Sunda trench, close to the seismic gap on the interface. To understand the interaction between the seismic gap and the Padang earthquake, twelves continuous GPS data from SUGAR are adopted in this study to estimate the source model of this event. The daily GPS coordinates one month before and after the earthquake were calculated by the GAMIT software. The coseismic displacements were evaluated based on the analysis of coordinate time series in Padang region. This geodetic network provides a rather good spatial coverage for examining the seismic source along the Padang region in detail. The general pattern of coseismic horizontal displacements is moving toward epicenter and also the trench. The coseismic vertical displacement pattern is uplift. The highest coseismic displacement derived from the MSAI station are 35.0 mm for horizontal component toward S32.1°W and 21.7 mm for vertical component. The second largest one derived from the LNNG station are 26.6 mm for horizontal component toward N68.6°W and 3.4 mm for vertical component. Next, we will use uniform stress drop inversion to invert the coseismic displacement field for estimating the source model. Then the relationship between the seismic gap on the interface and the intraslab Padang earthquake will be discussed in the next step. Keyword: seismic gap, Padang earthquake, coseismic displacement.

  10. High vertical resolution crosswell seismic imaging

    DOEpatents

    Lazaratos, Spyridon K.

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  11. Depth-dependence of time-lapse seismic velocity change detected by a joint interferometric analysis of vertical array data

    NASA Astrophysics Data System (ADS)

    Sawazaki, K.; Saito, T.; Ueno, T.; Shiomi, K.

    2015-12-01

    In this study, utilizing depth-sensitivity of interferometric waveforms recorded by co-located Hi-net and KiK-net sensors, we separate the responsible depth of seismic velocity change associated with the M6.3 earthquake occurred on November 22, 2014, in central Japan. The Hi-net station N.MKGH is located about 20 km northeast from the epicenter, where the seismometer is installed at the 150 m depth. At the same site, the KiK-net has two strong motion seismometers installed at the depths of 0 and 150 m. To estimate average velocity change around the N.MKGH station, we apply the stretching technique to auto-correlation function (ACF) of ambient noise recorded by the Hi-net sensor. To evaluate sensitivity of the Hi-net ACF to velocity change above and below the 150 m depth, we perform a numerical wave propagation simulation using 2-D FDM. To obtain velocity change above the 150 m depth, we measure response waveform from the depths of 150 m to 0 m by computing deconvolution function (DCF) of earthquake records obtained by the two KiK-net vertical array sensors. The background annual velocity variation is subtracted from the detected velocity change. From the KiK-net DCF records, the velocity reduction ratio above the 150 m depth is estimated to be 4.2 % and 3.1 % in the periods of 1-7 days and 7 days - 4 months after the mainshock, respectively. From the Hi-net ACF records, the velocity reduction ratio is estimated to be 2.2 % and 1.8 % in the same time periods, respectively. This difference in the estimated velocity reduction ratio is attributed to depth-dependence of the velocity change. By using the depth sensitivity obtained from the numerical simulation, we estimate the velocity reduction ratio below the 150 m depth to be lower than 1.0 % for both time periods. Thus the significant velocity reduction and recovery are observed above the 150 m depth only, which may be caused by strong ground motion of the mainshock and following healing in the shallow ground.

  12. Characterisation of ground motion recording stations in the Groningen gas field

    NASA Astrophysics Data System (ADS)

    Noorlandt, Rik; Kruiver, Pauline P.; de Kleine, Marco P. E.; Karaoulis, Marios; de Lange, Ger; Di Matteo, Antonio; von Ketelhodt, Julius; Ruigrok, Elmer; Edwards, Benjamin; Rodriguez-Marek, Adrian; Bommer, Julian J.; van Elk, Jan; Doornhof, Dirk

    2018-05-01

    The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity ( V S). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ V S values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed V S profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent V S information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative V S profiles at the accelerograph station sites. The measured V S profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the V S profile and the observed amplification from vertical array stations is also excellent.

  13. Characterisation of ground motion recording stations in the Groningen gas field

    NASA Astrophysics Data System (ADS)

    Noorlandt, Rik; Kruiver, Pauline P.; de Kleine, Marco P. E.; Karaoulis, Marios; de Lange, Ger; Di Matteo, Antonio; von Ketelhodt, Julius; Ruigrok, Elmer; Edwards, Benjamin; Rodriguez-Marek, Adrian; Bommer, Julian J.; van Elk, Jan; Doornhof, Dirk

    2018-01-01

    The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity (V S). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ V S values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed V S profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent V S information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative V S profiles at the accelerograph station sites. The measured V S profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the V S profile and the observed amplification from vertical array stations is also excellent.

  14. Seismic reflection imaging of shallow oceanographic structures

    NASA Astrophysics Data System (ADS)

    Piété, Helen; Marié, Louis; Marsset, Bruno; Thomas, Yannick; Gutscher, Marc-André

    2013-05-01

    Multichannel seismic (MCS) reflection profiling can provide high lateral resolution images of deep ocean thermohaline fine structure. However, the shallowest layers of the water column (z < 150 m) have remained unexplored by this technique until recently. In order to explore the feasibility of shallow seismic oceanography (SO), we reprocessed and analyzed four multichannel seismic reflection sections featuring reflectors at depths between 10 and 150 m. The influence of the acquisition parameters was quantified. Seismic data processing dedicated to SO was also investigated. Conventional seismic acquisition systems were found to be ill-suited to the imaging of shallow oceanographic structures, because of a high antenna filter effect induced by large offsets and seismic trace lengths, and sources that typically cannot provide both a high level of emission and fine vertical resolution. We considered a test case, the imagery of the seasonal thermocline on the western Brittany continental shelf. New oceanographic data acquired in this area allowed simulation of the seismic acquisition. Sea trials of a specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: (i) four seismic streamers, each consisting of six traces of 1.80 m; (ii) a 1000 J SIG sparker source, providing a 400 Hz signal with a level of emission of 205 dB re 1 μPa @ 1 m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements most probably induced by internal waves.

  15. Seismic &Infrasound Integrated Array "Apatity". Techniques, data processing, first results of observations.

    NASA Astrophysics Data System (ADS)

    Vinogradov, Y.; Baryshnikov, A.

    2003-04-01

    Since September 2001 3 infrasound membrane type sensors "K-304 AM" have been installed on the territory seismic array "Apatity" near the lake Imandra. A seismic array comprising 11 short-period sensors (type "Geotech S-500"), disposed on small and large circle (0.4 and 1 km diameter). Infrasound sensors located on small circle near the seismograths. All data are digitized at the array site and transmitted in real time to a processing center in Apatity to the Kola Regional Seismological Centre (KRSC). Common complex we are called - Seismic &Infrasound Integrated Array (SISIA) "Apatity". To support temporary storage the transmitting data in a disk loop and access to the data "NEWNORAC" program was created. This program replaced "NORAC" system developed by Norwegian Institute NORSAR, which was in use in KRSC before. A program package EL (event locator) for display and processing of the data has been modified. Now it includes the following : - quick access to the data stored in the disk loop (last two weeks); - data convertation from disk loop format to CSS 3.0 format; - data filtering using bandpass, highpass, lowpass, adaptive or rejector filters; - calculation of spectra and sonograms (spectral diagrams); - seismic events location with plotting on a map; - calculation of backazimuth and apparent velocity of acoustic wave by similar parts of wave recordings; - loading and processing CSS 3.0 seismic and acoustic data from KRSC archive. To store the acoustic data permanently the program BARCSS was made. It rewrites the data from the disk loop to KRSC archive in CSS 3.0 format. For comparison of acoustic noise level with wind we use data from meteorological station in Kandalaksha city, sampling rate is 3 hours. During the period from October 2001 to October 2002 more than 745 seismic events, which basically connected with mine technical activity of the large mining enterprises at the Kola Peninsula, were registered. The most part of events, caused by ground explosions, was registered by infrasound part of SISIA "Apatity". Their sources were at distances from 38 to 220 km. The result of observations during the first 1 year enabled us to estimate frequency range and main directions of arrivals of acoustic waves and noise level in the place of observations. In accordance with the results and relief a 4-rays wind-noise-reducing pipe array would be install at all 3 sensors at May 2003, for improvement the delectability during windy conditions. A schemes of the SISIA "Apatity", data transmitting and processing and samples of detected signals are shown in the presentation.

  16. Combined seismic plus live-load analysis of highway bridges.

    DOT National Transportation Integrated Search

    2011-10-01

    "The combination of seismic and vehicle live loadings on bridges is an important design consideration. There are well-established design : provisions for how the individual loadings affect bridge response: structural components that carry vertical li...

  17. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the sixth quarter of this research project the research team developed a method and the experimental procedures for acquiring the data needed for ultrasonic tomography of rock core samples under triaxial stress conditions as outlined in Task 10. Traditional triaxial compression experiments, where compressional and shear wave velocities are measured, provide little or no information about the internal spatial distribution of mechanical damage within the sample. The velocities measured between platen-to-platen or sensor-to-sensor reflects an averaging of all the velocities occurring along that particular raypath across the boundaries of the rock. The research team is attempting to develop andmore » refine a laboratory equivalent of seismic tomography for use on rock samples deformed under triaxial stress conditions. Seismic tomography, utilized for example in crosswell tomography, allows an imaging of the velocities within a discrete zone within the rock. Ultrasonic or acoustic tomography is essentially the extension of that field technology applied to rock samples deforming in the laboratory at high pressures. This report outlines the technical steps and procedures for developing this technology for use on weak, soft chalk samples. Laboratory tests indicate that the chalk samples exhibit major changes in compressional and shear wave velocities during compaction. Since chalk is the rock type responsible for the severe subsidence and compaction in the North Sea it was selected for the first efforts at tomographic imaging of soft rocks. Field evidence from the North Sea suggests that compaction, which has resulted in over 30 feet of subsidence to date, is heterogeneously distributed within the reservoir. The research team will attempt to image this very process in chalk samples. The initial tomographic studies (Scott et al., 1994a,b; 1998) were accomplished on well cemented, competent rocks such as Berea sandstone. The extension of the technology to weaker samples is more difficult but potentially much more rewarding. The chalk, since it is a weak material, also attenuates wave propagation more than other rock types. Three different types of sensors were considered (and tested) for the tomographic imaging project: 600 KHz PZT, 1 MHz PZT, and PVDF film sensors. 600 KHz PZT crystals were selected because they generated a sufficiently high amplitude pulse to propagate across the damaged chalk. A number of different configurations were considered for placement of the acoustic arrays. It was decided after preliminary testing that the most optimum arrangement of the acoustic sensors was to place three arrays of sensors, with each array containing twenty sensors, around the sample. There would be two horizontal arrays to tomographically image two circular cross-sectional planes through the rock core sample. A third array would be vertically oriented to provide a vertical cross-sectional view of the sample. A total of 260 acoustic raypaths would be shot and acquired in the horizontal acoustic array to create each horizontal tomographic image. The sensors can be used as both acoustic sources or as acoustic each of the 10 pulsers to the 10 receivers.« less

  18. Integrated Geophysical Monitoring Program to Study Flood Performance and Incidental CO2 Storage Associated with a CO2 EOR Project in the Bell Creek Oil Field

    NASA Astrophysics Data System (ADS)

    Burnison, S. A.; Ditty, P.; Gorecki, C. D.; Hamling, J. A.; Steadman, E. N.; Harju, J. A.

    2013-12-01

    The Plains CO2 Reduction (PCOR) Partnership, led by the Energy & Environmental Research Center, is working with Denbury Onshore LLC to determine the effect of a large-scale injection of carbon dioxide (CO2) into a deep clastic reservoir for the purpose of simultaneous CO2 enhanced oil recovery (EOR) and to study incidental CO2 storage at the Bell Creek oil field located in southeastern Montana. This project will reduce CO2 emissions by more than 1 million tons a year while simultaneously recovering an anticipated 30 million barrels of incremental oil. The Bell Creek project provides a unique opportunity to use and evaluate a comprehensive suite of technologies for monitoring, verification, and accounting (MVA) of CO2 on a large-scale. The plan incorporates multiple geophysical technologies in the presence of complementary and sometimes overlapping data to create a comprehensive data set that will facilitate evaluation and comparison. The MVA plan has been divided into shallow and deep subsurface monitoring. The deep subsurface monitoring plan includes 4-D surface seismic, time-lapse 3-D vertical seismic profile (VSP) surveys incorporating a permanent borehole array, and baseline and subsequent carbon-oxygen logging and other well-based measurements. The goal is to track the movement of CO2 in the reservoir, evaluate the recovery/storage efficiency of the CO2 EOR program, identify fluid migration pathways, and determine the ultimate fate of injected CO2. CO2 injection at Bell Creek began in late May 2013. Prior to injection, a monitoring and characterization well near the field center was drilled and outfitted with a distributed temperature-monitoring system and three down-hole pressure gauges to provide continuous real-time data of the reservoir and overlying strata. The monitoring well allows on-demand access for time-lapse well-based measurements and borehole seismic instrumentation. A 50-level permanent borehole array of 3-component geophones was installed in a second monitoring well. A pre-injection series of carbon-oxygen logging across the reservoir was acquired in 35 wells. The baseline 3-D surface seismic survey was acquired in September 2012. A 3-D VSP incorporating two wells and 2 square miles of overlapping seismic coverage in the middle of the field was acquired in May 2013. Initial iterations of geologic modeling and reservoir simulation of the field have been completed. Currently, passive seismic monitoring with the permanent borehole array is being conducted during injection. Interpretation results from the baseline surface 3-D survey and preliminary results from the baseline 3-D VSP are being evaluated and integrated into the reservoir model. The PCOR Partnership's philosophy is to combine site characterization, modeling, and monitoring strategies into an iterative process to produce descriptive integrated results. The comprehensive effort at Bell Creek will allow a comparison of the effectiveness of several complementary geophysical and well-based methods in meeting the goals of the deep subsurface monitoring effort.

  19. What was that?

    USGS Publications Warehouse

    Anglin, F. M.; Haddon, R. A. W.

    1988-01-01

    At 4:20 local time on September 19, 1986, Mrs. Laurie Harder saw a meteor passing across the sky above her home in Yellowknife, N.W.T. She reported her observation to Yellowknife Seismic Station staff who examined the records of the Yellowknife seismic array to see if the associated meteoroid had hit Earth and generated observalbe seismic signals. 

  20. Intraplate Earthquakes and Deformation within the East Antarctic Craton

    NASA Astrophysics Data System (ADS)

    Lough, A. C.; Wiens, D.; Nyblade, A.

    2017-12-01

    The apparent lack of tectonic seismicity within Antarctica has long been discussed. Explanations have ranged from a lack of intraplate stress due to the surrounding spreading ridges and low absolute plate velocity (Sykes, 1978), to the weight of ice sheets increasing the vertical normal stress (Johnston, 1987). The 26 station GAMSEIS/AGAP array deployed in East Antarctica from late 2008 to early 2010 provides the first opportunity to study the intraplate seismicity of the Antarctic interior using regional data. Here we report 27 intraplate tectonic earthquakes that occurred during 2009. Depth determination together with their corresponding uncertainty estimates, show that most events originate in the shallow to middle crust, indicating a tectonic and not a cryoseismic origin. The earthquakes are primarily located beneath linear alignments of basins adjacent to the Gamburtsev Subglacial Mountains (GSM) that have been denoted as the East Antarctic rift system (Ferraccioli et al, 2011). The geophysical properties of the `rift' system contrast sharply with those of the GSM and Vostok Subglacial Highlands on either side. Crustal thickness, seismic velocity, and gravity anomalies all indicate large lateral variation in lithospheric properties. We propose the events outline an ancient continental rift, a terrain boundary feature, or a combination of the two where rifting exploited pre-existing weakness. It is natural to draw parallels between East Antarctica and the St. Lawrence depression where rifting and a collisional suture focus intraplate earthquakes within a craton (Schulte and Mooney, 2005). We quantify the East Antarctic seismicity by developing a frequency-magnitude relation, constraining the lower magnitudes with the 2009 results and the larger magnitudes with 1982-2012 teleseismic seismicity. East Antarctica and the Canadian Shield show statistically indistinguishable b-values (near 1) and seismicity rates as expressed as the number of events with mb > 4 per year per square kilometer (7.12*10-8 events/year/km2 for Antarctica and 7.86*10-8 events/year/km2 for Canada). Thus detailed observations demonstrate that Antarctica shows an intraplate seismicity rate on par with other stable cratons such as the Canadian Shield.

  1. The AlpArray Seismic Network: current status and next steps

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi

    2016-04-01

    The AlpArray initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the AlpArray Seismic Network (AASN), which complements the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The some 260 temporary stations of the AlpArray Seismic Network are operated as a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. The first stations were installed in Spring 2015 and the full AASN is planned to be operational by early Summer 2016. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, typical noise levels, best practices in installation as well as in data management, often encountered challenges, and planned next steps including the deployment of ocean bottom seismometers in the Ligurian Sea.

  2. The derivation of an anisotropic velocity model from a combined surface and borehole seismic survey in crystalline environment at the COSC-1 borehole, central Sweden

    NASA Astrophysics Data System (ADS)

    Simon, H.; Buske, S.; Krauß, F.; Giese, R.; Hedin, P.; Juhlin, C.

    2017-09-01

    The Scandinavian Caledonides provide a well-preserved example of a Palaeozoic continent-continent collision, where surface geology in combination with geophysical data provides information about the geometry of parts of the Caledonian structure. The project COSC (Collisional Orogeny in the Scandinavian Caledonides) investigates the structure and physical conditions of the orogen units and the underlying basement with two approximately 2.5 km deep cored boreholes in western Jämtland, central Sweden. In 2014, the COSC-1 borehole was successfully drilled through a thick section of the Seve Nappe Complex. This tectonostratigraphic unit, mainly consisting of gneisses, belongs to the so-called Middle Allochthons and has been ductilely deformed and transported during the collisional orogeny. After the drilling, a major seismic survey was conducted in and around the COSC-1 borehole with the aim to recover findings on the structure around the borehole from core analysis and downhole logging. The survey comprised both seismic reflection and transmission experiments, and included zero-offset and multiazimuthal walkaway Vertical Seismic Profile (VSP) measurements, three long offset surface lines centred on the borehole, and a limited 3-D seismic survey. In this study, the data from the multiazimuthal walkaway VSP and the surface lines were used to derive detailed velocity models around the COSC-1 borehole by inverting the first-arrival traveltimes. The comparison of velocities from these tomography results with a velocity function calculated directly from the zero-offset VSP revealed clear differences in velocities for horizontally and vertically travelling waves. Therefore, an anisotropic VTI (transversely isotropic with vertical axis of symmetry) model was found that explains first-arrival traveltimes from both the surface and borehole seismic data. The model is described by a vertical P-wave velocity function derived from zero-offset VSP and the Thomsen parameters ε = 0.03 and δ = 0.3, estimated by laboratory studies and the analysis of the surface seismic and walkaway VSP data. This resulting anisotropic model provides the basis for further detailed geological and geophysical investigations in the direct vicinity of the borehole.

  3. Source characterization of a small earthquake cluster at Edmond, Oklahoma using a very dense array

    NASA Astrophysics Data System (ADS)

    Ng, R.; Nakata, N.

    2017-12-01

    Recent seismicity in Oklahoma has caught the attention of the public in the last few years since seismicity is commonly related to loss in urban areas. To account for the increase in public interest, improve the understanding of damaging ground motions produced in earthquakes and develop better seismic hazard assessment, we must characterize the seismicity in Oklahoma and its associated structure and source parameters. Regional changes in subsurface stresses have increased seismic activities due to reactivation of faults in places such as central Oklahoma. It is imperative for seismic investigation and modeling to characterize subsurface structural features that may influence the damaging effects of ground motion. We analyze the full-waveform data collected from a temporary dense array of 72 portable seismometers with a 110 meter spacing that were active for a one-month period from May to June 2017, deployed at Edmond, Oklahoma. The data from this one-month duration array captured over 10,000 events and enabled us to make measurements of small-scale lateral variations of earthquake wavefields. We examine the waveform for events using advanced methods of detection, location and determine the source mechanism. We compare our results with selected events listed in the Oklahoma Geological Survey (OGS) and United States Geological Survey (USGS) catalogue. Based on the detection and located small events, we will discuss the causative fault structure at the area and present the results of the investigation.

  4. Using a large-n nodal array to search for remote dynamic triggering in a region of induced seismicity in northern Oklahoma.

    NASA Astrophysics Data System (ADS)

    Peña-Castro, A. F.; Dougherty, S. L.; Harrington, R. M.; Cochran, E. S.

    2017-12-01

    Oklahoma has recently experienced a large increase in seismicity that has been linked to injection of large volumes of wastewater into deep disposal wells, a by-product of oil and gas production. Recent studies have shown that areas with active fluid injection and induced seismicity, such as Oklahoma, may be susceptible to dynamic triggering during passage of seismic waves from large, remote earthquakes. In spring 2016, the 1833-station LArge-n Seismic Survey in Oklahoma (LASSO) array was deployed for 30 days to examine an area of active seismicity in Gran County, located in northern Oklahoma. Here we use the LASSO array to look for dynamic triggering caused by teleseismic earthquakes with magnitudes between Mw 6-8 that produce Peak-Ground-Velocities (PGVs) exceeding 10 μm/s at the LASSO array, consistent with PGV values seen to have triggered seismicity at other locations. We focus on examining seismicity around the shallow Mw7.8 event in Ecuador on 04/16/2016 which generated the largest PGV at LASSO (250 µm/s). To establish if earthquake rates change during or following the passage of the teleseismic surface waves, we develop a catalog of earthquakes around the time of each teleseismic event. We first create a preliminary catalogue using a Short-Term Average/Long-Term Average (STA/LTA) detection algorithm window spanning +/- 24 hours around each teleseism,requiring detection at a minimum of 110 LASSO stations to identify an event. Next, we enhance the STA/LTA catalog with manual detections for a period of +/- 1.5 hours around the time of the teleseismic P-wave arrival to explore if triggering occurs that is not detected by the automated procedure. All detected events are then located using standard location techniques. Any observed seismicity rate changes following the teleseismic arrivals will be examined compared to the short-term background rates to determine whether they are statistically significant. If triggering is observed, focal mechanisms will be determined to estimate fault plane orientations and resolve triggering stresses on receiver fault planes. Our preliminary results for the Mw 7.8 Ecuador event suggest there may be delayed triggering that starts roughly 4 hours after the teleseismic phase arrivals, with event rates increasing from 0-5 to 15-25 events per hour.

  5. Analysis of the low-level seismicity along the Southern Indian Ocean spreading ridges recorded by the OHASISBIO array of hydrophones in 2012

    NASA Astrophysics Data System (ADS)

    Tsang-Hin-Sun, Eve; Royer, Jean-Yves; Sukhovich, Alexey; Perrot, Julie

    2014-05-01

    Arrays of autonomous hydrophones (AUHs) proved to be a very valuable tool for monitoring the seismic activity of mid-ocean ridges. AUHs take advantage of the ocean acoustic properties to detect many low-magnitude underwater earthquakes undetected by land-based stations. This allows for a significant improvement in the magnitude completeness level of seismic catalogs in remote oceanic areas. This study presents some results from the deployment of the OHASISBIO array comprising 7 AUHs deployed in the southern Indian Ocean. The source of acoustic events, i.e. site where - conversion from seismic to acoustic waves occur and proxy to epicenters for shallow earthquakes - can be precisely located within few km, inside the AUH array. The distribution of the uncertainties in the locations and time-origins shows that the OHASISBIO array reliably covers a wide region encompassing the Indian Ocean triple junction and large extent of the three mid-oceanic Indian spreading ridges, from 52°E to 80°E and from 25°S to 40°S. During its one year long deployment in 2012 and in this area the AUH array recorded 1670 events, while, for the same period, land-based networks only detected 470 events. A comparison of the background seismicity along the South-east (SEIR) and South-west (SWIR) Indian ridges suggests that the microseismicity, even over a year period, could be representative of the steady-state of stress along the SEIR and SWIR; this conclusion is based on very high Spearman's correlations between our one-year long AUH catalog and teleseismic catalogs over nearly 40 years. Seismicity along the ultra-slow spreading SWIR is regularly distributed in space and time, along spreading segments and transform faults, whereas the intermediate spreading SEIR diplays clusters of events in the vicinity of some transform faults or near specific geological structures such as the St-Paul and Amsterdam hotspot. A majority of these clusters seem to be related to magmatic processes, such as dyke intrusion or propagation. The analysis of mainshock-aftershock sequences reveals that flew clusters fit a modified Omori law, non-withstanding of their location (on transform faults or not), reflecting complex rupture mechanisms along both spreading ridges.

  6. The Green Canyon Event as Recorded by the Atlantis OBS Node Survey

    NASA Astrophysics Data System (ADS)

    Dellinger, J. A.; Ehlers, J.; Clarke, R.

    2006-12-01

    On 10 February, 2006, a magnitude 5.2 earthquake occurred 260~km South of New Orleans, Louisiana, in the Green Canyon area of the United States Gulf of Mexico. Fortuitously, at the time of the earthquake an array of nearly 500 ocean-bottom-seismic nodes happened to be recording about 40~km SouthEast of the epicenter. These nodes were part of an ongoing oil-exploration 3D-seismic survey ("Atlantis patch 2"), and were designed to record oil-exploration air-gun seismic signals (with a dominant frequency of about 15~Hz), not low-frequency earthquake signals (1~Hz). The survey's own air guns, located about 7~km to the SouthEast of the array at the time of the event, were also repeatedly firing, generating large amounts of "noise" (at least for the purposes of analyzing the earthquake signal). Not surprisingly, when the data are plotted at their original sample rate they are dominated by the Atlantis survey's air-gun signal. When low passed with an upper cutoff of 2~Hz, however, the air-gun signals essentially vanish and underlying natural signals are clearly revealed. In land-seismic exploration dense 3D arrays of single geophones are used to characterize unwanted surface-wave energy. Beam forming the dense array allows the directions and phase velocities of wavefronts propagating across the array to be identified and localized so that receiver arrays can be designed that best attenuate the surface-wave noise. The 400-meter spacing of the Atlantis node array was designed to be optimally sparse for reflection-seismic processing. At 1~Hz, however, a 400-meter spacing becomes "dense" and we were able to use the same toolkit of programs originally developed for analyzing surface waves in land-seismic data to analyze the earthquake waves. The analysis reveals a complex and protracted series of arrivals spanning nearly 20~minutes of time. The expected sequence of earthquake arrivals from the North-NorthWest are followed by weaker sequences of arrivals of unknown origin from first the SouthEast and then from the East. It is hoped that these data can be used to help constrain the location, depth, and mechanism of the Green Canyon event. The authors wish to thank BP and BHPB for their permission to present this work, Fairfield for their enthusiasm in preserving the data, and CGG, WesternGeco, and Fugro for their cooperation in identifying other sources of man-made signals in the data.

  7. Seismic aftershock monitoring for on-site inspection purposes. Experience from Integrated Field Exercise 2008.

    NASA Astrophysics Data System (ADS)

    Labak, P.; Arndt, R.; Villagran, M.

    2009-04-01

    One of the sub-goals of the Integrated Field Experiment in 2008 (IFE08) in Kazakhstan was testing the prototype elements of the Seismic aftershock monitoring system (SAMS) for on-site inspection purposes. The task of the SAMS is to collect the facts, which should help to clarify nature of the triggering event. Therefore the SAMS has to be capable to detect and identify events as small as magnitude -2 in the inspection area size up to 1000 km2. Equipment for 30 mini-arrays and 10 3-component stations represented the field equipment of the SAMS. Each mini-array consisted of a central 3-component seismometer and 3 vertical seismometers at the distance about 100 m from the central seismometer. The mini-arrays covered approximately 80% of surrogate inspection area (IA) on the territory of former Semipalatinsk test site. Most of the stations were installed during the first four days of field operations by the seismic sub-team, which consisted of 10 seismologists. SAMS data center comprised 2 IBM Blade centers and 8 working places for data archiving, detection list production and event analysis. A prototype of SAMS software was tested. Average daily amount of collected raw data was 15-30 GB and increased according to the amount of stations entering operation. Routine manual data screening and data analyses were performed by 2-6 subteam members. Automatic screening was used for selected time intervals. Screening was performed using the Sonoview program in frequency domain and using the Geotool and Hypolines programs for screening in time domain. The screening results were merged into the master event list. The master event list served as a basis of detailed analysis of unclear events and events identified to be potentially in the IA. Detailed analysis of events to be potentially in the IA was performed by the Hypoline and Geotool programs. In addition, the Hyposimplex and Hypocenter programs were also used for localization of events. The results of analysis were integrated in the visual form using the Seistrain/geosearch program. Data were fully screened for the period 5.-13.9.2008. 360 teleseismic, regional and local events were identified. Results of the detection and analysis will be presented and consequences for further SAMS development will be discussed.

  8. Microtremor Array Measurement Survey and Strong Ground Motion Observation Activities of The MarDiM (SATREPS) Project

    NASA Astrophysics Data System (ADS)

    Ozgur Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Aksahin, Bengi; Arslan, Safa; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2015-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul and Tekirdag province at about 81 sites on October 2013 and September 2014. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A2) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A2) consist of three servo type accelerometers for two horizontal and one vertical component combined with 24 bit AD converter. In the presentation current achievements and activities of research group, preliminary results of microtremor array measurement surveys and recorded data by the newly installed stations will be introduced.

  9. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 2-

    NASA Astrophysics Data System (ADS)

    Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Arslan, Safa; Aksahin, Bengi; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2016-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 109 sites on October 2013, September 2014 and 2015. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A) consist of three servo type accelerometers for two horizontal and one vertical component combined with 24 bit AD converter. In the presentation current achievements and activities of research group, preliminary results of microtremor array measurement surveys and recorded data by the newly installed stations will be introduced.

  10. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 3-

    NASA Astrophysics Data System (ADS)

    Citak, Seckin; Safa Arslan, Mehmet; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Behiye Aksahin, Bengi; Hatayama, Ken; Sahin, Abdurrahman; Ohori, Michihiro; Safak, Erdal; Hori, Muneo

    2017-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 140 sites on October 2013, September 2014, 2015 and 2016. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A) consist of three servo type accelerometers for two horizontal and one vertical component combined with 24 bit AD converter. In the presentation current achievements and activities of research group, preliminary results of microtremor array measurement surveys and recorded data by the newly installed stations will be introduced.

  11. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  12. The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake over Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chen, C. H.; Sun, Y. Y.; Chen, C. H.; Tsai, H. F.; Yen, H. Y.; Chum, J.; Lastovicka, J.; Yang, Q. S.; Chen, W. S.; Wen, S.

    2016-02-01

    In this paper, concurrent/colocated measurements of seismometers, infrasonic systems, magnetometers, HF-CW (high frequency-continuous wave) Doppler sounding systems, and GPS receivers are employed to detect disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake. No time delay between colocated infrasonic (i.e., super long acoustic) waves and seismic waves indicates that the triggered acoustic and/or gravity waves in the atmosphere (or seismo-traveling atmospheric disturbances, STADs) near the Earth's surface can be immediately activated by vertical ground motions. The circle method is used to find the origin and compute the observed horizontal traveling speed of the triggered infrasonic waves. The speed of about 3.3 km/s computed from the arrival time versus the epicentral distance suggests that the infrasonic waves (i.e., STADs) are mainly induced by the Rayleigh waves. The agreements in the travel time at various heights between the observation and theoretical calculation suggest that the STADs triggered by the vertical motion of ground surface caused by the Tohoku earthquake traveled vertically from the ground to the ionosphere with speed of the sound in the atmosphere over Taiwan.

  13. Recent Earthquakes Mark the Onset of Induced Seismicity in Northeastern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Martone, P.; Nikulin, A.; Pietras, J.

