Ueno, Ryo; Ishida, Tomoya; Yamanaka, Masanori; Taniguchi, Shohei; Ikuta, Ryohei; Samukawa, Mina; Saito, Hiroshi; Tohyama, Harukazu
2017-11-18
Although it is well known that quadriceps force generates anterior tibial force, it has been unclear whether quadriceps force causes great anterior tibial force during the early phase of a landing task. The purpose of the present study was to examine whether the quadriceps force induced great anterior tibial force during the early phase of a landing task. Fourteen young, healthy, female subjects performed a single-leg landing task. Muscle force and anterior tibial force were estimated from motion capture data and synchronized force data from the force plate. One-way repeated measures analysis of variance and the post hoc Bonferroni test were conducted to compare the peak time of the vertical ground reaction force, quadriceps force and anterior tibial force during the single-leg landing. In addition, we examined the contribution of vertical and posterior ground reaction force, knee flexion angle and moment to peak quadriceps force using multiple linear regression. The peak times of the estimated quadriceps force (96.0 ± 23.0 ms) and anterior tibial force (111.9 ± 18.9 ms) were significantly later than that of the vertical ground reaction force (63.5 ± 6.8 ms) during the single-leg landing. The peak quadriceps force was positively correlated with the peak anterior tibial force (R = 0.953, P < 0.001). Multiple linear regression analysis showed that the peak knee flexion moment contributed significantly to the peak quadriceps force (R 2 = 0.778, P < 0.001). The peak times of the quadriceps force and the anterior tibial force were obviously later than that of the vertical ground reaction force for the female athletes during successful single-leg landings. Studies have reported that the peak time of the vertical ground reaction force was close to the time of anterior cruciate ligament (ACL) disruption in ACL injury cases. It is possible that early contraction of the quadriceps during landing might induce ACL disruption as a result of excessive anterior tibial force in unanticipated situations in ACL injury cases.
Mahaki, M; Mi'mar, R; Mahaki, B
2015-10-01
Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.
NASA Astrophysics Data System (ADS)
Kim, Jeehoon; Williams, T. L.; Chu, Sang Lin; Korre, Hasan; Chalfin, Max; Hoffman, J. E.
2008-03-01
We have developed a fiber-optic interferometry system with a vertical cantilever for scanning force microscopy. A lens, mounted on a Pan-type walker, was used to collect the interference signal in the cavity between the cantilever and the single mode fiber. This vertical geometry has several advantages: (1) it is directly sensitive to lateral forces; (2) low spring constant vertical cantilevers may allow increased force sensitivity by solving the ``snap-in'' problem that occurs with soft horizontal cantilevers. We have sharpened vertical cantilevers by focused ion beam (FIB), achieving a tip radius of 20 nm. We will show test results of a magnetic force microscope (MFM) with this vertical cantilever system.
Liu, Chi; Qiu, Yi; Griffin, Michael J
2017-08-16
Biodynamic responses of the seated human body are usually measured and modelled assuming a single point of vibration excitation. With vertical vibration excitation, this study investigated how forces are distributed over the body-seat interface. Vertical and fore-and-aft forces were measured beneath the ischial tuberosities, middle thighs, and front thighs of 14 subjects sitting on a rigid flat seat in three postures with different thigh contact while exposed to random vertical vibration at three magnitudes. Measures of apparent mass were calculated from transfer functions between the vertical acceleration of the seat and the vertical or fore-and-aft forces measured at the three locations, and the sum of these forces. When sitting normally or sitting with a high footrest, vertical forces at the ischial tuberosities dominated the vertical apparent mass. With feet unsupported to give increased thigh contact, vertical forces at the front thighs were dominant around 8Hz. Around 3-7Hz, fore-and-aft forces at the middle thighs dominated the fore-and-aft cross-axis apparent mass. Around 8-10Hz, fore-and-aft forces were dominant at the ischial tuberosities with feet supported but at the front thighs with feet unsupported. All apparent masses were nonlinear: as the vibration magnitude increased the resonance frequencies decreased. With feet unsupported, the nonlinearity in the apparent mass was greater at the front thighs than at the ischial tuberosities. It is concluded that when the thighs are supported on a seat it is not appropriate to assume the body has a single point of vibration excitation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoshida, Takashi
Combined-levitation-and-propulsion single-sided linear induction motor (SLIM) vehicle can be levitated without any additional levitation system. When the vehicle runs, the attractive-normal force varies depending on the phase of primary current because of the short primary end effect. The ripple of the attractive-normal force causes the vertical vibration of the vehicle. In this paper, instantaneous attractive-normal force is analyzed by using space harmonic analysis method. And based on the analysis, vertical vibration control is proposed. The validity of the proposed control method is verified by numerical simulation.
Lehmann, Fritz-Olaf; Pick, Simon
2007-04-01
Flying insects may enhance their flight force production by contralateral wing interaction during dorsal stroke reversal ('clap-and-fling'). In this study, we explored the forces and moments due to clap-and-fling at various wing tip trajectories, employing a dynamically scaled electromechanical flapping device. The 17 tested bio-inspired kinematic patterns were identical in stroke amplitude, stroke frequency and angle of attack with respect to the horizontal stroke plane but varied in heaving motion. Clap-and-fling induced vertical force augmentation significantly decreased with increasing vertical force production averaged over the entire stroke cycle, whereas total force augmentation was independent from changes in force produced by a single wing. Vertical force augmentation was also largely independent of forces produced due to wing rotation at the stroke reversals, the sum of rotational circulation and wake capture force. We obtained maximum (17.4%) and minimum (1.4%) vertical force augmentation in two types of figure-eight stroke kinematics whereby rate and direction of heaving motion during fling may explain 58% of the variance in vertical force augmentation. This finding suggests that vertical wing motion distinctly alters the flow regime at the beginning of the downstroke. Using an analytical model, we determined pitching moments acting on an imaginary body of the flapping device from the measured time course of forces, the changes in length of the force vector's moment arm, the position of the centre of mass and body angle. The data show that pitching moments are largely independent from mean vertical force; however, clap-and-fling reinforces mean pitching moments by approximately 21%, compared to the moments produced by a single flapping wing. Pitching moments due to clap-and-fling significantly increase with increasing vertical force augmentation and produce nose-down moments in most of the tested patterns. The analytical model, however, shows that algebraic sign and magnitude of these moments may vary distinctly depending on both body angle and the distance between the wing hinge and the animal's centre of mass. Altogether, the data suggest that the benefit of clap-and-fling wing beat for vertical force enhancement and pitch balance may change with changing heaving motion and thus wing tip trajectory during manoeuvring flight. We hypothesize that these dependencies may have shaped the evolution of wing kinematics in insects that are limited by aerodynamic lift rather than by mechanical power of their flight musculature.
Effect of Footwear on Dynamic Stability during Single-leg Jump Landings.
Bowser, Bradley J; Rose, William C; McGrath, Robert; Salerno, Jilian; Wallace, Joshua; Davis, Irene S
2017-06-01
Barefoot and minimal footwear running has led to greater interest in the biomechanical effects of different types of footwear. The effect of running footwear on dynamic stability is not well understood. The purpose of this study was to compare dynamic stability and impact loading across 3 footwear conditions; barefoot, minimal footwear and standard running shoes. 25 injury free runners (21 male, 4 female) completed 5 single-leg jump landings in each footwear condition. Dynamic stability was assessed using the dynamic postural stability index and its directional components (mediolateral, anteroposterior, vertical). Peak vertical ground reaction force and vertical loadrates were also compared across footwear conditions. Dynamic stability was dependent on footwear type for all stability indices (ANOVA, p<0.05). Post-hoc tests showed dynamic stability was greater when barefoot than in running shoes for each stability index (p<0.02) and greater than minimal footwear for the anteroposterior stability index (p<0.01). Peak vertical force and average loadrates were both dependent on footwear (p≤0.05). Dynamic stability, peak vertical force, and average loadrates during single-leg jump landings appear to be affected by footwear type. The results suggest greater dynamic stability and lower impact loading when landing barefoot or in minimal footwear. © Georg Thieme Verlag KG Stuttgart · New York.
Analysis of seismic body waves excited by the Mount Saint Helens eruption of May 18, 1980
NASA Technical Reports Server (NTRS)
Kanamori, H.; Given, J. W.; Lay, T.
1982-01-01
Seismic body waves which were excited by eruption of Mt. St. Helens, and recorded by the Global Digital Seismographic Network (GDSN) stations are analyzed to determine the nature and the time sequence of the events associated with the eruption. The polarity of teleseismic P waves (period 20 sec) is identical at six stations which are distributed over a wide azimuthal range. This observation, together with a very small S to P amplitude ratio (at 20 sec), suggests that the source is a nearly vertical single force that represents the counter force of the eruption. The time history of the vertical force suggests two distinct groups of events, about two minutes apart, each consisting of several subevents with a duration of about 25 sec. The magnitude of the force is approximately 2.6 to the 17th power dyne. this vertical force is in contrast with the long period (approximately 150 sec) southward horizontal single force which was determined by a previous study and interpreted to be due to the massive landslide.
Formulation of human-structure interaction system models for vertical vibration
NASA Astrophysics Data System (ADS)
Caprani, Colin C.; Ahmadi, Ehsan
2016-09-01
In this paper, human-structure interaction system models for vibration in the vertical direction are considered. This work assembles various moving load models from the literature and proposes extension of the single pedestrian to a crowd of pedestrians for the FE formulation for crowd-structure interaction systems. The walking pedestrian vertical force is represented as a general time-dependent force, and the pedestrian is in turn modelled as moving force, moving mass, and moving spring-mass-damper. The arbitrary beam structure is modelled using either a formulation in modal coordinates or finite elements. In each case, the human-structure interaction (HSI) system is first formulated for a single walking pedestrian and then extended to consider a crowd of pedestrians. Finally, example applications for single pedestrian and crowd loading scenarios are examined. It is shown how the models can be used to quantify the interaction between the crowd and bridge structure. This work should find use for the evaluation of existing and new footbridges.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with a single vertical tail are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static pressure coefficients measured on the wing, body, and vertical tail for angles of attack from -4 deg to + 16 deg, angles of sideslip of 0 deg and 5.3 deg, vertical-tail settings of 0 deg and 5 deg, and nominal canard deflections of 0 deg and 10 deg. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given.
Ali, Nicholas; Rouhi, Gholamreza; Robertson, Gordon
2013-01-01
There is a lack of studies investigating gender differences in whole-body kinematics during single-leg landings from increasing vertical heights and horizontal distances. This study determined the main effects and interactions of gender, vertical height, and horizontal distance on whole-body joint kinematics during single-leg landings, and established whether these findings could explain the gender disparity in non-contact anterior cruciate ligament (ACL) injury rate. Recreationally active males (n=6) and females (n=6) performed single-leg landings from a takeoff deck of vertical height of 20, 40, and 60 cm placed at a horizontal distance of 30, 50 and 70 cm from the edge of a force platform, while 3D kinematics and kinetics were simultaneously measured. It was determined that peak vertical ground reaction force (VGRF) and the ankle flexion angle exhibited significant gender differences (p=0.028, partial η(2)=0.40 and p=0.035, partial η(2)=0.37, respectively). Peak VGRF was significantly correlated to the ankle flexion angle (r= -0.59, p=0.04), hip flexion angle (r= -0.74, p=0.006), and trunk flexion angle (r= -0.59, p=0.045). Peak posterior ground reaction force (PGRF) was significantly correlated to the ankle flexion angle (r= -0.56, p=0.035), while peak knee abduction moment was significantly correlated to the knee flexion angle (r= -0.64, p=0.03). Rearfoot landings may explain the higher ACL injury rate among females. Higher plantar-flexed ankle, hip, and trunk flexion angles were associated with lower peak ground reaction forces, while higher knee flexion angle was associated with lower peak knee abduction moment, and these kinematics implicate reduced risk of non-contact ACL injury.
Single-limb force data for two lemur species while vertically clinging.
Johnson, Laura E; Hanna, Jandy; Schmitt, Daniel
2015-11-01
Vertical clinging and climbing have been integral to hypotheses about primate origins, yet little is known about how an animal with nails instead of claws resists gravity while on large, vertical, and cylindrical substrates. Here we test models of how force is applied to maintain posture, predicting (1) the shear component force (Fs ) at the hands will be higher than the feet; (2) the normal component force (Fn ) at the feet will be relatively high compared to the hands; (3) the component force resisting gravity (Fg ) at the feet will be relatively high compared to the hands; (4) species with a high frequency of vertical clinging postures will have low Fg at the hands due to relatively short forelimbs. Using a novel instrumented support, single-limb force data were collected during clinging postures for the hands and feet and compared across limbs and species for Propithecus verreauxi (N = 2), a habitual vertical clinger and leaper, and Varecia variegata (N = 3), a habitual above-branch arboreal quadruped. For both species, hand Fs were significantly higher than at the feet and Fn and Fg at the feet were significantly higher than at the hands. Between species, P. verreauxi has relatively low Fg at the hands and Fn at the feet than V. vareigata. These results support previous models and show that hindlimb loading dominance, characteristic of primate locomotion, is found during clinging behaviors and may allow the forelimbs to be used for foraging while clinging. These findings provide insight into selective pressures on force distribution in primates and primate locomotor evolution. © 2015 Wiley Periodicals, Inc.
Sanders, Duncan A; Swift, Michael R; Bowley, R M; King, P J
2004-11-12
We present event-driven simulation results for single and multiple intruders in a vertically vibrated granular bed. Under our vibratory conditions, the mean vertical position of a single intruder is governed primarily by a buoyancylike effect. Multiple intruders also exhibit buoyancy governed behavior; however, multiple neutrally buoyant intruders cluster spontaneously and undergo horizontal segregation. These effects can be understood by considering the dynamics of two neutrally buoyant intruders. We have measured an attractive force between such intruders which has a range of five intruder diameters, and we provide a mechanistic explanation for the origins of this force.
Model space exploration for determining landslide source history from long period seismic data
NASA Astrophysics Data System (ADS)
Zhao, Juan; Mangeney, Anne; Stutzmann, Eléonore; Capdeville, Yann; Moretti, Laurent; Calder, Eliza S.; Smith, Patrick J.; Cole, Paul; Le Friant, Anne
2013-04-01
The seismic signals generated by high magnitude landslide events can be recorded at remote stations, which provides access to the landslide process. During the "Boxing Day" eruption at Montserrat in 1997, the long period seismic signals generated by the debris avalanche are recorded by two stations at distances of 450 km and 1261 km. We investigate the landslide process considering that the landslide source can be described by single forces. The period band 25-50 sec is selected for which the landslide signal is clearly visible at the two stations. We first use the transverse component of the closest station to determine the horizontal forces. We model the seismogram by normal mode summation and investigate the model space. Two horizontal forces are found that best fit the data. These two horizontal forces have similar amplitude, but opposite direction and they are separated in time by 70 sec. The radiation pattern of the transverse component does not enable to determine the exact azimuth of these forces. We then model the vertical component of the seismograms which enable to retrieve both the vertical and horizontal forces. Using the parameter previously determined (amplitude ratio and time shift of the 2 horizontal forces), we further investigate the model space and show that a single vertical force together with the 2 horizontal forces enable to fit the data. The complete source time function can be described as follows: a horizontal force toward the opposite direction of the landslide flow is followed 40 sec later by a vertical downward force and 30 more seconds later by a horizontal force toward the direction of the flow. Inverting directly the seismograms in the period band 25-50sec enable to retrieve a source time function that is consistent with the 3 forces determined previously. The source time function in this narrow period band alone does not enable easily to recover the corresponding single forces. This method can be used to determine the source parameters using only 2 distant stations. It is successfully tested also on Mount St. Helens (1980) event which are recorded by more broadband stations.
ERIC Educational Resources Information Center
Sammartino, Jonathan; Palmer, Stephen E.
2012-01-01
Aesthetic preference for the vertical composition of single-object pictures was studied through a series of two-alternative forced-choice experiments. The results reveal the influence of several factors, including spatial asymmetries in the functional properties of the object and the typical position of the object relative to the observer. With…
Stejskal, M; Torres, B T; Sandberg, G S; Sapora, J A; Dover, R K; Budsberg, S C
2015-01-01
To compare peak vertical force (PVF) and vertical impulse (VI) data collected with one and two force plates during the same collection time period in healthy dogs at a trot. Seventeen healthy client-owned adult dogs. Vertical ground reaction force (GRF) data were collected in a crossover study design, with four sessions on two consecutive days, and then two weeks apart (days 1, 2, 15, and 16) using both one and two force plates collection methods. A repeated measures model analysis of variance (ANOVA) was used to test for differences in force plate PVF, VI, and average time per trial (ATT) between days, weeks, and systems (1 plate versus 2 plates). Coefficients of variation for PVF and VI were also calculated separately by forelimbs and hindlimbs, plates, day, and week. The time required to obtain a valid trial was significantly longer using a single force plate when compared with two force plates. Comparing GRF data for all dogs, significant differences in PVF data were found between one and two force plates, however, these differences were diminutive in absolute magnitude, and of unknown clinical importance. Examination of the coefficients of variation for PVF and VI during the different collection periods yielded similar results. Use of two force plates decreased trial repetition and collection time. Vertical GRF data had a similar coefficient of variation with either one or two force plates collection techniques in healthy dogs.
Model space exploration for determining landslide source history from long period seismic data
NASA Astrophysics Data System (ADS)
Zhao, J.; Mangeney, A.; Stutzmann, E.; Capdeville, Y.; Moretti, L.; Calder, E. S.; Smith, P. J.; Cole, P.; Le Friant, A.
2012-12-01
The seismic signals generated by high magnitude landslide events can be recorded at remote stations, which provides access to the landslide process. During the "Boxing Day" eruption at Montserrat in 1997, the long-period seismic signals generated by the debris avalanche are recorded by two stations at distances of 450km and 1261km. We investigate the landslide process considering that the landslide source can be described by single forces. The period band 25-50 sec is selected for which the landslide signal is clearly visible at the two stations. We first use the transverse component of the closest station to determine the horizontal forces. We model the seismogram by normal mode summation and investigate the model space. Two horizontal forces are found that best fit the data. These two horizontal forces have similar amplitude, but opposite direction and they are separated in time by 70 sec. The radiation pattern of the transverse component does not enable to determine the exact azimuth of these forces. We then model the vertical component of the seismograms which enable to retrieve both the vertical and horizontal forces. Using the parameter previously determined (amplitude ratio and time shift of the 2 horizontal forces), we further investigate the model space and show that a single vertical force together with the 2 horizontal forces enable to fit the data. The complete source time function can be described as follows: a horizontal force toward the opposite direction of the landslide flow is followed 40 sec later by a vertical downward force and 30 more seconds later by a horizontal force toward the direction of the flow. The volume of the landslide estimated from the force magnitude is compatible with the volume determined by field survey. Inverting directly the seismograms in the period band 25-50sec enable to retrieve a source time function that is consistent with the 3 forces determined previously. The source time function in this narrow period band alone does not enable easily to recover the corresponding single forces. This method can be used to determine the source parameters using only 2 distant stations. It is successfully tested also on other landslides such as Mount St. Helens (1980) event and Mount Steller event (2005) which are recorded by more broadband stations.
Abdolahad, M; Mohajerzadeh, S; Janmaleki, M; Taghinejad, H; Taghinejad, M
2013-03-01
Vertically aligned carbon nanotube (VACNT) arrays have been demonstrated as probes for rapid quantifying of cancer cell deformability with high resolution. Through entrapment of various cancer cells on CNT arrays, the deflections of the nanotubes during cell deformation were used to derive the lateral cell shear force using a large deflection mode method. It is observed that VACNT beams act as sensitive and flexible agents, which transfer the shear force of cells trapped on them by an observable deflection. The metastatic cancer cells have significant deformable structures leading to a further cell traction force (CTF) than primary cancerous one on CNT arrays. The elasticity of different cells could be compared by their CTF measurement on CNT arrays. This study presents a nanotube-based methodology for quantifying the single cell mechanical behavior, which could be useful for understanding the metastatic behavior of cells.
Pua, Yong-Hao; Mentiplay, Benjamin F; Clark, Ross A; Ho, Jia-Ying
2017-11-01
Study Design Prospective cohort. Background Quadriceps strength is associated with hop distance and jump height in persons who have undergone anterior cruciate ligament (ACL) reconstruction. However, it is unknown whether the ability to rapidly generate quadriceps torque in the early phase of recovery is associated with future hopping and jumping performance in this population. Objective To evaluate the prospective associations among quadriceps strength and rate of torque development (RTD) and single-leg hop for distance, vertical jump height, vertical ground reaction force (vGRF), and vertical force loading rate during a landing task in persons who have undergone ACL reconstruction. Methods Seventy patients with unilateral ACL reconstruction participated. At 6 weeks post ACL reconstruction, isometric quadriceps strength and RTD were measured using a dynamometer. At 6 months following ACL reconstruction, patients performed the single-leg hop for distance test. Patients also performed the single-leg vertical jump test on a force plate that measured maximum jump height, vGRF, and average loading rate during landing. Results Both quadriceps strength and RTD at 6 weeks post ACL reconstruction were associated with all hopping and jumping measures at 6 months post ACL reconstruction (P≤.04). Single-leg hop distance was associated more closely with quadriceps strength than with quadriceps RTD (P = .05), and vertical jump height and vGRF measures were associated more closely with quadriceps RTD than with quadriceps strength (P = .05 and P<.01, respectively). Both quadriceps measures were associated with loading rate. Conclusion Quadriceps strength and RTD are complementary but distinct predictors of future hopping and jumping performance in persons who have undergone ACL reconstruction. These findings may contribute to improved rehabilitation of patients who are at risk for poor jumping/hopping performance and abnormal knee loading. J Orthop Sports Phys Ther 2017;47(11):845-852. Epub 13 Oct 2017. doi:10.2519/jospt.2017.7133.
Bilateral asymmetries in max effort single-leg vertical jumps.
Stephens, Thomas M; Lawson, Brooke R; Reiser, Raoul F
2005-01-01
While asymmetries in the lower extremity during jumping may have implications during rehabilitation, it is not clear if healthy subjects should be expected to jump equivalently on each leg. Therefore, the goal of this study was to determine if asymmetries exist in maximal effort single-leg vertical jumps. After obtaining university-approved informed consent, 13 men and 12 women with competitive volleyball playing experience and no injuries of the lower-extremity that would predispose them to asymmetries participated. After thorough warm-up, five maximal effort vertical jumps with countermovement were performed on each leg (random order) with ground reaction forces and lower extremity kinematics recorded. The best three jumps from each leg were analyzed, assigning the leg with the highest jump height average as the dominant side. Asymmetry was assessed by determining statistical significance in the dominant versus non-dominant sides (p < 0.05). A significant interaction existed between side and gender for thigh length and peak vertical ground reaction force. Women had a significantly shorter thigh and men a greater peak vertical ground reaction force on their dominant side. All other parameters were assessed as whole group. Jumps were significantly greater off the dominant leg (2.8 cm on average). No other differences between sides were observed. Significant differences in magnitude (p < 0.05) existed between the men and women in jump height, several anthropometric parameters, minimum ankle and hip angles, and vertical ground reaction forces (peak and average). In conclusion, though a person may jump slightly higher on one leg relative to the other, and women may jump slightly differently than men, the magnitude of the difference should be relatively small and due to the multi-factorial nature of jump performance, individual parameters related to performance may not be consistently different.
Dimiskovski, Marko; Scheinfield, Richard; Higgin, Dwight; Krupka, Alexander; Lemay, Michel A.
2017-01-01
BACKGROUND The measurement of ground reaction forces (GRFs) in animals trained to locomote on a treadmill after spinal cord injury (SCI) could prove valuable for evaluating training outcomes; however, quantitative measures of the GRFs in spinal felines are limited. NEW METHOD A split belt treadmill was designed and constructed to measure the GRFs of feline hindlimbs during stepping. The treadmill consists of two independent treadmill assemblies, each mounted on a force plate. The design allows measurements of the vertical (Fz), fore-aft (Fy) and mediolateral (Fx) ground-reaction forces for both hindlimbs while the forelimbs are resting on a platform. RESULTS Static and dynamic noise tests revealed little to no noise at frequencies below 6 Hz. Validation of the force plate measurements with a hand-held force sensor force showed good agreement between the two force readings. Peak normalized (to body mass) vertical GRFs for intact cats were 4.89±0.85N/Kg for the left hindlimb and 4.79±0.97N/Kg for the right. In comparison, trained spinalized cats peak normalized vertical GRFs were 2.20±0.94N/Kg for the left hindlimb and 2.85±0.99N/Kg for the right. COMPARISON WITH OTHER EXISTING METHODS Previous methods of measuring GRFs used stationary single force plates or treadmill mounted to single force plate. Using independent treadmills for each hindlimb allows measurement of the individual hindlimb’s GRFs in spinalized cats following body-weight supported treadmill training. CONCLUSIONS The split belt force treadmill enables the simultaneous recording of ground-reaction forces for both hindlimbs in cats prior to spinalization, and following spinalization and body-weight-supported treadmill training (BWST). PMID:28069392
NASA Technical Reports Server (NTRS)
Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.
2000-01-01
The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the U.S. east coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical properties of the aerosols are of the order of -36 Wm(exp -2) at the top of the atmosphere and about -56 Wm(exp -2) at the surface for both case studies.
Measures of functional performance and their association with hip and thigh strength.
Kollock, Roger; Van Lunen, Bonnie L; Ringleb, Stacie I; Oñate, James A
2015-01-01
Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. To determine if functional performance tests are valid indicators of hip and thigh strength. Descriptive laboratory study. Research laboratory. Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r (2). We used Pearson correlations to evaluate the associations between functional performance and strength. In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r(2) = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r(2) = 38, P ≤ .01) and hip-flexor (r(2) = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r(2) = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r(2) = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r(2) = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups.
Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.
Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng
2016-07-01
Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices.
NASA Astrophysics Data System (ADS)
Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur
Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).
The generation of tire cornering forces in aircraft with a free-swiveling nose gear
NASA Technical Reports Server (NTRS)
Daugherty, R. H.; Stubbs, S. M.
1985-01-01
An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.
A study of the cornering forces generated by aircraft tires on a tilted, free-swiveling nose gear
NASA Technical Reports Server (NTRS)
Daugherty, R. H.; Stubbs, S. M.
1985-01-01
An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with twin vertical tails are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static-pressure coefficients measured on the wing, body, and one of the vertical tails for angles of attack from -4 degrees to 16 degree angles of sideslip of 0 degrees and 5.3 degrees, and nominal canard deflections of O degrees and 10 degrees. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model are shown and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given. Detailed descriptions of the model and experiments and a brief discussion of some of the results are given. Tabulated results of measurements of the aerodynamic loads on the same canard model but having a single vertical tail instead of twin vertical tails are presented.
Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films
Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng
2016-01-01
Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d33) up to 33 pm·V−1 was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices. PMID:27419234
Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope
NASA Astrophysics Data System (ADS)
Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.
2015-12-01
In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.
Measures of Functional Performance and Their Association With Hip and Thigh Strength
Kollock, Roger; Van Lunen, Bonnie L.; Ringleb, Stacie I.; Oñate, James A.
2015-01-01
Context: Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. Objective: To determine if functional performance tests are valid indicators of hip and thigh strength. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. Intervention(s): During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Main Outcome Measure(s): Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r 2. We used Pearson correlations to evaluate the associations between functional performance and strength. Results: In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r2 = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r2 = 38, P ≤ .01) and hip-flexor (r2 = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r2 = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r2 = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r2 = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Conclusions: Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups. PMID:25347236
Blache, Yoann; Monteil, Karine
2015-03-01
The purpose of this study was to evaluate the single and combined effects of initial spine flexion and maximal isometric force of the erector spinae on maximal vertical jump height during maximal squat jumping. Seven initial flexions of the 'thorax-head-arm' segment (between 20.1° and 71.6°) and five maximal isometric forces of the erector spinae (between 5600 and 8600 N) were tested. Thus, 35 squat jumps were simulated using a 2D simulation model of the musculoskeletal system. Vertical jump height varied at most about 0.094 and 0.021 m when the initial flexion of the 'thorax-head-arm' segment and the maximal force of the erector spinae were, respectively, maximal. These results were explained for the most part by the variation of total muscle work. The latter was mainly influenced by the work produced by the erector spinae which increased at most about 57 and 110 J when the initial flexion of the 'thorax-head-arm' segment and the maximal force of the erector spinae were, respectively, maximal. It was concluded that the increase in the initial flexion of the 'thorax-head-arm' segment and in the maximal isometric force of the erector spinae enables an increase in maximal vertical jump height during maximal squat jumping.
A Comparison of Mechanical Parameters Between the Counter Movement Jump and Drop Jump in Biathletes
Król, Henryk; Mynarski, Władysław
2012-01-01
The main objective of the study was to determine to what degree higher muscular activity, achieved by increased load in the extension phase (eccentric muscle action) of the vertical jump, affects the efficiency of the vertical jump. Sixteen elite biathletes participated in this investigation. The biathletes performed tests that consisted of five, single “maximal” vertical jumps (counter movement jump – CMJ) and five, single vertical jumps, in which the task was to touch a bar placed over the jumping biathletes (specific task counter movement jump – SCMJ). Then, they performed five, single drop jumps from an elevation of 0.4m (DJ). Ground reaction forces were registered using the KISTLER 9182C force platform. MVJ software was used for signal processing (Król, 1999) and enabling calculations for kinematic and kinetic parameters of the subject’s jump movements (on-line system). The results indicate that only height of the jump (h) and mean power (Pmean) during the takeoff are statistically significant. Both h and Pmean are higher in the DJ. The results of this study may indicate that elite biathletes are well adapted to eccentric work of the lower limbs, thus reaching greater values of power during the drop jump. These neuromuscular adaptive changes may allow for a more dynamic and efficient running technique. PMID:23487157
The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks
2011-01-01
The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308
NASA Technical Reports Server (NTRS)
Kuzmanoski, Maja; Box, M. A.; Schmid, B.; Box, G. P.; Wang, J.; Russell, P. B.; Bates, D.; Jonsson, H. H.; Welton, Ellsworth J.; Flagan, R. C.
2005-01-01
For a vertical profile with three distinct layers (marine boundary, pollution and dust), observed during the ACE-Asia campaign, we carried out a comparison between the modeled lidar ratio vertical profile and that obtained from collocated airborne NASA AATS-14 sunphotometer and shipborne Micro-Pulse Lidar (MPL) measurements. Vertically resolved lidar ratio was calculated from two size distribution vertical profiles - one obtained by inversion of sunphotometer-derived extinction spectra, and one measured in-situ - combined with the same refractive index model based on aerosol chemical composition. The aerosol model implies single scattering albedos of 0.78 - 0.81 and 0.93 - 0.96 at 0.523 microns (the wavelength of the lidar measurements), in the pollution and dust layers, respectively. The lidar ratios calculated from the two size distribution profiles have close values in the dust layer; they are however, significantly lower than the lidar ratios derived from combined lidar and sunphotometer measurements, most probably due to the use of a simple nonspherical model with a single particle shape in our calculations. In the pollution layer, the two size distribution profiles yield generally different lidar ratios. The retrieved size distributions yield a lidar ratio which is in better agreement with that derived from lidar/sunphotometer measurements in this layer, with still large differences at certain altitudes (the largest relative difference was 46%). We explain these differences by non-uniqueness of the result of the size distribution retrieval and lack of information on vertical variability of particle refractive index. Radiative transfer calculations for this profile showed significant atmospheric radiative forcing, which occurred mainly in the pollution layer. We demonstrate that if the extinction profile is known then information on the vertical structure of absorption and asymmetry parameter is not significant for estimating forcing at TOA and the surface, while it is of importance for estimating vertical profiles of radiative forcing and heating rates.
Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound
NASA Astrophysics Data System (ADS)
Zang, Duyang; Lin, Kejun; Li, Lin; Chen, Zhen; Li, Xiaoguang; Geng, Xingguo
2017-03-01
We report on the behavior of levitated soap bubbles in a single-axis acoustic field. For a single bubble, its surface in the polar regions is under compression, but in the equatorial region, it is under suction. Levitation becomes unstable when the height of the bubble approaches half the wavelength of the sound wave because horizontal fluctuations lead to a negative recovery force and a negative levitation force. Vertically stacked double bubbles notably can be stable under levitation if their total vertical length is ˜5λ/6, significantly beyond λ/2 in consequence of the formation of a toroidal high-pressure region around the waist of the two bubbles. Our results provide a deeper insight into the stability of acoustic levitation and the coupling between bubbles and sound field.
Ali, Nicholas; Andersen, Michael Skipper; Rasmussen, John; Robertson, D Gordon E; Rouhi, Gholamreza
2014-01-01
The central tenet of this study was to develop, validate and apply various individualised 3D musculoskeletal models of the human body for application to single-leg landings over increasing vertical heights and horizontal distances. While contributing to an understanding of whether gender differences explain the higher rate of non-contact anterior cruciate ligament (ACL) injuries among females, this study also correlated various musculoskeletal variables significantly impacted by gender, height and/or distance and their interactions with two ACL injury-risk predictor variables; peak vertical ground reaction force (VGRF) and peak proximal tibia anterior shear force (PTASF). Kinematic, kinetic and electromyography data of three male and three female subjects were measured. Results revealed no significant gender differences in the musculoskeletal variables tested except peak VGRF (p = 0.039) and hip axial compressive force (p = 0.032). The quadriceps and the gastrocnemius muscle forces had significant correlations with peak PTASF (r = 0.85, p < 0.05 and r = - 0.88, p < 0.05, respectively). Furthermore, hamstring muscle force was significantly correlated with peak VGRF (r = - 0.90, p < 0.05). The ankle flexion angle was significantly correlated with peak PTASF (r = - 0.82, p < 0.05). Our findings indicate that compared to males, females did not exhibit significantly different muscle forces, or ankle, knee and hip flexion angles during single-leg landings that would explain the gender bias in non-contact ACL injury rate. Our results also suggest that higher quadriceps muscle force increases the risk, while higher hamstring and gastrocnemius muscle forces as well as ankle flexion angle reduce the risk of non-contact ACL injury.
Mudie, Kurt L; Gupta, Amitabh; Green, Simon; Hobara, Hiroaki; Clothier, Peter J
2017-02-01
This study assessed the agreement between K vert calculated from 4 different methods of estimating vertical displacement of the center of mass (COM) during single-leg hopping. Healthy participants (N = 38) completed a 10-s single-leg hopping effort on a force plate, with 3D motion of the lower limb, pelvis, and trunk captured. Derived variables were calculated for a total of 753 hop cycles using 4 methods, including: double integration of the vertical ground reaction force, law of falling bodies, a marker cluster on the sacrum, and a segmental analysis method. Bland-Altman plots demonstrated that K vert calculated using segmental analysis and double integration methods have a relatively small bias (0.93 kN⋅m -1 ) and 95% limits of agreement (-1.89 to 3.75 kN⋅m -1 ). In contrast, a greater bias was revealed between sacral marker cluster and segmental analysis (-2.32 kN⋅m -1 ), sacral marker cluster and double integration (-3.25 kN⋅m -1 ), and the law of falling bodies compared with all methods (17.26-20.52 kN⋅m -1 ). These findings suggest the segmental analysis and double integration methods can be used interchangeably for the calculation of K vert during single-leg hopping. The authors propose the segmental analysis method to be considered the gold standard for the calculation of K vert during single-leg, on-the-spot hopping.
Yoshida, N; Koga, Y; Jost-Brinkmann, P G; Kobayashi, K
2003-01-01
in this study, forces and moments acting on the molars were theoretically determined by means of small-deflection analysis when an asymmetric third-order activation of the TPA was carried out. the transpalatal arch (TPA) is used to correct unilateral crossbites through the application of buccal root torque to the anchorage molar and lingual root torque to the contralateral molar in crossbite, combined with expansion. Unfortunately, the complex force systems created at the molars upon activation of the TPA cannot be easily estimated. our computations revealed that the vertical forces developed on the molars when both ends of the TPA are inserted into the lingual sheaths (two-couple system) is four-times greater than those when only one end is tied to the lingual sheath as a single-point contact (one-couple system). we propose a method of clinical estimation of the force system in a two-couple system by directly measuring the vertical force produced by the one-couple system.
Sex differences in lower extremity biomechanics during single leg landings.
Schmitz, Randy J; Kulas, Anthony S; Perrin, David H; Riemann, Bryan L; Shultz, Sandra J
2007-07-01
Females have an increased incident rate of anterior cruciate ligament tears compared to males. Biomechanical strategies to decelerate the body in the vertical direction have been implicated as a contributing cause. This study determined if females would exhibit single leg landing strategies characterized by decreased amounts of hip, knee, and ankle flexion resulting in greater vertical ground reaction forces and altered energy absorption patterns when compared to males. Recreationally active males (N=14) and females (N=14), completed five single leg landings from a 0.3m height onto a force platform while three-dimensional kinematics and kinetics were simultaneously collected. Compared to males, females exhibited (1) less total hip and knee flexion displacements (40% and 64% of males, respectively, P<0.05) and less time to peak hip and knee flexion (48% and 78% of males, respectively, P<0.05), (2) 9% greater peak vertical ground reaction forces (P<0.05), (3) less total lower body energy absorption (76% of males, P<0.05), and (4) 11% greater relative energy absorption at the ankle (P<0.05). Females in this study appear to adopt a single leg landing style using less hip and knee flexion, absorbing less total lower body energy with more relative energy at the ankle resulting in a landing style that can be described as stiff. This may potentially cause increased demands on non-contractile components of the lower extremity. Preventative training programs designed to prevent knee injury may benefit from the biomechanical description of sex-specific landing methods demonstrated by females in this study by focusing on the promotion of more reliance on using the contractile components to absorb impact energy during landings.
Harrison, A D; Ford, K R; Myer, G D; Hewett, T E
2014-01-01
Objective Impaired biomechanics and neuromuscular control have been suggested as probable links to female sex bias in the onset of patellofemoral pain syndrome. There are limited objective, clinical measures for assessment of impaired biomechanics and neuromuscular control. The primary objective of this investigation was to examine sex differences in vertical ground reaction force (vGRF) and force loading rate in young athletes performing maximum, repeated vertical single-leg hops (RVSHs). The authors hypothesised that females would demonstrate greater vGRF and force loading rate than males and show interlimb differences in force attenuation. Design Cross-sectional study. Setting Paediatric sports medicine clinic. Participants 109 Healthy high school, soccer and basketball athletes. Assessment of risk factors Participants performed RVSHs for 15 seconds on a portable force plate with a sampling rate of 400 Hz (Accupower; AMTI, Watertown, Massachusetts, USA). Main outcome measurements Raw vGRF was filtered with a generalised cross-validation spline using a 50-Hz cutoff frequency and then normalised to potential energy. Force loading rate was calculated by dividing normalised vGRF by time-to-peak force. Group means were compared using analysis of variance. Results The females demonstrated significantly greater normalised vGRF (p<0.001) and force loading rate (p<0.001) during landing than their male counterparts. Neither sex demonstrated significant interlimb differences in force attenuation (p>0.05). Conclusions The female athletes may have altered force attenuation capability during RVSHs as identified by increased vGRF and force loading rate compared with the male athletes. Portable force plates may be potential tools to identify altered force attenuation in clinical settings. PMID:19858114
Convection Induced by Traveling Magnetic Fields in Semiconductor Melts
NASA Technical Reports Server (NTRS)
Konstantin, Mazuruk
2000-01-01
Axisymmetric traveling magnetic fields (TMF) can be beneficial for crystal growth applications. such as the vertical Bridgman, float zone or traveling heater methods. TMF induces a basic flow in the form of a single roll. This type of flow can enhance mass and heat transfer to the growing crystal. More importantly, the TMF Lorentz body force induced in the system can counterbalance the buoyancy forces, so the resulting convection can be much smaller and even the direction of it can be changed. In this presentation, we display basic features of this novel technique. In particular, numerical calculations of the Lorentz force for arbitrary frequencies will be presented along with induced steady-state fluid flow profiles. Also, numerical modeling of the TMF counter-balancing natural convection in vertical Bridgman systems will be demonstrated.
Walder, Robert; Van Patten, William J; Adhikari, Ayush; Perkins, Thomas T
2018-01-23
Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.
NASA Astrophysics Data System (ADS)
Zeng, R.; Wang, S. Y.; Liao, X. L.; Deng, Z. G.; Wang, J. S.
2013-04-01
In practical applications, the acceleration and deceleration motions inevitably happen in the operation of high temperature superconducting (HTS) maglev trains. For further research of the maglev properties of YBaCuO bulk above a permanent magnet guideway (PMG), by moving a fixed vertical distance, this paper studies the relationship of the levitation force between single and multiple YBCO bulks above a PMG operating dive-lift movement with different angles. Experimental results show that the maximal levitation force increment of two bulks than one bulk is smaller than the maximal levitation force increment of three bulks than two bulks. With the degree decreasing, the maximal levitation force increment of three bulks is bigger than the maximal levitation force increment of two bulks and one bulk, and the hysteresis loop of the levitation force of the three-bulk arrangement is getting smaller.
Myer, Gregory D.; Martin, Larry; Ford, Kevin R.; Paterno, Mark V.; Schmitt, Laura C.; Heidt, Robert S.; Colosimo, Angelo; Hewett, Timothy E.
2014-01-01
Background Release for full activity and return to sport after anterior cruciate ligament reconstruction (ACLR) is often dictated by time from surgery and subjective opinion by the medical team. Temporal guidelines for return to sport may not accurately identify impaired strength and neuromuscular control, which are associated with increased risk for second injury (contralateral and/or ipsilateral limb) after ACLR in athletes. Hypotheses Athletes undergoing ACLR and returning to sport would demonstrate functional deficits that would not be associated with time from surgery. Study Design Controlled laboratory study. Methods Thirty-three male (n = 10) and female (n = 23) athletes with unilateral ACLR, who were cleared by a physician to return to their sport after surgery and rehabilitation, performed the single-legged vertical hop test for 10 seconds on a portable force plate. Matched teammates of each patient were recruited to serve as sex-, sport-, and age-matched controls (CTRL; n = 67). Maximum vertical ground-reaction force (VGRF) was measured during each single-limb landing. Single-limb symmetry index (LSI) was calculated as the ratio of the involved divided by uninvolved limb, expressed as a percentage. Results The single-limb vertical jump height LSI was reduced in the ACLR group, 89% (95% confidence interval [CI], 83%–95%), compared with the matched CTRL group, 101% (95% CI, 96%–105%; P<.01). The LSI for VGRF normalized to potential energy achieved during flight of the hop was increased in ACLR at 112% (95% CI, 106%–117%) relative to the CTRL group at 102% (95% CI, 98%–106%; P<.01). Linear regression analysis indicated that time from surgery was not associated with limb symmetry deficits in the ACLR group (P >.05; R2 = .002–.01). Conclusion Deficits in unilateral force development (vertical jump height) and absorption (normalized VGRF) persist in an athlete’s single-limb performance after ACLR and full return to sports. These symmetry deficits appear to be independent of time after reconstruction. Clinical Relevance On the basis of these results, clinicians should consider assessment of single-limb power performance in the decision-making process for return-to-sport release. Persistent side-to-side asymmetries may increase the risk of contralateral and/or ipsilateral injury. PMID:22879403
Acute Effects of Drop-Jump Protocols on Explosive Performances of Elite Handball Players.
Dello Iacono, Antonio; Martone, Domenico; Padulo, Johnny
2016-11-01
Dello Iacono, A, Martone, D, and Padulo, J. Acute effects of drop-jump protocols on explosive performances of elite handball players. J Strength Cond Res 30(11): 3122-3133, 2016-This study aimed to assess the acute effects of vertical and horizontal drop jump-based postactivation potentiation (PAP) protocols on neuromuscular abilities in tasks such as jumping, sprinting, and change of direction (COD). Eighteen handball players were assessed before and after PAP regimens, consisting of either vertical single-leg drop-jumps (VDJ) or horizontal single-leg drop-jumps (HDJ) single-leg drop-jumps, on countermovement jump (CMJ), linear sprint, shuttle sprint, and agility performance. The HDJ led to greater improvement of the COD performance in comparison with the VDJ (-6.8 vs. -1.3%; p ≤ 0.05), whereas the VDJ caused greater improvement in the CMJ task compared with the HDJs (+6.5 vs. +1%; p ≤ 0.05). Moreover, the VDJ regimens compared with HDJ induced greater changes in most of the kinetic variables associated with vertical jumping performance, such as peak ground reaction forces (+9.6 vs. +1.3%), vertical displacement (-13.4 vs. -5.3%), leg-spring stiffness (+18.6 vs. +3.6%), contact time (-9.2 vs. -1.3%), and reactive strength index (+7.3 vs. +2.4%) (all comparisons with p ≤ 0.05). Conversely, the HDJ regimens were able to improve the COD performance only by reducing the contact time on COD more than the VDJ (-13.3 vs. -2.4% with p ≤ 0.05). The results showed that both PAPs were able to improve the performances that specifically featured similar force-orientation production. This investigation showed the crucial role that different and specific PAP regimens play in optimizing related functional performances. Specifically oriented vertical and horizontal single-leg drop-jump protocols represent viable means for achieving enhanced explosive-based tasks such as jumping and COD.
APPARATUS AND METHOD FOR INJECTION CASTING
Shuck, A.B.
1960-09-13
S>A single-chamber metal casting apparatus is described wherein molten metal in a vertically movable container can be brought directly into contact with molds. By increasing the gas pressure within the chamber the metal is forced upward into the molds.
NASA Astrophysics Data System (ADS)
Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi
2008-05-01
One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.
Forced convection in vertical Bridgman configuration with the submerged heater
NASA Astrophysics Data System (ADS)
Meyer, S.; Ostrogorsky, A. G.
1997-02-01
Ga-doped Ge single crystals were grown in vertical Bridgman configuration, using the submerged heater method (SHM). When used without rotation, the submerged heater drastically reduces convection at the solid-liquid interface. When the submerged heater is set in to rotation or oscillatory rotation, it acts as a centrifugal viscous pump, inducing forced convection (radial-inward flow) along the interface. The flow produced by a rotation and oscillatory rotation of the submerged heater was visualized using a 1 : 1 scale model. The vigorous mixing produced by the oscillatory rotation creates a nearly perfectly stirred melt, and yields a uniform lateral distribution of the dopant. The crystals were free of unintentionally produced striae.
Yan, Yifei; Zhang, Lisong; Yan, Xiangzhen
2016-01-01
In this paper, a single-slope tunnel pipeline was analysed considering the effects of vertical earth pressure, horizontal soil pressure, inner pressure, thermal expansion force and pipeline—soil friction. The concept of stagnation point for the pipeline was proposed. Considering the deformation compatibility condition of the pipeline elbow, the push force of anchor blocks of a single-slope tunnel pipeline was derived based on an energy method. Then, the theoretical formula for this force is thus generated. Using the analytical equation, the push force of the anchor block of an X80 large-diameter pipeline from the West—East Gas Transmission Project was determined. Meanwhile, to verify the results of the analytical method, and the finite element method, four categories of finite element codes were introduced to calculate the push force, including CAESARII, ANSYS, AutoPIPE and ALGOR. The results show that the analytical results agree well with the numerical results, and the maximum relative error is only 4.1%. Therefore, the results obtained with the analytical method can satisfy engineering requirements. PMID:26963097
Measuring large-scale vertical motion in the atmosphere with dropsondes
NASA Astrophysics Data System (ADS)
Bony, Sandrine; Stevens, Bjorn
2017-04-01
Large-scale vertical velocity modulates important processes in the atmosphere, including the formation of clouds, and constitutes a key component of the large-scale forcing of Single-Column Model simulations and Large-Eddy Simulations. Its measurement has also been a long-standing challenge for observationalists. We will show that it is possible to measure the vertical profile of large-scale wind divergence and vertical velocity from aircraft by using dropsondes. This methodology was tested in August 2016 during the NARVAL2 campaign in the lower Atlantic trades. Results will be shown for several research flights, the robustness and the uncertainty of measurements will be assessed, ands observational estimates will be compared with data from high-resolution numerical forecasts.
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco
2018-06-07
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
NASA Astrophysics Data System (ADS)
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco
2018-06-01
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
Dynamics of an acoustically levitated particle using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Barrios, G.; Rechtman, R.
When the acoustic force inside a cavity balances the gravitational force on a particle the result is known as acoustic levitation. Using the lattice Boltzmann equation method we find the acoustic force acting on a rounded particle for two different single-axis acoustic levitators in two dimensions, the first with plane waves, the second with a rounded reflector that enhances the acoustic force. With no gravitational force, a particle oscillates around a pressure node; in the presence of gravity the oscillation is shifted a small vertical distance below the pressure node. This distance increases linearly as the density ratio between the solid particle and fluid grows. For both cavities, the particle oscillates with the frequency of the sound source and its harmonics and in some cases there is a much smaller second dominant frequency. When the momentum of the acoustic source changes, the oscillation around the average vertical position can have both frequencies mentioned above. However, if this quantity is large enough, the oscillations of the particle are aperiodic in the cavity with a rounded reflector.
Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.
Han, Zhao Jun; Ostrikov, Kostya
2012-04-04
Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari
Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order tomore » quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.« less
Associations of Region-Specific Foot Pain and Foot Biomechanics: The Framingham Foot Study
Hagedorn, Thomas J.; Dufour, Alyssa B.; Hannan, Marian T.
2015-01-01
Background. Specific regions of the foot are responsible for the gait tasks of weight acceptance, single-limb support, and forward propulsion. With region foot pain, gait abnormalities may arise and affect the plantar pressure and force pattern utilized. Therefore, this study’s purpose was to evaluate plantar pressure and force pattern differences between adults with and without region-specific foot pain. Methods. Plantar pressure and force data were collected on Framingham Foot Study members while walking barefoot at a self-selected pace. Foot pain was evaluated by self-report and grouped by foot region (toe, forefoot, midfoot, or rearfoot) or regions (two or three or more regions) of pain. Unadjusted and adjusted linear regression with generalized estimating equations was used to determine associations between feet with and without foot pain. Results. Individuals with distal foot (forefoot or toes) pain had similar maximum vertical forces under the pain region, while those with proximal foot (rearfoot or midfoot) pain had different maximum vertical forces compared to those without regional foot pain (referent). During walking, there were significant differences in plantar loading and propulsion ranging from 2% to 4% between those with and without regional foot pain. Significant differences in normalized maximum vertical force and plantar pressure ranged from 5.3% to 12.4% and 3.4% to 24.1%, respectively, between those with and without regional foot pain. Conclusions. Associations of regional foot pain with plantar pressure and force were different by regions of pain. Region-specific foot pain was not uniformly associated with an increase or decrease in loading and pressure patterns regions of pain. PMID:25995291
Effects of muscular biopsy on the mechanics of running.
Morin, Jean-Benoit; Samozino, Pierre; Féasson, Léonard; Geyssant, André; Millet, Guillaume
2009-01-01
Muscle biopsy is a widely used technique in protocols aiming at studying physical capacities and fiber profiles of athletes, and muscular adaptations to exercise. Side effects of biopsy alone on physiological parameters have recently been pointed out, and we sought to determine whether a single biopsy had effects on the main stride mechanical parameters. Ten male runners performed 4-min runs before and after undergoing a biopsy of their left vastus lateralis muscle. Step frequency and duty factor were significantly higher after biopsy (2.86 +/- 0.14 vs. 2.82 +/- 0.15 Hz, and 0.77 +/- 0.04 vs. 0.75 +/- 0.05, respectively), whereas other factors were significantly lower: maximal vertical ground reaction force (1,601 +/- 240 vs. 1,643 +/- 230 N), loading rate (53.9 +/- 12.8 vs. 58.4 +/- 13.5 bw s(-1)), center of mass vertical displacement (0.056 +/- 0.008 vs. 0.058 +/- 0.008 m) and external mechanical work at each step (1.14 +/- 0.10 vs. 1.24 +/- 0.10 J kg(-1) step(-1)). These effects were observed on the left (biopsed) leg, but also on the right one for the external mechanical work, the duty factor and the maximal vertical ground reaction force, showing that a single biopsy had both ipsi- and contralateral effects on running mechanics.
Vertical and lateral forces applied to the bar during the bench press in novice lifters.
Duffey, Michael J; Challis, John H
2011-09-01
The purpose of this study was to determine the vertical and lateral forces applied to the bar during a maximal and a submaximal effort bench press lifts. For this study, 10 male and 8 female recreational lifters were recruited (mean height: 1.71 ± 0.08 m; mass: 73.7 ± 13.6 kg) and were asked to perform a maximal and submaximal (80% of maximal lift) bench press. These lifts were performed with a bar instrumented to record forces applied to it, via the hands, in the vertical direction and along the long axis of the bar. To determine the position of the bar and timing of events, 3D kinematic data were recorded and analyzed for both lifts. The subjects in this study averaged a maximal lift of 63 ± 29 kg (90 ± 31% bodyweight). The peak vertical force was 115 ± 22% (percentage of load), whereas for the submaximal condition it was 113 ± 20%; these forces were statistically different between conditions; they were not when expressed as a percentage of the load (p > 0.05). During all the lifts, the lateral forces were always outward along the bar. The lateral force profile was similar to that of the vertical force, albeit at a lesser magnitude. During the lift phase, the peak lateral force was on average 26.3 ± 3.9% of the vertical force for the maximal lift and 23.7 ± 3.9% of the vertical force for the submaximal lift. Given that the amount of force applied laterally to the bar was a similar percentage of vertical force irrespective of load, it appears that the generation of lateral forces during the bench press is a result of having the muscles engaged in generating vertical force.
On the critical forcing amplitude of forced nonlinear oscillators
NASA Astrophysics Data System (ADS)
Febbo, Mariano; Ji, Jinchen C.
2013-12-01
The steady-state response of forced single degree-of-freedom weakly nonlinear oscillators under primary resonance conditions can exhibit saddle-node bifurcations, jump and hysteresis phenomena, if the amplitude of the excitation exceeds a certain value. This critical value of excitation amplitude or critical forcing amplitude plays an important role in determining the occurrence of saddle-node bifurcations in the frequency-response curve. This work develops an alternative method to determine the critical forcing amplitude for single degree-of-freedom nonlinear oscillators. Based on Lagrange multipliers approach, the proposed method considers the calculation of the critical forcing amplitude as an optimization problem with constraints that are imposed by the existence of locations of vertical tangency. In comparison with the Gröbner basis method, the proposed approach is more straightforward and thus easy to apply for finding the critical forcing amplitude both analytically and numerically. Three examples are given to confirm the validity of the theoretical predictions. The first two present the analytical form for the critical forcing amplitude and the third one is an example of a numerically computed solution.
Forces on a segregating particle
NASA Astrophysics Data System (ADS)
Lueptow, Richard M.; Shankar, Adithya; Fry, Alexander M.; Ottino, Julio M.; Umbanhowar, Paul B.
2017-11-01
Size segregation in flowing granular materials is not well understood at the particle level. In this study, we perform a series of 3D Discrete Element Method (DEM) simulations to measure the segregation force on a single spherical test particle tethered to a spring in the vertical direction in a shearing bed of particles with gravity acting perpendicular to the shear. The test particle is the same size or larger than the bed particles. At equilibrium, the downward spring force and test particle weight are offset by the upward buoyancy-like force and a size ratio dependent force. We find that the buoyancy-like force depends on the bed particle density and the Voronoi volume occupied by the test particle. By changing the density of the test particle with the particle size ratio such that the buoyancy force matches the test particle weight, we show that the upward size segregation force is a quadratic function of the particle size ratio. Based on this, we report an expression for the net force on a single particle as the sum of a size ratio dependent force, a buoyancy-like force, and the weight of the particle. Supported by NSF Grant CBET-1511450 and the Procter and Gamble Company.
Modeling methodology for a CMOS-MEMS electrostatic comb
NASA Astrophysics Data System (ADS)
Iyer, Sitaraman V.; Lakdawala, Hasnain; Mukherjee, Tamal; Fedder, Gary K.
2002-04-01
A methodology for combined modeling of capacitance and force 9in a multi-layer electrostatic comb is demonstrated in this paper. Conformal mapping-based analytical methods are limited to 2D symmetric cross-sections and cannot account for charge concentration effects at corners. Vertex capacitance can be more than 30% of the total capacitance in a single-layer 2 micrometers thick comb with 10 micrometers overlap. Furthermore, analytical equations are strictly valid only for perfectly symmetrical finger positions. Fringing and corner effects are likely to be more significant in a multi- layered CMOS-MEMS comb because of the presence of more edges and vertices. Vertical curling of CMOS-MEMS comb fingers may also lead to reduced capacitance and vertical forces. Gyroscopes are particularly sensitive to such undesirable forces, which therefore, need to be well-quantified. In order to address the above issues, a hybrid approach of superposing linear regression models over a set of core analytical models is implemented. Design of experiments is used to obtain data for capacitance and force using a commercial 3D boundary-element solver. Since accurate force values require significantly higher mesh refinement than accurate capacitance, we use numerical derivatives of capacitance values to compute the forces. The model is formulated such that the capacitance and force models use the same regression coefficients. The comb model thus obtained, fits the numerical capacitance data to within +/- 3% and force to within +/- 10%. The model is experimentally verified by measuring capacitance change in a specially designed test structure. The capacitance model matches measurements to within 10%. The comb model is implemented in an Analog Hardware Description Language (ADHL) for use in behavioral simulation of manufacturing variations in a CMOS-MEMS gyroscope.
Validation of the iPhone app using the force platform to estimate vertical jump height.
Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge
2018-03-01
Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate an iPhone app called My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4±1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the My Jump mobile application. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC=1.000, P<0.001). Correlation between APP and force platform using the vertical velocity at take-off was also very high (ICC=0.996, P<0.001), with an error margin of 0.78%. Therefore, these results showed that application, My Jump, is an appropriate method to evaluate the vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.
Single-leg drop landing motor control strategies following acute ankle sprain injury.
Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E
2015-08-01
No research currently exists investigating the effect of acute injury on single-limb landing strategies. The aim of the current study was to analyze the coordination strategies of participants in the acute phase of lateral ankle sprain (LAS) injury. Thirty-seven participants with acute, first-time LAS and 19 uninjured participants completed a single-leg drop landing task on both limbs. Three-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment-of-force) data were acquired for the joints of the lower extremity from 200 ms pre-initial contact (IC) to 200 ms post-IC. The peak magnitude of the vertical component of the ground reaction force (GRF) was also computed. Injured participants displayed a bilateral increase in hip flexion, with altered transverse plane kinematic profiles at the knee and ankle for both limbs (P < 0.05). This coincided with a reduction in the net-supporting flexor moment of the lower extremity (P < 0.05) and magnitude of the peak vertical GRF for the injured limb (21.82 ± 2.44 N/kg vs 24.09 ± 2.77 N/kg; P = 0.013) in injured participants compared to control participants. These results demonstrate that compensatory movement strategies are utilized by participants with acute LAS to successfully reduce the impact forces of landing. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A new method of testing pile using dynamic P-S-curve made by amplitude of wave train
NASA Astrophysics Data System (ADS)
Hu, Yi-Li; Xu, Jun; Duan, Yong-Kong; Xu, Zhao-Yong; Yang, Run-Hai; Zhao, Jin-Ming
2004-11-01
A new method of detecting the vertical bearing capacity for single-pile with high strain is discussed in this paper. A heavy hammer or a small type of rocket is used to strike the pile top and the detectors are used to record vibration graphs. An expression of higher degree of strain (deformation force) is introduced. It is testified theoretically that the displacement, velocity and acceleration cannot be obtained by simple integral acceleration and differential velocity when long displacement and high strain exist, namely when the pile phase generates a whole slip relative to the soil body. That is to say that there are non-linear relations between them. It is educed accordingly that the force P and displacement S are calculated from the amplitude of wave train and (dynamic) P-S curve is drew so as to determine the yield points. Further, a method of determining the vertical bearing capacity for single-pile is discussed. A static load test is utilized to check the result of dynamic test and determine the correlative constants of dynamic-static P( Q)- S curve.
