NASA Technical Reports Server (NTRS)
Tosti, Louis P.
1959-01-01
An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a tilt-wing vertical-take-off-and-landing aircraft with the use of a remotely controlled 1/4-scale free-flight model. The model had two propellers with hinged (flapping) blades mounted on the wing which could be tilted up to an incidence angle of nearly 90 deg for vertical take-off and landing. The investigation consisted of hovering flights in still air, vertical take-offs and landings, and slow constant-altitude transitions from hovering to forward flight. The stability and control characteristics of the model were generally satisfactory except for the following characteristics. In hovering flight, the model had an unstable pitching oscillation of relatively long period which the pilots were able to control without artificial stabilization but which could not be considered entirely satisfactory. At very low speeds and angles of wing incidence on the order of 70 deg, the model experienced large nose-up pitching moments which severely limited the allowable center-of-gravity range.
NASA Technical Reports Server (NTRS)
Hahne, D. E.
1985-01-01
A wind tunnel investigation of concepts to improve the high angle-of-attack stability and control characteristics of a high performance aircraft was conducted. The effect of vertical tail geometry on stability and the effectiveness of several conventional and unusual control concepts was determined. These results were obtained over a large angle-of-attack range. Vertical tail location, cant angle and leading edge sweep could influence both longitudinal and lateral-directional stability. The control concepts tested were found to be effective and to provide control into the post stall angle-of-attack region.
Physics validation for design change of KSTAR passive stabilizer
NASA Astrophysics Data System (ADS)
Jeon, Y. M.; Kim, J. Y.; Oh, Y. K.; Yang, H. L.; Kim, W. C.; Kim, H. K.; Sabbagh, S. A.; Bialek, J. M.; Humphreys, D. A.; Welander, A. S.; Walker, M. L.
2009-11-01
Recently, the design of the passive stabilizer in KSTAR has been changed to improve controllability of the active control system and reduce the possibility of producing an additional error field. Originally the passive stabilizer in KSTAR was designed for RWM and vertical instability (or VDE) stabilizations and plasma startup efficiency, so that current bridges were designed and combined through 3D saddle-loop connections. Since the key design change is removing the current bridges, it's essential to assure satisfactory control performance for these instabilities under the design change. Control capability for n=1 RWM and achievable βN will be addressed as a primary goal of the passive stabilizer together with vertical instability control and effects on plasma startup. In addition, the changes in electro-magnetic force on conducting structures will be discussed qualitatively as a key engineering issue of the design change.
NASA Technical Reports Server (NTRS)
Seacord, Charles L.; Campbell, John P.
1945-01-01
Force and flight tests were performance on an all-wing model with windmilling propellers. Tests were conducted with deflected and retracted flaps, with and without auxiliary vertical tail surfaces, and with different centers of gravity and trim coefficients. Results indicate serious reduction of stick-fixed longitudinal stability because of wing-tip stalling at high lift coefficient. Directional stability without vertical tail is undesirably low. Low effective dihedral should be maintained. Elevator and rudder control system is satisfactory.
NASA Technical Reports Server (NTRS)
Smith, Charlee C., Jr.; Lovell, Powell M., Jr.
1954-01-01
An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.
NASA Technical Reports Server (NTRS)
Lovell, Powell M., Jr.
1954-01-01
An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.
Measurement of vertical stability metrics in KSTAR
NASA Astrophysics Data System (ADS)
Hahn, Sang-Hee; Humphreys, D. A.; Mueller, D.; Bak, J. G.; Eidietis, N. W.; Kim, H.-S.; Ko, J. S.; Walker, M. L.; Kstar Team
2017-10-01
The paper summarizes results of multi-year ITPA experiments regarding measurement of the vertical stabilization capability of KSTAR discharges, including most recent measurements at the highest achievable elongation (κ 2.0 - 2.1). The measurements of the open-loop growth rate of VDE (γz) and the maximum controllable vertical displacement (ΔZmax) are done by the release-and-catch method. The dynamics of the vertical movement of the plasma is verified by both relevant magnetic reconstructions and non-magnetic diagnostics. The measurements of γz and ΔZmax were done for different plasma currents, βp, internal inductances, elongations and different configurations of the vessel conductors that surround the plasma as the first wall. Effects of control design choice and diagnostics noise are discussed, and comparison with the axisymmetric plasma response model is given for partial accounting for the measured control capability. This work supported by Ministry of Science, ICT, and Future Planning under KSTAR project.
NASA Technical Reports Server (NTRS)
Wallace, Arthur R.; Recant, I.G.
1943-01-01
The effect of various vertical tail arrangements upon the stability and control characteristics of an XP-62 fighter model was investigated. Rudder-free yaw characteristics with take-off power and flaps deflected were satisfactory after dorsal fin modifications. Directional stability was obtained with all modified vertical tails. Satisfactory rudder effectiveness resulted partly because the dual-rotation propellers produced no asymmetric yawing moments. Pedal forces in sideslips were undesirably large but may be easily reduced.
NASA Technical Reports Server (NTRS)
Johnson, Harold I.