    2017-12-01

    The link between induced seismicity and injection of hydraulic fracturing wastewater has largely been accepted and corroborated through case studies in Colorado, Arkansas, Texas, and Oklahoma. To date, induced seismicity has largely impacted hydrocarbon-producing regions in the Central United States, while the seismic response in Eastern states, like Pennsylvania, has been relatively muted. In recent years, Pennsylvania exponentially increased hydrocarbon production from the Marcellus and Utica Shales and our results indicate that this activity has triggered an onset of induced seismicity in areas of the state where no previous seismic activity was reported. Three recent earthquakes in Northeastern Pennsylvania directly correlate to hydraulic fracturing activity, though USGS NEIC earthquake catalog locations have vertical errors up to 31km. We present signal analysis results of recorded waveforms of the three identified events and results of a high-precision relocation effort and improvements to the regional velocity model aimed at constraining the horizontal and vertical error in hypocenter position. We show that at least one event is positioned directly along the wellbore track of an active well and correlate its timing to the hydraulic fracturing schedule. Results show that in the absence of wastewater disposal in this area, it is possible to confidently make the connection between the hydraulic fracturing process and induced seismicity.

  14. Observing the San Andreas Fault at Depth

    NASA Astrophysics Data System (ADS)

    Ellsworth, W.; Hickman, S.; Zoback, M.; Davis, E.; Gee, L.; Huggins, R.; Krug, R.; Lippus, C.; Malin, P.; Neuhauser, D.; Paulsson, B.; Shalev, E.; Vajapeyam, B.; Weiland, C.; Zumberge, M.

    2005-12-01

    Extending 4 km into the Earth along a diagonal path that crosses the divide between Salinian basement accreted to the Pacific Plate and Cretaceous sediments of North America, the main hole at the San Andreas Fault Observatory at Depth (SAFOD) was designed to provide a portal into the inner workings of a major plate boundary fault. The successful drilling and casing of the main hole in the summer of 2005 to a total vertical depth of 3.1 km make it possible to conduct spatially extensive and long-duration observations of active tectonic processes within the actively deforming core of the San Andreas Fault. In brief, the observatory consists of retrievable seismic, deformation and environmental sensors deployed inside the casing in both the main hole (maximum temperature 135 C) and the collocated pilot hole (1.1 km depth), and a fiber optic strainmeter installed behind casing in the main hole. By using retrievable systems deployed on either wire line or rigid tubing, each hole can be used for a wide range of scientific purposes, with instrumentation that takes maximum advantage of advances in sensor technology. To meet the scientific and technical challenges of building the observatory, borehole instrumentation systems developed for use in the petroleum industry and by the academic community in other deep research boreholes have been deployed in the SAFOD pilot hole and main hole over the past year. These systems included 15Hz omni-directional and 4.5 Hz gimbaled seismometers, micro-electro-mechanical accelerometers, tiltmeters, sigma-delta digitizers, and a fiber optic interferometeric strainmeter. A 1200-m-long, 3-component 80-level clamped seismic array was also operated in the main hole for 2 weeks of recording in May of 2005, collecting continuous seismic data at 4000 sps. Some of the observational highlights include capturing one of the M 2 SAFOD target repeating earthquakes in the near-field at a distance of 420 m, with accelerations of up to 200 cm/s and a static displacement of a few microns. Numerous other local events were observed over the summer by the tilt and seismic instruments in the pilot hole, some of which produced strain offsets of several nanostrain on the fiber optic strainmeter. We were fortunate to observe several episodes of non-volcanic tremor on the 80-level seismic array in May, 2005. These spatially unaliased recordings of the tremor wavefield reveal that the complex tremor time series is comprised of up-and down-going shear waves that produce a spatially stationary interference pattern over time scales of 10s of seconds. All data collected at SAFOD as part of the EarthScope project are open and freely available to all. The Northern California Earthquake Data Center at U.C. Berkeley is the principal data repository for SAFOD. The more than 2 TB of 80-level array data are also available at the IRIS DMC as an assembled data collection.

  15. Seismic attenuation system for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liszkai, Tamas; Cadell, Seth

    A system for attenuating seismic forces includes a reactor pressure vessel containing nuclear fuel and a containment vessel that houses the reactor pressure vessel. Both the reactor pressure vessel and the containment vessel include a bottom head. Additionally, the system includes a base support to contact a support surface on which the containment vessel is positioned in a substantially vertical orientation. An attenuation device is located between the bottom head of the reactor pressure vessel and the bottom head of the containment vessel. Seismic forces that travel from the base support to the reactor pressure vessel via the containment vesselmore » are attenuated by the attenuation device in a direction that is substantially lateral to the vertical orientation of the containment vessel.« less

  16. Seismicity of the rocky mountains and Rio Grande Rift from the EarthScope Transportable Array and CREST temporary seismic networks, 2008-2010

    NASA Astrophysics Data System (ADS)

    Nakai, J. S.; Sheehan, A. F.; Bilek, S. L.

    2017-03-01

    We developed a catalog of small magnitude (ML -0.1 to 4.7) seismicity across Colorado and New Mexico from the EarthScope USArray Transportable Array and CREST (Colorado Rocky Mountains Experiment and Seismic Transects) seismic networks from 2008 to 2010 to characterize active deformation in the Rio Grande Rift. We recorded over 900 earthquakes in the Rio Grande Rift region, not including induced earthquakes and mine blasts, and find that the rift is actively deforming both broadly and in distinct regions. Seismic events that are likely induced, mostly in the Raton Basin, make up 66% of the catalog (1837 earthquakes). Neogene faults in the northern rift in north central Colorado are seismically active in the North Park Basin and northwestern Colorado. The central rift from the San Luis Basin (southern Colorado) to south of the Socorro Magma Body is the most seismically active rift region, and seismicity delineates the deformation in the Colorado Plateau transition zone, which is spatially correlated with volcanic vents, dikes, and faults within the western Jemez Lineament. The eastern Jemez Lineament is nearly aseismic and surrounded by a halo of seismicity culminating in boundaries defined by recent moderate (Mw 3.9 and Mw 3.3) earthquakes. The southern rift is characterized by diffuse seismicity in Texas and Mexico. This study provides an updated seismic catalog built with uniformity in seismometer coverage and low epicentral uncertainties ( 2 km) that allows for regional evaluation of seismicity. During this time period, clusters of seismicity and moderate magnitude earthquakes characterize deformation in a low-strain rate extensional environment.

  17. Wide-angle Marine Seismic Refraction Imaging of Vertical Faults: Pre-Stack Turning Wave Migrations of Synthetic Data and Implications for Survey Design

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Lizarralde, D.; McGuire, J.; Hole, J. A.

    2006-12-01

    We consider methodologies, including survey design and processing algorithms, which are best suited to imaging vertical reflectors in oceanic crust using marine seismic techniques. The ability to image the reflectivity structure of transform faults as a function of depth, for example, may provide new insights into what controls seismicity along these plate boundaries. Turning-wave migration has been used with success to image vertical faults on land. With synthetic datasets we find that this approach has unique difficulties in the deep ocean. The fault-reflected crustal refraction phase (Pg-r) typically used in pre-stack migrations is difficult to isolate in marine seismic data. An "imagable" Pg-r is only observed in a time window between the first arrivals and arrivals from the sediments and the thick, slow water layer at offsets beyond ~25 km. Ocean- bottom seismometers (OBSs), as opposed to a long surface streamer, must be used to acquire data suitable for crustal-scale vertical imaging. The critical distance for Moho reflections (PmP) in oceanic crust is also ~25 km, thus Pg-r and PmP-r are observed with very little separation, and the fault-reflected mantle refraction (Pn-r) arrives prior to Pg-r as the observation window opens with increased OBS-to-fault distance. This situation presents difficulties for "first-arrival" based Kirchoff migration approaches and suggests that wave- equation approaches, which in theory can image all three phases simultaneously, may be more suitable for vertical imaging in oceanic crust. We will present a comparison of these approaches as applied to a synthetic dataset generated from realistic, stochastic velocity models. We will assess their suitability, the migration artifacts unique to the deep ocean, and the ideal instrument layout for such an experiment.

  18. Ranging bowhead whale calls in a shallow-water dispersive waveguide.

    PubMed

    Abadi, Shima H; Thode, Aaron M; Blackwell, Susanna B; Dowling, David R

    2014-07-01

    This paper presents the performance of three methods for estimating the range of broadband (50-500 Hz) bowhead whale calls in a nominally 55-m-deep waveguide: Conventional mode filtering (CMF), synthetic time reversal (STR), and triangulation. The first two methods use a linear vertical array to exploit dispersive propagation effects in the underwater sound channel. The triangulation technique used here, while requiring no knowledge about the propagation environment, relies on a distributed array of directional autonomous seafloor acoustics recorders (DASARs) arranged in triangular grid with 7 km spacing. This study uses simulations and acoustic data collected in 2010 from coastal waters near Kaktovik, Alaska. At that time, a 12-element vertical array, spanning the bottom 63% of the water column, was deployed alongside a distributed array of seven DASARs. The estimated call location-to-array ranges determined from CMF and STR are compared with DASAR triangulation results for 19 whale calls. The vertical-array ranging results are generally within ±10% of the DASAR results with the STR results providing slightly better agreement. The results also indicate that the vertical array can range calls over larger ranges and with greater precision than the particular distributed array discussed here, whenever the call locations are beyond the distributed array boundaries.

  19. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  20. Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Chen, C.; Zhang, G.

    2005-01-01

    The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.

  1. Vertical deformation through a complete seismic cycle at Isla Santa María, Chile

    USGS Publications Warehouse

    Wesson, Robert L.; Melnick, Daniel; Cisternas, Marco; Moreno, Marcos; Ely, Lisa

    2014-01-01

    Individual great earthquakes are posited to release the elastic strain energy that has accumulated over centuries by the gradual movement of tectonic plates1, 2. However, knowledge of plate deformation during a complete seismic cycle—two successive great earthquakes and the intervening interseismic period—remains incomplete3. A complete seismic cycle began in south-central Chile in 1835 with an earthquake of about magnitude 8.5 (refs 4, 5) and ended in 2010 with a magnitude 8.8 earthquake6. During the first earthquake, an uplift of Isla Santa María by 2.4 to 3 m was documented4, 5. In the second earthquake, the island was uplifted7 by 1.8 m. Here we use nautical surveys made in 1804, after the earthquake in 1835 and in 1886, together with modern echo sounder surveys and GPS measurements made immediately before and after the 2010 earthquake, to quantify vertical deformation through the complete seismic cycle. We find that in the period between the two earthquakes, Isla Santa María subsided by about 1.4 m. We simulate the patterns of vertical deformation with a finite-element model and find that they agree broadly with predictions from elastic rebound theory2. However, comparison with geomorphic and geologic records of millennial coastline emergence8, 9 reveal that 10–20% of the vertical uplift could be permanent.

  2. Improved microseismic event locations through large-N arrays and wave-equation imaging and inversion

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2016-12-01

    The recent increased focus on small-scale seismicity, Mw < 4 has come about primarily for two reasons. First, there is an increase in induced seismicity related to injection operations primarily for wastewater disposal and hydraulic fracturing for oil and gas recovery and for geothermal energy production. While the seismicity associated with injection is sometimes felt, it is more often weak. Some weak events are detected on current sparse arrays; however, accurate location of the events often requires a larger number of (multi-component) sensors. This leads to the second reason for an increased focus on small magnitude seismicity: a greater number of seismometers are being deployed in large N-arrays. The greater number of sensors decreases the detection threshold and therefore significantly increases the number of weak events found. Overall, these two factors bring new challenges and opportunities. Many standard seismological location and inversion techniques are geared toward large, easily identifiable events recorded on a sparse number of stations. However, with large-N arrays we can detect small events by utilizing multi-trace processing techniques, and increased processing power equips us with tools that employ more complete physics for simultaneously locating events and inverting for P- and S-wave velocity structure. We present a method that uses large-N arrays and wave-equation-based imaging and inversion to jointly locate earthquakes and estimate the elastic velocities of the earth. The technique requires no picking and is thus suitable for weak events. We validate the methodology through synthetic and field data examples.

  3. Earthquake recording at the Stanford DAS Array with fibers in existing telecomm conduits

    NASA Astrophysics Data System (ADS)

    Biondi, B. C.; Martin, E. R.; Yuan, S.; Cole, S.; Karrenbach, M. H.

    2017-12-01

    The Stanford Distributed Acoustic Sensing Array (SDASA-1) has been continuously recording seismic data since September 2016 on 2.5 km of single mode fiber optics in existing telecommunications conduits under Stanford's campus. The array is figure-eight shaped and roughly 600 m along its widest side with a channel spacing of roughly 8 m. This array is easy to maintain and is nonintrusive, making it well suited to urban environments, but it sacrifices some cable-to-ground coupling compared to more traditional seismometers. We have been testing its utility for earthquake recording, active seismic, and ambient noise interferometry. This talk will focus on earthquake observations. We will show comparisons between the strain rates measured throughout the DAS array and the particle velocities measured at the nearby Jasper Ridge Seismic Station (JRSC). In some of these events, we will point out directionality features specific to DAS that can require slight modifications in data processing. We also compare repeatability of DAS and JRSC recordings of blasts from a nearby quarry. Using existing earthquake databases, we have created a small catalog of DAS earthquake observations by pulling records of over 700 Northern California events spanning Sep. 2016 to Jul. 2017 from both the DAS data and JRSC. On these events we have tested common array methods for earthquake detection and location including beamforming and STA/LTA analysis in time and frequency. We have analyzed these events to approximate thresholds on what distances and magnitudes are clearly detectible by the DAS array. Further analysis should be done on detectability with methods tailored to small events (for example, template matching). In creating this catalog, we have developed open source software available for free download that can manage large sets of continuous seismic data files (both existing files, and files as they stream in). This software can both interface with existing earthquake networks, and efficiently extract earthquake recordings from many continuous recordings saved on the users machines.

  4. Seismic Imaging of UXO-Contaminated Underwater Sites (Interim Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritto, Roland; Korneev, Valeri; Nihei, Kurt

    2004-11-30

    Finite difference modeling with 2-dimensional models were conducted to evaluate the performance of source-receiver arrays to locate UXO in littoral environments. The model parameters were taken from measurements in coastal areas with typical bay mud and from examples in the literature. Seismic arrays are well suited to focus energy by steering the elements of the array to any point in the medium that acts as an energy source. This principle also applies to seismic waves that are backscattered by buried UXO. The power of the array is particularly evident in strong noise conditions when the signal-to-noise ratio is too lowmore » to observe the scattered signal on the seismograms. Using a seismic array, it was possible to detect and locate the UXO with a reliability similar to noise free situations. When the UXO was positioned within 3-6 wavelengths of the incident signal from the source array, the resolution was good enough to determine the dimensions of the UXO from the scattered waves. Beyond this distance this distinction decreased gradually while the location and the center of the UXO were still determined reliably. The location and the dimensions of two adjacent UXO were resolved down to a separation of 1/3 of the dominant wavelength of the incident wave, at which time interference effects began to appear. In the investigated cases, the ability to locate a UXO was independent on the use of a model with a rippled or a flat seafloor, as long as the array was located above the UXO. Nevertheless, the correct parameters of the seafloor interface were obtained in these cases. An investigation to find the correct migration velocity in the sediments to locate the UXO revealed that a range of velocity gradients centered around the correct velocity model produced comparable results, which needs to be further investigated with physical modeling.« less

  5. Seismic imaging of small horizontal scale structures of the shallow thermocline on the western Brittany continental shelf (North-East Atlantic)

    NASA Astrophysics Data System (ADS)

    Piete, H.; Marié, L.; Marsset, B.; Gutscher, M.

    2012-12-01

    The recent development of the seismic oceanography technique has made possible the imaging of a variety of deep oceanographic structures (Holbrook et al., 2003); however, until now this method has remained ill suited for the study of shallow (<200m) thermohaline structures. This difficulty is partly due to the fact that both important seismic trace lengths and large offsets that characterize the acoustic receiver device (seismic streamer) cause significant signal attenuations through an induced antenna filter effect. Further difficulties are related to limitations of currently employed seismic sources, which do not conciliate 1- high power (essential to the imaging of weakly reflective structures in a noisy environment) and 2- spectral contents offering high vertical resolutions (relevant to the mapping of small vertical wavelength structures). In this study we defined and tested a new experimental seismic acquisition system capable of imaging the ~10 m thick seasonal thermocline on the western Brittany continental shelf. To accomplish this task, we pursued two complementary approaches: 1. Analysis of legacy seismic data (multi-channel seismic reflection profiles acquired on the East-Corsican margin, Bahamas Plateau and Gulf of Cadiz in various oceanographic environments) featuring reflectors at depths between 25 and 150 m, in order to identify and quantify the influence of acquisition parameters (seismic trace length, offsets, emission level and frequency content). 2. Incorporation of new oceanographic data acquired during the FROMVAR cruise (July 28th to August 10th 2010) on the western Brittany shelf in thermally stratified waters for use in the simulation of the seismic acquisition, in order to further define the optimal parameters for the system. Finally a 3D seismic system has emerged and was tested during the ASPEX scientific cruise led from June 17th to 19th 2012 across the western Brittany shelf. The device featured: i- four seismic streamers, each consisting of 6 traces at a spacing of 1.80 m; ii- a 1000 J SIG Sparker producing a 400 Hz signal with a 220 dB re 1μPa @1m level of emission, towed at a 8 m distance of the first seismic trace. This survey provided high lateral resolution images of the seasonal thermocline located at a 30 m depth with vertical displacements induced by internal waves. References Holbrook, W.S., Paramo, P., Pearse, S. and Schmitt, R.W., 2003. Thermohaline Fine Structure in an Oceanographic Front from Seismic Reflection Profiling. Science, 301(5634): 821.

  6. Fracture and Medium Modeling, by Analizing Hidraulic Fracturing Induced Microseismicity

    NASA Astrophysics Data System (ADS)

    Gomez Alba, S.; Vargas Jiménez, C. A.

    2014-12-01

    Hydraulic fracturing is an essential technology for most unconventional hydrocarbon resources and many conventional ones as well. The primary limitation on the improvement and optimization of the fracturing process is the minimal access to observe the behavior of the fracture in the subsurface. Without direct observational evidence, hypothetical mechanisms must be assumed and then tested for their validity with indirect information such as wellbore measurements, indirect production and pressure behavior. One of the most important sources of information today is the relation made between micro seismic source mechanisms and fracture behavior. Hydraulic fractures induce some level of micro seismicity when the stress conditions in the Earth are altered by changes in stress during the operations. The result is the sudden movement between rock elements and the radiation of both compressional and shear energy in a seismic range that can be detected and recorded with sensitive receivers. The objective of this work is to provide reasonable information when applying inversion methods in order to estimate the vertical and horizontal spatial heterogeneities in medium and energy radiation distribution of microseisms while fracking operations. The method consist in record microseisms at a previous lineal array of stations (triaxial accelerometers) which are located close to the source coordinates and cover the area of study. The analysis clarify some ideas about what information can be gained from the micro seismic source data and according to the obtained results, what kind of comparisons and associations might be done to evaluate the fracking performance operation. Non uniformities in medium such as faults would be revealed by interpreted scattering coefficients. Fracture properties like distance, velocity and orientation would be also determined by analyzing energy radiation.

  7. Seismic response of soft deposits due to landslide: The Mission Peak, California, landslide

    USGS Publications Warehouse

    Hartzell, Stephen; Leeds, Alena L.; Jibson, Randall W.

    2017-01-01

    The seismic response of active and intermittently active landslides is an important issue to resolve to determine if such landslides present an elevated hazard in future earthquakes. To study the response of landslide deposits, seismographs were placed on the Mission Peak landslide in the eastern San Francisco Bay region for a period of one year. Numerous local and near‐regional earthquakes were recorded that reveal a complexity of seismic response phenomena using the horizontal‐to‐vertical spectral ratio method. At lower frequencies, a clear spectral peak is observed at 0.5 Hz common to all four stations in the array and is attributed to a surface topographic effect. At higher frequencies, other spectral peaks occur that are interpreted in terms of local deposits and structures. Site amplification from the standard reference site method shows the minimum amplification with a factor of 2, comparing a site on and off the landslide. A site located on relatively homogeneous deposits of loose soils shows a clear spectral peak associated with the thickness of the deposit. Another site on a talus‐filled graben near the headscarp shows possible 2D or 3D effects from subsurface topography or scattering within and between buried sandstone blocks. A third site on a massive partially detached block below the crown of the headscarp shows indications of resonance caused by the reverberation of shear waves within the block. The varied seismic response of different parts of this complex landslide is consistent with other studies which found that, although landslide response is commonly enhanced in the downslope direction of landslide movement, such a response does not occur uniformly or consistently. When it does occur, enhanced site response parallel to the direction of landslide movement would contribute to landslide reactivation during significant earthquakes.

  8. Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering

    NASA Astrophysics Data System (ADS)

    Servali, A.; Long, M. D.; Benoit, M.

    2017-12-01

    The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.

  9. Initial results from the Volcanic Risk in Saudi Arabia project: Microearthquakes in the northern Harrat Rahat monogenetic volcanic field, Madinah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Alvarez, M. G.; Abdelwahed, M. F.; Aboud, E.; Lindsay, J. M.; Mokhtar, T. A.; Moufti, M. R.

    2012-12-01

    An 8-station borehole seismic research array is recording microearthquake data in northern Harrat Rahat. This recently active monogenetic volcanic field lies southeast of the Islamic holy city of Madinah, Kingdom of Saudi Arabia. The VORiSA seismographs are operated in collaboration between King Abdulaziz University in Jeddah and the Institute of Earth Science and Engineering, University of Auckland, in New Zealand. The goal of the VORiSA project is to evaluate the seismic and volcanic hazard around Madinah. To this end, we will evaluate the local earthquake activity including the extent to which local earthquakes are tectonic or volcanic. We also will use seismicity to understand the subsurface structure. The analytical goals of the seismic research array are the following: (1) Calculate a new seismic velocity model, (2) Map subsurface structures using seismic tomography, and (3) Explore for fracture zones using shear wave splitting analysis. As compared to seismographs installed on the surface, borehole seismometers detect smaller and more numerous microearthquake signals. The sensitivity and location of the borehole sensors in the VORiSA array are designed to detect these weak signals. The array has a total aperture of 17 km with station spacing at 5 - 10 km. The seismometers are housed in IESE model S21g-2.0, two Hz, 3-component borehole sondes. Sensor depths range from 107 - 121 m. The data acquisition system at each stand-alone station consists of a Reftek 130-01, 6-channel, 24 bit data logger which records at 250 samples per second. The power source is a deep cycle battery with solar recharge. Local temperatures reach extremes of 0° to 50°C, so the battery and recorder are contained in a specially designed underground vault. The vault also provides security in the remote and sparsely populated volcanic field. Recording began on 31 March 2012. An average of one earthquake every three days suggests that currently this is not a highly seismic area. However, seismic swarms, likely related to magmatic intrusion, have occurred in 1999 in Harrat Rahat (~145 earthquakes, M1.4 to 2.3) (Moufti et al., 2010) and in 2009 in Harrat Lunayyir (~30,000 earthquakes up to M5.4) (Pallister et al., 2010). We can locate microearthquakes of Mm = -1 within the array, a significant advantage over the previous surface network. We have characterized instrument noise using power spectrum probability density functions (McNamara and Buland, 2004). All stations show a very high signal to noise ratio; for a near-source M-1 event S/N is ~5. The available data are still too sparse for advanced analysis and currently appear as a cloud of seismicity.

  10. Towards Integrated Marmara Strong Motion Network

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.

    2009-04-01

    Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.

  11. Magmatic processes evidenced by borehole dilatometer data at Campi Flegrei, Italy.

    NASA Astrophysics Data System (ADS)

    Di Lieto, Bellina; Romano, Pierdomenico; Scarpa, Roberto; Orazi, Massimo

    2017-04-01

    Since spring 2004 a joint research project (AMRA, UniSa, INGV) has been developed in Italy to install borehole strainmeters aimed at enhanced INGV monitoring systems. Six Sacks-Evertson dilatometers were installed around Campi Flegrei and Vesuvius during 2004-2005, and in 2008 these were supplemented by two arrays of long-baseline underground water tube tiltmeters. Renewed activity started since 2004-2005, characterized by a low rate of vertical displacement, amounting initially to a few cm/year. Recent deformation in the Campi Flegrei caldera is dominated by aseismic inflation, interrupted by minor transient aseismic reversals in rate. These are typically below the noise level or are poorly sampled by the low sampling frequency of most geodetic techniques, but can be quantified relatively easily using high sensitivity strainmeters and tiltmeters. These instruments provide coherent views of deformation at several different time scales capturing reversals in rate with periods from minutes to months. Monotonic uplift episodes have been recorded with durations of several weeks to a few years. During the summer of 2006 a long term strain episode related to an increase of CO2 emission, evidenced by borehole tiltmeters and continuous GPS sensors, has been observed by the borehole dilatometers array. This strain episode preceded caldera microseismic activity by few months, as was also observed during the 1982 period of unrest. Other aseismic slip episodes were recorded in October 2006 and in March 2010, several minutes before the most significant seismic swarms (VT and/or LP events) occurred after the 1982-1984 uplift. The time scale of these transient strain events lasted less than one hour, putting further constraints on the origin of ground uplifts at Campi Flegrei. Their locations are compatible with the source inferred from long term deformation signals, at about 4 km depth beneath Pozzuoli. The current array provides us with a glimpse of the potential utility of a dense array of strainmeters and tiltmeters surrounding the Campi Flegrei region. An expanded array of tiltmeters and strainmeters operating continuously would permit the details of magma-transfer and the underlying cause of subsequent seismic activity to be monitored. Despite the small number of sensors, a preliminary mechanism model for aseismic strain episodes can be defined, correlating these episodes with magma growth in reservoirs with occasional pressure relief associated with the leakage of gas.

  12. Seismic moulin tremor

    NASA Astrophysics Data System (ADS)

    Roeoesli, Claudia; Walter, Fabian; Ampuero, Jean-Paul; Kissling, Edi

    2016-08-01

    Through glacial moulins, meltwater is routed from the glacier surface to its base. Moulins are a main feature feeding subglacial drainage systems and thus influencing basal motion and ice dynamics, but their geometry remains poorly known. Here we show that analysis of the seismic wavefield generated by water falling into a moulin can help constrain its geometry. We present modeling results of hour-long seimic tremors emitted from a vertical moulin shaft, observed with a seismometer array installed at the surface of the Greenland Ice Sheet. The tremor was triggered when the moulin water level exceeded a certain height, which we associate with the threshold for the waterfall to hit directly the surface of the moulin water column. The amplitude of the tremor signal changed over each tremor episode, in close relation to the amount of inflowing water. The tremor spectrum features multiple prominent peaks, whose characteristic frequencies are distributed like the resonant modes of a semiopen organ pipe and were found to depend on the moulin water level, consistent with a source composed of resonant tube waves (water pressure waves coupled to elastic deformation of the moulin walls) along the water-filled moulin pipe. Analysis of surface particle motions lends further support to this interpretation. The seismic wavefield was modeled as a superposition of sustained wave radiation by pressure sources on the side walls and at the bottom of the moulin. The former was found to dominate the wave field at close distance and the latter at large distance to the moulin.

  13. Heterogeneous distribution of water in the mantle transition zone beneath United States inferred from seismic observations

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pavlis, G. L.; Li, M.

    2017-12-01

    The amount of water in the Earth's deep mantle is critical for the evolution of the solid Earth and the atmosphere. Mineral physics studies have revealed that Wadsleyite and Ringwoodite in the mantle transition zone could store several times the volume of water in the ocean. However, the water content and its distribution in the transition zone remain enigmatic due to lack of direct observations. Here we use seismic data from the full deployment of the Earthscope Transportable Array to produce 3D image of P to S scattering of the mantle transition zone beneath the United States. We compute the image volume from 141,080 pairs of high quality receiver functions defined by the Earthscope Automated Receiver Survey, reprocessed by the generalized iterative deconvolution method and imaged by the plane wave migration method. We find that the transition zone is filled with previously unrecognized small-scale heterogeneities that produce pervasive, negative polarity P to S conversions. Seismic synthetic modeling using a point source simulation method suggests two possible structures for these objects: 1) a set of randomly distributed blobs of slight difference in size, and 2) near vertical diapir structures from small scale convections. Combining with geodynamic simulations, we interpret the observation as compositional heterogeneity from small-scale, low-velocity bodies that are water enriched. Our results indicate there is a heterogeneous distribution of water through the entire mantle transition zone beneath the contiguous United States.

  14. The case for 6-component ground motion observations in planetary seismology

    NASA Astrophysics Data System (ADS)

    Joshi, Rakshit; van Driel, Martin; Donner, Stefanie; Nunn, Ceri; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    The imminent INSIGHT mission will place a single seismic station on Mars to learn more about the structure of the Martian interior. Due to cost and difficulty, only single stations are currently feasible for planetary missions. We show that future single station missions should also measure rotational ground motions, in addition to the classic 3 components of translational motion. The joint, collocated, 6 component (6C) observations offer access to additional information that can otherwise only be obtained through seismic array measurements or are associated with large uncertainties. An example is the access to local phase velocity information from measurements of amplitude ratios of translations and rotations. When surface waves are available, this implies (in principle) that 1D velocity models can be estimated from Love wave dispersion curves. In addition, rotational ground motion observations can distinguish between Love and Rayleigh waves as well as S and P type motions. Wave propagation directions can be estimated by maximizing (or minimizing) coherence between translational and rotational motions. In combination with velocity-depth estimates, locations of seismic sources can be determined from a single station with little or no prior knowledge of the velocity structure. We demonstrate these points with both theoretical and real data examples using the vertical component of motion from ring laser recordings at Wettzell and all components of motion from the ROMY ring near Munich. Finally, we present the current state of technology concerning portable rotation sensors and discuss the relevance to planetary seismology.

  15. Lateral variations of the Guerrero-Oaxaca subduction zone (Mexico) derived from weak seismicity (Mb3.5+) detected on a single array at teleseismic distance

    NASA Astrophysics Data System (ADS)

    Letort, Jean; Retailleau, Lise; Boué, Pierre; Radiguet, Mathilde; Gardonio, Blandine; Cotton, Fabrice; Campillo, Michel

    2018-05-01

    Detections of pP and sP phase arrivals (the so-called depth phases) at teleseismic distance provide one of the best ways to estimate earthquake focal depth, as the P-pP and the P-sP delays are strongly dependent on the depth. Based on a new processing workflow and using a single seismic array at teleseismic distance, we can estimate the depth of clusters of small events down to magnitude Mb 3.5. Our method provides a direct view of the relative variations of the seismicity depth from an active area. This study focuses on the application of this new methodology to study the lateral variations of the Guerrero subduction zone (Mexico) using the Eielson seismic array in Alaska (USA). After denoising the signals, 1232 Mb 3.5 + events were detected, with clear P, pP, sP and PcP arrivals. A high-resolution view of the lateral variations of the depth of the seismicity of the Guerero-Oaxaca area is thus obtained. The seismicity is shown to be mainly clustered along the interface, coherently following the geometry of the plate as constrained by the receiver-function analysis along the Meso America Subduction Experiment profile. From this study, the hypothesis of tears on the western part of Guerrero and the eastern part of Oaxaca are strongly confirmed by dramatic lateral changes in the depth of the earthquake clusters. The presence of these two tears might explain the observed lateral variations in seismicity, which is correlated with the boundaries of the slow slip events.

  16. Systematic detection of seismic events at Mount St. Helens with an ultra-dense array

    NASA Astrophysics Data System (ADS)

    Meng, X.; Hartog, J. R.; Schmandt, B.; Hotovec-Ellis, A. J.; Hansen, S. M.; Vidale, J. E.; Vanderplas, J.