Pawlak, Rémy; Ouyang, Wengen; Filippov, Alexander E; Kalikhman-Razvozov, Lena; Kawai, Shigeki; Glatzel, Thilo; Gnecco, Enrico; Baratoff, Alexis; Zheng, Quanshui; Hod, Oded; Urbakh, Michael; Meyer, Ernst
2016-01-26
The low-temperature mechanical response of a single porphyrin molecule attached to the apex of an atomic force microscope (AFM) tip during vertical and lateral manipulations is studied. We find that approach-retraction cycles as well as surface scanning with the terminated tip result in atomic-scale friction patterns induced by the internal reorientations of the molecule. With a joint experimental and computational effort, we identify the dicyanophenyl side groups of the molecule interacting with the surface as the dominant factor determining the observed frictional behavior. To this end, we developed a generalized Prandtl-Tomlinson model parametrized using density functional theory calculations that includes the internal degrees of freedom of the side group with respect to the core and its interactions with the underlying surface. We demonstrate that the friction pattern results from the variations of the bond length and bond angles between the dicyanophenyl side group and the porphyrin backbone as well as those of the CN group facing the surface during the lateral and vertical motion of the AFM tip.
On Heels and Toes: How Ants Climb with Adhesive Pads and Tarsal Friction Hair Arrays
Endlein, Thomas; Federle, Walter
2015-01-01
Ants are able to climb effortlessly on vertical and inverted smooth surfaces. When climbing, their feet touch the substrate not only with their pretarsal adhesive pads but also with dense arrays of fine hairs on the ventral side of the 3rd and 4th tarsal segments. To understand what role these different attachment structures play during locomotion, we analysed leg kinematics and recorded single-leg ground reaction forces in Weaver ants (Oecophylla smaragdina) climbing vertically on a smooth glass substrate. We found that the ants engaged different attachment structures depending on whether their feet were above or below their Centre of Mass (CoM). Legs above the CoM pulled and engaged the arolia (‘toes’), whereas legs below the CoM pushed with the 3rd and 4th tarsomeres (‘heels’) in surface contact. Legs above the CoM carried a significantly larger proportion of the body weight than legs below the CoM. Force measurements on individual ant tarsi showed that friction increased with normal load as a result of the bending and increasing side contact of the tarsal hairs. On a rough sandpaper substrate, the tarsal hairs generated higher friction forces in the pushing than in the pulling direction, whereas the reverse effect was found on the smooth substrate. When the tarsal hairs were pushed, buckling was observed for forces exceeding the shear forces found in climbing ants. Adhesion forces were small but not negligible, and higher on the smooth substrate. Our results indicate that the dense tarsal hair arrays produce friction forces when pressed against the substrate, and help the ants to push outwards during horizontal and vertical walking. PMID:26559941
On Heels and Toes: How Ants Climb with Adhesive Pads and Tarsal Friction Hair Arrays.
Endlein, Thomas; Federle, Walter
2015-01-01
Ants are able to climb effortlessly on vertical and inverted smooth surfaces. When climbing, their feet touch the substrate not only with their pretarsal adhesive pads but also with dense arrays of fine hairs on the ventral side of the 3rd and 4th tarsal segments. To understand what role these different attachment structures play during locomotion, we analysed leg kinematics and recorded single-leg ground reaction forces in Weaver ants (Oecophylla smaragdina) climbing vertically on a smooth glass substrate. We found that the ants engaged different attachment structures depending on whether their feet were above or below their Centre of Mass (CoM). Legs above the CoM pulled and engaged the arolia ('toes'), whereas legs below the CoM pushed with the 3rd and 4th tarsomeres ('heels') in surface contact. Legs above the CoM carried a significantly larger proportion of the body weight than legs below the CoM. Force measurements on individual ant tarsi showed that friction increased with normal load as a result of the bending and increasing side contact of the tarsal hairs. On a rough sandpaper substrate, the tarsal hairs generated higher friction forces in the pushing than in the pulling direction, whereas the reverse effect was found on the smooth substrate. When the tarsal hairs were pushed, buckling was observed for forces exceeding the shear forces found in climbing ants. Adhesion forces were small but not negligible, and higher on the smooth substrate. Our results indicate that the dense tarsal hair arrays produce friction forces when pressed against the substrate, and help the ants to push outwards during horizontal and vertical walking.
The Effect of Increasing Inertia upon Vertical Ground Reaction Forces during Locomotion
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Hagan, R. Donald; Cromwell, Ronita L.
2007-01-01
The addition of inertia to exercising astronauts could increase ground reaction forces and potentially provide a greater health benefit. However, conflicting results have been reported regarding the adaptations to additional mass (inertia) without additional net weight (gravitational force) during locomotion. We examined the effect of increasing inertia while maintaining net gravitational force on vertical ground reaction forces and kinematics during walking and running. Vertical ground reaction force was measured for ten healthy adults (5 male/5 female) during walking (1.34 m/s) and running (3.13 m/s) using a force-measuring treadmill. Subjects completed locomotion at normal weight and mass, and at 10, 20, 30, and 40% of added inertial force. The added gravitational force was relieved with overhead suspension, so that the net force between the subject and treadmill at rest remained equal to 100% body weight. Peak vertical impact forces and loading rates increased with increased inertia during walking, and decreased during running. As inertia increased, peak vertical propulsive forces decreased during walking and did not change during running. Stride time increased during walking and running, and contact time increased during running. Vertical ground reaction force production and adaptations in gait kinematics were different between walking and running. The increased inertial forces were utilized independently from gravitational forces by the motor control system when determining coordination strategies.
A comparative study of single-leg ground reaction forces in running lizards.
McElroy, Eric J; Wilson, Robbie; Biknevicius, Audrone R; Reilly, Stephen M
2014-03-01
The role of different limbs in supporting and propelling the body has been studied in many species with animals appearing to have either similarity in limb function or differential limb function. Differential hindlimb versus forelimb function has been proposed as a general feature of running with a sprawling posture and as benefiting sprawled postured animals by enhancing maneuvering and minimizing joint moments. Yet only a few species have been studied and thus the generality of differential limb function in running animals with sprawled postures is unknown. We measured the limb lengths of seven species of lizard and their single-limb three-dimensional ground reaction forces during high-speed running. We found that all species relied on the hindlimb for producing accelerative forces. Braking forces were forelimb dominated in four species and equally distributed between limbs in the other three. Vertical forces were dominated by the hindlimb in three species and equally distributed between the forelimb and hindlimb in the other four. Medial forces were dominated by the hindlimb in four species and equally distributed in the other three, with all Iguanians exhibiting hindlimb-biased medial forces. Relative hindlimb to forelimb length of each species was related to variation in hindlimb versus forelimb medial forces; species with relatively longer hindlimbs compared with forelimbs exhibited medial forces that were more biased towards the hindlimbs. These results suggest that the function of individual limbs in lizards varies across species with only a single general pattern (hindlimb-dominated accelerative force) being present.
Single- and multi-frequency detection of surface displacements via scanning probe microscopy.
Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L
2015-02-01
Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.
Mendez-Rebolledo, Guillermo; Ramirez-Campillo, Rodrigo; Guzman-Muñoz, Eduardo; Gatica-Rojas, Valeska; Dabanch-Santis, Alexis; Diaz-Valenzuela, Francisco
2018-06-22
Kinesio taping is commonly used in sports and rehabilitation settings with the aim of prevention and treatment of musculoskeletal injuries. However, limited evidence exists regarding the effects of 24 and 72 hours of kinesio taping on trunk and lower limb neuromuscular and kinetic performance during a vertical jump. The purpose of this study was to analyze the short-term effects of kinesio taping on height and ground reaction force during a vertical jump, in addition to trunk and lower limb muscle latency and recruitment order. Single-group pretest-posttest. University laboratory. Twelve male athletes from different sports (track and field, basketball, and soccer). They completed a single squat and countermovement jump at basal time (no kinesio taping), 24, and 72 hours of kinesio taping application on the gluteus maximus, biceps femoris, rectus femoris, gastrocnemius medialis, and longissimus. Muscle onset latencies were assessed by electromyography during a squat and countermovement jump, in addition to measurements of the jump height and normalized ground reaction force. The kinesio taping had no effect after 24 hours on either the countermovement or squat jump. However, at 72 hours, the kinesio taping increased the jump height (P = .02; d = 0.36) and normalized ground reaction force (P = .001; d = 0.45) during the countermovement jump. In addition, 72-hour kinesio taping reduced longissimus onset latency (P = .03; d = 1.34) and improved muscle recruitment order during a countermovement jump. These findings suggest that kinesio taping may improve neuromuscular and kinetic performance during a countermovement jump only after 72 hours of application on healthy and uninjured male athletes. However, no changes were observed on a squat jump. Future studies should incorporate a control group to verify kinesio taping's effects and its influence on injured athletes.
Vertical-Screw-Auger Conveyer Feeder
NASA Technical Reports Server (NTRS)
Walton, Otis (Inventor); Vollmer, Hubert J. (Inventor)
2016-01-01
A conical feeder is attached to a vertically conveying screw auger. The feeder is equipped with scoops and rotated from the surface to force-feed regolith the auger. Additional scoops are possible by adding a cylindrical section above the conical funnel section. Such then allows the unit to collect material from swaths larger in diameter than the enclosing casing pipe of the screw auger. A third element includes a flexible screw auger. All three can be used in combination in microgravity and zero atmosphere environments to drill and recover a wide area of subsurface regolith and entrained volatiles through a single access point on the surface.
The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes.
Bloms, Lucas P; Fitzgerald, John S; Short, Martin W; Whitehead, James R
2016-07-01
Bloms, LP, Fitzgerald, JS, Short, MW, and Whitehead, JR. The effects of caffeine on vertical jump height and execution in collegiate athletes. J Strength Cond Res 30(7): 1855-1861, 2016-Caffeine ingestion elicits a variety of physiological effects that may be beneficial to maximal-intensity exercise performance, although its effectiveness and physical mechanism of action enhancing ballistic task performance are unclear. The purpose of this study was to examine the effects of caffeine ingestion on vertical jump height and jump execution in Division I collegiate athletes. The study used a single-blind, randomized, crossover design. Athletes (n = 25) consumed either caffeine (5 mg·kg) or placebo. After a 60-minute waiting period, athletes performed 3 squat jumps (SJ) and 3 countermovement jumps (CMJ) while standing on a force platform. Jump height and execution variables were calculated from mechanography data. In comparison with placebo, caffeine increased SJ height (32.8 ± 6.2 vs. 34.5 ± 6.7 cm; p = 0.001) and CMJ height (36.4 ± 6.9 vs. 37.9 ± 7.4 cm; p = 0.001). Peak force (p = 0.032) and average rate of force development (p = 0.037) were increased during the CMJ in the caffeine trail compared with the control. Time to half peak force was the only execution variable improved with caffeine (p = 0.019) during the SJ. It seems that caffeine affects both height and execution of jumping. Our data indicate that the physical mechanism of jump enhancement is increased peak force production or rate of force development during jumping depending on technique. The physical mechanism of jump enhancement suggests that the ergogenic effects of caffeine may transfer to other ballistic tasks involving the lower-body musculature in collegiate athletes.
Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator.
Gupta, Manoj Kumar; Lee, Ju-Hyuck; Lee, Keun Young; Kim, Sang-Woo
2013-10-22
Here, we report the synthesis of lead-free single-crystalline two-dimensional (2D) vanadium(V)-doped ZnO nanosheets (NSs) and their application for high-performance flexible direct current (DC) power piezoelectric nanogenerators (NGs). The vertically aligned ZnO nanorods (NRs) converted to NS networks by V doping. Piezoresponse force microscopy studies reveal that vertical V-doped ZnO NS exhibit typical ferroelectricity with clear phase loops, butterfly, and well-defined hysteresis loops with a piezoelectric charge coefficient of up to 4 pm/V, even in 2D nanostructures. From pristine ZnO NR-based NGs, alternating current (AC)-type output current was observed, while from V-doped ZnO NS-based NGs, a DC-type output current density of up to 1.0 μAcm(-2) was surprisingly obtained under the same vertical compressive force. The growth mechanism, ferroelectric behavior, charge inverted phenomena, and high piezoelectric output performance observed from the V-doped ZnO NS are discussed in terms of the formation of an ionic layer of [V(OH)4(-)], permanent electric dipole, and the doping-induced resistive behavior of ZnO NS.
A simple method of equine limb force vector analysis and its potential applications.
Hobbs, Sarah Jane; Robinson, Mark A; Clayton, Hilary M
2018-01-01
Ground reaction forces (GRF) measured during equine gait analysis are typically evaluated by analyzing discrete values obtained from continuous force-time data for the vertical, longitudinal and transverse GRF components. This paper describes a simple, temporo-spatial method of displaying and analyzing sagittal plane GRF vectors. In addition, the application of statistical parametric mapping (SPM) is introduced to analyse differences between contra-lateral fore and hindlimb force-time curves throughout the stance phase. The overall aim of the study was to demonstrate alternative methods of evaluating functional (a)symmetry within horses. GRF and kinematic data were collected from 10 horses trotting over a series of four force plates (120 Hz). The kinematic data were used to determine clean hoof contacts. The stance phase of each hoof was determined using a 50 N threshold. Vertical and longitudinal GRF for each stance phase were plotted both as force-time curves and as force vector diagrams in which vectors originating at the centre of pressure on the force plate were drawn at intervals of 8.3 ms for the duration of stance. Visual evaluation was facilitated by overlay of the vector diagrams for different limbs. Summary vectors representing the magnitude (VecMag) and direction (VecAng) of the mean force over the entire stance phase were superimposed on the force vector diagram. Typical measurements extracted from the force-time curves (peak forces, impulses) were compared with VecMag and VecAng using partial correlation (controlling for speed). Paired samples t -tests (left v. right diagonal pair comparison and high v. low vertical force diagonal pair comparison) were performed on discrete and vector variables using traditional methods and Hotelling's T 2 tests on normalized stance phase data using SPM. Evidence from traditional statistical tests suggested that VecMag is more influenced by the vertical force and impulse, whereas VecAng is more influenced by the longitudinal force and impulse. When used to evaluate mean data from the group of ten sound horses, SPM did not identify differences between the left and right contralateral limb pairs or between limb pairs classified according to directional asymmetry. When evaluating a single horse, three periods were identified during which differences in the forces between the left and right forelimbs exceeded the critical threshold ( p < .01). Traditional statistical analysis of 2D GRF peak values, summary vector variables and visual evaluation of force vector diagrams gave harmonious results and both methods identified the same inter-limb asymmetries. As alpha was more tightly controlled using SPM, significance was only found in the individual horse although T 2 plots followed the same trends as discrete analysis for the group. The techniques of force vector analysis and SPM hold promise for investigations of sidedness and asymmetry in horses.
Pauk, Jolanta; Szymul, Joanna
2014-01-01
Ground reaction forces (GRF) reflect the force history of human body contact with the ground. The purpose of this study was to explore human gait abnormalities due to planovalgus by comparing vertical GRF data between individuals with planovalgus and those with neutrally aligned feet. Second we estimated associations between various measurements and vertical GRF parameters in a pediatric population. Boys and girls between the ages of 4 and 18 years (72 planovalgus feet and 74 neutrally aligned feet) took part in this study. Ground reaction forces were recorded by two Kistler platforms and normalized to body weight. Comparison of vertical GRF between planovalgus and neutrally aligned feet suggests that the first and the second peaks of vertical force (Fz1, Fz2) are most affected by planovalgus. The results also indicate that neutrally aligned feet display a different ground reaction force pattern than planovalgus, and that differences between boys and girls may be observed. The shape of the vertical GRF curve can help in clinical interpretation of abnormal gait.
A reduction of the saddle vertical force triggers the sit-stand transition in cycling.
Costes, Antony; Turpin, Nicolas A; Villeger, David; Moretto, Pierre; Watier, Bruno
2015-09-18
The purpose of the study was to establish the link between the saddle vertical force and its determinants in order to establish the strategies that could trigger the sit-stand transition. We hypothesized that the minimum saddle vertical force would be a critical parameter influencing the sit-stand transition during cycling. Twenty-five non-cyclists were asked to pedal at six different power outputs from 20% (1.6 ± 0.3 W kg(-1)) to 120% (9.6 ± 1.6 W kg(-1)) of their spontaneous sit-stand transition power obtained at 90 rpm. Five 6-component sensors (saddle tube, pedals and handlebars) and a full-body kinematic reconstruction were used to provide the saddle vertical force and other force components (trunk inertial force, hips and shoulders reaction forces, and trunk weight) linked to the saddle vertical force. Minimum saddle vertical force linearly decreased with power output by 87% from a static position on the bicycle (5.30 ± 0.50 N kg(-1)) to power output=120% of the sit-stand transition power (0.68 ± 0.49 N kg(-1)). This decrease was mainly explained by the increase in instantaneous pedal forces from 2.84 ± 0.58 N kg(-1) to 6.57 ± 1.02 N kg(-1) from 20% to 120% of the power output corresponding to the sit-stand transition, causing an increase in hip vertical forces from -0.17 N kg(-1) to 3.29 N kg(-1). The emergence of strategies aiming at counteracting the elevation of the trunk (handlebars and pedals pulling) coincided with the spontaneous sit-stand transition power. The present data suggest that the large decrease in minimum saddle vertical force observed at high pedal reaction forces might trigger the sit-stand transition in cycling. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Re, Richard J.; Carson, George T., Jr.
1991-01-01
The internal performance of two exhaust system concepts applicable to single-engine short-take-off and vertical-landing tactical fighter configurations was investigated. These concepts involved blocking (or partially blocking) tailpipe flow to the rear (cruise) nozzle and diverting it through an opening to a ventral nozzle exit for vertical thrust. A set of variable angle vanes at the ventral nozzle exit were used to vary ventral nozzle thrust angle between 45 and 110 deg relative to the positive axial force direction. In the vertical flight mode the rear nozzle (or tailpipe flow to it) was completely blocked. In the transition flight mode flow in the tailpipe was split between the rear and ventral nozzles and the flow was vectored at both exits for aircraft control purposes through this flight regime. In the cruise flight mode the ventral nozzle was sealed and all flow exited through the rear nozzle.
Symbiont survival and host-symbiont disequilibria under differential vertical transmission.
Sánchez, M S; Arnold, J; Asmussen, M A
2000-01-01
Interspecific genetic interactions in host-symbiont systems raise intriguing coevolutionary questions and may influence the effectiveness of public health and management policies. Here we present an analytical and numerical investigation of the effects of host genetic heterogeneity in the rate of vertical transmission of a symbiont. We consider the baseline case with a monomorphic symbiont and a single diallelic locus in its diploid host, where vertical transmission is the sole force. Our analysis introduces interspecific disequilibria to quantify nonrandom associations between host genotypes and alleles and symbiont presence/absence. The transient and equilibrium behavior is examined in simulations with randomly generated initial conditions and transmission parameters. Compared to the case where vertical transmission rates are uniform across host genotypes, differential transmission (i) increases average symbiont survival from 50% to almost 60%, (ii) dramatically reduces the minimum average transmission rate for symbiont survival from 0.5 to 0.008, and (iii) readily creates permanent host-symbiont disequilibria de novo, whereas uniform transmission can neither create nor maintain such associations. On average, heterozygotes are slightly more likely to carry and maintain the symbiont in the population and are more randomly associated with the symbiont. Results show that simple evolutionary forces can create substantial nonrandom associations between two species. PMID:10757775
Bottom boundary layer forced by finite amplitude long and short surface waves motions
NASA Astrophysics Data System (ADS)
Elsafty, H.; Lynett, P.
2018-04-01
A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave nonlinearity.
Adjoint-Baed Optimal Control on the Pitch Angle of a Single-Bladed Vertical-Axis Wind Turbine
NASA Astrophysics Data System (ADS)
Tsai, Hsieh-Chen; Colonius, Tim
2017-11-01
Optimal control on the pitch angle of a NACA0018 single-bladed vertical-axis wind turbine (VAWT) is numerically investigated at a low Reynolds number of 1500. With fixed tip-speed ratio, the input power is minimized and mean tangential force is maximized over a specific time horizon. The immersed boundary method is used to simulate the two-dimensional, incompressible flow around a horizontal cross section of the VAWT. The problem is formulated as a PDE constrained optimization problem and an iterative solution is obtained using adjoint-based conjugate gradient methods. By the end of the longest control horizon examined, two controls end up with time-invariant pitch angles of about the same magnitude but with the opposite signs. The results show that both cases lead to a reduction in the input power but not necessarily an enhancement in the mean tangential force. These reductions in input power are due to the removal of a power-damaging phenomenon that occurs when a vortex pair is captured by the blade in the upwind-half region of a cycle. This project was supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.
Stability of vertical magnetic chains
2017-01-01
A linear stability analysis is performed for a pair of coaxial vertical chains made from permanently magnetized balls under the influence of gravity. While one chain rises from the ground, the other hangs from above, with the remaining ends separated by a gap of prescribed length. Various boundary conditions are considered, as are situations in which the magnetic dipole moments in the two chains are parallel or antiparallel. The case of a single chain attached to the ground is also discussed. The stability of the system is examined with respect to three quantities: the number of balls in each chain, the length of the gap between the chains, and a single dimensionless parameter which embodies the competition between magnetic and gravitational forces. Asymptotic scaling laws involving these parameters are provided. The Hessian matrix is computed in exact form, allowing the critical parameter values at which the system loses stability and the respective eigenmodes to be determined up to machine precision. A comparison with simple experiments for a single chain attached to the ground shows good agreement. PMID:28293135
Stability of vertical magnetic chains
NASA Astrophysics Data System (ADS)
Schönke, Johannes; Fried, Eliot
2017-02-01
A linear stability analysis is performed for a pair of coaxial vertical chains made from permanently magnetized balls under the influence of gravity. While one chain rises from the ground, the other hangs from above, with the remaining ends separated by a gap of prescribed length. Various boundary conditions are considered, as are situations in which the magnetic dipole moments in the two chains are parallel or antiparallel. The case of a single chain attached to the ground is also discussed. The stability of the system is examined with respect to three quantities: the number of balls in each chain, the length of the gap between the chains, and a single dimensionless parameter which embodies the competition between magnetic and gravitational forces. Asymptotic scaling laws involving these parameters are provided. The Hessian matrix is computed in exact form, allowing the critical parameter values at which the system loses stability and the respective eigenmodes to be determined up to machine precision. A comparison with simple experiments for a single chain attached to the ground shows good agreement.
Ground Reaction Forces of the Lead and Trail Limbs when Stepping Over an Obstacle
Bovonsunthonchai, Sunee; Khobkhun, Fuengfa; Vachalathiti, Roongtiwa
2015-01-01
Background Precise force generation and absorption during stepping over different obstacles need to be quantified for task accomplishment. This study aimed to quantify how the lead limb (LL) and trail limb (TL) generate and absorb forces while stepping over obstacle of various heights. Material/Methods Thirteen healthy young women participated in the study. Force data were collected from 2 force plates when participants stepped over obstacles. Two limbs (right LL and left TL) and 4 conditions of stepping (no obstacle, stepping over 5 cm, 20 cm, and 30 cm obstacle heights) were tested for main effect and interaction effect by 2-way ANOVA. Paired t-test and 1-way repeated-measure ANOVA were used to compare differences of variables between limbs and among stepping conditions, respectively. The main effects on the limb were found in first peak vertical force, minimum vertical force, propulsive peak force, and propulsive impulse. Results Significant main effects of condition were found in time to minimum force, time to the second peak force, time to propulsive peak force, first peak vertical force, braking peak force, propulsive peak force, vertical impulse, braking impulse, and propulsive impulse. Interaction effects of limb and condition were found in first peak vertical force, propulsive peak force, braking impulse, and propulsive impulse. Conclusions Adaptations of force generation in the LL and TL were found to involve adaptability to altered external environment during stepping in healthy young adults. PMID:26169293
Dicus, Jeremy R; Seegmiller, Jeff G
2012-05-01
Few ankle inversion studies have taken anticipation bias into account or collected data with an experimental design that mimics actual injury mechanisms. Twenty-three participants performed randomized single-leg vertical drop landings from 20 cm. Subjects were blinded to the landing surface (a flat force plate or 30° inversion wedge on the force plate). After each trial, participants reported whether they anticipated the landing surface. Participant responses were validated with EMG data. The protocol was repeated until four anticipated and four unanticipated landings onto the inversion wedge were recorded. Results revealed a significant main effect for landing condition. Normalized vertical ground reaction force (% body weights), maximum ankle inversion (degrees), inversion velocity (degrees/second), and time from contact to peak muscle activation (seconds) were significantly greater in unanticipated landings, and the time from peak muscle activation to maximum VGRF (second) was shorter. Unanticipated landings presented different muscle activation patterns than landings onto anticipated surfaces, which calls into question the usefulness of clinical studies that have not controlled for anticipation bias.
NASA Astrophysics Data System (ADS)
Feng, Ya; Zhu, Jie; Tang, Dawei
2014-12-01
Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs) on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.
Does trampoline or hard surface jumping influence lower extremity alignment?
Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby
2017-12-01
[Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.
Does trampoline or hard surface jumping influence lower extremity alignment?
Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby
2017-01-01
[Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592
Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhary, Dhirendra K.; Kumar, Lokendra, E-mail: lokendrakr@allduniv.ac.in
2016-05-23
Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.
Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing
ERIC Educational Resources Information Center
Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.
2004-01-01
To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…
Trumble, Troy N; Billinghurst, R Clark; Bendele, Alison M; McIlwraith, C Wayne
2005-01-01
To determine whether decreases in peak vertical force of the hind limb after transection of the cranial cruciate ligament (CrCL) would be indicative of medial meniscal damage in dogs. 39 purpose-bred adult male Walker Hounds. The right CrCL was transected arthroscopically. Force plate measurements of the right hind limb were made prior to and 2, 4, 10, and 18 weeks after transection of the CrCL. Only dogs with > or =10% decreases in peak vertical force after week 2 were considered to have potential meniscal damage. Dogs that did not have > or =10% decreases in peak vertical force at any time point after week 2 were assigned to group 1. Group 2 dogs had > or =10% decreases in peak vertical force from weeks 2 to 4 only. Group 3 and 4 dogs had > or =10% decreases in peak vertical force from weeks 4 to 10 only or from weeks 10 to 18 only, respectively. Damage to menisci and articular cartilage was graded at week 18, and grades for groups 2 to 4 were compared with those of group 1. The percentage change in peak vertical force and impulse area was significantly different in groups 2 (n = 4), 3 (4), and 4 (4) at the end of each measurement period (weeks 4, 10, and 18, respectively) than in group 1 (27). The meniscal grade for groups 2 to 4 was significantly higher than for group 1. A > or =10% decrease in peak vertical force had sensitivity of 52% and accuracy of 72% for identifying dogs with moderate to severe medial meniscal damage. In dogs with transected or ruptured CrCLs, force plate analysis can detect acute exacerbation of lameness, which may be the result of secondary meniscal damage, and provide an objective noninvasive technique that delineates the temporal pattern of medial meniscal injury.
A simple method of equine limb force vector analysis and its potential applications
Robinson, Mark A.; Clayton, Hilary M.
2018-01-01
Background Ground reaction forces (GRF) measured during equine gait analysis are typically evaluated by analyzing discrete values obtained from continuous force-time data for the vertical, longitudinal and transverse GRF components. This paper describes a simple, temporo-spatial method of displaying and analyzing sagittal plane GRF vectors. In addition, the application of statistical parametric mapping (SPM) is introduced to analyse differences between contra-lateral fore and hindlimb force-time curves throughout the stance phase. The overall aim of the study was to demonstrate alternative methods of evaluating functional (a)symmetry within horses. Methods GRF and kinematic data were collected from 10 horses trotting over a series of four force plates (120 Hz). The kinematic data were used to determine clean hoof contacts. The stance phase of each hoof was determined using a 50 N threshold. Vertical and longitudinal GRF for each stance phase were plotted both as force-time curves and as force vector diagrams in which vectors originating at the centre of pressure on the force plate were drawn at intervals of 8.3 ms for the duration of stance. Visual evaluation was facilitated by overlay of the vector diagrams for different limbs. Summary vectors representing the magnitude (VecMag) and direction (VecAng) of the mean force over the entire stance phase were superimposed on the force vector diagram. Typical measurements extracted from the force-time curves (peak forces, impulses) were compared with VecMag and VecAng using partial correlation (controlling for speed). Paired samples t-tests (left v. right diagonal pair comparison and high v. low vertical force diagonal pair comparison) were performed on discrete and vector variables using traditional methods and Hotelling’s T2 tests on normalized stance phase data using SPM. Results Evidence from traditional statistical tests suggested that VecMag is more influenced by the vertical force and impulse, whereas VecAng is more influenced by the longitudinal force and impulse. When used to evaluate mean data from the group of ten sound horses, SPM did not identify differences between the left and right contralateral limb pairs or between limb pairs classified according to directional asymmetry. When evaluating a single horse, three periods were identified during which differences in the forces between the left and right forelimbs exceeded the critical threshold (p < .01). Discussion Traditional statistical analysis of 2D GRF peak values, summary vector variables and visual evaluation of force vector diagrams gave harmonious results and both methods identified the same inter-limb asymmetries. As alpha was more tightly controlled using SPM, significance was only found in the individual horse although T2 plots followed the same trends as discrete analysis for the group. Conclusions The techniques of force vector analysis and SPM hold promise for investigations of sidedness and asymmetry in horses. PMID:29492341
Khumsap, S; Clayton, H M; Lanovaz, J L
2001-06-01
To measure the effect of subject velocity on hind limb ground reaction force variables at the walk and to use the data to predict the force variables at different walking velocities in horses. 5 clinically normal horses. Kinematic and force data were collected simultaneously. Each horse was led over a force plate at a range of walking velocities. Stance duration and force data were recorded for the right hind limb. To avoid the effect of horse size on the outcome variables, the 8 force variables were standardized to body mass and height at the shoulders. Velocity was standardized to height at the shoulders and expressed as velocity in dimensionless units (VDU). Stance duration was also expressed in dimensionless units (SDU). Simple regression analysis was performed, using stance duration and force variables as dependent variables and VDU as the independent variable. Fifty-six trials were recorded with velocities ranging from 0.24 to 0.45 VDU (0.90 to 1.72 m/s). Simple regression models between measured variables and VDU were significant (R2 > 0.69) for SDU, first peak of vertical force, dip between the 2 vertical force peaks, vertical impulse, and timing of second peak of vertical force. Subject velocity affects vertical force components only. In the future, differences between the forces measured in lame horses and the expected forces calculated for the same velocity will be studied to determine whether the equations can be used as diagnostic criteria.
[Diagnosis and treatment of strabismus caused by nasal endoscopic surgery].
Ai, L K; Wu, X; Wang, J N; Li, J; Wu, Y; Zhou, J; Song, W X; Guo, R L
2017-12-11
Objective: Strabismus with diplopia is the main orbital complication of functional endoscopic sinus surgery (FESS). This study was to analyze clinical findings, treatment and outcomes of such cases. Methods: Retrospective case series. Twenty-three cases were divided into 3 groups based on the disease severity: group A, partial transection of the medial rectus muscle, group B, complete transection of the medical rectus, group C, transection of the medial rectus combined with the other orbital injuries. Complete ophthalmology examinations, including eye alignment, eye motility, force duction test, force generation test, general eye exam, and medical imaging (orbital CT or MRI), were performed for each case. The treatment included botulinum toxin (Botox) injection to the lateral rectus muscle, transposition of the vertical rectus muscle, and orbital surgery if needed. Results: In group A with Botox injection, all the cases achieved single vision in primary position, but still remained some adduction weakness. In group B treated by vertical transposition surgery combined with Botox, 22% of the cases got single vision in primary gaze. In group C, even with more efforts of treatment, the cases with orbital injury can only get cosmetic improvement, and diplopia and adduction dysfunction were found in most cases. Conclusions: Due to the variety of the complications of FESS, force duction test is a crucial exam to detect the direction and severity of synechia in the orbit, which will give solid information to surgery approach as well as prognosis. Botox injection at early stage will minimize the contraction of antagonist lateral rectus, helping to postpone the transposition surgery which may cause anterior segment ischemia when performed right after the medial rectus transection injury. Botox may even reduce the synechia by minimizing the scarring process. Partial vertical rectus transposition combined with muscle resection may effectively correct the eye misalignment in primary gaze and improve eye motility. The prognosis of FESS induced orbital complications is quite related with the severity of the injury. Botox combined with surgery may help medial rectus transection cases to achieve single vision in primary gaze, but when there is any other orbital injury, treatment may only improve cosmetic appearance. (Chin J Ophthalmol, 2017, 53: 917-923) .
Large General Purpose Frame for Studying Force Vectors
ERIC Educational Resources Information Center
Heid, Christy; Rampolla, Donald
2011-01-01
Many illustrations and problems on the vector nature of forces have weights and forces in a vertical plane. One of the common devices for studying the vector nature of forces is a horizontal "force table," in which forces are produced by weights hanging vertically and transmitted to cords in a horizontal plane. Because some students have…
Ground reaction forces and knee kinetics during single and repeated badminton lunges.
Lam, Wing Kai; Ding, Rui; Qu, Yi
2017-03-01
Repeated movement (RM) lunge that frequently executed in badminton might be used for footwear evaluation. This study examined the influence of single movement (SM) and RM lunges on the ground reaction forces (GRFs) and knee kinetics during the braking phase of a badminton lunge step. Thirteen male university badminton players performed left-forward lunges in both SM and RM sessions. Force platform and motion capturing system were used to measure GRFs and knee kinetics variables. Paired t-test was performed to determine any significant differences between SM and RM lunges regarding mean and coefficient of variation (CV) in each variable. The kinetics results indicated that compared to SM lunges, the RM lunges had shorter contact time and generated smaller maximum loading rate of impact force, peak knee anterior-posterior force, and peak knee sagittal moment but generated larger peak horizontal resultant forces (Ps < 0.05). Additionally, the RM lunges had lower CV for peak knee medial-lateral and vertical forces (Ps < 0.05). These results suggested that the RM testing protocols had a distinct loading response and adaptation pattern during lunge and that the RM protocol showed higher within-trial reliability, which may be beneficial for the knee joint loading evaluation under different interventions.
A Comparison of 2 Current-Issue Army Boots.
2000-01-01
at 3.5 mph, mean (SD) 32 21 .Maximum heel- strike vertical force (N) while walking at 3.5 mph, mean (SD) 33 22 Maximum heel- strike braking force...while running at 6.5 mph, mean (SD) 38 34 Maximum force on the hip (N) while running at 6.5 mph, mean (SD) 38 35 Maximum vertical heel- strike force (N...during 6.5 mph running, mean (SD) 39 36. Maximum heel- strike braking force (N) while running at 6.5 mph, mean (SD) 39 37. Maximum vertical push
Influence of loading forces on the vertical accuracy of interocclusal records.
Ghazal, Muhamad; Kern, Matthias
2010-02-01
To evaluate the influence of loading forces on the vertical discrepancies caused by interocclusal recording materials. A custom-made apparatus was used to simulate the maxilla and mandible. Eight interocclusal records were made in each of the following groups: G1-Aluwax (aluminum wax; Aluwax), G2-Beauty Pink wax (hydrocarbon wax compound; Miltex), G3-Futar D, G4-Futar D Fast, G5-Futar Scan (polyvinyl siloxanes; Kettenbach), and G6-Ramitec (polyether; 3M ESPE). The vertical discrepancies were measured by an inductive displacement transducer connected to a carrier frequency amplifier after storage of the records for 1 hour at room temperature. Different compressive loading forces up to 1 kg were applied onto the upper part of the apparatus to evaluate the influence on the vertical discrepancies of the records. Two-way ANOVA was used for statistical analysis. The compressive loading force had a statistically significant influence on the vertical discrepancies (P<.01) (ie, higher forces reduced the vertical discrepancies). When a compressive force of 1 kg was applied to the upper part of the apparatus, the mean vertical discrepancies for G1 (11+/-3 microm) and G2 (12+/-3 microm) were statistically significantly higher than in groups G3 (1+/-1 microm), G4 (2+/-1 microm), G5 (0+/-1 microm), and G6 (-2+/-2 microm). A compressive force of 1 kg could be used to stabilize the cast during mounting procedures in an articulator using an interocclusal record made of polyvinyl siloxane without vertically changing the interocclusal relationships.
An Advanced Buffet Load Alleviation System
NASA Technical Reports Server (NTRS)
Burnham, Jay K.; Pitt, Dale M.; White, Edward V.; Henderson, Douglas A.; Moses, Robert W.
2001-01-01
This paper describes the development of an advanced buffet load alleviation (BLA) system that utilizes distributed piezoelectric actuators in conjunction with an active rudder to reduce the structural dynamic response of the F/A-18 aircraft vertical tails to buffet loads. The BLA system was defined analytically with a detailed finite-element-model of the tail structure and piezoelectric actuators. Oscillatory aerodynamics were included along with a buffet forcing function to complete the aeroservoelastic model of the tail with rudder control surface. Two single-input-single-output (SISO) controllers were designed, one for the active rudder and one for the active piezoelectric actuators. The results from the analytical open and closed loop simulations were used to predict the system performance. The objective of this BLA system is to extend the life of vertical tail structures and decrease their life-cycle costs. This system can be applied to other aircraft designs to address suppression of structural vibrations on military and commercial aircraft.
Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics.
Lake, Jason; Mundy, Peter; Comfort, Paul; McMahon, John J; Suchomel, Timothy J; Carden, Patrick
2018-05-29
This study examined concurrent validity of countermovement vertical jump (CMJ) reactive strength index modified and force-time characteristics recorded using a one dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral CMJs on two portable force plates placed on top of two in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to take-off, jump height, reactive strength index modified, braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r≥.99). There were small (d<.12) but significant differences between their respective braking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (p<.001). However, limits of agreement yielded a mean value of 1.7% relative to the laboratory force plate system (95% CL: .9% to 2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement belonged to jump height (2.1%), time to take-off (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force-time variables, from unloaded CMJ and practitioners can use both force plates interchangeably.
NASA Astrophysics Data System (ADS)
Yang, Yong
2008-12-01
In an actual levitation system composed of high temperature superconductors (HTSs) and permanent magnets (PMs), the levitating bodies may traverse in arbitrary directions. Many previous researchers assumed that the levitating bodies moved in a vertical direction or a lateral direction in order to simplify the problem. In this paper, the vertical and lateral forces acting on the PM are calculated by the modified frozen-image method when a PM above an HTS traverses in arbitrary directions. In order to study the effects of the movement directions on the vertical and lateral forces, comparisons of the forces that act on a PM traversing in a tilted direction with those that act on a PM traversing in a vertical direction or a lateral direction have been presented.
Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K
NASA Astrophysics Data System (ADS)
Celik, Sukru; Guner, S. Baris; Coskun, Elvan
2015-03-01
Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.
Kim, Seyoung; Park, Sukyung; Choi, Sangkyu
2014-09-22
In this study, we developed a curve-fit model of countermovement dynamics and examined whether the characteristics of a countermovement jump can be quantified using the model parameter and its scaling; we expected that the model-based analysis would facilitate an understanding of the basic mechanisms of force reduction and propulsion with a simplified framework of the center of mass (CoM) mechanics. Ten healthy young subjects jumped straight up to five different levels ranging from approximately 10% to 35% of their body heights. The kinematic and kinetic data on the CoM were measured using a force plate system synchronized with motion capture cameras. All subjects generated larger vertical forces compared with their body weights from the countermovement and sufficiently lowered their CoM position to support the work performed by push-off as the vertical elevations became more challenging. The model simulation reasonably reproduced the trajectories of vertical force during the countermovement, and the model parameters were replaced by linear and polynomial regression functions in terms of the vertical jump height. Gradual scaling trends of the individual model parameters were observed as a function of the vertical jump height with different degrees of scaling, depending on the subject. The results imply that the subjects may be aware of the jumping dynamics when subjected to various vertical jump heights and may select their countermovement strategies to effectively accommodate biomechanical constraints, i.e., limited force generation for the standing vertical jump. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of constrained arm swing on vertical center of mass displacement during walking.
Yang, Hyung Suk; Atkins, Lee T; Jensen, Daniel B; James, C Roger
2015-10-01
The purpose of this study was to determine the effects of constraining arm swing on the vertical displacement of the body's center of mass (COM) during treadmill walking and examine several common gait variables that may account for or mask differences in the body's COM motion with and without arm swing. Participants included 20 healthy individuals (10 male, 10 female; age: 27.8 ± 6.8 years). The body's COM displacement, first and second peak vertical ground reaction forces (VGRFs), and lowest VGRF during mid-stance, peak summed bilateral VGRF, lower extremity sagittal joint angles, stride length, and foot contact time were measured with and without arm swing during walking at 1.34 m/s. The body's COM displacement was greater with the arms constrained (arm swing: 4.1 ± 1.2 cm, arm constrained: 4.9 ± 1.2 cm, p < 0.001). Ground reaction force data indicated that the COM displacement increased in both double limb and single limb stance. However, kinematic patterns visually appeared similar between conditions. Shortened stride length and foot contact time also were observed, although these do not seem to account for the increased COM displacement. However, a change in arm COM acceleration might have contributed to the difference. These findings indicate that a change in arm swing causes differences in vertical COM displacement, which could increase energy expenditure. Copyright © 2015 Elsevier B.V. All rights reserved.
Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C
2018-01-01
Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.
Stride length: the impact on propulsion and bracing ground reaction force in overhand throwing.
Ramsey, Dan K; Crotin, Ryan L
2018-03-26
Propulsion and bracing ground reaction force (GRF) in overhand throwing are integral in propagating joint reaction kinetics and ball velocity, yet how stride length effects drive (hind) and stride (lead) leg GRF profiles remain unknown. Using a randomised crossover design, 19 pitchers (15 collegiate and 4 high school) were assigned to throw 2 simulated 80-pitch games at ±25% of their desired stride length. An integrated motion capture system with two force plates and radar gun tracked each throw. Vertical and anterior-posterior GRF was normalised then impulse was derived. Paired t-tests identified whether differences between conditions were significant. Late in single leg support, peak propulsion GRF was statistically greater for the drive leg with increased stride. Stride leg peak vertical GRF in braking occurred before acceleration with longer strides, but near ball release with shorter strides. Greater posterior shear GRF involving both legs demonstrated increased braking with longer strides. Conversely, decreased drive leg propulsion reduced both legs' braking effects with shorter strides. Results suggest an interconnection between normalised stride length and GRF application in propulsion and bracing. This work has shown stride length to be an important kinematic factor affecting the magnitude and timing of external forces acting upon the body.
NASA Astrophysics Data System (ADS)
Weibust, E.
1981-04-01
A NASA model for computing the subsonic, viscous, attached flow around multielement airfoils was used to determine the amount of energy lost when using double blades rather than single ones. The resulting tangential force for the double or single blade configuration used as a criterion is found. Radial spacing, toe-in toe-out angle and tangential displacement (stagger) were varied to see how tagential force is affected. The greatest tangential force values are found to be achieved for maximum allowable radial spacing, which is determined by structural considerations, and is assumed to be on the order of 1.5 c. At this rather large distance, stagger as well as toe-in toe-out angle only gives slight improvements as long as the flow separation effects (stall region) are not considered. A large part of the energy is captured at relatively high wind speeds when the flow on the blades is partly separated (stalled).
Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum
2016-03-01
Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.
On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks
NASA Astrophysics Data System (ADS)
Gryschka, Micha; Fricke, Jens; Raasch, Siegfried
2014-11-01
We investigated the impact of roll convection on the convective boundary layer and vertical transports in different cold air outbreak (CAO) scenarios using large eddy simulations (LES). The organization of convection into rolls was triggered by upstream heterogeneities in the surface temperature, representing ice and water. By changing the sea ice distribution in our LES, we were able to simulate a roll and a nonroll case for each scenario. Furthermore, the roll wavelength was varied by changing the scale of the heterogeneity. The characteristics of the simulated rolls and cloud streets, such as aspect ratios, orientation of the roll axes, and downstream extensions of single rolls agreed closely with observations in CAO situations. The vertical turbulent fluxes, calculated for each simulation, were decomposed into contributions from rolls and from unorganized turbulence. Even though our results confirmed that rolls triggered by upstream heterogeneities can substantially contribute to vertical turbulent fluxes, the total fluxes were not affected by the rolls.
READ, PAUL; OLIVER, JON L.; DE STE CROIX, MARK B.A.; MYER, GREGORY D.; LLOYD, RHODRI S.
2016-01-01
Deficits in neuromuscular control during movement patterns such as landing are suggested pathomechanics that underlie sport-related injury. A common mode of assessment is measurement of landing forces during jumping tasks; however, these measures have been used less frequently in male youth soccer players and reliability data is sparse. The aim of this study was to examine the reliability of a field-based neuromuscular control screening battery using force plate diagnostics in this cohort. Twenty six pre-peak height velocity (PHV) and twenty five post-PHV elite male youth soccer players completed a drop vertical jump (DVJ), single leg 75% horizontal hop and stick (75%HOP) and single leg countermovement jump (SLCMJ). Measures of peak landing vertical ground reaction force (pVGRF), time to stabilisation (TTS), time to pVGRF, and pVGRF asymmetry were recorded. A test, re-test design was used and reliability statistics included: change in mean, intraclass correlation coefficient (ICC) and coefficient of variation (CV). No significant differences in mean score were reported for any of the assessed variables between test sessions. In both groups, pVGRF and asymmetry during the 75%HOP and SLCMJ demonstrated largely acceptable reliability (CV ≤ 10%). Greater variability was evident in DVJ pVGRF and all other assessed variables, across the three protocols (CV range = 13.8 – 49.7%). ICC values ranged from small to large and were generally higher in the post-PHV players. The results of this study suggest that pVGRF and asymmetry can be reliably assessed using a 75%HOP and SLCMJ in this cohort. These measures could be utilized to support a screening battery for elite male youth soccer players and for test re-test comparison. PMID:27075641
Shiba, N; Kitaoka, H B; Cahalan, T D; Chao, E Y
1995-01-01
The efficacy of 3 shock-absorbing materials was compared by determining impact characteristics with a drop test method and also by testing the effect of each material when used as a shoe insert in 16 asymptomatic subjects. Peak vertical ground reaction force (F1, F2, F3) and temporal force factors (T1, T2, T3) were obtained with a force plate at a high-frequency sampling rate. Impact force, impact time, impact slope, and impact energy were determined. A standard weight was dropped from 3 heights on each material covering the force plate while reduction of peak force was compared. Impact force was attenuated most effectively by Insert 3 (polymeric foam rubber) and averaged 11% less than that in shoes without inserts. Impact time was increased for all 3 inserts. Impact slope and impact energy were reduced significantly in Insert 3. There was a significant difference in peak vertical force F1 for all 3 inserts, in vertical force F2 for Insert 2 (viscoelastic polymeric material), and in vertical force F3 for Insert 2. Drop-test studies showed that at all ball heights, the highest mean peak force was observed consistently in Insert 2.
Glavičić, Snježana; Anić, Ivica; Braut, Alen; Miletić, Ivana; Borčić, Josipa
2011-08-01
The purpose was to measure and analyse the vertical force and torque developed in the wider and narrower root canals during hand ProTaper instrumentation. Twenty human incisors were divided in two groups. Upper incisors were experimental model for the wide, while the lower incisors for the narrow root canals. Measurements of the force and torque were done by a device constructed for this purpose. Differences between the groups were statistically analysed by Mann-Whitney U-test with the significance level set to P<0.05. Vertical force in the upper incisors ranged 0.25-2.58 N, while in the lower incisors 0.38-6.94 N. Measured torque in the upper incisors ranged 0.53-12.03 Nmm, while in the lower incisor ranged 0.94-10.0 Nmm. Vertical force and torque were higher in the root canals of smaller diameter. The increase in the contact surface results in increase of the vertical force and torque as well in both narrower and wider root canals. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng
Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less
2007-03-30
Langmuir - Blodgett and self-assembly methods, WNTs are patterned selectively onto various substrates [3,4]. hou et al. assembled SWNTs into aligned...dispersion usually decreases with increasing ionic concentration, it is suggested that chloride ions are produced by dissociating from acid chloride groups...patterns can be attributed to the Marangoni effect and diffusion-limited aggregation (DLA) in the liquid film during droplet evaporation t different
NASA Astrophysics Data System (ADS)
Durand, Yannig; Woehl, Jörg C.; Viellerobe, Bertrand; Göhde, Wolfgang; Orrit, Michel
1999-02-01
Due to the weakness of the fluorescence signal from a single fluorophore, a scanning near-field optical microscope for single molecule spectroscopy requires a very efficient setup for the collection and detection of emitted photons. We have developed a home-built microscope for operation in a l-He cryostat which uses a solid parabolic mirror in order to optimize the fluorescence collection efficiency. This microscope works with Al-coated, tapered optical fibers in illumination mode. The tip-sample separation is probed by an optical shear-force detection. First results demonstrate the capability of the microscope to image single molecules and achieve a topographical resolution of a few nanometers vertically and better than 50 nm laterally.
Investigation on dynamical interaction between a heavy vehicle and road pavement
NASA Astrophysics Data System (ADS)
Yang, Shaopu; Li, Shaohua; Lu, Yongjie
2010-08-01
This paper presents a model for three-dimensional, heavy vehicle-pavement-foundation coupled system, which is modelled as a seven-DOF vehicle moving along a simply supported double-layer rectangular thin plate on a linear viscoelastic foundation. The vertical tyre force is described by a single point-contact model, while the pavement-foundation is modelled as a double-layer plate on a linear viscoelastic foundation. Using the Galerkin method and quick direct integral method, the dynamical behaviour of the vehicle-pavement-foundation coupled system is investigated numerically and compared with that of traditional vehicle system and pavement system. The effects of coupling action on vehicle body vertical acceleration, suspension deformations, tyre forces and pavement displacements are also obtained. The investigation shows that the coupling action could not be neglected even on a smooth road surface, such as highway. Thus, it is necessary to investigate the dynamics of vehicle and pavement simultaneously based on the vehicle-pavement-foundation coupled system.
Pilot investigation - Nominal crew induced forces in zero-g
NASA Technical Reports Server (NTRS)
Klute, Glenn K.
1992-01-01
This report presents pilot-study data of test subject forces induced by intravehicular activities such as push-offs and landings with both hands and feet. Five subjects participated in this investigation. Three orthogonal force axes were measured in the NASA KC-135 research aircraft's 'zero-g' environment. The largest forces were induced during vertical foot push-offs, including one of 534 newtons (120 lbs). The mean vertical foot push-off was 311 newtons (70 lbs). The vertical hand push-off forces were also relatively large, including one of 267 newtons (60 lbs) with a mean of 151 newtons (34 lbs). These force magnitudes of these forces would result in a Shuttle gravity environment of about 1 x exp 10 -4 g's.
NASA Astrophysics Data System (ADS)
Ndoye, Fatou; Sulaiman Yousafzai, Muhammad; Coceano, Giovanna; Bonin, Serena; Scoles, Giacinto; Ka, Oumar; Niemela, Joseph; Cojoc, Dan
2016-01-01
We studied the lateral forces arising during the vertical indentation of the cell membrane by an optically trapped microbead, using back focal plane interferometry to determine force components in all directions. We analyzed the cell-microbead interaction and showed that indeed the force had also lateral components. Using the Hertz model, we calculated and compared the elastic moduli resulting from the total and vertical forces, showing that the differences are important and the total force should be considered. To confirm our results we analyzed cells from two breast cancer cell lines: MDA-MB-231 and HBL-100, known to have different cancer aggressiveness and hence stiffness.
Performance of an inverted pendulum model directly applied to normal human gait.
Buczek, Frank L; Cooney, Kevin M; Walker, Matthew R; Rainbow, Michael J; Concha, M Cecilia; Sanders, James O
2006-03-01
In clinical gait analysis, we strive to understand contributions to body support and propulsion as this forms a basis for treatment selection, yet the relative importance of gravitational forces and joint powers can be controversial even for normal gait. We hypothesized that an inverted pendulum model, propelled only by gravity, would be inadequate to predict velocities and ground reaction forces during gait. Unlike previous ballistic and passive dynamic walking studies, we directly compared model predictions to gait data for 24 normal children. We defined an inverted pendulum from the average center-of-pressure to the instantaneous center-of-mass, and derived equations of motion during single support that allowed a telescoping action. Forward and inverse dynamics predicted pendulum velocities and ground reaction forces, and these were statistically and graphically compared to actual gait data for identical strides. Results of forward dynamics replicated those in the literature, with reasonable predictions for velocities and anterior ground reaction forces, but poor predictions for vertical ground reaction forces. Deviations from actual values were explained by joint powers calculated for these subjects. With a telescoping action during inverse dynamics, predicted vertical forces improved dramatically and gained a dual-peak pattern previously missing in the literature, yet expected for normal gait. These improvements vanished when telescoping terms were set to zero. Because this telescoping action is difficult to explain without muscle activity, we believe these results support the need for both gravitational forces and joint powers in normal gait. Our approach also begins to quantify the relative contributions of each.
Reliability of the Kinetics of British Army Foot Drill in Untrained Personnel.
Rawcliffe, Alex J; Simpson, Richard J; Graham, Scott M; Psycharakis, Stelios G; Moir, Gavin L; Connaboy, Chris
2017-02-01
Rawcliffe, AJ, Simpson, RJ, Graham, SM, Psycharakis, SG, Moir, GL, and Connaboy, C. Reliability of the kinetics of British Army foot drill in untrained personnel. J Strength Cond Res 31(2): 435-444, 2017-The purpose of this study was to quantify the reliability of kinetic variables of British Army foot drill performance within untrained civilians and report the magnitude of vertical ground reaction force (vGRF) and vertical rate of force development (RFD) of foot drills. Fifteen recreational active males performed 3 testing sessions across a 1-week period, with each session separated by 24 hours. Within each testing session participants (mean ± SD; age 22.4 ± 1.7 years; height 177 ± 5.6 cm; weight 83 ± 8.7 kg) completed 10 trials of stand-at-attention (SaA), stand-at-ease (SaE), Halt, quick-march (QM) and a normal walking gait, with vGRF and vertical RFD measured on a force plate. Between-session and within-session reliability was calculated as systematic bias, coefficient of variation calculated from the typical error (CVte%), and intraclass correlation coefficient (ICC). Significant (p ≤ 0.05) between-session differences were found for the vGRF SaA and SaE, and vertical RFD SaA and SaE conditions. Significant (p ≤ 0.05) within-session differences were found for the vGRF SaA and SaE conditions. A mean vGRF CVte% ≤10% was observed across all foot drills. However, the mean vertical RFD CVte% observed was ≥10% (excluding SaE) across all foot drills. The ICC analyses indicated that the vGRF Halt, QM, SaA, and Walk condition achieved moderate to large levels of test-retest reliability, with only SaE failing to achieve an ICC value ≥0.75. The vertical RFD QM, SaE, and Walk condition achieved moderate levels of test-retest reliability, with Halt and SaA failing to achieve an ICC value ≥0.75. It was determined that a single familiarization session and using the mean of 8 trials of vGRF are required to achieve acceptable levels of reliability.
Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system
NASA Astrophysics Data System (ADS)
Yang, Yong; Li, Chengshan
2017-12-01
Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM) above a cylindrical high temperature superconductor (HTS) moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC), however, the lateral stiffness in field cooling (FC) and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.
Read, Paul J; Oliver, Jon L; Croix, Mark Ba De Ste; Myer, Gregory D; Lloyd, Rhodri S
2016-12-01
Read, P, Oliver, JL, Croix, MD, Myer, GD, and Lloyd, RS. Consistency of field-based measures of neuromuscular control using force-plate diagnostics in elite male youth soccer players. J Strength Cond Res 30(12): 3304-3311, 2016-Deficits in neuromuscular control during movement patterns such as landing are suggested pathomechanics that underlie sport-related injury. A common mode of assessment is measurement of landing forces during jumping tasks; however, these measures have been used less frequently in male youth soccer players, and reliability data are sparse. The aim of this study was to examine the reliability of a field-based neuromuscular control screening battery using force-plate diagnostics in this cohort. Twenty-six pre-peak height velocity (PHV) and 25 post-PHV elite male youth soccer players completed a drop vertical jump (DVJ), single-leg 75% horizontal hop and stick (75%HOP), and single-leg countermovement jump (SLCMJ). Measures of peak landing vertical ground reaction force (pVGRF), time to stabilization, time to pVGRF, and pVGRF asymmetry were recorded. A test-retest design was used, and reliability statistics included change in mean, intraclass correlation coefficient, and coefficient of variation (CV). No significant differences in mean score were reported for any of the assessed variables between test sessions. In both groups, pVGRF and asymmetry during the 75%HOP and SLCMJ demonstrated largely acceptable reliability (CV ≤ 10%). Greater variability was evident in DVJ pVGRF and all other assessed variables, across the 3 protocols (CV range = 13.8-49.7%). Intraclass correlation coefficient values ranged from small to large and were generally higher in the post-PHV players. The results of this study suggest that pVGRF and asymmetry can be reliably assessed using a 75%HOP and SLCMJ in this cohort. These measures could be used to support a screening battery for elite male youth soccer players and for test-retest comparison.
Forces on stationary particles in near-bed turbulent flows
NASA Astrophysics Data System (ADS)
Schmeeckle, Mark W.; Nelson, Jonathan M.; Shreve, Ronald L.
2007-06-01
In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance.
Forces on stationary particles in near-bed turbulent flows
Schmeeckle, M.W.; Nelson, J.M.; Shreve, R.L.
2007-01-01
In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance. Copyright 2007 by the American Geophysical Union.
Kinematic Patterns Associated with the Vertical Force Produced during the Eggbeater Kick.
Oliveira, Nuno; Chiu, Chuang-Yuan; Sanders, Ross H
2015-01-01
The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.
Inertial oscillation of a vertical rotating draft with application to a supercell storm
NASA Technical Reports Server (NTRS)
Costen, Robert C.; Stock, Larry V.
1992-01-01
An analytic model (vertical rotating draft) which includes the gross features of a supercell storm on an f-plane, undergoes an inertial oscillation that appears to have been overlooked in previous analytic and numerical models. The oscillation is nonlinear and consists of a long quiescent phase and a short intense phase. During the intense phase, the rotating draft has the following features of a supercell: the diameter of the core contracts as it spins up and expands as it spins down; if vertical wind shear is included, the track of the rotating draft turns to the right (an anticyclonic rotating draft turns to the left); this turning point is followed by a predominantly upward flow; and the horizontal pressure gradient is very small (a property of most tornadoless supercells). The rapid spin-up during the intense phase and the high Rossby numbers obtainable establish the ability of the Coriolis force to spin up single cyclonic or anticyclonic supercells by means of this inertial oscillation. This surprising result has implications for numerical supercell simulations, which generally do not rely on the Coriolis force as a source of rotation. The physics and mathematics of the inertial oscillation are given, and the solution is applied to a documented supercell.