    2016-12-01

    During the summer of 2014, an ultra-dense array of 900 geophones was deployed around the crater of Mount St. Helens and continuously operated for 15 days. This dataset provides us an unprecedented opportunity to systematically detect seismic events around an active volcano and study their underlying mechanisms. We use a waveform-based matched filter technique to detect seismic events from this dataset. Due to the large volume of continuous data ( 1 TB), we performed the detection on the GPU cluster Stampede (https://www.tacc.utexas.edu/systems/stampede). We build a suite of template events from three catalogs: 1) the standard Pacific Northwest Seismic Network (PNSN) catalog (45 events); 2) the catalog from Hansen&Schmandt (2015) obtained with a reverse-time imaging method (212 events); and 3) the catalog identified with a matched filter technique using the PNSN permanent stations (190 events). By searching for template matches in the ultra-dense array, we find 2237 events. We then calibrate precise relative magnitudes for template and detected events, using a principal component fit to measure waveform amplitude ratios. The magnitude of completeness and b-value of the detected catalog is -0.5 and 1.1, respectively. Our detected catalog shows several intensive swarms, which are likely driven by fluid pressure transients in conduits or slip transients on faults underneath the volcano. We are currently relocating the detected catalog with HypoDD and measuring the seismic velocity changes at Mount St. Helens using the coda wave interferometry of detected repeating earthquakes. The accurate temporal-spatial migration pattern of seismicity and seismic property changes should shed light on the physical processes beneath Mount St. Helens.

  17. 4-D crustal structure of the conterminous U.S.: Continental assembly, crustal growth, and deformation history from receiver functions, xenoliths, and structural mapping

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Mahan, K. H.

    2015-12-01

    We investigate seismic and geological features related to the tectonic evolution of the crust on a continent-wide scale. We present continent-wide features using Transportable Array data receiver function analysis, followed by regional comparisons to tie to ground truth from xenolith studies and structural mapping. We stress that the Transportable Array, at ~75 km station spacing, only offers a collection of point measurements of the crust due to the lack of crossing raypaths. 7.x layers (lower crust with high seismic velocities) can be created during crustal growth processes such as magmatic or mechanical underplating and during crustal modification such as large-scale melting. We present receiver function results and a compilation of previous regional studies using refraction data or receiver functions from regional dense networks. 7.x layers appear predominantly in parts of the northern U.S. Cordillera and across the southeastern U.S. We compare the seismic results with a xenolith study in Montana that details incremental growth of the 7.x layer from the Archean on. Hydration of a granulitic lower crust can destroy the 7.x layer and has the potential to cause epirogenic uplift. We interpret the pattern seen across the Transportable Array in the light of this hypothesis. Ductile deformation of the deep crust generates shear fabrics that can be detected seismically. Receiver functions detect shear zones via contrasts in foliation to the surrounding material. We map foliation strikes and depths in the crust across the Transportable Array using azimuthal analysis of receiver functions. Strikes from receiver functions typically align with surface fault traces in tectonically active regions, with depths of the converters exceeding the brittle zone. We discuss continent-wide strikes mapped with receiver functions. Contrasting orientations of Proterozoic shear zones and pervasive surrounding foliations in basement exposures in Colorado are reflected in seismic results from the Transportable Array and CREST experiment.

  18. Broadband Array Analysis of the 2005 Episodic Tremor and Slip Event in Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Wech, A.; Creager, K.; McCausland, W.; Frassetto, A.; Qamar, A.; Derosier, S.; Carmichael, J.; Malone, S.; Johnson, D.

    2005-12-01

    The region of Cascadia from the Olympic Mountains through southern Vancouver Island and down-dip of the subduction megathrust has repeatedly experienced episodes of slow slip. This episodic slip, which has been observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the next episodic tremor and slip (ETS) event should occur within six weeks of mid-September, 2005. Indeed, it appears to have begun on September 3, as this abstract was being written. In order to record this anticipated event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. One of the primary goals of this research is to utilize the broadband instrumentation in the array to investigate the possible correlation of low frequency energy with the rest of the tremor activity. ETS has been carefully investigated at high-frequency (seismic tremor at 2-6 Hz) and very low-frequency (slip occurring over weeks, observed by GPS). An important goal of this experiment is to investigate the possibility that the tremor generates intermediate, low-frequency signals. Preliminary analysis of short-period array recordings of the July, 2004 ETS event suggests that the tremor displays signs of lower-frequency energy (~0.5 Hz) correlated with its higher frequency activity. Our array should enable us to distinguish low- frequency signals originating in the direction of high-frequency tremor from noise in other directions. We will present an analysis of the low-frequency energy associated with this slip event.

  19. Seismic microzonation and velocity models of El Ejido area (SE Spain) from the diffuse-field H/V method

    NASA Astrophysics Data System (ADS)

    García-Jerez, Antonio; Seivane, Helena; Navarro, Manuel; Piña-Flores, José; Luzón, Francisco; Vidal, Francisco; Posadas, Antonio M.; Aranda, Carolina

    2016-04-01

    El Ejido town is located in the Campo de Dalías coastal plain (Almería province, SE Spain), emplaced in one of the most seismically active regions of Spain. The municipality has 84000 inhabitants and presented a high growth rate during the last twenty years. The most recent intense seismic activity occurred close to this town was in 1993 and 1994, with events of Mb = 4.9 and Mb = 5.0, respectively. To provide a basis for site-specific hazard analysis, we first carried out a seismic microzonation of this town in terms of predominant periods and geotechnical properties. The predominant periods map was obtained from ambient noise observations on a grid of 250 x 250 m in the main urban area, and sparser measurements on the outskirts. These broad-band records, of about 20 minutes long each, were analyzed by using the horizontal-to-vertical spectral ratio technique (H/V). Dispersion curves obtained from two array measurements of ambient noise and borehole data provided additional geophysical information. All the surveyed points in the town were found to have relatively long predominant periods ranging from 0.8 to 2.3 s and growing towards the SE. Secondary high-frequency (> 2Hz) peaks were found at about the 10% of the points only. On the other hand, Vs30 values of 550 - 650 m/s were estimated from the array records, corresponding to cemented sediments and medium-hard rocks. The local S-wave velocity structure has been inverted from the H/V curves for a subset of the measurement sites. We used an innovative full-wavefield method based on the diffuse-wavefield approximation (Sánchez-Sesma et al., 2011) combined with the simulated annealing algorithm. Shallow seismic velocities and deep boreholes data were used as constraints. The results show that the low-frequency resonances are related with the impedance contrast between several hundred meters of medium-hard sedimentary rocks (marls and calcarenites) with the stiffer basement of the basin, which dips to the SE. These results illustrate the case of relatively long resonance periods capable to influence high-rise buildings, the existence of which could not be properly evaluated attending to the geotechnical description at surface. ACKNOWLEDGEMENTS: This research has been supported by the Spanish Ministry of Economy and Competitiveness under grant CGL2014-59908 and by the European Union with FEDER.

  20. The use of vertical seismic profiles in seismic investigations of the earth

    USGS Publications Warehouse

    Balch, Alfred H.; Lee, M.W.; Miller, J.J.; Ryder, Robert T.

    1982-01-01

    During the past 8 years, the U.S. Geological Survey has conducted an extensive investigation on the use of vertical seismic profiles (VSP) in a variety of seismic exploration applications. Seismic sources used were surface air guns, vibrators, explosives, marine air guns, and downhole air guns. Source offsets have ranged from 100 to 7800 ft. Well depths have been from 1200 to over 10,000 ft. We have found three specific ways in which VSPs can be applied to seismic exploration. First, seismic events observed at the surface of the ground can be traced, level by level, to their point of origin within the earth. Thus, one can tie a surface profile to a well log with an extraordinarily high degree of confidence. Second, one can establish the detectability of a target horizon, such as a porous zone. One can determine (either before or after surface profiling) whether or not a given horizon or layered sequence returns a detectable reflection to the surface. The amplitude and character of the reflection can also be observed. Third, acoustic properties of a stratigraphic sequence can be measured and sometimes correlated to important exploration parameters. For example, sometimes a relationship between apparent attenuation and sand percentage can be established. The technique shows additional promise of aiding surface exploration indirectly through studies of the evolution of the seismic pulse, studies of ghosts and multiples, and studies of seismic trace inversion techniques. Nearly all current seismic data‐processing techniques are adaptable to the processing of VSP data, such as normal moveout (NMO) corrections, stacking, single‐and multiple‐channel filtering, deconvolution, and wavelet shaping.

  1. Retrieval of P wave Basin Response from Autocorrelation of Seismic Noise-Jakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Saygin, E.; Cummins, P. R.; Lumley, D. E.

    2016-12-01

    Indonesia's capital city, Jakarta, is home to a very large (over 10 million), vulnerable population and is proximate to known active faults, as well as to the subduction of Australian plate, which has a megathrust at abut 300 km distance, as well as intraslab seismicity extending to directly beneath the city. It is also located in a basin filled with a thick layer of unconsolidated and poorly consolidated sediment, which increases the seismic hazard the city is facing. Therefore, the information on the seismic velocity structure of the basin is crucial for increasing our knowledge of the seismic risk. We undertook a passive deployment of broadband seismographs throughout the city over a 3-month interval in 2013-2014, recording ambient seismic noise at over 90 sites for intervals of 1 month or more. Here we consider autocorrelations of the vertical component of the continuously recorded seismic wavefield across this dense network to image the shallow P wave velocity structure of Jakarta, Indonesia. Unlike the surface wave Green's functions used in ambient noise tomography, the vertical-component autocorrelograms are dominated by body wave energy that is potentially sensitive to sharp velocity contrasts, which makes them useful in seismic imaging. Results show autocorrelograms at different seismic stations with travel time variations that largely reflect changes in sediment thickness across the basin. We also confirm the validity our interpretation of the observed autocorrelation waveforms by conducting 2D finite difference full waveform numerical modeling for randomly distributed seismic sources to retrieve the reflection response through autocorrelation.

  2. Detecting Micro-seismicity and Long-duration Tremor-like Events from the Oklahoma Wavefield Experiment

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, Z.; Peng, Z.; Zhang, C.; Nakata, N.

    2017-12-01

    Oklahoma has experienced abrupt increase of induced seismicity in the last decade. An important way to fully understand seismic activities in Oklahoma is to obtain more complete earthquake catalogs and detect different types of seismic events. The IRIS Community Wavefield Demonstration Experiment was deployed near Enid, Oklahoma in Summer of 2016. The dataset from this ultra-dense array provides an excellent opportunity for detecting microseismicity in that region with wavefield approaches. Here we examine continuous waveforms recorded by 3 seismic lines using local coherence for ultra-dense arrays (Li et al., 2017), which is a measure of cross-correlation of waveform at each station with its nearby stations. So far we have detected more than 5,000 events from 06/22/2016 to 07/20/2016, and majority of them are not listed on the regional catalog of Oklahoma or global catalogs, indicating that they are local events. We also identify 15-20 long-period long-duration events, some of them lasting for more than 500 s. Such events have been found at major plate-boundary faults (also known as deep tectonic tremor), as well as during hydraulic fracturing, slow-moving landslides and glaciers. Our next step is to locate these possible tremor-like events with their relative arrival times across the array and compare their occurrence times with solid-earth tides and injection histories to better understand their driving mechanisms.

  3. Applications of resistivity modeling in reservoir development: examples from Balder Field, Norwegian North Sea

    USGS Publications Warehouse

    Paillet, Frederick L.; Haynes, F.M.; Buretz, O.M.

    2001-01-01

    The massive Paleocene oil sands of the Balder Field are overlain by several thinly bedded Eocene sand-prone packages of variable facies and reservoir quality. Although these sands have been penetrated by numerous exploration and development wells, uncertainty remains as to their extent, distribution, and ultimate effect on reservoir performance. The section is geologically complex (thin beds, injected sands, shale clasts and laminae, and faulting), and also contains a field-wide primary gas cap. With a depletion plan involving both gas and water injection, geologic/reservoir characterization of the Eocene is critical for prudent resource management during depletion. With this goal, resistivity modeling and core-based thin bed reservoir description from the first phase of development drilling have been integrated with seismic attribute mapping. Detailed core description, core permeability and grain size distribution data delineate six facies and help in distinguishing laterally continuous massive and laminated sands from potentially non-connected injection sands and non-reservoir quality siltstones and tuffs. Volumetric assessment of the thin sand resource has been enhanced by I-D forward modeling of induction log response using a commercial resistivity modeling program, R,BAN. After defining beds and facies with core and high resolution log data, the AHF60 array induction curve response was approximated using the 6FF40 response. Because many of the beds were thinner than 6FF40 resolution, the modeling is considered to provide a lower bound on R,. However, for most beds this model-based R, is significantly higher than that provided by one-foot vertical resolution shallow resistivity data, and is thought to be the best available estimate of true formation resistivity. Sensitivities in STOOIP were assessed with multiple R, earth models which can later be tested against production results. In addition, water saturation height functions, developed in vertical wells and thick beds, can be validated in deviated wells with thin beds. Sand thickness models constrained by this logand core-based petrophysical analysis were used to build impedance seismic synthetic sections from which seismic attributes could be extracted and calibrated. The model-based attribute calibration was then applied to the seismic impedance 3-D cube permitting sand thickness to be mapped and reservoir geology to be modeled with significantly more detail than previously possible. These results will guide the field''s reservoir management and assist in the delineation of new targets.

  4. An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method

    NASA Astrophysics Data System (ADS)

    Tün, M.; Pekkan, E.; Özel, O.; Guney, Y.

    2016-10-01

    Amplification can occur in a graben as a result of strong earthquake-induced ground motion. Thus, in seismic hazard and seismic site response studies, it is of the utmost importance to determine the geometry of the bedrock depth. The main objectives of this study were to determine the bedrock depth and map the depth-to-bedrock ratio for use in land use planning in regard to the mitigation of earthquake hazards in the Eskişehir Basin. The fundamental resonance frequencies (fr) of 318 investigation sites in the Eskişehir Basin were determined through case studies, and the 2-D S-wave velocity structure down to the bedrock depth was explored. Single-station microtremor data were collected from the 318 sites, as well as microtremor array data from nine sites, seismic reflection data from six sites, deep-drilling log data from three sites and shallow drilling log data from ten sites in the Eskişehir Graben. The fundamental resonance frequencies of the Eskişehir Basin sites were obtained from the microtremor data using the horizontal-to vertical (H/V) spectral ratio (HVSR) method. The phase velocities of the Rayleigh waves were estimated from the microtremor data using the spatial autocorrelation (SPAC) method. The fundamental resonance frequency range at the deepest point of the Eskişehir Basin was found to be 0.23-0.35 Hz. Based on the microtremor array measurements and the 2-D S-wave velocity profiles obtained using the SPAC method, a bedrock level with an average velocity of 1300 m s-1 was accepted as the bedrock depth limit in the region. The log data from a deep borehole and a seismic reflection cross-section of the basement rocks of the Eskişehir Basin were obtained and permitted a comparison of bedrock levels. Tests carried out using a multichannel walk-away technique permitted a seismic reflection cross-section to be obtained up to a depth of 1500-2000 m using an explosive energy source. The relationship between the fundamental resonance frequency in the Eskişehir Basin and the results of deep drilling, shallow drilling, shear wave velocity measurement and sedimentary cover depth measurement obtained from the seismic reflection section was expressed in the form of a nonlinear regression equation. An empirical relationship between fr, the thickness of sediments and the bedrock depth is suggested for use in future microzonation studies of sites in the region. The results revealed a maximum basin depth of 1000 m, located in the northeast of the Eskişehir Basin, and the SPAC and HVSR results indicated that within the study area the basin is characterized by a thin local sedimentary cover with low shear wave velocity overlying stiff materials, resulting in a sharp velocity contrast. The thicknesses of the old Quaternary and Tertiary fluvial sediments within the basin serve as the primary data sources in seismic hazard and seismic site response studies, and these results add to the body of available seismic hazard data contributing to a seismic microzonation of the Eskişehir Graben in advance of the severe earthquakes expected in the Anatolian Region.

  5. A tree fell in the forest, and SPREE heard it: seismic recording of the 2011 St. Croix Valley Blowdown

    NASA Astrophysics Data System (ADS)

    Wolin, E.; van der Lee, S.

    2016-12-01

    As part of the Superior Province Rifting Earthscope Experiment (SPREE), 82 broadband seismic stations from the EarthScope Flexible Array pool were deployed by the SPREE team from April 2011 through October 2013, to explore the deep structure of the Mid-Continent Rift System (Stein et al., 2011). The deployment included two crosslines with approximate station spacing of 10 km centered near the northern Minnesota-Wisconsin border. Analysis of long-period noise reveals strong seasonal and diurnal variations (Wolin et al., 2015). On 1 July 2011, a severe thunderstorm system swept over the St. Croix Valley, passing directly over the dense SPREE array. This storm system was accompanied by a series of downbursts that generated straight-line winds in excess of 100 km/hr, resulting in extensive damage to hundreds of thousands of acres of forest. Seven SPREE stations were located in the path of the storm, with two stations in the center of areas that were heavily damaged by downbursts. The stations remained in operation throughout this extreme weather event, capturing a unique record of ground noise generated by the storm system. We compare available radar reflectivity data with seismic noise power spectra throughout the event and show that storm cells generated significant broadband seismic signals as they passed over the region. Relative to typical background seismic noise levels, power between 0.05-10 Hz increased by 5-20 dB during the storm. Seismic noise levels can be compared to available wind speed data to provide a detailed record of wind speeds during the weather event. We also explore the long-period coherence of energy across the array, which is potentially useful to help constrain near-surface velocity structure at the array sites as well as to better characterize how atmospheric processes couple into the solid earth during severe weather events.

  6. Analysis of the Noise in Data from the Mt. Meron Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, D. H.; Breitfeller, E.

    2010-07-15

    This memo describes an analysis of the noise in data obtained from the Mt. Meron seismic array in northern Israel. The overall objective is to development a method for removing noise from extraneous sources in the environment, increasing the sensitivity to seismic signals from far events. For this initial work, we concentrated on understanding the propagation characteristics of the noise in the frequency band from 0.1 – 8 Hz, and testing a model-based method for removing narrow band (single frequency) noise.

  7. Characterization of Carbonate Hydrostratigraphy Using Ambient Seismic Noise: A Pilot Study in the Floridan Aquifer System, Ocala, FL, USA

    NASA Astrophysics Data System (ADS)

    James, S.; Screaton, E.; Russo, R. M.; Panning, M. P.; Bremner, P. M.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; Farrell, M. E.

    2014-12-01

    Defining zones of high and low hydraulic conductivity within aquifers is vital to hydrogeologic research and groundwater management. Carbonate aquifers are particularly difficult to characterize due to dissolution and dolomitization. We investigated a new imaging technique for aquifer characterization that uses cross-correlation of ambient seismic noise to determine seismic velocity structure. Differences in densities between confining units and high permeability flow zones can produce distinct seismic velocities in the correlated signals. We deployed an array of 9 short period geophones from 11/2013 to 3/2014 in Indian Lake State Forest, Florida, to determine if the high frequency diffusive seismic wavefield can be used for imaging hydrostratigraphy. Here, a thin surficial layer of siliciclastic deposits overlie a ~ 0.6 km sequence of Cenozoic limestone and dolomite units that comprise the Floridan Aquifer System (FAS). A low permeability dolomite unit vertically divides the FAS throughout most of Florida. Deep boreholes surrounding the site constrain hydrostratigraphy, however the horizontal continuity of the middle dolomite unit as well as its effectiveness as a confining unit in the study area are not well known. The stations were spaced at distances ranging from 0.18 to 2.6 km, and yielded 72 cross-correlation Green's functions for Rayleigh wave propagation at frequencies between 0.2 and 40 Hz, with dominant peaks around 0.8 Hz, 3 Hz and 13 Hz. Local vehicle traffic did interfere to a degree with the correlation of the diffuse waves, but was minimized by using only nighttime data. At the lowest frequencies (greatest depths) investigated, velocities increase with depth; however, correlations become less coherent at higher frequencies, perhaps due to shallow complex scattering. Comparison of cross-correlations for all station pairs also indicates spatial variations in velocity. Thus, the method shows promise for characterization of the heterogeneity of the Floridan Aquifer System.

  8. Seismic reflection imaging with conventional and unconventional sources

    NASA Astrophysics Data System (ADS)

    Quiros Ugalde, Diego Alonso

    This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant seismic activity.

  9. Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: Evidence for a shallow trapping structure

    USGS Publications Warehouse

    Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.

    2003-01-01

    We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.

  10. A pilot study of the Earthquake Precursors in the Southwest Peloponnes, Greece

    NASA Astrophysics Data System (ADS)

    Velez, A. P.; Tsinganos, K.; Karastathis, V. K.; Kafatos, M.; Ouzounov, D.; Papadopoulos, G. A.; Tselentis, A.; Eleftheriou, G.; Mouzakiotis, E.; Gika, F.; Aspiotis, T.; Liakopoulos, S.; Voulgaris, N.

    2016-12-01

    A seismic array of the most contemporary technology has been recently installed in the area of Southwest Peloponnese, Greece, an area well known for its high seismic activity. The tectonic regime of the Hellenic arc was the reason for many lethal earthquakes with considerable damage to the broader area of East Mediterranean sea. The seismic array is based on nine 32-bit stations with broadband borehole seismometers. The seismogenic region, monitored by the array, is offshore. At this place the earthquake location suffers by poor azimuthal coverage and the stations of the national seismic network are very distant to this area. Therefore, the existing network cannot effectively monitor the microseismicity. The new array achieved a detailed monitoring of the small events dropping considerably the magnitude of completeness. The detectability of the microearthquakes has been drastically improved permitting so the statistical assessment of earthquake sequences in the area. In parallel the monitored seismicity is directly related with Radon measurement in the soil, taken at three stations in the area.. Radon measurements are performed indirectly by means γ-ray spectrometry of its radioactive progenies 214Pb and 214Bi (emitted at 351 keV and 609 keV, respectively). NaI(Tl) detectors have been installed at 1 m depth, at sites in vicinity of faults providing continuous real time data. Local meteorological records for atmospheric corrections are also continuously recorded. According to the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model atmospheric thermal anomalies observed before strong events can be attributed to increased radon concentration. This is also supported by the statistical analysis of AVHRR/NOAA-18 satellite thermal infrared (TIR) daily records. A combined study of precursor's signals is expected to provide a reliable assessment of their ability on short-term forecasting.

  11. Seismic Observation of Infrasonic Signals

    DTIC Science & Technology

    1984-11-01

    The implication of these results is that an infra - sonic monitoring capability already exists in the current seismic network and... infra - sonic signal recorded by the microbarographs. This arrival is linearly polarized, with a near-vertical orientation of the state vector. The...TECHNICAL REPORT NO. 84-7 cn "^ SEISMIC OBSERVATION p INFRASONIC SIGNALS D < FINAL REPORT by JACK C. SWANSON and J. CRAIG WOERPEL The views and

  12. Seismic Techniques for Subsurface Voids Detection

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Korneev, Valeri; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    A major hazards in Qatar is the presence of karst, which is ubiquitous throughout the country including depressions, sinkholes, and caves. Causes for the development of karst include faulting and fracturing where fluids find pathways through limestone and dissolve the host rock to form caverns. Of particular concern in rapidly growing metropolitan areas that expand in heretofore unexplored regions are the collapse of such caverns. Because Qatar has seen a recent boom in construction, including the planning and development of complete new sub-sections of metropolitan areas, the development areas need to be investigated for the presence of karst to determine their suitability for the planned project. In this paper, we present the results of a study to demonstrate a variety of seismic techniques to detect the presence of a karst analog in form of a vertical water-collection shaft located on the campus of Qatar University, Doha, Qatar. Seismic waves are well suited for karst detection and characterization. Voids represent high-contrast seismic objects that exhibit strong responses due to incident seismic waves. However, the complex geometry of karst, including shape and size, makes their imaging nontrivial. While karst detection can be reduced to the simple problem of detecting an anomaly, karst characterization can be complicated by the 3D nature of the problem of unknown scale, where irregular surfaces can generate diffracted waves of different kind. In our presentation we employ a variety of seismic techniques to demonstrate the detection and characterization of a vertical water collection shaft analyzing the phase, amplitude and spectral information of seismic waves that have been scattered by the object. We used the reduction in seismic wave amplitudes and the delay in phase arrival times in the geometrical shadow of the vertical shaft to independently detect and locate the object in space. Additionally, we use narrow band-pass filtered data combining two orthogonal transmission surveys to detect and locate the object. Furthermore, we showed that ambient noise recordings may generate data with sufficient signal-to-noise ratio to successfully detect and locate subsurface voids. Being able to use ambient noise recordings would eliminate the need to employ active seismic sources that are time consuming and more expensive to operate.

  13. Seismic-Reflection Technology Defines Potential Vertical Bypass in Hydrogeologic Confinement within Tertiary Carbonates of the Southeastern Florida Platform

    NASA Astrophysics Data System (ADS)

    Cunningham, K. J.; Walker, C.; Westcott, R. L.

    2011-12-01

    Continuous improvements in shallow-focused, high-resolution, marine seismic-reflection technology has provided the opportunity to evaluate geologic structures that breach confining units of the Floridan aquifer system within the southeastern Florida Platform. The Floridan aquifer system is comprised mostly of Tertiary platform carbonates. In southeastern Florida, hydrogeologic confinement is important to sustainable use of the Floridan aquifer system, where the saline lower part is used for injection of wastewater and the brackish upper part is an alternative source of drinking water. Between 2007 and 2011, approximately 275 km of 24- and 48-channel seismic-reflection profiles were acquired in canals of peninsular southeastern Florida, Biscayne Bay, present-day Florida shelf margin, and the deeply submerged Miami Terrace. Vertical to steeply dipping offsets in seismic reflections indicate faults, which range from Eocene to possible early Pliocene age. Most faults are associated with karst collapse structures; however, a few tectonic faults of early Miocene to early Pliocene age are present. The faults may serve as a pathway for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability in the Floridan aquifer system. The faults may collectively produce a regional confinement bypass system. In early 2011, twenty seismic-reflection profiles were acquired near the Key Biscayne submarine sinkhole located on the seafloor of the Miami Terrace. Here the water depth is about 365 m. A steeply dipping (eastward) zone of mostly deteriorated quality of seismic-reflection data underlies the sinkhole. Correlation of coherent seismic reflections within and adjacent to the disturbed zone indicates a series of faults occur within the zone. It is hypothesized that upward movement of groundwater within the zone contributed to development of a hypogenic karst system and the resultant overlying sinkhole. Study of this modern seafloor sinkhole may provide clues to the genesis of the more deeply buried Tertiary karst collapse structures. Three-dimensional geomodeling of the seismic-reflection data from the Key Biscayne sinkhole further aids visualization of the seismic stratigraphy and structural system that underlies the sinkhole.

  14. Seismic monitoring at Deception Island volcano (Antarctica): Recent advances

    NASA Astrophysics Data System (ADS)

    Carmona, E.; Almendros, J.; Martín, R.; Cortés, G.; Alguacil, G.; Moreno, J.; Martín, B.; Martos, A.; Serrano, I.; Stich, D.; Ibáñez, J. M.

    2012-04-01

    Deception Island (South Shetland Island, Antarctica) is an active volcano with recent eruptions (e.g. 1967, 1969 and 1970). It is also among the Antarctic sites most visited by tourists. Besides, there are currently two scientific bases operating during the austral summers, usually from late November to early March. For these reasons it is necessary to deploy a volcano monitoring system as complete as possible, designed specifically to endure the extreme conditions of the volcanic environment and the Antarctic climate. The Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR) performs seismic monitoring on Deception Island since 1994 during austral summer surveys. The seismicity basically includes volcano-tectonic earthquakes, long-period events and volcanic tremor, among other signals. The level of seismicity is moderate, except for a seismo-volcanic crisis in 1999. The seismic monitoring system has evolved during these years, following the trends of the technological developments and software improvements. Recent advances have been mainly focused on: (1) the improvement of the seismic network introducing broadband stations and 24-bit data acquisition systems; (2) the development of a short-period seismic array, with a 12-channel, 24-bit data acquisition system; (3) the implementation of wireless data transmission from the network stations and also from the seismic array to a recording center, allowing for real-time monitoring; (4) the efficiency of the power supply systems and the monitoring of the battery levels and power consumption; (5) the optimization of data analysis procedures, including database management, automated event recognition tools for the identification and classification of seismo-volcanic signals, and apparent slowness vector estimates using seismic array data; (6) the deployment of permanent seismic stations and the transmission of data during the winter using a satellite connection. A single permanent station is operating at Deception Island since 2008. In the current survey we collaborate with the Spanish Army to add another permanent station that will be able to send to the IAG-UGR seismic information about the activity of the volcano during the winter, using a communications satellite (SPAINSAT). These advances simplify the field work and the data acquisition procedures, and allow us to obtain high-quality seismic data in real-time. These improvements have a very important significance for a better and faster interpretation of the seismo-volcanic activity and assessment of the volcanic hazards at Deception Island volcano.

  15. Influence of Spatial Variation in Ground Motion Peak Acceleration on Local Site Effects Estimation at Bucovina Seismic Array (BURAR) Romania

    NASA Astrophysics Data System (ADS)

    Ghica, D. V.; Radulian, M.; Popa, M.; Grecu, B.

    2006-05-01

    Basically, array processing techniques require a high signal coherency across the seismic site; therefore the local crustal velocities below the station, signal amplitude differences between array elements and local noise conditions, resulting in local site effects will affect calculation of phase arrival times, propagation velocities and ground motion amplitudes. In general, array techniques assume a homogenous structure for all sites, and a simple relief correction is taking in account for the data analysis. To increase the results accuracy, individual element corrections must be applied, based on the biases factors systematically observed. This study aims at identifying the anomalous amplitude variations recorded at the Bucovina Seismic Array (BURAR) and at explaining their influence on site effects estimation. Maximum amplitudes for the teleseismic and regional phases in four narrow frequency bands (0.25-0.5Hz; 0.5-1Hz; 1-2Hz; 1.5-3Hz) are measured. Spatial distribution of ground motion peak acceleration in BURAR site, for each band, is plotted; a different behavior was observed at frequencies below 2Hz. The most important aspect observed is the largest amplitude exhibited by BUR07 across the whole array at high frequencies (an amplification factor of about two). This can be explained by the different geology at BUR07 site (mica schist outcrops), comparing with the rest of elements (green schist outcrops). At the lowest frequencies (0.25-0.5Hz), BUR09 peak amplitudes dominate the other sites. Considering BUR07 as reference site, peak acceleration ratios were investigated. The largest scattering of these ratios appears at the highest frequencies (1.5-3Hz), when the weight of over unit values is about 90 %. No azimuth and distance dependence was found for these effects, suggesting the absence of the dipping layer structures. Although an increase of the ratio values is noticed for epicentral distance between 8000 and 10000 km, for frequencies over 1 Hz. The results of this study are essential to further develop the calibration technique for seismic monitoring with BURAR array, in order to improve the detection and single-array location capabilities of the system.

  16. Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments

    NASA Astrophysics Data System (ADS)

    Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.

    2008-04-01

    We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.

  17. Mega-thrust and Intra-slab Earthquakes Beneath Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Sato, H.; Koketsu, K.; Hagiwara, H.; Wu, F.; Okaya, D.; Iwasaki, T.; Kasahara, K.

    2006-12-01

    In central Japan the Philippine Sea plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region, where it causes mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. The vertical proximity of this down going lithospheric plate is of concern because the greater Tokyo urban region has a population of 42 million and is the center of approximately 40% of the nation's economic activities. A M7+ earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The M7+ earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In 2002, a consortium of universities and government agencies in Japan started the Special Project for Earthquake Disaster Mitigation in Urban Areas, a project to improve information needed for seismic hazards analyses of the largest urban centers. Assessment in Kanto of the seismic hazard produced by the Philippine Sea Plate (PSP) mega-thrust earthquakes requires identification of all significant faults and possible earthquake scenarios and rupture behavior, regional characterizations of PSP geometry and the overlying Honshu arc physical properties (e.g., seismic wave velocities, densities, attenuation), and local near-surface seism ic site effects. Our study addresses (1) improved regional characterization of the PSP geometry based on new deep seismic reflection profiles (Sato etal.,2005), reprocessed off-shore profiles (Kimura et al.,2005), and a dense seismic array in the Boso peninsular (Hagiwara et al., 2006) and (2) identification of asperities of the mega-thrust at the top of the PSP. We qualitatively examine the relationship between seismic reflections and asperities inferred by reflection physical properties. We also discuss the relation between deformation of PSP and intra-slab M7+ earthquakes: the PSP is subducting beneath the Hoshu arc and also colliding with the Pacific plate. The subduction and collision both contribute active seismicity in the Kanto region. We present a high resolution tomographic image to show a low velocity zone which suggests a possible internal failure of the slab; a source region of the M7+ intra-slab earthquake. Our study contributes a new assessment of the seismic hazard in the Tokyo metropolitan area. tokyo.ac.jp/daidai/index-J.html

  18. Influence of the Iceland mantle plume on North Atlantic continental margins

    NASA Astrophysics Data System (ADS)

    White, R. S.; Isimm Team

    2003-04-01

    Early Tertiary breakup of the North Atlantic was accompanied by widespread magmatism. The histories of the Iceland mantle plume, of rifting and of magmatism are intimately related. The magmatism provides a challenge both to imaging structure, and to modelling the subsidence and development of the continental margins. We report new work which integrates state-of-the-art seismic imaging and new acquisition on the Atlantic volcanic margins with new techniques for modelling their evolution. We discuss the distribution of igneous rocks along the North Atlantic margins and discuss the temporal and spatial variations in the Iceland mantle plume in the early Tertiary, which have largely controlled this pattern of magmatism. Igneous rocks are added to the crust on rifted margins as extrusive lavas, as sills intruded into the sub-surface and as lower crustal intrusions or underplate. Each provide different, but tractable problems to seismic imaging. We show that many of these difficulties can be surmounted by using very long offsets (long streamers or two-ship methods) with a broad-band, low-frequency source, and by using fixed ocean bottom receivers. We report results from surveys on the North Atlantic continental margins using these methods. Imaging results are shown from the recent FLARE project and from the iSIMM project, which recorded new seismic data recorded in summer 2002. The iSIMM project acquired two seismic surveys, using 85 4-component ocean bottom seismometers with long streamers for wide-angle data, and vertical arrays for far-field source signature recording. One survey crosses the Faroes Shelf and adjacent continental margin, and a second the Hatton-Rockall Basin, Hatton Bank and adjacent oceanic crust. The Faroes wide-angle profiles were overshot by WesternGeco's Topaz using three single-sensor, Q-Marine streamers, 12km plus two 4km. We designed deep-towed, broad-band low-frequency sources tuned to enhance the bubble pulses, with peak frequencies at 8-11 Hz. The OBS survey used a 14-gun, 6,300 cu. in. array towed at 20 m depth, and the Q-marine survey used a 48-gun, 10,170 cu. in. array, with shot-by-shot signature recording. They provided excellent arrivals to ranges beyond 120 km, with penetration through the basalts and well into the upper mantle. iSIMM investigators are R.S. White, N.J. Kusznir, P.A.F. Christie, A.M. Roberts, N. Hurst, Z.C. Lunnon, C.J. Parkin, A.W. Roberts, L.K. Smith, R. Spitzer , V. Tymms, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco

  19. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Qiao; Lyu, Shu-Shen; Luo, Jia-Li; Luo, Zhi-Yong; Fu, Yuan-Xiang; Heng, Yi; Zhang, Jian-Hui; Mo, Dong-Chuan

    2017-11-01

    Micro pin fin arrays have been widely used in electronic cooling, micro reactors, catalyst support, and wettability modification and so on, and a facile way to produce better micro pin fin arrays is demanded. Herein, a simple electrochemical method has been developed to fabricate copper vertical micro dendrite fin arrays (Cu-VMDFA) with controllable shapes, number density and height. High copper sulphate concentration is one key point to make the dendrite stand vertically. Besides, the applied current should rise at an appropriate rate to ensure the copper dendrite can grow vertically on its own. The Cu-VMDFA can significantly enhance the heat transfer coefficient by approximately twice compared to the plain copper surface. The Cu-VMDFA may be widely used in boiling heat transfer areas such as nuclear power plants, electronic cooling, heat exchangers, and so on.

  20. Crustal deformation and seismic measurements in the region of McDonald Observatory, West Texas. [Texas and Northern Chihuahua, Mexico

    NASA Technical Reports Server (NTRS)

    Dorman, H. J.

    1981-01-01

    The arrival times of regional and local earthquakes and located earthquakes in the Basin and Range province of Texas and in the adjacent areas of Chihuahua, Mexico from January 1976 to August 1980 at the UT'NASA seismic array are summarized. The August 1931 Texas earthquake is reevaluated and the seismicity and crustal structure of West Texas is examined. A table of seismic stations is included.

  1. Bighorns Arch Seismic Experiment (BASE): Amplitude Response to Different Seismic Charge Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harder, S. H., Killer, K. C., Worthington, L. L., Snelson, C. M.

    2010-09-02

    Contrary to popular belief, charge weight is not the most important engineering parameter determining the seismic amplitudes generated by a shot. The scientific literature has long claimed that the relationship, A ~R2L1/2, where A is the seismic amplitude generated by a shot, R is the radius of the seismic charge and L is the length of that charge, holds. Assuming the coupling to the formation and the pressure generated by the explosive are constants, this relationship implies that the one should be able to increase the charge radius while decreasing the charge length and obtain more seismic amplitude with lessmore » charge weight. This has significant implications for the economics of lithospheric seismic shots, because shallower holes and small charge sizes decrease cost. During the Bighorns Array Seismic Experiment (BASE) conducted in the summer of 2010, 24 shots with charge sizes ranging from 110 to 900 kg and drill hole diameters of 300 and 450 mm were detonated and recorded by an array of up to 2000 single-channel Texan seismographs. Maximum source-receiver offset of 300 km. Five of these shots were located within a one-acre square in an effort to eliminate coupling effects due to differing geological formations. We present a quantitative comparison of the data from these five shots to experimentally test the equation above.« less

  2. Shallow fluid pressure transients caused by seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Fleischmann, Karl Henry

    1993-10-01

    Clastic dikes, induced by paleo-seismic slip along the Jonesboro Fault, can be used to estimate the magnitude of shallow fluid pressure transients. Fractures show evidence of two phases of seismically induced dilation by escaping fluids. Initial dilation and propagation through brittle rocks was caused by expulsion of trapped reducing fluids from beneath a clay cap. Second phase fluids were thixotropic clays which flowed vertically from clay beds upwards into the main fracture. Using the differential dilation and fracture trace lengths, the fluid pressure pulse is estimated to have ranged from 0.312-0.49 MPa, which is approximately equal to the vertical load during deformation. Field observations in adjacent rocks record evidence of large-magnitude seismic events, which are consistent with the large nature of the fluid pressure fluctuation.

  3. Calibration of the R/V Marcus G. Langseth Seismic Array in shallow Cascadia waters using the Multi-Channel Streamer

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Tolstoy, M.; Carton, H. D.

    2013-12-01

    In the summer of 2012, two multi-channel seismic (MCS) experiments, Cascadia Open-Access Seismic Transects (COAST) and Ridge2Trench, were conducted in the offshore Cascadia region. An area of growing environmental concern with active source seismic experiments is the potential impact of the received sound on marine mammals, but data relating to this issue is limited. For these surveys sound level 'mitigation radii' are established for the protection of marine mammals, based on direct arrival modeling and previous calibration experiments. Propagation of sound from seismic arrays can be accurately modeled in deep-water environments, but in shallow and sloped environments the complexity of local geology and bathymetry can make it difficult to predict sound levels as a function of distance from the source array. One potential solution to this problem is to measure the received levels in real-time using the ship's streamer (Diebold et al., 2010), which would allow the dynamic determination of suitable mitigation radii. We analyzed R/V Langseth streamer data collected on the shelf and slope off the Washington coast during the COAST experiment to measure received levels in situ up to 8 km away from the ship. Our analysis shows that water depth and bathymetric features can affect received levels in shallow water environments. The establishment of dynamic mitigation radii based on local conditions may help maximize the safety of marine mammals while also maximizing the ability of scientists to conduct seismic research. With increasing scientific and societal focus on subduction zone environments, a better understanding of shallow water sound propagation is essential for allowing seismic exploration of these hazardous environments to continue. Diebold, J. M., M. Tolstoy, L. Doermann, S. Nooner, S. Webb, and T. J. Crone (2010) R/V Marcus G. Langseth Seismic Source: Modeling and Calibration. Geochemistry, Geophysics, Geosystems, 11, Q12012, doi:10.1029/2010GC003216.

  4. Multi-Sensor Data Fusion Project

    DTIC Science & Technology

    2000-02-28

    seismic network by detecting T phases generated by underground events ( generally earthquakes ) and associating these phases to seismic events. The...between underwater explosions (H), underground sources, mostly earthquake - generated (7), and noise detections (N). The phases classified as H are the only...processing for infrasound sensors is most similar to seismic array processing with the exception that the detections are based on a more sophisticated

  5. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    DTIC Science & Technology

    2012-01-01

    scattering (SERS) applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography...plasmonic nanowires to investigate this SERS effect. Here we used two types of vertical NWs, ZnO NWs, and Si NWs, respectively, to investigate SERS...successfully grow vertically aligned ZnO nanowires by the well-known VLS process. In this way, the ZnO NWs can be arranged in a repeatable hexagonal pattern

  6. Oblique Northeastward Lateral Extrusion of a Crustal Block in North-central Taiwan: a Mechanism for Syn-tectonic Extension

    NASA Astrophysics Data System (ADS)

    Gourley, J. R.; Byrne, T.

    2005-12-01

    An integrated data set of earthquake locations (Taiwan's Central Weather Bureau), focal mechanisms from the Broadband Array of Taiwan Seismicity (BATS), GPS velocities and geologic data are combined to constrain the geometry and kinematics of a crustal block within the metamorphic basement of Taiwan's northeastern Central Range. The active block is bounded by two parallel seismic zones that accommodate uplift and northeastward oblique lateral extrusion. The western shear zone is a region that dips vertically to steeply west and projects generally to the western boundary between the Slate Belt and pre-Tertiary metamorphic basement. BATS focal mechanisms consistently show east-side-up, left-lateral normal displacements. Late-stage geologic structures published previously show left-lateral faulting followed by east-west extension. The eastern shear zone dips vertically to steeply west and projects to the eastern boundary of the metamorphic basement, which correlates with the eastern mountain front in this area. BATS focal mechanisms show west-side-up reverse displacements. The kinematics of these two zones define a crustal scale block that is interpreted to be moving up and northeast towards the Okinawa Trough. The extrusion of this crustal block may be driven in part by the topographic difference between the Central Range and the Okinawa Trough, as well as by the active collision between the Philippine Sea Plate and the Eurasian basement high. This proposed northeastern lateral extrusion mirrors the active lateral extrusion in southwestern Taiwan which is observed on the southern side of the Eurasian basement high collision. The involvement of the basement high in the collision and adjacent regions appears to be an important factor in understanding local structural variations in the arc-continent collision and should be considered in both forward and reverse modeling of Taiwan deformation.

  7. Three-dimensional upper crustal velocity structure beneath San Francisco Peninsula, California

    USGS Publications Warehouse

    Parsons, T.; Zoback, M.L.

    1997-01-01

    This paper presents new seismic data from, and crustal models of the San Francisco Peninsula. In much of central California the San Andreas fault juxtaposes the Cretaceous granitic Salinian terrane on its west and the Late Mesozoic/Early Tertiary Franciscan Complex on its east. On San Francisco Peninsula, however, the present-day San Andreas fault is completely within a Franciscan terrane, and the Pilarcitos fault, located southwest of the San Andreas, marks the Salinian-Franciscan boundary. This circumstance has evoked two different explanations: either the Pilarcitos is a thrust fault that has pushed Franciscan rocks over Salinian rocks or the Pilarcitos is a transform fault that has accommodated significant right-lateral slip. In an effort to better resolve the subsurface structure of the peninsula faults, we established a temporary network of 31 seismographs arrayed across the San Andreas fault and the subparallel Pilarcitos fault at ???1-2 km spacings. These instruments were deployed during the first 6 months of 1995 and recorded local earthquakes, air gun sources set off in San Francisco Bay, and explosive sources. Travel times from these sources were used to augment earthquake arrival times recorded by the Northern California Seismic Network and were inverted for three-dimensional velocity structure. Results show lateral velocity changes at depth (???0.5-7 km) that correlate with downward vertical projections of the surface traces of the San Andreas and Pilarcitos faults. We thus interpret the faults as high-angle to vertical features (constrained to a 70??-110?? dip range). From this we conclude that the Pilarcitos fault is probably an important strike-slip fault that accommodated much of the right-lateral plate boundary strain on the peninsula prior to the initiation of the modern-day San Andreas fault in this region sometime after about 3.0 m.y. ago.

  8. Near-surface tomography of southern California from noise cross-correlation H/V measurements

    NASA Astrophysics Data System (ADS)

    Muir, J. B.; Tsai, V. C.

    2016-12-01

    The development of noise cross-correlation techniques constitutes one of the major advances in observational seismology in the past 15 years. The first data derived from noise cross correlations were surface wave phase velocities, but as the technique matures many more observables of noise cross-correlations are being used in seismic studies. One such observable is the horizontal-to-vertical amplitude ratio (H/V) of noise cross-correlations. We interpret the H/V ratio of noise cross correlations in terms of Rayleigh wave ellipticity. We have inverted the H/V of Rayleigh waves observed in noise cross-correlation signals to develop a 3D tomogram of Southern California. This technique has recently been employed (e.g. Lin et al. 2014) on a continental scale, using data from the Transportable Array in the period range of 8-24s. The finer inter-station spacing of the SCSN allows retrieval of high signal-to-noise ratio Rayleigh waves at a period of as low as 2s, significantly improving the vertical resolution of the resulting tomography. In addition, horizontal resolution is naturally improved by increased station density. This study constitutes a useful addition to traditional phase-velocity based tomographic inversions due to the localized sensitivity of H/V measurements to the near surface of the measurement station site. The continuous data of 222 permanent broadband stations of the Southern California Seismic Network (SCSN) were used in production of noise cross-correlation waveforms, resulting in a spatially dense set of measurements for the Southern California region in the 2-15s period band. Tectonic sub-regions including the LA Basin and Salton Trough are clearly visible due to their high short-period H/V ratios, whilst the Transverse and Peninsular ranges exhibit low H/V at all periods.

  9. Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip B.; Chouet, Bernard A.; Power, John

    2011-02-01

    Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.

  10. Seismic evidence of Quaternary faulting in the Benton Hills area, southeast Missouri

    USGS Publications Warehouse

    Palmer, J.R.; Shoemaker, M.; Hoffman, D.; Anderson, N.L.; Vaughn, J.D.; Harrison, R.W.

    1997-01-01

    Two reflection seismic profiles at English Hill, across the southern edge of the Benton Hills escarpment, southeast Missouri, establish that geologic structures at English Hill are of tectonic origin. The lowland area to the south of the escarpment is relatively undisturbed. The geology at English Hill is structurally complex, and reflection seismic and geologic data indicate extensive and episodic faulting of Paleozoic, Cretaceous, Tertiary, and Quaternary strata. The individual faults have near-vertical fault surfaces with maximum vertical separations on the order of 15 m. They appear to be clustered in north-northeast trending zones that essentially parallel one of the dominant Benton Hills structural trends. These observations suggest that previously mapped Quaternary faults at English Hill are deep-seated and tectonic in origin. This paper documents recent faulting at English Hill and is the first time late Quaternary, surface-rupture faulting has been recognized in the middle Mississippi River Valley region outside of the New Madrid seismic zone. This has important implications for earthquake assessment in the midcontinent.

  11. Properties of Repetitive Long-Period Seismicity at Villarrica Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Richardson, J.; Waite, G. P.; Palma, J.; Johnson, J. B.

    2011-12-01

    Villarrica Volcano, Chile hosts a persistent lava lake and is characterized by degassing and long-period seismicity. In order to better understand the relationship between outgassing and seismicity, we recorded broadband seismic and acoustic data along with high-rate SO2 emission data. We used both a densely-spaced linear array deployed on the northern flank of Villarrica, during the austral summer of 2011, and a wider aperture array of stations distributed around the volcano that was active in the austral summer of 2010. Both deployments consisted of three-component broadband stations and were augmented with broadband infrasound sensors. Of particular interests are repetitive, ~1 Hz seismic and coincident infrasound signals that occurred approximately every 2 minutes. Because these events are typically very low amplitude, we used a matched filter approach to identify them. We windowed several high-amplitude records of these events from broadband seismic stations near the vent. The record section of each event served as a template to compare with the entire dataset by cross-correlation. This approach identified ~20,000 nearly identical events during the ~7 day deployment of the linear array, which were otherwise difficult to identify in the raw records. Assuming that all of the events that we identified have identical source mechanisms and depths, we stack the large suite of events to produce low-noise records and particle motions at receivers farther than 5 km from the vent. We find that the records from stations near the edifice are dominated by tangential particle motion, suggesting the influence of near-field components. Correlation of these data with broadband acoustic data collected at the summit suggest that these repeatable seismic processes are linked to acoustic emissions, probably due to gas bubbles bursting at the magma free surface, as no eruptive products besides gas were being emitted by the volcano during the instrument deployment. The acoustic signals affiliated with the repetitive seismic signals do not seem directly related to the continuous, well-correlated acoustic tremor observed both at the vent and at roughly 6 km away from small-aperture acoustic arrays (also reported by other groups in 2009, 2010). We also correlate the acoustic and repetitive seismic signals with high time resolution (~1 Hz sampling rate), sulfur dioxide emissions measured with an ultraviolet camera. Because a subset of stations operated during both 2010 and 2011, we could tie events from both deployments to generate a single stacked event at all 17 stations. We will present results of finite-difference modeling of this event stack using a simple homogeneous velocity structure.

  12. Observation of Infrasonic/Acoustic/Seismic Waves Induced by Hypersonic Reentry of Hayabusa

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.-Y.; Ishihara, Y.; Hiramatsu, Y.; Furumoto, M.; Fujita, K.

    2012-05-01

    Observation of infrasonic/acoustic/seismic waves induced by hypersonic reentry of HAYABUSA was carried out on June 13, 2010. Results by 3-sites arrayed observation will be shown in detail by comparison with multiple-sites optical observation.

  13. Microtremor survey to investigate seismic vulnerability around the Seulimum Fault, Aceh Besar-Indonesia

    NASA Astrophysics Data System (ADS)

    Simanjuntak, Andrean V. H.; Muksin, Umar; Rahmayani, Febrina

    2018-05-01

    The Seulimeum Fault has generated inland earthquake with magnitude larger than M 6.5 that destroyed houses in the Lamteuba and Krueng Raya Villages. Earthquakes along the Seulimeum Fault are mostly right lateral strike-slip characterizing the Fault. The understanding of the seismic vulnerability around the highly populated Banda Aceh City and the villages in Aceh Besar is therefore very important since the city, and the villages are very close to the Seulimeum Fault. A microtremor survey has been conducted to investigate seismic vulnerability in the area closed to the Seulimeum Fault. The waveforms of the microtremor have been recorded in Lamteuba and Kreung Raya villages, Aceh Besar at 20 sites for 7 days from August 14, 2017 with the interval of measurement of 1 km. The waveforms recorded for 30 minutes at each site by using one Taurus Seismometer in miniseed format. The data has been analyzing by using Geopsy to obtain the Horizontal-Vertical Spectral Ratio for each site. The seismic vulnerability is considered to be high if the value of the Horizontal-Vertical Spectral Ratio is high. The HVSR values are then interpolated to obtain the seismic vulnerability map. The preliminary result shows high seismic vulnerability in the area around the first site.

  14. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-03-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  15. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-07-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  16. Stable isotopic and molecular compositions of void and hydrate-bound gases in typical seismic chimney setting of the Ulleung Basin, East Sea, Korea

    NASA Astrophysics Data System (ADS)

    Chun, J.; Lee, J.; Kim, J.; Bahk, J.; Ryu, B.

    2009-12-01

    Two UBGH cores were collected at vertical seismic chimney setting in the deep-water (> 2,000 m) Ulleung Basin, East Sea during UBGH-Expedition-01 in 2007. Gas hydrates were recovered from UBGH-10 and UBGH-09 sites with different occurrences associated with seismic chimney blanking zone. Site UBGH-10 is characterized by a small mound as well as a near-surface structure, indicated by a seafloor extension of vertical seismic chimney. Site UBGH-09 consists of acoustic blanking in the shallow section and seismic chimney in the deep section. Highly GH-concentrated zones have been found in vertical seismic chimney interval at these two sites from the Ulleung Basin. Methane is the dominant component of void gases with traces of C2 and C3 at UBGH-09. No C4 hydrocarbon gases were determined. The C1/C2+C3 ratio range from 3222 to 31654. The stable carbon (δ13C) and hydrogen (δD) isotope values of CH4 range from -71.8‰ to -59.8‰ PDB and -203.6‰ to -185.6 ‰ SMOW, respectivley. Methane is the main component of void gases at UBGH-10. The C1/C2+C3 ratio range from 657 to 7968. The δ13C of CH4 varies from -67.7‰ to -60.6‰ PDB, and δD of CH4 ranges from -201.9‰ to -183.3 ‰ SMOW. Isotopic properties of void gases from the two sites suggest that CH4 is largely microbial with CO2 reduction environment. In the vertical seismic chimney interval, void gases have low C1/C2+C3 ratio (> 10,000). At shallow depth (0-67 mbsf) in UBGH-09 contain relatively high C1/C2+C3 ratio (11115 to 31654). The stable carbon and hydrogen isotope values of hydrate-bound gases range from -63.1‰ to 61.9‰ PDB and -200.2‰ to -191.4‰ SMOW, respectively. The C1/C2+C3 ratio range from 979 to 5085. The molecular and stable isotopic compositions of hydrate-bound gases suggest that CH4 is largely microbial with CO2 reduction.

  17. GONAF - A borehole Geophysical Observatory around the North Anatolian Fault in the Eastern Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Bohnhoff, Marco; Dresen, Georg; Ceken, Ulubey; Tuba Kadarioglu, Filiz; Feyiz Kartal, Recai; Kilic, Tugbay; Nurlu, Murat; Yanik, Kenan; Acarel, Digdem; Bulut, Fatih; Ito, Hisao; Johnson, Wade; Malin, Peter Eric; Mencin, Dave

    2017-04-01

    The Marmara section of the North Anatolian Fault Zone (NAFZ) runs under water and is located less than 20 km from the 15-million-person population center of Istanbul at its eastern portion. Based on historical seismicity data, recurrence times forecast an impending magnitude M>7 earthquake for this region. The permanent GONAF Geophysical Observatory at the North Anatolian Fault has been installed around this section to help capture the seismic and strain activity preceding, during, and after such an anticipated event. The GONAF observatory is currently comprised of seven 300 m deep vertical seismic profiling stations and four collocated 100 m deep borehole strainmeters. Five of the stations are located on the land surrounding the Princes Islands segment below the eastern Sea of Marmara and two are on the near-fault Princes Islands south of Istanbul. The 300 m boreholes have 1, 2, and 15 Hz 3-C seismometers near their bottoms. Above this are vertical, 1 Hz, seismometers at 210, 140, and 70 m depths. The strainmeter boreholes are located within a few meters of the seismometer boreholes and contain horizontal strain tensor sensors and 2 Hz 3-C seismometers at their bottoms. This selection of instruments and depths was done so as to ensure high-precision and broad-frequency earthquake monitoring and vertical profiling, all under low-noise conditions. GONAF is the first ICDP-driven project with a primarily focus on long-term monitoring of fault-zone dynamics. It has already contributed to earthquake hazard studies in the Istanbul area in several ways. Combining GONAF recordings with existing regional seismic stations now allows monitoring of the NAFZ offshore Istanbul down to magnitudes M<0. GONAF also improves the resolution of earthquake hypocenters and source parameters, better defining local fault branches, their seismicity, and earthquake potential. Using its vertical distribution of sensors, it has directly measured depth-dependent seismic site-effects for ground shaking studies. GONAF is starting to address fundamental questions related to earthquake nucleation, rupture dynamics, temporal changes of material properties and strain.

  18. Imaging of Heterogeneous Structure beneath the Metropolitan Tokyo Area

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Sakai, S.; Kurashimo, E.; Kato, A.; Hagiwara, H.; Kasahara, K.; Tanada, T.; Obara, K.; Hirata, N.

    2009-12-01

    Beneath the metropolitan Tokyo area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. The Dai-Dai-Toku Project revealed the geometry of the upper surface of PSP, and estimated a rupture process and a ground motion of the 1923 Kanto earthquake [Sato et al., 2005]. Hagiwara et al. (2006) estimated the velocity structure of Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the metropolitan Tokyo area including those due to an intra-slab M7+ earthquake. So, we have carried out a 5-year project since 2007, the Special Project for Earthquake Disaster Mitigation in the Metropolitan Tokyo area. Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) of PSP is very important to attain this issue. The core item of this project is the dense seismic array observation in metropolitan area, which is called the MeSO-net (Metropolitan Seismic Observation network). In order to obtain the high resolution images of a velocity structure, it is requested to construct a seismic network with a spacing of 2-5 km. The total number of seismic stations of the MeSO-net will be about 400 and will be deployed in 4 years. We deployed the 178 seismic stations, which construct 5 seismic arrays such as Tsukuba-Fujisawa (TF) array etc., by 2008, and we are now deploying the 45 seismic stations in this year. The MeSO-net data are quasi-real-time transferred to the data center at ERI [Kasahara et al., 2007; Nakagawa et al., 2007]. In this study, we applied the tomography to image the heterogeneous structure under the metropolitan Tokyo area. We selected events from the catalogue by Hagiwara et al. (2006) and merged the new event data observed by MeSO-net with these data. Around the Kanto region there are several seismic explorations using active sources were carried out [Sato et al., 2005; Oikawa et al., 2007]. Since these data may improve the velocity structure in shallower part, we added the arrival time data of these explorations into the dataset. Then, we applied the double-difference tomography method [Zhang and Thurber, 2003] to this dataset and estimated the fine-scale velocity structure. The initial velocity structure is the same in Hagiwara et al. (2006), and the VP/VS ratio is set to 1.73 for all grid nodes. The TF array passes directory above Tokyo and is parallel to Boso peninsula. The depth section of P-wave velocity structure along the TF array clearly shows that thin low-velocity layer which overlies high-velocity layer subducts towards northeast. This low-velocity layer corresponds to the oceanic crust of the subducting PSP. The increase of MeSO-net stations and event data may improve images of heterogeneous structure and contribute the purpose of this special project. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  19. Exploring hydrocarbon-bearing shale formations with multi-component seismic technology and evaluating direct shear modes produced by vertical-force sources

    NASA Astrophysics Data System (ADS)

    Alkan, Engin

    It is essential to understand natural fracture systems embedded in shale-gas reservoirs and the stress fields that influence how induced fractures form in targeted shale units. Multicomponent seismic technology and elastic seismic stratigraphy allow geologic formations to be better images through analysis of different S-wave modes as well as the P-wave mode. Significant amounts of energy produced by P-wave sources radiate through the Earth as downgoing SV-wave energy. A vertical-force source is an effective source for direct SV radiation and provides a pure shear-wave mode (SV-SV) that should reveal crucial information about geologic surfaces located in anisotropic media. SV-SV shear wave modes should carry important information about petrophysical characteristics of hydrocarbon systems that cannot be obtained using other elastic-wave modes. Regardless of the difficulties of extracting good-quality SV-SV signal, direct shear waves as well as direct P and converted S energy should be accounted for in 3C seismic studies. Acquisition of full-azimuth seismic data and sampling data at small intervals over long offsets are required for detailed anisotropy analysis. If 3C3D data can be acquired with improved signal-to-noise ratio, more uniform illumination of targets, increased lateral resolution, more accurate amplitude attributes, and better multiple attenuation, such data will have strong interest by the industry. The objectives of this research are: (1) determine the feasibility of extracting direct SV-SV common-mid-point sections from 3-C seismic surveys, (2) improve the exploration for stratigraphic traps by developing systematic relationship between petrophysical properties and combinations of P and S wave modes, (3) create compelling examples illustrating how hydrocarbon-bearing reservoirs in low-permeable rocks (particularly anisotropic shale formations) can be better characterized using different Swave modes (P-SV, SV-SV) in addition to the conventional P-P modes, and (4) analyze P and S radiation patterns produced by a variety of seismic sources. The research done in this study has contributed to understanding the physics involved in direct-S radiation from vertical-force source stations. A U.S. Patent issued to the Board of Regents of the University of Texas System now protects the intellectual property the Exploration Geophysics Laboratory has developed related to S-wave generation by vertical-force sources. The University's Office of Technology Commercialization is actively engaged in commercializing this new S-wave reflection seismic technology on behalf of the Board of Regents.

  20. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys.

    PubMed

    Abadi, Shima H; Tolstoy, Maya; Wilcock, William S D

    2017-01-01

    In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations.

  1. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys

    PubMed Central

    Abadi, Shima H.; Tolstoy, Maya; Wilcock, William S. D.

    2017-01-01

    In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations. PMID:28199400

  2. Earthquakes: Risk, Monitoring, Notification, and Research

    DTIC Science & Technology

    2007-02-02

    Global Seismic Network (GSN). The GSN is a system of broadband digital seismographs arrayed around the globe and designed to collect high-quality...39 states face some risk from earthquakes. Seismic hazards are greatest in the western United States, particularly California, Alaska, Washington...Oregon, and Hawaii. The Rocky Mountain region, a portion of the central United States known as the New Madrid Seismic Zone, and portions of the eastern

  3. Deconvolution enhanced direction of arrival estimation using one- and three-component seismic arrays applied to ocean induced microseisms

    NASA Astrophysics Data System (ADS)

    Gal, M.; Reading, A. M.; Ellingsen, S. P.; Koper, K. D.; Burlacu, R.; Gibbons, S. J.

    2016-07-01

    Microseisms in the period of 2-10 s are generated in deep oceans and near coastal regions. It is common for microseisms from multiple sources to arrive at the same time at a given seismometer. It is therefore desirable to be able to measure multiple slowness vectors accurately. Popular ways to estimate the direction of arrival of ocean induced microseisms are the conventional (fk) or adaptive (Capon) beamformer. These techniques give robust estimates, but are limited in their resolution capabilities and hence do not always detect all arrivals. One of the limiting factors in determining direction of arrival with seismic arrays is the array response, which can strongly influence the estimation of weaker sources. In this work, we aim to improve the resolution for weaker sources and evaluate the performance of two deconvolution algorithms, Richardson-Lucy deconvolution and a new implementation of CLEAN-PSF. The algorithms are tested with three arrays of different aperture (ASAR, WRA and NORSAR) using 1 month of real data each and compared with the conventional approaches. We find an improvement over conventional methods from both algorithms and the best performance with CLEAN-PSF. We then extend the CLEAN-PSF framework to three components (3C) and evaluate 1 yr of data from the Pilbara Seismic Array in northwest Australia. The 3C CLEAN-PSF analysis is capable in resolving a previously undetected Sn phase.

  4. Characteristics of seismic waves composing Hawaiian volcanic tremor and gas-piston events observed by a near-source array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrazzini, V.; Aki, K.; Chouet, B.