Villarrasa-Sapiña, Israel; Serra-Añó, Pilar; Pardo-Ibáñez, Alberto; Gonzalez, Luis-Millán; García-Massó, Xavier
2017-01-01
Obesity is now a serious worldwide challenge, especially in children. This condition can cause a number of different health problems, including musculoskeletal disorders, some of which are due to mechanical stress caused by excess body weight. The aim of this study was to determine the association between body composition and the vertical ground reaction force produced during walking in obese children. Sixteen children participated in the study, six females and ten males [11.5 (1.2) years old, 69.8 (15.5) kg, 1.56 (0.09) m, and 28.36 (3.74) kg/m 2 of body mass index (BMI)]. Total weight, lean mass and fat mass were measured by dual-energy X-ray absorptiometry and vertical forces while walking were obtained by a force platform. The vertical force variables analysed were impact and propulsive forces, and the rate of development of both. Multiple regression models for each vertical force parameter were calculated using the body composition variables as input. The impact force regression model was found to be positively related to the weight of obese children and negatively related to lean mass. The regression model showed lean mass was positively related to the propulsive rate. Finally, regression models for impact and propulsive force showed a direct relationship with body weight. Impact force is positively related to the weight of obese children, but lean mass helps to reduce the impact force in this population. Exercise could help obese persons to reduce their total body weight and increase their lean mass, thus reducing impact forces during sports and other activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cornering characteristics of the main-gear tire of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Stubbs, Sandy M.; Robinson, Martha P.
1988-01-01
An experimental investigation was conducted at the NASA Langley Research Center to study the effects of various vertical load and yaw angle conditions on the cornering behavior of the Space Shuttle Orbiter main gear tire. Measured parameters included side and drag force, side and drag force coefficients, aligning torque, and overturning torque. Side force coefficient was found to increase as yaw angle was increased, but decreased as the vertical load was increased. Drag force was found to increase as vertical load was increased at constant yaw angles. Aligning torque measurements indicated that the tire is stable in yaw.
Weinstein, Jeff I; Payne, Sarah; Poulson, Jean M; Azuma, Chieko
2009-01-01
A standard of therapy for osteosarcoma includes amputation with or without adjuvant chemotherapy. There is a subset of dogs with osteosarcoma that are unsuitable for amputation. We evaluated kinetic variables in dogs with appendicular osteosarcoma treated with a single 8 Gy dose of radiation. Eighteen pet dogs with appendicular osteosarcoma received one 8 Gy fraction of palliative radiation on day 0. Force plate measurements and clinical assessments were made on days 0, 7, 14, and 21. Peak vertical forces (Fz) were recorded for each limb and a symmetric index (SI) was calculated. There were no significant changes in kinetic parameters after one 8 Gy dose of radiation therapy. Nine of these 18 dogs exhibited increased limb function at day 21 based on force plate analysis. Significant factors affecting Fz included gender and tumor location. There was a significant correlation between Fz and response to therapy based on SI at day 21. SI seems to be useful to objectively assess response in this mixed population of dogs. One 8 Gy fraction of radiation therapy alone did not reduce lameness associated with appendicular osteosarcoma, but a subset of dogs did have improved limb function after a single dose.
A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.
2016-03-01
Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.
The Acute Effects of Heavy Deadlifts on Vertical Jump Performance in Men
Arias, Jerry C.; Coburn, Jared W.; Brown, Lee E.; Galpin, Andrew J.
2016-01-01
The purpose of this study was to investigate the effects of deadlifts as a postactivation potentiation stimulus on vertical jump performance. Fifteen men (age, 23.9 ± 4.2 years; height, 176.3 ± 8.6 cm; mass, 76.1 ± 16.3 kg) participated in the study. Participants visited the lab for three sessions, each separated by at least 48 h. One repetition maximum (1RM) in the deadlift was measured during the first visit. For Visit 2, participants performed one of two experimental sessions: a deadlift session or a control session. Participants performed a single maximal vertical jump (VJ; counter movement jump without an arm swing), then either performed five repetitions of the deadlift using 85% 1RM (deadlift session) or were told to stand still for ten seconds (control). Following either condition, participants performed single VJ at 15 s, 2, 4, 6, 8, 10, 12, 14, and 16 min post condition. Peak VJ height and peak ground reaction forces (pGRF) were measured using a force plate. For Visit 3, whatever condition was not administered at Visit 2 was performed. The results showed that VJ height was significantly lower 15 s following deadlifting (36.9 ± 5.1 cm) compared to the control condition (40.1 ± 4.6 cm). In addition, VJ height 15 s after the deadlift was lower than VJ height measured at minutes 2–16 following the deadlift. Performance of five repetitions of deadlifting did not affect pGRF. These results suggest that performing five repetitions of the deadlift exercise at 85% 1RM does not induce a postactivation potentiation (PAP) effect, and may in fact cause an acute reduction in VJ performance.
Absence, Legitimacy and System Size.
ERIC Educational Resources Information Center
Gibson, R. Oliver
As school systems grow both vertically and horizontally, they face forces tending both to unify (centripetal) and to disunify (centrifugal). A viable system growth involves a blend of both forces on both vertical and horizontal dimensions. It is often assumed that the disunifying impact of centrifugal forces is of such proportion that the…
Interfacial instabilities in vibrated fluids
NASA Astrophysics Data System (ADS)
Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier
2016-07-01
Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.
Vertical and horizontal integration of knowledge and skills - a working model.
Snyman, W D; Kroon, J
2005-02-01
The new integrated outcomes-based curriculum for dentistry was introduced at the University of Pretoria in 1997. The first participants graduated at the end of 2001. Educational principles that underpin the new innovative dental curriculum include vertical and horizontal integration, problem-oriented learning, student-centred learning, a holistic attitude to patient care and the promotion of oral health. The aim of this research project was to develop and assay a model to facilitate vertical integration of knowledge and skills thereby justifying the above mentioned action. The learning methodology proposed for the specific outcome of the Odontology module, namely the diagnosis of dental caries and the design of a primary preventive programme, included problem-solving as the driving force for the facilitation of vertical and horizontal integration, and an instructional design for the integration of the basic knowledge and clinical skills into a single learning programme. The paper describes the methodology of problem-oriented learning as applied in this study together with the detail of the programme. The consensus of those teachers who represent the basic and clinical sciences and who participate in this learning programme is that this model is practical and can assist vertical as well as horizontal integration of knowledge.
NASA Technical Reports Server (NTRS)
Wu, Jian; Blanc, Michel; Alcayde, Denis; Barakat, Abdullah R.; Fontanari, Jean; Blelly, Pierre-Louis; Kofman, Wlodek
1992-01-01
EISCAT VHF radar was used to investigate the vertical flows of H(+) and O(+) ions in the topside high-latitude ionosphere. The radar transmitted a single long pulse to probe the ionosphere from 300 to 1200 km altitude. A calculation scheme is developed to deduce the H(+) drift velocity from the coupled momentum equations of H(+), O(+), and the electrons, using the radar data and a neutral atmosphere model. The H(+) vertical drift velocity was expressed as a linear combination of the different forces acting on the plasma. Two nights, one very quiet, one with moderate magnetic activity, were used to test the technique and to provide a first study of the morphology and orders of magnitudes of ion outflow fluxes over Tromso. O(+) vertical flows were found to be downward or close to zero most of the time in the topside ionosphere; they appeared to be strongly correlated with magnetic activity during the disturbed night. H(+) topside ion fluxes were always directed upward, with velocity reaching 500-1000 m/s. A permanent outflow of H(+) ions is inferred.
Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng
2017-08-05
Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less
Wilkinson, Michael; Ewen, Alistair; Caplan, Nicholas; O'leary, David; Smith, Neil; Stoneham, Richard; Saxby, Lee
2018-05-01
The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23 ± 5 yrs; stature 1.78 ± 0.06 m; mass 72.6 ± 9.2 kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (F peak ) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (-25 to -9.3 BW s -1 ; 60% likely beneficial reduction) and plantar sensation was increased (46-58 mm) with the insole. F peak (-0.1 to 0.14 BW) and velocity (-0.02 to 0.06 m s -1 ) were similar. Stride length, flight and contact time were lower (-0.13 to -0.01 m; -0.02 to-0.01 s; -0.016 to -0.006 s) and stride rate was higher (0.01-0.07 steps s -1 ) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.
Photoluminescence of vapor and solution grown ZnTe single crystals
NASA Astrophysics Data System (ADS)
Biao, Y.; Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.; Su, C.-H.; Volz, M. E.; Szofran, F. R.; Gillies, D. C.
1994-04-01
ZnTe single crystals grown by horizontal physical vapor transport (PVT) and by vertical traveling heater method (THM) from a Te solution were characterized by photoluminescence (PL) at 10.6 K and by atomic force microscopy (AFM). Copper was identified by PL as a major impurity existing in both crystals, forming a substitutional acceptor, Cu Zn. The THM ZnTe crystals were found to contain more Cu impurity than the PVT ZnTe crystals. The formation of Cu Zn-V Te complexes and the effects of annealing, oxygen contamination and intentional Cu doping were also studied. Finally, the surface morphology analyzed by AFM was correlated to the PL results.
2009-12-16
decreased by iron sintering into the Si substrate and forming metal silicide [26, 27]. To avoid the iron sintering into the Si substrate, we deposited... metal catalysts onto the Si substrate selectively by lithographic lift-off, soft lithography, offset printing, or micro-contact printing (µCP). The...Experiment 1. Preparation of Fe-Mo catalyst solution An Fe-Mo bimetallic catalyst solution was prepared by ultrasonication for 30 min using an
Muscle Activity in Single- vs. Double-Leg Squats.
DeFOREST, Bradley A; Cantrell, Gregory S; Schilling, Brian K
Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired.
Muscle Activity in Single- vs. Double-Leg Squats
DeFOREST, BRADLEY A.; CANTRELL, GREGORY S.; SCHILLING, BRIAN K.
2014-01-01
Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired. PMID:27182408
49 CFR 213.333 - Automated vehicle-based inspection systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the contact point of wheels carrying a vertical load of no less than 10 kips per wheel, unless... enable field forces to easily locate indicated exceptions. (f) Following a track inspection performed by... reference loads of 16 kips of lateral force and 33 kips of vertical force. (j) As further specified for the...
49 CFR 213.333 - Automated vehicle-based inspection systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the contact point of wheels carrying a vertical load of no less than 10 kips per wheel, unless... enable field forces to easily locate indicated exceptions. (f) Following a track inspection performed by... reference loads of 16 kips of lateral force and 33 kips of vertical force. (j) As further specified for the...
Moya-Angeler, Joaquín; Vaquero, Javier; Forriol, Francisco
2017-06-01
The purpose of this study was to evaluate the functional status prior to and at different times after anterior cruciate ligament reconstruction (ACLR), and to analyze the changes in the kinetic patterns of the involved and uninvolved lower limb during gait, sprint and three hop tests. Seventy-four male patients with an ACL injury were included in the study. All patients performed a standardized kinetic protocol including gait, sprint and three hop tests (single-leg hop, drop vertical jump and vertical jump tests), preoperatively and at 3, 6, and 12 months after ACLR with a semitendinosus gracilis tendon autograft. Measurements were performed with two force plates. The lower limb symmetry index (LSI) was calculated to determine whether a side-to-side leg difference was classified as normal (LSI >90%) or abnormal (LSI <90%). The LSI presented high values (>90%) at almost all times before and after ACLR in gait, sprint and single-leg hop tests (p < 0.005), with a tendency to increase postoperatively. A lower LSI was observed (<90%) in tests where both extremities were tested simultaneously, such as the drop vertical jump and vertical hop tests (p < 0.05). We observed a tendency to increase symmetry restoration in the kinetics of the involved and uninvolved limb up to twelve months after ACLR, especially in those tests, in which, both limbs were tested individually (gait analysis, sprint and single-leg hop tests). Therefore, the isolation of the involved and uninvolved limb seems to be a critical component in the functional rehabilitation and evaluation of patients before and after ACLR. level III.
Physical Determinants of Interval Sprint Times in Youth Soccer Players
Amonette, William E.; Brown, Denham; Dupler, Terry L.; Xu, Junhai; Tufano, James J.; De Witt, John K.
2014-01-01
Relationships between sprinting speed, body mass, and vertical jump kinetics were assessed in 243 male soccer athletes ranging from 10–19 years. Participants ran a maximal 36.6 meter sprint; times at 9.1 (10 y) and 36.6 m (40 y) were determined using an electronic timing system. Body mass was measured by means of an electronic scale and body composition using a 3-site skinfold measurement completed by a skilled technician. Countermovement vertical jumps were performed on a force platform - from this test peak force was measured and peak power and vertical jump height were calculated. It was determined that age (r=−0.59; p<0.01), body mass (r=−0.52; p<0.01), lean mass (r=−0.61; p<0.01), vertical jump height (r=−0.67; p<0.01), peak power (r=−0.64; p<0.01), and peak force (r=−0.56; p<0.01) were correlated with time at 9.1 meters. Time-to-complete a 36.6 meter sprint was correlated with age (r=−0.71; p<0.01), body mass (r=−0.67; p<0.01), lean mass (r=−0.76; p<0.01), vertical jump height (r=−0.75; p<0.01), peak power (r=−0.78; p<0.01), and peak force (r=−0.69; p<0.01). These data indicate that soccer coaches desiring to improve speed in their athletes should devote substantive time to fitness programs that increase lean body mass and vertical force as well as power generating capabilities of their athletes. Additionally, vertical jump testing, with or without a force platform, may be a useful tool to screen soccer athletes for speed potential. PMID:25031679
Fujiwara, Shin-Ichi
2018-05-01
Deducing the scapular positions of extinct tetrapod skeletons remains difficult, because the scapulae and rib cage are connected with each other not directly by skeletal joint, but by thoracic muscles. In extant non-testudine quadrupedal tetrapods, the top positions of the scapulae/suprascapulae occur at the anterior portion of the rib cage, above the vertebral column and near the median plane. The adequacy of this position was tested using three-dimensional mechanical models of Felis, Rattus and Chamaeleo that assumed stances on a forelimb on a single side and the hindlimbs. The net moment about the acetabulum generated by the gravity force and the contractive forces of the anti-gravity thoracic muscles, and the resistance of the rib to vertical compression between the downward gravity and upward lifting force from the anti-gravity thoracic muscle depend on the scapular position. The scapular position common among quadrupeds corresponds to the place at which the roll and yaw moments of the uplifted portion of the body are negligible, where the pitch moment is large enough to lift the body, and above the ribs having high strength against vertical compression. These relationships between scapular position and rib cage morphology should allow reliable reconstruction of limb postures of extinct taxa. © 2018 Anatomical Society.
Vertical vibration and shape oscillation of acoustically levitated water drops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, D. L.; Xie, W. J.; Yan, N.
2014-09-08
We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.
Impact Forces of Plyometric Exercises Performed on Land and in Water
Donoghue, Orna A.; Shimojo, Hirofumi; Takagi, Hideki
2011-01-01
Background: Aquatic plyometric programs are becoming increasingly popular because they provide a less stressful alternative to land-based programs. Buoyancy reduces the impact forces experienced in water. Purpose: To quantify the landing kinetics during a range of typical lower limb plyometric exercises performed on land and in water. Study Design: Crossover design. Methods: Eighteen male participants performed ankle hops, tuck jumps, a countermovement jump, a single-leg vertical jump, and a drop jump from 30 cm in a biomechanics laboratory and in a swimming pool. Land and underwater force plates (Kistler) were used to obtain peak impact force, impulse, rate of force development, and time to reach peak force for the landing phase of each jump. Results: Significant reductions were observed in peak impact forces (33%-54%), impulse (19%-54%), and rate of force development (33%-62%) in water compared with land for the majority of exercises in this study (P < 0.05). Conclusions: The level of force reduction varies with landing technique, water depth, and participant height and body composition. Clinical Relevance: This information can be used to reintroduce athletes to the demands of plyometric exercises after injury. PMID:23016022
Lussier, Bertrand; Gagnon, Alexandre; Moreau, Maxim; Pelletier, Jean-Pierre; Troncy, Éric
2018-04-01
This study aimed to describe the peak vertical force (PVF) over a 1-year period in a stabilized canine cranial cruciate deficient stifle model. Our hypothesis was that PVF would be restored to Baseline (intact) at the end of the follow-up. Fifteen (> 20 kg) mixed-breed dogs were included in this study. Cranial cruciate ligament was transected on Day (D) 0 followed by lateral suture stabilization at D28. Peak vertical force was acquired at D-1, D14, D26, D91, D210 and D357. When compared to Baseline, the PVF was significantly decreased at D14, D26, and D91. Values at D210 and D357 were not statistically different to Baseline. This study suggests a return to normal baseline peak vertical force in a canine cranial cruciate deficient stifle model when lateral suture stabilization has been performed 28 days after surgical transection.
Harry, John R; Barker, Leland A; Mercer, John A; Dufek, Janet S
2017-07-01
Harry, JR, Barker, LA, Mercer, JA, and Dufek, JS. Vertical and horizontal impact force comparison during jump landings with and without rotation in NCAA Division I male soccer players. J Strength Cond Res 31(7): 1780-1786, 2017-There is a wealth of research on impact force characteristics when landing from a jump. However, there are no data on impact forces during landing from a jump with an airborne rotation about the vertical axis. We examined impact force parameters in the vertical and horizontal axes during vertical jump (VJ) landings and VJ landings with a 180° rotation (VJR). Twenty-four Division I male soccer players performed 3 VJ and VJR landings on a dual-force platform system. Paired-samples t-tests (α = 0.05) compared differences in the first (F1) and second (F2) peak vertical ground reaction forces, times to F1 (tF1), F2 (tF2), and the end of the impact phase, vertical impulse, and anterior-posterior and medial-lateral force couples. Effect sizes (ES; large >0.8) were computed to determine the magnitude of the differences. Lower jump height (41.60 ± 4.03 cm, VJ landings; 39.40 ± 4.05 cm, VJR landings; p = 0.002; ES = 0.39), greater F2 (55.71 ± 11.95 N·kg, VJ; 68.16 ± 14.82 N·kg; p < 0.001; ES = 0.94), faster tF2 (0.057 ± 0.012 seconds, VJ; 0.047 ± 0.011 seconds, VJR; p = 0.001; ES = 0.89), greater anterior-posterior (0.06 ± 0.03 N·s·kg, VJ; 0.56 ± 0.15 N·s·kg, VJR; p < 0.001; ES = 1.83) and medial-lateral force couples (0.29 ± 0.11 N·s·kg, VJ; 0.56 ± 0.14 N·s·kg, VJR; p < 0.001; ES = 1.46) occurred during VJR landings. No other differences were identified. This kinetic analysis determined that landing from a jump with 180° airborne rotation is different than landing from a jump without an airborne rotation. Male Division I soccer players could benefit from increasing the volume of VJR landings during training to address the differences in jump height and force parameters compared with VJ landings.
Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-06-08
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Relative net vertical impulse determines jumping performance.
Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M
2011-08-01
The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.
Automatic feed system for ultrasonic machining
Calkins, Noel C.
1994-01-01
Method and apparatus for ultrasonic machining in which feeding of a tool assembly holding a machining tool toward a workpiece is accomplished automatically. In ultrasonic machining, a tool located just above a workpiece and vibrating in a vertical direction imparts vertical movement to particles of abrasive material which then remove material from the workpiece. The tool does not contact the workpiece. Apparatus for moving the tool assembly vertically is provided such that it operates with a relatively small amount of friction. Adjustable counterbalance means is provided which allows the tool to be immobilized in its vertical travel. A downward force, termed overbalance force, is applied to the tool assembly. The overbalance force causes the tool to move toward the workpiece as material is removed from the workpiece.
A Comparison of Golf Shoe Designs Highlights Greater Ground Reaction Forces with Shorter Irons
Worsfold, Paul; Smith, Neal A.; Dyson, Rosemary J.
2007-01-01
In an effort to reduce golf turf damage the traditional metal spike golf shoe has been redesigned, but shoe-ground biomechanical evaluations have utilised artificial grass surfaces. Twenty-four golfers wore three different golf shoe traction designs (traditional metal spikes, alternative spikes, and a flat-soled shoe with no additional traction) when performing shots with a driver, 3 iron and 7 iron. Ground action forces were measured beneath the feet by two natural grass covered force platforms. The maximum vertical force recorded at the back foot with the 3 iron and 7 iron was 0.82 BW (body weight) and at the front foot 1.1 BW approximately in both the metal spike and alternative spike golf shoe designs. When using the driver these maximal vertical values were 0.49 BW at the back foot and 0.84 BW at the front foot. Furthermore, as performance of the backswing and then downswing necessitates a change in movement direction the range of force generated during the complete swing was calculated. In the metal spike shoe the vertical force generated at the back foot with both irons was 0.67 BW and at the front foot 0.96 BW with the 3 iron and 0.92 BW with the 7 iron. The back foot vertical force generated with the driver was 0.33 BW and at the front foot 0.83 BW wearing the metal spike shoe. Results indicated the greater force generation with the irons. When using the driver the more horizontal swing plane associated with the longer club reduced vertical forces at the back and front foot. However, the mediolateral force generated across each foot in the metal and alternative spike shoes when using the driver was greater than when the irons were used. The coefficient of friction was 0. 62 at the back and front foot whichever shoe was worn or club used. Key pointsDuring the golf swing ground reaction forces at the golf shoe to natural grass turf interface were greater with irons than with the longer driver.In the golf swing maximal vertical forces were greater at the front (left) foot in the than at the back foot for a right handed golfer.Similar maximum vertical ground reaction forces were recorded with each club when a 8 mm metal spike golf shoe or an alternative spike golf shoe were worn.Force generation and coefficients of friction were similar for the alternative spike design and traditional metal seven spike golf shoe on natural grass turf.Data collection possible due to application of technical developments to golf from work on other natural turf based sports. PMID:24149482
2007-02-16
SWNT films by Langmuir - Blodgett methods,8 and chemical assembly of SWNTs on a large substrate.9 Al- though these methods provide a good way to control... Langmuir - Blodgett to Self-Assembly. Academic: New York, (1991). [10] Moon, J.H., Shin, J.W., Kim, S.Y., Park, J.W. Langmuir , 12, 4621, (1996...aligning CNTs in solu- tion by applying an electric field5 or a magnetic field,6 align- ing SWNTs by blending them with liquid crystal,7 assem- bling
Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.
Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J
2010-02-02
Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.
Whole body frontal plane mechanics across walking, running, and sprinting in young and older adults.
Kulmala, J-P; Korhonen, M T; Kuitunen, S; Suominen, H; Heinonen, A; Mikkola, A; Avela, J
2017-09-01
This study investigated the whole body frontal plane mechanics among young (26 ± 6 years), early old (61 ± 5 years), and old (78 ± 4 years) adults during walking, running, and sprinting. The age-groups had similar walking (1.6 m/s) and running (4.0 m/s) speeds, but different maximal sprinting speed (young 9.3 m/s, early old 7.9 m/s, and old 6.6 m/s). Surprisingly, although the old group exerted much lower vertical ground reaction force during running and sprinting, the hip frontal plane moment did not differ between the age-groups. Kinematic analysis demonstrated increased hip adduction and pelvis drop, as well as reduced trunk lateral flexion among old adults, especially during sprinting. These alterations in the hip and pelvis motions may reflect insufficient force production of hip abductors to stabilize the pelvis during single-limb support, while limited trunk lateral flexion may enhance control of the mediolateral balance. On the other hand, larger trunk side-to-side movement among the young and early old adults may provide a mechanism to prevent the increase of the hip frontal moment despite greater vertical ground reaction force. This, in turn, can assist hip abductors to maintain stability of the pelvis during sprinting while allowing powerful force generation by a large adductor muscle group. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Control and prediction components of movement planning in stuttering vs. nonstuttering adults
Daliri, Ayoub; Prokopenko, Roman A.; Flanagan, J. Randall; Max, Ludo
2014-01-01
Purpose Stuttering individuals show speech and nonspeech sensorimotor deficiencies. To perform accurate movements, the sensorimotor system needs to generate appropriate control signals and correctly predict their sensory consequences. Using a reaching task, we examined the integrity of these control and prediction components, separately, for movements unrelated to the speech motor system. Method Nine stuttering and nine nonstuttering adults made fast reaching movements to visual targets while sliding an object under the index finger. To quantify control, we determined initial direction error and end-point error. To quantify prediction, we calculated the correlation between vertical and horizontal forces applied to the object—an index of how well vertical force (preventing slip) anticipated direction-dependent variations in horizontal force (moving the object). Results Directional and end-point error were significantly larger for the stuttering group. Both groups performed similarly in scaling vertical force with horizontal force. Conclusions The stuttering group's reduced reaching accuracy suggests limitations in generating control signals for voluntary movements, even for non-orofacial effectors. Typical scaling of vertical force with horizontal force suggests an intact ability to predict the consequences of planned control signals. Stuttering may be associated with generalized deficiencies in planning control signals rather than predicting the consequences of those signals. PMID:25203459
NASA Astrophysics Data System (ADS)
Lazzerini, Giovanni Mattia; Paternò, Giuseppe Maria; Tregnago, Giulia; Treat, Neil; Stingelin, Natalie; Yacoot, Andrew; Cacialli, Franco
2016-02-01
We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of "molecular terraces" whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazzerini, Giovanni Mattia; Yacoot, Andrew; Paternò, Giuseppe Maria
2016-02-01
We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surfacemore » topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.« less
Evolution of aerosol vertical distribution during particulate pollution events in Shanghai
NASA Astrophysics Data System (ADS)
Zhang, Yunwei; Zhang, Qun; Leng, Chunpeng; Zhang, Deqin; Cheng, Tiantao; Tao, Jun; Zhang, Renjian; He, Qianshan
2015-06-01
A set of micro pulse lidar (MPL) systems operating at 532 nm was used for ground-based observation of aerosols in Shanghai in 2011. Three typical particulate pollution events (e.g., haze) were examined to determine the evolution of aerosol vertical distribution and the planetary boundary layer (PBL) during these pollution episodes. The aerosol vertical extinction coefficient (VEC) at any given measured altitude was prominently larger during haze periods than that before or after the associated event. Aerosols originating from various source regions exerted forcing to some extent on aerosol loading and vertical layering, leading to different aerosol vertical distribution structures. Aerosol VECs were always maximized near the surface owing to the potential influence of local pollutant emissions. Several peaks in aerosol VECs were found at altitudes above 1 km during the dust- and bioburning-influenced haze events. Aerosol VECs decreased with increasing altitude during the local-polluted haze event, with a single maximum in the surface atmosphere. PM2.5 increased slowly while PBL and visibility decreased gradually in the early stages of haze events; subsequently, PM2.5 accumulated and was exacerbated until serious pollution bursts occurred in the middle and later stages. The results reveal that aerosols from different sources impact aerosol vertical distributions in the atmosphere and that the relationship between PBL and pollutant loadings may play an important role in the formation of pollution.
Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu
2015-12-01
Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 (3-/4-) as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.
NASA Astrophysics Data System (ADS)
Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu
2015-06-01
Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and guying must be designed to withstand maximum horizontal and vertical forces encountered when... be designed to withstand maximum horizontal and vertical forces encountered when operating within...”). (D) Applicable terms in section 7-0.2 (“Definitions”). (ii) Load tests for new hoists. The employer...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and guying must be designed to withstand maximum horizontal and vertical forces encountered when... be designed to withstand maximum horizontal and vertical forces encountered when operating within...”). (D) Applicable terms in section 7-0.2 (“Definitions”). (ii) Load tests for new hoists. The employer...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and guying must be designed to withstand maximum horizontal and vertical forces encountered when... be designed to withstand maximum horizontal and vertical forces encountered when operating within...”). (D) Applicable terms in section 7-0.2 (“Definitions”). (ii) Load tests for new hoists. The employer...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and guying must be designed to withstand maximum horizontal and vertical forces encountered when... be designed to withstand maximum horizontal and vertical forces encountered when operating within...”). (D) Applicable terms in section 7-0.2 (“Definitions”). (ii) Load tests for new hoists. The employer...
Impacts of Space Shuttle thermal protection system tile on F-15 aircraft vertical tile
NASA Technical Reports Server (NTRS)
Ko, W. L.
1985-01-01
Impacts of the space shuttle thermal protection system (TPS) tile on the leading edge and the side of the vertical tail of the F-15 aircraft were analyzed under different TPS tile orientations. The TPS tile-breaking tests were conducted to simulate the TPS tile impacts. It was found that the predicted tile impact forces compare fairly well with the tile-breaking forces, and the impact forces exerted on the F-15 aircraft vertical tail were relatively low because a very small fraction of the tile kinetic energy was dissipated in the impact, penetration, and fracture of the tile. It was also found that the oblique impact of the tile on the side of the F-15 aircraft vertical tail was unlikely to dent the tail surface.
Vertical Propagation and Temporal Growth of Perturbations in the Winter Atmosphere
NASA Astrophysics Data System (ADS)
Christiansen, B.
2001-12-01
We present a general circulation model study of the temporal growth and vertically propagation of perturbations following vertical confined forcings. Both transient and sustained forcings are considered. The motivation for the study is the recent recognition of downward propagation of anomalies from the stratosphere to the troposphere and its implications both for medium range forecasts and for a possible physical mechanism for stratospheric impacts on weather and climate. The dynamical link might also offer a mechanism for changes in the upper atmosphere to affect the tropospheric climate. Here we are thinking of changes in trace gases such as ozone, but also of modulations of the upper atmospheric structure related to the 11-year solar cycle. The model atmosphere is chaotic and shows growth of perturbations no matter which level is forced. The perturbations grow to a size comparable to the variability of the unperturbed atmosphere on a time-scale of 20 - 25 days in the troposphere and 30 - 40 days in the stratosphere. After the initial period of growth the perturbations have the same structure as the unperturbed atmosphere. Although the forcing is restricted to the northern hemisphere the perturbations encompass the whole atmosphere and develop on the same time scale on both hemispheres. Perturbations grow with time squared both when zonal mean and single cell values are considered. Such a power law growth suggest the existence of a finite predictability time which is independent of the initial perturbation as long as it is small. In the unperturbed atmosphere the stratospheric variability has the form of downward propagating stratospheric vacillations. However, in the initial period of growth the perturbations do not propagate downward and seem in general uncoupled to the background vacillations. This suggests that the downward propagation is a robust feature determined more by the processes in the troposphere than the state of the stratosphere. We note that downward propagation may still be a source for enhanced predictability of near-surface weather.
NASA Astrophysics Data System (ADS)
Schulz, H.; Zanatta, M.; Stefanie, W.; Herber, A. B.
2016-12-01
Black carbon (BC) is an important contributor to climate change in the Arctic region. Due to its light absorption behavior, BC leads to a direct warming of the corresponding aerosol layer. Nevertheless, the net Arctic warming induced by BC strongly depends on its vertical distribution. At present, the low level of knowledge in BC vertical variability in the Arctic region may introduce a strong source of uncertainty in radiative forcing estimations. Vertical distribution of refractory black carbon (rBC) was investigated in spring 2015 during an aircraft campaign, as part of the NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) project. A single particle soot photometer was deployed on the research aircraft POLAR-6 during nine flights over the European and Canadian high Arctic. In the European Arctic, a decreasing vertical trend of rBC mass concentration was observed, with an average of 40 ng m-3 below 1000 m asl, and less than 10 ng m-3 above 3000 m asl. Combining potential temperature trends and number fraction of rBC particles, plume events were isolated from background conditions. At the Canadian site of Alert, low and high altitude background conditions were characterized by an average rBC number fraction below 10%, while higher values (17%) were observed during plume events. rBC mass concentration was found to decrease by a factor of five from low altitude background (27 ng m-3) to high altitude background (5.4 ng m-3). The plume event, located between 2500 and 3000 m asl, represented a discontinuity point in the decreasing vertical trend showing a rBC concentration of 25 ng m-3. Moreover, background conditions were characterized by a rBC mass mean diameter of 230 nm, while during plume events the observed mean size distribution was peaking at 180 nm only. Our work provides new insights on vertical variability of rBC properties and plume outbreaks in the high Arctic. This information is of actual interest for decreasing the high uncertainty of radiative forcing and atmospheric warming estimations in the Arctic region.
Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.
Phan, Hoang Vu; Au, Thi Kim Loan; Park, Hoon Cheol
2016-12-01
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force.
Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle
Phan, Hoang Vu; Au, Thi Kim Loan
2016-01-01
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force. PMID:28083112
Kinetic quantification of plyometric exercise intensity.
Ebben, William P; Fauth, McKenzie L; Garceau, Luke R; Petushek, Erich J
2011-12-01
Ebben, WP, Fauth, ML, Garceau, LR, and Petushek, EJ. Kinetic quantification of plyometric exercise intensity. J Strength Cond Res 25(12): 3288-3298, 2011-Quantification of plyometric exercise intensity is necessary to understand the characteristics of these exercises and the proper progression of this mode of exercise. The purpose of this study was to assess the kinetic characteristics of a variety of plyometric exercises. This study also sought to assess gender differences in these variables. Twenty-six men and 23 women with previous experience in performing plyometric training served as subjects. The subjects performed a variety of plyometric exercises including line hops, 15.24-cm cone hops, squat jumps, tuck jumps, countermovement jumps (CMJs), loaded CMJs equal to 30% of 1 repetition maximum squat, depth jumps normalized to the subject's jump height (JH), and single leg jumps. All plyometric exercises were assessed with a force platform. Outcome variables associated with the takeoff, airborne, and landing phase of each plyometric exercise were evaluated. These variables included the peak vertical ground reaction force (GRF) during takeoff, the time to takeoff, flight time, JH, peak power, landing rate of force development, and peak vertical GRF during landing. A 2-way mixed analysis of variance with repeated measures for plyometric exercise type demonstrated main effects for exercise type and all outcome variables (p ≤ 0.05) and for the interaction between gender and peak vertical GRF during takeoff (p ≤ 0.05). Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the outcome variables assessed (p ≤ 0.05). These findings can be used to guide the progression of plyometric training by incorporating exercises of increasing intensity over the course of a program.
Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises.
Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee
2015-10-01
Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Descriptive laboratory study. Laboratory. A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat.
Hypohydration Reduces Vertical Ground Reaction Impulse But Not Jump Height
2010-01-01
countermovement jump from a 660 9 660 9 60 mm dual force plate plat- form (Leonardo v3.07, Orthometrix, Inc.) connected to a PC for the purpose of collecting... force data and calculating jump height (described below). Subjects stood still on the platform with one foot on each force plate for approxi- mately 10...study examined vertical jump performance using a force platform and weighted vest to determine why hypohydration (~4% body mass) does not improve jump
Effect of vertical ground motions on shear demand and capacity in bridge columns.
DOT National Transportation Integrated Search
2012-03-01
The objective of this project was to examine the effects of axial force variation in bridge columns due to strong vertical : ground motions and the influence of these axial force fluctuations on shear strength degradation. : Two quarter scale specime...
Jovanović, S
1992-01-01
An influence of verticalization of the resulting force of weight-bearing on the hip joint "R" on the morphological characteristics of the medullar canal on the proximal edge of the shaft of femur was researched. Progressive degenerative changes of the hip joint with a consequent sideways limping or changes of the collodiaphysial angle (ccd angle) were the cause of the verticalization of the resulting force "R". The analysis of patients treated and operated on The Orthopaedic Department of the General Hospital Osijek and The Orthopaedic Clinic of The Medical Faculty of The University of Zagreb. The research, undoubtedly, proved that the patients with coxarthrosis and side-ways in the hip or with changed collodiaphysial angle experienced verticalization of the resulting force of weigh-bearing of the hip joint and the proximal edge of femur which caused morphological changes of the medular canal of the shaft of femur.
Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E
2015-12-01
No research exists predicating a link between acute ankle sprain injury-affiliated movement patterns and those of chronic ankle instability (CAI) populations. The aim of the current study was to perform a biomechanical analysis of participants, 6 months after they sustained a first-time acute lateral ankle sprain (LAS) injury to establish this link. Fifty-seven participants with a 6-month history of first-time LAS and 20 noninjured participants completed a single-leg drop landing task on both limbs. Three-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment of force) data were acquired for the joints of the lower extremity, from 200 ms pre-initial contact (IC) to 200 ms post-IC. Individual joint stiffnesses and the peak magnitude of the vertical component of the ground reaction force (GRF) were also computed. LAS participants displayed increases in hip flexion and ankle inversion on their injured limb (P < 0.05); this coincided with a reduction in the net flexion-extension moment at the hip joint, with an increase in its stiffness (P < 0.05). There was no difference in the magnitude of the peak vertical GRF for either limb compared with controls. These results demonstrate that altered movement strategies persist in participants, 6 months following acute LAS, which may precipitate the onset of CAI. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kim, Kihong; Song, Giyoung; Park, Cheolmin; Yun, Kwang-Seok
2017-01-01
This paper presents a power-generating sensor array in a flexible and stretchable form. The proposed device is composed of resistive strain sensors, capacitive tactile sensors, and a triboelectric energy harvester in a single platform. The device is implemented in a woven textile structure by using proposed functional threads. A single functional thread is composed of a flexible hollow tube coated with silver nanowires on the outer surface and a conductive silver thread inside the tube. The total size of the device is 60 × 60 mm2 having a 5 × 5 array of sensor cell. The touch force in the vertical direction can be sensed by measuring the capacitance between the warp and weft functional threads. In addition, because silver nanowire layers provide piezoresistivity, the strain applied in the lateral direction can be detected by measuring the resistance of each thread. Last, with regard to the energy harvester, the maximum power and power density were measured as 201 μW and 0.48 W/m2, respectively, when the device was pushed in the vertical direction. PMID:29120363
Experimental studies of the rotor flow downwash on the Stability of multi-rotor crafts in descent
NASA Astrophysics Data System (ADS)
Veismann, Marcel; Dougherty, Christopher; Gharib, Morteza
2017-11-01
All rotorcrafts, including helicopters and multicopters, have the inherent problem of entering rotor downwash during vertical descent. As a result, the craft is subject to highly unsteady flow, called vortex ring state (VRS), which leads to a loss of lift and reduced stability. To date, experimental efforts to investigate this phenomenon have been largely limited to analysis of a single, fixed rotor mounted in a horizontal wind tunnel. Our current work aims to understand the interaction of multiple rotors in vertical descent by mounting a multi-rotor craft in a low speed, vertical wind tunnel. Experiments were performed with a fixed and rotationally free mounting; the latter allowing us to better capture the dynamics of a free flying drone. The effect of rotor separation on stability, generated thrust, and rotor wake interaction was characterized using force gauge data and PIV analysis for various descent velocities. The results obtained help us better understand fluid-craft interactions of drones in vertical descent and identify possible sources of instability. The presented material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).
Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea
NASA Astrophysics Data System (ADS)
Cardona, Yuley; Bracco, Annalisa
The South China Sea is a marginal basin with a complex circulation influenced by the East Asian Monsoon, river discharge and intricate bathymetry. As a result, both the mesoscale eddy field and the near-inertial energy distribution display large spatial variability and they strongly influence the oceanic transport and mixing. With an ensemble of numerical integrations using a regional ocean model, this work investigates how the temporal resolution of the atmospheric forcing fields modifies the horizontal and vertical velocity patterns and impacts the transport properties in the basin. The response of the mesoscale circulation in the South China Sea is investigated under three different forcing conditions: monthly, daily and 6-hourly momentum and heat fluxes. While the horizontal circulation does not display significant differences, the representation of the vertical velocity field displays high sensitivity to the frequency of the wind forcing. If the wind field contains energy at the inertial frequency or higher (daily and 6-hourly cases), then submesoscale fronts, vortex Rossby waves and near inertial waves are excited as ageostrophic expression of the vigorous eddy field. Those quasi- and near-inertial waves dominate the vertical velocity field in the mixed layer (vortex Rossby waves) and below the first hundred meters (near inertial waves) and they are responsible for the differences in the vertical transport properties under the various forcing fields as quantified by frequency spectra, vertical velocity profiles and vertical dispersion of Lagrangian tracers.
Beaulieu, M L; Palmieri-Smith, R M
2014-08-01
Excessive knee abduction loading is a contributing factor to anterior cruciate ligament (ACL) injury risk. The purpose of this study was to determine whether a double-leg landing training program with real-time visual feedback improves frontal-plane mechanics during double- and single-leg landings. Knee abduction angles and moments and vertical ground reaction forces (GRF) of 21 recreationally active women were quantified for double- and single-leg landings before and after the training program. This program consisted of two sessions of double-leg jump landings with real-time visual feedback on knee abduction moments for the experimental group and without real-time feedback for the control group. No significant differences were found between training groups. In comparison with pre-training data, peak knee abduction moments decreased 12% post-training for both double- and single-leg landings; whereas peak vertical GRF decreased 8% post-training for double-leg landings only, irrespective of training group. Real-time feedback on knee abduction moments, therefore, did not significantly improve frontal-plane knee mechanics during landings. The effect of the training program on knee abduction moments, however, transferred from the double-leg landings (simple task) to single-leg landings (more complex task). Consequently, ACL injury prevention efforts may not need to focus on complex tasks during which injury occurs. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Investigation of Artificial Forced Cooling in the Bridgman Crystal Growth of Cadmium Zinc Telluride
NASA Astrophysics Data System (ADS)
Liu, Juncheng; Li, Jiao; Zhang, Guodong; Li, Changxing; Lennon, Craig; Sivananthan, Siva
2007-08-01
The effects of artificial forced cooling on the solid liquid interface and on solute segregation were investigated by modeling the vertical Bridgman method for the single-crystal growth of CdZnTe, taking into consideration effects such as increasing the axial outward heat flux from the crucible bottom, the radial outward heat flux from the crucible wall, and the carbon film thickness on the crucible inner wall. Axial artificially forced cooling noticeably increases convection and the temperature gradient in the melt next to the solid liquid interface, and substantially reduces interface concavity at the initial solidification stage. Interface concavity increases a little when the solidification proceeds further, however. Axial artificially forced cooling reduces radial solute segregation of the initial segment of the grown crystal and slightly increases the solute iso-concentration segment. Radial artificially forced cooling enhances melt convection substantially, affects solid liquid interface concavity only slightly, and hardly affects solute segregation in the grown crystal. Doubling the carbon film thickness weakens convection of the melt in front of the interface, substantially increases interface concavity, and hardly affects solute segregation in the grown crystal.
Impact kinetics associated with four common bilateral plyometric exercises.
Stewart, Ethan; Kernozek, Thomas; Peng, Hsien-Te; Wallace, Brian
2018-04-20
This study quantified the peak vertical ground reaction force (VGRF), impulse, and average and instantaneous loading rates developed during bilateral plyometric exercises. Fourteen collegiate male athletes performed four different bilateral plyometric exercises within a single testing session. Depth jumps from thirty, sixty and ninety centimeter heights (DJ30, DJ60, and DJ90, respectively), and a two consecutive jump exercise (2CJ), were randomly performed. The subjects landed on and propelled themselves off two force platforms embedded into the floor. The stance phase of each plyometric movement was analyzed for vertical force characteristics. The dependent variables were normalized to body weight. One-way repeated-measures ANOVA revealed significant differences between exercises (p ≤ 0.05). For VGRF, only the DJ60 and 2CJ exercises were not different from each other. The impulses between DJ60 and DJ90, and DJ30 and 2CJ, were not different. All exercises were different from each other in regards to average and instantaneous loading rate except for DJ30 vs. DJ60, and DJ90 vs. 2CJ. The DJ90 condition reported the highest peak VGRF by approaching five times body weight. The 2CJ condition had similar impulse and loading rates as the DJ90 condition. A proper progression and detailed program planning should be utilized when implementing plyometric exercises due to their different impact kinetics and how they might influence the body upon ground contact.
Lindenberg, Kelly M; Carcia, Christopher R
2013-02-01
To determine if heel height alters vertical ground reaction forces (vGRF) when landing from a forward hop or drop landing. Increased vGRF during landing are theorized to increase ACL injury risk in female athletes. Fifty collegiate females performed two single-limb landing tasks while wearing heel lifts of three different sizes (0, 12 & 24 mm) attached to the bottom of a athletic shoe. Using a force plate, peak vGRF at landing was examined. Repeated measures ANOVAs were used to determine the influence of heel height on the dependent measures. Forward hop task- Peak vGRF (normalized for body mass) with 0 mm, 12 mm, and 24 mm lifts were 2.613±0.498, 2.616±0.497 and 2.495±0.518% BW, respectively. Significant differences were noted between 0 and 24 mm lift (p<.001) and 12 and 24 mm lifts (p=.004), but not between the 0 and 12 mm conditions (p=.927). Jump-landing task- No significant differences were found in peak vGRF (p=.192) between any of the heel lift conditions. The addition of a 24 mm heel lift to the bottom of a sneaker significantly alters peak vGRF upon landing from a unilateral forward hop but not from a jumping maneuver.
Sran, Meena M; Robinovitch, Stephen N
2008-08-01
In vivo biomechanical study of 11 male volunteers. To measure the peak forces applied to the buttocks in a backward fall from standing, and to determine whether this force is lowered by reductions in floor stiffness. Fall-related vertebral fractures are common and backward falls result in impact to the buttocks. Compliant flooring may reduce impact force and risk for vertebral fracture during a fall. However, we have little knowledge of the peak forces applied to the body during a backward fall, or how floor stiffness affects this force. Eleven males, mean age 25 +/- 5 (SD) years, were suddenly released from a backward lean of 15 degrees , falling backward onto the ground which was covered with 4.5, 7.5, or 10.5 cm of ethylene vinyl acetate foam rubber. We measured 3-dimensional impact forces applied to the buttocks at 960 Hz with a force plate. We used repeated measures analysis of variance and post hoc t tests to compare peak forces between conditions. We also modeled peak vertical force for falls onto a bare floor. RESULTS.: There was a significant difference in peak vertical force between falls onto the 10.5 cm foam condition compared with the 7.5 cm (P = 0.002) and 4.5 cm (P < 0.001) conditions. Peak vertical force (N) was (mean +/- SD) 5099 +/- 868, 4788 +/- 702, and 4544 +/- 672 for the 4.5, 7.5, and 10.5 cm foam conditions, respectively, and estimated at 6027 +/- 988 for the rigid (bare floor) condition. Compared with the bare floor, these foam floors provided, on average, 24, 20, and 15% force attenuation respectively. In a backward fall onto the buttocks, peak impact forces are 6.4 to 9.0 times body weight in a fall onto a bare floor. Reducing floor stiffness using even a thin (4.5 cm) layer of foam may provide 15% vertical force attenuation during a fall onto the buttocks.
NASA Technical Reports Server (NTRS)
Piziali, R. A.; Trenka, A. R.
1974-01-01
The results of a study to investigate the theoretical potential of a jet-flap control system for reducing the vertical and horizontal non-cancelling helicopter rotor blade root shears are presented. A computer simulation describing the jet-flap control rotor system was developed to examine the reduction of each harmonic of the transmitted shears as a function of various rotor and jet parameters, rotor operating conditions and rotor configurations. The computer simulation of the air-loads included the influences of nonuniform inflow and blade elastic motions. (no hub motions were allowed.) The rotor trim and total rotor power (including jet compressor power) were also determined. It was found that all harmonics of the transmitted horizontal and vertical shears could be suppressed simultaneously using a single jet control.
Modeling waves forced by a drop bouncing on a vibrating bath
NASA Astrophysics Data System (ADS)
Turton, Sam; Rosales, Ruben; Bush, John
2017-11-01
We study the wavefield generated by a droplet bouncing on a bath of silicon oil undergoing vertical oscillations. Such droplets may bounce indefinitely below the Faraday threshold, and in certain parameter regimes destabilize into a walking state in which they are propelled by their own wavefield. While previous theoretical models have rationalize the behavior of single droplets, difficulties have arisen in rationalizing the behavior of multi-droplet systems. We here present a refined wave model that allows us to do so. In particular, we give a detailed account of the spatio-temporal decay of the waves, in addition to the couping between the wave amplitude and modulations in the droplet's vertical dynamics. Our analytic model is compared with the results of direct numerical simulations and experiments. We gratefully acknowledge the financial support of the NSF.
Aradya, Anupama; Kumar, U Krishna; Chowdhary, Ramesh
2016-01-01
The study was designed to evaluate and compare stress distribution in transcortical section of bone with normal abutment and platform switched abutment under vertical and oblique forces in posterior mandible region. A three-dimensional finite element model was designed using ANSYS 13.0 software. The type of bone selection for the model was made of type II mandibular bone, having cortical bone thickness ranging from 0.595 mm to 1.515 mm with the crestal region measuring 1.5 mm surrounding dense trabecular bone. The implant will be modulated at 5 mm restorative platform and tapering down to 4.5 mm wide at the threads, 13 mm long with an abutment 3 mm in height. The models will be designed for two situations: (1) An implant with a 5 mm diameter abutment representing a standard platform in the posterior mandible region. (2) An implant with a 4.5 mm diameter abutment representing platform switching in the posterior mandible region. Force application was performed in both oblique and vertical conditions using 100 N as a representative masticatory force. For oblique loading, a force of 100 N was applied at 15° from the vertical axis. von Mises stress analysis was evaluated. The results of the study showed cortical stress in the conventional and platform switching model under oblique forces were 59.329 MPa and 39.952 MPa, respectively. Cortical stress in the conventional and platform switching model under vertical forces was 13.914 MPa and 12.793 MPa, respectively. Results from this study showed the platform switched abutment led to relative decrease in von Mises stress in transcortical section of bone compared to normal abutment under vertical and oblique forces in posterior mandible region.
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
Nonlinear anelastic modal theory for solar convection
NASA Technical Reports Server (NTRS)
Latour, J.; Toomre, J.; Zahn, J.-P.
1983-01-01
Solar envelope models are developed using single-mode anelastic equations as a description of turbulent convection which provide estimates for the variation with depth of the largest convective cellular flows, with horizontal sizes comparable to the total depth of the convection zone. These models can be used to describe compressible motions occurring over many density scale heights. Single-mode anelastic solutions are obtained for a solar envelope whose mean stratification is nearly adiabatic over most of its vertical extent because of the enthalpy flux explicitly carried by the big cell, while a subgrid scale representation of turbulent heat transport is incorporated into the treatment near the surface. It is shown that the single-mode equations allow two solutions for the same horizontal wavelength which are distinguished by the sense of the vertical velocity at the center of the three-dimensional cell. It is found that the upward directed flow experiences large pressure effects which can modify the density fluctuations so that the sense of the buoyancy force is changed, with buoyancy braking actually achieved near the top of the convection zone. It is suggested that such dynamical processes may explain why the amplitudes of flows related to the largest scales of convection are so weak in the solar atmosphere.
Arastoo, Ali Asghar; Aghdam, Esmaeil Moharrami; Habibi, Abdoul Hamid; Zahednejad, Shahla
2014-06-01
According to literature, little is known regarding the effects of orthotic management of flatfoot on kinetics of vertical jump. To compare the kinetic and temporal events of two-legged vertical jumping take-off from a force plate for heading a ball in normal and flexible flatfoot subjects with and without insole. A functional based interventional controlled study. Random sampling method was employed to draw a control group of 15 normal foot subjects to a group of 15 flatfoot subjects. A force platform was used to record kinetics of two-legged vertical jump shots. Results indicate that insole did not lead to a significant effect on kinetics regarding anterior-posterior and mediolateral directions (p > 0.05). Results of kinetics related to vertical direction for maximum force due to take-off and stance duration revealed significant differences between the normal and flexible flatfoot subjects without insole (p < 0.05) and no significant differences between the normal foot and flexible flatfoot subjects with insole adoption (p > 0.05). These results suggest that the use of an insole in the flexible flatfoot subjects led to improved stance time and decrease of magnitude of kinetics regarding vertical direction at take-off as the main feature of two-legged vertical jumping function. Adoption of the insole improved the design of the shoe-foot interface support for the flexible flatfoot athletes, enabling them to develop more effective take-off kinetics for vertical jumping in terms of ground reaction force and stance duration similar to that of normal foot subjects without insole. © The International Society for Prosthetics and Orthotics 2013.
Dynamic Negative Compressibility of Few-Layer Graphene, h-BN, and MoS2
NASA Astrophysics Data System (ADS)
Neves, Bernardo; Barboza, Ana Paula; Chacham, Helio; Oliveira, Camilla; Fernandes, Thales; Martins Ferreira, Erlon; Archanjo, Braulio; Batista, Ronaldo; Oliveira, Alan
2013-03-01
We report a novel mechanical response of few-layer graphene, h-BN, and MoS2 to the simultaneous compression and shear by an atomic force microscope (AFM) tip. The response is characterized by the vertical expansion of these two-dimensional (2D) layered materials upon compression. Such effect is proportional to the applied load, leading to vertical strain values (opposite to the applied force) of up to 150%. The effect is null in the absence of shear, increases with tip velocity, and is anisotropic. It also has similar magnitudes in these solid lubricant materials (few-layer graphene, h-BN, and MoS2), but it is absent in single-layer graphene and in few-layer mica and Bi2Se3. We propose a physical mechanism for the effect where the combined compressive and shear stresses from the tip induce dynamical wrinkling on the upper material layers, leading to the observed flake thickening. The new effect (and, therefore, the proposed wrinkling) is reversible in the three materials where it is observed.[2] Financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono
Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.
Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon
2016-12-14
We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.
3-D Waveform Modeling of the 11 September 2001 World Trade Center Collapse Events in New York City
NASA Astrophysics Data System (ADS)
Yoo, S.; Rhie, J.; Kim, W.
2010-12-01
The seismic signals from collapse of the twin towers of World Trade Center (WTC), NYC were well recorded by the seismographic stations in the northeastern United States. The building collapse can be represented by a vertical single force which does not generate tangential component seismic signals during the source process. The waveforms recorded by the Basking Ridge, NJ (BRNJ) station located due west of the WTC site show that the amplitude on tangential component is negligible and indicates that a vertical single force assumption is valid and the velocity structure is more or less homogeneous along the propagation path. However, 3-component seismograms recorded at Palisades, NY (PAL), which is located 33.8 km due north of the WTC site along the Hudson River (azimuth = 15.2°), show abnormal features. The amplitude on tangential component is larger than on vertical- or on radial-component. This observation may be attributable to the complex energy conversion between Rayleigh and Love waves due to the strong low velocity anomaly associated with unconsolidated sediments under the Hudson River. To test the effects of the low velocity anomaly on the enhanced amplitude in tangential component, we developed a 3D velocity model by considering local geology such as unconsolidated sediment layer, Palisades sill, Triassic sandstone, and crystalline basement and simulated waveforms at PAL. The preliminary synthetic results show that 3D velocity structure can significantly enhance the amplitude in tangential component but it is not as large as the observation. Although a more precise 3D model is required to better explain the observations, our results confirm that the low velocity layer under the Hudson River can enhance the amplitude in tangential component at PAL. This result suggests that a good understanding of the amplitude enhancements for specific event-site pairs may be important to evaluate seismic hazard of metropolitan New York City.
Foot force production and asymmetries in elite rowers.
Buckeridge, Erica M; Bull, Anthony M J; McGregor, Alison H
2014-03-01
The rowing stroke is a leg-driven action, in which forces developed by the lower limbs provide a large proportion of power delivered to the oars. In terms of both performance and injury, it is important to initiate each stroke with powerful and symmetrical loading of the foot stretchers. The aims of this study were to assess the reliability of foot force measured by footplates developed for the Concept2 indoor ergometer and to examine the magnitude and symmetry of bilateral foot forces in different groups of rowers. Five heavyweight female scullers, six heavyweight female sweep rowers, and six lightweight male (LWM) rowers performed an incremental step test on the Concept2 ergometer. Vertical, horizontal, and resultant forces were recorded bilaterally, and asymmetries were quantified using the absolute symmetry index. Foot force was measured with high consistency (coefficient of multiple determination > 0.976 +/- 0.010). Relative resultant, vertical, and horizontal forces were largest in LWM rowers, whilst average foot forces significantly increased across stroke rates for all three groups of rowers. Asymmetries ranged from 5.3% for average resultant force to 28.9% for timing of peak vertical force. Asymmetries were not sensitive to stroke rate or rowing group, however, large inter-subject variability in asymmetries was evident.
The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.
Worthington, Peter; King, Mark; Ranson, Craig
2013-01-01
High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.
Raper, Damian P; Witchalls, Jeremy; Philips, Elissa J; Knight, Emma; Drew, Michael K; Waddington, Gordon
2018-01-01
The use of microsensor technologies to conduct research and implement interventions in sports and exercise medicine has increased recently. The objective of this paper was to determine the validity and reliability of the ViPerform as a measure of load compared to vertical ground reaction force (GRF) as measured by force plates. Absolute reliability assessment, with concurrent validity. 10 professional triathletes ran 10 trials over force plates with the ViPerform mounted on the mid portion of the medial tibia. Calculated vertical ground reaction force data from the ViPerform was matched to the same stride on the force plate. Bland-Altman (BA) plot of comparative measure of agreement was used to assess the relationship between the calculated load from the accelerometer and the force plates. Reliability was calculated by intra-class correlation coefficients (ICC) with 95% confidence intervals. BA plot indicates minimal agreement between the measures derived from the force plate and ViPerform, with variation at an individual participant plot level. Reliability was excellent (ICC=0.877; 95% CI=0.825-0.917) in calculating the same vertical GRF in a repeated trial. Standard error of measure (SEM) equalled 99.83 units (95% CI=82.10-119.09), which, in turn, gave a minimum detectable change (MDC) value of 276.72 units (95% CI=227.32-330.07). The ViPerform does not calculate absolute values of vertical GRF similar to those measured by a force plate. It does provide a valid and reliable calculation of an athlete's lower limb load at constant velocity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Reed, Lloyd F; Urry, Stephen R; Wearing, Scott C
2013-08-21
Despite the emerging use of treadmills integrated with pressure platforms as outcome tools in both clinical and research settings, published evidence regarding the measurement properties of these new systems is limited. This study evaluated the within- and between-day repeatability of spatial, temporal and vertical ground reaction force parameters measured by a treadmill system instrumented with a capacitance-based pressure platform. Thirty three healthy adults (mean age, 21.5 ± 2.8 years; height, 168.4 ± 9.9 cm; and mass, 67.8 ± 18.6 kg), walked barefoot on a treadmill system (FDM-THM-S, Zebris Medical GmbH) on three separate occasions. For each testing session, participants set their preferred pace but were blinded to treadmill speed. Spatial (foot rotation, step width, stride and step length), temporal (stride and step times, duration of stance, swing and single and double support) and peak vertical ground reaction force variables were collected over a 30-second capture period, equating to an average of 52 ± 5 steps of steady-state walking. Testing was repeated one week following the initial trial and again, for a third time, 20 minutes later. Repeated measures ANOVAs within a generalized linear modelling framework were used to assess between-session differences in gait parameters. Agreement between gait parameters measured within the same day (session 2 and 3) and between days (session 1 and 2; 1 and 3) were evaluated using the 95% repeatability coefficient. There were statistically significant differences in the majority (14/16) of temporal, spatial and kinetic gait parameters over the three test sessions (P < .01). The minimum change that could be detected with 95% confidence ranged between 3% and 17% for temporal parameters, 14% and 33% for spatial parameters, and 4% and 20% for kinetic parameters between days. Within-day repeatability was similar to that observed between days. Temporal and kinetic gait parameters were typically more consistent than spatial parameters. The 95% repeatability coefficient for vertical force peaks ranged between ± 53 and ± 63 N. The limits of agreement in spatial parameters and ground reaction forces for the treadmill system encompass previously reported changes with neuromuscular pathology and footwear interventions. These findings provide clinicians and researchers with an indication of the repeatability and sensitivity of the Zebris treadmill system to detect changes in common spatiotemporal gait parameters and vertical ground reaction forces.
2007-05-01
SWNTs by blending them with liquid crystal,7 assem- bling SWNT films by Langmuir - Blodgett methods,8 and chemical assembly of SWNTs on a large substrate...Ulman, A. An Introduction to Ultrathin Organic Films from Langmuir - Blodgett to Self-Assembly. Academic: New York, (1991). [10] Moon, J.H., Shin, J.W...Fang, J. Langmuir , 16, 2651, (2000). [8] FT-IR data (Bruker IFS48, KBr Pellet): 1720 cm-1 (νC=O, SWNT-COOH) and 1770 cm-1 (νC=O, SWNT- COCl). [9
Single molecule actuation and detection on a lab-on-a-chip magnetoresistive platform
NASA Astrophysics Data System (ADS)
Chaves, R. C.; Bensimon, D.; Freitas, P. P.
2011-03-01
On-chip magnetic tweezers based on current loops were integrated with magnetoresistive sensors. Magnetic forces up to 1.0±0.3pN are produced to actuate on DNA anchored to the surface of a flow cell and labeled with micrometer-sized magnetic beads. The levitation of the beads stretches the immobilized DNA. The relative position of the magnetic beads is monitored using spin-valve sensors. A bead vertical displacement resolution of 60nm is derived for DNA molecular motor activity in a tweezer steady current regime.
Influence of different tightening forces before laser welding to the implant/framework fit.
da Silveira-Júnior, Clebio Domingues; Neves, Flávio Domingues; Fernandes-Neto, Alfredo Júlio; Prado, Célio Jesus; Simamoto-Júnior, Paulo César
2009-06-01
The aim of the present study was to evaluate the influence of abutment screw tightening force before laser welding procedures on the vertical fit of metal frameworks over four implants. To construct the frameworks, prefabricated titanium abutments and cylindrical titanium bars were joined by laser welding to compose three groups: group of manual torque (GMT), GT10 and GT20. Before welding, manual torque simulating routine laboratory procedure was applied to GTM. In GT10 and GT20, the abutment screws received 10 and 20 Ncm torque, respectively. After welding, the implant/framework interfaces were assessed by optical comparator microscope using two methods. First, the single screw test (SST) was used, in which the interfaces of the screwed and non-screwed abutments were assessed, considering only the abutments at the framework extremities. Second, the interfaces of all the abutments were evaluated when they were screwed. In the SST, intergroup analysis (Kruskal Wallis) showed no significant difference among the three conditions of tightening force; that is, the different tightening force before welding did not guarantee smaller distortions. Intragroup analysis (Wilcoxon) showed that for all groups, the interfaces of the non-screwed abutments were statistically greater than the interfaces of the screwed abutments, evidencing distortions in all the frameworks. ANOVA was applied for the comparison of interfaces when all the abutments were screwed and showed no significant difference among the groups. Under the conditions of this study, pre-welding tightness on abutment screws did not influence the vertical fit of implant-supported metal frameworks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Esker, Barbara S.
1993-01-01
Many conceptual designs for advanced short-takeoff, vertical landing (ASTOVL) aircraft need exhaust nozzles that can vector the jet to provide forces and moments for controlling the aircraft's movement or attitude in flight near the ground. A type of nozzle that can both vector the jet and vary the jet flow area is called a vane nozzle. Basically, the nozzle consists of parallel, spaced-apart flow passages formed by pairs of vanes (vanesets) that can be rotated on axes perpendicular to the flow. Two important features of this type of nozzle are the abilities to vector the jet rearward up to 45 degrees and to produce less harsh pressure and velocity footprints during vertical landing than does an equivalent single jet. A one-third-scale model of a generic vane nozzle was tested with unheated air at the NASA Lewis Research Center's Powered Lift Facility. The model had three parallel flow passages. Each passage was formed by a vaneset consisting of a long and a short vane. The longer vanes controlled the jet vector angle, and the shorter controlled the flow area. Nozzle performance for three nominal flow areas (basic and plus or minus 21 percent of basic area), each at nominal jet vector angles from -20 deg (forward of vertical) to +45 deg (rearward of vertical) are presented. The tests were made with the nozzle mounted on a model tailpipe with a blind flange on the end to simulate a closed cruise nozzle, at tailpipe-to-ambient pressure ratios from 1.8 to 4.0. Also included are jet wake data, single-vaneset vector performance for long/short and equal-length vane designs, and pumping capability. The pumping capability arises from the subambient pressure developed in the cavities between the vanesets, which could be used to aspirate flow from a source such as the engine compartment. Some of the performance characteristics are compared with characteristics of a single-jet nozzle previously reported.
Visualizing ferromagnetic domains in magnetic topological insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenbo; Gu, G. D.; Yang, Fang
2015-05-13
We report a systematic study of ferromagnetic domains in both single-crystal and thin-film specimens of magnetic topological insulators Cr doped (Bi 0.1Sb 0.9) 2Te 3 using magnetic force microscopy (MFM). The temperature and field dependences of MFM and in situ resistance data are consistent with previous bulk transport and magnetic characterization. Bubble-like ferromagnetic domains were observed in both single crystals and thin films. Significantly, smaller domain size (~500 nm) with narrower domain wall (~150 – 300 nm) was observed in thin films of magnetic topological insulators, likely due to vertical confinement effect. As a result, these results suggest that thinmore » films are more promising for visualization of chiral edge states.« less
Turbine Engine Stability/Instability With Rub Forces Axisymmetric Rotor-Support Stiffness
NASA Technical Reports Server (NTRS)
Gallardo, Vicente; Lawrence, Charles
2004-01-01
The stability/instability condition of a turbine rotor with axisymmetric supports is determined in the presence of gyroscopic loads and rub-induced destabilizing forces. A modal representation of the turbine engine is used, with one mode in each of the vertical and horizontal planes. The use of non-spinning rotor modes permits an explicit treatment of gyroscopic effects. The two linearized modal equations of motion of a rotor with axisymmetric supports are reduced to a single equation in a complex variable. The resulting eigenvalues yield explicit expressions at the stability boundary, for the whirl frequency as well as the required damping for stability in the presence of the available rub-induced destabilization. Conversely, the allowable destabilization in the presence of the available damping is also given.
Lift vs. drag based mechanisms for vertical force production in the smallest flying insects.
Jones, S K; Laurenza, R; Hedrick, T L; Griffith, B E; Miller, L A
2015-11-07
We used computational fluid dynamics to determine whether lift- or drag-based mechanisms generate the most vertical force in the flight of the smallest insects. These insects fly at Re on the order of 4-60 where viscous effects are significant. Detailed quantitative data on the wing kinematics of the smallest insects is not available, and as a result both drag- and lift-based strategies have been suggested as the mechanisms by which these insects stay aloft. We used the immersed boundary method to solve the fully-coupled fluid-structure interaction problem of a flexible wing immersed in a two-dimensional viscous fluid to compare three idealized hovering kinematics: a drag-based stroke in the vertical plane, a lift-based stroke in the horizontal plane, and a hybrid stroke on a tilted plane. Our results suggest that at higher Re, a lift-based strategy produces more vertical force than a drag-based strategy. At the Re pertinent to small insect hovering, however, there is little difference in performance between the two strategies. A drag-based mechanism of flight could produce more vertical force than a lift-based mechanism for insects at Re<5; however, we are unaware of active fliers at this scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vertical force and wrist deviation angle in a sample of elderly people using walkers.
Leung, Cherng-Yee; Yeh, Po-Chan
2013-02-01
Walkers are frequently used by elderly people with weak lower limbs and limited balance, but the ergonomic relationship between the use of a walker and stress on the upper limbs is relatively unstudied. The current study assessed wrist deviation and vertical force among elderly individuals using a walker for assistance in walking. 60 elderly volunteers (M age = 81.0 yr., SD = 8.8) participated, 30 of whom frequently used a walker, and 30 who had no such prior experience. Data were obtained from four load cells and a twin-axis wrist goniometer during assisted ambulation using the walker. No significant group difference was found in gait cycle. Significant wrist deviation occurred, with ulnar deviation/dorsiflexion of the right hand, which was greater than that of the left. Non-experienced participants had larger dorsiflexion than experienced participants. Experienced participants produced larger vertical force than non-experienced participants. The greaterthe wrist deviation, the greater was the vertical force. The horizontal handles of most marketed walkers cause wrist deviations. This is a concern for users, clinicians, and related industries. Improvements in walker design should be considered.
Ground reaction forces on stairs: effects of stair inclination and age.
Stacoff, Alex; Diezi, Christian; Luder, Gerhard; Stüssi, Edgar; Kramers-de Quervain, Inès A
2005-01-01
The goals of the study were to compare data of vertical ground reaction force (GRF) parameters during level walking, stair ascent and descent on three different stair inclinations and three different age groups. Twenty healthy subjects of three age groups (young 33.7 years; middle 63.6 years; old 76.5 years) were tested during the seven test conditions with 8-10 repetitions. Vertical forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. The results showed that during level walking the vertical GRF curves were very regular and repetitive, the trail-to-trial variability and left-right asymmetry of defined test parameters being around 2-5% and 3-5%. During stair ascent the vertical GRF force pattern was found to change slightly compared to level gait, but considerably compared to stair descent. On the steep stair the average vertical load increased up to 1.6 BW, and variability (5-10%) and asymmetry (5-15%) were increased significantly. The steep stair descent condition was found to be the most demanding test showing the largest variability and asymmetry and thus, the least stable gait pattern. Age was found to be a factor which should be considered, because the young age group walked faster and produced larger vertical GRF maxima during level walking and on stair ascent than the middle and old age group. Differences between the middle and old age group were found to be small. The present investigation is the first to provide normative data of GRF parameters on gait variability and symmetry of two consecutive steps during level gait and stair ambulation. It is the intention that the results of this study may be used as a basis for comparison with patient data.
Validity and reliability of Optojump photoelectric cells for estimating vertical jump height.
Glatthorn, Julia F; Gouge, Sylvain; Nussbaumer, Silvio; Stauffacher, Simone; Impellizzeri, Franco M; Maffiuletti, Nicola A
2011-02-01
Vertical jump is one of the most prevalent acts performed in several sport activities. It is therefore important to ensure that the measurements of vertical jump height made as a part of research or athlete support work have adequate validity and reliability. The aim of this study was to evaluate concurrent validity and reliability of the Optojump photocell system (Microgate, Bolzano, Italy) with force plate measurements for estimating vertical jump height. Twenty subjects were asked to perform maximal squat jumps and countermovement jumps, and flight time-derived jump heights obtained by the force plate were compared with those provided by Optojump, to examine its concurrent (criterion-related) validity (study 1). Twenty other subjects completed the same jump series on 2 different occasions (separated by 1 week), and jump heights of session 1 were compared with session 2, to investigate test-retest reliability of the Optojump system (study 2). Intraclass correlation coefficients (ICCs) for validity were very high (0.997-0.998), even if a systematic difference was consistently observed between force plate and Optojump (-1.06 cm; p < 0.001). Test-retest reliability of the Optojump system was excellent, with ICCs ranging from 0.982 to 0.989, low coefficients of variation (2.7%), and low random errors (±2.81 cm). The Optojump photocell system demonstrated strong concurrent validity and excellent test-retest reliability for the estimation of vertical jump height. We propose the following equation that allows force plate and Optojump results to be used interchangeably: force plate jump height (cm) = 1.02 × Optojump jump height + 0.29. In conclusion, the use of Optojump photoelectric cells is legitimate for field-based assessments of vertical jump height.
Running stride peak forces inversely determine running economy in elite runners.
Støren, Øyvind; Helgerud, Jan; Hoff, Jan
2011-01-01
The present study investigated the relationship between running economy (RE) at 15 km/h(-1) , 3.000-m race time, maximal strength, and a number of physiological, anthropometrical, and mechanical variables. The variables measured included RE, maximal oxygen consumption, heart rate, step length and frequency, contact time, and the peak horizontal and vertical forces of each step. Maximal strength was measured as the 1 repetition maximum (1RM) half-squat using a leg press machine. Eleven male elite endurance athletes with a V(O2)max of 75.8 ± 6.2 mL/kg(-1)/min(-1) participated in this study. After the anthropometric data were collected, they were tested for RE, running characteristics, and force measures on a level treadmill at 15 km/h(-1). The athletes wore contact soles, and the treadmill was placed on a force platform. Maximal oxygen consumption and 1RM were tested after the RE measurements. The sum of horizontal and vertical peak forces revealed a significant inverse correlation (p < 0.05) both with 3,000-m performance (R = 0.71) and RE (R = 0.66). Inverse correlations were also found (p < 0.05) between RE and body height (R = 0.61) and between RE and body fat percentage (R = 0.62). In conclusion, the sum of horizontal and vertical peak forces was found to be negatively correlated to running economy and 3,000-m running performance, indicating that avoiding vertical movements and high horizontal braking force is crucial for a positive development of RE.
Spring-mass behavior during exhaustive run at constant velocity in elite triathletes.
Rabita, Giuseppe; Slawinski, Jean; Girard, Olivier; Bignet, Frank; Hausswirth, Christophe
2011-04-01
The aims of this study were i) to evaluate changes in leg-spring behavior during an exhaustive run in elite triathletes and ii) to determine whether these modifications were related to an increase in the energy cost of running (Cr). Nine elite triathletes ran to exhaustion on an indoor track at a constant velocity corresponding to 95% of the velocity associated with the maximal oxygen uptake (mean ± SD = 5.1 ± 0.3 m·s(-1), time to exhaustion = 10.7 ± 2.6 min). Vertical and horizontal ground reaction forces were measured every lap (200 m) by a 5-m-long force platform system. Cr was measured from pulmonary gas exchange using a breath-by-breath portable gas analyzer. Leg stiffness (-13.1%, P < 0.05) and peak vertical (-9.2%, P < 0.05) and propulsive (-7.5%, P < 0.001) forces decreased significantly with fatigue, whereas vertical stiffness did not change significantly. Leg and vertical stiffness changes were positively related with modifications of aerial time (R(2) = 0.66, P < 0.01 and R(2) = 0.72, P < 0.01, respectively) and negatively with contact time (R(2) = 0.71, P < 0.01 and R(2) = 0.74, P < 0.01, respectively). Alterations of vertical forces were related with the decrease of the angle of velocity vector at toe off (R(2) = 0.73, P < 0.01). When considering mean values of oxygen uptake, no change was observed from 33% to 100% of the time to exhaustion. However, between one-third and two-thirds of the fatiguing run, negative correlations were observed between oxygen consumption and leg stiffness (R(2) = 0.83, P < 0.001) or vertical stiffness (R(2) = 0.50, P < 0.03). During a constant run to exhaustion, the fatigue induces a stiffness adaptation that modifies the stride mechanical parameters and especially decreases the maximal vertical force. This response to fatigue involves greater energy consumption.
Ishii, Shuya; Kawai, Masataka; Ishiwata, Shin'ichi
2018-01-01
The interaction between actin filaments and myosin molecular motors is a power source of a variety of cellular functions including cell division, cell motility, and muscular contraction. In vitro motility assay examines actin filaments interacting with myosin molecules that are adhered to a substrate (e.g., glass surface). This assay has been the standard method of studying the molecular mechanisms of contraction under an optical microscope. While the force generation has been measured through an optically trapped bead to which an actin filament is attached, a force vector vertical to the glass surface has been largely ignored with the in vitro motility assay. The vertical vector is created by the gap (distance) between the trapped bead and the glass surface. In this report, we propose a method to estimate the angle between the actin filament and the glass surface by optically determining the gap size. This determination requires a motorized stage in a standard epi-fluorescence microscope equipped with optical tweezers. This facile method is applied to force measurements using both pure actin filaments, and thin filaments reconstituted from actin, tropomyosin and troponin. We find that the angle-corrected force per unit filament length in the active condition (pCa = 5.0) decreases as the angle between the filament and the glass surface increases; i.e. as the force in the vertical direction increases. At the same time, we demonstrate that the force on reconstituted thin filaments is approximately 1.5 times larger than that on pure actin filaments. The range of angles we tested was between 11° and 36° with the estimated measurement error less than 6°. These results suggest the ability of cytoplasmic tropomyosin isoforms maintaining actomyosin active force to stabilize cytoskeletal architecture. PMID:29420610
Effective Swimmer’s Action during the Grab Start Technique
Mourão, Luis; de Jesus, Karla; Roesler, Hélio; Machado, Leandro J.; Fernandes, Ricardo J.; Vilas-Boas, João Paulo; Vaz, Mário A. P.
2015-01-01
The external forces applied in swimming starts have been often studied, but using direct analysis and simple interpretation data processes. This study aimed to develop a tool for vertical and horizontal force assessment based on the swimmers’ propulsive and structural forces (passive forces due to dead weight) applied during the block phase. Four methodological pathways were followed: the experimented fall of a rigid body, the swimmers’ inertia effect, the development of a mathematical model to describe the outcome of the rigid body fall and its generalization to include the effects of the inertia, and the experimental swimmers’ starting protocol analysed with the inclusion of the developed mathematical tool. The first three methodological steps resulted in the description and computation of the passive force components. At the fourth step, six well-trained swimmers performed three 15 m maximal grab start trials and three-dimensional (3D) kinetic data were obtained using a six degrees of freedom force plate. The passive force contribution to the start performance obtained from the model was subtracted from the experimental force due to the swimmers resulting in the swimmers’ active forces. As expected, the swimmers’ vertical and horizontal active forces accounted for the maximum variability contribution of the experimental forces. It was found that the active force profile for the vertical and horizontal components resembled one another. These findings should be considered in clarifying the active swimmers’ force variability and the respective geometrical profile as indicators to redefine steering strategies. PMID:25978370
Three-Axis Ground Reaction Force Distribution during Straight Walking.
Hori, Masataka; Nakai, Akihito; Shimoyama, Isao
2017-10-24
We measured the three-axis ground reaction force (GRF) distribution during straight walking. Small three-axis force sensors composed of rubber and sensor chips were fabricated and calibrated. After sensor calibration, 16 force sensors were attached to the left shoe. The three-axis force distribution during straight walking was measured, and the local features of the three-axis force under the sole of the shoe were analyzed. The heel area played a role in receiving the braking force, the base area of the fourth and fifth toes applied little vertical or shear force, the base area of the second and third toes generated a portion of the propulsive force and received a large vertical force, and the base area of the big toe helped move the body's center of mass to the other foot. The results demonstrate that measuring the three-axis GRF distribution is useful for a detailed analysis of bipedal locomotion.
Steerable vertical to horizontal energy transducer for mobile robots
Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.
2001-01-01
The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.
Optimum Drop Jump Height in Division III Athletes: Under 75% of Vertical Jump Height.
Peng, Hsien-Te; Khuat, Cong Toai; Kernozek, Thomas W; Wallace, Brian J; Lo, Shin-Liang; Song, Chen-Yi
2017-10-01
Our purpose was to evaluate the vertical ground reaction force, impulse, moments and powers of hip, knee and ankle joints, contact time, and jump height when performing a drop jump from different drop heights based on the percentage of a performer's maximum vertical jump height (MVJH). Fifteen male Division III athletes participated voluntarily. Eleven synchronized cameras and two force platforms were used to collect data. One-way repeated-measures analysis of variance tests were used to examine the differences between drop heights. The maximum hip, knee and ankle power absorption during 125%MVJH and 150%MVJH were greater than those during 75%MVJH. The impulse during landing at 100%MVJH, 125%MVJH and 150%MVJH were greater than 75%MVJH. The vertical ground reaction force during 150%MVJH was greater than 50%MVJH, 75%MVJH and 100%MVJH. Drop height below 75%MVJH had the most merits for increasing joint power output while having a lower impact force, impulse and joint power absorption. Drop height of 150%MVJH may not be desirable as a high-intensity stimulus due to the much greater impact force, increasing the risk of injury, without increasing jump height performance. © Georg Thieme Verlag KG Stuttgart · New York.
Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R
2016-07-22
Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.
Vapor Growth and Characterization of Cr-Doped ZnSe Crystals
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Feth, Shari; Volz, M. P.; Matyi, R.; George, M. A.; Chattopadhyay, K.; Burger, A.; Lehoczky, S. L.
1999-01-01
Cr-doped ZnSe single crystals were grown by a self-seeded physical vapor transport technique in both vertical (stabilized) and horizontal configurations. The source materials were mixtures of ZnSe and CrSe. Growth temperatures were in the range of 1140-1150 C and the furnace translation rates were 1.9-2.2 mm/day. The surface morphology of the as-grown crystals was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Different features of the as-grown surface of the vertically and horizontally grown crystals suggest that different growth mechanisms were involved in the two growth configurations. The [Cr] doping levels were determined to be in the range of 1.8-8.3 x 10 (exp 19) cm (exp -3) from optical absorption measurements. The crystalline quality of the grown crystals were examined by high-resolution triple-crystal X-ray diffraction (HRTXD) analysis.
Mass transport through vertically aligned large diameter MWCNT embedded in parylene
Krishnakumar, P; Tiwari, P B; Staples, S; Luo, T; Darici, Y; He, J; Lindsay, SM
2013-01-01
We have fabricated porous membranes using a parylene encapsulated vertically aligned forest of multi-walled carbon nanotube (MWCNT, about 7nm inner diameter). The transport of charged particles in electrolyte through these membranes was studied by applying electric field and pressure. Under an electric field in the range of 4.4×104 V/m, electrophoresis instead of electroomosis is found to be the main mechanism for ion transport. Small molecules and 5 nm gold nanoparticles can be driven through the membranes by an electric field. However, small biomolecules, like DNA oligomers, cannot. Due to the weak electric driving force, the interactions between charged particles and the hydrophobic CNT inner surface play important roles in the transport, leading to enhanced selectivity for small molecules. Simple chemical modification on the CNT ends also induces an obvious effect on the translocation of single strand DNA oligomer and gold nanoparticle under a modest pressure (<294 Pa). PMID:23064678
Simulations of roughness initiation and growth on railway rails
NASA Astrophysics Data System (ADS)
Sheng, X.; Thompson, D. J.; Jones, C. J. C.; Xie, G.; Iwnicki, S. D.; Allen, P.; Hsu, S. S.
2006-06-01
A model for the prediction of the initiation and growth of roughness on the rail is presented. The vertical interaction between a train and the track is calculated as a time history for single or multiple wheels moving on periodically supported rails, using a wavenumber-based approach. This vertical dynamic wheel/rail force arises from the varying stiffness due to discrete supports (i.e. parametric excitation) and the roughness excitation on the railhead. The tangential contact problem between the wheel and rail is modelled using an unsteady two-dimensional approach and also using the three-dimensional contact model, FASTSIM. This enables the slip and stick regions in the contact patch to be identified from the input geometry and creepage between the wheel and rail. The long-term wear growth is then predicted by applying repeated passages of the vehicle wheelsets, as part of an iterative solution.
Lyapunov stability analysis for the generalized Kapitza pendulum
NASA Astrophysics Data System (ADS)
Druzhinina, O. V.; Sevastianov, L. A.; Vasilyev, S. A.; Vasilyeva, D. G.
2017-12-01
In this work generalization of Kapitza pendulum whose suspension point moves in the vertical and horizontal planes is made. Lyapunov stability analysis of the motion for this pendulum subjected to excitation of periodic driving forces and stochastic driving forces that act in the vertical and horizontal planes has been studied. The numerical study of the random motion for generalized Kapitza pendulum under stochastic driving forces has made. It is shown the existence of stable quasi-periodic motion for this pendulum.
NASA Technical Reports Server (NTRS)
Smiley, Robert F; Horne, Walter B
1957-01-01
The vertical force-deflection characteristics were experimentally determined for a pair of 56-inch-diameter tires under static and drop-test conditions with and without prerotation. For increasing force, the tires were found to be least stiff for static tests, almost the same as for the static case for prerotation drop tests as long as the tires remain rotating, and appreciably stiffer for drop tests without prerotation.
Mericske-Stern, R
1998-01-01
The purpose of this in vivo study was to determine maximum and functional forces simultaneously in three dimensions on mandibular implants supporting overdentures. The anchorage system for overdenture connection was the ball-shaped retentive anchor. Five edentulous patients, each with two mandibular ITI implants, were selected as test subjects. A novel miniaturized piezo-electric force transducer was developed for specific use with ITI implants. Force magnitudes and directions were registered under various test conditions by means of electrostatic plotter records. The test modalities were maximum biting in centric occlusion, maximum biting on a bite plate, grinding, and chewing bread. Maximum forces measured in centric occlusion and on the ipsilateral implant when using a bite plate were slightly increased in vertical and backward-forward dimension (z-, y-axis) compared to the lateral-medial direction (x-axis). On the contralateral implant, equally low values were found in all three dimensions. This may be the effect of a nonsplinted anchorage device. With the use of a bite plate, force magnitudes on the ipsilateral implant were significantly higher on the z- and y-axis than mean maximum forces in centric occlusion (P < .001). Chewing and grinding resulted in lower forces compared to maximum biting, particularly in the vertical direction. The transverse force component in backward-forward direction, however, reached magnitudes that exceeded the vertical component by 100% to 300% during chewing function. This chewing pattern had not been observed in previous investigations with bars and telescopes, and therefore appears to be specific for retentive ball anchors. The prevalent or exclusive force direction registered on both implants in the vertical direction was downward under all test conditions. In the transverse direction during maximum biting the forward direction was more frequently registered, while no obvious prevalence of transverse force direction was observed during chewing and grinding.
Shin, Seungho; Lee, Kyeongjin; Song, Changho
2015-12-01
[Purpose] The aim of the present study was to investigate the acute effects of unilateral whole body vibration training on height and symmetry of the single leg vertical jump in healthy men. [Subjects] Thirty males with no history of lower limb dysfunction participated in this study. [Methods] The participants were randomly allocated to one of three groups: the unilateral vibratory stimulation group (n=10), bilateral vibratory stimulation group (n=10), and, no vibratory stimulation group (n=10). The subjects in the unilateral and bilateral stimulation groups participated in one session of whole body vibration training at 26 Hz for 3 min. The no vibratory stimulation group subjects underwent the same training for 3 min without whole body vibration. All participants performed the single leg vertical jump for each lower limb, to account for the strong and weak sides. The single leg vertical jump height and symmetry were measured before and after the intervention. [Results] The single leg vertical jump height of the weak lower limb significantly improved in the unilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump height of the strong lower limb significantly improved in the bilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump symmetry significantly improved in the unilateral vibratory stimulation group, but not in the other groups. [Conclusion] Therefore, the present study found that the effects of whole body vibration training were different depending on the type of application. To improve the single leg vertical jump height in the weak lower limbs as well as limb symmetry, unilateral vibratory stimulation might be more desirable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boville, B.A.; Randel, W.J.
1992-05-01
Equatorially trapped wave modes, such as Kelvin and mixed Rossby-gravity waves, are believed to play a crucial role in forcing the quasi-biennial oscillation (QBO) of the lower tropical stratosphere. This study examines the ability of a general circulation model (GCM) to simulate these waves and investigates the changes in the wave properties as a function of the vertical resolution of the model. The simulations produce a stratopause-level semiannual oscillation but not a QBO. An unfortunate property of the equatorially trapped waves is that they tend to have small vertical wavelengths ([le] 15 km). Some of the waves, believed to bemore » important in forcing the QBO, have wavelengths as short as 4 km. The short vertical wavelengths pose a stringent computational requirement for numerical models whose vertical grid spacing is typically chosen based on the requirements for simulating extratropical Rossby waves (which have much longer vertical wavelengths). This study examines the dependence of the equatorial wave simulation of vertical resolution using three experiments with vertical grid spacings of approximately 2.8, 1.4, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and inertio-gravity waves are identified in the simulations. At high vertical resolution, the simulated waves are shown to correspond fairly well to the available observations. The properties of the relatively slow (and vertically short) waves believed to play a role in the QBO vary significantly with vertical resolution. Vertical grid spacings of about 1 km or less appear to be required to represent these waves adequately. The simulated wave amplitudes are at least as large as observed, and the waves are absorbed in the lower stratosphere, as required in order to force the QBO. However, the EP flux divergence associated with the waves is not sufficient to explain the zonal flow accelerations found in the QBO. 39 refs., 17 figs., 1 tab.« less
Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
Phan, Hoang Vu; Truong, Quang Tri; Au, Thi Kim Loan; Park, Hoon Cheol
2016-07-08
This work presents a parametric study, using the unsteady blade element theory, to investigate the role of twist in a hovering flapping wing. For the investigation, a flapping-wing system was developed to create a wing motion of large flapping amplitude. Three-dimensional kinematics of a passively twisted wing, which is capable of creating a linearly variable geometric angle of attack (AoA) along the wingspan, was measured during the flapping motion and used for the analysis. Several negative twist or wash-out configurations with different values of twist angle, which is defined as the difference in the average geometric AoAs at the wing root and the wing tip, were obtained from the measured wing kinematics through linear interpolation and extrapolation. The aerodynamic force generation and aerodynamic power consumption of these twisted wings were obtained and compared with those of flat wings. For the same aerodynamic power consumption, the vertical aerodynamic forces produced by the negatively twisted wings are approximately 10%-20% less than those produced by the flat wings. However, these twisted wings require approximately 1%-6% more power than flat wings to produce the same vertical force. In addition, the maximum-force-producing twisted wing, which was found to be the positive twist or wash-in configuration, was used for comparison with the maximum-force-producing flat wing. The results revealed that the vertical aerodynamic force and aerodynamic power consumption of the two types of wings are almost identical for the hovering condition. The power loading of the positively twisted wing is only approximately 2% higher than that of the maximum-force-producing flat wing. Thus, the flat wing with proper wing kinematics (or wing rotation) can be regarded as a simple and efficient candidate for the development of hovering flapping-wing micro air vehicle.
Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions
NASA Astrophysics Data System (ADS)
Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun
2017-11-01
Locomotive is used to drag trailers to move or supply the braking forces to slow the running speed of a train. The electromagnetic torque of the motor is always transmitted by the gear transmission system to the wheelset for generation of the tractive or braking forces at the wheel-rail contact interface. Consequently, gear transmission system is significant for power delivery of a locomotive. This paper develops a comprehensive locomotive-track vertical-longitudinal coupled dynamics model with dynamic effect of gear transmissions. This dynamics model enables considering the coupling interactions between the gear transmission motion, the vertical and the longitudinal motions of the vehicle, and the vertical vibration of the track structure. In this study, some complicated dynamic excitations, such as the gear time-varying mesh stiffness, nonlinear gear tooth backlash, the nonlinear wheel-rail normal contact force and creep force, and the rail vertical geometrical irregularity, are considered. Then, the dynamic responses of the locomotive under the tractive conditions are demonstrated by numerical simulations based on the established dynamics model and by experimental test. The developed dynamics model is validated by the good agreement between the experimental and the theoretical results. The calculated results reveal that the gear transmission system has strong dynamic interactions with the wheel-rail contact interface including both the vertical and the longitudinal motions, and it has negligible effect on the vibrations of the bogie frame and carbody.
Quantitative modeling and optimization of magnetic tweezers.
Lipfert, Jan; Hao, Xiaomin; Dekker, Nynke H
2009-06-17
Magnetic tweezers are a powerful tool to manipulate single DNA or RNA molecules and to study nucleic acid-protein interactions in real time. Here, we have modeled the magnetic fields of permanent magnets in magnetic tweezers and computed the forces exerted on superparamagnetic beads from first principles. For simple, symmetric geometries the magnetic fields can be calculated semianalytically using the Biot-Savart law. For complicated geometries and in the presence of an iron yoke, we employ a finite-element three-dimensional PDE solver to numerically solve the magnetostatic problem. The theoretical predictions are in quantitative agreement with direct Hall-probe measurements of the magnetic field and with measurements of the force exerted on DNA-tethered beads. Using these predictive theories, we systematically explore the effects of magnet alignment, magnet spacing, magnet size, and of adding an iron yoke to the magnets on the forces that can be exerted on tethered particles. We find that the optimal configuration for maximal stretching forces is a vertically aligned pair of magnets, with a minimal gap between the magnets and minimal flow cell thickness. Following these principles, we present a configuration that allows one to apply > or = 40 pN stretching forces on approximately 1-microm tethered beads.
Quantitative Modeling and Optimization of Magnetic Tweezers
Lipfert, Jan; Hao, Xiaomin; Dekker, Nynke H.
2009-01-01
Abstract Magnetic tweezers are a powerful tool to manipulate single DNA or RNA molecules and to study nucleic acid-protein interactions in real time. Here, we have modeled the magnetic fields of permanent magnets in magnetic tweezers and computed the forces exerted on superparamagnetic beads from first principles. For simple, symmetric geometries the magnetic fields can be calculated semianalytically using the Biot-Savart law. For complicated geometries and in the presence of an iron yoke, we employ a finite-element three-dimensional PDE solver to numerically solve the magnetostatic problem. The theoretical predictions are in quantitative agreement with direct Hall-probe measurements of the magnetic field and with measurements of the force exerted on DNA-tethered beads. Using these predictive theories, we systematically explore the effects of magnet alignment, magnet spacing, magnet size, and of adding an iron yoke to the magnets on the forces that can be exerted on tethered particles. We find that the optimal configuration for maximal stretching forces is a vertically aligned pair of magnets, with a minimal gap between the magnets and minimal flow cell thickness. Following these principles, we present a configuration that allows one to apply ≥40 pN stretching forces on ≈1-μm tethered beads. PMID:19527664
Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises
Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee
2015-01-01
Context Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. Objective To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Design Descriptive laboratory study. Setting Laboratory. Patients or Other Participants A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Intervention(s) Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Main Outcome Measure(s) Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. Results We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Conclusions Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat. PMID:26418958
Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen
2012-05-07
The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.
Sit-to-stand ground reaction force characteristics in blind and sighted female children.
Faraji Aylar, Mozhgan; Jafarnezhadgero, Amir Ali; Salari Esker, Fatemeh
2018-03-05
The association between visual sensory and sit-to-stand ground reaction force characteristics is not clear. Impulse is the amount of force applied over a period of time. Also, free moment represents the vertical moment applied in the center of pressure (COP). How the ground reaction force components, vertical loading rate, impulses and free moment respond to long and short term restricted visual information? Fifteen female children with congenital blindness and 45 healthy girls with no visual impairments participated in this study. The girls with congenital blindness were placed in one group and the 45 girls with no visual impairments were randomly divided into three groups of 15; eyes open, permanently eyes closed, and temporary eyes closed. The participants in the permanently eyes closed group closed their eyes for 20 min before the test, whereas temporary eyes closed group did tests with their eyes closed throughout, and those in the eyes open group kept their eyes open. Congenital blindness was associated with increased vertical loading rate, range of motion of knee and hip in the medio-lateral plane. Also, medio-lateral and vertical ground reaction force impulses. Similar peak negative and positive free moments were observed in three groups. In conclusion, the results reveal that sit-to-stand ground reaction force components in blind children may have clinical importance for improvement of balance control of these individuals. Copyright © 2018 Elsevier B.V. All rights reserved.
Wurdeman, Shane R; Huisinga, Jessie M; Filipi, Mary; Stergiou, Nicholas
2011-02-01
Multiple sclerosis is a progressive neurological disease that results in a high incident of gait disturbance. Exploring the frequency content of the ground reaction forces generated during walking may provide additional insights to gait in patients with multiple sclerosis that could lead to specific tools for differential diagnosis. The purpose of this study was to investigate differences in the frequency content of these forces in an effort to contribute to improved clinical management of this disease. Eighteen patients and eighteen healthy controls walked across a 10 meter long walkway. The anterior-posterior and vertical ground reaction forces generated during the stance phase of gait were evaluated in the frequency domain using fast Fourier transformation. T-tests were utilized for comparison of median frequency, the 99.5% frequency, and the frequency bandwidth between patients and healthy controls and also for comparisons between patients with mild and moderate severity. Patients with multiple sclerosis had significantly lower 99.5% frequency (P=0.006) and median frequency (P<0.001) in the vertical ground reaction force. No differences were found in the anterior-posterior reaction force frequency content. There were no differences between patients with mild and moderate severity. The lower frequency content suggests lesser vertical oscillation of the center of gravity. Lack of differences between severities may suggest presence of differences prior to currently established diagnosis timelines. Analysis of the frequency content may potentially serve to provide earlier diagnostic assessment of this debilitating disease. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Garcia, Anne W.; Langenthal, Carla R.; Angulo-Barroso, Rosa M.; Gross, M. Melissa
2004-01-01
In this pilot study of 16 children, we evaluated the reliability and validity of three accelerometers (Mini-Motionlogger [MML], Computer Science Applications, Inc. Actigraph [CSA], and BioTrainer) as indicators of energy expenditure and vertical ground reaction force. The children wore 2 of each type of monitor while they walked, ran, and…
Vertical force and wrist deviation angle when using a walker to stand up and sit down.
Leung, Cherng-Yee; Yeh, Po-Chan
2011-08-01
Research investigating walkers suggests that safety and assistance for the elderly with weak lower limbs were important. However, the relationship between the use of a walker and the upper limbs has received little investigation. Standing up and sitting down are important daily activities. Therefore, the aim of this study was to explore wrist deviation and vertical force among elderly individuals using a walker for assistance to stand up and sit down. In total, 64 elderly volunteers (M age = 80.22, SD = 9.36) were enrolled. Data were obtained from four load cells and a twin-axis wrist goniometer. Wrist deviation and vertical force were examined when participants used a walker with horizontal handles to assist in standing up and sitting down. Significant wrist angle deviation occurred with the use of a walker, with dorsiflexion of the right hand greater than that of the left. Males exerted significantly greater vertical force. In the sitting position, greater ulnar deviation was seen among experienced walker users, whereas during standing, experienced users exhibited greater dorsiflexion. The horizontal handles of most marketed walkers may cause user wrist deviations, suggesting researchers should pursue improvements in walker design.
Tokita, Daisuke; Ebihara, Arata; Nishijo, Miki; Miyara, Kana; Okiji, Takashi
2017-10-01
The purpose of the present study was to compare 2 modes of reciprocal movement (torque-sensitive and time-dependent reciprocal rotation) with continuous rotation in terms of torque and apical force generation during nickel-titanium rotary root canal instrumentation. A custom-made automated root canal instrumentation and torque/force analyzing device was used to prepare simulated canals in resin blocks and monitor the torque and apical force generated in the blocks during preparation. Experimental groups (n = 7, each) consisted of (1) torque-sensitive reciprocal rotation with torque-sensitive vertical movement (group TqR), (2) time-dependent reciprocal rotation with time-dependent vertical movement (group TmR), and (3) continuous rotation with time-dependent vertical movement (group CR). The canals were instrumented with TF Adaptive SM1 and SM2 rotary files (SybronEndo, Orange, CA), and the torque and apical force were measured during instrumentation with SM2. The mean and maximum torque and apical force values were statistically analyzed using 1-way analysis of variance and the Tukey test (α = 0.05). The recordings showed intermittent increases of upward apical force and clockwise torque, indicating the generation and release of screw-in forces. The maximum upward apical force values in group TmR were significantly smaller than those in group CR (P < .05). The maximum torque values in clockwise and counterclockwise directions in groups TqR and TmR were significantly smaller than those in group CR (P < .05). Under the present experimental conditions using TF Adaptive instruments, both torque-sensitive and time-dependent reciprocal rotation generated significantly lower maximum torque and may have advantages in reducing stress generation caused by screw-in forces when compared with continuous rotation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
The effect of muscle stiffness and damping on simulated impact force peaks during running.
Nigg, B M; Liu, W
1999-08-01
It has been frequently reported that vertical impact force peaks during running change only minimally when changing the midsole hardness of running shoes. However, the underlying mechanism for these experimental observations is not well understood. An athlete has various possibilities to influence external and internal forces during ground contact (e.g. landing velocity, geometrical alignment, muscle tuning, etc.). The purpose of this study was to discuss one possible strategy to influence external impact forces acting on the athlete's body during running, the strategy to change muscle activity (muscle tuning). The human body was modeled as a simplified mass-spring-damper system. The model included masses of the upper and the lower bodies with each part of the body represented by a rigid and a non-rigid wobbling mass. The influence of mechanical properties of the human body on the vertical impact force peak was examined by varying the spring constants and damping coefficients of the spring-damper units that connected the various masses. Two types of shoe soles were modeled using a non-linear force deformation model with two sets of parameters based on the force-deformation curves of pendulum impact experiments. The simulated results showed that the regulation of the mechanical coupling of rigid and wobbling masses of the human body had an influence on the magnitude of the vertical impact force, but not on its loading rate. It was possible to produce the same impact force peaks altering specific mechanical properties of the system for a soft and a hard shoe sole. This regulation can be achieved through changes of joint angles, changes in joint angular velocities and/or changes in muscle activation levels in the lower extremity. Therefore, it has been concluded that changes in muscle activity (muscle tuning) can be used as a possible strategy to affect vertical impact force peaks during running.
James, M.R.; Lane, S.J.; Chouet, B.A.
2006-01-01
Seismic signals generated during the flow and degassing of low-viscosity magmas include long-period (LP) and very-long-period (VLP) events, whose sources are often attributed to dynamic fluid processes within the conduit. We present the results of laboratory experiments designed to investigate whether the passage of a gas slug through regions of changing conduit diameter could act as a suitable source mechanism. A vertical, liquid-filled glass tube featuring a concentric diameter change was used to provide canonical insights into potentially deep or shallow seismic sources. As gas slugs ascend the tube, we observe systematic pressure changes varying with slug size, liquid depth, tube diameter, and liquid viscosity. Gas slugs undergoing an abrupt flow pattern change upon entering a section of significantly increased tube diameter induce a transient pressure decrease in and above the flare and an associated pressure increase below it, which stimulates acoustic and inertial resonant oscillations. When the liquid flow is not dominantly controlled by viscosity, net vertical forces on the apparatus are also detected. The net force is a function of the magnitude of the pressure transients generated and the tube geometry, which dictates where, and hence when, the traveling pressure pulses can couple into the tube. In contrast to interpretations of related volcano-seismic data, where a single downward force is assumed to result from an upward acceleration of the center of mass in the conduit, our experiments suggest that significant downward forces can result from the rapid deceleration of relatively small volumes of downward-moving liquid. Copyright 2006 by the American Geophysical Union.
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS.
Meardon, Stacey; Klusendorf, Anna; Kernozek, Thomas
2016-06-01
Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Case-control study. Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level 3.
Dynamics of tethered constellations in Earth orbit
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1986-01-01
Topics covered include station keeping of single-axis and two-axis constellations; single-axis vertical constellations with low-g platform; single-axis vertical constellations with three masses; deployment strategy; and damping of vibrational modes.
Evaluation of a single column model at the Southern Great Plains climate research facility
NASA Astrophysics Data System (ADS)
Kennedy, Aaron D.
Despite recent advancements in global climate modeling, models produce a large range of climate sensitivities for the Earth. This range of sensitivities results in part from uncertainties in modeling clouds. To understand and to improve cloud parameterizations in Global Climate Models (GCMs), simulations should be evaluated using observations of clouds. Detailed studies can be conducted at Atmospheric Radiation Measurements (ARM) sites which provide adequate observations and forcing for Single Column Model (SCM) studies. Unfortunately, forcing for SCMs is sparse and not available for many locations or times. This study had two main goals: (1) evaluate clouds from the GISS Model E AR5 SCM at the ARM Southern Great Plains site and (2) determine whether reanalysis-based forcing was feasible at this location. To accomplish these goals, multiple model runs were conducted from 1999--2008 using forcing provided by ARM and forcing developed from the North American Regional Reanalysis (NARR). To better understand cloud biases and differences in the forcings, atmospheric states were classified using Self Organizing Maps (SOMs). Although model simulations had many similarities with the observations, there were several noticeable biases. Deep clouds had a negative bias year-round and this was attributed to clouds being too thin during frontal systems and a lack of convection during the spring and summer. These results were consistent regardless of the forcing used. During August, SCM simulations had a positive bias for low clouds. This bias varied with the forcing suggesting that part of the problem was tied to errors in the forcing. NARR forcing had many favorable characteristics when compared to ARM observations and forcing. In particular, temperature and wind information were more accurate than ARM when compared to balloon soundings. During the cool season, NARR forcing produced results similar to ARM with reasonable precipitation and a similar cloud field. Although NARR vertical velocities were weaker than ARM during the convective season, these simulations were able to capture the majority of convective events. The limiting factor for NARR was humidity biases in the upper troposphere during the summer months. Prior to releasing this forcing to the modeling community, this issue must be investigated further.
NASA Astrophysics Data System (ADS)
Kizu, Ryosuke; Misumi, Ichiko; Hirai, Akiko; Kinoshita, Kazuto; Gonda, Satoshi
2018-07-01
A metrological atomic force microscope with a tip-tilting mechanism (tilting-mAFM) has been developed to expand the capabilities of 3D nanometrology, particularly for high-resolution topography measurements at the surfaces of vertical sidewalls and for traceable measurements of nanodevice linewidth. In the tilting-mAFM, the probe tip is tilted from vertical to 16° at maximum such that the probe tip can touch and trace the vertical sidewall of a nanometer-scale structure; the probe of a conventional atomic force microscope cannot reach the vertical surface because of its finite cone angle. Probe displacement is monitored in three axes by using high-resolution laser interferometry, which is traceable to the SI unit of length. A central-symmetric 3D scanner with a parallel spring structure allows probe scanning with extremely low interaxial crosstalk. A unique technique for scanning vertical sidewalls was also developed and applied. The experimental results indicated high repeatability in the scanned profiles and sidewall angle measurements. Moreover, the 3D measurement of a line pattern was demonstrated, and the data from both sidewalls were successfully stitched together with subnanometer accuracy. Finally, the critical dimension of the line pattern was obtained.
Kai, M; Aoki, O; Hiraga, A; Oki, H; Tokuriki, M
2000-08-01
To develop an instrument that could be sandwiched between the hoof and shoe of horses and that would reliably measure vertical ground reaction forces and three-dimensional acceleration at the walk, trot, and canter. 5 clinically sound Thoroughbreds. The recording instrument (weight, 350 g) consisted of 2 metal plates, 2 bolts, 4 load cells, and 3 accelerometers. It was mounted to the hoof with a glue-on shoe and devised to support as much load exerted by a limb as possible. The load cells and accelerometers were wired to a 16-channel transmitter, and transmitted signals were received and amplified with a telemetry receiver. The recording instrument could measure in real time the 4 components of the ground reaction force or their resultant force along with acceleration in 3 dimensions as horses walked, trotted, or cantered on a treadmill. Patterns of force-time curves recorded for consecutive strides were similar to each other and to those previously reported, using a force plate. The recording instrument developed for use in the present study allowed us to record vertical ground reaction force and acceleration in 3 dimensions in horses at the walk, trot, and canter.
NASA Technical Reports Server (NTRS)
Costen, Robert C.; Stock, Larry V.
1992-01-01
In this video (8 min., color, sound, VHS), animation depicts the inertial oscillation of a new mathematical model ('vertical rotating draft') for spinning up a single supercell storm. The oscillation consists of a long quiescent phase when the draft is large in diameter and rotates anticyclonically and a short intense phase when the draft is small and cyclonic. During the intense phase, the rotating draft resembles a supercell. The physical basis for the oscillation is depicted by tracking air parcels in the draft as they move along inertial circles (projected on a horizontal plane), where the horizontal pressure gradient is zero and the Coriolis force balances the centrifugal force. A side view of the oscillation shows that contraction and expansion are linked, respectively, to buoyantly driven compressible downdraft and updraft. An aerial view tracks the draft as it moves above the surface of the Earth and turns to the right during the intense phase. Radar echoes from a supercell storm are superimposed for comparison. The data appear to support only the intense phase. A critical experiment would measure the predominantly downward flow that theoretically occurs before the right turn in a supercell track and causes contraction and spin-up.
Phan, Hoang Vu; Truong, Quang Tri; Park, Hoon Cheol
2017-04-19
This work presents a parametric study to find a proper wing configuration for achieving economical flight using unsteady blade element theory, which is based on the 3D kinematics of a flapping wing. Power loading was first considered as a performance parameter for the study. The power loadings at each wing section along the wingspan were obtained for various geometric angles of attack (AoAs) by calculating the ratios of the vertical forces generated and the power consumed by that particular wing section. The results revealed that the power loading of a negatively twisted wing could be higher than the power loading that a flat wing can have; the power loading of the negatively twisted wing was approximately 5.9% higher. Given the relatively low average geometric AoA (α A,root ≈ 44° and α A,tip ≈ 25°), the vertical force produced by the twisted wing for the highest power loading was approximately 24.4% less than that produced by the twisted wing for the strongest vertical force. Therefore, for a given wing geometry and flapping amplitude, a flapping-wing micro air vehicle required a 13.5% increase in flapping frequency to generate the same strongest cycle-average vertical force while saving about 24.3% power. However, when force 3 /power 2 and force 2 /power ratios were considered as performance indices, the twisted wings for the highest force 3 /power 2 (α A,root ≈ 43° and α A,tip ≈ 30°) and force 2 /power (α A,root ≈ 43° and α A,tip ≈ 36°) required only 6.5% and 4% increases in flapping frequency and consumed 26.2% and 25.3% less power, respectively. Thus, it is preferable to use a flapping wing operating at a high frequency using the geometric AoAs for the highest power loading, force 3 /power 2 ratio, and force 2 /power ratio over a flapping wing operating at a low frequency using a high geometric AoA with the strongest vertical force. Additionally, by considering both aerodynamic and inertial forces, this study obtained average geometric AoAs in the range of 30° to 40°, which are similar to those of a typical hovering insect's wings. Therefore, the operation of an aerodynamically uneconomical, high AoA in a hovering insect's wings during flight is explainable.
49 CFR 179.14 - Coupler vertical restraint system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... mating coupler (or simulated coupler) having only frictional vertical force resistance at the mating interface; or a mating coupler (or simulated coupler) having the capabilities described in paragraph (a) of this section; (2) The testing apparatus shall simulate the vertical coupler performance at the mating...
Reversible Solid Adhesion for Defense Applications
2008-01-31
sensitive. Referring to Fig. 2(a), using the two closed-loop piezoelectric ( PZT ) actuators, the vertical and horizontal velocities of the...approaching/retracting contacting surfaces can be independently controlled. The displacement resolution of the vertical PZT actuator is 0.6 nm, and the total...interfacial forces are measured using the prototype custom-made capacity-type force transducer which is attached directly on the upper PZT actuator. In order
Trunk Muscle Activation and Estimating Spinal Compressive Force in Rope and Harness Vertical Dance.
Wilson, Margaret; Dai, Boyi; Zhu, Qin; Humphrey, Neil
2015-12-01
Rope and harness vertical dance takes place off the floor with the dancer suspended from his or her center of mass in a harness attached to a rope from a point overhead. Vertical dance represents a novel environment for training and performing in which expected stresses on the dancer's body are different from those that take place during dance on the floor. Two male and eleven female dancers with training in vertical dance performed six typical vertical dance movements with electromyography (EMG) electrodes placed bilaterally on rectus abdominus, external oblique, erector spinae, and latissimus dorsi. EMG data were expressed as a percentage of maximum voluntary isometric contraction (MVIC). A simplified musculoskeletal model based on muscle activation for these four muscle groups was used to estimate the compressive force on the spine. The greatest muscle activation for erector spinae and latissimus dorsi and the greatest trunk compressive forces were seen in vertical axis positions where the dancer was moving the trunk into a hyper-extended position. The greatest muscle activation for rectus abdominus and external oblique and the second highest compressive force were seen in a supine position with the arms and legs extended away from the center of mass (COM). The least muscle activation occurred in positions where the limbs were hanging below the torso. These movements also showed relatively low muscle activation compression forces. Post-test survey results revealed that dancers felt comfortable in these positions; however, observation of some positions indicated insufficient muscular control. Computing the relative contribution of muscles, expressed as muscle activation and estimated spinal compression, provided a measure of how much the muscle groups were working to support the spine and the rest of the dancer's body in the different movements tested. Additionally, identifying typical muscle recruitment patterns in each movement will help identify key exercises for training that should promote injury prevention.
Ground reaction forces on stairs. Part II: knee implant patients versus normals.
Stacoff, Alex; Kramers-de Quervain, Inès A; Luder, Gerhard; List, Renate; Stüssi, Edgar
2007-06-01
The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.
Depletion forces on circular and elliptical obstacles induced by active matter
NASA Astrophysics Data System (ADS)
Leite, L. R.; Lucena, D.; Potiguar, F. Q.; Ferreira, W. P.
2016-12-01
Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.
Depletion forces on circular and elliptical obstacles induced by active matter.
Leite, L R; Lucena, D; Potiguar, F Q; Ferreira, W P
2016-12-01
Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.
Load redistribution in walking and trotting Beagles with induced forelimb lameness.
Abdelhadi, Jalal; Wefstaedt, Patrick; Galindo-Zamora, Vladimir; Anders, Alexandra; Nolte, Ingo; Schilling, Nadja
2013-01-01
To evaluate the load redistribution mechanisms in walking and trotting dogs with induced forelimb lameness. 7 healthy adult Beagles. Dogs walked and trotted on an instrumented treadmill to determine control values for peak and mean vertical force as well as vertical impulse for all 4 limbs. A small sphere was attached to the ventral pad of the right forelimb paw to induce a reversible lameness, and recordings were repeated for both gaits. Additionally, footfall patterns were assessed to test for changes in temporal gait variables. During walking and trotting, peak and mean vertical force as well as vertical impulse were decreased in the ipsilateral forelimb, increased in the contralateral hind limb, and remained unchanged in the ipsilateral hind limb after lameness was induced. All 3 variables were increased in the contralateral forelimb during trotting, whereas only mean vertical force and vertical impulse were increased during walking. Stance phase duration increased in the contralateral forelimb and hind limb during walking but not during trotting. Analysis of the results suggested that compensatory load redistribution mechanisms in dogs depend on the gait. All 4 limbs should be evaluated in basic research and clinical studies to determine the effects of lameness on the entire body. Further studies are necessary to elucidate specific mechanisms for unloading of the affected limb and to determine the long-term effects of load changes in animals with chronic lameness.
Ground reaction forces of Olympic and World Championship race walkers.
Hanley, Brian; Bissas, Athanassios
2016-01-01
Race walking is an Olympic event where no visible loss of contact should occur and the knee must be straightened until midstance. The purpose of this study was to analyse ground reaction forces of world-class race walkers and associate them with key spatiotemporal variables. Nineteen athletes race walked along an indoor track and made contact with two force plates (1000 Hz) while being filmed using high-speed videography (100 Hz). Race walking speed was correlated with flight time (r = .46, p = .049) and flight distance (r = .69, p = .001). The knee's movement from hyperextension to flexion during late stance meant the vertical push-off force that followed midstance was smaller than the earlier loading peak (p < .001), resulting in a flattened profile. Athletes with narrower stride widths experienced reduced peak braking forces (r = .49, p = .046), peak propulsive forces (r = .54, p = .027), peak medial forces (r = .63, p = .007) and peak vertical push-off forces (r = .60, p = .011). Lower fluctuations in speed during stance were associated with higher stride frequencies (r = .69, p = .001), and highlighted the importance of avoiding too much braking in early stance. The flattened trajectory and consequential decrease in vertical propulsion might help the race walker avoid visible loss of contact (although non-visible flight times were useful in increasing stride length), while a narrow stride width was important in reducing peak forces in all three directions and could improve movement efficiency.
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-10-20
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skyllingstad, E.D.; Denbo, D.W.
Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less
Lam, Wing-Kai; Ryue, Jaejin; Lee, Ki-Kwang; Park, Sang-Kyoon; Cheung, Jason Tak-Man; Ryu, Jiseon
2017-01-01
Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P < 0.05). Group effect revealed that elite players exhibited larger footstrike angle, faster approaching speed, lower peak horizontal force and horizontal loading rates but higher vertical loading rates and larger peak knee flexion and extension moments (P < 0.05). Analysis of Interactions of Group x Shoe for maximum and mean vertical loading rates (P < 0.05) indicated that elite players exhibited lower left maximum and mean vertical loading rates in RHS compared to FHS (P < 0.01), while the intermediate group did not show any Shoe effect on vertical loading rates. These findings indicate that shoe heel curvature would play some role in altering ground reaction force impact during badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton.
Mechanical Alterations during 800-m Self-Paced Track Running.
Girard, Olivier; Millet, Gregoire P; Micallef, Jean-Paul
2017-04-01
We assessed the time course of running mechanical alterations during an 800-m. On a 200-m indoor track, 18 physical education students performed an 800-m self-paced run. Once per lap, ground reaction forces were measured by a 5-m-long force platform system, and used to determine running kinetics/kinematics and spring-mass characteristics. Compared with 100 m (19.4±1.8 km.h -1 ) running velocity progressively decreased at 300, 500 m but levelled-off at 700 m marks (-5.7±4.6, -10.4±8.3, and -9.1±13.5%, respectively; P<0.001). Stride length (-8.5±2.3%, P<0.01) and frequency (-1.0±1.5%, P=0.05) along with peak braking (-7.5±4.4%, P<0.05) and push-off forces (-5.1±7.2%, P<0.05) decreased from 100 m to 700 m. Peak vertical forces (-3.0±2.7%; P>0.05) and leg compression (+2.8±3.9%; P>0.05) remained unchanged, whereas centre of mass vertical displacement (+24.0±7.0%; P<0.001) increased during the run. Vertical stiffness decreased (-18.1±4.4%; P<0.001), whereas leg stiffness was unchanged (-3.2±4.6%; P>0.05). During an 800 m by physical education students, highest running velocity was achieved early during the run, with a progressive decrease in the second half of the trial. While vertical ground force characteristics remained unchanged, non-specialist runners produced lower peak braking and push-off forces, in turn leading to shorter stride length. Spring-mass model characteristics changed toward lower vertical stiffness values, whereas leg stiffness did not change. © Georg Thieme Verlag KG Stuttgart · New York.
Cheung, Jason Tak-Man; Ryu, Jiseon
2017-01-01
Background Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Methods Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Results Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P < 0.05). Group effect revealed that elite players exhibited larger footstrike angle, faster approaching speed, lower peak horizontal force and horizontal loading rates but higher vertical loading rates and larger peak knee flexion and extension moments (P < 0.05). Analysis of Interactions of Group x Shoe for maximum and mean vertical loading rates (P < 0.05) indicated that elite players exhibited lower left maximum and mean vertical loading rates in RHS compared to FHS (P < 0.01), while the intermediate group did not show any Shoe effect on vertical loading rates. Conclusions These findings indicate that shoe heel curvature would play some role in altering ground reaction force impact during badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton. PMID:28334016
Interaction between a railway track and uniformly moving tandem wheels
NASA Astrophysics Data System (ADS)
Belotserkovskiy, P. M.
2006-12-01
Interaction among loaded wheels via railway track is studied. The vertical parametric oscillations of an infinite row of identical equally spaced wheels, bearing constant load and uniformly moving over a railway track, are calculated by means of Fourier series technique. If the distance between two consecutive wheels is big enough, then one can disregard their interaction via the railway track and consider every wheel as a single one. In this case, however, the Fourier series technique represents an appropriate computation time-saving approximation to a Fourier integral transformation technique that describes the oscillations of a single moving wheel. Two schemes are considered. In the first scheme, every wheel bears the same load. In the second one, consecutive wheels bear contrarily directed loads of the same magnitude. The second scheme leads to simpler calculations and so is recommended to model the wheel-track interaction. The railway track periodicity due to sleeper spacing is taken into account. Each period is the track segment between two adjacent sleepers. A partial differential equation with constant coefficients governs the vertical oscillations of each segment. Boundary conditions bind the oscillations of two neighbour segments and provide periodicity to the track. The shear deformation in the rail cross-section strongly influences the parametric oscillations. It also causes discontinuity of the rail centre-line slope at any point, where a concentrated transverse force is applied. Therefore, Timoshenko beam properties with respect to the topic of this paper are discussed. Interaction between a railway track and a bogie moving at moderate speed is studied. The study points to influence of the bogie frame oscillations on variation in the wheel-rail contact force over the sleeper span. The simplified bogie model considered includes only the primary suspension. A static load applied to the bogie frame centre presents the vehicle body.