    1991-04-10

    A correlation method, specifically designed for describing the characteristics of a complex wave field, is applied to volcanic tremor and gas-piston events recorded by a semicircular array of GEOS instruments set at the foot of the Puu Oo crater on the east rift of Kilauea volcano, Hawaii. The spatial patterns of correlation coefficients obtained as functions of frequency for the three components of motion over the entire array are similar for gas-piston events and tremor, and clearly depict dispersive waves propagating across the array from the direction of Puu Oo. The wave fields are composed of comparable amounts of Rayleighmore » and Love waves propagating with similar and extremely slow phase velocities ranging from 700 m/s at 2 Hz to 300 m/s at 8 Hz. The results from Puu Oo stand in sharp contrast to those obtained in an experiment conducted in 1976 on the partially solidified lava lake of Kilauea Iki. Rayleigh waves were not observed in Kilauea Iki, but well-developed trains of Love waves were seen to propagate there with velocities twice as high as those observed near Puu Oo. These differences in the propagation characteristics of surface waves at the two sites may be attributed to the presence of a soft horizontal layer of molten rock in Kilauea Iki, which may have lowered the phase velocity of Rayleigh waves more drastically than that of Love waves, resulting in severe scattering of the Rayleigh wave mode. On the other hand, the thin superficial pahoehoe flow under the array at Puu Oo may have favored the development of vertical columnar joints more extensively at this location than at Kilauea Iki, which may have reduced the shear moduli controlling Love wave mode.« less

  5. Complex Seismic Anisotropy at the Edges of a Very-low Velocity Province in the Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wen, L.

    2005-12-01

    A prominent very-low velocity province (VLVP) in the lowermost mantle is revealed, and has been extensively mapped out in recent seismic studies (e.g., Wang and Wen, 2004). Seismic evidence unambiguously indicates that the VLVP is compositionally distinct, and its seismic structure can be best explained by partial melting driven by a compositional change produced in the early Earth's history (Wen, 2001; Wen et. al, 2001; Wang and Wen, 2004). In this presentation, we study the seismic anisotropic behavior inside the VLVP and its surrounding area using SKS and SKKS waveform data. We collect 272 deep earthquakes recorded by more than 80 stations in the Kaapvaal seismic array in southern Africa from 1997 to 1999. Based on the data quality, we choose SKS and SKKS waveform data for 16 earthquakes to measure the anisotropic parameters: the fast polarization direction and the splitting time, using the method of Silver and Chan (1991). A total of 162 high-quality measurements are obtained based on the statistics analysis of shear wave splitting results. The obtained anisotropy exhibits different patterns for the SKS and SKKS phases sampling inside the VLVP and at the edges of the VLVP. When the SKS and SKKS phases sample inside the VLVP, their fast polarization directions exhibit a pattern that strongly correlates with stations, gradually changing from 11°N~to 80°N~across the seismic array from south to north and rotating back to the North direction over short distances for several northernmost stations. The anisotropy pattern obtained from the analysis of the SKKS phases is the same as that from the SKS phases. However, when the SKS and SKKS phases sample at the edges of the VLVP, the measured anisotropy exhibits a very complex pattern. The obtained fast polarization directions change rapidly over a small distance, and they no longer correlate with stations; the measurements obtained from the SKS analysis also differ with those from the SKKS analysis. As the SKS and SKKS phases have similar propagation paths in the lithosphere beneath the array, but different sampling points near the core mantle boundary. The anisotropy in the lithosphere should have a similar influence on SKS and SKKS phases. Therefore, the similar anisotropy obtained from the SKS and SKKS phases sampling inside the VLVP and its correlation with seismic stations suggest that the observed anisotropy variation across the seismic array is mainly due to the anisotropy in the lithosphere beneath the Kaapvaal seismic array, and the interior of the VLVP is isotropic or weakly anisotropic. On the other hand, for the SKS and SKKS phases sampling at the edges of the VLVP, the observed complex anisotropy pattern and the lack of correlation between the results from the SKS and SKKS analyses indicate that part of that anisotropy has to originate from the lowermost mantle near the exit points of these phases at the core mantle boundary, revealing a complex flow pattern at the edges of the VLVP.

  6. Network capability estimation. Vela network evaluation and automatic processing research. Technical report. [NETWORTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snell, N.S.

    1976-09-24

    NETWORTH is a computer program which calculates the detection and location capability of seismic networks. A modified version of NETWORTH has been developed. This program has been used to evaluate the effect of station 'downtime', the signal amplitude variance, and the station detection threshold upon network detection capability. In this version all parameters may be changed separately for individual stations. The capability of using signal amplitude corrections has been added. The function of amplitude corrections is to remove possible bias in the magnitude estimate due to inhomogeneous signal attenuation. These corrections may be applied to individual stations, individual epicenters, ormore » individual station/epicenter combinations. An option has been added to calculate the effect of station 'downtime' upon network capability. This study indicates that, if capability loss due to detection errors can be minimized, then station detection threshold and station reliability will be the fundamental limits to network performance. A baseline network of thirteen stations has been performed. These stations are as follows: Alaskan Long Period Array, (ALPA); Ankara, (ANK); Chiang Mai, (CHG); Korean Seismic Research Station, (KSRS); Large Aperture Seismic Array, (LASA); Mashhad, (MSH); Mundaring, (MUN); Norwegian Seismic Array, (NORSAR); New Delhi, (NWDEL); Red Knife, Ontario, (RK-ON); Shillong, (SHL); Taipei, (TAP); and White Horse, Yukon, (WH-YK).« less

  7. Infrasound Generation from the HH Seismic Hammer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Kyle Richard

    2014-10-01

    The HH Seismic hammer is a large, "weight-drop" source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  8. A compositional origin to ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Brown, Samuel P.; Thorne, Michael S.; Miyagi, Lowell; Rost, Sebastian

    2015-02-01

    We analyzed vertical component short-period ScP waveforms for 26 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array in central Australia. These waveforms show strong precursory and postcursory seismic arrivals consistent with ultralow-velocity zone (ULVZ) layering beneath the Coral Sea. We used the Viterbi sparse spike detection method to measure differential travel times and amplitudes of the postcursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S wave velocity reduction of 24%, a P wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. This 1:1 VS:VP velocity decrease is commensurate with a ULVZ compositional origin and is most consistent with highly iron enriched ferropericlase.

  9. Variations in the crustal structure beneath western Turkey

    NASA Astrophysics Data System (ADS)

    Saunders, Paul; Priestley, Keith; Taymaz, Tuncay

    1998-08-01

    We use teleseismic receiver functions to investigate the crustal structure at two locations in western Turkey using seismic data recorded on small arrays of temporary broad-band seismographs. The results from these analyses are compared with receiver function results from the GDSN station ANTO on the Anatolian Plateau in central Turkey. The crust is ~ 30 km thick in the region of western Turkey where active normal faulting reveals present-day extension in the upper crust and alkali-basaltic volcanism reveals recent extension within the subcrustal lithosphere The crust is ~ 34 km thick further east where crustal extension is still evident but less pronounced. In the Anatolian Plateau, which is not currently extending, the crust is ~ 38 km thick. The level of extension estimated from these measurements of crustal thickness implies a β -factor of ~ 1.2. This value agrees with the amount of extension estimated in the upper crust from the integrated seismic strain rate (β -factor of ~ 1.3), from surface faulting(β -factor of ~ 1.25) and from the amount of extension in the subcrustal lithosphere estimated from the volcanism (β -factor < 2), all indicating that the extension is approximately uniformly distributed vertically throughout the lithosphere. The Moho transition in this region appears to thin slightly as the degree of extension increases westwards.

  10. Modelling the 3D post-seismic deformation signal of the Maule 2010 earthquake: Viscosity heterogeneity or non-linear creep?

    NASA Astrophysics Data System (ADS)

    Peña, C.; Heidbach, O.; Moreno, M.; Li, S.; Bedford, J. R.; Oncken, O.

    2017-12-01

    The surface deformation associated with the 2010 Mw 8.8 Maule earthquake, Chile was recorded in great detail before, during and after the event. The quality of the post-seismic continuous GPS time series has facilitated a number of studies that have modelled the horizontal signal with a combination of after-slip and viscoelastic relaxation using linear Newtonian rheology. Li et al. (2017, GRL), one of the first studies that also looked into the details of the vertical post-seismic signal, showed that a homogeneous viscosity structure cannot well explain the vertical signal, but that with a heterogeneous viscosity distribution producing a better fit. It is, however, difficult to argue why viscous rock properties should change significantly with distance to the trench. Thus, here we investigate if a non-linear, strain-rate dependent power-law can fit the post-seismic signal in all three components - in particular the vertical one. We use the first 6 years of post-seismic cGPS data and investigate with a 2D geomechanical-numerical model along a profile at 36°S if non-linear creep can explain the deformation signal as well using reasonable rock properties and a temperature field derived for this region from Springer (1999). The 2D model geometry considers the slab as well as the Moho geometry. Our results show that with our model the post-seismic surface deformation signal can be reproduced as well as in the study of Li et al. (2017). These findings suggest that the largest deformations are produced by dislocation creep. Such a process would take place below the Andes ( 40 km depth) at the interface between the deeper, colder crust and the olivine-rich upper mantle, where the lowest effective viscosity results from the relaxation of tensional stresses imposed by the co-seismic displacement. Additionally, we present preliminary results from a 3D geomechanical-numerical model with the same rheology that provides more details of the post-seismic deformation especially along strike the subduction zone.

  11. Development of Vertical Cable Seismic System

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by Institute of Industrial Science, the University of Tokyo. It generates high frequency acoustic waves around 1kHz. The acquired VCS data clearly shows the reflections and currently being processed for imaging the subsurface structure.

  12. Full waveform seismic AVAZ signatures of anisotropic shales by integrated rock physics and the reflectivity method

    NASA Astrophysics Data System (ADS)

    Liu, Xiwu; Guo, Zhiqi; Han, Xu

    2018-06-01

    A set of parallel vertical fractures embedded in a vertically transverse isotropy (VTI) background leads to orthorhombic anisotropy and corresponding azimuthal seismic responses. We conducted seismic modeling of full waveform amplitude variations versus azimuth (AVAZ) responses of anisotropic shale by integrating a rock physics model and a reflectivity method. The results indicate that the azimuthal variation of P-wave velocity tends to be more complicated for orthorhombic medium compared to the horizontally transverse isotropy (HTI) case, especially at high polar angles. Correspondingly, for the HTI layer in the theoretical model, the short axis of the azimuthal PP amplitudes at the top interface is parallel to the fracture strike, while the long axis at the bottom reflection directs the fracture strike. In contrast, the orthorhombic layer in the theoretical model shows distinct AVAZ responses in terms of PP reflections. Nevertheless, the azimuthal signatures of the R- and T-components of the mode-converted PS reflections show similar AVAZ features for the HTI and orthorhombic layers, which may imply that the PS responses are dominated by fractures. For the application to real data, a seismic-well tie based on upscaled data and a reflectivity method illustrate good agreement between the reference layers and the corresponding reflected events. Finally, the full waveform seismic AVAZ responses of the Longmaxi shale formation are computed for the cases of HTI and orthorhombic anisotropy for comparison. For the two cases, the azimuthal features represent differences mainly in amplitudes, while slightly in the phases of the reflected waveforms. Azimuth variations in the PP reflections from the reference layers show distinct behaviors for the HTI and orthorhombic cases, while the mode-converted PS reflections in terms of the R- and T-components show little differences in azimuthal features. It may suggest that the behaviors of the PS waves are dominated by vertically aligned fractures. This work provides further insight into the azimuthal seismic response of orthorhombic shales. The proposed method may help to improve the seismic-well tie, seismic interpretation, and inversion results using an azimuth anisotropy dataset.

  13. Arc segmentation and seismicity in the Solomon Islands arc, SW Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Chu; Frohlich, Cliff; Taylor, Frederick W.; Burr, George; van Ufford, Andrew Quarles

    2011-07-01

    This paper evaluates neotectonic segmentation in the Solomon Islands forearc, and considers how it relates to regional tectonic evolution and the extent of ruptures of large megathrust earthquakes. We first consider regional geomorphology and Quaternary vertical displacements, especially uplifted coral reef terraces. Then we consider geographic seismicity patterns, aftershock areas and vertical displacements for large earthquakes, focal mechanisms, and along-arc variations in seismic moment release to evaluate the relationship between neotectonically defined segments and seismicity. Notably, one major limitation of using seismicity to evaluate arc segmentation is the matter of accurately defining earthquake rupture zones. For example, shoreline uplifts associated with the 1 April 2007 M w 8.1 Western Solomons earthquake indicate that the along-arc extent of rupture was about 50 km smaller than the aftershock area. Thus if we had relied on aftershocks alone to identify the 2007 rupture zone, as we do for most historical earthquakes, we would have missed the rupture's relationship to a major morphologic feature. In many cases, the imprecision of defining rupture zones without surface deformation data may be largely responsible for the poor mismatches to neotectonic boundaries. However, when a precise paleoseismic vertical deformation history is absent, aftershocks are often the best available tool for inferring rupture geometries. Altogether we identify 16 segments in the Solomon Islands. These comprise three major tectonic regimes or supersegments that correspond respectively to the forearc areas of Guadalcanal-Makira, the New Georgia island group, and Bougainville Islands. Subduction of the young and relatively shallow and buoyant Woodlark Basin and spreading system distinguishes the central New Georgia supersegment from the two neighboring supersegments. The physiographic expression of the San Cristobal trench is largely absent, but bathymetric mapping of the surface trace of the interplate thrust zone defines it adequately. The New Georgia supersegment has smaller arc segments, and more islands due to general late Quaternary forearc uplift very close to the trench where vertical displacement rates tend to be faster; prior to the 2007 earthquake it had much lower rates of seismic activity than the neighboring supersegments. Generally the mean along-arc lateral extent of Solomon arc segments is about 75 km, somewhat smaller than the segments reported in some other island arcs such as Japan (~ 100-260 km), but larger than those of the Tonga (30-80 km) and Central New Hebrides arcs (30-110 km). These differences may be real but it may occur simply because the coral-friendly tropical environment of the South Pacific arcs, numerous emerged forearc islands, and high seismicity rates provide an unusually favorable situation for observing variations in vertical tectonic activity and thus for identifying segment boundaries. Over the past century seismic slip in the Solomons, as indicated by seismic moment release, has corresponded to about half the plate convergence rate; however, there are notable variations along the arc. Even with the 2007 earthquake, the long-term moment release rate in the New Georgia supersegment is relatively low, and this may indicate that large earthquakes are imminent.

  14. Reliability of Source Mechanisms for a Hydraulic Fracturing Dataset

    NASA Astrophysics Data System (ADS)

    Eyre, T.; Van der Baan, M.

    2016-12-01

    Non-double-couple components have been inferred for induced seismicity due to fluid injection, yet these components are often poorly constrained due to the acquisition geometry. Likewise non-double-couple components in microseismic recordings are not uncommon. Microseismic source mechanisms provide an insight into the fracturing behaviour of a hydraulically stimulated reservoir. However, source inversion in a hydraulic fracturing environment is complicated by the likelihood of volumetric contributions to the source due to the presence of high pressure fluids, which greatly increases the possible solution space and therefore the non-uniqueness of the solutions. Microseismic data is usually recorded on either 2D surface or borehole arrays of sensors. In many cases, surface arrays appear to constrain source mechanisms with high shear components, whereas borehole arrays tend to constrain more variable mechanisms including those with high tensile components. The abilities of each geometry to constrain the true source mechanisms are therefore called into question.The ability to distinguish between shear and tensile source mechanisms with different acquisition geometries is investigated using synthetic data. For both inversions, both P- and S- wave amplitudes recorded on three component sensors need to be included to obtain reliable solutions. Surface arrays appear to give more reliable solutions due to a greater sampling of the focal sphere, but in reality tend to record signals with a low signal to noise ratio. Borehole arrays can produce acceptable results, however the reliability is much more affected by relative source-receiver locations and source orientation, with biases produced in many of the solutions. Therefore more care must be taken when interpreting results.These findings are taken into account when interpreting a microseismic dataset of 470 events recorded by two vertical borehole arrays monitoring a horizontal treatment well. Source locations and mechanisms are calculated and the results discussed, including the biases caused by the array geometry. The majority of the events are located within the target reservoir, however a small, seemingly disconnected cluster of events appears 100 m above the reservoir.

  15. Application of Phased-array Vibrator System in shallow oil shale exploration

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Lin, J.; Xu, X.

    2011-12-01

    Due to the huge oil and gas demands in China, exploration of unconventional oil shale at shallow depths becomes more critical. 52.83% of the identified reserves in China are from Jilin province and Nong'an is one of the main areas of oil shale in Jilin. The average buried depth of oil shale in Nong'an is between 300m and 800m. Since explosive sources are not allowed to operate in civil area and the inconvenience of vibroseis, Phased-array Vibrator System (PAVS) is applied in the exploration of oil shale in Nong'an. We have developed a series electromagnetic Portable High-frequency Vibrator System (PHVS), including single, combination, and phased-array modes. Single mode is the simplest mode, with output force less than 500N, and thus is only suitable for engineering seismic prospecting. Combination mode is a source array, which uses a controller to synchronize all vibrator units and let them work consistently with each other. Thus, it can increase output force than single case. The field test indicates that it can improve signal-to-noise ratio (SNR) of reflected waves in deep layer significantly. However, it contributes little for signals from shallow layers and sometimes it can even deteriorate shallow reflected signals than single source. This is because for signals reflected from shallow depths, the assumption in combination mode that seismic waves propagate along vertical rays is no longer valid. Therefore, they are not stacked constructively. Phased-array mode belongs to a new source array, whose key part is so-called delay/phase controller. By coordinating the signal of each unit using the controller, the seismic waves can be beamed into any interested direction, based on the underground structure and the depth of interested reflected layer. In this case, SNR of the concerned reflected wave can be improved apparently. PHVS in phased-array mode is called PAVS. We made two field tests to evaluate the performance of PAVS. In the first test, we compare PAVS with PHVS in single and combination modes in the Qinjiatun test site. The parameters of PAVS are set as follows: sweep bandwidth of 50~500Hz, 5.3s for the duration of sweep, spacing between adjacent unit is 2m and the number of units is 3; In addition, 5 different delay parameters, 0.802ms, 0.384ms, 0.241ms, 0.174ms, 0.123ms, are used in PAVS test. In this test, we analyzed the signal reflected from the shallowest identified layer to compare the performances of different methods. It showed that 3-unit PAVS improved SNR up to 8.02dB, 6.05dB, 5.03dB, 4.54dB and 4.04dB than single mode, and 4.70dB, 2.74dB, 1.71dB, 1.22dB, 0.72dB higher than the combination case, respectively. For the second test, we made a similar test in Gansu between PAVS and Minivib T15000, which is a hydraulic source with 27kN output force. We set the same control signals to be at 10~120Hz. We observe all signals from electromagnetic vibrators have wider bandwidth than that from hydraulic source, which in turn has a higher resolution. In summary, our results show PAVS can significantly improve the SNR and resolution for shallow reflected layer. Therefore, PAVS is eventually adopted in oil shale exploration in Nong'an. The updated results will be presented in the meeting.

  16. The AlpArray-CASE project: temporary broadband seismic network deployment and characterization

    NASA Astrophysics Data System (ADS)

    Dasović, Iva; Molinari, Irene; Stipčević, Josip; Šipka, Vesna; Salimbeni, Simone; Jarić, Dejan; Prevolnik, Snježan; Kissling, Eduard; Clinton, John; Giardini, Domenico

    2017-04-01

    While the northern part of the Adriatic microplate will be accurately imaged within the AlpArray project, its central and southern parts deserve detailed studies to obtain a complete picture of its structure and evolution. The Adriatic microplate forms the upper plate in the Western and Central Alps whereas it forms the lower plate in the Apennines and the Dinarides. However, the tectonics of Adriatic microplate is not well constrained and remains controversial, especially with regard to its contact with the Dinarides. The primary goal of the Central Adriatic Seismic Experiment (CASE) is to provide high quality seismological data and to shed light on seismicity and 3D lithospheric structure of the central Adriatic microplate and its boundaries. The CASE project is an international AlpArray Complementary Experiment carried out by four institutions: Department of Earth Sciences and Swiss Seismological Service of ETH Zürich (CH), Department of Geophysics and Croatian Seismological Service of Faculty of Science at University of Zagreb (HR), Republic Hydrometeorological Service of Republic of Srpska (BIH) and Istituto Nazionale di Geofisica e Vulcanologia (I). It establishes a temporary seismic network, expected to be operational at least for one year, composed by existing permanent and temporary seismic stations operated by the institutions involved and newly deployed temporary seismic stations, installed in November and December 2016, provided by ETH Zürich and INGV: five in Croatia, four in Bosnia and Herzegovina and two in Italy. In this work, we present stations sites and settings and discuss their characteristics in terms of site-effects and noise level of each station. In particular, we analyse the power spectral density estimates in order to investigate major sources of noise and background noise.

  17. Salton Seismic Imaging Project Line 6: San Andreas Fault and Northern Coachella Valley Structure, Riverside and San Bernardino Counties, California

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Fuis, G.; Rymer, M. J.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.

    2012-12-01

    The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas fault (SAF) and adjacent basins (Imperial and Coachella Valleys) in southernmost California. Data and preliminary results from many of the seismic profiles are reported elsewhere (including Fuis et al., Rymer et al., Goldman et al., Langenheim et al., this meeting). Here, we focus on SSIP Line 6, one of four 2-D seismic profiles that were acquired across the Coachella Valley. The 44-km-long, SSIP-Line-6 seismic profile extended from the east flank of Mt. San Jacinto northwest of Palm Springs to the Little San Bernardino Mountains and crossed the SAF (Mission Creek (MCF), Banning (BF), and Garnet Hill (GHF) strands) roughly normal to strike. Data were generated by 10 downhole explosive sources (most spaced about 3 to 5 km apart) and were recorded by approximately 347 Texan seismographs (average spacing 126 m). We used first-arrival refractions to develop a P-wave refraction tomography velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 7 km depth, P-wave velocities range from about 2.5 km/s to about 7.2 km/s, with the lowest velocities within an ~2-km-deep, ~20-km-wide basin, and the highest velocities below the transition zone from the Coachella Valley to Mt. San Jacinto and within the Little San Bernardino Mountains. The BF and GHF strands bound a shallow sub-basin on the southwestern side of the Coachella Valley, but the underlying shallow-depth (~4 km) basement rocks are P-wave high in velocity (~7.2 km/s). The lack of a low-velocity zone beneath BF and GHF suggests that both faults dip northeastward. In a similar manner, high-velocity basement rocks beneath the Little San Bernardino Mountains suggest that the MCF dips vertically or southwestward. However, there is a pronounced low-velocity zone in basement rocks between about 2 and 7 km depth beneath and southwest of the MCF, suggesting a vertical or slightly southwest-dipping MCF. The apparent northeast dip of the BF and the apparent vertical or southwest dip of the MCF suggests that the two main strands of the SAF (MCF and BF) merge at about 10 km depth. A plot of double-difference earthquake hypocenters (Hauksson, 2000) along the seismic profile shows events that occurred between 1980-2000 (excluding those in 1992, prior to and after the Joshua Tree and Landers earthquakes) are largely confined to the vicinity of the basement low-velocity zone between the MCF and BF. However, a separate alignment of hypocenters occurs southwest of the BF and projects toward the surface beneath Mt. San Jacinto. Collectively, the velocity images and the seismicity data suggest the BF strand of the SAF dips to the northeast at about 50 degrees in the upper 10 km, and the MCF strand is either vertical or dips southwestward about 80 degrees, with both strands merging at about 10 km depth and forming a near-vertical zone of faults to at least 15 km depth. The SSIP Line 6 data are consistent with structures interpreted by Catchings et al. (2009).

  18. New Insights on the Structure of the Cascadia Subduction Zone from Amphibious Seismic Data

    NASA Astrophysics Data System (ADS)

    Janiszewski, Helen Anne

    A new onshore-offshore seismic dataset from the Cascadia subduction zone was used to characterize mantle lithosphere structure from the ridge to the volcanic arc, and plate interface structure offshore within the seismogenic zone. The Cascadia Initiative (CI) covered the Juan de Fuca plate offshore the northwest coast of the United States with an ocean bottom seismometer (OBS) array for four years; this was complemented by a simultaneous onshore seismic array. Teleseismic data recorded by this array allows the unprecedented imaging of an entire tectonic plate from its creation at the ridge through subduction initiation and back beyond the volcanic arc along the entire strike of the Cascadia subduction zone. Higher frequency active source seismic data also provides constraints on the crustal structure along the plate interface offshore. Two seismic datasets were used to image the plate interface structure along a line extending 100 km offshore central Washington. These are wide-angle reflections from ship-to-shore seismic data from the Ridge-To-Trench seismic cruise and receiver functions calculated from a densely spaced CI OBS focus array in a similar region. Active source seismic observations are consistent with reflections from the plate interface offshore indicating the presence of a P-wave velocity discontinuity. Until recently, there has been limited success in using the receiver function technique on OBS data. I avoid these traditional challenges by using OBS constructed with shielding deployed in shallow water on the continental shelf. These data have quieter horizontals and avoid water- and sediment-multiple contamination at the examined frequencies. The receiver functions are consistently modeled with a velocity structure that has a low velocity zone (LVZ) with elevated P to S-wave velocity ratios at the plate interface. A similar LVZ structure has been observed onshore and interpreted as a combination of elevated pore-fluid pressures or metasediments. This new offshore result indicates that the structure may persist updip indicating the plate interface may be weak. To focus more broadly on the entire subduction system, I calculate phase velocities from teleseismic Rayleigh waves from 20-100 s period across the entire onshore-offshore array. The shear-wave velocity model calculated from these data can provide constrains on the thermal structure of the lithosphere both prior to and during subduction of the Juan de Fuca plate. Using OBS data in this period band requires removal of tilt and compliance noise, two types of water-induced noise that affect long period data. To facilitate these corrections on large seismic arrays such as the CI, an automated quality control routine was developed for selecting noise windows for the calculation of the required transfer functions. These corrections typically involve either averaging out transient signals, which requires the assumption of stationarity of the noise over the long periods of time, or laborious hand selection of noise segments. This new method calculates transfer functions based on daily time series that exclude transient signals, but allows for the investigation of long-term variation over the course of an instrument's deployment. I interpret these new shoreline-crossing phase velocity maps in terms of the tectonics associated with the Cascadia subduction system. Major findings include that oceanic plate cooling models do not explain the velocities observed beneath the Juan de Fuca plate, that slow velocities in the forearc appear to be more prevalent in areas modeled to have experienced high slip in past Cascadia megathrust earthquakes, and along strike variations in phase velocity reflect variations in arc structure and backarc tectonics.

  19. An experimental assessment of resistance reduction and wake modification of a kvlcc model by using outer-layer vertical blades

    NASA Astrophysics Data System (ADS)

    An, Nam Hyun; Ryu, Sang Hoon; Chun, Ho Hwan; Lee, Inwon

    2014-03-01

    In this study, an experimental investigation has been made of the applicability of outer-layer vertical blades to real ship model. After first devised by Hutchins and Choi (2003), the outer-layer vertical blades demonstrated its effectiveness in reducing total drag of flat plate (Park et al., 2011) with maximum drag reduction of 9.6%. With a view to assessing the effect in the flow around a ship, the arrays of outer-layer vertical blades have been installed onto the side bottom and flat bottom of a 300k KVLCC model. A series of towing tank test has been carried out to investigate resistance (CTM) reduction efficiency and improvement of stern wake distribution with varying geometric parameters of the blades array. The installation of vertical blades led to the CTM reduction of 2.15~2.76% near the service speed. The nominal wake fraction was affected marginally by the blades array and the axial velocity distribution tended to be more uniform by the blades array.

  20. The Surface Interface Characteristics of Vertically Aligned Carbon Nanotube and Graphitic Carbon Fiber Arrays Grown by Thermal and Plasma Enhanced Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.

    2002-01-01

    The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.

  1. Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    NASA Astrophysics Data System (ADS)

    Vecsey, Luděk; Plomerová, Jaroslava; Jedlička, Petr; Munzarová, Helena; Babuška, Vladislav; AlpArray Working Group

    2017-12-01

    This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB) stations of the Czech (CZ) MOBNET (MOBile NETwork) seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network.

  2. The Caucasus Seismic Network (CNET): Seismic Structure of the Greater and Lesser Caucasus

    NASA Astrophysics Data System (ADS)

    Sandvol, E. A.; Mackey, K. G.; Nabelek, J.; Yetermishli, G.; Godoladze, T.; Babayan, H.; Malovichko, A.

    2017-12-01

    The Greater Caucasus are a portion of the Alpine-Himalayan mountain belt that has undergone rapid uplift in the past 5 million years, thus serving as a unique natural laboratory to study the early stages of orogenesis. Relatively lower resolution seismic velocity models of this region show contradictory lateral variability. Furthermore, recent waveform modeling of seismograms has clearly demonstrated the presence of deep earthquakes (with a maximum hypocentral depth of 175 km) below the Greater Caucasus. The region has been largely unexplored in terms of the detailed uppermost mantle and crustal seismic structure due in part to the disparate data sets that have not yet been merged as well as key portions being sparsely instrumented. We have established collaborative agreements across the region. Building on these agreements we recently deployed a major multi-national seismic array across the Greater Caucasus to address fundamental questions about the nature of continental deformation in this poorly understood region. Our seismic array has two components: (1) a grid of stations spanning the entire Caucasus and (2) two seismic transects consisting of stations spaced at distances of less than 10 km that cross the Greater Caucasus. In addition to the temporary stations, we are working to integrate data from the national networks to produce high resolution images of the seismic structure. Using data from over 106 new seismic stations in Azerbaijan, Armenia, Russia, and Georgia, we hope to gain a better understanding of the recent uplift ( 5 Ma) of the Greater Caucasus and the nature of seismogenic deformation in the region.

  3. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.

    PubMed

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Broadband calibration of the R/V Marcus G. Langseth four-string seismic sources

    NASA Astrophysics Data System (ADS)

    Tolstoy, M.; Diebold, J.; Doermann, L.; Nooner, S.; Webb, S. C.; Bohnenstiehl, D. R.; Crone, T. J.; Holmes, R. C.

    2009-08-01

    The R/V Marcus G. Langseth is the first 3-D seismic vessel operated by the U.S. academic community. With up to a four-string, 36-element source and four 6-km-long solid state hydrophone arrays, this vessel promises significant new insights into Earth science processes. The potential impact of anthropogenic sound sources on marine life is an important topic to the marine seismic community. To ensure that operations fully comply with existing and future marine mammal permitting requirements, a calibration experiment was conducted in the Gulf of Mexico in 2007-2008. Results are presented from deep (˜1.6 km) and shallow (˜50 m) water sites, obtained using the full 36-element (6600 cubic inches) seismic source. This array configuration will require the largest safety radii, and the deep and shallow sites provide two contrasting operational environments. Results show that safety radii and the offset between root-mean-square and sound exposure level measurements were highly dependent on water depth.

  5. Vertically Free-Standing Ordered Pb(Zr0.52Ti0.48)O3 Nanocup Arrays by Template-Assisted Ion Beam Etching

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming

    2016-04-01

    In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 1010 cm-2) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.

  6. Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles

    2012-11-01

    For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).

  7. Data Quality Control Tools Applied to Seismo-Acoustic Arrays in Korea

    NASA Astrophysics Data System (ADS)

    Park, J.; Hayward, C.; Stump, B. W.

    2017-12-01

    We assess data quality (data gap, seismometer orientation, timing error, noise level and coherence between co-located sensors) for seismic and infrasound data in South Korea using six seismo-acoustic arrays, BRDAR, CHNAR, KSGAR, KMPAR, TJIAR, and YPDAR, cooperatively operated by Southern Methodist University and Korea Institute for Geosciences and Mineral Resources. Timing errors associated with seismometers can be found based on estimated changes in instrument orientation calculated from RMS errors between the reference array and each array seismometer using waveforms filtered from 0.1 to 0.35 Hz. Noise levels of seismic and infrasound data are analyzed to investigate local environmental effects and seasonal noise variation. In order to examine the spectral properties of the noise, the waveform are analyzed using Welch's method (Welch, 1967) that produces a single power spectral estimate from an average of spectra taken at regular intervals over a specific time period. This analysis quantifies the range of noise conditions found at each of the arrays over the given time period. We take an advantage of the fact that infrasound sensors are co-located or closely located to one another, which allows for a direct comparison of sensors, following the method by Ringler et al. (2010). The power level differences between two sensors at the same array in the frequency band of interest are used to monitor temporal changes in data quality and instrument conditions. A data quality factor is assigned to stations based on the average values of temporal changes estimated in the frequency and time domains. These monitoring tools enable us to automatically assess technical issue related to the instruments and data quality at each seismo-acoustic array as well as to investigate local environmental effects and seasonal variations in both seismic and infrasound data.