Comparison of JET AVDE disruption data with M3D simulations and implications for ITER
Strauss, H.; Joffrin, E.; Riccardo, V.; ...
2017-10-02
Nonlinear 3D MHD asymmetric vertical displacement disruption simulations have been performed using JET equilibrium reconstruction initial data. There were several experimentally measured quantities compared with the simulation. These include vertical displacement, halo current, toroidal current asymmetry, and toroidal rotation. The experimental data and the simulations are in reasonable agreement. Also compared was the correlation of the toroidal current asymmetry and the vertical displacement asymmetry. The Noll relation between asymmetric wall force and vertical current moment is verified in the simulations. Also verified is the toroidal flux asymmetry. Though, JET is a good predictor of ITER disruption behavior, JET and ITERmore » can be in different parameter regimes, and extrapolating from JET data can overestimate the ITER wall force.« less
Comparison of JET AVDE disruption data with M3D simulations and implications for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, H.; Joffrin, E.; Riccardo, V.
Nonlinear 3D MHD asymmetric vertical displacement disruption simulations have been performed using JET equilibrium reconstruction initial data. There were several experimentally measured quantities compared with the simulation. These include vertical displacement, halo current, toroidal current asymmetry, and toroidal rotation. The experimental data and the simulations are in reasonable agreement. Also compared was the correlation of the toroidal current asymmetry and the vertical displacement asymmetry. The Noll relation between asymmetric wall force and vertical current moment is verified in the simulations. Also verified is the toroidal flux asymmetry. Though, JET is a good predictor of ITER disruption behavior, JET and ITERmore » can be in different parameter regimes, and extrapolating from JET data can overestimate the ITER wall force.« less
Nutations of sunflower seedlings on tilted clinostats
NASA Technical Reports Server (NTRS)
Brown, A. H.; Chapman, D. K.
1977-01-01
The kinetics of hypocotyl nutations in Helianthus annuus L. were measured on plants which were rotated on clinostats with axes of rotation inclined at various angles, alpha, away from the vertical. The g-force component acting in the direction of the plant axis was taken as g cos alpha. The average period and average amplitude of nutation were constant for all such axially directed g-forces between 1.0 and 0.2 g (vertical to about 80 inclination). On the horizontal clinostat (90 inclination) nutation was neither initiated nor sustained. The g-force just sufficient fully to activate nutational oscillations should be sought for g-force parameter values ranging from 0 to 0.2.
Knee biomechanics during a jump-cut maneuver: Effects of gender & ACL surgery
Miranda, Daniel L.; Fadale, Paul D.; Hulstyn, Michael J.; Shalvoy, Robert M.; Machan, Jason T.; Fleming, Braden C.
2012-01-01
Purpose The purpose of this study was to compare kinetic and knee kinematic measurements from male and female ACL-intact (ACLINT) and ACL-reconstructed (ACLREC) subjects during a jump-cut maneuver using biplanar videoradiography. Methods Twenty subjects were recruited; 10 ACLINT (5 males, 5 females) and 10 ACLREC (4 males, 6 females; five years post surgery). Each subject performed a jump-cut maneuver by landing on a single leg and performing a 45° side-step cut. Ground reaction force was measured by a force plate and expressed relative to body weight. Six-degree-of-freedom knee kinematics were determined from a biplanar videoradiography system and an optical motion capture system. Results ACLINT female subjects landed with a larger peak vertical GRF (p<0.001) compared to ACLINT male subjects. ACLINT subjects landed with a larger peak vertical GRF (p≤0.036) compared to ACLREC subjects. Regardless of ACL reconstruction status, female subjects underwent less knee flexion angle excursion (p=0.002) and had an increased average rate of anterior tibial translation (0.05±0.01%/millisecond; p=0.037) after contact compared to male subjects. Furthermore, ACLREC subjects had a lower rate of anterior tibial translation compared to ACLINT subjects (0.05±0.01%/millisecond; p=0.035). Finally, no striking differences were observed in other knee motion parameters. Conclusion Women permit a smaller amount of knee flexion angle excursion during a jump-cut maneuver, resulting in a larger peak vertical GRF and increased rate of anterior tibial translation. Notably, ACLREC subjects also perform the jump cut maneuver with lower GRF than ACLINT subjects five years post surgery. This study proposes a causal sequence whereby increased landing stiffness (larger peak vertical GRF combined with less knee flexion angle excursion) leads to an increased rate of anterior tibial translation while performing a jump-cut maneuver. PMID:23190595
NASA Technical Reports Server (NTRS)
Johnson, Harold I.
1946-01-01
Because the results of preliminary flight tests had indicated. the P-63A-1 airplane possessed insufficient directional stability, the NACA and the manufacturer (Bell Aircraft Corporation) suggested three vertical-tail modifications to remedy the deficiencies in the directional characteristics. These modifications included an enlarged vertical tail formed by adding a tip extension to the original vertical tail, a large sharp-edge ventral fin, and a small dorsal fin. The enlarged vertical tail involved only a slight increase in total vertical-tail area from 23.73 to 26.58 square feet but a relatively much larger increase in geometric aspect ratio from 1.24 to 1.73 based on height and area above the horizontal tail. At the request of the Air Material Command, Army Air Forces, flight tests were made to determine the effect of these modifications and of some combinations of these modifications on the directional stability and control characteristics of the airplane, In all, six different vertical-tail. configurations were investigated to determine the lateral and directional oscillation characteristics of the airplane, the sideslip characteristics, the yaw due to ailerons in rudder-fixed rolls from turns and pull-outs, the trim changes due to speed changes; and the trim changes due to power changes. Results of the tests showed that the enlarged vertical tail approximately doubled the directional stability of the airplane and that the pilots considered the directional stability provided by the enlarged vertical tail to be satisfactory. Calculations based on sideslip data obtained at an indicated airspeed of 300 miles per hour showed that the directional stability of the airplane with the original vertical tail corresponded to a value of 0(sub n beta) of -0.00056 whereas for the enlarged vertical tail the estimated va1ue of C(sub n beta) was -0.00130, The ventral fin was found to increase by a moderate amount the directional stability of the airplane with the original vertical tail for smal1 sides1ip angles at low speeds but little consistent change in directional stability was effected by the ventral fin at higher speeds, The effectiveness of the ventral fin was generally much less when used with the enlarged vertical tail than when used with the original vertical tail. The ventral and dorsal fins were found to be very effective in eliminating rudder-force reversals which occurred in low-speed, high-engine-power, sideslipped conditions of flight . Sideslip tests at two altitudes for approximately the sane engine power and indicated airspeed showed that a small decrease in static directional stability occurred with increasing altitude and this decrease in stability was attributed to the increased propeller blade angles required at high altitudes. The variations of rudder pedal force with indicated airspeed using normal rated power and a constant rudder tab setting through the speed range were desirably small for all the configurations tested. The rudder pedal force changed by about 50 pounds for a power change from engine idling power, to normal rated power and this pedal force change was largely independent of airspeed or of vertical-tail configuration for the various configurations tested.
Observationally derived rise in methane surface forcing mediated by water vapour trends
NASA Astrophysics Data System (ADS)
Feldman, D. R.; Collins, W. D.; Biraud, S. C.; Risser, M. D.; Turner, D. D.; Gero, P. J.; Tadić, J.; Helmig, D.; Xie, S.; Mlawer, E. J.; Shippert, T. R.; Torn, M. S.
2018-04-01
Atmospheric methane (CH4) mixing ratios exhibited a plateau between 1995 and 2006 and have subsequently been increasing. While there are a number of competing explanations for the temporal evolution of this greenhouse gas, these prominent features in the temporal trajectory of atmospheric CH4 are expected to perturb the surface energy balance through radiative forcing, largely due to the infrared radiative absorption features of CH4. However, to date this has been determined strictly through radiative transfer calculations. Here, we present a quantified observation of the time series of clear-sky radiative forcing by CH4 at the surface from 2002 to 2012 at a single site derived from spectroscopic measurements along with line-by-line calculations using ancillary data. There was no significant trend in CH4 forcing between 2002 and 2006, but since then, the trend in forcing was 0.026 ± 0.006 (99.7% CI) W m2 yr-1. The seasonal-cycle amplitude and secular trends in observed forcing are influenced by a corresponding seasonal cycle and trend in atmospheric CH4. However, we find that we must account for the overlapping absorption effects of atmospheric water vapour (H2O) and CH4 to explain the observations fully. Thus, the determination of CH4 radiative forcing requires accurate observations of both the spatiotemporal distribution of CH4 and the vertically resolved trends in H2O.
A Physics Based Vehicle Terrain Interaction Model for Soft Soil off-Road Vehicle Simulations
2012-01-01
assumed terrain deformation, use of empirical relationships for the deformation, or finite/discrete element approaches for the terrain. A real-time...vertical columns of soil, and the deformation of each is modeled using visco-elasto-plastic compressibility relationships that relate subsoil pressures to...produced by tractive and turning forces will also be incorporated into the model. Both the vertical and horizontal force/displacement relationships
Zhu, Yanbo; Yang, Bin; Liu, Jingquan; Wang, Xingzhao; Wang, Luxian; Chen, Xiang; Yang, Chunsheng
2016-01-01
Recently, triboelectric energy nanogenerators (TENGs) have been paid the most attention by many researchers to convert mechanical energy into electrical energy. TENGs usually have a simple structure and a high output voltage. However, their high internal resistance results in low output power. In this work, we propose a flexible triboelectric energy nanogenerator with the double-side tribological layers of polydimethlysiloxane (PDMS) and PDMS/multiwall carbon nanotube (MWCNT). MWCNTs with different concentrations have been doped into PDMS to tune the internal resistance of triboelectric nanogenerator and optimize its output power. The dimension of the fabricated prototype is ~3.6 cm3. Three-axial force sensor is used to monitor the applied vertical forces on the device under vertical contact-separation working mode. The Prototype with 10 wt% MWCNT (Prototype I) produces higher output voltage than one with 2 wt% MWCNT (Prototype II) due to its higher dielectric parameter measured by LRC impedance analyzer. The triboelectric output voltages of Prototype I and Prototype II are 30 V and 25 V under the vertical force of 3.0 N, respectively. Their maximum triboelectric output powers are ~130 μW at 6 MΩ and ~120 μW at 8.6 MΩ under vertical forces, respectively. PMID:26916819
NASA Astrophysics Data System (ADS)
Kumbhalkar, M. A.; Bhope, D. V.; Vanalkar, A. V.
2016-09-01
The dynamics of the rail vehicle represents a balance between the forces acting between wheel and rail, the inertia forces and the forces exerted by suspension and articulation. Axial loading on helical spring causes vertical deflection at straight track but failures calls to investigate for lateral and longitudinal loading at horizontal and vertical curves respectively. Goods carrying vehicle has the frequent failures of middle axle inner suspension spring calls for investigation. The springs are analyzed for effect of stress concentration due to centripetal force and due to tractive and breaking effort. This paper also discusses shear failure analysis of spring at curvature and at uphill at various speeds for different loading condition analytically and by finite element analysis. Two mass rail vehicle suspension systems have been analyzed for vibration responses analytically using mathematical tool Matlab Simulink and the same will be evaluated using FFT vibration analyzer to find peak resonance in vertical, lateral and longitudinal direction. The results prove that the suspension acquires high repeated load in vertical and lateral direction due to tracking and curving causes maximum stress concentration on middle axle suspension spring as height of this spring is larger than end axle spring in primary suspension system and responsible for failure of middle axle suspension spring due to high stress acquisition.
Increased vertical impact forces and altered running mechanics with softer midsole shoes.
Baltich, Jennifer; Maurer, Christian; Nigg, Benno M
2015-01-01
To date it has been thought that shoe midsole hardness does not affect vertical impact peak forces during running. This conclusion is based partially on results from experimental data using homogeneous samples of participants that found no difference in vertical impact peaks when running in shoes with different midsole properties. However, it is currently unknown how apparent joint stiffness is affected by shoe midsole hardness. An increase in apparent joint stiffness could result in a harder landing, which should result in increased vertical impact peaks during running. The purpose of this study was to quantify the effect of shoe midsole hardness on apparent ankle and knee joint stiffness and the associated vertical ground reaction force for age and sex subgroups during heel-toe running. 93 runners (male and female) aged 16-75 years ran at 3.33 ± 0.15 m/s on a 30 m-long runway with soft, medium and hard midsole shoes. The vertical impact peak increased as the shoe midsole hardness decreased (mean(SE); soft: 1.70BW(0.03), medium: 1.64BW(0.03), hard: 1.54BW(0.03)). Similar results were found for the apparent ankle joint stiffness where apparent stiffness increased as the shoe midsole hardness decreased (soft: 2.08BWm/º x 100 (0.05), medium: 1.92 BWm/º x 100 (0.05), hard: 1.85 BWm/º x 100 (0.05)). Apparent knee joint stiffness increased for soft (1.06BWm/º x 100 (0.04)) midsole compared to the medium (0.95BWm/º x 100 (0.04)) and hard (0.96BWm/º x 100 (0.04)) midsoles for female participants. The results from this study confirm that shoe midsole hardness can have an effect on vertical impact force peaks and that this may be connected to the hardness of the landing. The results from this study may provide useful information regarding the development of cushioning guidelines for running shoes.
Increased Vertical Impact Forces and Altered Running Mechanics with Softer Midsole Shoes
Baltich, Jennifer; Maurer, Christian; Nigg, Benno M.
2015-01-01
To date it has been thought that shoe midsole hardness does not affect vertical impact peak forces during running. This conclusion is based partially on results from experimental data using homogeneous samples of participants that found no difference in vertical impact peaks when running in shoes with different midsole properties. However, it is currently unknown how apparent joint stiffness is affected by shoe midsole hardness. An increase in apparent joint stiffness could result in a harder landing, which should result in increased vertical impact peaks during running. The purpose of this study was to quantify the effect of shoe midsole hardness on apparent ankle and knee joint stiffness and the associated vertical ground reaction force for age and sex subgroups during heel-toe running. 93 runners (male and female) aged 16-75 years ran at 3.33 ± 0.15 m/s on a 30 m-long runway with soft, medium and hard midsole shoes. The vertical impact peak increased as the shoe midsole hardness decreased (mean(SE); soft: 1.70BW(0.03), medium: 1.64BW(0.03), hard: 1.54BW(0.03)). Similar results were found for the apparent ankle joint stiffness where apparent stiffness increased as the shoe midsole hardness decreased (soft: 2.08BWm/º x 100 (0.05), medium: 1.92 BWm/º x 100 (0.05), hard: 1.85 BWm/º x 100 (0.05)). Apparent knee joint stiffness increased for soft (1.06BWm/º x 100 (0.04)) midsole compared to the medium (0.95BWm/º x 100 (0.04)) and hard (0.96BWm/º x 100 (0.04)) midsoles for female participants. The results from this study confirm that shoe midsole hardness can have an effect on vertical impact force peaks and that this may be connected to the hardness of the landing. The results from this study may provide useful information regarding the development of cushioning guidelines for running shoes. PMID:25897963
Force-chain evolution in a two-dimensional granular packing compacted by vertical tappings
NASA Astrophysics Data System (ADS)
Iikawa, Naoki; Bandi, M. M.; Katsuragi, Hiroaki
2018-03-01
We experimentally study the statistics of force-chain evolution in a vertically-tapped two-dimensional granular packing by using photoelastic disks. In this experiment, the tapped granular packing is gradually compacted. During the compaction, the isotropy of grain configurations is quantified by measuring the deviator anisotropy derived from fabric tensor, and then the evolution of force-chain structure is quantified by measuring the interparticle forces and force-chain orientational order parameter. As packing fraction increases, the interparticle force increases and finally saturates to an asymptotic value. Moreover, the grain configurations and force-chain structures become isotropically random as the tapping-induced compaction proceeds. In contrast, the total length of force chains remains unchanged. From the correlations of those parameters, we find two relations: (i) a positive correlation between the isotropy of grain configurations and the disordering of force-chain orientations, and (ii) a negative correlation between the increasing of interparticle forces and the disordering of force-chain orientations. These relations are universally held regardless of the mode of particle motions with or without convection.
Lee, David; Heo, Giseon; El-Bialy, Tarek; Carey, Jason P; Major, Paul W; Romanyk, Dan L
2017-07-01
To investigate initial forces acting on teeth around the arch during en masse retraction using an in vitro Orthodontic SIMulator (OSIM). The OSIM was used to represent the full maxillary arch in a case wherein both first premolars had been extracted. Dental and skeletal anchorage to a posted archwire and skeletal anchorage to a 10-mm power arm were all simulated. A 0.019 × 0.025-inch stainless steel archwire was used in all cases, and 15-mm light nickel-titanium springs were activated to approximately 150 g on both sides of the arch. A sample size of n = 40 springs were tested for each of the three groups. Multivariate analysis of variance (α = 0.05) was used to determine differences between treatment groups. In the anterior segment, it was found that skeletal anchorage with power arms generated the largest retraction force (P < .001). The largest vertical forces on the unit were generated using skeletal anchorage, followed by skeletal anchorage with power arms, and finally dental anchorage. Power arms were found to generate larger intrusive forces on the lateral incisors and extrusive forces on the canines than on other groups. For the posterior anchorage unit, dental anchorage generated the largest protraction and palatal forces. Negligible forces were measured for both skeletal anchorage groups. Vertical forces on the posterior unit were minimal in all cases (<0.1 N). All retraction methods produced sufficient forces to retract the anterior teeth during en masse retraction. Skeletal anchorage reduced forces on the posterior teeth but introduced greater vertical forces on the anterior teeth.
Effects of modified short-leg walkers on ground reaction force characteristics.
Keefer, Maria; King, Jon; Powell, Douglas; Krusenklaus, John H; Zhang, Songning
2008-11-01
Although short-leg walkers are often used in the treatment of lower extremity injuries (ankle and foot fractures and severe ankle sprains), little is known about the effect the short-leg walker on gait characteristics. The purpose was to examine how heel height modifications in different short-leg walkers and shoe side may affect ground reaction forces in walking. Force platforms were used to collect ground reaction force data on 10 healthy participants. Five trials were performed in each of six conditions: lab shoes, gait walker, gait walker with heel insert on shoe side, gait walker modified with insert on walker side, equalizer walker, and equalizer walker with heel insert on shoe side. Conditions were randomized and walking speed was standardized between conditions. A 2x6 (sidexcondition) repeated analysis of variance was used on selected ground reaction force variables (P<0.05). The application of a walker created peak vertical and anteroposterior ground reaction forces prior to the normal peaks associated with the loading response. Wearing a walker introduced an elevated minimum vertical ground reaction force in all conditions except the equalizer walker when compared to shoe on the shoe side. Peak propulsive anteroposterior ground reaction forces were smaller in all walker conditions compared to shoe on walker side. The application of heel insert in gait walker with heel insert (on shoe side) and gait walker modified (on walker side) does not diminish the minimum vertical ground reaction force as hypothesized. Wearing a walker decreases the peak propulsive anteroposterior ground reaction force on the walker side and induces asymmetrical loading.
Foot forces induced through Tai Chi push-hand exercises.
Wong, Shiu Hong; Ji, Tianjian; Hong, Youlian; Fok, Siu Lun; Wang, Lin
2013-08-01
The low impact forces of Tai Chi push-hand exercises may be particularly suited for older people and for those with arthritis; however, the biomechanics of push-hand exercises have not previously been reported. This paper examines the ground reaction forces (GRFs) and plantar force distributions during Tai Chi push-hand exercises in a stationary stance with and without an opponent. Ten male Tai Chi practitioners participated in the study. The GRFs of each foot were measured in three perpendicular directions using two force plates (Kistler). The plantar force distribution of each foot was measured concurrently using an insole sensor system (Novel). The results showed that the average maximum vertical GRF of each foot was not more than 88% ± 6.1% of the body weight and the sum of the vertical forces (103% ± 1.4%) generated by the two feet approximately equals the body weight at any one time. The horizontal GRFs generated by the two feet were in the opposite directions and the measured mean peak values were not more than 12% ± 2.8% and 17% ± 4.3% of the body weight in the medio-lateral and antero-posterior directions respectively. Among the nine plantar areas, the toes sustained the greatest plantar force. This study indicates that push-hand exercises generate lower vertical forces than those induced by walking, bouncing, jumping and Tai Chi gait, and that the greatest plantar force is located in the toe area, which may have an important application in balance training particularly for older adults.
Hua, Guofen; Chen, Qiuwen; Kong, Jun; Li, Man
2017-08-01
Clogging is the most significant challenge limiting the application of constructed wetlands. Application of a forced resting period is a practical way to relieve clogging, particularly bioclogging. To reveal the alleviation mechanisms behind such a resting operation, evapotranspiration and oxygen flux were studied during a resting period in a laboratory vertical-flow constructed wetland model through physical simulation and numerical model analysis. In addition, the optimum theoretical resting duration was determined based on the time required for oxygen to completely fill the pores, i.e., formation of a sufficiently thick and completely dry layer. The results indicated that (1) evapotranspiration was not the key factor, but was a driving force in the alleviation of bioclogging; (2) the rate of oxygen diffusion into the pores was sufficient to oxidize and disperse the flocculant biofilm, which was essential to alleviate bioclogging. This study provides important insights into understanding how clogging/bioclogging can be alleviated in vertical-flow constructed wetlands. Graphical abstract Evapotranspiration versus oxygen intrusion in alleviating bioclogging in vertical flow constructed wetlands.
Ilett, P; Lythgo, N; Martin, C; Brock, K
2016-06-01
The objective of this study is to compare the balance and gait of 11 people with multiple sclerosis (MS) to 11 healthy controls and to investigate the immediate change after a single intervention based on the Bobath concept on these activities in the MS group. Balance was assessed by ground reaction forces (GRF) and centre of pressure movements during single limb standing (SLS), the Lateral Reach Test (LRT) and the Four Square Step Test (FSST). Gait was evaluated by GRF, ankle kinematics and spatiotemporal measures. Baseline measures in the MS group showed significantly greater vertical GRF variability (p = 0.008) during SLS reached less distance on the LRT (p = 0.001) and were slower completing the FSST (p < 0.001). During gait, the MS group walked slower (p = 0.005) and had less ankle plantarflexion (PF) (p = 0.001) than the control group. Less peak vertical GRF (p < 0.001) and peak propulsive GRF (p = 0.004) at terminal stance and increased vertical GRF in midstance (p = 0.005) were observed. The measures of balance and gait were re-assessed in the MS group immediately after a 20-min intervention based on the Bobath concept delivered to the most impaired foot and ankle. After the intervention, the MS group had significant changes towards the control group values with reduced mediolateral (p = 0.002) and vertical (p = 0.016) GRF variability in the SLS task, faster FSST time (p = 0.006) and increased ankle PF during gait (p = 0.002). This study provides further evidence of balance and gait limitations in people with MS and indicates that a single treatment based on principles of the Bobath concept to the foot and ankle can result in immediate improvements in balance and ankle PF during gait in people with MS. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Carter, John F.; Nagy, Christopher J.; Barnicki, Joseph S.
1997-01-01
Forces generated by the Space Shuttle orbiter tire under varying vertical load, slip angle, speed, and surface conditions were measured using the Landing System Research Aircraft (LSRA). Resulting data were used to calculate a mathematical model for predicting tire forces in orbiter simulations. Tire side and drag forces experienced by an orbiter tire are cataloged as a function of vertical load and slip angle. The mathematical model is compared to existing tire force models for the Space Shuttle orbiter. This report describes the LSRA and a typical test sequence. Testing methods, data reduction, and error analysis are presented. The LSRA testing was conducted on concrete and lakebed runways at the Edwards Air Force Flight Test Center and on concrete runways at the Kennedy Space Center (KSC). Wet runway tire force tests were performed on test strips made at the KSC using different surfacing techniques. Data were corrected for ply steer forces and conicity.
Sun, Zhelin; Wang, Deli; Xiang, Jie
2014-11-25
Spontaneous attractions between free-standing nanostructures have often caused adhesion or stiction that affects a wide range of nanoscale devices, particularly nano/microelectromechanical systems. Previous understandings of the attraction mechanisms have included capillary force, van der Waals/Casimir forces, and surface polar charges. However, none of these mechanisms universally applies to simple semiconductor structures such as silicon nanowire arrays that often exhibit bunching or adhesions. Here we propose a simple capacitive force model to quantitatively study the universal spontaneous attraction that often causes stiction among semiconductor or metallic nanostructures such as vertical nanowire arrays with inevitably nonuniform size variations due to fabrication. When nanostructures are uniform in size, they share the same substrate potential. The presence of slight size differences will break the symmetry in the capacitive network formed between the nanowires, substrate, and their environment, giving rise to electrostatic attraction forces due to the relative potential difference between neighboring wires. Our model is experimentally verified using arrays of vertical silicon nanowire pairs with varied spacing, diameter, and size differences. Threshold nanowire spacing, diameter, or size difference between the nearest neighbors has been identified beyond which the nanowires start to exhibit spontaneous attraction that leads to bridging when electrostatic forces overcome elastic restoration forces. This work illustrates a universal understanding of spontaneous attraction that will impact the design, fabrication, and reliable operation of nanoscale devices and systems.
Applications of the IRI in Southern Africa
NASA Astrophysics Data System (ADS)
Coetzee, P. J.
2004-01-01
The IRI forms the basis of the Single Site Location Direction Finding networks of the South African Defence Force as well as theNational Intelligence Agency. It is also used in "Path Analysis" applications where the possible transmitter coverage is calculated. Another application of the IRI is in HF frequency predictions, especially for the South African Defence Force involved in peace keeping duties in Africa. The IRI is either used independently or in conjunction with vertical ionosondes. In the latter case the scaled F2 peak parameters (foF2, hmF2) are used as inputs to the IRI. The IRI thus gets "calibrated" to extend the area covered by the ionosonde(s). The IRI has proved to be a very important tool in South Africa and Africa in the fight against crime, drug trafficking, political instability and maintaining the peace in potentially unstable countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, Daniel
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which ismore » the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.« less
Kinetic Analysis of Horizontal Plyometric Exercise Intensity.
Kossow, Andrew J; Ebben, William P
2018-05-01
Kossow, AJ, DeChiara, TG, Neahous, SM, and Ebben, WP. Kinetic analysis of horizontal plyometric exercise intensity. J Strength Cond Res 32(5): 1222-1229, 2018-Plyometric exercises are frequently performed as part of a strength and conditioning program. Most studies assessed the kinetics of plyometric exercises primarily performed in the vertical plane. The purpose of this study was to evaluate the multiplanar kinetic characteristics of a variety of plyometric exercises, which have a significant horizontal component. This study also sought to assess sex differences in the intensity progression of these exercises. Ten men and 10 women served as subjects. The subjects performed a variety of plyometric exercises including the double-leg hop, standing long jump, single-leg standing long jump, bounding, skipping, power skipping, cone hops, and 45.72-cm hurdle hops. Subjects also performed the countermovement jump for comparison. All plyometric exercises were evaluated using a force platform. Dependent variables included the landing rate of force development and landing ground reaction forces for each exercise in the vertical, frontal, and sagittal planes. A 2-way mixed analysis of variance with repeated-measures for plyometric exercise type demonstrated main effects for exercise type for all dependent variables (p ≤ 0.001). There was no significant interaction between plyometric exercise type and sex for any of the variable assessed. Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the dependent variables assessed (p ≤ 0.05). These findings should be used to guide practitioners in the progression of plyometric exercise intensity, and thus program design, for those who require significant horizontal power in their sport.
NASA Astrophysics Data System (ADS)
Qi, Hui; Zhang, Xi-meng
2017-10-01
With the aid of the Green function method and image method, the problem of scattering of SH-wave by a semi-cylindrical salient near vertical interface in bi-material half-space is considered to obtain its steady state response. Firstly, by the means of the image method, Green function which is the essential solution of displacement field is constructed to satisfy the stress-free condition on the horizontal boundary in a right-angle space including a semi-cylindrical salient and bearing a harmonic out-of-plane line source force at any point on the vertical boundary. Secondly, the bi-material is separated into two parts along the vertical interface, then unknown anti-plane forces are applied on the vertical interface, and according to the continuity condition, the first kind of Fredholm integral equations is established to determine unknown anti-plane forces by "the conjunction method", then the integral equations are reduced to the linear algebraic equations by effective truncation. Finally, the dynamic stress concentration factor (DSCF) around the edge of semi-cylindrical salient is calculated, and the influences of incident wave number, incident angle, effect of interface and different combination of material parameters, etc. on DSCF are discussed.
Phan, Hoang Vu; Park, Hoon Cheol
2018-04-18
Studies on wing kinematics indicate that flapping insect wings operate at higher angles of attack (AoAs) than conventional rotary wings. Thus, effectively flying an insect-like flapping-wing micro air vehicle (FW-MAV) requires appropriate wing design for achieving low power consumption and high force generation. Even though theoretical studies can be performed to identify appropriate geometric AoAs for a wing for achieving efficient hovering flight, designing an actual wing by implementing these angles into a real flying robot is challenging. In this work, we investigated the wing morphology of an insect-like tailless FW-MAV, which was named KUBeetle, for obtaining high vertical force/power ratio or power loading. Several deformable wing configurations with various vein structures were designed, and their characteristics of vertical force generation and power requirement were theoretically and experimentally investigated. The results of the theoretical study based on the unsteady blade element theory (UBET) were validated with reference data to prove the accuracy of power estimation. A good agreement between estimated and measured results indicated that the proposed UBET model can be used to effectively estimate the power requirement and force generation of an FW-MAV. Among the investigated wing configurations operating at flapping frequencies of 23 Hz to 29 Hz, estimated results showed that the wing with a suitable vein placed outboard exhibited an increase of approximately 23.7% ± 0.5% in vertical force and approximately 10.2% ± 1.0% in force/power ratio. The estimation was supported by experimental results, which showed that the suggested wing enhanced vertical force by approximately 21.8% ± 3.6% and force/power ratio by 6.8% ± 1.6%. In addition, wing kinematics during flapping motion was analyzed to determine the reason for the observed improvement.
The effect of surface conditions on the work function of insulators and semiconductors
NASA Technical Reports Server (NTRS)
George, A.
1973-01-01
Ionization energies of organic semiconductors were determined using single crystals of the material. The theory of the method is essentially that of Millikan's oil drop experiment. The technique employed in the experiment is based on the electrostatic method of balancing a charged particle in an electric field against the force of gravity for different excitation energies above the threshold value, and from an estimate of the balancing voltages, read off the ionization energy from the intercept of the energy axis in a plot wavelength corresponding to the balancing potential for the incident radiation of wavelength. In the modified technique which is adopted in the present experimental investigation, a small single crystal is suspended by a fine quartz fiber between two vertical capacitor plates to which a suitable high voltage is applied.
A two degrees-of-freedom piezoelectric single-crystal micromotor
NASA Astrophysics Data System (ADS)
Chen, Zhijiang; Li, Xiaotian; Liu, Guoxi; Dong, Shuxiang
2014-12-01
A two degrees-of-freedom (DOF) ultrasonic micromotor made of piezoelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal square-bar (dimensions 2 × 2 × 9 mm3) was developed. The PIN-PMN-PT square-bar stator can generate standing wave elliptical motions in two orthogonal vertical planes by combining the first longitudinal and second bending vibration modes, enabling it to drive a slider in two orthogonal directions. The relatively large driving forces of 0.25 N and motion speed of 35 mm/s were obtained under a voltage of 80 Vpp at its resonance frequency of 87.5 kHz. The proposed micromotor has potential for applications in micro robots, cell manipulators, and digital cameras as a two-DOF actuator.
A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems.
Lowe, Brian D; Albers, James; Hudock, Stephen D
2014-09-01
A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then "bumps" the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2-8% (horizontal nailing) and 9-20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user's perception of muscular effort.
A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems
Lowe, Brian D.; Albers, James; Hudock, Stephen D.
2015-01-01
A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then “bumps” the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2–8% (horizontal nailing) and 9–20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user’s perception of muscular effort. PMID:26321780
Quasi-steady vortical structures in vertically vibrating soap films
NASA Astrophysics Data System (ADS)
Vega, José M.; Higuera, F. J.; Weidman, P. D.
1998-10-01
An analysis of the quasi-steady streaming of the liquid in a vertically vibrated horizontal soap film is reported. The air around the soap film is seen to play a variety of roles: it transmits normal and tangential oscillatory stresses to the film, damps out Marangoni waves, and forces non-oscillatory deflection of the film and tangential motion of the liquid. Non-oscillatory volume forcing originating inside the liquid is also analysed. This forcing dominates the quasi-steady streaming when the excitation frequency is close to the eigenfrequency of a Marangoni mode of the soap film, while both volume forcing in the liquid and surface forcing of the gas on the liquid are important when no Marangoni mode resonates. Different manners by which the combined forcings can induce quasi-steady streaming motion are discussed and some numerical simulations of the quasi-steady liquid flow are presented.
Melzer, I; Krasovsky, T; Oddsson, L I E; Liebermann, D G
2010-12-01
This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P ≤ 0.05). Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. Copyright © 2010 Elsevier Ltd. All rights reserved.
Oyama, Sakiko; Myers, Joseph B
2018-05-01
Oyama, S and Myers, JB. The relationship between the push off ground reaction force and ball speed in high school baseball pitchers. J Strength Cond Res 32(5): 1324-1328, 2018-Baseball pitching is a sequential movement that requires transfer of momentum from the lower extremity to the throwing arm. Therefore, the ground reaction force (GRF) during push off is suggested to play a role in production of ball speed. The purpose of this study was to investigate the correlation between GRF characteristics during push off and ball speed in high school baseball pitchers. A total of 52 pitchers performed fast pitches from an indoor pitching mound. A force plate embedded in an indoor mound was used to capture the push off GRF. The GRF characteristics (peak anterior, vertical, and resultant forces, vertical and resultant forces at the time of peak anterior GRF, and impulse produced by the anterior GRF) from the 3 fastest strike pitches from each pitcher were used for analyses. Spearman's rank correlation coefficients were used to describe the relationships between ball speed and the GRF characteristics. Ball speed was only weakly correlated with peak resultant force (ρ = 0.32, p = 0.02) and vertical (ρ = 0.45, p < 0.001) and resultant (ρ = 0.42, p = 0.002) forces at the time of peak anterior force. The ball speed was not correlated with other variables. The correlation between ball speed and push off force in high school pitchers was weak, especially when compared with what was reported for adult pitchers in other studies. Unlike for adult pitchers, higher push off force is only weakly correlated with ball velocity in high school pitchers, which suggests that training to better use body momentum may help high school pitchers improve ball speed.
Three-dimensional finite element analysis of a newly designed onplant miniplate anchorage system.
Liu, Lin; Qu, Yin-Ying; Jiang, Li-Jun; Zhou, Qian; Tang, Tian-Qi
2016-06-01
The purpose of this research was to evaluate the structural stress and deformation of a newly designed onplant miniplate anchorage system compared to a standard anchorage system. A bone block integrated with a novel miniplate and fixation screw system was simulated in a three-dimensional model and subjected to force at different directions. The stress distribution and deformation of the miniplate system and cortical bone were evaluated using the three-dimensional finite element method. The results showed that the stress on the plate system and bone was linearly proportional to the force magnitude and was higher when the force was in a vertical direction (Y-axis). Stress and deformation values of the two screws (screw 1 and 2) were asymmetric when the force was added along Y-axis and was greater in screw 1. The highest deformation value of the screws was 7.5148 μm, much smaller than the limit value. The load was decreased for each single miniscrew, and the ability of the new anchorage system to bear the load was also enhanced to some degree. It was suggested that the newly designed onplant miniplate anchorage system is effective, easily implanted and minimally invasive.
Quantifying the atomic-level mechanics of single long physisorbed molecular chains.
Kawai, Shigeki; Koch, Matthias; Gnecco, Enrico; Sadeghi, Ali; Pawlak, Rémy; Glatzel, Thilo; Schwarz, Jutta; Goedecker, Stefan; Hecht, Stefan; Baratoff, Alexis; Grill, Leonhard; Meyer, Ernst
2014-03-18
Individual in situ polymerized fluorene chains 10-100 nm long linked by C-C bonds are pulled vertically from an Au(111) substrate by the tip of a low-temperature atomic force microscope. The conformation of the selected chains is imaged before and after manipulation using scanning tunneling microscopy. The measured force gradient shows strong and periodic variations that correspond to the step-by-step detachment of individual fluorene repeat units. These variations persist at constant intensity until the entire polymer is completely removed from the surface. Calculations based on an extended Frenkel-Kontorova model reproduce the periodicity and magnitude of these features and allow us to relate them to the detachment force and desorption energy of the repeat units. The adsorbed part of the polymer slides easily along the surface during the pulling process, leading to only small oscillations as a result of the high stiffness of the fluorenes and of their length mismatch with respect to the substrate surface structure. A significant lateral force also is caused by the sequential detachment of individual units. The gained insight into the molecule-surface interactions during sliding and pulling should aid the design of mechanoresponsive nanosystems and devices.
Effect of gravitational and inertial forces on vertical distribution of pulmonary blood flow
NASA Technical Reports Server (NTRS)
Chevalier, P. A.; Reed, J. H., Jr.; Vandenberg, R. A.; Wood, E. H.
1978-01-01
Vertical distribution of pulmonary blood flow (VDPBF) was studied, using radioactive microsphere emboli, in dogs without thoracotomy in the right decubitus position during exposure to lateral accelerations of 1, 2, 4, and 6 G. At all levels of force environment studied, an inverse linear relationship was observed between vertical height in the thorax and pulmonary blood flow (ml/min/ml lung tissue) with a decrease in flow to the most dependent region of the lung despite large increases in intravascular pressures at this site. Changes in blood flow were smallest at the mid-lung level, the hydrostatic 'balance point' for vascular and pleural pressures. These force environment-dependent changes in VDPBF are not readily explainable by the Starling resistor analog. Gravity-dependent regional differences in pleural and associated interstitial pressures, plus possible changes in vascular tone resulting from inadequate aeration of blood in the most dependent regions of the lung, probably also affect VDPBF.
Three Dimensional Vibration Characteristics of the Permanent Magnet-HTSC Magnetic Bearing
NASA Astrophysics Data System (ADS)
Ohashi, Shunsuke
The three dimensional vibration of the rotor in a HTSC-permanent magnet bearing system is studied. We have developed the magnetic bearing system which can revolve up to 12,000rpm, and three dimensional vibration of the rotor is measured with laser displacement sensors. To consider the rotor vibration under the mechanical resonance state, static lateral and vertical pinning force of the magnetic bearing is measured. From the results, resonance frequency is given. There are two factors of mechanical resonance caused by the magnetic bearing. One is lateral equivalent spring and the other is vertical one. Influence of the resonance caused by the lateral spring is large, and that by the vertical one is small. Three dimensional vibration of the rotor position around the mechanical resonance frequency is measured. Because revolution of the rotor increases lateral force to the center, resonance frequency given from the free revolution experiment becomes larger than that from pinning force measurement.
14 CFR 25.493 - Braked roll conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... used if it is substantiated that an effective drag force of 0.8 times the vertical reaction cannot be... landing weight and 1.0 at the design ramp weight. A drag reaction equal to the vertical reaction multiplied by a coefficient of friction of 0.8, must be combined with the vertical ground reaction and...
14 CFR 25.493 - Braked roll conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... used if it is substantiated that an effective drag force of 0.8 times the vertical reaction cannot be... landing weight and 1.0 at the design ramp weight. A drag reaction equal to the vertical reaction multiplied by a coefficient of friction of 0.8, must be combined with the vertical ground reaction and...
14 CFR 25.493 - Braked roll conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... used if it is substantiated that an effective drag force of 0.8 times the vertical reaction cannot be... landing weight and 1.0 at the design ramp weight. A drag reaction equal to the vertical reaction multiplied by a coefficient of friction of 0.8, must be combined with the vertical ground reaction and...
2011-01-01
We report on the use of three different atomic force spectroscopy modalities to determine the nanomechanical properties of amyloid fibrils of the human α-synuclein protein. α-Synuclein forms fibrillar nanostructures of approximately 10 nm diameter and lengths ranging from 100 nm to several microns, which have been associated with Parkinson's disease. Atomic force microscopy (AFM) has been used to image the morphology of these protein fibrils deposited on a flat surface. For nanomechanical measurements, we used single-point nanoindentation, in which the AFM tip as the indenter is moved vertically to the fibril surface and back while the force is being recorded. We also used two recently developed AFM surface property mapping techniques: Harmonic force microscopy (HarmoniX) and Peakforce QNM. These modalities allow extraction of mechanical parameters of the surface with a lateral resolution and speed comparable to tapping-mode AFM imaging. Based on this phenomenological study, the elastic moduli of the α-synuclein fibrils determined using these three different modalities are within the range 1.3-2.1 GPa. We discuss the relative merits of these three methods for the determination of the elastic properties of protein fibrils, particularly considering the differences and difficulties of each method. PMID:21711775
Panel method for the wake effects on the aerodynamics of vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Goyal, Udit; Rempfer, Dietmar
2011-11-01
A formulation based on the panel method is implemented for studying the unsteady aerodynamics of straight-bladed vertical-axis wind turbines. A combination of source and vortex distributions is used to represent an airfoil in Darrieus type motion. Our approach represents a low-cost computational technique that takes into account the dynamic changes in angle of attack of the blade during a cycle. A time-stepping mechanism is introduced for the wake convection, and its effects on the aerodynamic forces on the blade are discussed. The focus of the study is to describe the effect of the trailing wakes on the upstream flow conditions and coefficient of performance of the turbines. Results show a decrease in Cp until the wake structure develops and assumes a quasi-steady behavior. A comparison with other models such as single and multiple streamtubes is discussed, and optimization of the blade pitch angle is performed to increase the instantaneous torque and hence the power output from the turbine.
NASA Astrophysics Data System (ADS)
Dawson, Phillip B.; Chouet, Bernard A.; Power, John
2011-02-01
Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.
Stable sonoluminescence within a water hammer tube.
Chakravarty, Avik; Georghiou, Theo; Phillipson, Tacye E; Walton, Alan J
2004-06-01
The sonoluminescence (SL) from the collapse of a single gas bubble within a liquid can be produced repetitively using an acoustic resonator. An alternative technique using a water hammer tube, producing SL from bubbles of greater size, is described here. A sealed vertical tube partly filled with a liquid and a gas at low pressure is subjected to vertical vibrations. The oscillation of the pressure within the liquid column, due to inertial forces, excites cavitation bubbles to grow and collapse. Rotation is used to confine the bubbles to the axis of the tube. Bright SL emissions were observed in a number of liquids. Repetitive emission was produced from bubbles in condensed phosphoric acid. Bubbles of 0.4 mm ambient radius (containing 2x 10(14) xenon atoms) were excited by vibration at 35 Hz. Approximately 10(12) photons were emitted per collapse in the range 400-700 nm (over four orders of magnitude greater than the brightest SL reported previously), corresponding to a 1% efficiency of the conversion of mechanical energy into light.
NASA Astrophysics Data System (ADS)
Goit, Chandra Shekhar; Saitoh, Masato
2013-03-01
Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics. Two practical pile inclinations of 5° and 10° in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered. Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles. Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases. Distinct values of horizontal impedance functions are obtained for the `positive' and `negative' cycles of harmonic loadings, leading to asymmetric force-displacement relationships for the inclined piles. Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses, and the results from the numerical models are in good agreement with the experimental data. Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.
NASA Astrophysics Data System (ADS)
Nguyen, Quoc-Viet; Chan, Woei Leong; Debiasi, Marco
2015-03-01
We present our recent flying insect-inspired Flapping-Wing Micro Air Vehicle (FW-MAV) capable of hovering flight which we have recently achieved. The FW-MAV has wing span of 22 cm (wing tip-to-wing tip), weighs about 16.6 grams with onboard integration of radio control system including a radio receiver, an electronic speed control (ESC) for brushless motor, three servos for attitude flight controls of roll, pitch, and yaw, and a single cell lithium-polymer (LiPo) battery (3.7 V). The proposed gear box enables the FW-MAV to use one DC brushless motor to synchronously drive four wings and take advantage of the double clap-and-fling effects during one flapping cycle. Moreover, passive wing rotation is utilized to simplify the design, in addition to passive stabilizing surfaces for flight stability. Powered by a single cell LiPo battery (3.7 V), the FW-MAV flaps at 13.7 Hz and produces an average vertical force or thrust of about 28 grams, which is sufficient for take-off and hovering flight. Finally, free flight tests in terms of vertical take-off, hovering, and manual attitude control flight have been conducted to verify the performance of the FW-MAV.
Effect of midsole thickness of dance shoes on dynamic postural stability.
Wyon, Matthew A; Cloak, Ross; Lucas, Josephine; Clarke, Frances
2013-12-01
Landing from jumps is one of the main causes of injury within dance. A number of studies have reported a negative effect of shoe midsole thickness on lower limb kinematics during running due to the reduction in afferent sensory outputs from the foot's epithelium. The purpose of this study was to examine the influence of varying midsole thicknesses in dance shoes on dynamic postural stability during a single-leg landing. Twenty-eight female undergraduate dance participants volunteered for the study. They carried out three trials under four conditions: barefoot and in ballet flats (2 mm midsole thickness), jazz shoes (7 mm), and dance sneakers (30 mm). The task consisted of a single-leg forward jump over a hurdle at 50% of their maximal vertical jump height, landing on a force platform, and balancing for 3 seconds. The stability indices for vertical stability (VSI), anterior-posterior stability (APSI), medial-lateral stability (MLSI), and dynamic postural stability (DPSI) were calculated using Wikstrom's revised method. Significant differences were reported between the midsole thicknesses for both DPSI and VSI (p<0.01). No statistical differences were noted for the indices SPSI or MLSI. The present data agree with the running studies in that increased midsole thickness has a negative influence on landing stability.
Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra
2017-01-01
One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced ( P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant ( P > 0/05). Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended.
Hopper, Amanda J.; Haff, Erin E.; Joyce, Christopher; Lloyd, Rhodri S.; Haff, G. Gregory
2017-01-01
The purpose of this study was to examine the effects of a neuromuscular training (NMT) program on lower-extremity biomechanics in youth female netball athletes. The hypothesis was that significant improvements would be found in landing biomechanics of the lower-extremities, commonly associated with anterior cruciate ligament (ACL) injury, following NMT. Twenty-three athletes (age = 12.2 ± 0.9 years; height = 1.63 ± 0.08 m; mass = 51.8 ± 8.5 kg) completed two testing sessions separated by 7-weeks and were randomly assigned to either a experimental or control group. Thirteen athletes underwent 6-weeks of NMT, while the remaining 10 served as controls and continued their regular netball training. Three-dimensional lower-extremity kinematics and vertical ground reaction force (VGRF) were measured during two landing tasks, a drop vertical jump and a double leg broad jump with a single leg landing. The experimental group significantly increased bilateral knee marker distance during the bilateral landing task at maximum knee-flexion range of motion. Knee internal rotation angle during the unilateral landing task at maximum knee flexion-extension range of motion was significantly reduced (p ≤ 0.05, g > 1.00). The experimental group showed large, significant decreases in peak vertical ground reaction force in both landing tasks (p ≤ 0.05, g > −1.30). Control participants did not demonstrate any significant pre-to-post-test changes in response to the 6-week study period. Results of the study affirm the hypothesis that a 6-week NMT program can enhance landing biomechanics associated with ACL injury in 11–13 year old female netball athletes. PMID:29163219
Experimentally fitted biodynamic models for pedestrian-structure interaction in walking situations
NASA Astrophysics Data System (ADS)
Toso, Marcelo André; Gomes, Herbert Martins; da Silva, Felipe Tavares; Pimentel, Roberto Leal
2016-05-01
The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human body´s ability to absorb vibrational energy. In this paper, a test campaign is presented to obtain parameters for a single degree of freedom (SDOF) biodynamic model that represents the action of a walking pedestrian in the vertical direction. The parameters of this model are the mass (m), damping (c) and stiffness (k). The measurements were performed on a force platform, and the inputs were the spectral acceleration amplitudes of the first three harmonics at the waist level of the test subjects and the corresponding amplitudes of the first three harmonics of the vertical ground reaction force. This leads to a system of nonlinear equations that is solved using a gradient-based optimization algorithm. A set of individuals took part in the tests to ensure inter-subject variability, and, regression expressions and an artificial neural network (ANN) were used to relate the biodynamic parameters to the pacing rate and the body mass of the pedestrians. The results showed some scatter in damping and stiffness that could not be precisely correlated with the masses and pacing rates of the subjects. The use of the ANN resulted in significant improvements in the parameter expressions with a low uncertainty. Finally, the measured vertical accelerations on a prototype footbridge show the adequacy of the numerical model for the representation of the effects of walking pedestrians on a structure. The results are consistent for many crowd densities.
Regular and reverse nanoscale stick-slip behavior: Modeling and experiments
NASA Astrophysics Data System (ADS)
Landolsi, Fakhreddine; Sun, Yuekai; Lu, Hao; Ghorbel, Fathi H.; Lou, Jun
2010-02-01
We recently proposed a new nanoscale friction model based on the bristle interpretation of single asperity contacts. The model is mathematically continuous and dynamic which makes it suitable for implementation in nanomanipulation and nanorobotic modeling. In the present paper, friction force microscope (FFM) scans of muscovite mica samples and vertically aligned multi-wall carbon nanotubes (VAMWCNTs) arrays are conducted. The choice of these materials is motivated by the fact that they exibit different stick-slip behaviors. The corresponding experimental and simulation results are compared. Our nanoscale friction model is shown to represent both the regular and reverse frictional sawtooth characteristics of the muscovite mica and the VAMWCNTs, respectively.
5. Credit BG. View looking northwest at eastern facade of ...
5. Credit BG. View looking northwest at eastern facade of Test Stand 'E' (Building 4259/E-60), solid rocket motor test facility. Central bay (high concrete walls) was used for testing large solid motors in a vertical position. A second smaller bay to the north fired smaller motors horizontally. Just south of the large bay is an equipment room with access to the tunnel system; entrance is by small single door on east side. The large double doors lead to a third bay used for X-raying solid rocket motors before testing. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
Trumble, Troy N; Billinghurst, R Clark; McIlwraith, C Wayne
2004-09-01
To evaluate the temporal pattern of prostaglandin (PG) E2 concentrations in synovial fluid after transection of the cranial cruciate ligament (CCL) in dogs and to correlate PGE2 concentrations with ground reaction forces and subjective clinical variables for lameness or pain. 19 purpose-bred adult male Walker Hounds. Force plate measurements, subjective clinical analysis of pain or lameness, and samples of synovial fluid were obtained before (baseline) and at various time points after arthroscopic transection of the right CCL. Concentrations of PGE2 were measured in synovial fluid samples, and the PGE2 concentrations were correlated with ground reaction forces and clinical variables. The PGE2 concentration increased significantly above the baseline value throughout the entire study, peaking 14 days after transection. Peak vertical force and vertical impulse significantly decreased by day 14 after transection, followed by an increase over time without returning to baseline values. All clinical variables (eg, lameness, degree of weight bearing, joint extension, cumulative pain score, effusion score, and total protein content of synovial fluid, except for WBC count in synovial fluid) increased significantly above baseline values. Significant negative correlations were detected between PGE2 concentrations and peak vertical force (r, -0.5720) and vertical impulse (r, -0.4618), and significant positive correlations were detected between PGE2 concentrations and the subjective lameness score (r, 0.5016) and effusion score (r, 0.6817). Assessment of the acute inflammatory process by measurement of PGE2 concentrations in synovial fluid may be correlated with the amount of pain or lameness in dogs.
Force system generated by elastic archwires with vertical V bends: a three-dimensional analysis.
Upadhyay, Madhur; Shah, Raja; Peterson, Donald; Asaki, Takafumi; Yadav, Sumit; Agarwal, Sachin
2017-04-01
Our previous understanding of V-bend mechanics is primarily from two-dimensional (2D) analysis of archwire bracket interactions in the second order. These analyses do not take into consideration the three-dimensional (3D) nature of orthodontic appliances involving the third order. To quantify the force system generated in a 3D two bracket set up involving the molar and incisors with vertical V-bends. Maxillary molar and incisor brackets were arranged in a dental arch form and attached to load cells capable of measuring forces and moments in all three planes (x, y, and z) of space. Symmetrical V-bends (right and left sides) were placed at 11 different locations along rectangular beta-titanium archwires of various sizes at an angle of 150degrees. Each wire was evaluated for the 11 bend positions. Specifically, the vertical forces (Fz) and anterio-posterior moments (Mx) were analysed. Descriptive statistics were used to interpret the results. With increasing archwire size, Fz and Mx increased at the two brackets (P < 0.05). The vertical forces were linear and symmetric in nature, increasing in magnitude as the bends moved closer to either bracket. The Mx curves were asymmetric and non-linear displaying higher magnitudes for molar bracket. As the bends were moved closer to either bracket a distinct flattening of the incisor Mx curve was noted, implying no change in its magnitude. This article provides critical information on V-bend mechanics involving second order and third order archwire-bracket interactions. A model for determining this force system is described that might allow for easier translation to actual clinical practice. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com
Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment
NASA Astrophysics Data System (ADS)
Gallet, B.; Campagne, A.; Cortet, P.-P.; Moisy, F.
2014-03-01
We characterize the statistical and geometrical properties of the cyclone-anticyclone asymmetry in a statistically steady forced rotating turbulence experiment. Turbulence is generated by a set of vertical flaps which continuously inject velocity fluctuations towards the center of a tank mounted on a rotating platform. We first characterize the cyclone-anticyclone asymmetry from conventional single-point vorticity statistics. We propose a phenomenological model to explain the emergence of the asymmetry in the experiment, from which we predict scaling laws for the root-mean-square velocity in good agreement with the experimental data. We further quantify the cyclone-anticyclone asymmetry using a set of third-order two-point velocity correlations. We focus on the correlations which are nonzero only if the cyclone-anticyclone symmetry is broken. They offer two advantages over single-point vorticity statistics: first, they are defined from velocity measurements only, so an accurate resolution of the Kolmogorov scale is not required; second, they provide information on the scale-dependence of the cyclone-anticyclone asymmetry. We compute these correlation functions analytically for a random distribution of independent identical vortices. These model correlations describe well the experimental ones, indicating that the cyclone-anticyclone asymmetry is dominated by the large-scale long-lived cyclones.
On occlusal forces in dentitions with implant-supported fixed cantilever prostheses.
Falk, H
1990-01-01
The main aims of this thesis were (1) to study the functional characteristics of dentitions with mandibular implant-supported fixed cantilever prostheses - IFCP s- occluding with complete dentures, (2) to study in detail the magnitudes and distributions of axially directed closing and chewing forces in such dentitions, (3) to study the influence of number and distribution of occlusal contacts on the magnitude and distribution of closing and chewing forces, (4) to assess the vertical bending moment and the resulting vertical bending stress in the cantilever joints and (5) to find out whether the force distribution over the cantilever beams and the resulting vertical bending stress in the cantilever joint are influenced by the type of prosthetic construction in the opposing jaw. Closing and chewing forces were registered in altogether seventeen subjects by means of miniature strain gauge transducers mounted bilaterally and symmetrically in performed matrices in prosthetic appliances. Four, six or eight transducers, evenly distributed over the tooth-arch, permitted registrations of axially directed occlusal forces in several occluding areas simultaneously. In Papers I-IV, the implant-supported prostheses were installed in the mandible and occluded with complete dentures. In Paper V, group A, the fixture-supported prostheses were installed in the maxilla and occluded with tooth-supported fixed partial dentures whereas in group B, the arrangements were analogous to those in Papers I-IV. All subjects exhibited a rhythmic chewing pattern and preferred one side for chewing although both sides were used. Most chewing sequences were terminated with swallowing with occlusal force development. The mean total forces acting over the tooth-arch varied somewhat between groups and occlusal arrangements but averaged 350 and 170 N for closing and chewing respectively. Closing and chewing forces increased distally along the cantilever beams when occluding with complete dentures and decreased distally when occluding with fixed partial dentures. The distally increasing force distribution pattern could be altered to a distally decreasing force distribution pattern by infraoccluding the second cantilever unit by as little as 100 microns. Calculated vertical bending moments and stresses in the cantilever joints of the preferred chewing sides created by closing and chewing forces were larger in dentitions where the IFCP occluded with a complete denture than in dentitions where the IFCP occluded with a tooth-supported fixed partial denture.
Wagon instability in long trains
NASA Astrophysics Data System (ADS)
Cole, Colin; McClanachan, Mitchell; Spiryagin, Maksym; Sun, Yan Quan
2012-01-01
Lateral force components and impacts from couplers can adversely affect wagon stability. These issues are significant in longer and heavier trains increasing the risk of wagon rollover, wheel climb, wagon body pitch, bogie pitch and wagon lift-off. Modelling of coupler angles has been added to normal longitudinal train simulation to allow comprehensive study of lateral components of coupler forces. Lateral coupler forces are then combined with centripetal inertia calculations to determine quasi-static lateral forces, quasi-static vertical forces and quasi-static bogie lateral to vertical ratio, allowing the study of stringlining, buckling and wagon rollover risks. The approach taken allows for different rolling stock lengths, overhang and coupling lengths, and allows the study of angles occurring in transitions. Wagon body and bogie pitch are also studied with enhancements added to previous modelling to allow the study of wagon lift-off.
Decomposition of superimposed ground reaction forces into left and right force profiles
NASA Technical Reports Server (NTRS)
Davis, B. L.; Cavanagh, P. R.
1993-01-01
The process of collecting ground reaction force data by mounting a forceplate beneath a treadmill belt has the advantage that numerous walking trials can be analyzed without the problem of subjects 'targeting' their footsteps. However, a potential problem is that the measured forces represent a summation of bilateral force profiles during the double support phase of walking. To address this issue, an algorithm is described for decomposing superimposed ground reaction force data into individual left and right profiles. It is based on an examination of the side-to-side oscillations of the measured center of pressure (CoP). Whenever the measured CoP exceeds a certain threshold, it is assumed that the person is being supported by a single limb, and the measured GRF data reflect the forces under that limb. Conversely, when the measured CoP indicates that both feet are on the treadmill, it is assumed that the location of the individual CoP under each foot is given by wL2 and wR2. These quantities reflect the greatest excursion of the measured CoP towards the left and right sides of the forceplate, respectively. With this assumption, individual GRF profiles can be calculated by means of solving two simultaneous equations--one describing the equilibrium of forces in the vertical direction, and one describing the equilibrium of moments about an antero-posterior axis of the forceplate. The algorithm describing this procedure is simple enough to be implemented on a spreadsheet and yields estimates for average force, impulse, peak force and stance time that are typically within 3% of the true values.
Vashista, Vineet; Khan, Moiz; Agrawal, Sunil K.