  8. 2D and 3D high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): new insights on deep hydrothermal fluid circulation processes

    NASA Astrophysics Data System (ADS)

    De Landro, Grazia; Gammaldi, Sergio; Serlenga, Vincenzo; Amoroso, Ortensia; Russo, Guido; Festa, Gaetano; D'Auria, Luca; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo

    2017-04-01

    Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei still active caldera, characterized by periodic episodes of extended, low-rate ground subsidence and uplift called bradyseism accompanied by intense seismic and geochemical activities. In particular, Solfatara is characterized by an impressive magnitude diffuse degassing, which underlines the relevance of fluid and heat transport at the crater and prompted further research to improve the understanding of the hydrothermal system feeding the surface phenomenon. In this line, an active seismic experiment, Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to provide time-varying high-resolution images of the structure of Solfatara. In this study we used the datasets provided by two different acquisition geometries: a) A 2D array cover an area of 90 x 115 m ^ 2 sampled by a regular grid of 240 vertical sensors deployed at the crater surface; b) two 1D orthogonal seismic arrays deployed along NE-SW and NW-SE directions crossing the 400 m crater surface. The arrays are sampled with a regular line of 240 receiver and 116 shots. We present 2D and 3D tomographic high-resolution P-wave velocity images obtained using two different tomographic methods adopting a multiscale strategy. The 3D image of the shallow (30-35 m) central part of Solfatara crater is performed through the iterative, linearized, tomographic inversion of the P-wave first arrival times. 2D P-wave velocity sections (60-70 m) are obtained using a non-linear travel-time tomography method based on the evaluation of a posteriori probability density with a Bayesian approach. The 3D retrieved images integrated with resistivity section and temperature and CO2 flux measurements , define the following characteristics: 1. A depth dependent P-wave velocity layer down to 14 m, with Vp<700m/s typical of poorly-consolidated tephra and affected by CO2 degassing; 2. An intermediate layer, deepening towards the mineralized liquid-saturated area (Fangaia), interpreted as permeable deposits saturated with condensed water; 3. A deep, confined high velocity anomaly associated with a CO2 reservoir. With the 2D profiles we can image up to around 70 m depth: the first 30 m are characterized by features and velocities comparable to those of the 3D profiles, deeper, between 40-60 m depth, were found two low velocity anomalies, that probably indicate a preferential via for fluid degassing. These features are expression of an area located between the Fangaia, which is water saturated and replenished from deep aquifers, and the main fumaroles that are the superficial relief of deep rising CO2 flux. So, the changes in the outgassing rate greatly affects the shallow hydrothermal system, which can be used as a near-surface "mirror" of fluid migration processes occurring at greater depths.

  9. Detection and localization capability of an urban seismic sinkhole monitoring network

    NASA Astrophysics Data System (ADS)

    Becker, Dirk; Dahm, Torsten; Schneider, Fabian

    2017-04-01

    Microseismic events linked to underground processes in sinkhole areas might serve as precursors to larger mass dislocation or rupture events which can cause felt ground shaking or even structural damage. To identify these weak and shallow events, a sensitive local seismic monitoring network is needed. In case of an urban environment the performance of local monitoring networks is severely compromised by the high anthropogenic noise level. We study the detection and localization capability of such a network, which is already partly installed in the urban area of the city of Hamburg, Germany, within the joint project SIMULTAN (http://www.gfz-potsdam.de/en/section/near-surface-geophysics/projects/simultan/). SIMULTAN aims to monitor a known sinkhole structure and gain a better understanding of the underlying processes. The current network consists of six surface stations installed in the basement of private houses and underground structures of a research facility (DESY - Deutsches Elektronen Synchrotron). During the started monitoring campaign since 2015, no microseismic events could be unambiguously attributed to the sinkholes. To estimate the detection and location capability of the network, we calculate synthetic waveforms based on the location and mechanism of former events in the area. These waveforms are combined with the recorded urban seismic noise at the station sites. As detection algorithms a simple STA/LTA trigger and a more sophisticated phase detector are used. While the STA/LTA detector delivers stable results and is able to detect events with a moment magnitude as low as 0.35 at a distance of 1.3km from the source even under the present high noise conditions the phase detector is more sensitive but also less stable. It should be stressed that due to the local near surface conditions of the wave propagation the detections are generally performed on S- or surface waves and not on P-waves, which have a significantly lower amplitude. Due to the often emergent onsets of the seismic phases of sinkhole events and the high noise conditions the localization capability of the network is assessed by a stacking approach of characteristic waveforms (STA/LTA traces) in addition to traditional estimates based on travel time uncertainties and network geometry. Also the effect of a vertical array of borehole sensors as well as a small scale surface array on the location accuracy is investigated. Due to the expected, rather low frequency character of the seismic signals arrays with a small aperture due to the required close proximity to the source exhibit considerable uncertainty in the determination of the azimuth of the incoming wavefront, but can contribute to better constrain the event location. Future borehole stations, apart from significantly reducing the detection threshold, would also significantly reduce the location uncertainty. In addition, the synthetic data sets created for this study can also be used to better constrain the magnitudes of the microseismic events by deriving attenuation relations for the surface waves of shallow events encountered in the sinkhole environment. This work has been funded by the German 'Geotechnologien' project SIMULTAN (BMBF03G0737A).

  10. Teleseismic Array Studies of Earth's Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Alexandrakis, Catherine

    2011-12-01

    The core mantle boundary (CMB) is an inaccessible and complex region, knowledge of which is vital to our understanding of many Earth processes. Above it is the heterogeneous lower-mantle. Below the boundary is the outer-core, composed of liquid iron, and/or nickel and some lighter elements. Elucidation of how these two distinct layers interact may enable researchers to better understand the geodynamo, global tectonics, and overall Earth history. One parameter that can be used to study structure and limit potential chemical compositions is seismic-wave velocity. Current global-velocity models have significant uncertainties in the 200 km above and below the CMB. In this thesis, these regions are studied using three methods. The upper outer core is studied using two seismic array methods. First, a modified vespa, or slant-stack method is applied to seismic observations at broadband seismic arrays, and at large, dense groups of broadband seismic stations dubbed 'virtual' arrays. Observations of core-refracted teleseismic waves, such as SmKS, are used to extract relative arrivaltimes. As with previous studies, lower -mantle heterogeneities influence the extracted arrivaltimes, giving significant scatter. To remove raypath effects, a new method was developed, called Empirical Transfer Functions (ETFs). When applied to SmKS waves, this method effectively isolates arrivaltime perturbations caused by outer core velocities. By removing raypath effects, the signals can be stacked further reducing scatter. The results of this work were published as a new 1D outer-core model, called AE09. This model describes a well-mixed outer core. Two array methods are used to detect lower mantle heterogeneities, in particular Ultra-Low Velocity Zones (ULVZs). The ETF method and beam forming are used to isolate a weak P-wave that diffracts along the CMB. While neither the ETF method nor beam forming could adequately image the low-amplitude phase, beam forms of two events indicate precursors to the SKS and SKKS phase, which may be ULVZ indicators. Finally, cross-correlated observed and modelled beams indicate a tendency towards a ULVZ-like lower mantle in the study region.

  11. Stratigraphy, Structure and Tectonics of the Eyjafjarðaráll Rift, Abandoned Southern Segment of the Kolbeinsey Ridge, North Iceland

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Karson, J. A.; Magnúsdóttir, S.; Detrick, B.; Driscoll, N. W.

    2017-12-01

    The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ) is a complex transform linking the northern rift zone (NVZ) on land with the offshore Kolbeinsey Ridge. The TFZ lacks a clear topographic expression typical of oceanic fracture zones. The transform zone is roughly 150 km long (E-W) by 50-75 km wide (N-S) with three N-S trending pull-apart basins bounded by a complex array of normal and oblique-slip faults. The offshore extension of the NVZ, the Grímsey Oblique Rift, is composed of several active volcanic systems with N-S trending fissure swarms, including the Skjálfandadjúp Basin (SB). The magma-starved southern extension of the KR, the 80 km NS and 15-20 EW Eyjafjarðaráll Rift (ER), is made up of dominantly normal faults merging southwards with a system of right-lateral strike-slip faults with vertical displacement up to 15 m in the Húsavík Flatey Fault Zone (HFFZ). The northern ER is a 500-700 m deep asymmetric rift, framed by normal faults with 20-25 m vertical displacement, To the south, transform movement associated with the HFFZ has created a NW- striking pull-apart basin with frequent earthquake swarms. Details of the tectonic framework of the ER are documented in a compilation of data from aerial photos, satellite images, field mapping, multibeam bathymetry, high-resolution seismic reflection surveys (Chirp) and seismicity. The TFZ rift basins contain post-glacial sediments of variable thickness. Strata in the western ER and SB basins dip steeply E along the normal faults, towards the deepest part of the rift. The eastern side of the ER and SB basins differ considerably from the western side, with near-vertical faults. Correlation of Chirp reflection data and tephrachronology from a sediment core reveal major rifting episodes between 10-12.1 kyrs BP activating both the Eyjafjarðaráll and Skjálfandadjúp rift basins, followed by smaller-scale fault movements throughout Holocene. These vertical fault movements reflect elevated tectonic activity during early postglacial time coinciding with isostatic rebound and enhanced volcanism within Iceland.

  12. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.

    2017-12-01

    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  13. Wavelength shift in vertical cavity laser arrays on a patterned substrate

    NASA Astrophysics Data System (ADS)

    Eng, L. E.; Bacher, K.; Yuen, W.; Larson, M.; Ding, G.; Harris, J. S., Jr.; Chang-Hasnain, C. J.

    1995-03-01

    The authors demonstrate a spatially chirped emission wavelength in vertical cavity surface emitting laser (VCSEL) arrays grown by molecular beam epitaxy. The wavelength shift is due to a lateral thickness variation in the Al(0.2)Ga(0.8)As cavity, which is induced by a substrate temperature profile during growth. A 20 nm shift in lasing wavelength is obtained in a VCSEL array.

  14. Moho Depth and Geometry in the Illinois Basin Region Based on Gravity and Seismic Data from an EarthScope FlexArray Experiment

    NASA Astrophysics Data System (ADS)

    Curcio, D. D.; Pavlis, G. L.; Yang, X.; Hamburger, M. W.; Zhang, H.; Ravat, D.

    2017-12-01

    We present results from a combined analysis of seismic and gravity in the Illinois Basin region that demonstrate the presence of an unusually deep and highly variable Moho discontinuity. We construct a new, high-resolution image of the Earth's crust beneath the Illinois Basin using teleseismic P-wave receiver functions from the EarthScope OIINK (Ozarks, Illinois, INdiana, Kentucky) Flexible Array and the USArray Transportable Array. Our seismic analyses involved data from 143 OIINK stations and 80 USArray stations, using 3D plane-wave migration and common conversion point (CCP) stacking of P-to-S conversion data. Seismic interpretation has been done using the seismic exploration software package Petrel. One of the most surprising results is the anomalous depth of the Moho in this area, ranging from 41 to 63 km, with an average depth of 50 km. This thickened crust is unexpected in the Illinois Basin area, which has not been subject to convergence and mountain building processes in the last 900 Ma. This anomalously thick crust in combination with the minimal topography requires abnormally dense lower crust or unusually light upper mantle in order to retain gravitational equilibrium. Combining gravity modeling with the seismically identified Moho and a ubiquitous lower crustal boundary, we solve for the density variation of the middle and lower crust. We test the hypothesis that the anomalously thick crust and its high lower crustal layer observed in most of the central and southeastern Illinois Basin predates the formation and development of the current Illinois Basin. Post-formation tectonic activity, such as late Precambrian rifting or underplating are inferred to have modified the crustal thickness as well. The combination of high-resolution seismic data analysis and gravity modeling promises to provide additional insight into the geometry and composition of the lower crust in the Illinois Basin area.

  15. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns appear to correlate with variations in the distribution of aftershocks from the 2009 and 2014 Karonga earthquakes and in background seismicity beneath the lake, providing new constraints on length-displacement scaling for predictive models and earthquake hazards.

  16. Long-period amplification in deep alluvial basins and consequences for site-specific probabilistic seismic-hazard: the case of Castelleone in the Po Plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Barani, S.; Mascandola, C.; Massa, M.; Spallarossa, D.

    2017-12-01

    The recent Emilia seismic sequence (Northern Italy) occurred at the end of the first half of 2012 with main shock of Mw6.1 highlighted the importance of studying site effects in the Po Plain, the larger and deeper sedimentary basin in Italy. As has long been known, long-period amplification related to deep sedimentary basins can significantly affect the characteristics of the ground-motion induced by strong earthquakes. It follows that the effects of deep sedimentary deposits on ground shaking require special attention during the definition of the design seismic action. The work presented here analyzes the impact of deep-soil discontinuities on ground-motion amplification, with particular focus on long-period probabilistic seismic-hazard assessment. The study focuses on the site of Castelleone, where a seismic station of the Italian National Seismic Network has been recording since 2009. Our study includes both experimental and numerical site response analyses. Specifically, extensive active and passive geophysical measurements were carried out in order to define a detailed shear-wave velocity (VS) model to be used in the numerical analyses. These latter are needed to assess the site-specific ground-motion hazard. Besides classical seismic refraction profiles and multichannel analysis of surface waves, we analyzed ambient vibration measurements in both single and array configurations. The VS profile was determined via joint inversion of the experimental phase-velocity dispersion curve with the ellipticity curve derived from horizontal-to-vertical spectral ratios. The profile shows two main discontinuities at depths of around 160 and 1350 m, respectively. The probabilistic site-specific hazard was assessed in terms of both spectral acceleration and displacement. A partially non-ergodic approach was adopted. We have found that the spectral acceleration hazard is barely sensitive to long-period (up to 10 s) amplification related to the deeper discontinuity whereas the displacement hazard is strongly affected. Our results show that neglecting the effects of the deeper discontinuity implies an underestimation of the hazard of up to about 49% for a mean return period (MRP) of 475 years and 57% for an MRP of 2475 years, with possible consequences on the design of very tall buildings and large bridges.

  17. Field test investigation of high sensitivity fiber optic seismic geophone

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu

    2017-10-01

    Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.

  18. Small-aperture seismic array data processing using a representation of seismograms at zero-crossing points

    NASA Astrophysics Data System (ADS)

    Brokešová, Johana; Málek, Jiří

    2018-07-01

    A new method for representing seismograms by using zero-crossing points is described. This method is based on decomposing a seismogram into a set of quasi-harmonic components and, subsequently, on determining the precise zero-crossing times of these components. An analogous approach can be applied to determine extreme points that represent the zero-crossings of the first time derivative of the quasi-harmonics. Such zero-crossing and/or extreme point seismogram representation can be used successfully to reconstruct single-station seismograms, but the main application is to small-aperture array data analysis to which standard methods cannot be applied. The precise times of the zero-crossing and/or extreme points make it possible to determine precise time differences across the array used to retrieve the parameters of a plane wave propagating across the array, namely, its backazimuth and apparent phase velocity along the Earth's surface. The applicability of this method is demonstrated using two synthetic examples. In the real-data example from the Příbram-Háje array in central Bohemia (Czech Republic) for the Mw 6.4 Crete earthquake of October 12, 2013, this method is used to determine the phase velocity dispersion of both Rayleigh and Love waves. The resulting phase velocities are compared with those obtained by employing the seismic plane-wave rotation-to-translation relations. In this approach, the phase velocity is calculated by obtaining the amplitude ratios between the rotation and translation components. Seismic rotations are derived from the array data, for which the small aperture is not only an advantage but also an applicability condition.

  19. Improved recovery demonstration for Williston Basin carbonates. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sippel, M.A.

    The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technologymore » and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.« less

  20. Estimation of bedrock depth using the horizontal‐to‐vertical (H/V) ambient‐noise seismic method

    USGS Publications Warehouse

    Lane, John W.; White, Eric A.; Steele, Gregory V.; Cannia, James C.

    2008-01-01

    Estimating sediment thickness and the geometry of the bedrock surface is a key component of many hydrogeologic studies. The horizontal‐to‐vertical (H/V) ambient‐noise seismic method is a novel, non‐invasive technique that can be used to rapidly estimate the depth to bedrock. The H/V method uses a single, broad‐band three‐component seismometer to record ambient seismic noise. The ratio of the averaged horizontal‐to‐vertical frequency spectrum is used to determine the fundamental site resonance frequency, which can be interpreted using regression equations to estimate sediment thickness and depth to bedrock. The U.S. Geological Survey used the H/V seismic method during fall 2007 at 11 sites in Cape Cod, Massachusetts, and 13 sites in eastern Nebraska. In Cape Cod, H/V measurements were acquired along a 60‐kilometer (km) transect between Chatham and Provincetown, where glacial sediments overlie metamorphic rock. In Nebraska, H/V measurements were acquired along approximately 11‐ and 14‐km transects near Firth and Oakland, respectively, where glacial sediments overlie weathered sedimentary rock. The ambient‐noise seismic data from Cape Cod produced clear, easily identified resonance frequency peaks. The interpreted depth and geometry of the bedrock surface correlate well with boring data and previously published seismic refraction surveys. Conversely, the ambient‐noise seismic data from eastern Nebraska produced subtle resonance frequency peaks, and correlation of the interpreted bedrock surface with bedrock depths from borings is poor, which may indicate a low acoustic impedance contrast between the weathered sedimentary rock and overlying sediments and/or the effect of wind noise on the seismic records. Our results indicate the H/V ambient‐noise seismic method can be used effectively to estimate the depth to rock where there is a significant acoustic impedance contrast between the sediments and underlying rock. However, effective use of the method is challenging in the presence of gradational contacts such as gradational weathering or cementation. Further work is needed to optimize interpretation of resonance frequencies in the presence of extreme wind noise. In addition, local estimates of bedrock depth likely could be improved through development of regional or study‐area‐specific regression equations relating resonance frequency to bedrock depth.

  1. Multi-sensor investigation of the Sumatran Tsunami: observations and analysis of hydroacoustic, seismic, infrasonic, and tide gauge data

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, J.; Pulli, J.; Gibson, R.; Upton, Z.

    2005-05-01

    We present an analysis of the acoustic signals from the December 26, 2004 Sumatra earthquakes, in conjunction with the seismic and tide gauge information from the event. The M9.0 mainshock and its aftershocks were recorded by a suite of seismic sensors around the globe, giving us information on its location and the source process. Recently installed sensor assets in the Indian Ocean have enabled us to study additional features of this significant event. Hydroacoustic signals were recorded by three hydrophone arrays, and the direction finding capability of these arrays allows us to examine the location, time and extent of the T-wave generation process. We detect a clear variation of the back-azimuth that is consistent with the spatial extent of the source rupture. Recordings from nearly co-located seismometers provide insights into the acoustic-to-seismic conversion process for T-waves at islands, along with the variation in signal characteristics with source size. Two separate infrasound arrays detect the atmospheric signals generated by the event, along with additional observations of the seismic surface wave and the T-phase. We will present a comparison of the signals from the mainshock, as a function of location and size, with those from aftershocks and similar events in the nearby region. Our acoustic observations compare favorably with model predictions of wave propagation in the region. For the hydroacoustic data, the azimuth, arrival time, and signal blockage characteristics, from three separate arrays, associate the onset of the signal with the mainshock and with a time extent consistent with the rupture propagation. Our analysis of the T-phase travel times suggests that the seismic-to-acoustic conversion occurs more than 100 km from the epicenter. The infrasound signal's arrival time and signal duration are consistent with both stratospheric and thermospheric propagation from a source region near the mainshock. We use the tide gauge data from stations around the Indian Ocean to identify the arrival time of the Tsunami. The acoustic and seismic signals associated with the earthquakes arrive at the remote stations significantly ahead of the Tsunami. We combine the information from the various sensors to investigate the ability of the acoustic stations to detect the Tsunami.

  2. Towards marine seismological Network: real time small aperture seismic array

    NASA Astrophysics Data System (ADS)

    Ilinskiy, Dmitry

    2017-04-01

    Most powerful and dangerous seismic events are generated in underwater subduction zones. Existing seismological networks are based on land seismological stations. Increased demands for accuracy of location, magnitude, rupture process of coming earthquakes and at the same time reduction of data processing time require information from seabed seismic stations located near the earthquake generation area. Marine stations provide important contribution for clarification of the tectonic settings in most active subduction zones of the world. Early warning system for subduction zone area is based on marine seabed array which located near the area of most hazardous seismic zone in the region. Fast track processing for location of the earthquake hypocenter and energy takes place in buoy surface unit. Information about detected and located earthquake reaches the onshore seismological center earlier than the first break waves from the same earthquake will reach the nearest onshore seismological station. Implementation of small aperture array is based on existed and shown a good proven performance and costs effective solutions such as weather moored buoy and self-pop up autonomous seabed seismic nodes. Permanent seabed system for real-time operation has to be installed in deep sea waters far from the coast. Seabed array consists of several self-popup seismological stations which continuously acquire the data, detect the events of certain energy class and send detected event parameters to the surface buoy via acoustic link. Surface buoy unit determine the earthquake location by receiving the event parameters from seabed units and send such information in semi-real time to the onshore seismological center via narrow band satellite link. Upon the request from the cost the system could send wave form of events of certain energy class, bottom seismic station battery status and other environmental parameters. When the battery life of particular seabed unit is close to became empty, the seabed unit is switching into sleep mode and send that information to surface buoy and father to the onshore data center. Then seabed unit can wait for the vessel of opportunity for recovery of seabed unit to sea surface and replacing seabed station to another one with fresh batteries. All collected permanent seismic data by seabed unit could than downloaded for father processing and analysis. In our presentation we will demonstrate the several working prototypes of proposed system such as real time cable broad band seismological station and real time buoy seabed seismological station.

  3. The Use of Signal Dimensionality for Automatic QC of Seismic Array Data

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Stead, R. J.; Begnaud, M. L.; Draganov, D.; Maceira, M.; Gomez, M.

    2014-12-01

    A significant problem in seismic array analysis is the inclusion of bad sensor channels in the beam-forming process. We are testing an approach to automated, on-the-fly quality control (QC) to aid in the identification of poorly performing sensor channels prior to beam-forming in routine event detection or location processing. The idea stems from methods used for large computer servers, when monitoring traffic at enormous numbers of nodes is impractical on a node-by-node basis, so the dimensionality of the node traffic is instead monitored for anomalies that could represent malware, cyber-attacks or other problems. The technique relies upon the use of subspace dimensionality or principal components of the overall system traffic. The subspace technique is not new to seismology, but its most common application has been limited to comparing waveforms to an a priori collection of templates for detecting highly similar events in a swarm or seismic cluster. We examine the signal dimension in similar way to the method addressing node traffic anomalies in large computer systems. We explore the effects of malfunctioning channels on the dimension of the data and its derivatives, and how to leverage this effect for identifying bad array elements. We show preliminary results applied to arrays in Kazakhstan (Makanchi) and Argentina (Malargue).

  4. Seismic Strong Motion Array Project (SSMAP) to Record Future Large Earthquakes in the Nicoya Peninsula area, Costa Rica

    NASA Astrophysics Data System (ADS)

    Simila, G.; McNally, K.; Quintero, R.; Segura, J.

    2006-12-01

    The seismic strong motion array project (SSMAP) for the Nicoya Peninsula in northwestern Costa Rica is composed of 10 13 sites including Geotech A900/A800 accelerographs (three-component), Ref-Teks (three- component velocity), and Kinemetric Episensors. The main objectives of the array are to: 1) record and locate strong subduction zone mainshocks [and foreshocks, "early aftershocks", and preshocks] in Nicoya Peninsula, at the entrance of the Nicoya Gulf, and in the Papagayo Gulf regions of Costa Rica, and 2) record and locate any moderate to strong upper plate earthquakes triggered by a large subduction zone earthquake in the above regions. Our digital accelerograph array has been deployed as part of our ongoing research on large earthquakes in conjunction with the Earthquake and Volcano Observatory (OVSICORI) at the Universidad Nacional in Costa Rica. The country wide seismographic network has been operating continuously since the 1980's, with the first earthquake bulletin published more than 20 years ago, in 1984. The recording of seismicity and strong motion data for large earthquakes along the Middle America Trench (MAT) has been a major research project priority over these years, and this network spans nearly half the time of a "repeat cycle" (50 years) for large (Ms 7.5- 7.7) earthquakes beneath the Nicoya Peninsula, with the last event in 1950. Our long time co-collaborators include the seismology group OVSICORI, with coordination for this project by Dr. Ronnie Quintero and Mr. Juan Segura. Numerous international investigators are also studying this region with GPS and seismic stations (US, Japan, Germany, Switzerland, etc.). Also, there are various strong motion instruments operated by local engineers, for building purposes and mainly concentrated in the population centers of the Central Valley. The major goal of our project is to contribute unique scientific information pertaining to a large subduction zone earthquake and its related seismic activity when the next large earthquake occurs in Nicoya. A centralized data base will be created within the main seismic network files at OVSICORI, with various local personnel working in teams that will be responsible to collect data within 3 days following a large mainshock.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Sean R.; Walter, William R.

    Seismic waveform correlation offers the prospect of greatly reducing event detection thresholds when compared with more conventional processing methods. Correlation is applicable for seismic events that in some sense repeat, that is they have very similar waveforms. A number of recent studies have shown that correlated seismic signals may form a significant fraction of seismicity at regional distances. For the particular case of multiple nuclear explosions at the same test site, regional distance correlation also allows very precise relative location measurements and could offer the potential to lower thresholds when multiple events exist. Using the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Internationalmore » Monitoring System (IMS) seismic array at Matsushiro, Japan (MJAR), Gibbons and Ringdal (2012) were able to create a multichannel correlation detector with a very low false alarm rate and a threshold below magnitude 3.0. They did this using the 2006 or 2009 Democratic People’s Republic of Korea (DPRK) nuclear explosion as a template to search through a data stream from the same station to find a match via waveform correlation. In this paper, we extend the work of Gibbons and Ringdal (2012) and measure the correlation detection threshold at several other IMS arrays. We use this to address three main points. First, we show the IMS array station at Mina, Nevada (NVAR), which is closest to the Nevada National Security Site (NNSS), is able to detect a chemical explosion that is well under 1 ton with the right template. Second, we examine the two IMS arrays closest to the North Korean (DPRK) test site (at Ussuriysk, Russian Federation [USRK] and Wonju, Republic of Korea [KSRS]) to show that similarly low thresholds are possible when the right templates exist. We also extend the work of Schaff et al. (2012) and measure the correlation detection threshold at the nearest Global Seismic Network (GSN) three-component station (MDJ) at Mudanjiang, Heilongjiang Province, China, from the New China Digital Seismograph Network (IC). To conclude, we use these results to explore the recent claim by Zhang and Wen (2015) that the DPRK conducted “…a low-yield nuclear test…” on 12 May 2010.« less

  6. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located <10 km from the epicenter exceeds 70%. Due to the sensor's self-noise, smaller magnitude events at short epicentral distances are very difficult to detect. To increase the signal-to-noise ratio, we employ array back-projection techniques on continuous data recorded by thousands of phones. In this class of methods, the array is used as a spatial filter that suppresses signals emitted from shallow noise sources. Filtered traces are stacked to further enhance seismic signals from deep sources. We benchmark our technique against traditional location algorithms using recordings from California, a region with large MyShake user database. We find that locations derived from back-projection images of M 3 events recorded by >20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  7. Chemical growth of ZnO nanorod arrays on textured nanoparticle nanoribbons and its second-harmonic generation performance

    NASA Astrophysics Data System (ADS)

    Gui, Zhou; Wang, Xian; Liu, Jian; Yan, Shanshan; Ding, Yanyan; Wang, Zhengzhou; Hu, Yuan

    2006-07-01

    On the basis of the highly oriented ZnO nanoparticle nanoribbons as the growth seed layer (GSL) and solution growth technique, we have synthesized vertical ZnO nanorod arrays with high density over a large area and multi-teeth brush nanostructure, respectively, according to the density degree of the arrangement of nanoparticle nanoribbons GSL on the glass substrate. This controllable and convenient technique opens the possibility of creating nanostructured film for industrial fabrication and may represent a facile way to get similar structures of other compounds by using highly oriented GSL to promote the vertical arrays growth. The growth mechanism of the formation of the ordered nanorod arrays is also discussed. The second-order nonlinear optical coefficient d31 of the vertical ZnO nanorod arrays measured by the Maker fringes technique is 11.3 times as large as that of d36 KH 2PO 4 (KDP).

  8. Vertical shear-wave velocity profiles generated from spectral analysis of surface waves : field examples

    DOT National Transportation Integrated Search

    2003-04-01

    Surface wave (Rayleigh wave) seismic data were acquired at six separate bridge sites in southeast Missouri. Each acquired surface wave data set was processed (spectral analysis of surface waves; SASW) and transformed into a site-specific vertical she...

  9. Yearly report, Yucca Mountain project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, J.N.

    1992-09-30

    We proposed to (1) Develop our data logging and analysis equipment and techniques for analyzing seismic data from the Southern Great Basin Seismic Network (SGBSN), (2) Investigate the SGBSN data for evidence of seismicity patterns, depth distribution patterns, and correlations with geologic features (3) Repair and maintain our three broad band downhole digital seismograph stations at Nelson, nevada, Troy Canyon, Nevada, and Deep Springs, California (4) Install, operate, and log data from a super sensitive microearthquake array at Yucca Mountain (5) Analyze data from micro-earthquakes relative to seismic hazard at Yucca Mountain.

  10. Vertical coherence in mantle heterogeneity from global seismic data

    NASA Astrophysics Data System (ADS)

    Boschi, L.; Becker, T. W.

    2011-10-01

    The vertical coherence of mantle structure is of importance for a range of dynamic issues including convective mass transport and the geochemical evolution of Earth. Here, we use seismic data to infer the most likely depth ranges of strong, global changes in the horizontal pattern of mantle heterogeneity. We apply our algorithm to a comprehensive set of measurements, including various shear- and compressional-wave delay times and Love- and Rayleigh-wave fundamental mode and overtone dispersion, so that tomography resolution is as high as possible at all mantle depths. We find that vertical coherence is minimum at ∼100 km and ∼800 km depths, corresponding to the base of the lithosphere and the transition between upper and lower mantle, respectively. The D″ layer is visible, but not as prominent as the shallower features. The rest of the lower mantle is, essentially, vertically coherent. These findings are consistent with slab stagnation at depths around, and perhaps below, the 660-km phase transition, and inconsistent with global, chemically distinct, mid-mantle layering.