2017-01-01
In this paper, we develop an intervention to apply external gait synchronized forces on the pelvis to reduce the user’s effort during walking. A cable-driven robot was used to apply the external forces and an adaptive frequency oscillator scheme was developed to adapt the timing of force actuation to the gait frequency during walking. The external forces were directed in the sagittal plane to assist the trailing leg during the forward propulsion and vertical deceleration of the pelvis during the gait cycle. A pilot experiment with five healthy subjects was conducted. The results showed that the subjects applied lower ground reaction forces in the vertical and anterior-posterior directions during the late stance phase. In summary, the current work provides a novel approach to study the role of external pelvic forces in altering the walking effort. These studies can provide better understanding for designing exoskeletons and prosthetic devices to reduce the overall walking effort. PMID:29623294
Farahpour, Nader; Jafarnezhad, AmirAli; Damavandi, Mohsen; Bakhtiari, Abbas; Allard, Paul
2016-06-14
The link between gait parameters and foot abnormalities in association with low back pain is not well understood. The objective of this study was to investigate the effects of excessive foot pronation as well as the association of LBP with excessive foot pronation on the GRF components during shod walking. Forty-five subjects were equally divided into a control group, a group of subjects with pronated feet only, and another group with pronated feet and LBP. Ground reaction forces were analyzed during shod walking. Foot pronation without low back pain was associated with increased lateral-medial ground reaction force, impulse, and time to peak of all reaction forces in heel contact phase (p<0.03). In low back pain patients with pronated foot, greater vertical reaction forces (p=0.001) and loading rate, and time to peak on propulsion force were observed compared to pronated foot without low back pain group. Impulse in posterior-anterior reaction force was smaller in the able-bodied group with normal foot than in the other groups (p<0.05). Positive peak of free moments of the LBP group was significantly greater than that in other groups (p<0.05). In conclusion, foot pronation alone was not associated with elevated vertical ground reaction forces. While, low back pain patients with foot pronation displayed higher vertical ground reaction force as well as higher loading rate. Present results reveal that gait ground reaction force components in low back pain patients with pronated foot may have clinical values on the prognosis and rehabilitation of mechanical LBP patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jain, Veena; Mathur, Vijay Prakash; Abhishek, Kumar; Kothari, Mohit
2012-10-01
The purpose of the pilot study was to determine the effect of restoring lost occlusal vertical dimension (OVD) due to attrition on maximum bite force in humans. A total of 124 subjects in age range of 25-40 years, with moderate to severe attrition, having full complement of teeth were screened according to inclusion and exclusion criteria. After consent, occlusal vertical dimension was assessed by employing mechanical and physiological methods in the experimental group and a maxillary canine guided hard splint was fabricated for each subjects fulfilling inclusion criteria and with positive consent (78). Bite force in experimental group was measured before, immediately after delivery of splint and subsequently at an interval of four, eight, and twelve weeks. Due loss during follow up, only 50 subjects could be available for bite force recording till 12 weeks. Bite force of age, gender, height and weight matched controls with no signs of attrition was also measured for comparison. Bite force of the experimental group was found to be significantly less than the matched controls (P=0.000) initially. After delivery of splint, bite force values increased progressively till twelve weeks. However comparison of bite force values of experimental group with control group showed no significant difference at end of eight (P=0.008) and twelve weeks (P=0.162). It was concluded that maximum bite force increases with restoration of lost vertical using splint therapy. A time period of 8-12 weeks is required to restore the maximum bite force value approximately similar to matched controls. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Solution of mixed convection heat transfer from isothermal in-line fins
NASA Technical Reports Server (NTRS)
Khalilollahi, Amir
1993-01-01
Transient and steady state combined natural and forced convective flows over two in-line finite thickness fins (louvers) in a vertical channel are numerically solved using two methods. The first method of solution is based on the 'Simple Arbitrary Lagrangian Eulerian' (SALE) technique which incorporates mainly two computational phases: (1) a Lagrangian phase in which the velocity field is updated by the effects of all forces, and (2) an Eulerian phase that executes all advective fluxes of mass, momentum and energy. The second method of solution uses the finite element code entitled FIDAP. In the first part, comparison of the results by FIDAP, SALE, and available experimental work were done and discussed for steady state forced convection over louvered fins. Good agreements were deduced between the three sets of results especially for the flow over a single fin. In the second part and in the absence of experimental literature, the numerical predictions were extended to the transient transports and to the opposing flow where pressure drop is reversed. Results are presented and discussed for heat transfer and pressure drop in assisting and opposing mixed convection flows.
A High Resolution Study of Black Sea Circulation and Hypothetical Oil Spills
NASA Astrophysics Data System (ADS)
Dietrich, D. E.; Bowman, M. J.; Korotenko, K. A.
2008-12-01
A 1/24 deg resolution adaptation of the DieCAST ocean model simulates a realistically intense Rim Current and ubiquitous mesoscale coastal anticyclonic eddies that result from anticyclonic vorticity generation by laterally differential bottom drag forces that are amplified near Black Sea coastal headlands. Climatological and synoptic surface forcings are compared. The effects of vertical momentum transfer by known (by Synop region fishermen, as reported by Ballard National Geographic article) big amplitude internal waves are parameterized by big vertical viscosity. Sensitivity to vertical viscosity is shown. Results of simulated hypothetical oil spills are shown. A simple method to nowcast/forecast the Black Sea currents is described and early results are shown.
Wu, Meiping; Cao, Juliang; Zhang, Kaidong; Cai, Shaokun; Yu, Ruihang
2018-01-01
Quality assessment is an important part in the strapdown airborne gravimetry. Root mean square error (RMSE) evaluation method is a classical way to evaluate the gravimetry quality, but classical evaluation methods are preconditioned by extra flight or reference data. Thus, a method, which is able to largely conquer the premises of classical quality assessment methods and can be used in single survey line, has been developed in this paper. According to theoretical analysis, the method chooses the stability of two horizontal attitude angles, horizontal specific force and vertical specific force as the determinants of quality assessment method. The actual data, collected by SGA-WZ02 from 13 flights 21 lines in certain survey, was used to build the model and elaborate the method. To substantiate the performance of the quality assessment model, the model is applied in extra repeat line flights from two surveys. Compared with internal RMSE, standard deviation of assessment residuals are 0.23 mGal and 0.16 mGal in two surveys, which shows that the quality assessment method is reliable and stricter. The extra flights are not necessary by specially arranging the route of flights. The method, summarized from SGA-WZ02, is a feasible approach to assess gravimetry quality using single line data and is also suitable for other strapdown gravimeters. PMID:29373535
A Single Column Model Ensemble Approach Applied to the TWP-ICE Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Laura; Jakob, Christian; Cheung, K.
2013-06-27
Single column models (SCM) are useful testbeds for investigating the parameterisation schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best-estimate large-scale data prescribed. One method to address this uncertainty is to perform ensemble simulations of the SCM. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best-estimate product. This data is then used to carry out simulations with 11 SCM and 2 cloud-resolving models (CRM). Best-estimatemore » simulations are also performed. All models show that moisture related variables are close to observations and there are limited differences between the best-estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the moisture budget between the SCM and CRM. Systematic differences are also apparent in the ensemble mean vertical structure of cloud variables. The ensemble is further used to investigate relations between cloud variables and precipitation identifying large differences between CRM and SCM. This study highlights that additional information can be gained by performing ensemble simulations enhancing the information derived from models using the more traditional single best-estimate simulation.« less
Assessing the vertical structure of baroclinic tidal currents in a global model
NASA Astrophysics Data System (ADS)
Timko, Patrick; Arbic, Brian; Scott, Robert
2010-05-01
Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.
Brown, D C; Boston, R C; Farrar, J T
2013-01-01
Lameness assessment using force plate gait analysis (FPGA) and owner assessment of chronic pain using the Canine Brief Pain Inventory (CBPI) are valid and reliable methods of evaluating canine osteoarthritis. There are no studies comparing these 2 outcome measures. Evaluate the relationship between CBPI pain severity (PS) and interference (PI) scores with the vertical forces of FPGA as efficacy measures in canine osteoarthritis. Sixty-eight client-owned dogs with osteoarthritis (50 hind limb and 18 forelimb). Double-blind, randomized. Owners completed the CBPI, and dogs underwent FPGA on days 0 and 14. Dogs received carprofen or placebo on days 1 through 14. The change in PS and PI scores from day 0 to 14 were compared to the change in peak vertical force (PVF) and vertical impulse (VI). PS and PI scores significantly decreased in carprofen- compared with placebo-treated dogs (P = .002 and P = .03, respectively). PVF and VI significantly increased in carprofen- compared with placebo-treated dogs (P = .006 and P = .02, respectively). There was no correlation or concordance between the PS or PI score changes and change in PVF or VI. In these dogs with hind limb or forelimb osteoarthritis, owner assessment of chronic pain using the CBPI and assessment of lameness using FPGA detected significant improvement in dogs treated with carprofen. The lack of correlation or concordance between the change in owner scores and vertical forces suggests that owners were focused on behaviors other than lameness when making efficacy evaluations in their dogs. Copyright © 2012 by the American College of Veterinary Internal Medicine.
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS
Klusendorf, Anna; Kernozek, Thomas
2016-01-01
ABSTRACT Background Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. Hypothesis/Purpose The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Design Case-control study Methods Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). Results No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. Conclusions When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level of Evidence Level 3 PMID:27274423
Kinetics of badminton lunges in four directions.
Hong, Youlian; Wang, Shao Jun; Lam, Wing Kai; Cheung, Jason Tak Man
2014-02-01
The lunge is the most fundamental skill in badminton competitions. Fifteen university-level male badminton players performed lunge maneuvers in four directions, namely, right-forward, left-forward, right-backward, and left-backward, while wearing two different brands of badminton shoes. The test compared the kinetics of badminton shoes in performing typical lunge maneuvers. A force plate and an insole measurement system measured the ground reaction forces and plantar pressures. These measurements were compared across all lunge maneuvers. The left-forward lunge generated significantly higher first vertical impact force (2.34 ± 0.52 BW) than that of the right-backward (2.06 ± 0.60 BW) and left-backward lunges (1.78 ± 0.44 BW); higher second vertical impact force (2.44 ± 0.51 BW) than that of the left-backward lunge (2.07 ± 0.38 BW); and higher maximum anterior-posterior shear force (1.48 ± 0.36 BW) than that of the left-backward lunge (1.18 ± 0.38 BW). Compared with other lunge directions, the left-forward lunge showed higher mean maximum vertical impact anterior-posterior shear forces and their respective maximum loading rates, and the plantar pressure at the total foot and heel regions. Therefore, the left-forward lunge is a critical maneuver for badminton biomechanics and related footwear research because of the high loading magnitude generated during heel impact.
Takagaki, Kyozo; Gonda, Tomoya; Maeda, Yoshinobu
2015-09-01
Lateral force to mini-implants should be avoided because mini-implants are weak mechanically because of its small diameter. Overdentures retained by mini-implants are usually formed using ball attachments. However, bar attachments can offer the advantage of splinting the mini-implants. This study examined the effect of attachments in withstanding these lateral forces in tilted mini-implants of overdentures. Strain gauges were attached to the mini-implants (2.5 × 18 mm) embedded in an acrylic resin block. Two mini-implants were inserted vertically (Control) or with one mini-implant inclined at 10° or 20° (10-inclined and 20-inclined, respectively). The female portions of the attachments were secured to the denture base. A prefabricated ball attachment and CAD/CAM-fabricated bar attachment were compared. A vertical load of 49 N was applied to the occlusal surface at a distance 10 mm away from the center of two mini-implants. The lateral force borne by the mini-implants was measured via the attached strain gauge. Mann-Whitney U-test and an analysis of Bonferroni correction were used to compare differences between the two attachments and among the three models (P < 0.05). The lateral force exerted to the inclined mini-implant was significantly greater than that borne by a vertical mini-implant for both attachment types. The lateral force on the 20° inclined mini-implants with bar attachments was smaller than that on mini-implants with ball attachments. Inclined mini-implants are subjected to greater stresses than vertical ones, and a bar attachment can reduce the lateral forces borne by the mini-implant when one mini-implant inclined at 20°. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Markowicz, K. M.; Ritter, C.; Lisok, J.; Makuch, P.; Stachlewska, I. S.; Cappelletti, D.; Mazzola, M.; Chilinski, M. T.
2017-09-01
This work presents a methodology for obtaining vertical profiles of aerosol single scattering properties based on a combination of different measurement techniques. The presented data were obtained under the iAREA (Impact of absorbing aerosols on radiative forcing in the European Arctic) campaigns conducted in Ny-Ålesund (Spitsbergen) during the spring seasons of 2015-2017. The retrieval uses in-situ observations of black carbon concentration and absorption coefficient measured by a micro-aethalometer AE-51 mounted onboard a tethered balloon, as well as remote sensing data obtained from sun photometer and lidar measurements. From a combination of the balloon-borne in-situ and the lidar data, we derived profiles of single scattering albedo (SSA) as well as absorption, extinction, and aerosol number concentration. Results have been obtained in an altitude range from about 400 m up to 1600 m a.s.l. and for cases with increased aerosol load during the Arctic haze seasons of 2015 and 2016. The main results consist of the observation of increasing values of equivalent black carbon (EBC) and absorption coefficient with altitude, and the opposite trend for aerosol concentration for particles larger than 0.3 μm. SSA was retrieved with the use of lidar Raman and Klett algorithms for both 532 and 880 nm wavelengths. In most profiles, SSA shows relatively high temporal and altitude variability. Vertical variability of SSA computed from both methods is consistent; however, some discrepancy is related to Raman retrieval uncertainty and absorption coefficient estimation from AE-51. Typically, very low EBC concentration in Ny-Ålesund leads to large error in the absorbing coefficient. However, SSA uncertainty for both Raman and Klett algorithms seems to be reasonable, e.g. SSA of 0.98 and 0.95 relate to an error of ±0.01 and ± 0.025, respectively.
NASA Technical Reports Server (NTRS)
Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.
1994-01-01
The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat flux contributions.
Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.
Park, Hae-Won; Kim, Sangbae
2015-03-25
This paper presents a bio-inspired quadruped controller that allows variable-speed galloping. The controller design is inspired by observations from biological runners. Quadrupedal animals increase the vertical impulse that is generated by ground reaction forces at each stride as running speed increases and the duration of each stance phase reduces, whereas the swing phase stays relatively constant. Inspired by this observation, the presented controller estimates the required vertical impulse at each stride by applying the linear momentum conservation principle in the vertical direction and prescribes the ground reaction forces at each stride. The design process begins with deriving a planar model from the MIT Cheetah 2 robot. A baseline periodic limit cycle is obtained by optimizing ground reaction force profiles and the temporal gait pattern (timing and duration of gait phases). To stabilize the optimized limit cycle, the obtained limit cycle is converted to a state feedback controller by representing the obtained ground reaction force profiles as functions of the state variable, which is monotonically increasing throughout the gait, adding impedance control around the height and pitch trajectories of the obtained limit cycle and introducing a finite state machine and a pattern stabilizer to enforce the optimized gait pattern. The controller that achieves a stable 3 m s(-1) gallop successfully adapts the speed change by scaling the vertical ground reaction force to match the momentum lost by gravity and adding a simple speed controller that controls horizontal speed. Without requiring additional gait optimization processes, the controller achieves galloping at speeds ranging from 3 m s(-1) to 14.9 m s(-1) while respecting the torque limit of the motor used in the MIT Cheetah 2 robot. The robustness of the controller is verified by demonstrating stable running during various disturbances, including 1.49 m step down and 0.18 m step up, as well as random ground height and model parameter variations.
NASA Astrophysics Data System (ADS)
Baba, Soumei; Sawada, Kenichiro; Kubota, Chisato; Kawanami, Osamu; Asano, Hitoshi; Inoue, Koichi; Ohta, Haruhiko
Recent increase in the size of space platforms requires the management of larger amount of waste heat under high heat flux conditions and the transportation of it along a long distance to the radiator. Flow boiling applied to the thermal management system in space attracts much attention as promising means to realize high-performance heat transfer and transport because of large latent heat of vaporization. In microgravity two-phase flow phenomena are quite different from those under 1-g condition because buoyancy effects are significantly reduced and surface tension becomes dominant. By the similar reason, flow boiling characteristics in mini channels are not the same as those in channels of normal sizes. In the present stage, however, the boundary between the regimes of body force dominated and of surface tension dominated is not clear. The design of space thermal devices, operated under the conditions where no effect of gravity is expected, will improve the reliability of their ground tests, provided that the boundaries of dominant force regimes are clarified quantitatively in advance. In flow boiling in mini channels or in parallel channels, back flow could be occurred because of rapid growth of bubbles in a confined space, resulting flow rate fluctuation. Flow boiling heat transfer characteristics in mini channels can be changed considerably by the existence of inlet flow rate fluctuation. It is important to pay attention to experimental accuracy and to use a single circular mini-tube to compare heat transfer characteristics with those of normal size tubes. In the present paper, effects of tube orientations, i.e. vertical upward flow, vertical downward flow and horizontal flow, on flow boiling heat transfer characteristics is investigated for FC72 flowing in single mini-tubes with inner diameters of 0.13 and 0.51 mm to establish a reliable dominant force regime map. If the regime map is described by using dimensionless groups of Bond, Weber and Froude numbers, the boundary of dominant forces of inertia and body force is examined by using the mini-tube of the larger diameter at constant Bond number Bo = 0.51, and the boundary of inertia and surface tension by using the mini-tube of smaller diameter at Bo = 0.033. The influence of inertia is varied by the change of vapor quality, i.e. ratio of vapor mass flow rate to the total, under constant mass velocities, where the velocity of liquid-vapor mixtures is increased with increasing vapor quality. For the tube diameter of 0.51 mm, under low inertia conditions at Froude number Fr < 5, heat transfer coefficients were influenced by the tube orientation, while the heat transfer coefficients were almost independent of the orientation for Fr > 5. The results indicated that the boundary between the body force dominated and the inertia force dominated regimes was given by Froude number as Fr ˜ 5. On the other hand, for tube diameter of 0.13 mm, almost no effect of tube = orientation was observed for all combinations of mass velocity and vapor quality, and heat transfer coefficients were independent of vapor quality under low inertia conditions at Weber number We < 5, and vice versa. The results implied the boundary between the surface tension dominated and the inertia force dominated regimes was represented by We ˜ 5. = In addition, by the reflection of both results on the two-dimensional regime map, the boundary between the surface tension dominated and the body force dominated regimes was approx-imately evaluated as Bo ˜ 0.25 from the crossing point of two boundary lines. This value = located in the range of 0.033 < Bo < 0.51 is consistent with the boundaries between the sur-face tension dominated and the body force dominated regimes classified for the smaller and larger mini-tubes, respectively, under low inertia conditions.
Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.
Iino, Yoichi
2018-04-01
The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vysotskii, V. I., E-mail: vivysotskii@gmail.com; Vysotskyy, M. V.
2015-02-15
A method for the formation of correlated coherent states of low-energy particles in a parabolic potential well owing to the full-scale low-frequency modulation ω(t) = ω{sub 0}sinΩt of the parameters of this well has been considered. It has been shown that such a modulation in the absence of a stochastic force acting on a particle results in the fast formation of correlated coherent states and in an increase in the correlation coefficient and transparency of the potential barrier to the limiting values vertical bar r(t) vertical bar {sub max} → 1 and D → 1. The presence of the stochasticmore » force significantly affects the evolution of correlated coherent states, decreasing the rate of an increase in the correlation coefficient vertical bar r(t) vertical bar {sub max} (at Ω ≤ 10{sup −4}ω{sub 0}) and limiting it at the level vertical bar r(∞) vertical bar {sub max} < 1 (at Ω = (0.001–0.1)ω{sub 0}); vertical bar r(∞) vertical bar {sub max} increases with a decrease in the frequency of modulation and decreases with an increase in the intensity of the stochastic force. It has been shown that, at a realistic relation between the parameters, low-frequency modulation can ensure such vertical bar r vertical bar {sub max} value that the transparency of the potential barrier for low-energy particles increases by a factor of 10{sup 50}–10{sup 100} or larger. The mechanism of the formation of correlated coherent states for charged particles in a gas or a low-pressure plasma placed in a low-frequency magnetic field has been considered. We have determined the relation between the magnetic field strength and modulation frequency, as well as the relation between the temperature and density of the gas (plasma), at which the method under consideration can be used to optimize nuclear reactions at low energies.« less
Caruthers, Elena J; Oxendale, Kassandra K; Lewis, Jacqueline M; Chaudhari, Ajit M W; Schmitt, Laura C; Best, Thomas M; Siston, Robert A
2018-04-01
Stair descent (SD) is a common, difficult task for populations who are elderly or have orthopaedic pathologies. Joint torques of young, healthy populations during SD increase at the hip and ankle with increasing speed but not at the knee, contrasting torque patterns during gait. To better understand the sources of the knee torque pattern, we used dynamic simulations to estimate knee muscle forces and how they modulate center of mass (COM) acceleration across SD speeds (slow, self-selected, and fast) in young, healthy adults. The vastus lateralis and vastus medialis forces decreased from slow to self-selected speeds as the individual lowered to the next step. Since the vasti are primary contributors to vertical support during SD, they produced lower forces at faster speeds due to the lower need for vertical COM support observed at faster speeds. In contrast, the semimembranosus and rectus femoris forces increased across successive speeds, allowing the semimembranosus to increase acceleration downward and forward and the rectus femoris to provide more vertical support and resistance to forward progression as SD speed increased. These results demonstrate the utility of dynamic simulations to extend beyond traditional inverse dynamics analyses to gain further insight into muscle mechanisms during tasks like SD.
Isokinetic analysis of ankle and ground reaction forces in runners and triathletes
Luna, Natália Mariana Silva; Alonso, Angelica Castilho; Brech, Guilherme Carlos; Mochizuki, Luis; Nakano, Eduardo Yoshio; Greve, Júlia Maria D'Andréa
2012-01-01
OBJECTIVE: To analyze and compare the vertical component of ground reaction forces and isokinetic muscle parameters for plantar flexion and dorsiflexion of the ankle between long-distance runners, triathletes, and non-athletes. METHODS: Seventy-five males with a mean age of 30.26 (±6.5) years were divided into three groups: a triathlete group (n = 26), a long-distance runner group (n = 23), and a non-athlete control group. The kinetic parameters were measured during running using a force platform, and the isokinetic parameters were measured using an isokinetic dynamometer. RESULTS: The non-athlete control group and the triathlete group exhibited smaller vertical forces, a greater ground contact time, and a greater application of force during maximum vertical acceleration than the long-distance runner group. The total work (180°/s) was greater in eccentric dorsiflexion and concentric plantar flexion for the non-athlete control group and the triathlete group than the long-distance runner group. The peak torque (60°/s) was greater in eccentric plantar flexion and concentric dorsiflexion for the control group than the athlete groups. CONCLUSIONS: The athlete groups exhibited less muscle strength and resistance than the control group, and the triathletes exhibited less impact and better endurance performance than the runners. PMID:23018298
Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.
Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio
2016-03-01
Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.
Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics
NASA Astrophysics Data System (ADS)
Pierson, Mimi; Coplin, Kim
2006-10-01
Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.
Sugii, Mari Miura; Barreto, Bruno de Castro Ferreira; Francisco Vieira-Júnior, Waldemir; Simone, Katia Regina Izola; Bacchi, Ataís; Caldas, Ricardo Armini
2018-01-01
The aim of his study was to evaluate the stress on tooth and alveolar bone caused by orthodontic intrusion forces in a supraerupted upper molar, by using a three-dimensional Finite Element Method (FEM). A superior maxillary segment was modeled in the software SolidWorks 2010 (SolidWorks Corporation, Waltham, MA, USA) containing: cortical and cancellous bone, supraerupted first molar, periodontal tissue and orthodontic components. A finite element model has simulated intrusion forces of 4N onto a tooth, directed to different mini-screw locations. Three different intrusion mechanics vectors were simulated: anchoring on a buccal mini-implant; anchoring on a palatal mini-implant and the association of both anchorage systems. All analyses were performed considering the minimum principal stress and total deformation. Qualitative analyses exhibited stress distribution by color maps. Quantitative analysis was performed with a specific software for reading and solving numerical equations (ANSYS Workbench 14, Ansys, Canonsburg, Pennsylvania, USA). Intrusion forces applied from both sides (buccal and palatal) resulted in a more homogeneous stress distribution; no high peak of stress was detected and it has allowed a vertical resultant movement. Buccal or palatal single-sided forces resulted in concentrated stress zones with higher values and tooth tipping to respective force side. Unilateral forces promoted higher stress in root apex and higher dental tipping. The bilateral forces promoted better distribution without evidence of dental tipping. Bilateral intrusion technique suggested lower probability of root apex resorption.
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Huffman, Allan W.; Lux, Kevin M.; Cetola, Jeffrey D.; Charney, Joseph J.; Riordan, Allen J.; Lin, Yuh-Lang; Waight, Kenneth T., III; Proctor, Fred (Technical Monitor)
2003-01-01
Simulation experiments reveal key processes that organize a hydrostatic environment conducive to severe turbulence. The paradigm requires juxtaposition of the entrance region of a curved jet stream, which is highly subgeostrophic, with the entrance region of a straight jet stream, which is highly supergeostrophic. The wind and mass fields become misphased as the entrance regions converge resulting in the significant spatial variation of inertial forcing, centripetal forcing, and along- and cross-stream pressure gradient forcing over a mesobeta scale region. This results in frontogenesis and the along-stream divergence of cyclonic and convergence of cyclonic ageostrophic vertical vorticity. The centripetally forced mesoscale front becomes the locus of large gradients of ageostrophic vertical vorticity along an overturning isentrope. This region becomes favorable for streamwise vorticity gradient formation enhancing the environment for organization of horizontal vortex tubes in the presence of buoyant forcing.
2007-06-15
of 2006, the GBU - 39 /B Small Diameter Bomb (SDB) was first employed by Air Force aircraft (Weisgerber 2006). This newly developed munition was...Vertical, Limited horizontal 500# Impact, Delay ≤ 3m GBU-38 JDAM GPS/INS Vertical, Horizontal 500# Proximity, Impact, Delay ~10m GBU - 39 /B...between 5 to 15 nautical miles, though LGB maximum employment range may be further limited by the need to acquire and lase the target. The GBU - 39 offers
The response of an airplane to random atmospheric disturbances
NASA Technical Reports Server (NTRS)
Diederich, Franklin W
1957-01-01
The statistical approach to the gust-load problem which consists in considering flight through turbulent air to be a stationary random process is extended by including the effect of lateral variation of the instantaneous gust intensity on the aerodynamic forces. The forces obtained in this manner are used in dynamic analyses of rigid and flexible airplanes free to move vertically, in pitch, and in roll. The effect of the interaction of longitudinal, vertical, and lateral gusts on the wing stresses is also considered.
Are running speeds maximized with simple-spring stance mechanics?
Clark, Kenneth P; Weyand, Peter G
2014-09-15
Are the fastest running speeds achieved using the simple-spring stance mechanics predicted by the classic spring-mass model? We hypothesized that a passive, linear-spring model would not account for the running mechanics that maximize ground force application and speed. We tested this hypothesis by comparing patterns of ground force application across athletic specialization (competitive sprinters vs. athlete nonsprinters, n = 7 each) and running speed (top speeds vs. slower ones). Vertical ground reaction forces at 5.0 and 7.0 m/s, and individual top speeds (n = 797 total footfalls) were acquired while subjects ran on a custom, high-speed force treadmill. The goodness of fit between measured vertical force vs. time waveform patterns and the patterns predicted by the spring-mass model were assessed using the R(2) statistic (where an R(2) of 1.00 = perfect fit). As hypothesized, the force application patterns of the competitive sprinters deviated significantly more from the simple-spring pattern than those of the athlete, nonsprinters across the three test speeds (R(2) <0.85 vs. R(2) ≥ 0.91, respectively), and deviated most at top speed (R(2) = 0.78 ± 0.02). Sprinters attained faster top speeds than nonsprinters (10.4 ± 0.3 vs. 8.7 ± 0.3 m/s) by applying greater vertical forces during the first half (2.65 ± 0.05 vs. 2.21 ± 0.05 body wt), but not the second half (1.71 ± 0.04 vs. 1.73 ± 0.04 body wt) of the stance phase. We conclude that a passive, simple-spring model has limited application to sprint running performance because the swiftest runners use an asymmetrical pattern of force application to maximize ground reaction forces and attain faster speeds. Copyright © 2014 the American Physiological Society.
Phan, Xuan; Grisbrook, Tiffany L; Wernli, Kevin; Stearne, Sarah M; Davey, Paul; Ng, Leo
2017-08-01
This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.
Improving Vertical Jump Profiles Through Prescribed Movement Plans.
Mayberry, John K; Patterson, Bryce; Wagner, Phil
2018-06-01
Mayberry, JK, Patterson, B, and Wagner, P. Improving vertical jump profiles through prescribed movement plans. J Strength Cond Res 32(6): 1619-1626, 2018-Developing practical, reliable, and valid methods for monitoring athlete wellness and injury risk is an important goal for trainers, athletes, and coaches. Previous studies have shown that the countermovement vertical jump (CMJ) test is both a reliable and valid metric for evaluating an athlete's condition. This study examines the effectiveness of prescribed workouts on improving the quality of movement during CMJ. The data set consists of 2,425 pairs of CMJ scans for high school, college, and professional athletes training at a privately owned facility. During each scan, a force plate recorded 3 ground reaction force (GRF) measurements known to impact CMJ performance: eccentric rate of force development (ERFD), average vertical concentric force (AVCF), and concentric vertical impulse (CVI). After an initial scan, coaches either assigned the athlete a specific 1- or 2-strength movement plan (treatment group) or instructed the athlete to choose their own workouts (control group) before returning for a follow-up scan. A multivariate analysis of covariance (MANCOVA) revealed significant differences in changes to GRF measurements between athletes in the 2 groups after adjusting for the covariates sex, sport, time between scans, and rounds of workout completed. A principal component analysis of GRF measurements further identified 4 primary groups of athlete needs and the results provide recommendations for effective workout plans targeting each group. In particular, split squats increase CVI and decrease ERFD/AVCF; deadlifts increase AVCF and decrease CVI; alternating squats/split squats increase ERFD/CVI and decrease AVCF; and alternating squats/deadlifts increase ERFD/AVCF and decrease CVI.
One leg lateral jumps - a new test for team players evaluation.
Taboga, P; Sepulcri, L; Lazzer, S; De Conti, D; Di Prampero, P E
2013-10-01
We assessed the subject's capacity to accelerate himself laterally in monopodalic support, a crucial ability in several team sports, on 22 athletes, during series of 10 subsequent jumps, between two force platforms at predetermined distance. Vertical and horizontal accelerations of the Centre of Mass (CM), contact and flight times were measured by means of force platforms and the Optojump-System®. Individual mean horizontal and vertical powers and their sum (total power) ranged between 7 and 14.5 W/kg. "Push angle", i.e., the angle with the horizontal along which the vectorial sum of all forces is aligned, was calculated from the ratio between vertical and horizontal accelerations: it varied between 38.7 and 49.4 deg and was taken to express the subject technical ability. The horizontal acceleration of CM, indirectly estimated as a function of subject's mass, contact and flight times, was essentially equal to that obtained from force platforms data. Since the vertical displacement can be easily obtained from flight and contact times, this allowed us to assess the Push angle from Optojump data only. The power developed during a standard vertical jump was rather highly correlated with that developed during the lateral jumps for right (R=0.80, N.=12) and left limb (R=0.72, N.=12), but not with the push angle for right (R=0.31, N.=12) and left limb (R=-0.43, N.=12). Hence standard tests cannot be utilised to assess technical ability. Lateral jumps test allows the coach to evaluate separately maximal muscular power and technical ability of the athlete, thus appropriately directing the training program: the optimum, for a team-sport player being high power and low push-angle, that is: being "powerful" and "efficient".
NASA Technical Reports Server (NTRS)
Ackerman, Thomas P.
1994-01-01
The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.
Extended field observations of cirrus clouds using a ground-based cloud observing system
NASA Technical Reports Server (NTRS)
Ackerman, Thomas P.
1994-01-01
The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.
Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra
2017-01-01
Background: One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Materials and Methods: Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Results: Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced (P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant (P > 0/05). Conclusion: Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended. PMID:28584535
Kalkan, E.; Graizer, V.
2007-01-01
Rotational and vertical components of ground motion are almost always ignored in design or in the assessment of structures despite the fact that vertical motion can be twice as much as the horizontal motion and may exceed 2g level, and rotational excitation may reach few degrees in the proximity of fault rupture. Coupling of different components of ground excitation may significantly amplify the seismic demand by introducing additional lateral forces and enhanced P-?? effects. In this paper, a governing equation of motion is postulated to compute the response of a SDOF oscillator under a multi-component excitation. The expanded equation includes secondary P-?? components associated with the combined impacts of tilt and vertical excitations in addition to the inertial forcing terms due to the angular and translational accelerations. The elastic and inelastic spectral ordinates traditionally generated considering the uniaxial input motion are compared at the end with the multi-component response spectra of coupled horizontal, vertical and tilting motions. The proposed multi-component response spectrum reflects kinematic characteristics of the ground motion that are not identifiable by the conventional spectrum itself, at least for the near-fault region where high intensity vertical shaking and rotational excitation are likely to occur.
Control of gravitropic orientation. II. Dual receptor model for gravitropism
NASA Technical Reports Server (NTRS)
LaMotte, Clifford E.; Pickard, Barbara G.
2004-01-01
Gravitropism of vascular plants has been assumed to require a single gravity receptor mechanism. However, based on the evidence in Part I of this study, we propose that maize roots require two. The first mechanism is without a directional effect and, by itself, cannot give rise to tropism. Its role is quantitative facilitation of the second mechanism, which is directional like the gravitational force itself and provides the impetus for tropic curvature. How closely coupled the two mechanisms may be is, as yet, unclear. The evidence for dual receptors supports a general model for roots. When readiness for gravifacilitation, or gravifacilitation itself, is constitutive, orthogravitropic curvature can go to completion. If not constitutively enabled, gravifacilitation can be weak in the absence of light and water deficit or strong in the presence of light and water deficit. In either case, it can decay and permit roots to assume reproducible non-vertical orientations (plagiogravitropic or plagiotropic orientations) without using non-vertical setpoints. In this way roots are deployed in a large volume of soil. Gravitropic behaviours in shoots are more diverse than in roots, utilising oblique and horizontal as well as vertical setpoints. As a guide to future experiments, we assess how constitutive v. non-constitutive modes of gravifacilitation might contribute to behaviours based on each kind of setpoint.
NASA Astrophysics Data System (ADS)
Song, J.; Wang, Z.
2013-12-01
Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.
A Single-column Model Ensemble Approach Applied to the TWP-ICE Experiment
NASA Technical Reports Server (NTRS)
Davies, L.; Jakob, C.; Cheung, K.; DelGenio, A.; Hill, A.; Hume, T.; Keane, R. J.; Komori, T.; Larson, V. E.; Lin, Y.;
2013-01-01
Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.
Waite, G.P.; Chouet, B.A.; Dawson, P.B.
2008-01-01
The current eruption at Mount St. Helens is characterized by dome building and shallow, repetitive, long-period (LP) earthquakes. Waveform cross-correlation reveals remarkable similarity for a majority of the earthquakes over periods of several weeks. Stacked spectra of these events display multiple peaks between 0.5 and 2 Hz that are common to most stations. Lower-amplitude very-long-period (VLP) events commonly accompany the LP events. We model the source mechanisms of LP and VLP events in the 0.5-4 s and 8-40 s bands, respectively, using data recorded in July 2005 with a 19-station temporary broadband network. The source mechanism of the LP events includes: 1) a volumetric component modeled as resonance of a gently NNW-dipping, steam-filled crack located directly beneath the actively extruding part of the new dome and within 100 m of the crater floor and 2) a vertical single force attributed to movement of the overlying dome. The VLP source, which also includes volumetric and single-force components, is 250 m deeper and NNW of the LP source, at the SW edge of the 1980s lava dome. The volumetric component points to the compression and expansion of a shallow, magma-filled sill, which is subparallel to the hydrothermal crack imaged at the LP source, coupled with a smaller component of expansion and compression of a dike. The single-force components are due to mass advection in the magma conduit. The location, geometry and timing of the sources suggest the VLP and LP events are caused by perturbations of a common crack system.
NASA Technical Reports Server (NTRS)
Formenti, P.; Elias, T.; Welton, J.; Diaz, J. P.; Exposito, F.; Schmid, B.; Powell, D.; Holben, B. N.; Smirnov, A.; Andreae, M. O.;
2000-01-01
Retrievals of spectral aerosol optical depths (tau(sub a)) by means of sun photometers have been undertaken in Tenerife (28 deg 16' N, 16 deg 36' W) during ACE-2 (June-July 1997). Five ground-based sites were located at four different altitudes in the marine boundary layer and in the free troposphere, from 0 to 3570 m asl. The goal of the investigation was to provide estimates of the vertical aerosol extinction over the island, both under clean and turbid conditions. Inversion of spectral tau(sub a) allowed to retrieve size distributions, from which the single scattering albedo omega(sub 0) and the asymmetry factor g could be estimated as a function of altitude. These parameters were combined to calculate aerosol forcing in the column. Emphasis is put on episodes of increased turbidity, which were observed at different locations simultaneously, and attributed to outbreaks of mineral dust from North Africa. Differentiation of tau(sub a) as a function of altitude provided the vertical profile of the extinction coefficient sigma(sub e). For dust outbreaks, aerosol extinction is concentrated in two distinct layers above and below the strong subsidence inversion around 1200 m asl. Vertical profiles of tau(sub a) and sigma(sub e) are shown for July 8. In some occasions, vertical profiles are compared to LIDAR observations, performed both at sea level and in the low free troposphere, and to airborne measurements of aerosol optical depths.
The Comfortable Roller Coaster--on the Shape of Tracks with a Constant Normal Force
ERIC Educational Resources Information Center
Nordmark, Arne B.; Essen, Hanno
2010-01-01
A particle that moves along a smooth track in a vertical plane is influenced by two forces: gravity and normal force. The force experienced by roller coaster riders is the normal force, so a natural question to ask is, what shape of the track gives a normal force of constant magnitude? Here we solve this problem. It turns out that the solution is…
The effect of a braking device in reducing the ground impact forces inherent in plyometric training.
Humphries, B J; Newton, R U; Wilson, G J
1995-02-01
As a consequence of performing plyometric type exercises, such as depth jumps, impact forces placed on the musculoskeletal system during landing can lead to a potential for injury. A reduction of impact forces upon landing could therefore contribute to reduce the risk of injury. Twenty subjects performed a series of loaded jumps for maximal height, with and without a brake mechanism designed to reduce impact force during landing. The braked jumps were performed on the Plyometric Power System (PPS) with its braking mechanism set at 75% of body weight during the downward phase. The non-braked condition involved jumps with no braking. Vertical ground reaction force data, sampled for 5.5 s at 550 Hz from a Kistler forceplate, were collected for each jump condition. The following parameters were then calculated: peak vertical force, time to peak force, passive impact impulse and maximum concentric force. The brake served to significantly (p < 0.01) reduce peak impact force by 155% and passive impact impulse by 200%. No significant differences were found for peak concentric force production. The braking mechanism of the PPS significantly reduced ground impact forces without impeding concentric force production. The reduction in eccentric loading, using the braking mechanism, may reduce the incidence of injury associated with landings from high intensity plyometric exercises.
Nogueira, Rossana C.; Weeks, Benjamin K.; Beck, Belinda R.
2015-01-01
Sedentarism is associated with obesity and other chronic diseases at all ages. Increasing physical activity with in-school interventions, focusing on energy expenditure and bone loading reduces risk of a number of costly chronic diseases. The aim of the current study was to characterise the metabolic and musculoskeletal load intensity of the recent successful CAPO Kids exercise intervention. Pre and early pubertal children (10.4 ± 0.5 years old) from the CAPO Kids trial wore an armband sensor to estimate energy expenditure during a 10-minute CAPO Kids session. Eleven participants performed manoeuvres from the session on a force platform to determine vertical ground reaction forces. In total, 28 boys and 20 girls had armband measures and 11 boys and girls undertook GRF testing. The energy expenditure associated with the 10-minute session was 39.7 ± 9.3 kcal, with an average of 4 kcal·min-1. The intensity of physical activity was ‘vigorous’ to ‘very vigorous’ for 34% of the session. Vertical ground reaction forces of the CAPO Kids manoeuvres ranged from 1.3 ± 0.2 BW (cartwheels) to 5.4 ± 2.3 BW (360° jump). CAPO Kids generates adequate load intensity to stimulate positive health adaptations in both metabolic and musculoskeletal systems of pre and early pubertal children. Key points Energy expenditure of a single bout of CAPO Kids yields 39.7±9.3 kcal and includes activities performed at a vigorous and very vigorous intensity. Mechanical loads associated with CAPO Kids surpass five times bodyweight and more than 140 bodyweights per second. CAPO Kids intervention represents a viable approach to stimulate musculoskeletal and metabolic adaptation in children. PMID:26336343
An observational analysis of a derecho in South China
NASA Astrophysics Data System (ADS)
Xia, Rudi; Wang, Donghai; Sun, Jianhua; Wang, Gaili; Xia, Guancong
2012-12-01
Derechos occur frequently in Europe and the United States, but reports of derechos in China are scarce. In this paper, radar, satellite, and surface observation data are used to analyze a derecho event in South China on 17 April 2011. A derecho-producing mesoscale convective system formed in an environment with medium convective available energy, strong vertical wind shear, and a dry layer in the middle troposphere, and progressed southward in tandem with a front and a surface wind convergence line. The windstorm can be divided into two stages according to differences in the characteristics of the radar echo and the causes of the gale. One stage was a supercell stage, in which the sinking rear inflow of a high-precipitation supercell with a bow-shaped radar echo induced a Fujita F0 class gale. The other stage was a non-supercell stage (the echo was sequentially kidney-shaped, foot-shaped, and an ordinary single cell), in which downbursts induced a gale in Fujita F1 class. This derecho event had many similarities with derechos observed in western countries. For example, the windstorm was perpendicular to the mean flow, the gale was located in the bulging portion of the bow echo, and the derecho moved southward along with the surface front. Some differences were observed as well. The synoptic-scale forcing was weak in the absence of an advancing high-amplitude midlevel trough and an accompanying strong surface cyclone; however, the vertical wind shear was very strong, a characteristic typical of derechos associated with strong synoptic-scale forcing. Extremely high values of convective available potential energy and downdraft convective available potential energy have previously been considered necessary to the formation of weak-forcing archetype and hybrid derechos; however, these values were much less than 2000 J during this derecho event.
GPS Satellite Orbit Prediction at User End for Real-Time PPP System.
Yang, Hongzhou; Gao, Yang
2017-08-30
This paper proposed the high-precision satellite orbit prediction process at the user end for the real-time precise point positioning (PPP) system. Firstly, the structure of a new real-time PPP system will be briefly introduced in the paper. Then, the generation of satellite initial parameters (IP) at the sever end will be discussed, which includes the satellite position, velocity, and the solar radiation pressure (SRP) parameters for each satellite. After that, the method for orbit prediction at the user end, with dynamic models including the Earth's gravitational force, lunar gravitational force, solar gravitational force, and the SRP, are presented. For numerical integration, both the single-step Runge-Kutta and multi-step Adams-Bashforth-Moulton integrator methods are implemented. Then, the comparison between the predicted orbit and the international global navigation satellite system (GNSS) service (IGS) final products are carried out. The results show that the prediction accuracy can be maintained for several hours, and the average prediction error of the 31 satellites are 0.031, 0.032, and 0.033 m for the radial, along-track and cross-track directions over 12 h, respectively. Finally, the PPP in both static and kinematic modes are carried out to verify the accuracy of the predicted satellite orbit. The average root mean square error (RMSE) for the static PPP of the 32 globally distributed IGS stations are 0.012, 0.015, and 0.021 m for the north, east, and vertical directions, respectively; while the RMSE of the kinematic PPP with the predicted orbit are 0.031, 0.069, and 0.167 m in the north, east and vertical directions, respectively.
Nogueira, Rossana C; Weeks, Benjamin K; Beck, Belinda R
2015-09-01
Sedentarism is associated with obesity and other chronic diseases at all ages. Increasing physical activity with in-school interventions, focusing on energy expenditure and bone loading reduces risk of a number of costly chronic diseases. The aim of the current study was to characterise the metabolic and musculoskeletal load intensity of the recent successful CAPO Kids exercise intervention. Pre and early pubertal children (10.4 ± 0.5 years old) from the CAPO Kids trial wore an armband sensor to estimate energy expenditure during a 10-minute CAPO Kids session. Eleven participants performed manoeuvres from the session on a force platform to determine vertical ground reaction forces. In total, 28 boys and 20 girls had armband measures and 11 boys and girls undertook GRF testing. The energy expenditure associated with the 10-minute session was 39.7 ± 9.3 kcal, with an average of 4 kcal·min-1. The intensity of physical activity was 'vigorous' to 'very vigorous' for 34% of the session. Vertical ground reaction forces of the CAPO Kids manoeuvres ranged from 1.3 ± 0.2 BW (cartwheels) to 5.4 ± 2.3 BW (360° jump). CAPO Kids generates adequate load intensity to stimulate positive health adaptations in both metabolic and musculoskeletal systems of pre and early pubertal children. Key pointsEnergy expenditure of a single bout of CAPO Kids yields 39.7±9.3 kcal and includes activities performed at a vigorous and very vigorous intensity.Mechanical loads associated with CAPO Kids surpass five times bodyweight and more than 140 bodyweights per second.CAPO Kids intervention represents a viable approach to stimulate musculoskeletal and metabolic adaptation in children.
GPS Satellite Orbit Prediction at User End for Real-Time PPP System
Yang, Hongzhou; Gao, Yang
2017-01-01
This paper proposed the high-precision satellite orbit prediction process at the user end for the real-time precise point positioning (PPP) system. Firstly, the structure of a new real-time PPP system will be briefly introduced in the paper. Then, the generation of satellite initial parameters (IP) at the sever end will be discussed, which includes the satellite position, velocity, and the solar radiation pressure (SRP) parameters for each satellite. After that, the method for orbit prediction at the user end, with dynamic models including the Earth’s gravitational force, lunar gravitational force, solar gravitational force, and the SRP, are presented. For numerical integration, both the single-step Runge–Kutta and multi-step Adams–Bashforth–Moulton integrator methods are implemented. Then, the comparison between the predicted orbit and the international global navigation satellite system (GNSS) service (IGS) final products are carried out. The results show that the prediction accuracy can be maintained for several hours, and the average prediction error of the 31 satellites are 0.031, 0.032, and 0.033 m for the radial, along-track and cross-track directions over 12 h, respectively. Finally, the PPP in both static and kinematic modes are carried out to verify the accuracy of the predicted satellite orbit. The average root mean square error (RMSE) for the static PPP of the 32 globally distributed IGS stations are 0.012, 0.015, and 0.021 m for the north, east, and vertical directions, respectively; while the RMSE of the kinematic PPP with the predicted orbit are 0.031, 0.069, and 0.167 m in the north, east and vertical directions, respectively. PMID:28867771
Vertical Landing Aerodynamics of Reusable Rocket Vehicle
NASA Astrophysics Data System (ADS)
Nonaka, Satoshi; Nishida, Hiroyuki; Kato, Hiroyuki; Ogawa, Hiroyuki; Inatani, Yoshifumi
The aerodynamic characteristics of a vertical landing rocket are affected by its engine plume in the landing phase. The influences of interaction of the engine plume with the freestream around the vehicle on the aerodynamic characteristics are studied experimentally aiming to realize safe landing of the vertical landing rocket. The aerodynamic forces and surface pressure distributions are measured using a scaled model of a reusable rocket vehicle in low-speed wind tunnels. The flow field around the vehicle model is visualized using the particle image velocimetry (PIV) method. Results show that the aerodynamic characteristics, such as the drag force and pitching moment, are strongly affected by the change in the base pressure distributions and reattachment of a separation flow around the vehicle.
Serpell, Benjamin G; Scarvell, Jennie M; Pickering, Mark R; Ball, Nick B; Perriman, Diana; Warmenhoven, John; Smith, Paul N
2016-01-01
Novel research surrounding anterior cruciate ligament (ACL) injury is necessary because ACL injury rates have remained unchanged for several decades. An area of ACL risk mitigation which has not been well researched relates to vertical stiffness. The relationship between increased vertical stiffness and increased ground reaction force suggests that vertical stiffness may be related to ACL injury risk. However, given that increased dynamic knee joint stability has been shown to be associated with vertical stiffness, it is possible that modification of vertical stiffness could help to protect against injury. We aimed to determine whether vertical stiffness is related to measures known to load, or which represent loading of, the ACL. This was a cross-sectional observational study of 11 professional Australian rugby players. Knee kinematics and ACL elongation were measured from a 4-dimensional model of a hopping task which simulated the change of direction manoeuvre typically observed when non-contact ACL injury occurs. The model was generated from a CT scan of the participant's knee registered frame by frame to fluoroscopy images of the hopping task. Vertical stiffness was calculated from force plate data. There was no association found between vertical stiffness and anterior tibial translation (ATT) or ACL elongation (r=-0.05; p=0.89, and r=-0.07; p=0.83, respectively). ATT was related to ACL elongation (r=0.93; p=0.0001). Vertical stiffness was not associated with ACL loading in this cohort of elite rugby players but a novel method for measuring ACL elongation in vivo was found to have good construct validity.
Dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks
NASA Astrophysics Data System (ADS)
Wang, Xue-She; Mazzoleni, Michael J.; Mann, Brian P.
2018-03-01
This paper presents the results of an investigation on the dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks. The full equation of motion for both rocking disks is derived from first principles. For unforced behavior, Lamb's method is used to derive the linear natural frequency of both disks, and harmonic balance is used to determine their amplitude-dependent rocking frequencies. A stability analysis then reveals that the equilibria and stability of the two disks are considerably different, as the semi-elliptical disk has a super-critical pitchfork bifurcation that enables it to exhibit bistable rocking behavior. Experimental studies were conducted to verify the trends. For vertically forced behavior, numerical investigations show the disk's responses to forward and reverse frequency sweeps. Three modes of periodicity were observed for the steady state behavior. Experiments were performed to verify the frequency responses and the presence of the three rocking modes. Comparisons between the experiments and numerical investigations show good agreement.
Pelvic kinematic method for determining vertical jump height.
Chiu, Loren Z F; Salem, George J
2010-11-01
Sacral marker and pelvis reconstruction methods have been proposed to approximate total body center of mass during relatively low intensity gait and hopping tasks, but not during a maximum effort vertical jumping task. In this study, center of mass displacement was calculated using the pelvic kinematic method and compared with center of mass displacement using the ground-reaction force-impulse method, in experienced athletes (n = 13) performing restricted countermovement vertical jumps. Maximal vertical jumps were performed in a biomechanics laboratory, with data collected using an 8-camera motion analysis system and two force platforms. The pelvis center of mass was reconstructed from retro-reflective markers placed on the pelvis. Jump height was determined from the peak height of the pelvis center of mass minus the standing height. Strong linear relationships were observed between the pelvic kinematic and impulse methods (R² = .86; p < .01). The pelvic kinematic method underestimated jump height versus the impulse method, however, the difference was small (CV = 4.34%). This investigation demonstrates concurrent validity for the pelvic kinematic method to determine vertical jump height.
NASA Technical Reports Server (NTRS)
Moses, Robert W.
1997-01-01
Buffet is an aeroelastic phenomenon associated with high performance aircraft especially those with twin vertical tails. In particular, for the F/A-18 aircraft at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their wake. The resulting buffet loads on the vertical tails are a concern from fatigue and inspection points of view. Recently, a 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) Program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at Mach 0.10. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. The results herein illustrate that buffet alleviation of vertical tails can be accomplished using simple active control of the rudder or piezoelectric actuators. In fact, as demonstrated herein, a fixed gain single input single output control law that commands piezoelectric actuators may be active throughout the high angle-of-attack maneuver without requiring any changes during the maneuver. Future tests are mentioned for accentuating the international interest in this area of research.
Combined Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow
NASA Astrophysics Data System (ADS)
Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg
2017-11-01
We report experimental studies on turbulent vertical convection flow in the liquid metal alloy gallium-indium-tin. Flow measurements were conducted by a combined use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry (UDV). It is known that the forced convection flow in a duct generates a force on the LLFV magnet system, that grows proportional to the flow velocity. We show that for the slower flow of natural convection LLFV retains this linear dependence in the range of micronewtons. Furthermore experimental results on the scaling of heat and momentum transport with the thermal driving are presented. The results cover a range of Rayleigh numbers 3 ×105 < Ra < 3 ×107 at a Prandtl number Pr 0.032 . The Nusselt number Nu is found to scale as Nu Ra0.31 . A Reynolds number Rez based on the vertical velocities close the heated and cooled side walls scales with Rez Ra0.45 . Additionally a Reynolds number based on the horizontal flow component is scaling as Rex Ra0.67 . These results agree well with numerical simulations and theoretical predictions. This work is funded by the Deutsche Forschungsgemeinschaft under Grant No. GRK 1567.
Cultural Values in Intergroup and Single-Group Social Dilemmas.
Probst; Carnevale; Triandis
1999-03-01
Do cultural values influence the manner in which people cooperate with one another? This study assessed cultural characteristics of individuals and then related these characteristics to cooperative behavior in social dilemmas. Participants were assessed for their degree of vertical and horizontal individualism and collectivism, cultural values identified by Triandis (1995). They made choices in either a single-group or an intergroup social dilemma. The single-group dilemma entailed a three-person dilemma; the intergroup dilemma was identical but added subgroup competition, i.e., an opposing three-person group. The results indicated an interaction between cultural characteristics and type of dilemma for cooperation. The single-group versus intergroup effect reported by Bornstein and Ben-Yossef (1994) was replicated, but only for vertical individualists. The vertical individualists were least cooperative in the single-group dilemma but were more cooperative in the intergroup dilemma-where cooperation with the group maximized personal outcomes. The vertical collectivists were most cooperative in the single-group dilemma but were less cooperative in the intergroup dilemma- where group defection resulted in maximum group outcomes. The horizontal individualists and collectivists exhibited an intermediate level of cooperation, with no differences in cooperation between the single-group and intergroup dilemmas. Taken together, the results suggest that the relationship between cultural values and cooperation, in particular with reference to vertical and horizontal components of individualism and collectivism, is more complex than has been suggested in past research. Copyright 1999 Academic Press.
A virtual model of the bench press exercise.
Rahmani, Abderrahmane; Rambaud, Olivier; Bourdin, Muriel; Mariot, Jean-Pierre
2009-08-07
The objective of this study was to design and validate a three degrees of freedom model in the sagittal plane for the bench press exercise. The mechanical model was based on rigid segments connected by revolute and prismatic pairs, which enabled a kinematic approach and global force estimation. The method requires only three simple measurements: (i) horizontal position of the hand (x(0)); (ii) vertical displacement of the barbell (Z) and (iii) elbow angle (theta). Eight adult male throwers performed maximal concentric bench press exercises against different masses. The kinematic results showed that the vertical displacement of each segment and the global centre of mass followed the vertical displacement of the lifted mass. Consequently, the vertical velocity and acceleration of the combined centre of mass and the lifted mass were identical. Finally, for each lifted mass, there were no practical differences between forces calculated from the bench press model and those simultaneously measured with a force platform. The error was lower than 2.5%. The validity of the mechanical method was also highlighted by a standard error of the estimate (SEE) ranging from 2.0 to 6.6N in absolute terms, a coefficient of variation (CV) < or =0.8%, and a correlation between the two scores > or =0.99 for all the lifts (p<0.001). The method described here, which is based on three simple parameters, allows accurate evaluation of the force developed by the upper limb muscles during bench press exercises in both field and laboratory conditions.
How Tidal Forces Cause Ocean Tides in the Equilibrium Theory
ERIC Educational Resources Information Center
Ng, Chiu-king
2015-01-01
We analyse why it is erroneous to think that a tidal bulge is formed by pulling the water surface directly up by a local vertical tidal force. In fact, ocean tides are caused by the global effect of the horizontal components of the tidal forces.
Dynamic performance of a suspended reinforced concrete footbridge under pedestrian movements
NASA Astrophysics Data System (ADS)
Drygala, I.; Dulinska, J.; Kondrat, K.
2018-02-01
In the paper the dynamic analysis of a suspended reinforced concrete footbridge over a national road located in South Poland was carried out. Firstly, modes and values of natural frequencies of vibration of the structure were calculated. The results of the numerical modal investigation shown that the natural frequencies of the structure coincided with the frequency of human beings during motion steps (walking fast or running). Hence, to consider the comfort standards, the dynamic response of the footbridge to a runner dynamic motion should be calculated. Secondly, the dynamic response of the footbridge was calculated taking into consideration two models of dynamic forces produced by a single running pedestrian: a ‘sine’ and ‘half-sine’ model. It occurred that the values of accelerations and displacements obtained for the ‘half-sine’ model of dynamic forces were greater than those obtained for the ‘sine’ model up 20%. The ‘sine’ model is appropriate only for walking users of the walkways, because the nature of their motion has continues characteristic. In the case of running users of walkways this theory is unfitting, since the forces produced by a running pedestrian has a discontinuous nature. In this scenario of calculations, a ‘half-sine’ model seemed to be more effective. Finally, the comfort conditions for the footbridge were evaluated. The analysis proved that the vertical comfort criteria were not exceeded for a single user of footbridge running or walking fast.
The reliability and validity of the Saliba Postural Classification System
Collins, Cristiana Kahl; Johnson, Vicky Saliba; Godwin, Ellen M.; Pappas, Evangelos
2016-01-01
Objectives To determine the reliability and validity of the Saliba Postural Classification System (SPCS). Methods Two physical therapists classified pictures of 100 volunteer participants standing in their habitual posture for inter and intra-tester reliability. For validity, 54 participants stood on a force plate in a habitual and a corrected posture, while a vertical force was applied through the shoulders until the clinician felt a postural give. Data were extracted at the time the give was felt and at a time in the corrected posture that matched the peak vertical ground reaction force (VGRF) in the habitual posture. Results Inter-tester reliability demonstrated 75% agreement with a Kappa = 0.64 (95% CI = 0.524–0.756, SE = 0.059). Intra-tester reliability demonstrated 87% agreement with a Kappa = 0.8, (95% CI = 0.702–0.898, SE = 0.05) and 80% agreement with a Kappa = 0.706, (95% CI = 0.594–0818, SE = 0.057). The examiner applied a significantly higher (p < 0.001) peak vertical force in the corrected posture prior to a postural give when compared to the habitual posture. Within the corrected posture, the %VGRF was higher when the test was ongoing vs. when a postural give was felt (p < 0.001). The %VGRF was not different between the two postures when comparing the peaks (p = 0.214). Discussion The SPCS has substantial agreement for inter- and intra-tester reliability and is largely a valid postural classification system as determined by the larger vertical forces in the corrected postures. Further studies on the correlation between the SPCS and diagnostic classifications are indicated. PMID:27559288
The reliability and validity of the Saliba Postural Classification System.
Collins, Cristiana Kahl; Johnson, Vicky Saliba; Godwin, Ellen M; Pappas, Evangelos
2016-07-01
To determine the reliability and validity of the Saliba Postural Classification System (SPCS). Two physical therapists classified pictures of 100 volunteer participants standing in their habitual posture for inter and intra-tester reliability. For validity, 54 participants stood on a force plate in a habitual and a corrected posture, while a vertical force was applied through the shoulders until the clinician felt a postural give. Data were extracted at the time the give was felt and at a time in the corrected posture that matched the peak vertical ground reaction force (VGRF) in the habitual posture. Inter-tester reliability demonstrated 75% agreement with a Kappa = 0.64 (95% CI = 0.524-0.756, SE = 0.059). Intra-tester reliability demonstrated 87% agreement with a Kappa = 0.8, (95% CI = 0.702-0.898, SE = 0.05) and 80% agreement with a Kappa = 0.706, (95% CI = 0.594-0818, SE = 0.057). The examiner applied a significantly higher (p < 0.001) peak vertical force in the corrected posture prior to a postural give when compared to the habitual posture. Within the corrected posture, the %VGRF was higher when the test was ongoing vs. when a postural give was felt (p < 0.001). The %VGRF was not different between the two postures when comparing the peaks (p = 0.214). The SPCS has substantial agreement for inter- and intra-tester reliability and is largely a valid postural classification system as determined by the larger vertical forces in the corrected postures. Further studies on the correlation between the SPCS and diagnostic classifications are indicated.
Forced Gravity Waves and the Tropospheric Response to Convection
NASA Astrophysics Data System (ADS)
Halliday, O. J.; Griffiths, S. D.; Parker, D. J.; Stirling, A.
2017-12-01
It has been known for some time that gravity waves facilitate atmospheric adjustment to convective heating. Further, convectively forced gravity waves condition the neighboring atmosphere for the initiation and / or suppression of convection. Despite this, the radiation of gravity waves in macro-scale models (which are typically forced at the grid-scale, by existing parameterization schemes) is not well understood. We present here theoretical and numerical work directed toward improving our understanding of convectively forced gravity wave effects at the mesoscale. Using the linear hydrostatic equations of motion for an incompressible (but non-Boussinesq) fluid with vertically varying buoyancy frequency, we find a radiating solution to prescribed sensible heating. We then interrogate the spatial and temporal sensitivity of the vertical velocity and potential temperature response to different heating functions, considering the remote and near-field forced response both to steady and pulsed heating. We find that the meso-scale tropospheric response to convection is significantly dependent on the upward radiation characteristics of the gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and stratification of the domain. Moving from a trapped to upwardly-radiating solution there is a 50% reduction in tropospherically averaged vertical velocity, but significant perturbations persist for up to 4 hours in the far-field. We find the tropospheric adjustment to be sensitive to the horizontal length scale which characterizes the heating, observing a 20% reduction in vertical velocity when comparing the response from a 10 km to a 100 km heat source. We assess the implications for parameterization of convection in coarse-grained models in the light of these findings. We show that an idealized `full-physics' nonlinear simulation of deep convection in the UK Met Office Unified Model is qualitatively described by the linear solution: departures are quantified and explored.
Vertical electrostatic force in MEMS cantilever IR sensor
NASA Astrophysics Data System (ADS)
Rezadad, Imen; Boroumand Azad, Javaneh; Smith, Evan M.; Alhasan, Ammar; Peale, Robert E.
2014-06-01
A MEMS cantilever IR detector that repetitively lifts from the surface under the influence of a saw-tooth electrostatic force, where the contact duty cycle is a measure of the absorbed IR radiation, is analyzed. The design is comprised of three parallel conducting plates. Fixed buried and surface plates are held at opposite potential. A moveable cantilever is biased the same as the surface plate. Calculations based on energy methods with position-dependent capacity and electrostatic induction coefficients demonstrate the upward sign of the force on the cantilever and determine the force magnitude. 2D finite element method calculations of the local fields confirm the sign of the force and determine its distribution across the cantilever. The upward force is maximized when the surface plate is slightly larger than the other two. The electrostatic repulsion is compared with Casimir sticking force to determine the maximum useful contact area. MEMS devices were fabricated and the vertical displacement of the cantilever was observed in a number of experiments. The approach may be applied also to MEMS actuators and micromirrors.
Pilot dynamics for instrument approach tasks: Full panel multiloop and flight director operations
NASA Technical Reports Server (NTRS)
Weir, D. H.; Mcruer, D. T.
1972-01-01
Measurements and interpretations of single and mutiloop pilot response properties during simulated instrument approach are presented. Pilot subjects flew Category 2-like ILS approaches in a fixed base DC-8 simulaton. A conventional instrument panel and controls were used, with simulated vertical gust and glide slope beam bend forcing functions. Reduced and interpreted pilot describing functions and remmant are given for pitch attitude, flight director, and multiloop (longitudinal) control tasks. The response data are correlated with simultaneously recorded eye scanning statistics, previously reported in NASA CR-1535. The resulting combined response and scanning data and their interpretations provide a basis for validating and extending the theory of manual control displays.
Flow reversal and thermal limit in a heated rectangular channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L.Y.; Tichler, P.R.; Yang, B.W.
The thermal limit in a vertical rectangular channel was determined in a series of experiments whereby the internal coolant underwent a change in flow direction from forced downflow to upward natural circulation. The tests were designed to simulate the flow reversal transient in the High Flux Beam Reactor. A number of parameters were varied in the flow reversal experiments to examine their effects on the thermal limit. Among the parameters varied were the rate of flow coastdown, inlet subcooling, water level in the upper plenum, bypass ratio (ratio of initial flow through the heated section to initial flow through themore » bypass orifice), and single- verses double-sided heating.« less
NASA Technical Reports Server (NTRS)
Brickey, J.; Brice, T.; Marks, K. E.
1971-01-01
Force tests on a 0.0035-scale model of the General Dynamics/Convair aerospace space shuttle B-15B-1 booster were conducted in the MSFC trisonic wind tunnel. The configuration has a low delta wing, all-movable delta-planform canard controls, and a single vertical tail. The test was devoted to investigating the effects of various configuration variables upon lateral-directional characteristics. These variables included wing dihedral, rudder flare, and body flap deflection. Yaw runs were made at angles of attack of 6, 10, 15, 25, 30, and 35 degrees. The Mach number range for this test was 1.20 to 4.96.
Standing, Regan J; Maulder, Peter S
2015-12-01
Parkour is an activity that encompasses methods of jumping, climbing and vaulting. With landing being a pertinent part of this practise, Parkour participants (traceurs) have devised their own habitual landing strategies, which are suggested to be a safer and more effective style of landing. The purpose of this study was to compare the habitual landing strategies of traceurs and recreationally trained individuals from differing drop heights. Comparisons between landing sound and mechanical parameters were also assessed to gauge the level of landing safety. Ten recreationally trained participants and ten traceurs performed three landings from 25% and 50% body height using their own habitual landing strategies. Results at 25% showed significantly lower maximal vertical force (39.9%, p < 0.0013, ES = -1.88), longer times to maximal vertical force (68.6%, p < 0.0015, ES = 1.72) and lower loading rates (65.1%, p < 0.0002, ES = -2.22) in the traceur group. Maximal sound was also shown to be lower (3.6%), with an effect size of -0.63, however this was not statistically significant (p < 0.1612). At 50%, traceurs exhibited significantly different values within all variables including maximal sound (8.6%, p < 0.03, ES = -1.04), maximal vertical force (49.0%, p < 0.0002, ES = -2.38), time to maximal vertical force (65.9%, p < 0.0067, ES = 1.32) and loading rates (66.3%, p < 0.0002, ES = -2.00). Foot strike analysis revealed traceurs landed using forefoot or forefoot-midfoot strategies in 93.2% of trials; whereas recreationally trained participants used these styles in only 8.3% of these landings. To conclude, the habitual landings of traceurs are more effective at lowering the kinetic landing variables associated with a higher injury risk in comparison to recreationally trained individuals. Sound as a measure of landing effectiveness and safety holds potential significance; however requires further research to confirm. Key pointsHabitual traceur landings were observed to be safer landing techniques in comparison to those utilised by recreationally trained individuals, due to the lower maximal vertical forces, slower times to maximal vertical force, lesser loading rates and lower maximal sound.Traceurs predominantly landed with the forefoot only, whereas recreationally trained individuals habitually utilised a forefoot to heel landing strategy.The habitual landing techniques performed by traceurs may be beneficial for other landing sports to incorporate into training to reduce injury.
NASA Technical Reports Server (NTRS)
Stjern, Camilla Weum; Samset, Bjorn Hallvard; Myhre, Gunnar; Bian, Huisheng; Chin, Mian; Davila, Yanko; Dentener, Frank; Emmons, Louisa; Flemming, Johannes; Haslerud, Amund Sovde;
2016-01-01
In the Hemispheric Transport of Air Pollution Phase 2 (HTAP2) exercise, a range of global atmospheric general circulation and chemical transport models performed coordinated perturbation experiments with 20% reductions in emissions of anthropogenic aerosols, or aerosol precursors, in a number of source regions. Here, we compare the resulting changes in the atmospheric load and vertically resolved profiles of black carbon (BC), organic aerosols (OA) and sulfate (SO4/ from 10 models that include treatment of aerosols. We use a set of temporally, horizontally and vertically resolved profiles of aerosol forcing efficiency (AFE) to estimate the impact of emission changes in six major source regions on global radiative forcing (RF) pertaining to the direct aerosol effect, finding values between. 51.9 and 210.8mW/sq m/Tg for BC, between -2.4 and -17.9mW/sq m/Tg for OA and between -3.6 and -10.3W/sq m/Tg for SO4. In most cases, the local influence dominates, but results show that mitigations in south and east Asia have substantial impacts on the radiative budget in all investigated receptor regions, especially for BC. In Russia and the Middle East, more than 80 % of the forcing for BC and OA is due to extra-regional emission reductions. Similarly, for North America, BC emissions control in east Asia is found to be more important than domestic mitigations, which is consistent with previous findings. Comparing fully resolved RF calculations to RF estimates based on vertically averaged AFE profiles allows us to quantify the importance of vertical resolution to RF estimates. We find that locally in the source regions, a 20% emission reduction strengthens the radiative forcing associated with SO4 by 25% when including the vertical dimension, as the AFE for SO4 is strongest near the surface. Conversely, the local RF from BC weakens by 37% since BC AFE is low close to the ground. The fraction of BC direct effect forcing attributable to intercontinental transport, on the other hand, is enhanced by one-third when accounting for the vertical aspect, because long-range transport primarily leads to aerosol changes at high altitudes, where the BC AFE is strong. While the surface temperature response may vary with the altitude of aerosol change, the analysis in the present study is not extended to estimates of temperature or precipitation changes.
Modelling, simulation and applications of longitudinal train dynamics
NASA Astrophysics Data System (ADS)
Cole, Colin; Spiryagin, Maksym; Wu, Qing; Sun, Yan Quan
2017-10-01
Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces - the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.
Rath, Meghan E; Stearne, David J; Walker, Cameron R; Cox, Jaime C
2016-05-01
The purpose of this study was to determine the degree to which subtalar joint pronation resulting from a supple planus foot affects knee alignment, hip muscle activation and ground reaction force attenuation in female athletes during a broad jump-to-cut maneuver. Twelve National Collegiate Athletic Association (NCAA) Division II female soccer players (age=19.4±1.4 years, height=1.64±0.05 m, mass=64.10±4.8 kg) were identified as having either supple planus (SP) or rigid feet (RF). Participants completed three broad jump-to-cut trials onto a force plate while EMG and motion data were collected. Muscle activation levels (percentage of maximal voluntary contraction [%MVC]) in the gluteus maximus, gluteus medius, biceps femoris, and rectus femoris were calculated, and peak vertical and medial shear force, rate of loading, and valgus angle were collected for each trial. Mann-Whitney U tests revealed no statistical significance between foot-type groups, however, effect size statistics revealed practical significance for between-group %MVC biceps femoris (d=1.107), %MVC gluteus maximus (d=1.069), and vertical ground reaction force (d=1.061). Athletes with a SP foot type may experience decreased hip muscle activation associated with increased vertical ground reaction force during a broad jump-to-cut maneuver. This might result in reduced dynamic stability and neuromuscular control during deceleration, potentially increasing the risk of non-contact ACL injury in female soccer players.
The hindlimb in walking horses: 1. Kinematics and ground reaction forces.
Hodson, E; Clayton, H M; Lanovaz, J L
2001-01-01
The objective was to study associations between kinematics and ground reaction forces in the hindlimb of walking horses. Video (60 Hz) and force (2000 Hz) data were gathered for 8 strides from each of 5 sound horses during the walk. Sagittal plane kinematics were measured concurrently with the vertical and longitudinal ground reaction forces. The hindlimb showed rapid loading and braking in the initial 10% stride. The stifle, tarsal and coffin joints flexed and the fetlock joint extended during this period of rapid loading. The vertical ground reaction force showed 2 peaks separated by a dip; this pattern was similar to the fetlock joint angle-time graph. Peaks in the longitudinal ground reaction force did not appear to correspond with kinematic events. Total braking impulse was equal to total propulsive impulse over the entire stride. Flexion and extension of the hip were responsible for protraction and retraction of the entire limb. Maximal protraction occurred shortly before the end of swing and maximal retraction occurred during breakover. During the middle part of stance the tarsal joint extended slowly, while the stifle began to flex when the limb was retracted beyond the midstance position at 28% stride. Flexion cycles of the stifle and tarsal joints were well coordinated during the swing phase to raise the distal limb as it was protracted. The results demonstrate a relationship between limb kinematics and vertical limb loading in the hindlimbs of sound horses. Future studies will elucidate the alterations in response to lameness.
NASA Astrophysics Data System (ADS)
Pan, Ying
This work combines numerical, experimental, and theoretical methods to investigate the dispersion of particles inside and above plant canopies. The large-eddy simulation (LES) approach is used to reproduce turbulence statistics and three-dimensional particle dispersion within the canopy roughness sublayer. The Eulerian description of conservation laws of fluid momentum and particle concentration implies that the continuous concentration field is advected by the continuous flow field. Within the canopy, modifications are required for the filtered momentum and concentration equations, because spatial filtering of flow variables and concentration field is inapplicable to a control volume consisting of both fluid and solid elements. In this work, the canopy region is viewed as a space occupied by air only. The sink of airflow momentum induced by forces acting on the surfaces of canopy elements is parameterized as a non-conservative virtual body force that dissipates the kinetic energy of the air. This virtual body force must reflect the characteristic of the surface forces exerted by canopy elements within the control volume, and is parameterized as a "drag force" following standard practice in LES studies. Specifically, the "drag force" is calculated as a product of a drag coefficient, the projected leaf area density, and the square of velocity. Using a constant drag coefficient, this model allows first-order accuracy in reproducing the vertically integrated sink of momentum within the canopy layer for airflows of high Reynolds number. The corresponding LES results of first- and second-order turbulence statistics are in good agreement with experimental data obtained in the field interior, within and just above mature maize canopies. However, the distribution of momentum sink among weak and strong events has not been well reproduced, inferred from the significant underestition of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events. Using a velocity-dependent drag coefficient that accounts for the effect of plant reconfiguration, the "drag force" model leads to LES results of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events in better agreement with field experimental data. The link between plant reconfiguration and turbulence dynamics within the canopy roughness sublayer is further investigated. The "reconfiguration drag model" using velocity-dependent drag coefficient is revised to incorporate a theoretical model of the force balance on individual crosswind blades. In the LES, the dimension and degree of the reconfiguration of canopy elements affect the magnitude and position of peak streamwise velocity skewness within the canopy as well as the fractions of vertical momentum flux transported by strong events. The streamwise velocity skewness is shown to be related to the penetration of strong events into the canopy, which is associated with the passage of canopy-scale coherent eddies. With the profile of mean vertical momentum flux constrained by field experimental data, changing the model of drag coefficient induces negligible changes in the vertically integrated "drag force" within the canopy layer. Consequently, first- and second-order turbulence statistics remain approximately the same. However, enhancing the rate of decrease of drag coefficient with increasing velocity increases the streamwise and vertical velocity skewness, the fractions of vertical momentum flux transported by strong events, as well as the ratio between vertical momentum flux transported by relatively strong head-down "sweeps" and relatively weak head-up "ejections." These results confirmed the inadequacy of describing the effects of canopy-scale coherent structures using just first- and second-order turbulence statistics. The filtered concentration equation is applied to the dispersion of particles within the canopy roughness sublayer, assuming that a virtual continuous concentration field is advected by a virtual continuous velocity field. A canopy deposition model is used to model the sink of particle concentration associated with the impaction, sedimentation, retention, and re-entrainment of particles on the surfaces of canopy elements. LES results of mean particle concentration field and mean ground deposition rate were evaluated against data obtained during an artificial continuous point-source release experiment. Accounting for the effect of reconfiguration by using a velocity dependent drag coefficient leads to better agreement between LES results and field experimental data of the mean particle concentration field, suggesting the importance of reproducing the distribution of momentum sink among weak and strong events for reproducing the dispersion of particles. LES results obtained using a velocity-dependent drag coefficient are analyzed to estimate essential properties for the occurrence of plant disease epidemics. The most interesting finding is that an existing analytical function can be used to model the crosswind-integrated mean concentration field above the canopy normalized by the escape fraction for particles released from the field interior. (Abstract shortened by ProQuest.).
Mills, Chris; Yeadon, Maurice R; Pain, Matthew T G
2010-09-01
This study investigated how changes in the material properties of a landing mat could minimise ground reaction forces (GRF) and internal loading on a gymnast during landing. A multi-layer model of a gymnastics competition landing mat and a subject-specific seven-link wobbling mass model of a gymnast were developed to address this aim. Landing mat properties (stiffness and damping) were optimised using a Simplex algorithm to minimise GRF and internal loading. The optimisation of the landing mat parameters was characterised by minimal changes to the mat's stiffness (<0.5%) but increased damping (272%) compared to the competition landing mat. Changes to the landing mat resulted in reduced peak vertical and horizontal GRF and reduced bone bending moments in the shank and thigh compared to a matching simulation. Peak bone bending moments within the thigh and shank were reduced by 6% from 321.5 Nm to 302.5Nm and GRF by 12% from 8626 N to 7552 N when compared to a matching simulation. The reduction in these forces may help to reduce the risk of bone fracture injury associated with a single landing and reduce the risk of a chronic injury such as a stress fracture.
Aoun, Laurène; Weiss, Pierre; Laborde, Adrian; Ducommun, Bernard; Lobjois, Valérie; Vieu, Christophe
2014-07-07
We report the design, fabrication and evaluation of an array of microdevices composed of high aspect ratio PDMS pillars, dedicated to the study of tumour spheroid mechanical properties. The principle of the microdevice is to confine a spheroid within a circle of micropillars acting as peripheral flexible force sensors. We present a technological process for fabricating high aspect ratio micropillars (300 μm high) with tunable feature dimensions (diameter and spacing) enabling production of flexible PDMS pillars with a height comparable to spheroid sizes. This represents an upscale of 10 along the vertical direction in comparison to more conventional PDMS pillar force sensors devoted to single cell studies, while maintaining their force sensitivity in the same order of magnitude. We present a method for keeping these very high aspect ratio PDMS pillars stable and straight in liquid solution. We demonstrate that microfabricated devices are biocompatible and adapted to long-term spheroid growth. Finally, we show that the spheroid interaction with the micropillars' surface is dependent on PDMS cellular adhesiveness. Time-lapse recordings of growth-induced micropillars' bending coupled with a software program to automatically detect and analyse micropillar displacements are presented. The use of these microdevices as force microsensors opens new prospects in the fields of tissue mechanics and pharmacological drug screening.
NASA Astrophysics Data System (ADS)
Paulsen, G. E.; Nielsen, S. B.; Hansen, D. L.
The vertical movements during a regional stress reversal in a rifted basin or on a passive continental margin are examined using a numerical 2D thermo-mechanical finite element model with a visco-elastic-plastic rheology. Three different physical mechanisms are recognized in small-scale vertical movements at small inplane force variations: elastic dilatation, elastic flexure, and permanent deformation. Their rela- tive importance depend on the applied force, the duration of the force, and the thermal structure of the lithosphere. Elastic material dilatation occurs whenever the stress state changes. A reversal from extension to compression therefore immediately leads to elastic dilatation, and re- sults in an overall subsidence of the entire profile. Simultaneously with dilatation the lithosphere reacts with flexure. The significance of the flexural component strongly depends on the thermal structure of the lithosphere. The polarity and amplitude of the flexure depends on the initial (before compression) loading of the lithosphere. Gener- ally, the flexural effects lead to subsidence of the overdeep in the landward part of the basin and a small amount of uplift at the basin flanks. The amplitudes of the flexural response are small and comparable with the amplitudes of the elastic dilatation. With continuing compression permanent deformation and lithospheric thickening becomes increasingly important. Ultimately, the thickened part of the lithosphere stands out as an inverted zone. The amount of permanent deformation is directly connected with the size and duration of the applied force, but even a relatively small force leads to inversion tectonics in the landward part of the basin. The conclusions are: 1) small stress induced vertical movements in rift basins and at passive continental margins are the result of a complex interaction of at least three different processes, 2) the total sediment loaded amplitudes resulting from these pro- cesses are small (2-300 m) for inplane forces up to 1.5·1012 N/m.
Oñate, James A; Guskiewicz, Kevin M; Marshall, Stephen W; Giuliani, Carol; Yu, Bing; Garrett, William E
2005-06-01
Anterior cruciate ligament injury prevention programs have used videotapes of jump-landing technique as a key instructional component to improve landing performance. All videotape feedback model groups will increase knee flexion angles at initial contact and overall knee flexion motion and decrease peak vertical ground reaction forces and peak proximal anterior tibial shear forces to a greater extent than will a nonfeedback group. The secondary hypothesis is that the videotape feedback using the combination of the expert and self models will create the greatest change in each variable. Controlled laboratory study. Knee kinematics and kinetics of college-aged recreational athletes randomly placed in 3 different videotape feedback model groups (expert only, self only, combination of expert and self) and a nonfeedback group were collected while participants performed a basketball jump-landing task on 3 testing occasions. All feedback groups significantly increased knee angular displacement flexion angles [F(6,70) = 8.03, P = .001] and decreased peak vertical ground reaction forces [F(6,78) = 2.68, P = .021] during performance and retention tests. The self and combination groups significantly increased knee angular displacement flexion angles more than the control group did; the expert model group did not change significantly more than the control group did. All feedback groups and the nonfeedback group significantly reduced peak vertical forces across performance and retention tests. There were no statistically significant changes in knee flexion angle at initial ground contact (P = .111) and peak proximal anterior tibial shear forces (P = .509) for both testing sessions for each group. The use of self or combination videotape feedback is most useful for increasing knee angular displacement flexion angles and reducing peak vertical forces during landing. The use of self or combination modeling is more effective than is expert-only modeling for the implementation of instructional programs aimed at reducing the risk of jump-landing anterior cruciate ligament injuries.
NASA Astrophysics Data System (ADS)
Chen, P.-C.; Lin, P.-T.; Mikolas, D. G.; Tsai, Y.-W.; Wang, Y.-L.; Fu, C.-C.; Chang, S.-L.
2015-01-01
To provide coherent x-ray sources for probing the dynamic structures of solid or liquid biological substances on the picosecond timescale, a high-aspect-ratio x-ray resonator cavity etched from a single crystal substrate with a nearly vertical sidewall structure is required. Although high-aspect-ratio resonator cavities have been produced in silicon, they suffer from unwanted multiple beam effects. However, this problem can be avoided by using the reduced symmetry of single-crystal sapphire in which x-ray cavities may produce a highly monochromatic transmitted x-ray beam. In this study, we performed nominal 100 µm deep etching and vertical sidewall profiles in single crystal sapphire using inductively coupled plasma (ICP) etching. The large depth is required to intercept a useful fraction of a stopped-down x-ray beam, as well as for beam clearance. An electroplated Ni hard mask was patterned using KMPR 1050 photoresist and contact lithography. The quality and performance of the x-ray cavity depended upon the uniformity of the cavity gap and therefore verticality of the fabricated vertical sidewall. To our knowledge, this is the first report of such deep, vertical etching of single-crystal sapphire. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. By etching for 540 min under optimal conditions, we obtained an x-ray resonant cavity with a depth of 95 µm, width of ~30 µm, gap of ~115 µm and sidewall profile internal angle of 89.5°. The results show that the etching parameters affected the quality of the vertical sidewall, which is essential for good x-ray resonant cavities.
Askerbeyli Örs, S; Serper, A
2018-05-01
To evaluate the effect of three nickel-titanium (Ni-Ti) rotary systems with varying tapers on stress distribution and to analyse potential fracture patterns as well as the volume of fracture-susceptible regions in two-rooted maxillary premolars. The root canals of three single-rooted premolars were prepared with either HeroShaper (Micro-Mega, Besançon, France) to (size 30, .04 taper), Revo-S (Micro-Mega) to AS30 (size 30, .06 taper) or ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) to F3 (size 30, .09 taper) Ni-Ti files. The three root canals were scanned using micro-computed tomography (μCT) (Skyscan 1174, Skyscan, Kontich, Belgium) and modelled according to the μCT data. An intact tooth model with a root length of 16 mm was also constructed based on μCT images of an extracted maxillary premolar with two roots. New models were constructed by replacing both of the original canals of the intact two-rooted premolar model with the modelled canals prepared with the HeroShaper, Revo-S or ProTaper Universal system. Occlusal forces of 200 N were applied in oblique and vertical directions. Finite element analysis was performed using Abaqus FEA software (Abaqus 6.14, ABAQUS Inc., Providence, RI, USA). Upon the application of oblique occlusal forces, the palatal external cervical root surface and the bifurcation (palatal side of the buccal root) in tooth models experienced the highest maximum principal (Pmax) stresses. The application of vertical forces resulted in minor Pmax stress values. Models prepared using the ProTaper system exhibited the highest Pmax stress values. The intact models exhibited the lowest Pmax stress values followed by the models prepared with the HeroShaper system. The differences in Pmax stress values amongst the different groups of models were mathematically minimal under normal occlusal forces. Rotary systems with varying tapers might predispose the root fracture on the palatal side of the buccal root and cervical palatal root surface in two-rooted premolars. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Huang, Ya; Ferguson, Neil S.
2018-04-01
The study implements a classic signal analysis technique, typically applied to structural dynamics, to examine the nonlinear characteristics seen in the apparent mass of a recumbent person during whole-body horizontal random vibration. The nonlinearity in the present context refers to the amount of 'output' that is not correlated or coherent to the 'input', usually indicated by values of the coherence function that are less than unity. The analysis is based on the longitudinal horizontal inline and vertical cross-axis apparent mass of twelve human subjects exposed to 0.25-20 Hz random acceleration vibration at 0.125 and 1.0 ms-2 r.m.s. The conditioned reverse path frequency response functions (FRF) reveal that the uncorrelated 'linear' relationship between physical input (acceleration) and outputs (inline and cross-axis forces) has much greater variation around the primary resonance frequency between 0.5 and 5 Hz. By reversing the input and outputs of the physical system, it is possible to assemble additional mathematical inputs from the physical output forces and mathematical constructs (e.g. square root of inline force). Depending on the specific construct, this can improve the summed multiple coherence at frequencies where the response magnitude is low. In the present case this is between 6 and 20 Hz. The statistical measures of the response force time histories of each of the twelve subjects indicate that there are potential anatomical 'end-stops' for the sprung mass in the inline axis. No previous study has applied this reverse path multi-input-single-output approach to human vibration kinematic and kinetic data before. The implementation demonstrated in the present study will allow new and existing data to be examined using this different analytical tool.
Brughelli, Matt; Cronin, John
2008-01-01
Human running can be modelled as either a spring-mass model or multiple springs in series. A force is required to stretch or compress the spring, and thus stiffness, the variable of interest in this paper, can be calculated from the ratio of this force to the change in spring length. Given the link between force and length change, muscle stiffness and mechanical stiffness have been areas of interest to researchers, clinicians, and strength and conditioning practitioners for many years. This review focuses on mechanical stiffness, and in particular, vertical, leg and joint stiffness, since these are the only stiffness types that have been directly calculated during human running. It has been established that as running velocity increases from slow-to-moderate values, leg stiffness remains constant while both vertical stiffness and joint stiffness increase. However, no studies have calculated vertical, leg or joint stiffness over a range of slow-to-moderate values to maximum values in an athletic population. Therefore, the effects of faster running velocities on stiffness are relatively unexplored. Furthermore, no experimental research has examined the effects of training on vertical, leg or joint stiffness and the subsequent effects on running performance. Various methods of training (Olympic style weightlifting, heavy resistance training, plyometrics, eccentric strength training) have shown to be effective at improving running performance. However, the effects of these training methods on vertical, leg and joint stiffness are unknown. As a result, the true importance of stiffness to running performance remains unexplored, and the best practice for changing stiffness to optimize running performance is speculative at best. It is our hope that a better understanding of stiffness, and the influence of running speed on stiffness, will lead to greater interest and an increase in experimental research in this area.
Harris, Jeff R.; Lance, Blake W.; Smith, Barton L.
2015-08-10
We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Re x < 300,000, 357 < Re δ2 < 813, and 0.02 < Gr/Re 2 < 0.232.
Vertical Impact of a Sphere Falling into Water
ERIC Educational Resources Information Center
Cross, Rod
2016-01-01
The nature of the drag force on an object moving through a fluid is well documented and many experiments have been described to allow students to measure the force. For low speed flows the drag force is proportional to the velocity of the object, while at high flow speeds the drag force is proportional to the velocity squared. The basic physics…
Sabatini, Angelo Maria; Genovese, Vincenzo
2014-07-24
A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04-0.24 m/s; height RMSE was in the range 5-68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions.
Loading forces in shallow water running in two levels of immersion.
Haupenthal, Alessandro; Ruschel, Caroline; Hubert, Marcel; de Brito Fontana, Heiliane; Roesler, Helio
2010-07-01
To analyse the vertical and anteroposterior components of the ground reaction force during shallow water running at 2 levels of immersion. Twenty-two healthy adults with no gait disorders, who were familiar with aquatic exercises. Subjects performed 6 trials of water running at a self-selected speed in chest and hip immersion. Force data were collected through an underwater force plate and running speed was measured with a photocell timing light system. Analysis of covariance was used for data analysis. Vertical forces corresponded to 0.80 and 0.98 times the subject's body weight at the chest and hip level, respectively. Anteroposterior forces corresponded to 0.26 and 0.31 times the subject's body weight at the chest and hip level, respectively. As the water level decreased the subjects ran faster. No significant differences were found for the force values between the immersions, probably due to variability in speed, which was self-selected. When thinking about load values in water running professionals should consider not only the immersion level, but also the speed, as it can affect the force components, mainly the anteroposterior one. Quantitative data on this subject could help professionals to conduct safer aqua-tic rehabilitation and physical conditioning protocols.
The kinetics of rugby union scrummaging.
Milburn, P D
1990-01-01
Two rugby union forward packs of differing ability levels were examined during scrummaging against an instrumented scrum machine. By systematically moving the front-row of the scrum along the scrum machine, kinetic data on each front-row forward could be obtained under all test conditions. Each forward pack was tested under the following scrummaging combinations: front-row only; front-row plus second-row; full scrum minus side-row, and full scrum. Data obtained from each scrum included the three orthogonal components of force at engagement and the sustained force applied by each front-row player. An estimate of sub-unit contributions was made by subtracting the total forward force on all three front-row players from the total for the complete scrum. Results indicated the primary role of the second-row appeared to be application of forward force. The back-row ('number eight') forward did not substantially contribute any additional forward force, and added only slightly to the lateral and vertical shear force experienced by the front-row. The side-row contributed an additional 20-27% to the forward force, but at the expense of increased vertical forces on all front-row forwards. Results of this investigation are discussed in relation to rule modification, rule interpretation and coaching.
NASA Astrophysics Data System (ADS)
Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai
2017-12-01
The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.
Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol
2013-09-01
The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.
Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios
NASA Astrophysics Data System (ADS)
Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.
2017-12-01
Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.
Atomic force microscope based on vertical silicon probes
NASA Astrophysics Data System (ADS)
Walter, Benjamin; Mairiaux, Estelle; Faucher, Marc
2017-06-01
A family of silicon micro-sensors for Atomic Force Microscope (AFM) is presented that allows to operate with integrated transducers from medium to high frequencies together with moderate stiffness constants. The sensors are based on Micro-Electro-Mechanical-Systems technology. The vertical design specifically enables a long tip to oscillate perpendicularly to the surface to be imaged. The tip is part of a resonator including quasi-flexural composite beams, and symmetrical transducers that can be used as piezoresistive detector and/or electro-thermal actuator. Two vertical probes (Vprobes) were operated up to 4.3 MHz with stiffness constants 150 N/m to 500 N/m and the capability to oscillate from 10 pm to 90 nm. AFM images of several samples both in amplitude modulation (tapping-mode) and in frequency modulation were obtained.
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
Serpell, Benjamin G; Scarvell, Jennie M; Pickering, Mark R; Ball, Nick B; Perriman, Diana; Warmenhoven, John; Smith, Paul N
2016-01-01
Background Novel research surrounding anterior cruciate ligament (ACL) injury is necessary because ACL injury rates have remained unchanged for several decades. An area of ACL risk mitigation which has not been well researched relates to vertical stiffness. The relationship between increased vertical stiffness and increased ground reaction force suggests that vertical stiffness may be related to ACL injury risk. However, given that increased dynamic knee joint stability has been shown to be associated with vertical stiffness, it is possible that modification of vertical stiffness could help to protect against injury. We aimed to determine whether vertical stiffness is related to measures known to load, or which represent loading of, the ACL. Methods This was a cross-sectional observational study of 11 professional Australian rugby players. Knee kinematics and ACL elongation were measured from a 4-dimensional model of a hopping task which simulated the change of direction manoeuvre typically observed when non-contact ACL injury occurs. The model was generated from a CT scan of the participant's knee registered frame by frame to fluoroscopy images of the hopping task. Vertical stiffness was calculated from force plate data. Results There was no association found between vertical stiffness and anterior tibial translation (ATT) or ACL elongation (r=−0.05; p=0.89, and r=−0.07; p=0.83, respectively). ATT was related to ACL elongation (r=0.93; p=0.0001). Conclusions Vertical stiffness was not associated with ACL loading in this cohort of elite rugby players but a novel method for measuring ACL elongation in vivo was found to have good construct validity. PMID:27900192
Almonroeder, Thomas Gus; Kernozek, Thomas; Cobb, Stephen; Slavens, Brooke; Wang, Jinsung; Huddleston, Wendy
2018-05-01
Study Design Cross-sectional study. Background The drop vertical jump task is commonly used to screen for anterior cruciate ligament injury risk; however, its predictive validity is limited. The limited predictive validity of the drop vertical jump task may be due to not imposing the cognitive demands that reflect sports participation. Objectives To investigate the influence of additional cognitive demands on lower extremity mechanics during execution of the drop vertical jump task. Methods Twenty uninjured women (age range, 18-25 years) were required to perform the standard drop vertical jump task, as well as drop vertical jumps that included additional cognitive demands. The additional cognitive demands were related to attending to an overhead goal (ball suspended overhead) and/or temporal constraints on movement selection (decision making). Three-dimensional ground reaction forces and lower extremity mechanics were compared between conditions. Results The inclusion of the overhead goal resulted in higher peak vertical ground reaction forces and lower peak knee flexion angles in comparison to the standard drop vertical jump task. In addition, participants demonstrated greater peak knee abduction angles when trials incorporated temporal constraints on decision making and/or required participants to attend to an overhead goal, in comparison to the standard drop vertical jump task. Conclusion Imposing additional cognitive demands during execution of the drop vertical jump task influenced lower extremity mechanics in a manner that suggested increased loading of the anterior cruciate ligament. Tasks utilized in anterior cruciate ligament injury risk screening may benefit from more closely reflecting the cognitive demands of the sports environment. J Orthop Sports Phys Ther 2018;48(5):381-387. Epub 10 Jan 2018. doi:10.2519/jospt.2018.7739.
Vertical feed stick wood fuel burning furnace system
Hill, Richard C.
1984-01-01
A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.
Model of vertical plasma motion during the current quench
NASA Astrophysics Data System (ADS)
Breizman, Boris; Kiramov, Dmitrii
2017-10-01
Tokamak disruptions impair plasma position control, which allows the plasma column to move and hit the wall. These detrimental events enhance thermal and mechanical loads due to halo currents and runaway electron losses. Their fundamental understanding and prevention is one of the high-priority items for ITER. As commonly observed in experiments, the disruptive plasma tends to move vertically, and the timescale of this motion is rather resistive than Alfvenic. These observations suggest that the plasma column is nearly force-free during its vertical motion. In fact, the force-free constraint is already used in disruption simulators. In this work, we consider a geometrically simple system that mimics the tokamak plasma surrounded by the conducting structures. Using this model, we highlight the underlying mechanism of the vertical displacement events during the current quench phase of plasma disruption. We also address a question of ideal MHD stability of the plasma during its resistive motion. Work supported by the U.S. Department of Energy Contracts DEFG02-04ER54742 and DE-SC0016283.
Aircraft Brake Systems Testing Handbook.
1981-05-01
distribution is unlimited. AIR FORCE FLIGHT TEST CENTER EDWARDS AIR FORCE BASE , CALIFORNIA AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE A This handbook... Base , California 93523. This handbook has been reviewed and cleared for open publication and/or public release by the AFFTC Office of Public Affairs in...Force lbs Ft Engine Thrust lbs F vrt Vertical Force acting on the tire at the qround lbs 9 Acceleration due to gravity 32.17 ft/sec 2 h Distance
Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.
Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan
2017-02-01
The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.
NASA Technical Reports Server (NTRS)
Newsom, William A., Jr.; Tosti, Louis P.
1959-01-01
A wind-tunnel investigation has been made to determine the aerodynamic characteristics of a 1/4-scale model of a tilt-wing vertical-take-off-and-landing aircraft. The model had two 3-blade single-rotation propellers with hinged (flapping) blades mounted on the wing, which could be tilted from an incidence of 4 deg for forward flight to 86 deg for hovering flight. The investigation included measurements of both the longitudinal and lateral stability and control characteristics in both the normal forward flight and the transition ranges. Tests in the forward-flight condition were made for several values of thrust coefficient, and tests in the transition condition were made at several values of wing incidence with the power varied to cover a range of flight conditions from forward-acceleration (or climb) conditions to deceleration (or descent) conditions The control effectiveness of the all-movable horizontal tail, the ailerons and the differential propeller pitch control was also determined. The data are presented without analysis.
Design of Multistable Origami Structures
NASA Astrophysics Data System (ADS)
Gillman, Andrew; Fuchi, Kazuko; Bazzan, Giorgio; Reich, Gregory; Alyanak, Edward; Buskohl, Philip
Origami is being transformed from an art to a mathematically robust method for device design in a variety of scientific applications. These structures often require multiple stable configurations, e.g. efficient well-controlled deployment. However, the discovery of origami structures with mechanical instabilities is challenging given the complex geometric nonlinearities and the large design space to investigate. To address this challenge, we have developed a topology optimization framework for discovering origami fold patterns that realize stable and metastable positions. The objective function targets both the desired stable positions and nonlinear loading profiles of specific vertices in the origami structure. Multistable compliant structures have been shown to offer advantages in their stability and efficiency, and certain origami fold patterns exhibit multistable behavior. Building on this previous work of single vertex multistability analysis, e.g. waterbomb origami pattern, we are expanding the solution set of multistable mechanisms to include multiple vertices and a broader set of reference configurations. Collectively, these results enable an initial classification of geometry-induced mechanical instabilities that can be programmed into active material systems. This work was supported by the Air Force Office of Scientific Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balachandran, N.K.; Rind, D.
1995-08-01
Results of experiments with a GCM involving changes in UV input ({plus_minus}25%, {plus_minus}10%, {plus_minus}5% at wavelengths below 0.3 {mu}m) and simulated equatorial QBO are presented, with emphasis on the middle atmosphere response. The UV forcing employed is larger than observed during the last solar cycle and does not vary with wavelength, hence the relationship of these results to those from actual solar UV forcing should be treated with caution. The QBO alters the location of the zero wind line and the horizontal shear of the zonal wind in the low to middle stratosphere, while the UV change alters the magnitudemore » of the polar jet and the vertical shear of the zonal wind. Both mechanisms thus affect planetary wave propagation. The east phase of the QBO leads to tropical cooling and high-latitude warming in the lower stratosphere, with opposite effects in the upper stratosphere. This quadrupole pattern is also seen in the observations. The high-latitude responses are due to altered planetary wave effects, while the model`s tropical response in the upper stratosphere is due to gravity wave drag. Increased UV forcing warms tropical latitudes in the middle atmosphere, resulting in stronger extratropical west winds, an effect which peaks in the upper stratosphere/lower mesosphere with the more extreme UV forcing but at lower altitudes and smaller wind variations with the more realistic forcing. The increased vertical gradient of the zonal wind leads to increased vertical propagation of planetary waves, altering energy convergences and temperatures. The exact altitudes affected depend upon the UV forcing applied. Results with combined QBO and UV forcing show that in the Northern Hemisphere, polar warming for the east QBO is stronger when the UV input is reduced by 25% and 5% as increased wave propagation to high latitudes (east QBO effect) is prevented from then propagating vertically (reduced UV effect). 30 refs., 14 figs., 6 tabs.« less
Chao, Yonglie; Du, Li; Yang, Ling
2005-05-01
Information regarding the merits and problems associated with connecting a keeper to a dowel and coping using a laser welding technique has not been explored extensively in the dental literature. This in vitro study compared the surface characteristics, microstructure, and magnetic retentive forces for a dowel and coping-keeper mechanism fabricated using a laser welding process and a cast-to casting technique. Five cast-to and 6 laser-welded dowel and coping-keeper specimens were tested. Using 5 freestanding keepers as the control group, the surface characteristics and microstructures of the specimens were examined by means of stereomicroscopy, metallographic microscopy, and scanning electron microscopy (SEM). Energy-dispersive spectroscopic (EDS) microanalysis with SEM provided elemental concentration information for the test specimens. The vertical magnetic retentive forces (N) of the 3 groups were measured using a universal testing machine. The results were statistically compared using 1-way analysis of variance and the Newman-Keuls multiple range test (alpha =.05). The laser-welded dowel-keeper generally maintained its original surface smoothness as well as the original microstructure. Elements diffused readily through the fusion zone. The surface of the cast dowel-keeper became rough with the formation of an oxide layer, the microstructure changed, and there was only limited elemental diffusion in the fusion zone. The average vertical magnetic retentive force of the laser-welded group, the cast group, and the control group were 4.2 +/- 0.2 N, 3.8 +/- 0.3 N, and 5.6 +/- 0.3 N, respectively. Statistically significant differences in vertical magnetic retentive force were found between the control group and both the laser-welded and cast groups (P <.01). Compared with the cast dowel-keepers, the average vertical magnetic retentive force of the laser-welded dowel-keepers was significantly higher (P <.05). The laser welding technique had less influence on the surface characteristics, the microstructure, and the magnetic retentive forces of keepers relative to techniques that incorporate a keeper at the time of cast dowel and coping fabrication.
NASA Astrophysics Data System (ADS)
Takahashi, Toshimichi
2018-05-01
The tyre model which formerly developed by the author et al. and describes the tyre transient responses of side force and aligning moment under the time-varying vertical force was implemented to the vehicle dynamics simulation software and the influence of tyre side force transient property on the vehicle behaviour was investigated. The vehicle responses with/without tyre transient property on sinusoidally undulated road surfaces were simulated and compared. It was found that the average lateral acceleration of the vehicle at the sinusoidal steering wheel angle input decreases on the undulated road of long wavelength (3 m) for both cases, but when the wavelength becomes shorter (1 m), the average lateral acceleration increases only in the case that the transient property is considered. The cause of those changes is explained by using the tyre-related variables. Also the steady-state turning behaviour of the vehicle on undulated roads are shown and discussed.
Optimum dimensions of power solenoids for magnetic suspension
NASA Technical Reports Server (NTRS)
Kaznacheyev, B. A.
1985-01-01
Design optimization of power solenoids for controllable and stabilizable magnetic suspensions with force compensation in a wind tunnel is shown. It is assumed that the model of a levitating body is a sphere of ferromagnetic material with constant magnetic permeability. This sphere, with a radius much smaller than its distance from the solenoid above, is to be maintained in position on the solenoid axis by balance of the vertical electromagnetic force and the force of gravitation. The necessary vertical (axial) force generated by the solenoid is expressed as a function of relevant system dimensions, solenoid design parameters, and physical properties of the body. Three families of curves are obtained which depict the solenoid power for a given force as a function of the solenoid length with either outside radius or inside radius as a variable parameter and as a function of the outside radius with inside radius as a variable parameter. The curves indicate the optimum solenoid length and outside radius, for minimum power, corresponding to a given outside radius and inside radius, respectively.
Static Footprint Local Forces, Areas, and Aspect Ratios for Three Type 7 Aircraft Tires
NASA Technical Reports Server (NTRS)
Howell, William E.; Perez, Sharon E.; Vogler, William A.
1991-01-01
The National Tire Modeling Program (NTMP) is a joint NASA/industry effort to improve the understanding of tire mechanics and develop accurate analytical design tools. This effort includes fundamental analytical and experimental research on the structural mechanics of tires. Footprint local forces, areas, and aspect ratios were measured. Local footprint forces in the vertical, lateral, and drag directions were measured with a special footprint force transducer. Measurements of the local forces in the footprint were obtained by positioning the transducer at specified locations within the footprint and externally loading the tires. Three tires were tested: (1) one representative of those used on the main landing gear of B-737 and DC-9 commercial transport airplanes, (2) a nose landing gear tire for the Space Shuttle Orbiter, and (3) a main landing gear tire for the Space Shuttle Orbiter. Data obtained for various inflation pressures and vertical loads are presented for two aircraft tires. The results are presented in graphical and tabulated forms.
Lesinski, Melanie; Muehlbauer, Thomas; Granacher, Urs
2016-01-01
The aim of the present study was to verify concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height. Nineteen female sub-elite youth soccer players (mean age: 14.7 ± 0.6 years) performed three trials of countermovement (CMJ) and squat jumps (SJ), respectively. Maximal vertical jump height was simultaneously quantified with the Gyko system, a Kistler force-plate (i.e., gold standard), and another criterion device that is frequently used in the field, the Optojump system. Compared to the force-plate, the Gyko system determined significant systematic bias for mean CMJ (-0.66 cm, p < 0.01, d = 1.41) and mean SJ (-0.91 cm, p < 0.01, d = 1.69) height. Random bias was ± 3.2 cm for CMJ and ± 4.0 cm for SJ height and intraclass correlation coefficients (ICCs) were "excellent" (ICC = 0.87 for CMJ and 0.81 for SJ). Compared to the Optojump device, the Gyko system detected a significant systematic bias for mean CMJ (0.55 cm, p < 0.05, d = 0.94) but not for mean SJ (0.39 cm) height. Random bias was ± 3.3 cm for CMJ and ± 4.2 cm for SJ height and ICC values were "excellent" (ICC = 0.86 for CMJ and 0.82 for SJ). Consequently, apparatus specific regression equations were provided to estimate true vertical jump height for the Kistler force-plate and the Optojump device from Gyko-derived data. Our findings indicate that the Gyko system cannot be used interchangeably with a Kistler force-plate and the Optojump device in trained individuals. It is suggested that practitioners apply the correction equations to estimate vertical jump height for the force-plate and the Optojump system from Gyko-derived data.
[Measurement of periapical pressure created by occlusal loading].
Dobó, Nagy Csaba; Fejérdy, Pál; Angyal, János; Harasztosi, Lajos; Daróczi, Lajos; Beke, Dezsó; Wesselink, Paul R
2004-04-01
The aim of this study was to develop an in vitro model in which the pressure in the periapical tissues can be measured during loading. Extracted human maxillary central incisors were embedded into resin blocks that had physical characteristics similar to bone and periodontal ligament. Each tooth was loaded with 20, 40, 50, 60, 75, 85, 100, 200, 300 and 450 N vertical forces from the incisal edge of the crown; this procedure was carried out three consecutive times. A minute resistor embedded in the periapical space was used to detect apical pressure changes during occlusal loading. The ratio of apical pressure changes (delta P) to the loading force changes (delta F) was calculated. The periapical pressure detected was in direct proportion to the loading force. The mean value of delta P/delta F was 5.994 kPa/N (SD = 2.04). Direct proportionality was found between the coronal loading and the apical hydrostatic pressure. The (delta P)/(delta F) ratio determined in this study makes it easier to estimate the apical hydrostatic pressure values during occlusal loading of single rooted teeth. In this study the apical pressure generated under occlusal loading was of the same magnitude as that estimated with the finite element method.
Measurement of periapical pressure created by occlusal loading.
Dobó-Nagy, C; Fejérdy, P; Angyal, J; Harasztosi, L; Daróczi, L; Beke, D; Wesselink, P R
2003-10-01
To develop an in vitro model in which the pressure in the periapical tissues can be measured during loading. Extracted human maxillary central incisors were embedded in resin blocks that had physical characteristics similar to those of bone and periodontal ligament. Each tooth was loaded with 20, 40, 50, 60, 75, 85, 100, 200, 300 and 450 N vertical forces from the incisal edge of the crown on three consecutive occasions. A minute resistor embedded in the periapical space was used to detect apical pressure changes during occlusal loading. The ratio of apical pressure changes (DeltaP) to the loading force changes (DeltaF) was calculated. The periapical pressure detected was in direct proportion to the loading force. The mean value of DeltaP/DeltaF was 5.994 kPa N-1 (SD = 2.04). Direct proportionality was found between the coronal loading and the apical hydrostatic pressure. The DeltaP/DeltaF ratio determined in this study makes it easier to estimate the apical hydrostatic pressure values during occlusal loading of single-rooted teeth. In this study, the apical pressure generated under occlusal loading was the same magnitude as that estimated with the finite element method.
Differences of ballet turns (pirouette) performance between experienced and novice ballet dancers.
Lin, Chia-Wei; Chen, Shing-Jye; Su, Fong-Chin; Wu, Hong-Wen; Lin, Cheng-Feng
2014-09-01
This study investigated the different postural control strategies exhibited by experienced and novice dancers in ballet turns (pirouettes). Thirteen novice and 13 experienced dancers performed ballet turns with dominant-leg support. The peak push force was measured in the double-leg support phase. The inclination angles of rotation axis with respect to vertical axis were calculated in the early single-leg support phase as well as the initiation sequence of ankle, knee, and hip joints on the supporting leg. Moreover, the anchoring index of the head was computed in the transverse plane during turning. The novice dancers applied a greater push force, an increased inclination angle of rotation axis, and an insufficient proximal-to-distal extension sequence pattern. The novice dancers also had a smaller head-anchoring index compared with experienced dancers, which meant novice dancers were not using a space target as a stability reference. A poorer performance in novice dancers could result from higher push force in propulsion, lack of a "proximal-to-distal extension sequence" pattern, and lack of visual spotting for postural stability. Training on sequential initiation of lower-extremity joints and rehearsal of visual spotting are essential for novice dancers to obtain better performance on ballet turns.
Breaking tester for examining strength of consolidated starch
NASA Astrophysics Data System (ADS)
Stasiak, Mateusz; Molenda, Marek; Bańda, Maciej; Wiącek, Joanna; Dobrzański, Bohdan; Parafiniuk, Piotr
2017-04-01
A new method based on the measurement of force required to break by bending a vertical column of consolidated powder was elaborated, and its results were compared with the ones obtained from the Jenike shear test. A new apparatus was built based on a vertical cylindrical chamber divided into two cylinders connected with a horizontal hinge. The apparatus was tested with samples of potato, maize and wheat starches with moisture content of 6, 12 and 17% and with the addition of a lubricant. Results of testing revealed significant differences in measured force required to rotate the upper part of the cylinder away from the lower one. The average force varied from 0.138 N for maize starch to 0.143 N for potato starch, while, for various moisture contents, the measured force varied from 0.135 N for 6% to 0.143 N for 17% mc. The results were compared with the results of a direct shear test.
Modelling vertical human walking forces using self-sustained oscillator
NASA Astrophysics Data System (ADS)
Kumar, Prakash; Kumar, Anil; Racic, Vitomir; Erlicher, Silvano
2018-01-01
This paper proposes a model of a self-sustained oscillator which can generate reliably the vertical contact force between the feet of a healthy pedestrian and the supporting flat rigid surface. The model is motivated by the self-sustained nature of the walking process, i.e. a pedestrian generates the required inner energy to sustain its repetitive body motion. The derived model is a fusion of the well-known Rayleigh, Van der Pol and Duffing oscillators. Some additional nonlinear terms are added to produce both the odd and even harmonics observed in the experimentally measured force data. The model parameters were derived from force records due to twelve pedestrians walking on an instrumented treadmill at ten speeds using a linear least square technique. The stability analysis was performed using the energy balance method and perturbation method. The results obtained from the model show a good agreement with the experimental results.
Single-particle dispersion in stably stratified turbulence
NASA Astrophysics Data System (ADS)
Sujovolsky, N. E.; Mininni, P. D.; Rast, M. P.
2018-03-01
We present models for single-particle dispersion in vertical and horizontal directions of stably stratified flows. The model in the vertical direction is based on the observed Lagrangian spectrum of the vertical velocity, while the model in the horizontal direction is a combination of a continuous-time eddy-constrained random walk process with a contribution to transport from horizontal winds. Transport at times larger than the Lagrangian turnover time is not universal and dependent on these winds. The models yield results in good agreement with direct numerical simulations of stratified turbulence, for which single-particle dispersion differs from the well-studied case of homogeneous and isotropic turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jianjun; Zheng, Youfei; Li, Zhanqing
2012-02-09
Four years of columnar aerosol particle optical properties (2006 to 2009) and one year database worth of aerosol particle vertical profile of 527 nm extinction coefficient (June 2008 to May 2009) are analyzed at Taihu in the central Yangtze Delta region in eastern China. Seasonal variations of aerosol optical properties, vertical distribution, and influence on shortwave radiation and heating rates were investigated. Multiyear variations of aerosol optical depths (AOD), Angstrom exponents, single scattering albedo (SSA) and asymmetry factor (ASY) are analyzed, together with the vertical profile of aerosol extinction. AOD is largest in summer and smallest in winter. SSAs exhibitmore » weak seasonal variation with the smallest values occurring during winter and the largest during summer. The vast majority of aerosol particles are below 2 km, and about 62%, 67%, 67% and 83% are confined to below 1 km in spring, summer, autumn and winter, respectively. Five-day back trajectory analyses show that the some aerosols aloft are traced back to northern/northwestern China, as far as Mongolia and Siberia, in spring, autumn and winter. The presence of dust aerosols were identified based on the linear depolarization measurements together with other information (i.e., back trajectory, precipitation, aerosol index). Dust strongly impacts the vertical particle distribution in spring and autumn, with much smaller effects in winter. The annual mean aerosol direct shortwave radiative forcing (efficiency) at the bottom, top and within the atmosphere are -34.8 {+-} 9.1 (-54.4 {+-} 5.3), -8.2 {+-} 4.8 (-13.1 {+-} 1.5) and 26.7 {+-} 9.4 (41.3 {+-} 4.6) W/m{sup 2} (Wm{sup -2} T{sup -1}), respectively. The mean reduction in direct and diffuse radiation reaching surface amount to 109.2 {+-} 49.4 and 66.8 {+-} 33.3 W/m{sup 2}, respectively. Aerosols significantly alter the vertical profile of solar heating, with great implications for atmospheric stability and dynamics within the lower troposphere.« less
A new method for testing pile by single-impact energy and P-S curve
NASA Astrophysics Data System (ADS)
Xu, Zhao-Yong; Duan, Yong-Kang; Wang, Bin; Hu, Yi-Li; Yang, Run-Hai; Xu, Jun; Zhao, Jin-Ming
2004-11-01
By studying the pile-formula and stress-wave methods ( e.g., CASE method), the authors propose a new method for testing piles using the single-impact energy and P-S curves. The vibration and wave figures are recorded, and the dynamic and static displacements are measured by different transducers near the top of piles when the pile is impacted by a heavy hammer or micro-rocket. By observing the transformation coefficient of driving energy (total energy), the consumed energy of wave motion and vibration and so on, the vertical bearing capacity for single pile is measured and calculated. Then, using the vibration wave diagram, the dynamic relation curves between the force ( P) and the displacement ( S) is calculated and the yield points are determined. Using the static-loading test, the dynamic results are checked and the relative constants of dynamic-static P-S curves are determined. Then the subsidence quantity corresponding to the bearing capacity is determined. Moreover, the shaped quality of the pile body can be judged from the formation of P-S curves.
Force and light tuning vertical tunneling current in the atomic layered MoS2.
Li, Feng; Lu, Zhixing; Lan, Yann-Wen; Jiao, Liying; Xu, Minxuan; Zhu, Xiaoyang; Zhang, Xiankun; Wu, Hualin; Qi, Junjie
2018-07-06
In this work, the vertical electrical transport behavior of bilayer MoS 2 under the coupling of force and light was explored by the use of conductive atomic force microscopy. We found that the current-voltage behavior across the tip-MoS 2 -Pt junction is a tunneling current that can be well fitted by a Simmons approximation. The transport behavior is direct tunneling at low bias and Fowler-Nordheim tunneling at high bias, and the transition voltage and tunnel barrier height are extracted. The effect of force and light on the effective band gap of the junction is investigated. Furthermore, the source-drain current drops surprisingly when we continually increase the force, and the dropping point is altered by the provided light. This mechanism is responsible for the tuning of tunneling barrier height and width by force and light. These results provide a new way to design devices that take advantage of ultrathin two-dimensional materials. Ultrashort channel length electronic components that possess tunneling current are important for establishing high-efficiency electronic and optoelectronic systems.
Oliveira, Nuno; Saunders, David H; Sanders, Ross H
2016-01-01
To investigate the effects of fatigue on the vertical force and kinematics of the lower limbs during maximal water polo eggbeater kicking. Twelve male water polo players maintained as high a position as possible while performing the eggbeater kick with the upper limbs raised out of the water until they were unable to keep the top of the sternum (manubrium) above water. Data comprising 27 complete eggbeater-kick cycles were extracted corresponding to 9 cycles of the initial nonfatigued (0%), 50% time point (50%), and final fatigued (100%) periods of the trial. Vertical force, foot speed, and hip-, knee-, and ankle-joint angles were calculated. Mean vertical force (0%, 212.2 N; 50%, 184.5 N; 100%, 164.3 N) progressively decreased with time. Speed of the feet (0.4 m/s), hip abduction (2.9°), and flexion (3.6°) decreased with fatigue, while hip internal rotation (3.6°) and ankle inversion (4°) increased with fatigue. Average angular velocity decreased for all joint motions. Eggbeater-kick performance decreases with fatigue. Inability to maintain foot speeds and hip and ankle actions with progressing fatigue diminishes the ability of the player to produce vertical force during the cycle. Increased internal rotation of the hip when fatigued and the large eversion/abduction of the ankle during the cycle may be predisposing factors for the prevalence of patellofemoral pain syndrome observed among eggbeater-kick performers. Appropriate training interventions that can limit the effects of fatigue on performance and injury risk should be considered.
The evolution of vertical climbing in primates: evidence from reaction forces.
Hanna, Jandy B; Granatosky, Michael C; Rana, Pooja; Schmitt, Daniel
2017-09-01
Vertical climbing is an essential behavior for arboreal animals, yet limb mechanics during climbing are poorly understood and rarely compared with those observed during horizontal walking. Primates commonly engage in both arboreal walking and vertical climbing, and this makes them an ideal taxa in which to compare these locomotor forms. Additionally, primates exhibit unusual limb mechanics compared with most other quadrupeds, with weight distribution biased towards the hindlimbs, a pattern that is argued to have evolved in response to the challenges of arboreal walking. Here we test an alternative hypothesis that functional differentiation between the limbs evolved initially as a response to climbing. Eight primate species were recorded locomoting on instrumented vertical and horizontal simulated arboreal runways. Forces along the axis of, and normal to, the support were recorded. During walking, all primates displayed forelimbs that were net braking, and hindlimbs that were net propulsive. In contrast, both limbs served a propulsive role during climbing. In all species, except the lorisids, the hindlimbs produced greater propulsive forces than the forelimbs during climbing. During climbing, the hindlimbs tends to support compressive loads, while the forelimb forces tend to be primarily tensile. This functional disparity appears to be body-size dependent. The tensile loading of the forelimbs versus the compressive loading of the hindlimbs observed during climbing may have important evolutionary implications for primates, and it may be the case that hindlimb-biased weight support exhibited during quadrupedal walking in primates may be derived from their basal condition of climbing thin branches. © 2017. Published by The Company of Biologists Ltd.