  11. Highly uniform and vertically aligned SnO2 nanochannel arrays for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Yup; Kang, Jin Soo; Shin, Junyoung; Kim, Jin; Han, Seung-Joo; Park, Jongwoo; Min, Yo-Sep; Ko, Min Jae; Sung, Yung-Eun

    2015-04-01

    Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process. In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 μm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process.Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process. In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 μm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00202h

  12. Spatial correlation analysis of seismic noise for STAR X-ray infrastructure design

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Agostino, Raffaele; Festa, Lorenzo; Gervasi, Anna; Guerra, Ignazio; Palmer, Dennis T.; Serafini, Luca

    2014-05-01

    The Italian PON MaTeRiA project is focused on the creation of a research infrastructure open to users based on an innovative and evolutionary X-ray source. This source, named STAR (Southern Europe TBS for Applied Research), exploits the Thomson backscattering process of a laser radiation by fast-electron beams (Thomson Back Scattering - TBS). Its main performances are: X-ray photon flux 109-1010 ph/s, Angular divergence variable between 2 and 10 mrad, X-ray energy continuously variable between 8 keV and 150 keV, Bandwidth ΔE/E variable between 1 and 10%, ps time resolved structure. In order to achieve this performances, bunches of electrons produced by a photo-injector are accelerated to relativistic velocities by a linear accelerator section. The electron beam, few hundreds of micrometer wide, is driven by magnetic fields to the interaction point along a 15 m transport line where it is focused in a 10 micrometer-wide area. In the same area, the laser beam is focused after being transported along a 12 m structure. Ground vibrations could greatly affect the collision probability and thus the emittance by deviating the paths of the beams during their travel in the STAR source. Therefore, the study program to measure ground vibrations in the STAR site can be used for site characterization in relation to accelerator design. The environmental and facility noise may affect the X-ray operation especially if the predominant wavelengths in the microtremor wavefield are much smaller than the size of the linear accelerator. For wavelength much greater, all the accelerator parts move in phase, and therefore also large displacements cannot generate any significant effect. On the other hand, for wavelengths equal or less than half the accelerator size several parts could move in phase opposition and therefore small displacements could affect its proper functioning. Thereafter, it is important to characterize the microtremor wavefield in both frequencies and wavelengths domains. For this reason, we performed some measurements of seismic noise in order to characterize the environmental noise in the site in which the X-ray accelerator arise. For the characterization of the site, we carried out several passive seismic monitoring experiments at different times of the day and in different weather conditions. We recorded microtremor using an array of broadband 3C seismic sensors arranged along the linear accelerator. For each measurement point, we determined the displacement, velocity and acceleration spectrogram and power spectral density of both horizontal and vertical components. We determined also the microtremor horizontal to vertical spectral ratio as function of azimuth to individuate the main ground vibration direction and detect the existence of site or building resonance frequencies. We applied a rotation matrix to transform the North-South and East-West signal components in transversal and radial components, respect to the direction of the linear accelerator. Subsequently, for each couple of seismic stations we determined the coherence function to analyze the seismic noise spatial correlation. These analyses have allowed us to exhaustively characterize the seismic noise of the study area, from the point of view of the power and space-time variability, both in frequency and wavelength.

  13. Earthquake relocations and InSAR time series analysis of the June 12th 2011 eruption of Nabro Volcano, Eritrea

    NASA Astrophysics Data System (ADS)

    Hamlyn, J.; Keir, D.; Hammond, J. O.; Wright, T. J.; Neuberg, J.; Kibreab, A.; Ogubazghi, G.; Goitom, B.

    2012-12-01

    Nabro volcano sits on the Danakil block next to the Afar triangle, nested between the Somalian, Arabian and Nubian plates. It is the largest and most central volcano within the ~110-km-long, SSW-NNE trending Nabro Volcanic Range (NVR) which extends from the Afar depression to the Red Sea. On the 12th June 2011, Nabro volcano suddenly erupted after being inactive for 10, 000 years. The resulting ash cloud rose 15 km, it reached the stratosphere and forced aircraft to re-route. The eruption also caused a 17 km long lava flow and ranks as one of the largest SO2 eruptions since the Mt. Pinatubo (1991) event. In response, a network of 8 seismometers were located around the active vent and were recording by the 31st August. Also, satellites with InSAR acquisition capabilities were tasked to the region including TerraSAR-X, Cosmo-SkyMed and Envisat. We processed the seismic signals detected by the array and those arriving at a regional seismic station (located in the north west) to provide accurate earthquake locations for the period September-October, 2011. We used Hypoinverse-2000 to provide preliminary locations for events, which were then relocated using HypoDD. Absolute error after Hypoinverse-2000 processing was, on average, approximately ±2 and ±4 km in the horizontal and the vertical directions, respectively. These errors were reduced to a relative error of ±20 and ±30 m in the horizontal and vertical directions, respectively, using HypoDD. Investigation of the parameters controlling the relocation was completed, in order to monitor bias that they caused in the final positioning of the hypocentres. The hypocentres produced have a very small relative depth error (~±30m), and show columns and clusters of activity as well as areas devoid of events. The majority of the seismic events are located at the active vent and within Nabro caldera, with fewer events located on the flanks. There also appears to be a smaller cluster of events to the south-west of Nabro beneath neighbouring Mallahle volcanic caldera, despite no eruption occurring here. This may imply some form of co-dependent relationship within the magma system below both calderas. We also investigated temporal patterns, but none were apparent at this late stage of the eruption. In addition to this seismic data, InSAR acquisitions from the TerraSAR-X catalogue have also been processed. We will show a time series analysis of stripmap acquisitions over Nabro, taken immediately after the eruption in order to show areas of ground deformation. These will be compared to the spatial and temporal distribution of seismicity.

  14. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.

    1996-10-01

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drillingmore » method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).« less

  15. Polarization Analysis of the September 2005 Northern Cascadia Episodic Tremor and Slip Event

    NASA Astrophysics Data System (ADS)

    Wech, A. G.; Creager, K. C.

    2006-12-01

    The region of Northern Cascadia, extending from the Olympic Mountains and Puget Sound to southern Vancouver Island, down-dip of the subduction "locked" zone has repeatedly experienced episodes of slow slip. This episodic slip, observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the last episodic tremor and slip (ETS) event was expected to occur in September, 2005. Indeed, it began on September 3. In order to record this event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with average spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. Based on past geodetic observations, a dominant assumption for the source of tremor is fault-slip in the direction of subduction, which can be tested using polarization of the seismic tremor. Using waveform cross- correlation to invert for the direction of slowness, we observed the tremor signal to migrate directly under our array. As the source passed beneath the array, tremor polarization stabilized to coincide with the direction of subduction. During a four day period starting September 8, the normalized eigenvalue associated with the dominant linear polarization jumped from ~0.7 to a stable 0.9 value. Also during this time, the polarization azimuth stabilized to a value of 57 +/- 8 degrees, close to the angle of subduction (56 degrees) suggesting that the tremor is caused by slip in the direction of relative plate motion on one or more faults.

  16. Velocity and Attenuation Structure of the Tibetan Lithosphere using Seismic Attributes of P-waves from Regional Earthquakes Recorded by the Hi-CLIMB Array

    NASA Astrophysics Data System (ADS)

    Nowack, R. L.; Bakir, A. C.; Griffin, J.; Chen, W.; Tseng, T.

    2010-12-01

    Using data from regional earthquakes recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes from crustal and Pn arrivals to constrain the velocity and attenuation structure in the crust and the upper mantle in central and western Tibet. The seismic attributes considered include arrival times, Hilbert envelope amplitudes, and instantaneous as well as spectral frequencies. We have constructed more than 30 high-quality regional seismic profiles, and of these, 10 events have been selected with excellent crustal and Pn arrivals for further analysis. Travel-times recorded by the Hi-CLIMB array are used to estimate the large-scale velocity structure in the region, with four near regional events to the array used to constrain the crustal structure. The travel times from the far regional events indicate that the Moho beneath the southern Lhasa terrane is up to 75 km thick, with Pn velocities greater than 8 km/s. In contrast, the data sampling the Qiangtang terrane north of the Bangong-Nujiang (BNS) suture shows thinner crust with Pn velocities less than 8 km/s. Seismic amplitude and frequency attributes have been extracted from the crustal and Pn wave trains, and these data are compared with numerical results for models with upper-mantle velocity gradients and attenuation, which can strongly affect Pn amplitudes and pulse frequencies. The numerical modeling is performed using the complete spectral element method (SEM), where the results from the SEM method are in good agreement with analytical and reflectivity results for different models with upper-mantle velocity gradients. The results for the attenuation modeling in Tibet imply lower upper mantle Q values in the Qiangtang terrane to the north of the BNS compared to the less attenuative upper mantle beneath the Lhasa terrane to the south of the BNS.

  17. Infrasonic sounds excited by seismic waves of the 2011 Tohoku-oki earthquake as visualized in ionograms

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi; Shinagawa, Hiroyuki

    2014-05-01

    After the M 9.0 Tohoku-oki earthquake in 2011, strong deformation of ionogram echo traces, forming multiple cusp signatures (MCSs), were observed at three stations 790-1880 km from the epicenter. The vertical structure of the ionospheric disturbances was determined by true height analysis and compared with broadband seismograph records at stations close to the ionosondes. These ionospheric disturbances were caused by vertically propagating acoustic waves excited by the up/down ground motion of seismic waves. Numerical simulations have shown that acoustic waves with a period of 15-40 s and amplitude of order 1 mm/s at the ground level were sufficient to create MCSs as sharp as those observed. These acoustic wave parameters are consistent with the seismic records if the motion of the air mass on the ground level is assumed to be the same as the ground motion. The travel time diagram of the seismic records along the line connecting the epicenter and ionosondes showed that the first MCS ionogram detected at each station was caused by P waves, while the others were caused by Rayleigh waves.

  18. Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan

    PubMed Central

    Satake, Kenji

    2018-01-01

    Tsunami earthquakes are a group of enigmatic earthquakes generating disproportionally large tsunamis relative to seismic magnitude. These events occur most typically near deep-sea trenches. Tsunami earthquakes occurring approximately every 10 years near Torishima on the Izu-Bonin arc are another example. Seismic and tsunami waves from the 2015 event [Mw (moment magnitude) = 5.7] were recorded by an offshore seafloor array of 10 pressure gauges, ~100 km away from the epicenter. We made an array analysis of dispersive tsunamis to locate the tsunami source within the submarine Smith Caldera. The tsunami simulation from a large caldera-floor uplift of ~1.5 m with a small peripheral depression yielded waveforms remarkably similar to the observations. The estimated central uplift, 1.5 m, is ~20 times larger than that inferred from the seismologically determined non–double-couple source. Thus, the tsunami observation is not compatible with the published seismic source model taken at face value. However, given the indeterminacy of Mzx, Mzy, and M{tensile} of a shallow moment tensor source, it may be possible to find a source mechanism with efficient tsunami but inefficient seismic radiation that can satisfactorily explain both the tsunami and seismic observations, but this question remains unresolved. PMID:29740604

  19. Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan.

    PubMed

    Fukao, Yoshio; Sandanbata, Osamu; Sugioka, Hiroko; Ito, Aki; Shiobara, Hajime; Watada, Shingo; Satake, Kenji

    2018-04-01

    Tsunami earthquakes are a group of enigmatic earthquakes generating disproportionally large tsunamis relative to seismic magnitude. These events occur most typically near deep-sea trenches. Tsunami earthquakes occurring approximately every 10 years near Torishima on the Izu-Bonin arc are another example. Seismic and tsunami waves from the 2015 event [ M w (moment magnitude) = 5.7] were recorded by an offshore seafloor array of 10 pressure gauges, ~100 km away from the epicenter. We made an array analysis of dispersive tsunamis to locate the tsunami source within the submarine Smith Caldera. The tsunami simulation from a large caldera-floor uplift of ~1.5 m with a small peripheral depression yielded waveforms remarkably similar to the observations. The estimated central uplift, 1.5 m, is ~20 times larger than that inferred from the seismologically determined non-double-couple source. Thus, the tsunami observation is not compatible with the published seismic source model taken at face value. However, given the indeterminacy of M zx , M zy , and M {tensile} of a shallow moment tensor source, it may be possible to find a source mechanism with efficient tsunami but inefficient seismic radiation that can satisfactorily explain both the tsunami and seismic observations, but this question remains unresolved.

  20. Heterogeneous Structure and Seismicity beneath the Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kato, A.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Kurashimo, E.; Obara, K.; Kasahara, K.; Aketagawa, T.; Kimura, H.; Hirata, N.

    2010-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. Sato et al. (2005) revealed the geometry of upper surface of PSP, and Hagiwara et al. (2006) estimated the velocity structure beneath Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the Tokyo metropolitan area including those due to an intra-slab M7+ earthquake. So, we launched the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area (Hirata et al., 2009). Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) and stress field within PSP is very important to attain this issue. The core item of this project is a dense seismic array called Metropolitan Seismic Observation network (MeSO-net) for making observations in the metropolitan area (Sakai and Hirata, 2009; Kasahara et al., 2009). We deployed the 249 seismic stations with a spacing of 5 km. Some parts of stations construct 5 linear arrays at interval of 2 km such as Tsukuba-Fujisawa (TF) array, etc. The TF array runs from northeast to southwest through the center of Tokyo. In this study, we applied the tomography method to image the heterogeneous structure under the Tokyo metropolitan area. We selected events from the Japan Meteorological Agency (JMA) unified earthquake list. All data of MeSO-net were edited into event data by the selected JMA unified earthquake list. We picked the P and S wave arrival times. The total number of stations and events are 421 and 1,256, respectively. Then, we applied the double-difference tomography method (Zhang and Thurber, 2003) to this dataset and estimated the fine-scale velocity structure. The grid nodes locate 10 km interval in parallel with the array, 20 km interval in perpendicular to the array; and on depth direction, 5 km interval to a depth of less than 50 km and 10 km interval at a depth of more. We used 158,930 (P wave) and 149,308 (S wave) absolute arrival times, and 374,072 (P wave) and 354,912 (S wave) differential travel times. The initial velocity structure is the JMA2001 (Ueno et al., 2001), and the Vp/Vs ratio is set to 1.73 for all grid nodes. We imaged the subducting PSP and Pacific Plate clearly. The depth section of P-wave velocity structure along the TF array clearly shows that thin low-velocity layer which overlies high-velocity layer subducts towards northeast. This low-velocity layer corresponds to the oceanic crust of the subducting PSP. The obtained tomograms combined with seismicity and focal mechanisms indicate that the interior of the subducting PSP is characterized by heterogeneous structures, which could exert a profound influence on the genesis of intra-slab earthquakes. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  1. Data report for onshore-offshore wide-angle seismic recordings in the Bering-Chukchi Sea, Western Alaska and eastern Siberia

    USGS Publications Warehouse

    Brocher, Thomas M.; Allen, Richard M.; Stone, David B.; Wolf, Lorraine W.; Galloway, Brian K.

    1995-01-01

    This report presents fourteen deep-crustal wide-angle seismic reflection and refraction profiles recorded onland in western Alaska and eastern Siberia from marine air gun sources in the Bering-Chukchi Seas. During a 20-day period in August, 1994, the R/V Ewing acquired two long (a total of 3754 km) deep-crustal seismic-reflection profiles on the continental shelf of the Bering and Chukchi Seas, in a collaborative project between Stanford University and the United States Geological Survey (USGS). The Ewing's 137.7 liter (8355 cu. in.) air gun array was the source for both the multichannel reflection and the wide-angle seismic data. The Ewing, operated by the Lamont-Doherty Earth Observatory, steamed northward from Nunivak Island to Barrow, and returned, firing the air gun array at intervals of either 50 m or 75 m. About 37,700 air gun shots were fired along the northward directed Lines 1 and 2, and more than 40,000 air gun shots were fired along the southward directed Line 3. The USGS and the University of Alaska, Fairbanks (UAF), deployed an array of twelve 3-component REFTEK and PDAS recorders in western Alaska and eastern Siberia which continuously recorded the air gun signals fired during the northward bound Lines 1 and 2. Seven of these recorders also continuously recorded the southward bound Line 3. These wide-angle seismic data were acquired to: (1) image reflectors in the upper to lower crust, (2) determine crustal and upper mantle refraction velocities, and (3) provide important constraints on the geometry of the Moho along the seismic lines. In this report, we describe the land recording of wide-angle data conducted by the USGS and the UAF, describe in detail how the wide-angle REFTEK and PDAS data were reduced to common receiver gather seismic sections, and illustrate the wide-angle seismic data obtained by the REFTEKs and PDAS's. Air gun signals were observed to ranges in excess of 400 km, and crustal and upper /mantle refractions indicate substantial variation in the crustal thickness along the transect.

  2. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    PubMed

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  3. Bottom Interaction in Long Range Acoustic Propagation

    DTIC Science & Technology

    2006-09-30

    Pacific Ocean utilizing controlled sources and vertical and horizontal receiver arrays . Broadband sources are considered with typical center...The LOAPEX (Long-range Ocean Acoustic Propagation Experiment) vertical line arrays (VLA) are described on page 1 of the LOAPEX cruise report: " The...hydrophone arrays on the two combined VLAs covered most of the 5-km water column. We refer to one of the VLAs as the deep VLA (DVLA), located at

  4. Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun

    2016-11-01

    In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.

  5. Seismic Reflection Imaging of Detachment Faulting at 13°N on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Falder, M.; Reston, T. J.; Peirce, C.; Simão, N.; MacLeod, C. J.; Searle, R. C.

    2016-12-01

    The observation of domal corrugated surfaces at slow spreading ridges less than two decades ago, has dramatically challenged our understanding of seafloor spreading. These `oceanic core complexes' are believed to be caused by large-scale detachment faults which accommodate plate separation during periods when melt supply is low or absent entirely. Despite increasing recognition of their importance, the mechanics of, and interactions between, detachment faults at OCCs is not well understood. In Jan-Feb 2016, seismic reflection and refraction data were acquired across the 13N OCCs. The twelve-airgun array seismic source was recorded by a 3000m-long streamer, with shots fired with the full array at either 20 s intervals, or with half the array in a "flip flop" fashion every 10 s. A shorter firing rate results in significantly less spatial aliasing and enhances the performance of the F-K domain filtering. Here we present preliminary seismic reflection images of the 13N region. The currently active 13° 20'N detachment fault is imaged continuing downwards from the smooth fault plane exposed at the seabed. Away from the fault, and between the two OCCs in the area, fewer subsurface structures are observed, which may either represent an actual lack of sharp acoustic contrasts or be as a result of the challenging imaging conditions. Acoustic energy scattered by rough bathymetry both within and out of plane of section is the main challenge of seismic reflection imaging in this area and various strategies are being investigated for its attenuation, including prediction based on high-resolution bathymetry acquired.

  6. Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.

    PubMed

    Chen, Bingan; Zhong, Guofang; Oppenheimer, Pola Goldberg; Zhang, Can; Tornatzky, Hans; Esconjauregui, Santiago; Hofmann, Stephan; Robertson, John

    2015-02-18

    We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.

  7. Autonomous microexplosives subsurface tracing system final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping ofmore » subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.« less

  8. An integrated study of seismic anisotropy and the natural fracture system at the Conoco Borehole Test Facility, Kay County, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queen, J.H.; Rizer, W.D.

    1990-07-10

    A significant body of published work has developed establishing fracture-related seismic anisotropy as an observable effect. To further the understanding of seismic birefringence techniques in characterizing natural fracture systems at depth, an integrated program of seismic and geologic measurements has been conducted at Conoco's Borehole Test Facility in Kay County, Oklahoma. Birefringence parameters inferred from the seismic data are consistent with a vertical fracture model of density 0.04 striking east-northeast. That direction is subparallel to a fracture set mapped both on the surface and from subsurface data, to the in situ maximum horizontal stress, and to the inferred microfabric.

  9. Ambient seismic noise study in Taiwan for two different scale arrays

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Yao, H.; Liang, W.; Huang, B.; Wen, K.; Huang, W.; van der Hilst, R. D.

    2008-12-01

    It has been demonstrated that Time Domain Empirical Green's Function (TDEGF) from ambient seismic noise cross-correlation can be used to investigate crustal velocity structure from many studies around the world. For surface wave tomographic studies from ambient noise, the maximum exploring depth depends on the aperture of receiver array and the lateral resolution relies on the density of station-pair paths. To decipher subsurface structures in various scales, researchers can utilize some existing continuous-recording seismic stations and/or deploy a newly dense receiver array in the study region. In this study, we perform tomographic applications of ambient seismic noise analysis in Taiwan region for two arrays with very different scales. Taiwan is located at a complex convergent plate boundary zone where the Philippine Sea plate interacts with the Eurasian plate. As a result, the lateral velocity variations show dramatic patterns among different geologic provinces. In the past decade, many continuous-recording broadband stations have already been set up to monitor earthquake activities in the Taiwan region. The BATS (Broadband Array in Taiwan for Seismology) network is being operated by the Institute of Earth Sciences, Academia Sinica (IESAS) since 1994. Currently, there are 20 permanent stations covering approximately 350 km by 400 km area around Taiwan, including some remote islets. In this study we selected 7 years data (2000-2006) from BATS to get the TDEGFs which were then used to measure inter-station phase velocities in the period band 5-30s. Finally we then constructed 2D phase velocity maps. At shorter periods (5-10s), phase velocity distribution can compare well with surface geology. At longer periods (14-22s), there is a saxophone shape low velocity zone beneath the Taiwan Island. Taipei Basin is a high-level artificial noise metropolis with a nearly triangular shape basin located close to northern tip of Taiwan with area just around 20 km by 20 km, much smaller than the area BATS covers. Central Geological Survey (CGS) entrusted IESAS to monitor seismicity in this region from 2004. There were around 20 continuous-recording broadband stations with about 5km average inter-station distance. For this study we selected 3 months data, from mid July to mid October in 2005, to calculate TDEGFs. Finally we obtained 0.5-3s phase velocity maps, which can compare well with surface geologic structure. The days with typhoon warnings were excluded from ambient seismic noise analysis due to the fact that TDEGFs are affected by temporarily close and massive moving sources like typhoons. We also found that the source direction of ambient seismic noise in typhoon days had close relationship with typhoon location.

  10. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Zhang, H.; Rowe, C. A.

    2009-12-01

    We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.

  11. Seismoelectric imaging of shallow targets

    USGS Publications Warehouse

    Haines, S.S.; Pride, S.R.; Klemperer, S.L.; Biondi, B.

    2007-01-01

    We have undertaken a series of controlled field experiments to develop seismoelectric experimental methods for near-surface applications and to improve our understanding of seismoelectric phenomena. In a set of off-line geometry surveys (source separated from the receiver line), we place seismic sources and electrode array receivers on opposite sides of a man-made target (two sand-filled trenches) to record separately two previously documented seismoelectric modes: (1) the electromagnetic interface response signal created at the target and (2) the coseismic electric fields located within a compressional seismic wave. With the seismic source point in the center of a linear electrode array, we identify the previously undocumented seismoelectric direct field, and the Lorentz field of the metal hammer plate moving in the earth's magnetic field. We place the seismic source in the center of a circular array of electrodes (radial and circumferential orientations) to analyze the source-related direct and Lorentz fields and to establish that these fields can be understood in terms of simple analytical models. Using an off-line geometry, we create a multifold, 2D image of our trenches as dipping layers, and we also produce a complementary synthetic image through numerical modeling. These images demonstrate that off-line geometry (e.g., crosswell) surveys offer a particularly promising application of the seismoelectric method because they effectively separate the interface response signal from the (generally much stronger) coseismic and source-related fields. ?? 2007 Society of Exploration Geophysicists.

  12. Depth-dependent Vertical-to-Horizontal (V/H) Ratios of Free-Field Ground Motion Response Spectra for Deeply Embedded Nuclear Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.; Braverman, J.; Miranda, M.

    2015-02-01

    This report documents the results of a study to determine the depth-dependent V/H ratios of ground motion response spectra in the free field. The V/H ratios reported herein were developed from a worldwide database of surface and downhole acceleration recordings obtained from 45 vertical array stations. This database was specifically compiled for this project, and includes information from a diversity of active tectonic regions (California, Alaska, Taiwan, Japan), site conditions (rock to soft soil), ground motion intensity levels (PGAs between 0.01 g and 0.50 g), magnitudes (between ML 2.78 and JMA 8.1), epicentral distances (between 3.2 km and 812 km),more » and source depths (between 1.2 km and 112 km), as well as sensors at surface and at a wide range of depths relevant to the project. To study the significance of the depth effect, V/H ratios from all the records were sorted into a number of depth bins relevant to the project, and statistics (average, standard deviation, coefficient of variation, 16th, 50th, and 84th percentiles) of the V/H ratios within each bin were computed. Similar analyses were repeated, controlling for different site conditions, ground motion intensity levels, array locations, and source depths, to study their relative effect on the V/H ratios. Our findings confirm the importance of the depth effect on the V/H ratios. The research findings in this report can be used to provide guidance on the significance of the depth effect, and the extent to which this effect should be considered in the seismic design of deeply embedded SMR structures and NPP structures in general.« less

  13. Chilean Tsunami Rocks the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.

  14. EarthScope's Transportable Array: Advancing Eastward

    NASA Astrophysics Data System (ADS)

    Busby, R. W.; Vernon, F.; Newman, R. L.; Astiz, L.

    2006-12-01

    EarthScope's Transportable Array has installed more than 200 high-quality broadband seismic stations over the last 3 years in the western US. These stations have a nominal spacing of 70 km and are part of an eventual 400 station array that migrates from west to east at a rate of 18 stations per month. The full 400 stations will be operating by September 2007. Stations have a residence time of about 2 years before being relocated to the next site. Throughout the continental US, 1623 sites are expected to be occupied. Standardized procedures and protocols have been developed to streamline all aspects of Transportable Array operations, from siting to site construction and installation to equipment purchasing and data archiving. Earned Value Management tools keep facility installation and operation on budget and schedule. A diverse, yet efficient, infrastructure installs and maintains the Transportable Array. Sensors, dataloggers, and other equipment are received and tested by the IRIS PASSCAL Instrument Center and shipped to regional storage facilities. To engage future geoscientists in the project, students are trained to conduct field and analytical reconnaissance to identify suitable seismic station sites. Contract personnel are used for site verification; vault construction; and installation of sensors, power, and communications systems. IRIS staff manages permitting, landowner communications, and station operations and maintenance. Seismic signal quality and metadata are quality-checked at the Array Network Facility at the University of California-San Diego and simultaneously archived at the IRIS Data Management Center in Seattle. Station equipment has been specifically designed for low power, remote, unattended operation and uses diverse two-way IP communications for real-time transmission. Digital cellular services, VSAT satellite, and commercial DSL, cable or wireless transport services are employed. Automatic monitoring of status, signal quality and earthquake event detection as well as operational alarms for low voltage and water intrusion are performed by a robust data acquisition package. This software is coupled with a host of network management tools and display managers operated by the Array Network Facility to allow managers, field personnel, and network operations staff to visualize array performance in real-time and to access historical information for diagnostics. Current data recording proficiency is 99.1%, with real-time telemetry averaging about 91%. EarthScope, IRIS and the USGS are working with regional seismic network operators, both existing and newly formed, to transition some of the Transportable Array stations into regional network assets. Each region has unique circumstances and interested parties are invited to exchange ideas on how this might be accomplished in their area. Contact busby@iris.edu for more information.

  15. Vertically Free-Standing Ordered Pb(Zr0.52Ti0.48)O3 Nanocup Arrays by Template-Assisted Ion Beam Etching.

    PubMed

    Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming

    2016-12-01

    In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 10(10) cm(-2)) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.

  16. Anisotropic Lithospheric Structure of Southern Madagascar from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Dreiling, J.; Tilmann, F. J.; Yuan, X.; Rumpker, G.

    2016-12-01

    The island of Madagascar occupied a key region in both the assembly and the multi-stage breakup of Gondwana. Madagascar consists of amalgamated continental material comprising several distinct tectonic units. Because of its key role in the assembly of Gondwana, numerous geological and geophysical investigations have been carried out in Madagascar to understand the evolution of Gondwana.The aim of this study is to characterize the lithospheric structure of Southern Madagascar using ambient seismic noise correlation. Radial anisotropy is determined to learn about the crust/mantle deformation around the central Southern Madagascan shear zones (i.e. the Ampanihy, Beraketa and Ranotsara shear zones) and to shed light on the geological development of Madagascar and its role during the breakup of Gondwana. In the analysis we included seismic data from the SELASOMA project in Southern Madagascar, which is a passive seismic experiment carried out by the GFZ German Research Centre for Geosciences from May 2012 to May 2014. Seismic data recorded by 61 three-component seismometers were pre-processed and cross-correlated. Group velocity dispersion curves were picked manually for the vertical-vertical and transverse-transverse component correlations, which represent the Rayleigh (ZZ) and Love (TT) surface waves, respectively. Velocities from periods between 0.7 and 20 seconds are used for tomography and computation of radial anisotropy of the lithosphere.

  17. Site response in the eastern United States: A comparison of Vs30 measurements with estimates from horizontal:vertical spectral ratios

    USGS Publications Warehouse

    McNamara, Daniel E.; Stephenson, William J.; Odum, Jackson K.; Williams, Robert; Gee, Lind

    2014-01-01

    Earthquake damage is often increased due to local ground-motion amplification caused by soft soils, thick basin sediments, topographic effects, and liquefaction. A critical factor contributing to the assessment of seismic hazard is detailed information on local site response. In order to address and quantify the site response at seismograph stations in the eastern United States, we investigate the regional spatial variation of horizontal:vertical spectral ratios (HVSR) using ambient noise recorded at permanent regional and national network stations as well as temporary seismic stations deployed in order to record aftershocks of the 2011 Mineral, Virginia, earthquake. We compare the HVSR peak frequency to surface measurements of the shear-wave seismic velocity to 30 m depth (Vs30) at 21 seismograph stations in the eastern United States and find that HVSR peak frequency increases with increasing Vs30. We use this relationship to estimate the National Earthquake Hazards Reduction Program soil class at 218 ANSS (Advanced National Seismic System), GSN (Global Seismographic Network), and RSN (Regional Seismograph Networks) locations in the eastern United States, and suggest that this seismic station–based HVSR proxy could potentially be used to calibrate other site response characterization methods commonly used to estimate shaking hazard.

  18. New relationship between fundamental site frequency and thickness of soft sediments from seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Abd el-aal, Abd el-aziz Khairy

    2018-05-01

    In this contribution, new relationship between the fundamental site frequency and the thickness of soft sediments is obtained for many sites in Egypt. The Horizontal-to-Vertical Spectral Ratio ("H/V") technique (known as Nakamura technique) can be used as a robust tool to determine the thickness of soft sediments layers overlaying bedrock from observations and measurements of seismic ambient noise data. In Egypt, numerous seismic ambient noise measurements have been conducted in several areas to determine the dynamic properties of soft soil for engineering purposes. At each site in each studied area, the fundamental site frequency was accurately estimated from the main peak in the spectral ratio between the horizontal and vertical component. Consequently, an extensive database of microtremor measurements, well logging data, and shallow seismic refraction data have been configured and assembled for the studied areas. New formula between fundamental site frequency (f 0 ) and thickness of soft sediments (h) is established. The new formula has been validated and compared with other formulas of earlier scientists, and the results indicate that the calculated depth and geometry of the bedrock surface using new formula are in a good agreement with well logs data and previously published seismic refraction surveys in the investigated sites.

  19. Seismic anisotropy in the uppermost mantle beneath oceanic regions from data of broadband OBSs

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Nishida, K.; Isse, T.; Kawakatsu, H.; Shiobara, H.; Sugioka, H.; Ito, A.; Kanazawa, T.; Suetsugu, D.

    2011-12-01

    For improving vertical resolution of seismic-anisotropy structure at depths of 10-100 km beneath oceanic regions, we measured phase velocities of surface waves in a broadband frequency range by two methods: the ambient noise interferometry in frequency higher than 0.035 Hz, and array analysis of event waveforms in lower frequency. We use seismograms recorded by broadband ocean bottom seismometers (BBOBSs) in two regions: (i) the Shikoku Basin in the Philippine Sea by Stagnant Slab Project, and (ii) east of Tahiti Island by a project called the tomographic investigation by seafloor array experiment for Society hotspot (TIARES). The frequency ranges of phase-velocity measurements in each region are summarized in Table. For the case of Shikoku Basin, we invert phase velocities for radially anisotropic structure. The resultant structure shows decrease of shear-wave velocity by 6-8 % at depths of 50-70 km, and intensification of radial anisotropy (VSH>VSV) from 1-2 % at 10-20 km depth to 4-6 % at 40-70 km depth. These results indicate increasing amount of preferred-oriented olivine crystal, and/or horizontal layering of partial melt near the boundary between the lithosphere and the asthenosphere. The azimuthal anisotropy of phase velocity in the Shikoku Basin is also investigated by array analysis of event waveforms for the fundamental mode of Rayleigh wave at 0.03 Hz. The fastest direction is NW, and consistent with direction of present plate motion. The velocity difference between fastest and slowest directions is 1-2 %. These results mainly reflect shear-wave velocity at depth of 30-60 km, and imply that lattice preferred orientation is, at least, partly (though may not be fully) responsible for the anisotropy in the depth range. We will obtain radially anisotropic structure and azimuthal anisotropy in Tahiti region, and will present difference between two regions.
    Frequency range of phase-velocity measurements for two regions of analyses.