Shah, Farhan Khalid; Gebreel, Ashraf; Elshokouki, Ali hamed; Habib, Ahmed Ali
2012-01-01
PURPOSE To compare the changes in the occlusal vertical dimension, activity of masseter muscles and biting force after insertion of immediate denture constructed with conventional, tooth-supported and Implant-supported immediate mandibular complete denture. MATERIALS AND METHODS Patients were selected and treatment was carried out with all the three different concepts i.e, immediate denture constructed with conventional (Group A), tooth-supported (Group B) and Implant-supported (Group C) immediate mandibular complete dentures. Parameters of evaluation and comparison were occlusal vertical dimension measured by radiograph (at three different time intervals), Masseter muscle electromyographic (EMG) measurement by EMG analysis (at three different positions of jaws) and bite force measured by force transducer (at two different time intervals). The obtained data were statistically analyzed by using ANOVA-F test at 5% level of significance. If the F test was significant, Least Significant Difference test was performed to test further significant differences between variables. RESULTS Comparison between mean differences in occlusal vertical dimension for tested groups showed that it was only statistically significant at 1 year after immediate dentures insertion. Comparison between mean differences in wavelet packet coefficients of the electromyographic signals of masseter muscles for tested groups was not significant at rest position, but significant at initial contact position and maximum voluntary clench position. Comparison between mean differences in maximum biting force for tested groups was not statistically significant at 5% level of significance. CONCLUSION Immediate complete overdentures whether tooth or implant supported prosthesis is recommended than totally mucosal supported prosthesis. PMID:22737309
Ameer, Mariam A; Muaidi, Qassim I
2017-09-01
The relationship between knee kinematics and knee-ankle kinetics during the landing phase of single leg jumping has been widely studied to identify proper strategies for preventing non-contact ACL injury. However, there is a lack of study on knee-ankle kinetics at peak knee flexion angle during jumping from running. Hence, the purpose of this study is to establish the relationship between peak knee flexion angle, knee extension moment, ankle plantar flexion moment and ground reaction force in handball players in order to protect ACL from excessive stress during single leg jumping. In addition, the study also clarifies the role of calf muscles in relieving part of ACL stresses with different knee flexion angles during landing. Fifteen active male elite handball players of Saudi Arabia have participated in this study (Age = 22.6 ± 3.5years, Height = 182 ± 3.7 cm, Weight = 87.5 ± 10.2 kg). The players performed three successful landings of single-leg jump following running a fixed distance of about 450cm. The data were collected using a 3D motion capture and analysis system (VICON). Pearson product moment correlation coefficients showed that greater peak knee flexion angle is related significantly to both lesser knee extension moment (r = -.623, P = .013) and vertical component of ground reaction force (VGRF) (r = -.688, P = .005) in landing phase. Moreover, increasing the peak knee flexion angle in landing phase tends to increase the ankle plantar flexion moment significantly (r = .832, P = .000). With an increase of the peak knee flexion angle during single leg jump landing from running, there would be less knee extension moment, low impact force and more plantar flexion moment. As such, the clinical implication of this study is that there may be a possible protective mechanism by increasing the knee flexion angle during landing phase, which tends to protect the ACL from vigorous strain and injuries.
Accuracy of a vertical jump contact mat for determining jump height and flight time.
Whitmer, Tyler D; Fry, Andrew C; Forsythe, Charles M; Andre, Matthew J; Lane, Michael T; Hudy, Andrea; Honnold, Darric E
2015-04-01
Several devices are available to measure vertical jump (VJ) height based on flight time, VJ reach height, or ground reaction forces. The purpose of this study was to determine the accuracy of a VJ mat for measuring flight time and VJ height compared with a VJ tester or a force plate. Seventeen men and 18 women (X ± SD; age = 20.9 ± 0.7 years, height = 176.1 ± 0.9 cm, weight = 72.6 ± 13.5 kg) served as subjects. Subjects performed counter-movement vertical jumps while standing on both a force plate (1,000 Hz) and a VJ mat. A Vertec VJ tester was used to measure jump reach. Compared with the force plate, the VJ mat reported greater VJ height (VJ mat = 0.50 ± 0.12 m, force plate = 0.34 ± 0.10 m) and flight time (VJ mat = 0.629 ± 0.078 seconds, force plate = 0.524 ± 0.077 seconds). Comparison of VJ heights from the VJ mat and the Vertec revealed no significant differences (Vertec = 0.48 ± 0.11 m). Regression analyses indicated strong relationships between testing methods and suggested that high VJ performances may be underestimated with the VJ mat. This particular VJ mat compared favorably with the Vertec but not the force plate. It seems that the different flight times derived from the VJ mat may permit the VJ mat to be in closer agreement with VJ heights from the Vertec. Also, the VJ mat may not be an appropriate tool for assessing high VJ performances (i.e., ≥0.70 m; ≈28 inches). Practitioners and researchers using similar VJ mats may not obtain accurate flight times and may underestimate high performers.
Muscle Force-Velocity Relationships Observed in Four Different Functional Tests
Zivkovic, Milena Z.; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan
2017-01-01
Abstract The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles. PMID:28469742
Kato, Moeko; Namura, Yasuhiro; Yoneyama, Takayuki; Shimizu, Noriyoshi
2018-05-31
This study investigated the effect of the vertical position of the canine on changes in the frictional/orthodontic (F/O) force ratio of nickel-titanium (Ni-Ti) archwires during the initial levelling phase of orthodontic treatment. Frictional and orthodontic forces were measured by using low-friction brackets and Ni-Ti archwires with three different cross-sectional sizes and force types. To simulate canine malocclusion (first premolar extraction case), the upper right canine was displaced gingivally by 1 to 3 mm and the inter-bracket distance between the upper right lateral incisor and second premolar was set at 15 mm or 20 mm. A three-point bending test was performed to measure the orthodontic force of each Ni-Ti archwire. Frictional forces were measured with a universal testing machine and dental arch models by pulling parallel to the end of the archwire at a crosshead speed of 0.5 mm/min. F/O force ratio was calculated and analysed statistically. At a displacement of 3 mm, few archwires had F/O force ratios of less than 1.0, at which orthodontic force overcame frictional force, thus ensuring extrusion of the canine. For effective tooth movement, orthodontists should use Ni-Ti archwires with an F/O force ratio of less than 1.0.
Development of a Subject-Specific Foot-Ground Contact Model for Walking.
Jackson, Jennifer N; Hass, Chris J; Fregly, Benjamin J
2016-09-01
Computational walking simulations could facilitate the development of improved treatments for clinical conditions affecting walking ability. Since an effective treatment is likely to change a patient's foot-ground contact pattern and timing, such simulations should ideally utilize deformable foot-ground contact models tailored to the patient's foot anatomy and footwear. However, no study has reported a deformable modeling approach that can reproduce all six ground reaction quantities (expressed as three reaction force components, two center of pressure (CoP) coordinates, and a free reaction moment) for an individual subject during walking. This study proposes such an approach for use in predictive optimizations of walking. To minimize complexity, we modeled each foot as two rigid segments-a hindfoot (HF) segment and a forefoot (FF) segment-connected by a pin joint representing the toes flexion-extension axis. Ground reaction forces (GRFs) and moments acting on each segment were generated by a grid of linear springs with nonlinear damping and Coulomb friction spread across the bottom of each segment. The stiffness and damping of each spring and common friction parameter values for all springs were calibrated for both feet simultaneously via a novel three-stage optimization process that used motion capture and ground reaction data collected from a single walking trial. The sequential three-stage process involved matching (1) the vertical force component, (2) all three force components, and finally (3) all six ground reaction quantities. The calibrated model was tested using four additional walking trials excluded from calibration. With only small changes in input kinematics, the calibrated model reproduced all six ground reaction quantities closely (root mean square (RMS) errors less than 13 N for all three forces, 25 mm for anterior-posterior (AP) CoP, 8 mm for medial-lateral (ML) CoP, and 2 N·m for the free moment) for both feet in all walking trials. The largest errors in AP CoP occurred at the beginning and end of stance phase when the vertical ground reaction force (vGRF) was small. Subject-specific deformable foot-ground contact models created using this approach should enable changes in foot-ground contact pattern to be predicted accurately by gait optimization studies, which may lead to improvements in personalized rehabilitation medicine.
Development of a Subject-Specific Foot-Ground Contact Model for Walking
Jackson, Jennifer N.; Hass, Chris J.; Fregly, Benjamin J.
2016-01-01
Computational walking simulations could facilitate the development of improved treatments for clinical conditions affecting walking ability. Since an effective treatment is likely to change a patient's foot-ground contact pattern and timing, such simulations should ideally utilize deformable foot-ground contact models tailored to the patient's foot anatomy and footwear. However, no study has reported a deformable modeling approach that can reproduce all six ground reaction quantities (expressed as three reaction force components, two center of pressure (CoP) coordinates, and a free reaction moment) for an individual subject during walking. This study proposes such an approach for use in predictive optimizations of walking. To minimize complexity, we modeled each foot as two rigid segments—a hindfoot (HF) segment and a forefoot (FF) segment—connected by a pin joint representing the toes flexion–extension axis. Ground reaction forces (GRFs) and moments acting on each segment were generated by a grid of linear springs with nonlinear damping and Coulomb friction spread across the bottom of each segment. The stiffness and damping of each spring and common friction parameter values for all springs were calibrated for both feet simultaneously via a novel three-stage optimization process that used motion capture and ground reaction data collected from a single walking trial. The sequential three-stage process involved matching (1) the vertical force component, (2) all three force components, and finally (3) all six ground reaction quantities. The calibrated model was tested using four additional walking trials excluded from calibration. With only small changes in input kinematics, the calibrated model reproduced all six ground reaction quantities closely (root mean square (RMS) errors less than 13 N for all three forces, 25 mm for anterior–posterior (AP) CoP, 8 mm for medial–lateral (ML) CoP, and 2 N·m for the free moment) for both feet in all walking trials. The largest errors in AP CoP occurred at the beginning and end of stance phase when the vertical ground reaction force (vGRF) was small. Subject-specific deformable foot-ground contact models created using this approach should enable changes in foot-ground contact pattern to be predicted accurately by gait optimization studies, which may lead to improvements in personalized rehabilitation medicine. PMID:27379886
Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing
NASA Astrophysics Data System (ADS)
Samset, Bjørn H.; Myhre, Gunnar
2011-12-01
A global radiative transfer model is used to calculate the vertical profile of shortwave radiative forcing from a prescribed amount of aerosols. We study black carbon (BC), sulphate (SO4) and a black and organic carbon mixture typical of biomass burning (BIO), by prescribing aerosol burdens in layers between 1000 hPa and 20 hPa and calculating the resulting direct radiative forcing divided by the burden (NDRF). We find a strong sensitivity in the NDRF for BC with altitude, with a tenfold increase between BC close to the surface and the lower part of the stratosphere. Clouds are a major contributor to this dependence with altitude, but other factors also contribute. We break down and explain the different physical contributors to this strong sensitivity. The results show a modest regional dependence of the altitudinal dependence of BC NDRF between industrial regions, while for regions with properties deviating from the global mean NDRF variability is significant. Variations due to seasons and interannual changes in cloud conditions are found to be small. We explore the effect that large altitudinal variation in NDRF may have on model estimates of BC radiative forcing when vertical aerosol distributions are insufficiently constrained, and discuss possible applications of the present results for reducing inter-model differences.
Turbulent structure of stably stratified inhomogeneous flow
NASA Astrophysics Data System (ADS)
Iida, Oaki
2018-04-01
Effects of buoyancy force stabilizing disturbances are investigated on the inhomogeneous flow where disturbances are dispersed from the turbulent to non-turbulent field in the direction perpendicular to the gravity force. Attaching the fringe region, where disturbances are excited by the artificial body force, a Fourier spectral method is used for the inhomogeneous flow stirred at one side of the cuboid computational box. As a result, it is found that the turbulent kinetic energy is dispersed as layered structures elongated in the streamwise direction through the vibrating motion. A close look at the layered structures shows that they are flanked by colder fluids at the top and hotter fluids at the bottom, and hence vertically compressed and horizontally expanded by the buoyancy related to the countergradient heat flux, though they are punctuated by the vertical expansion of fluids at the forefront of the layered structures, which is related to the downgradient heat flux, indicating that the layered structures are gravity currents. However, the phase between temperature fluctuations and vertical velocity is shifted by π/2 rad, indicating that temperature fluctuations are generated by the propagation of internal gravity waves.
Ogura, Yusuke; Shirai, Nobuhiro; Tanida, Jun
2002-09-20
An optical levitation and translation method for a microscopic particle by use of the resultant force induced by multiple light beams is studied. We show dependence of the radiation pressure force on the illuminating distribution by numerical calculation, and we find that the strongest axial force is obtained by a specific spacing period of illuminating beams. Extending the optical manipulation technique by means of vertical-cavity surface-emitting laser (VCSEL) array sources [Appl. Opt. 40, 5430 (2001)], we are the first, to our knowledge, to demonstrate levitation of a particle and its translation while levitated by using a VCSEL array. The vertical position of the target particle can be controlled in a range of a few tens of micrometers with an accuracy of 2 microm or less. The analytical and experimental results suggest that use of multiple beams is an effective method to levitate a particle with low total illumination power. Some issues on the manipulation method that uses multiple beams are discussed.
Plasma Component of Self-gravitating Disks and Relevant Magnetic Configurations
NASA Astrophysics Data System (ADS)
Bertin, G.; Coppi, B.
2006-04-01
Astrophysical disks in which the disk self-gravity is more important than the gravity force associated with the central object can have significant plasma components where appreciable toroidal current densities are produced. When the vertical confinement of the plasma rotating structures that can form is kept by the Lorentz force rather than by the vertical component of the gravity force, the disk self-gravity remains important only in the radial equilibrium condition, modifying the rotation curve from the commonly considered Keplerian rotation. The equilibrium equations that are solved involve the vertical and the horizontal components of the total momentum conservation equations, coupled with the lowest order form of the gravitational Poisson's equation. The resulting poloidal field configuration can be visualized as a sequence [1] of Field Reverse Configurations, in the radial direction, consisting of pairs of oppositely directed current channels. The plasma density thus acquires a significant radial modulation that may grow to the point where plasma rings can form [2]. [1] B. Coppi, Phys. Plasmas, 12, 057302 (2005) [2] B. Coppi and F. Rousseau, to be published in Astrophys. J. (April 2006)
Performance Enhancement of a Vertical Tail Model with Sweeping Jet Actuators
NASA Technical Reports Server (NTRS)
Seele, Roman; Graff, Emilio; Lin, John; Wygnanski, Israel
2013-01-01
Active Flow Control (AFC) experiments performed at the Caltech Lucas Adaptive Wall Wind Tunnel on a 12%-thick, generic vertical tail model indicated that sweeping jets emanating from the trailing edge (TE) of the vertical stabilizer significantly increased the side force coefficient for a wide range of rudder deflection angles and yaw angles at free-stream velocities approaching takeoff rotation speed. The results indicated that 2% blowing momentum coefficient (C(sub mu) increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. Even C(sub mu) = 0.5% increased the side force in excess of 20% under these conditions. This effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project and the successful demonstration of this flow-control application could have far reaching implications. It could lead to effective applications of AFC technologies on key aircraft control surfaces and lift enhancing devices (flaps) that would aid in reduction of fuel consumption through a decrease in size and weight of wings and control surfaces or a reduction of the noise footprint due to steeper climb and descent.
Mandato, S; Cuq, B; Ruiz, T
2012-07-01
In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation.
Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J
2017-04-15
Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.
NASA Astrophysics Data System (ADS)
Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib
2017-08-01
Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.
Multi-segment foot landing kinematics in subjects with chronic ankle instability.
De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark A; Palmans, Tanneke; Roosen, Philip
2015-07-01
Chronic ankle instability has been associated with altered joint kinematics at the ankle, knee and hip. However, no studies have investigated possible kinematic deviations at more distal segments of the foot. The purpose of this study was to evaluate if subjects with ankle instability and copers show altered foot and ankle kinematics and altered kinetics during a landing task when compared to controls. Ninety-six subjects (38 subjects with chronic ankle instability, 28 copers and 30 controls) performed a vertical drop and side jump task. Foot kinematics were obtained using the Ghent Foot Model and a single-segment foot model. Group differences were evaluated using statistical parametric mapping and analysis of variance. Subjects with ankle instability had a more inverted midfoot position in relation to the rearfoot when compared to controls during the side jump. They also had a greater midfoot inversion/eversion range of motion than copers during the vertical drop. Copers exhibited less plantar flexion/dorsiflexion range of motion in the lateral and medial forefoot. Furthermore, the ankle instability and coper group exhibited less ankle plantar flexion at touchdown. Additionally, the ankle instability group demonstrated a decreased plantar flexion/dorsiflexion range of motion at the ankle compared to the control group. Analysis of ground reaction forces showed a higher vertical peak and loading rate during the vertical drop in subjects with ankle instability. Subjects with chronic ankle instability displayed an altered, stiffer kinematic landing strategy and related alterations in landing kinetics, which might predispose them for episodes of giving way and actual ankle sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.
Instrumented figure skating blade for measuring on-ice skating forces
NASA Astrophysics Data System (ADS)
Acuña, S. A.; Smith, D. M.; Robinson, J. M.; Hawks, J. C.; Starbuck, P.; King, D. L.; Ridge, S. T.; Charles, S. K.
2014-12-01
Competitive figure skaters experience substantial, repeated impact loading during jumps and landings. Although these loads, which are thought to be as high as six times body weight, can lead to overuse injuries, it is not currently possible to measure these forces on-ice. Consequently, efforts to improve safety for skaters are significantly limited. Here we present the development of an instrumented figure skating blade for measuring forces on-ice. The measurement system consists of strain gauges attached to the blade, Wheatstone bridge circuit boards, and a data acquisition device. The system is capable of measuring forces in the vertical and horizontal directions (inferior-superior and anterior-posterior directions, respectively) in each stanchion with a sampling rate of at least 1000 Hz and a resolution of approximately one-tenth of body weight. The entire system weighs 142 g and fits in the space under the boot. Calibration between applied and measured force showed excellent agreement (R > 0.99), and a preliminary validation against a force plate showed good predictive ability overall (R ≥ 0.81 in vertical direction). The system overestimated the magnitude of the first and second impact peaks but detected their timing with high accuracy compared to the force plate.
CUSTODIO, William; GOMES, Simone Guimarães Farias; FAOT, Fernanda; GARCIA, Renata Cunha Matheus Rodrigues; DEL BEL CURY, Altair Antoninha
2011-01-01
Objective The aim of this study was to evaluate whether vertical facial patterns influence maximal occlusal force (MOF), masticatory muscle electromyographic (EMG) activity, and medial mandibular flexure (MMF). Material and Methods Seventy-eight dentate subjects were divided into 3 groups by Ricketts's analysis: brachyfacial, mesofacial and dolychofacial. Maximum occlusal force in the molar region was bilaterally measured with a force transducer. The electromyographic activities of the masseter and anterior temporal muscles were recorded during maximal voluntary clenching. Medial mandibular flexure was calculated by subtracting the intermolar distance of maximum opening or protrusion from the distance in the rest position. The data were analyzed using ANOVA followed by Tukey's HSD test. The significance level was set at 5%. Results Data on maximum occlusal force showed that shorter faces had higher occlusal forces (P<0.0001). Brachyfacial subjects presented higher levels of masseter electromyographic activity and medial mandibular flexure, followed by the mesofacial and dolychofacial groups. Additionally, dolychofacial subjects showed significantly lower electromyographic temporalis activities (P<0.05). Conclusion Within the limitations of the study, it may be concluded that maximum occlusal force, masticatory muscle activity and medial mandibular flexure were influenced by the vertical facial pattern. PMID:21655772
Knee extensor dynamics in the volleyball approach jump: the influence of patellar tendinopathy.
Sorenson, Shawn C; Arya, Shruti; Souza, Richard B; Pollard, Christine D; Salem, George J; Kulig, Kornelia
2010-09-01
Controlled laboratory study using a cross-sectional design. To evaluate knee joint dynamics in elite volleyball players with and without a history of patellar tendinopathy, focusing on mechanical energy absorption and generation. We hypothesized that tendinopathy would be associated withreduced net joint work and net joint power. Patellar tendinopathy is a common, debilitating injury affecting competitive volleyball players. Thirteen elite male players with and without a history of patellar tendinopathy (mean ± SD age, 27 ± 7 years) performed maximum-effort volleyball approach jumps. Sagittal plane knee joint kinematics, kinetics, and energetics were quantified in the lead limb, using data obtained from a force platform and an 8-camera motion analysis system. Vertical ground reaction forces and pelvis vertical velocity at takeoff were examined. Independent sample t tests were used to evaluate group differences (α = .05). The tendinopathy group, compared to controls, demonstrated significant reductions (approximately 30%) in net joint work and net joint power during the eccentric phase of the jump, with no differences in the concentric phase. Positive to-negative net joint work and net joint power ratios were significantly higher in the tendinopathy group, which had a net joint work ratio of 1.00 (95% CI: 0.77, 1.24) versus 0.76 (95% CI: 0.64, 0.88) for controls, and a net joint power ratio of 1.62 (95% CI: 1.15, 2.10) versus 1.00 (95% CI: 0.80, 1.21) for controls. There were no significant differences in net joint moment, angular velocity, or range of motion. Peak vertical ground reaction forces were lower for the tendinopathy group, while average vertical ground reaction forces and pelvis vertical velocity were similar. Patellar tendinopathy is associated with differences in sagittal plane mechanical energy absorption at the knee during maximum-effort volleyball approach jumps. Net joint work and net joint power may help define underlying mechanisms, adaptive effects, or rehabilitative strategies for individuals with patellar tendinopathy.
14 CFR 31.19 - Performance: Uncontrolled descent.
Code of Federal Regulations, 2010 CFR
2010-01-01
... single failure of the heater assembly, fuel cell system, gas value system, or maneuvering vent system, or from any single tear in the balloon envelope between tear stoppers: (1) The maximum vertical velocity attained. (2) The altitude loss from the point of failure to the point at which maximum vertical velocity...
How much vertical displacement of the symphysis indicates instability after pelvic injury?
Golden, Robert D; Kim, Hyunchul; Watson, Jeffrey D; Oliphant, Bryant W; Doro, Christopher; Hsieh, Adam H; Osgood, Greg M; O'Toole, Robert V
2013-02-01
Measures of pubic symphyseal widening are used by at least two classification systems as determinants of injury grade. Recent work has challenged the commonly used parameter of 2.5 cm of pubic symphysis as an accurate marker of pelvic injury grade and has suggested a role of rotation in the flexion-extension plane as a determinant of pelvic stability. We investigated pelvic stability in the flexion-extension plane to determine a threshold of rotational displacement of the hemipelvis above which the potential for instability exists. Cadaveric specimens were mounted onto a servohydraulic biaxial testing machine and subjected to a vertically directed flexion moment. Position of hemipelvis was recorded using a three-dimensional motion capture system and video recording. Displacement of the pubic symphysis and changes in length and position of the sacrospinous and sacrotuberous ligaments were recorded. Amount of force applied was measured and recorded. A yield point was determined as the first point at which the force plot exhibited a decrease in force and was correlated to the corresponding displacement. The mean vertical displacement of the pubic symphysis at the yield point was 16 mm (95% confidence interval, 11-22 mm). Mean sacrospinous ligament strain at yield point was 4% (range, 1.0-9.5%). Pelves with vertical rotational symphyseal displacement of less than 11 mm can reasonably be expected to have rotational stability in the flexion-extension plane. Those with displacement of greater than 22 mm can be expected to have lost some integrity regarding resistance to pelvic flexion. These values may allow clinicians to infer pelvic stability from amount of vertical symphyseal displacement.
Abujaber, Sumayeh; Gillispie, Gregory; Marmon, Adam; Zeni, Joseph
2015-01-01
Weight bearing asymmetry is common in patients with unilateral lower limb musculoskeletal pathologies. The Nintendo Wii Balance Board (WBB) has been suggested as a low-cost and widely-available tool to measure weight bearing asymmetry in a clinical environment; however no study has evaluated the validity of this tool during dynamic tasks. Therefore, the purpose of this study was to determine the concurrent validity of force measurements acquired from the WBB as compared to laboratory force plates. Thirty-five individuals before, or within 1 year of total joint arthroplasty performed a sit-to-stand and return-to-sit task in two conditions. First, subjects performed the task with both feet placed on a single WBB. Second, the task was repeated with each foot placed on an individual laboratory force plate. Peak vertical ground reaction force (VGRF) under each foot and the inter-limb symmetry ratio were calculated. Validity was examined using Intraclass Correlation Coefficients (ICC), regression analysis, 95% limits of agreement and Bland-Altman plots. Force plates and the WBB exhibited excellent agreement for all outcome measurements (ICC =0.83–0.99). Bland-Altman plots showed no obvious relationship between the difference and the mean for the peak VGRF, but there was a consistent trend in which VGRF on the unaffected side was lower and VGRF on the affected side was higher when using the WBB. However, these consistent biases can be adjusted for by utilizing regression equations that estimate the force plate values based on the WBB force. The WBB may serve as a valid, suitable, and low-cost alternative to expensive, laboratory force plates for measuring weight bearing asymmetry in clinical settings. PMID:25715680
Abujaber, Sumayeh; Gillispie, Gregory; Marmon, Adam; Zeni, Joseph
2015-02-01
Weight bearing asymmetry is common in patients with unilateral lower limb musculoskeletal pathologies. The Nintendo Wii Balance Board (WBB) has been suggested as a low-cost and widely-available tool to measure weight bearing asymmetry in a clinical environment; however no study has evaluated the validity of this tool during dynamic tasks. Therefore, the purpose of this study was to determine the concurrent validity of force measurements acquired from the WBB as compared to laboratory force plates. Thirty-five individuals before, or within 1 year of total joint arthroplasty performed a sit-to-stand and return-to-sit task in two conditions. First, subjects performed the task with both feet placed on a single WBB. Second, the task was repeated with each foot placed on an individual laboratory force plate. Peak vertical ground reaction force (VGRF) under each foot and the inter-limb symmetry ratio were calculated. Validity was examined using Intraclass Correlation Coefficients (ICC), regression analysis, 95% limits of agreement and Bland-Altman plots. Force plates and the WBB exhibited excellent agreement for all outcome measurements (ICC=0.83-0.99). Bland-Altman plots showed no obvious relationship between the difference and the mean for the peak VGRF, but there was a consistent trend in which VGRF on the unaffected side was lower and VGRF on the affected side was higher when using the WBB. However, these consistent biases can be adjusted for by utilizing regression equations that estimate the force plate values based on the WBB force. The WBB may serve as a valid, suitable, and low-cost alternative to expensive, laboratory force plates for measuring weight bearing asymmetry in clinical settings. Copyright © 2015 Elsevier B.V. All rights reserved.
Terminal Velocity of a Shuttlecock in Vertical Fall.
ERIC Educational Resources Information Center
Peastrel, Mark; And Others
1980-01-01
Describes a straightforward vertical fall experiment using a badminton shuttlecock, a tape measure, and a millisecond timer. The effects of air resistance are important and directly measurable. The experimental data best fit a predictive model which assumes a resistive force quadratic in the instantaneous speed of the falling object. (GS)
49 CFR 179.14 - Coupler vertical restraint system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... system shall be tested under the following conditions: (1) The test coupler shall be tested with a mating coupler (or simulated coupler) having only frictional vertical force resistance at the mating interface; or a mating coupler (or simulated coupler) having the capabilities described in paragraph (a) of this...
Increase in Jumping Height Associated with Maximal Effort Vertical Depth Jumps.
ERIC Educational Resources Information Center
Bedi, John F.; And Others
1987-01-01
In order to assess if there existed a statistically significant increase in jumping performance when dropping from different heights, 32 males, aged 19 to 26, performed a series of maximal effort vertical jumps after dropping from eight heights onto a force plate. Results are analyzed. (Author/MT)
Vertical Integration of Geographic Information Sciences: A Recruitment Model for GIS Education
ERIC Educational Resources Information Center
Yu, Jaehyung; Huynh, Niem Tu; McGehee, Thomas Lee
2011-01-01
An innovative vertical integration model for recruiting to GIS education was introduced and tested following four driving forces: curriculum development, GIS presentations, institutional collaboration, and faculty training. Curriculum development was a useful approach to recruitment, student credit hour generation, and retention-rate improvement.…
NASA Astrophysics Data System (ADS)
Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.
2011-12-01
During vertical excitation of the seated human body there are vertical and fore-and-aft forces at the seat that are influenced by contact with a backrest, so it is desirable to take into account the effect of a backrest when developing models of the seated human body. Initially, a seven degree-of-freedom multi-body dynamic model was developed for the human body sitting with an upright posture unsupported by a backrest and exposed to vertical vibration. The model was optimized to fit the vertical apparent mass and the fore-and-aft cross-axis apparent mass measured on a seat. The model was then extended by the addition of vertical and fore-and-aft reaction forces to the upper lumbar spine to model the interaction between the human body and a backrest. By minimizing the least square error between experimental data and the analytical solution of the apparent masses on the seat and at the back, the human body model was able to represent both the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and at the back. Parameter sensitivity studies showed that the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and the backrest were all highly sensitive to the axial stiffness of the tissue beneath the pelvis. Pitch motion of the upper-body contributed to the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat. The apparent mass at the back was more sensitive to the stiffness and damping of the lower back than the properties of the upper back.
Sabatini, Angelo Maria; Genovese, Vincenzo
2014-01-01
A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04–0.24 m/s; height RMSE was in the range 5–68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions. PMID:25061835
Extreme weather: Subtropical floods and tropical cyclones
NASA Astrophysics Data System (ADS)
Shaevitz, Daniel A.
Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the intensity of this event may be greatly increased if it occurs in a future climate. In the second part of this thesis, I examine the ability of high-resolution global atmospheric models to simulate TCs. Specifically, I present an intercomparison of several models' ability to simulate the global characteristics of TCs in the current climate. This is a necessary first step before using these models to project future changes in TCs. Overall, the models were able to reproduce the geographic distribution of TCs reasonably well, with some of the models performing remarkably well. The intensity of TCs varied widely between the models, with some of this difference being due to model resolution.
An, Hongjie; Tan, Beng Hau; Ohl, Claus-Dieter
2016-12-06
The widespread application of surface-attached nanobubbles and nanodroplets in biomedical engineering and nanotechnology is limited by numerous experimental challenges, in particular, the possibility of contamination in nucleation experiments. These challenges are complicated by recent reports that it can be difficult to distinguish between nanoscale drops and bubbles. Here we identify clear differences in the mechanical responses of nanobubbles and nanodroplets under various modes of AFM imaging that subject the objects to predominantly vertical or lateral forces. This allows us to distinguish among nanodroplets, nanobubbles, and oil-covered nanobubbles in water.
Letter: Symmetric instability drastically changes upon inclusion of the full Coriolis force
NASA Astrophysics Data System (ADS)
Zeitlin, V.
2018-06-01
It is shown that the classical symmetric instability drastically changes, if the usually neglected vertical component of the Coriolis force and the contribution of the vertical velocity into its horizontal components are taken into account. The influence of these "non-traditional" terms is different for flows with positive and negative horizontal relative vorticities. A critical value of the Richardson number appears in the second case, with the instability changing its character across it. Major differences appear between hydrostatic and non-hydrostatic versions of the instability. All these features are absent in the traditional approximation.
Influence of stretch-shortening cycle on mechanical behaviour of triceps surae during hopping.
Belli, A; Bosco, C
1992-04-01
Six subjects performed a first series of vertical plantar flexions and a second series of vertical rebounds, both involving muscle triceps surae exclusively. Vertical displacements, vertical forces and ankle angles were recorded during the entire work period of 60 seconds per series. In addition, expired gases were collected during the test and recovery for determination of the energy expenditure. Triceps surae was mechanically modelled with a contractile component and with an elastic component. Mechanical behaviour and work of the different muscle components were determined in both series. The net muscular efficiency calculated from the work performed by the centre of gravity was 17.5 +/- 3.0% (mean +/- SD) in plantar flexions and 29.9 +/- 4.8% in vertical rebounds. The net muscle efficiency calculated from the work performed by the contractile component was 17.4 +/- 2.9% in plantar flexions and 16.1 +/- 1.4% in vertical rebounds. These results suggest that the muscular efficiency differences do not reflect muscle contractile component efficiency but essentially the storage and recoil of elastic energy. This is supported by the relationship (P less than 0.01) found in vertical rebounds between the extra work and the elastic component work. A detailed observation of the mechanical behaviour of muscle mechanical components showed that the strategy to maximize the elastic work depends also on the force-velocity characteristics of the movement and that the eccentric-concentric work of the contractile component does not always correspond respectively to the ankle extension-flexion.
Modeling dynamic behavior of superconducting maglev systems under external disturbances
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He
2017-08-01
For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.
Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing
NASA Astrophysics Data System (ADS)
Persad, Geeta Gayatri
Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols' surface versus atmospheric forcing. Future aerosol emissions patterns will affect the distribution of regional climate impacts. This dissertation interrogates how international trade affects existing assumptions about East Asia's future black carbon aerosol emissions, using integrated assessment modeling, emissions and economic data, and AM3 simulations. Exports emerge as a uniquely large and potentially growing source of Chinese black carbon emissions that could impede projected regional emissions reductions, with substantial climate and health consequences. The findings encourage greater emissions projection sophistication and illustrate how societal decisions may influence future aerosol forcing heterogeneity.
Proportioning the airplane for lateral stability
NASA Technical Reports Server (NTRS)
Donlan, C. J.
1976-01-01
Proportioning for lateral aircraft control included: (1) directional stability (slope of curve of yawing moment coefficient against sideslip), and (2) effective dihedral factor (slope of curve of rolling moment coefficient against sideslip). Basic forces influencing the directional stability of aircraft are indicated. Propeller side force, basic fuselage yaw, and vertical tail side force contributed to yaw moment about center of gravity.
Effects of Froude number and geometry on water entry of a 2-D ellipse
NASA Astrophysics Data System (ADS)
Zhang, Xu; Liu, Pei-qing; Qu, Qiu-lin; Wang, Rui; Agarwal, Ramesh K.
2018-05-01
By using the finite volume method with volume of fluid model and global dynamic mesh technique, the effects of Froude number and geometry on the water entry process of a 2-D ellipse are investigated numerically. For the time history of the vertical force, the computational fluid dynamics (CFD) results match the experimental data much better than the classical potential-flow theories due to the consideration of the viscosity, turbulence, surface tension, gravity, and compressibility. The results show that the position of peak pressure on ellipse shifts from the spray root to the bottom of ellipse at a critical time. The critical time changes with the geometry and Froude number. By studying the vertical force, the ellipse water entry process can be divided into the initial and late stages based on the critical dimensionless time of about 0.1. The geometry of the ellipse plays a dominant role in the initial stage, while the Froude number is more important in the late stage of entry. The classical Wagner theory is extended to the ellipse water entry, and the predicted maximum value of vertical force coefficient in the initial stage is 4πa/b that matches the CFD results very well, where a and b are the horizontal axis and vertical axis of the ellipse parallel and perpendicular to the initial calm water surface, respectively.
An Overview of Active Flow Control Enhanced Vertical Tail Technology Development
NASA Technical Reports Server (NTRS)
Lin, John C.; Andino, Marlyn Y.; Alexander, Michael G.; Whalen, Edward A.; Spoor, Marc A.; Tran, John T.; Wygnanski, Israel J.
2016-01-01
This paper summarizes a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency of a vertical tail. Sweeping jet AFC technology was successfully tested on subscale and full-scale models as well as in flight. The subscale test was performed at Caltech on a 14% scale model. More than 50% side force enhancement was achieved by the sweeping jet actuation when the momentum coefficient was 1.7%. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. Subsequently, a full-scale Boeing 757 vertical tail model equipped with sweeping jets was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. There, flow separation control optimization was performed at near flight conditions. Greater than 20% increase in side force were achieved for the maximum rudder deflection of 30deg at the key sideslip angles (0deg and -7.5deg) with a 31-actuator AFC configuration. Based on these tests, the momentum coefficient is shown to be a necessary, but not sufficient parameter to use for design and scaling of sweeping jet AFC from subscale tests to full-scale applications. Leveraging the knowledge gained from the wind tunnel tests, the AFC-enhanced vertical tail technology was successfully flown on the Boeing 757 ecoDemonstrator in the spring of 2015.
Rising dynamics of a bubble confined in vertical cells with rectangular cross-sections
NASA Astrophysics Data System (ADS)
Murano, Mayuko; Okumura, Ko
2017-11-01
Recently, the drag friction acting on a fluid drop in confined space has been actively studied. Here, we investigate the rising velocity of a bubble in a vertical cell with a rectangular cross-section, both theoretically and experimentally, in which understanding of the drag force acting on the rising bubble is crucial. Although the drag force in such confined space could involve several regimes, we study a special case in which the bubble is long and the aspect-ratio of the rectangular cross-section of the cell is high. As a result, we found new scaling law for the rising velocity and the drag force, and confirmed the laws experimentally. Crossover to the rising dynamics in a Hele-Shaw cell will be also discussed.
Cleather, D I; Bull, A M J
2010-01-01
The calculation of the patellofemoral joint contact force using three-dimensional (3D) modelling techniques requires a description of the musculoskeletal geometry of the lower limb. In this study, the influence of the complexity of the muscle model was studied by considering two different muscle models, the Delp and Horsman models. Both models were used to calculate the patellofemoral force during standing, vertical jumping, and Olympic-style weightlifting. The patellofemoral forces predicted by the Horsman model were markedly lower than those predicted by the Delp model in all activities and represented more realistic values when compared with previous work. This was found to be a result of a lower level of redundancy in the Delp model, which forced a higher level of muscular activation in order to allow a viable solution. The higher level of complexity in the Horsman model resulted in a greater degree of redundancy and consequently lower activation and patellofemoral forces. The results of this work demonstrate that a well-posed muscle model must have an adequate degree of complexity to create a sufficient independence, variability, and number of moment arms in order to ensure adequate redundancy of the force-sharing problem such that muscle forces are not overstated.
Rail commuter vehicle curving performance
DOT National Transportation Integrated Search
2002-04-01
This report presents results of a program to design and install a wayside wheel-rail force measurement system. The test site is capable of developing a set of measurements of lateral and vertical forces exerted between the wheel and the rail at caref...
NASA Astrophysics Data System (ADS)
Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias
2015-04-01
It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already been presented and its validity has been tested against satellite-based retrievals. A detailed spectral radiative transfer model (RTM), already used in a number of planetary and regional studies, has been used in the present study to calculate the vertically distributed aerosol direct radiative effects (DREs) and the associated aerosol heating/cooling profiles within the troposphere. Specific emphasis is given to assessment of the crucial issue of the differences between modeling the aerosol DREs using either columnar aerosol optical properties, as usually done, or vertically layered information on those properties, which is the state of the art and ideal practice. To address this problem, the following experiment has been performed: the same RTM has been used twice with the same meteorological conditions but in the first run (set1) columnar values for aerosol optical depth (AOD) have been used while using vertically distributed AOD in the second run (set2). In the second run vertically layered information for AOD is considered for 20 layers extending from the surface to 20 km a.m.s.l.. The vertical profile of AOD has been mainly based on ECHAM model. The aerosol DREs are computed at the Earth's surface, at TOA and at various levels in the atmosphere. Apart from AOD, the model also requires single-scattering albedo (SSA) and asymmetry parameter (ASY) in 18 different wavelengths, which are obtained by linear interpolation from the available wavelengths in HAC. The comparison between the obtained two sets of DRE (set1 and set2) reveal small, but notable differences which vary from one place to another. Within the atmosphere, the difference -averaged over the four seasons - ranges from -0.3 to 1.7 Wm-2 with a mean value of 0.32 Wm-2. Given the fact that the average column-integrated DREAtm values for the entire Mediterranean region based on columnar aerosol optical properties is 11.44 Wm-2, there is an average variance of 3.7 %, which locally could get to 14.9 %. Differences between the columnar and the vertically layered versions of the model also exist for DRE(TOA) and DRE(NetSurface) calculations.
Film flow and heat transfer during condensation of steam on inclined and vertical nonround tubes
NASA Astrophysics Data System (ADS)
Nikitin, N. N.; Semenov, V. P.
2008-03-01
We describe a mathematical model for calculating heat transfer during film condensation of stagnant steam on inclined and vertical smooth tubes with cross sections of arbitrary shape that takes into account the action of surface tension forces. The heat-transfer coefficients are calculated, and the hydrodynamic pattern is presented in which a condensate film flows over the surface of nonround inclined and vertical tubes with cross-section of different shapes.
Production of vertical arrays of small diameter single-walled carbon nanotubes
Hauge, Robert H; Xu, Ya-Qiong
2013-08-13
A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.
Surface data - sea 2 Vertical soundings (other than satellite) 3 Vertical soundings (satellite) 4 Single level upper-air data (other than satellite) 5 Single level upper-air data (satellite) 6 Radar data 7 tables, complete replacement or update 12 Surface data (satellite) 13 Forecasts 14 Warnings 15-19
The ins and outs of modelling vertical displacement events
NASA Astrophysics Data System (ADS)
Pfefferle, David
2017-10-01
Of the many reasons a plasma discharge disrupts, Vertical Displacement Events (VDEs) lead to the most severe forces and stresses on the vacuum vessel and Plasma Facing Components (PFCs). After loss of positional control, the plasma column drifts across the vacuum vessel and comes in contact with the first wall, at which point the stored magnetic and thermal energy is abruptly released. The vessel forces have been extensively modelled in 2D but, with the constraint of axisymmetry, the fundamental 3D effects that lead to toroidal peaking, sideways forces, field-line stochastisation and halo current rotation have been vastly overlooked. In this work, we present the main results of an intense VDE modelling activity using the implicit 3D extended MHD code M3D-C1 and share our experience with the multi-domain and highly non-linear physics encountered. At the culmination of code development by the M3D-C1 group over the last decade, highlighted by the inclusion of a finite-thickness resistive vacuum vessel within the computational domain, a series of fully 3D non-linear simulations are performed using realistic transport coefficients based on the reconstruction of so-called NSTX frozen VDEs, where the feedback control was purposely switched off to trigger a vertical instability. The vertical drift phase, the evolution of the current quench and the onset of 3D halo/eddy currents are diagnosed and investigated in detail. The sensitivity of the current quench to parameter changes is assessed via 2D non-linear runs. The growth of individual toroidal modes is monitored via linear-complex runs. The intricate evolution of the plasma, which is decaying to large extent in force-balance with induced halo/wall currents, is carefully resolved via 3D non-linear runs. The location, amplitude and rotation of normal currents and wall forces are analysed and compared with experimental traces.
Growth and characterization of AgGa0.5In0.5Se2 single crystals by modified vertical Bridgman method
NASA Astrophysics Data System (ADS)
Vijayakumar, P.; Ramasamy, P.
2016-05-01
AgGa0.5In0.5Se2 single crystal was grown using a double wall quartz ampoule with accelerated crucible rotation technique by modified vertical Bridgman method. The structural perfection was measured using HRXRD. The grown single crystal composition was measured using ICP-OES analysis and compositional uniformities were measured using Raman spectroscopy analysis. Photoconductivity measurements confirm the positive photoconducting nature.
NASA Technical Reports Server (NTRS)
Margolis, Kenneth; Bobbitt, Percy J
1956-01-01
Velocity potentials, pressure, distributions, and stability derivatives are derived by use of supersonic linearized theory for families of thin isolated vertical tails performing steady rolling, steady yawing, and constant-lateral-acceleration motions. Vertical-tail families (half-delta and rectangular plan forms) are considered for a broad Mach number range. Also considered are the vertical tail with arbitrary sweepback and taper ratio at Mach numbers for which both the leading edge and trailing edge of the tail are supersonic and the triangular vertical tail with a subsonic leading edge and a supersonic trailing edge. Expressions for potentials, pressures, and stability derivatives are tabulated.
Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Shiozawa, Jyunya; Toda, Yuka; Yamada, Kaori
2017-01-01
Dynamic knee valgus during landings is associated with an increased risk of non-contact anterior cruciate ligament (ACL) injury. In addition, the impact on the body during landings must be attenuated in the lower extremity joints. The purpose of this study was to investigate landing biomechanics during landing with dynamic knee valgus by measuring the vertical ground reaction force (vGRF) and angular impulses in the lower extremity during a single-leg landing. The study included 34 female college students, who performed the single-leg drop vertical jump. Lower extremity kinetic and kinematic data were obtained from a 3D motion analysis system. Participants were divided into valgus (N = 19) and varus (N = 15) groups according to the knee angular displacement during landings. The vGRF and angular impulses of the hip, knee, and ankle were calculated by integrating the vGRF-time curve and each joint's moment-time curve. vGRF impulses did not differ between two groups. Hip angular impulse in the valgus group was significantly smaller than that in the varus group (0.019 ± 0.033 vs. 0.067 ± 0.029 Nms/kgm, p<0.01), whereas knee angular impulse was significantly greater (0.093 ± 0.032 vs. 0.045 ± 0.040 Nms/kgm, p<0.01). There was no difference in ankle angular impulse between the groups. Our results indicate that dynamic knee valgus increases the impact the knee joint needs to attenuate during landing; conversely, the knee varus participants were able to absorb more of the landing impact with the hip joint.
Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W
2012-03-01
The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.
Nibali, Maria L; Tombleson, Tom; Brady, Philip H; Wagner, Phillip
2015-10-01
Understanding typical variation of vertical jump (VJ) performance and confounding sources of its typical variability (i.e., familiarization and competitive level) is pertinent in the routine monitoring of athletes. We evaluated the presence of systematic error (learning effect) and nonuniformity of error (heteroscedasticity) across VJ performances of athletes that differ in competitive level and quantified the reliability of VJ kinetic and kinematic variables relative to the smallest worthwhile change (SWC). One hundred thirteen high school athletes, 30 college athletes, and 35 professional athletes completed repeat VJ trials. Average eccentric rate of force development (RFD), average concentric (CON) force, CON impulse, and jump height measurements were obtained from vertical ground reaction force (VGRF) data. Systematic error was assessed by evaluating changes in the mean of repeat trials. Heteroscedasticity was evaluated by plotting the difference score (trial 2 - trial 1) against the mean of the trials. Variability of jump variables was calculated as the typical error (TE) and coefficient of variation (%CV). No substantial systematic error (effect size range: -0.07 to 0.11) or heteroscedasticity was present for any of the VJ variables. Vertical jump can be performed without the need for familiarization trials, and the variability can be conveyed as either the raw TE or the %CV. Assessment of VGRF variables is an effective and reliable means of assessing VJ performance. Average CON force and CON impulse are highly reliable (%CV: 2.7% ×/÷ 1.10), although jump height was the only variable to display a %CV ≤SWC. Eccentric RFD is highly variable yet should not be discounted from VJ assessments on this factor alone because it may be sensitive to changes in response to training or fatigue that exceed the TE.
Vasconcellos, Diego Klee de; Bottino, Marco Antonio; Nishioka, Renato Sussumu; Valandro, Luiz Felipe; Costa, Elza Maria Valadares da
2005-06-01
The present in vitro study was designed to compare the differences in the vertical misfit of implant-supported frameworks using three different forces for tightening the bridge locking screws: fastening by hand until first resistance, and using torque drivers with 10 and 20Ncm. The investigation was conducted based on the results given by 9 six-unit nickel-chromium (2 abutments/ 4 pontics) screw-retained implant-supported frameworks. The structures were exposed to simulated porcelain firings. The marginal misfit measurements were made using a traveling measuring microscope at selected screw tightening forces: fastening by hand until first resistance, and using torque drivers with 10 and 20Ncm. The results were submitted to one-way ANOVA with repeated measures on one factor, and post hoc pairwise comparisons using Tukey test (5%). The mean marginal misfit of the frameworks, fastening the screws by hand until first resistance, was 41.56µm (SD±12.45µm). The use of torque driver devices caused a significant reduction in marginal opening (p<0.05). With the lowest torque available (10Ncm), the mean marginal discrepancy at the abutment-framework interface was reduced an average of 52% to a mean marginal opening of 19.71µm (SD±2.97µm). After the use of the 20Ncm torque driver, the mean marginal discrepancy of the frameworks was reduced an average of 69% to a mean marginal opening of 12.82µm (SD±4.0µm). Comparing the use of torque drivers with 10 and 20 Ncm torque, the means are not significantly different from one another. The seating force has an important effect on the vertical misfit measurements, once it may considerably narrow the vertical misfit gaps at the abutment-framework interface, thus leading to a misjudgment of the real marginal situation.
Possible forcing of global temperature by the oceanic tides
Keeling, Charles D.; Whorf, Timothy P.
1997-01-01
An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer. PMID:11607740
Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC. (Technical Monitor)
2001-01-01
The mechanism for the formation and intensification of the hurricane warm core is not well understood. The generally accepted explanation is that the warm core forms as a result of gentle subsidence of air within the eye that warms as a result of adiabatic compression. Malkus suggested that this subsidence is part of a deep circulation in which air begins descent at high levels in the eye, acquires cyclonic angular momentum as it descends to lower levels, and then diverges at low levels, where it is entrained back into the eyewall. Inward mixing from the eyewall is hypothesized to force the subsidence and maintain the moisture and momentum budgets of the subsiding air. Willoughby suggested that air within the eye has remained so since it was first enclosed during the formation of the eyewall and that it subsides at most only a few kilometers rather than through the depth of the troposphere. He relates the subsidence to the low-level divergence and entrainment into the eyewall noted by Malkus, but suggests that shrinkage of the eye's volume is more than adequate to account for the air lost to the eyewall or converted to cloudy air by turbulent mixing across the eye boundary. Smith offered an alternative view of the subsidence forcing, suggesting that vertical motion in a mature hurricane eye is generated largely by imbalances between the downward vertical pressure gradient force and the upward buoyancy force. The vertical pressure gradient force is associated with the decay and/or radial spread of the tangential wind field with height at those levels were the winds are in approximate gradient wind balance. The rate of subsidence is just that required to warm the air sufficiently such that the buoyancy remains in close hydrostatic balance with an increasing vertical pressure gradient force. In this study, a very high-resolution simulation of Hurricane Bob using a cloud-resolving grid scale of 1.3 km is used to examine the heat budget within the storm with particular emphasis on the mechanisms for warming of the eye.
[Kinetics of heifers and cows walking on an instrumented treadmill].
Nuss, K; Waldern, N M; Weishaupt, M A; Wiestner, T
2015-01-01
Kinetic data of stride characteristics and ground reaction forces of cattle become increasingly important as automated lameness detection may be installed in dairy cow housing systems in the future. Therefore, sound heifers and cows were measured on an instrumented treadmill to collect such basic data. Nine heifers and 10 cows were trained to walk on an instrumented treadmill. Vertical ground reaction forces as well as step and stride timing and length variables were measured for all limbs simultaneously. On average, 16 stride cycles in cows and 24 strides in heifers were analysed in each case. The cows walked on the treadmill at an average speed of 1.2 ± 0.05 m/s (mean ± standard deviation), with a stride rate of 43.0 ± 1.9/min and a stride length of 1.68 ± 0.1 m. The heifers had average values of 1.3 ± 0.04 m/s, 53.7 ± 2.2/min and 1.49 ± 0.05 m, respectively. The stance duration relative to stride duration (the duty factor) was for the cows significantly longer in the forelimbs (67%) than in the hind limbs (64%). Force-time-curves of all limbs showed two peaks, one after landing (FP1) and another during push off (FP2). Vertical ground reaction force was highest for FP1 in the hind limbs, but for FP2 in the forelimbs. At all limbs, force minimum between the peaks occurred shortly before midstance. The vertical impulse carried by both forelimbs amounted to 53.7% of the total stride impulse in cows and to 55.0% in heifers. The location of the centre of body mass varied during the stride cycle but was always located more towards the front limbs. Cows and heifers showed a symmetrical walk with minimal intra-individual variations. Relative stride impulse of the front limbs was higher than that of the hind limbs. Peak vertical force in the hind limbs was highest at landing and in the forelimbs at push off. The present study offers kinetic data of sound cows and heifers which might be helpful as guidelines for automated systems for lameness detection in cattle.
NASA Astrophysics Data System (ADS)
Phu, D. X.; Choi, S. B.; Lee, Y. S.; Han, M. S.
2014-10-01
This paper presents a new design of a magnetorheological fluid (MR) mount for vibration control considering both vertical forces and horizontal moments such as are met in various engine systems, including a medium high-speed engine of ship. The newly designed mount, called a MR brake mount, offers several salient benefits such as small size and relatively high load capacity compared with a conventional MR engine mount that can control vertical vibration only. The principal design parameters of the proposed mount are optimally determined to achieve maximum torque with geometric and spatial constraints. Subsequently, the proposed MR mount is designed and manufactured based on the optimized design parameters. It is shown from experimental testing that the proposed mount, which combines MR mount with MR brake, can produce the desired force and torque to reduce unwanted vibration of a medium high-speed engine system of ship subjected to both vertical and horizontal exciting motions. In addition, it is verified that there is no large difference between experiment results and simulation results that are obtained from an analytical model derived in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Se-Jong; Kim, Daeyong, E-mail: daeyong@kims.re.kr; Lee, Keunho
2015-11-15
A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth ofmore » twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.« less
Lidar characterizations of atmospheric aerosols and clouds
NASA Astrophysics Data System (ADS)
Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Burton, S. P.
2017-12-01
Knowledge of the vertical profile, composition, concentration, and size distribution of aerosols is required to quantify the impacts of aerosols on human health, global and regional climate, clouds and precipitation. In particular, radiative forcing due to anthropogenic aerosols is the most uncertain part of anthropogenic radiative forcing, with aerosol-cloud interactions (ACI) as the largest source of uncertainty in current estimates of global radiative forcing. Improving aerosol transport model predictions of the vertical profile of aerosol optical and microphysical characteristics is crucial for improving assessments of aerosol radiative forcing. Understanding how aerosols and clouds interact is essential for investigating the aerosol indirect effect and ACI. Through its ability to provide vertical profiles of aerosol and cloud distributions as well as important information regarding the optical and physical properties of aerosols and clouds, lidar is a crucial tool for addressing these science questions. This presentation describes how surface, airborne, and satellite lidar measurements have been used to address these questions, and in particular how High Spectral Resolution Lidar (HSRL) measurements provide profiles of aerosol properties (backscatter, extinction, depolarization, concentration, size) important for characterizing radiative forcing. By providing a direct measurement of aerosol extinction, HSRL provides more accurate aerosol measurement profiles and more accurate constraints for models than standard retrievals from elastic backscatter lidar, which loses accuracy and precision at lower altitudes due to attenuation from overlying layers. Information regarding particle size and abundance from advanced lidar retrievals provides better proxies for cloud-condensation-nuclei (CCN), which are required for assessing aerosol-cloud interactions. When combined with data from other sensors, advanced lidar measurements can provide information on aerosol and cloud properties for addressing both direct and indirect radiative forcing.
Aerial Rotation Effects on Vertical Jump Performance Among Highly Skilled Collegiate Soccer Players.
Barker, Leland A; Harry, John R; Dufek, Janet S; Mercer, John A
2017-04-01
Barker, LA, Harry, JR, Dufek, JS, and Mercer, JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res 31(4): 932-938, 2017-In soccer matches, jumps involving rotations occur when attempting to head the ball for a shot or pass from set pieces, such as corner kicks, goal kicks, and lob passes. However, the 3-dimensional ground reaction forces used to perform rotational jumping tasks are currently unknown. Therefore, the purpose of this study was to compare bilateral, 3-dimensional, and ground reaction forces of a standard countermovement jump (CMJ0) with those of a countermovement jump with a 180° rotation (CMJ180) among Division-1 soccer players. Twenty-four participants from the soccer team of the University of Nevada performed 3 trials of CMJ0 and CMJ180. Dependent variables included jump height, downward and upward phase times, vertical (Fz) peak force and net impulse relative to mass, and medial-lateral and anterior-posterior force couple values. Statistical significance was set a priori at α = 0.05. CMJ180 reduced jump height, increased the anterior-posterior force couple in the downward and upward phases, and increased upward peak Fz (p ≤ 0.05). All other variables were not significantly different between groups (p > 0.05). However, we did recognize that downward peak Fz trended lower in the CMJ0 condition (p = 0.059), and upward net impulse trended higher in the CMJ0 condition (p = 0.071). It was concluded that jump height was reduced during the rotational jumping task, and rotation occurred primarily via AP ground reaction forces through the entire countermovement jump. Coaches and athletes may consider additional rotational jumping in their training programs to mediate performance decrements during rotational jump tasks.
Galactoseismology and the local density of dark matter
Banik, Nilanjan; Widrow, Lawrence M.; Dodelson, Scott
2016-10-08
Here, we model vertical breathing mode perturbations in the Milky Way's stellar disc and study their effects on estimates of the local dark matter density, surface density, and vertical force. Evidence for these perturbations, which involve compression and expansion of the Galactic disc perpendicular to its midplane, come from the SEGUE, RAVE, and LAMOST surveys. We show that their existence may lead to systematic errors ofmore » $$10\\%$$ or greater in the vertical force $$K_z(z)$$ at $$|z|=1.1\\,{\\rm kpc}$$. These errors translate to $$\\gtrsim 25\\%$$ errors in estimates of the local dark matter density. Using different mono-abundant subpopulations as tracers offers a way out: if the inferences from all tracers in the Gaia era agree, then the dark matter determination will be robust. Disagreement in the inferences from different tracers will signal the breakdown of the unperturbed model and perhaps provide the means for determining the nature of the perturbation.« less
Numerical modeling and preliminary validation of drag-based vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Krysiński, Tomasz; Buliński, Zbigniew; Nowak, Andrzej J.
2015-03-01
The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.
Apparatus for encapsulating a photovoltaic module
Albright, Scot P.; Dugan, Larry M.
1995-10-24
The subject inventions concern various photovoltaic module designs to protect the module from horizontal and vertical impacts and degradation of solar cell efficiency caused by moisture. In one design, a plurality of panel supports that are positioned adjacent to the upper panel in a photovoltaic module absorb vertical forces exerted along an axis perpendicular to the upper panel. Other designs employ layers of glass and tempered glass, respectively, to protect the module from vertical impacts. A plurality of button-shaped channels is used around the edges of the photovoltaic module to absorb forces applied to the module along an axis parallel to the module and direct moisture away from the module that could otherwise penetrate the module and adversely affect the cells within the module. A spacer is employed between the upper and lower panels that has a coefficient of thermal expansion substantially equivalent to the coefficient of thermal expansion of at least one of the panels.
Black carbon vertical profiles strongly affect its radiative forcing uncertainty
NASA Astrophysics Data System (ADS)
Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.
2012-11-01
The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.
Black carbon vertical profiles strongly affect its radiative forcing uncertainty
NASA Astrophysics Data System (ADS)
Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.
2013-03-01
The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.