  20. Time-Reversal Location of the 2004 M6.0 Parkfield Earthquake Using the Vertical Component of Seismic Data.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Johnson, P.; Huang, L.; Randall, G.; Patton, H.; Montagner, J.

    2007-12-01

    In this work we describe Time Reversal experiments applying seismic waves recorded from the 2004 M6.0 Parkfield Earthquake. The reverse seismic wavefield is created by time-reversing recorded seismograms and then injecting them from the seismograph locations into a whole entire Earth velocity model. The concept is identical to acoustic Time-Reversal Mirror laboratory experiments except the seismic data are numerically backpropagated through a velocity model (Fink, 1996; Ulrich et al, 2007). Data are backpropagated using the finite element code SPECFEM3D (Komatitsch et al, 2002), employing the velocity model s20rts (Ritsema et al, 2000). In this paper, we backpropagate only the vertical component of seismic data from about 100 broadband surface stations located worldwide (FDSN), using the period band of 23-120s. We use those only waveforms that are highly correlated with forward-propagated synthetics. The focusing quality depends upon the type of waves back- propagated; for the vertical displacement component the possible types include body waves, Rayleigh waves, or their combination. We show that Rayleigh waves, both real and artifact, dominate the reverse movie in all cases. They are created during rebroadcast of the time reverse signals, including body wave phases, because we use point-like-force sources for injection. The artifact waves, termed "ghosts" manifest as surface waves, do not correspond to real wave phases during the forward propagation. The surface ghost waves can significantly blur the focusing at the source. We find that the ghosts cannot be easily eliminated in the manner described by Tsogka&Papanicolaou (2002). It is necessary to understand how they are created in order to remove them during TRM studies, particularly when using only the body waves. For this moderate magnitude of earthquake we demonstrate the robustness of the TRM as an alternative location method despite the restriction to vertical component phases. One advantage of TRM location is that it does not rely on a prior picking of specific phases (Larmat et al, 2006). In future work will be conducted TRM backpropagation using the horizontal displacement components of seismic data as well as study the source complexity (double couples). Our ultimate goal is to determine whether or not Time Reversal offers information about the source that cannot be obtained from other methods, or that complements other methods.

  1. GDP: A new source for shallow high-resolution seismic exploration

    NASA Astrophysics Data System (ADS)

    Rashed, Mohamed A.

    2009-06-01

    Gas-Driven Piston (GDP) is a new source for shallow seismic exploration. This source works by igniting a small amount of gas inside a closed chamber connected to a vertical steel cylinder. The gas explosion drives a steel piston, mounted inside the cylinder, downward so that the piston's thick head hits a steel base at the end of the cylinder generating a strong shock wave into the ground. Experimental field tests conducted near Ismailia, Egypt, prove that the portable, inexpensive and environmentally benign GDP generates stronger seismic waves than the sledgehammer that is commonly used in shallow seismic exploration. Tests also show that GDP is a highly repeatable and controllable and that its seismic waves contain a good amount of high frequencies which makes the GDP an excellent source for shallow seismic exploration.

  2. Earthquake prediction using extinct monogenetic volcanoes: A possible new research strategy

    NASA Astrophysics Data System (ADS)

    Szakács, Alexandru

    2011-04-01

    Volcanoes are extremely effective transmitters of matter, energy and information from the deep Earth towards its surface. Their capacities as information carriers are far to be fully exploited so far. Volcanic conduits can be viewed in general as rod-like or sheet-like vertical features with relatively homogenous composition and structure crosscutting geological structures of far more complexity and compositional heterogeneity. Information-carrying signals such as earthquake precursor signals originating deep below the Earth surface are transmitted with much less loss of information through homogenous vertically extended structures than through the horizontally segmented heterogeneous lithosphere or crust. Volcanic conduits can thus be viewed as upside-down "antennas" or waveguides which can be used as privileged pathways of any possible earthquake precursor signal. In particular, conduits of monogenetic volcanoes are promising transmitters of deep Earth information to be received and decoded at surface monitoring stations because the expected more homogenous nature of their rock-fill as compared to polygenetic volcanoes. Among monogenetic volcanoes those with dominantly effusive activity appear as the best candidates for privileged earthquake monitoring sites. In more details, effusive monogenetic volcanic conduits filled with rocks of primitive parental magma composition indicating direct ascent from sub-lithospheric magma-generating areas are the most suitable. Further selection criteria may include age of the volcanism considered and the presence of mantle xenoliths in surface volcanic products indicating direct and straightforward link between the deep lithospheric mantle and surface through the conduit. Innovative earthquake prediction research strategies can be based and developed on these grounds by considering conduits of selected extinct monogenetic volcanoes and deep trans-crustal fractures as privileged emplacement sites of seismic monitoring stations using an assemblage of physical, chemical and biological sensors devised to detect precursory signals. Earthquake prediction systems can be built up based on the concept of a signal emission-transmission-reception system, in which volcanic conduits and/or deep fractures play the role of the most effective signal transmission paths through the lithosphere. Unique "precursory fingerprints" of individual seismic structures are expected to be pointed out as an outcome of target-oriented strategic prediction research. Intelligent pattern-recognition systems are to be included for evaluation of the signal assemblages recorded by complex sensor arrays. Such strategies are expected however to be limited to intermediate-depth and deep seismic structures. Due to its particular features and geotectonic setting, the Vrancea seismic structure in Romania appears to be an excellent experimental target for prediction research.

  3. Analysis of the Spatial and Temporal Distribution of the Seismicity of the Mid-Atlantic Ridge Using the SIRENA and the South Azores Autonomous Hydrophone Arrays

    NASA Astrophysics Data System (ADS)

    Simão, N.; Goslin, J.; Perrot, J.; Haxel, J.; Dziak, R.

    2006-12-01

    Acoustic data recorded by two Autonomous Hydrophone Arrays (AHA) were jointly processed in Brest (IUEM) and Newport (PMEL-VENTS) to monitor the seismicity of the Mid-Atlantic Ridge (MAR) over a ten month period, at a wide range of spatial scales. Over the deployment period, nearly 6000 T-phase generating earthquakes were localized using a semi-automatic algorithm. Our analysis of the temporal and spatial distribution of these events combined with their acoustic energy source levels provides important insights for the generation mechanisms and characteristic behavior of MAR seismicity. It shows for the AHA catalog a variation of the cumulative number of events with time almost linear. Taking in account the area inside the arrays, the section of the ridge north of the Azores is more seismically active than the southern part of it and the seismic activity occurs in large localized clusters. Our (AHA) catalog of acoustic events was used to compare locations, focal mechanisms and magnitude observations with correlated data from land-based stations of the NEIC global seismic network to establish completeness levels from both within and outside of the hydrophone array. The (AHA) catalog has a Source Level of Completeness (SLc) of 204dB, and a b-value of 0.0605. The NEIC catalog for this region during this period has a Magnitude of Completeness (Mc) of 4.6 and a b-value of 1.01. Regressing the AHA values onto the NEIC derived Mc/b-value relationship suggests a Mc of 3.2 for the AHA catalog. By restricting the events to the region inside the AHA, the NEIC catalog has an Mc of 4.7 with a b-value of 1.09, while the AHA catalog has a SLc of 205dB with a b-value of 0.0753. Comparing the b-values of the NEIC catalog with the AHA catalog, we obtain an improved Mc of 3.0 for the AHA inside the array. A time- and space-dependent Single-Link-Cluster algorithm was applied to the events localized inside the AHA. This allowed us to gather cluster sequences of earthquakes for higher temporal and spatial resolution Mc and b-value computations. The cumulative number of events and time series for several of these clusters were used in a Modified Omori Law simulation. Some of the identified sequences correlated well with a main-shock /aftershock mechanism associated with the older and colder crustal characteristics related to a tectonically dominated MAR regime.

  4. Multi-Array Detection, Association and Location of Infrasound and Seismo-Acoustic Events in Utah

    DTIC Science & Technology

    2008-09-30

    techniques for detecting , associating, and locating infrasound signals at single and multiple arrays and then combining the processed results with...was detected and located by both infrasound and seismic instruments (Figure 3). Infrasound signals at all three arrays , from one of the explosions, are...COVERED (From - To) 30-Sep-2008 REPRINT 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER MULTI- ARRAY DETECTION , ASSOCIATION AND LOCATION OF INFRASOUND FA8718

  5. Seismicity of the St. Lawrence paleorift faults overprinted by a meteorite impact crater: Implications for crustal strength based on new earthquake relocations in the Charlevoix Seismic Zone, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Yu, H.; Harrington, R. M.; Liu, Y.; Lamontagne, M.; Pang, M.

    2015-12-01

    The Charlevoix Seismic Zone (CSZ), located along the St. Lawrence River (SLR) ~100 km downstream from Quebec City, is the most active seismic zone in eastern Canada with five historic earthquakes of M 6-7 and ~ 200 events/year reported by the Canadian National Seismograph Network. Cataloged earthquake epicenters outline two broad linear zones along the SLR with little shallow seismicity in between. Earthquakes form diffuse clusters between major dipping faults rather than concentrating on fault planes. Detailed fault geometry in the CSZ is uncertain and the effect on local seismicity of a meteorite impact structure that overprints the paleorift faults remains ambiguous. Here we relocate 1639 earthquakes occurring in the CSZ between 01/1988 - 10/2010 using the double-difference relocation method HypoDD and waveforms primarily from 7 local permanent stations. We use the layered SLR north shore velocity model from Lamontagne (1999), and travel time differences based on both catalog and cross-correlated P and S-phase picks. Of the 1639 relocated earthquakes, 1236 (75.4%) satisfied selection criteria of horizontal and vertical errors less than 2 km and 1 km respectively. Cross-sections of relocated seismicity show hypocenters along distinct active fault segments. Earthquakes located beneath the north shore of the SLR are likely correlated with the NW Gouffre fault, forming a ~10 km wide seismic zone parallel to the river, with dip angle changing to near vertical at the northern edge of the impact zone. In contrast, seismicity beneath the SLR forms a diffuse cloud within the impact structure, likely representing a highly fractured volume. It further implies that faults could be locally weak and subject to high pore-fluid pressures. Seismicity outside the impact structure defines linear structures aligning with the Charlevoix fault. Relocated events of M > 4 all locate outside the impact structure, indicating they nucleated on the NE-SW-oriented paleorift faults.

  6. Infrasound's capability to detect and characterise volcanic events, from local to regional scale.

    NASA Astrophysics Data System (ADS)

    Taisne, Benoit; Perttu, Anna

    2017-04-01

    Local infrasound and seismic networks have been successfully used for identification and quantification of explosions at single volcanoes. However the February, 2014 eruption of Kelud volcano, Indonesia, destroyed most of the local monitoring network. The use of remote seismic and infrasound sensors proved to be essential in the reconstruction of the eruptive sequence. The first recorded explosive event, with relatively weak seismic and infrasonic signature, was followed by a 2 hour sustained signal detected as far away as 11,000 km by infrasound sensors and up to 2,300 km away by seismometers. The volcanic intensity derived from these observations places the 2014 Kelud eruption between the intensity of the 1980 Mount St. Helens and the 1991 Pinatubo eruptions. The use of remote seismic stations and infrasound arrays in deriving valuable information about the onset, evolution, and intensity of volcanic eruptions is clear from the Kelud example. After this eruption the Singapore Infrasound Array became operational. This array, along with the other regional infrasound arrays which are part of the International Monitoring System, have recorded events from fireballs and regional volcanoes. The detection capability of this network for any specific volcanic event is not only dependent on the amplitude of the source, but also the propagation effects, noise level at each station, and characteristics of the regional persistent noise sources (like the microbarum). Combining the spatial and seasonal characteristics of this noise, within the same frequency band as significant eruptive events, with the probability of such events to occur, gives us a comprehensive understanding of detection capability for any of the 750 active or potentially active volcanoes in Southeast Asia.

  7. Infrasound and Seismic Recordings of Rocket Launches from Kennedy Space Center, 2016-2017

    NASA Astrophysics Data System (ADS)

    McNutt, S. R.; Thompson, G.; Brown, R. G.; Braunmiller, J.; Farrell, A. K.; Mehta, C.

    2017-12-01

    We installed a temporary 3-station seismic-infrasound network at Kennedy Space Center (KSC) in February 2016 to test sensor calibrations and train students in field deployment and data acquisitions techniques. Each station featured a single broadband 3-component seismometer and a 3-element infrasound array. In May 2016 the network was scaled back to a single station due to other projects competing for equipment. To date 8 rocket launches have been recorded by the infrasound array, as well as 2 static tests, 1 aborted launch and 1 rocket explosion (see next abstract). Of the rocket launches recorded 4 were SpaceX Falcon-9, 2 were ULA Atlas-5 and 2 were ULA Delta-IV. A question we attempt to answer is whether the rocket engine type and launch trajectory can be estimated with appropriate travel-time, amplitude-ratio and spectral techniques. For example, there is a clear Doppler shift in seismic and infrasound spectrograms from all launches, with lower frequencies occurring later in the recorded signal as the rocket accelerates away from the array. Another question of interest is whether there are relationships between jet noise frequency, thrust and/or nozzle velocity. Infrasound data may help answer these questions. We are now in the process of deploying a permanent seismic and infrasound array at the Astronaut Beach House. 10 more rocket launches are schedule before AGU. NASA is also conducting a series of 33 sonic booms over KSC beginning on Aug 21st. Launches and other events at KSC have provided rich sources of signals that are useful to characterize and gain insight into physical processes and wave generation from man-made sources.

  8. A new geodynamic model related to seismicity beneath the southeastern margin of the Tibetan Plateau revealed by regional tomography

    NASA Astrophysics Data System (ADS)

    Hua, Yujin; Zhang, Shuangxi; Li, Mengkui; Wu, Tengfei; Qin, Weibing; Wang, Fang; Zhang, Bo

    2018-05-01

    The southeastern margin of the Tibetan Plateau (SETP) presents the highest level of seismicity in mainland China. To understand the seismicity in this region, a new seismic experiment is carried out based on the tomographic inversion of P- and S-wave arrival times from the regional earthquakes recorded by 49 seismic stations in Yunnan Province of Southwest China. In this study, we reduce the extreme disproportionality of the data distribution using an events-combination method, and we use arrival times to construct the reference velocity model. Checkerboard tests and odd/even data tests are carried out to assess the reliability of the inversion results. The reliable P-wave velocity model reveals two low-velocity anomaly zones (LVAZs) bounded by major strike-slip faults. Almost all the large earthquakes in this region occurred in the two LVAZs and the trend of the two LVAZs is consistent with a GPS velocity field based on the Eurasia-fixed reference frame. We propose that the two LVAZs are material migration passageways in the SETP. In the vertical direction, the mechanically weak crustal materials are sliding southward with the rigid block, while the underlying mantle materials continue to be compressed by the collision. This vertical model is broadly consistent with the seismic anisotropy in the crust and lithospheric mantle from shear-wave splitting. The new regional geodynamic model gives a reasonable interpretation of the seismicity of the SETP, and we suggest that the material migration in the passageway zones plays an important role in the tectonic evolution of the SETP.

  9. Upper Mantle Texture Patterns In Eastern North America From Seismic Anisotropy And Global Mantle Flow Calculations

    NASA Astrophysics Data System (ADS)

    Levin, V. L.; Moucha, R.; Yuan, H.

    2013-12-01

    Global seismic models show gradual and systematic changes in upper mantle seismic properties beneath North America. Faster and thicker lithosphere of the interior thins eastward. Upper mantle rock fabric reflected in observations of seismic anisotropy also varies. Near the coast apparent fast directions of split shear waves are nearly east-west, with considerable scatter. Further inland they are more uniform and align SW-NE, close to the absolute plate motion direction of North America. Mantle convection simulations driven by density inferred from global joint seismic-geodynamic tomography models exhibit complex flow beneath the eastern edge of the North American continent due to the ongoing descent of the Farallon slab deep beneath it (figure 1). Flow predicted beneath the coast is nearly horizontal with a small, though dynamically important, vertical component, while west of the Appalachians it turns downward. Long records of teleseismic observations accumulated at permanent seismic stations HRV, PAL and SSPA (figure 2) are inverted for vertical distribution of anisotropic parameters. We find preference for more than one layer of anisotropy beneath all sites, with significantly different parameters that could reflect either lateral variations in the lithospheric thickness, variations in the asthenospheric flow field, or both. Since we find considerable consistency in directional patterns of P-to-S mode converted waves associated with the lower part of the lithosphere, variations of asthenospheric flow seem to be a more plausible explanation. We explore the links between predicted flow and inferences from seismic data with additional observations of anisotropy and calculations of flow-induced rock fabric.

  10. Volcanic plume height measured by seismic waves based on a mechanical model

    USGS Publications Warehouse

    Prejean, Stephanie G.; Brodsky, Emily E.

    2011-01-01

    In August 2008 an unmonitored, largely unstudied Aleutian volcano, Kasatochi, erupted catastrophically. Here we use seismic data to infer the height of large eruptive columns such as those of Kasatochi based on a combination of existing fluid and solid mechanical models. In so doing, we propose a connection between a common, observable, short-period seismic wave amplitude to the physics of an eruptive column. To construct a combined model, we estimate the mass ejection rate of material from the vent on the basis of the plume height, assuming that the height is controlled by thermal buoyancy for a continuous plume. Using the estimated mass ejection rate, we then derive the equivalent vertical force on the Earth through a momentum balance. Finally, we calculate the far-field surface waves resulting from the vertical force. The model performs well for recent eruptions of Kasatochi and Augustine volcanoes if v, the velocity of material exiting the vent, is 120-230 m s-1. The consistency between the seismically inferred and measured plume heights indicates that in these cases the far-field ~1 s seismic energy radiated by fluctuating flow in the volcanic jet during the eruption is a useful indicator of overall mass ejection rates. Thus, use of the model holds promise for characterizing eruptions and evaluating ash hazards to aircraft in real time on the basis of far-field short-period seismic data. This study emphasizes the need for better measurements of eruptive plume heights and a more detailed understanding of the full spectrum of seismic energy radiated coeruptively.

  11. Nuclear reactor support and seismic restraint with in-vessel core retention cooling features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Tyler A.; Edwards, Michael J.

    A nuclear reactor including a lateral seismic restraint with a vertically oriented pin attached to the lower vessel head and a mating pin socket attached to the floor. Thermally insulating materials are disposed alongside the exterior surface of a lower portion of the reactor pressure vessel including at least the lower vessel head.

  12. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.

    2015-05-01

    We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.

  13. Site characterization at Groningen gas field area through joint surface-borehole H/V analysis

    NASA Astrophysics Data System (ADS)

    Spica, Zack J.; Perton, Mathieu; Nakata, Nori; Liu, Xin; Beroza, Gregory C.

    2018-01-01

    A new interpretation of the horizontal to vertical (H/V) spectral ratio in terms of the Diffuse Field Assumption (DFA) has fuelled a resurgence of interest in that approach. The DFA links H/V measurements to Green's function retrieval through autocorrelation of the ambient seismic field. This naturally allows for estimation of layered velocity structure. In this contribution, we further explore the potential of H/V analysis. Our study is facilitated by a distributed array of surface and co-located borehole stations deployed at multiple depths, and by detailed prior information on velocity structure that is available due to development of the Groningen gas field. We use the vertical distribution of H/V spectra recorded at discrete depths inside boreholes to obtain shear wave velocity models of the shallow subsurface. We combine both joint H/V inversion and borehole interferometry to reduce the non-uniqueness of the problem and to allow faster convergence towards a reliable velocity model. The good agreement between our results and velocity models from an independent study validates the methodology, demonstrates the power of the method, but more importantly provides further constraints on the shallow velocity structure, which is an essential component of integrated hazard assessment in the area.

  14. A new database on subduction seismicity at the global scale

    NASA Astrophysics Data System (ADS)

    Presti, D.; Heuret, A.; Funiciello, F.; Piromallo, C.

    2012-04-01

    In the framework of the EURYI Project 'Convergent margins and seismogenesis: defining the risk of great earthquakes by using statistical data and modelling', a global collection of recent intraslab seismicity has been performed. Based on EHB hypocenter and CMT Harvard catalogues, the hypocenters, nodal planes and seismic moments of worldwide subduction-related earthquakes were extracted for the period 1976 - 2007. Data were collected for centroid depths between sea level and 700 km and for magnitude Mw ≥ 5.5. For each subduction zone, a set of trench-normal transects were constructed choosing a 120km width of the cross-section on each side of a vertical plane and a spacing of 1 degree along the trench. For each of the 505 resulting transects, the whole subduction seismogenic zone was mapped as focal mechanisms projected on to a vertical plane after their faulting type classification according to the Aki-Richards convention. Transect by transect, fist the seismicity that can be considered not related to the subduction process under investigation was removed, then was selected the upper plate seismicity (i.e. earthquakes generated within the upper plate as a result of the subduction process). After deletion from the so obtained event subset of the interplate seismicity as identified in the framework of this project by Heuret et al. (2011), we can be reasonably confident that the remaining seismicity can be related to the subducting plate. Among these earthquakes we then selected the intermediate and deep depth seismicity. The upper limit of the intermediate depth seismicity is generally fixed at 70 km depth in order to avoid possible mixing with interplate seismicity. The ranking of intermediate depth and deep seismicity was in most of cases referred to earthquakes with focal depth between 70-300 km and with depth exceeding 300 km, respectively. Outer-rise seismicity was also selected. Following Heuret et al. (2011), the 505 transects were merged into 62 larger segments that were ideally homogeneous in terms of their seismogenic zone characteristics. Comparisons between main seismic parameters (e.g. cumulated seismic moment, P- and T-axes distributions, spatial and temporal distribution of largest magnitudes) with relation to both the different categories selected and the different segments have been performed in order to obtain a snapshot on the general behaviour of global subduction-related seismicity.

  15. Seismic monitoring at Deception Island volcano (Antarctica): the 2010-2011 survey

    NASA Astrophysics Data System (ADS)

    Martín, R.; Carmona, E.; Almendros, J.; Serrano, I.; Villaseñor, A.; Galeano, J.

    2012-04-01

    As an example of the recent advances introduced in seismic monitoring of Deception Island volcano (Antarctica) during recent years, we describe the instrumental network deployed during the 2010-2011 survey by the Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR). The period of operation extended from December 19, 2010 to March 5, 2011. We deployed a wireless seismic network composed by four three-component seismic stations. These stations are based on 24-bit SL04 SARA dataloggers sampling at 100 sps. They use a PC with embedded linux and SEISLOG data acquisition software. We use two types of three-component seismometers: short-period Mark L4C with natural frequency of 1 Hz and medium-period Lennartz3D/5s with natural frequency of 0.2 Hz. The network was designed for an optimum spatial coverage of the northern half of Deception, where a magma chamber has been reported. Station locations include the vicinity of the Spanish base "Gabriel de Castilla" (GdC), Obsidianas Beach, a zone near the craters from the 1970 eruptions, and the Chilean Shelter located south of Pendulum Cove. Continuous data from the local seismic network are received in real-time in the base by wifi transmission. We used Ubiquiti Networks Nanostation2 antennas with 2.4 GHz, dual-polarity, 10 dBi gain, and 54 Mbps transmission rate. They have shown a great robustness and speed for real-time applications. To prioritize data acquisition when the battery level is low, we have designed a circuit that allows independent power management for the seismic station and wireless transmission system. The reception antenna located at GdC is connected to a computer running SEISCOMP. This software supports several transmission protocols and manages the visualization and recording of seismic data, including the generation of summary plots to show the seismic activity. These twelve data channels are stored in miniseed format and displayed in real time, which allows for a rapid evaluation of the seismic activity and an efficient seismo-volcanic surveillance. The data are processed and analyzed using the SEISAN database management software. In addition to the seismic network, we deployed a small-aperture seismic array south of Fumarole Bay. It is composed by 9 vertical and 1 three-component short-period stations. The 24-bit data acquisition system samples these 12 channels at 100 sps. There is also a permanent seismic station operating since 2008 and located near GdC, that is very useful for the preliminary evaluation of the seismicity at the start of the survey. This station is composed by a 16-s electrolytic seismometer (Eentec SP400) and a 24-bit datalogger (Eentec DR4000) sampling at 100 sps. During the 2010-2011 survey we identified 33 regional earthquakes, 80 volcano-tectonic (VT) earthquakes, and 929 long-period (LP) events. The volcanic alert system has remained green (the lowest level) at all times. The seismic activity has been similar to previous surveys and remained within limits that are normal for the island.

  16. The source of infrasound associated with long-period events at mount St. Helens

    USGS Publications Warehouse

    Matoza, R.S.; Garces, M.A.; Chouet, B.A.; D'Auria, L.; Hedlin, M.A.H.; De Groot-Hedlin, C.; Waite, G.P.

    2009-01-01

    During the early stages of the 2004-2008 Mount St. Helens eruption, the source process that produced a sustained sequence of repetitive long-period (LP) seismic events also produced impulsive broadband infrasonic signals in the atmosphere. To assess whether the signals could be generated simply by seismic-acoustic coupling from the shallow LP events, we perform finite difference simulation of the seismo-acoustic wavefield using a single numerical scheme for the elastic ground and atmosphere. The effects of topography, velocity structure, wind, and source configuration are considered. The simulations show that a shallow source buried in a homogeneous elastic solid produces a complex wave train in the atmosphere consisting of P/SV and Rayleigh wave energy converted locally along the propagation path, and acoustic energy originating from , the source epicenter. Although the horizontal acoustic velocity of the latter is consistent with our data, the modeled amplitude ratios of pressure to vertical seismic velocity are too low in comparison with observations, and the characteristic differences in seismic and acoustic waveforms and spectra cannot be reproduced from a common point source. The observations therefore require a more complex source process in which the infrasonic signals are a record of only the broadband pressure excitation mechanism of the seismic LP events. The observations and numerical results can be explained by a model involving the repeated rapid pressure loss from a hydrothermal crack by venting into a shallow layer of loosely consolidated, highly permeable material. Heating by magmatic activity causes pressure to rise, periodically reaching the pressure threshold for rupture of the "valve" sealing the crack. Sudden opening of the valve generates the broadband infrasonic signal and simultaneously triggers the collapse of the crack, initiating resonance of the remaining fluid. Subtle waveform and amplitude variability of the infrasonic signals as recorded at an array 13.4 km to the NW of the volcano are attributed primarily to atmospheric boundary layer propagation effects, superimposed upon amplitude changes at the source. Copyright 2009 by the American Geophysical Union.

  17. Viterbi sparse spike detection and a compositional origin to ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Brown, Samuel Paul

    Accurate interpretation of seismic travel times and amplitudes in both the exploration and global scales is complicated by the band-limited nature of seismic data. We present a stochastic method, Viterbi sparse spike detection (VSSD), to reduce a seismic waveform into a most probable constituent spike train. Model waveforms are constructed from a set of candidate spike trains convolved with a source wavelet estimate. For each model waveform, a profile hidden Markov model (HMM) is constructed to represent the waveform as a stochastic generative model with a linear topology corresponding to a sequence of samples. The Viterbi algorithm is employed to simultaneously find the optimal nonlinear alignment between a model waveform and the seismic data, and to assign a score to each candidate spike train. The most probable travel times and amplitudes are inferred from the alignments of the highest scoring models. Our analyses show that the method can resolve closely spaced arrivals below traditional resolution limits and that travel time estimates are robust in the presence of random noise and source wavelet errors. We applied the VSSD method to constrain the elastic properties of a ultralow- velocity zone (ULVZ) at the core-mantle boundary beneath the Coral Sea. We analyzed vertical component short period ScP waveforms for 16 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array (ASAR) in central Australia. These waveforms show strong pre and postcursory seismic arrivals consistent with ULVZ layering. We used the VSSD method to measure differential travel-times and amplitudes of the post-cursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of approximately 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S-wave velocity reduction of 24%, a P-wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. We simultaneously constrain both P- and S-wave velocity reductions as a 1:1 ratio inside this ULVZ. This 1:1 ratio is not consistent with a partial melt origin to ULVZs. Rather, we demonstrate that a compositional origin is more likely.

  18. A comparison of high-frequency noise levels on Cascadia Initiative ocean-bottom seismometers

    NASA Astrophysics Data System (ADS)

    Hilmo, R.; Wilcock, W. S. D.; Roland, E. C.; Bodin, P.; Connolly, J.

    2017-12-01

    The Cascadia Initiative (CI) included a four-year deployment of 70 ocean bottom seismometers (OBSs) on the Cascadia subduction zone and the Juan de Fuca plate for the purposes of characterizing seismicity and imaging the Earth's interior. The Cascadia subduction zone megathrust exhibits very low rates of seismicity relative to most other subduction zones, and there is great motivation to understand deformation on the megathrust because of its potential to produce a catastrophic M9 earthquake. An understanding of earthquake detectability of the CI network, based on knowledge of noise levels, could contribute to the interpretation of earthquake catalogs derived from the experiment and aid in the design of future networks. This project is aimed at estimating these thresholds of local earthquake detectability and how they change across the array both geographically and temporally. We characterize background noise levels recorded from 0.1 to 20 Hz with an emphasis on the frequency band used to detect local seismicity ( 3-15 Hz) to understand how noise levels depend on instrument design and environmental parameters including seafloor depth, season and oceanographic conditions. Our initial analysis of 3 weeks of vertical channel data in September, January, and May 2012-2013 shows that noise increase significantly moving from the continental shelf to deeper water. Noise levels at a given depth vary with instrument type but further analysis is required to determine whether this reflects variations in instrumental noise and ground coupling noise or errors in the scaling of the instrument response. There is also a strong seasonality in recorded noise levels at some frequencies, with winter noise levels exceeding spring and fall noise levels by up to 10 decibels in both the microseism band and in the fin whale calling band (15-20 Hz). In contrast, the seasonal noise level in the local seismicity band for a given instrument type and location shows smaller noise variation seasonally. We will extend our analysis to the full four-year data set and consider how variations in noise affect the threshold of earthquake detectability by comparing noise levels with expected body wave amplitudes and seismic catalogues.

  19. Using the ENTLN lightning catalog to identify thunder signals in the USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Tytell, J. E.; Reyes, J. C.; Vernon, F.; Sloop, C.; Heckman, S.

    2013-12-01

    Severe weather events can pose a challenge for seismic analysts who regularly see non-seismic signals recorded at the stations. Sometimes, the noise from thunder can be confused with signals from seismic events such as quarry blasts or earthquakes depending on where and when the noise is observed. Automatic analysis of data is also severely affected by big amplitude arrivals that we could safely ignore. A comprehensive lightning catalog for the continental US in conjunction with a travel time model for thunder arrivals can help analysts identify some of these unknown sources. Researchers from Earthscope's USArray Transportable Array (TA) have partnered with the Earth Networks Total Lightning Network (ENTLN) in an effort to create such a catalog. Predicted thunder arrivals from some powerful meteorological systems affecting the main TA footprint will undergo extensive evaluation. We will examine the veracity of the predicted arrivals at different distances and azimuths and the time accuracy of the model. A combination of barometric pressure and seismic signals will be use to verify these arrivals.

  20. Apollo lunar surface experiments package. Apollo 17 ALSEP (array E) familiarization course handout

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The familiarization course for the Apollo 17 ALSEP (ARRAY E) is presented. The subjects discussed are: (1) power and data subsystems, (2) lunar surface gravimeter, (3) lunar mass spectrometer, (4) lunar seismic profiling experiment, and (5) heat flow experiment.

Top