1946-01-01
Because the results of preliminary flight tests had indicated. the P-63A-1 airplane possessed insufficient directional stability, the NACA and the manufacturer (Bell Aircraft Corporation) suggested three vertical-tail modifications to remedy the deficiencies in the directional characteristics. These modifications included an enlarged vertical tail formed by adding a tip extension to the original vertical tail, a large sharp-edge ventral fin, and a small dorsal fin. The enlarged vertical tail involved only a slight increase in total vertical-tail area from 23.73 to 26.58 square feet but a relatively much larger increase in geometric aspect ratio from 1.24 to 1.73 based on height and area above the horizontal tail. At the request of the Air Material Command, Army Air Forces, flight tests were made to determine the effect of these modifications and of some combinations of these modifications on the directional stability and control characteristics of the airplane, In all, six different vertical-tail. configurations were investigated to determine the lateral and directional oscillation characteristics of the airplane, the sideslip characteristics, the yaw due to ailerons in rudder-fixed rolls from turns and pull-outs, the trim changes due to speed changes; and the trim changes due to power changes. Results of the tests showed that the enlarged vertical tail approximately doubled the directional stability of the airplane and that the pilots considered the directional stability provided by the enlarged vertical tail to be satisfactory. Calculations based on sideslip data obtained at an indicated airspeed of 300 miles per hour showed that the directional stability of the airplane with the original vertical tail corresponded to a value of 0(sub n beta) of -0.00056 whereas for the enlarged vertical tail the estimated va1ue of C(sub n beta) was -0.00130, The ventral fin was found to increase by a moderate amount the directional stability of the airplane with the original vertical tail for smal1 sides1ip angles at low speeds but little consistent change in directional stability was effected by the ventral fin at higher speeds, The effectiveness of the ventral fin was generally much less when used with the enlarged vertical tail than when used with the original vertical tail. The ventral and dorsal fins were found to be very effective in eliminating rudder-force reversals which occurred in low-speed, high-engine-power, sideslipped conditions of flight . Sideslip tests at two altitudes for approximately the sane engine power and indicated airspeed showed that a small decrease in static directional stability occurred with increasing altitude and this decrease in stability was attributed to the increased propeller blade angles required at high altitudes. The variations of rudder pedal force with indicated airspeed using normal rated power and a constant rudder tab setting through the speed range were desirably small for all the configurations tested. The rudder pedal force changed by about 50 pounds for a power change from engine idling power, to normal rated power and this pedal force change was largely independent of airspeed or of vertical-tail configuration for the various configurations tested.
Analysis of vertical stability limits and vertical displacement event behavior on NSTX-U
NASA Astrophysics Data System (ADS)
Boyer, Mark; Battaglia, Devon; Gerhardt, Stefan; Menard, Jonathan; Mueller, Dennis; Myers, Clayton; Sabbagh, Steven; Smith, David
2017-10-01
The National Spherical Torus Experiment Upgrade (NSTX-U) completed its first run campaign in 2016, including commissioning a larger center-stack and three new tangentially aimed neutral beam sources. NSTX-U operates at increased aspect ratio due to the larger center-stack, making vertical stabilization more challenging. Since ST performance is improved at high elongation, improvements to the vertical control system were made, including use of multiple up-down-symmetric flux loop pairs for real-time estimation, and filtering to remove noise. Similar operating limits to those on NSTX (in terms of elongation and internal inductance) were achieved, now at higher aspect ratio. To better understand the observed limits and project to future operating points, a database of vertical displacement events and vertical oscillations observed during the plasma current ramp-up on NSTX/NSTX-U has been generated. Shots were clustered based on the characteristics of the VDEs/oscillations, and the plasma parameter regimes associated with the classes of behavior were studied. Results provide guidance for scenario development during ramp-up to avoid large oscillations at the time of diverting, and provide the means to assess stability of target scenarios for the next campaign. Results will also guide plans for improvements to the vertical control system. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.
NASA Technical Reports Server (NTRS)
Bennett, Charles V.
1947-01-01
An investigation of the low-speed, power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane has been conducted in the Langley free-flight tunnel. In the investigation it was found that with flaps neutral satisfactory flight behavior at low speeds was obtainable with an increase in height of the vertical tail and with the inboard slats opened. In the flap-down slat-open condition the longitudinal stability was satisfactory, but it was impossible to obtain satisfactory lateral-flight characteristics even with the increase in height of the vertical tail because of the negative effective dihedral, low directional stability, and large-adverse yawing moments of the ailerons.
Effects of control laws and relaxed static stability on vertical ride quality of flexible aircraft
NASA Technical Reports Server (NTRS)
Roberts, P. A.; Swaim, R. L.; Schmidt, D. K.; Hinsdale, A. J.
1977-01-01
State variable techniques are utilized to generate the RMS vertical load factors for the B-52H and B-1 bombers at low level, mission critical, cruise conditions. A ride quality index is proposed to provide meaningful comparisons between different controls or conditions. Ride quality is shown to be relatively invariant under various popular control laws. Handling quality variations are shown to be major contributors to ride quality variations on both vehicles. Relaxed static stability is artificially implemented on the study vehicles to investigate its effects on ride quality. The B-52H ride quality is generally degraded when handling characteristics are automatically restored by a feedback control to the original values from relaxed stability conditions. The B-1 airplane shows little ride quality sensitivity to the same analysis due to the small rigid body contribution to load factors at the flight condition investigated.
NASA Technical Reports Server (NTRS)
Lovell, Powell M., Jr.; Kibry, Robert H.; Smith, Charles C., Jr.
1953-01-01
An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane. This paper presents the results of flight tests to determine the stability and control characteristics of the model during constant-altitude slow transitions from hovering to normal unstalled forward flight. The tests indicated that the airplane can be flown through the transition range fairly easily although some difficulty will probably encountered in controlling the yawing motions at angles of attack between about 60 and 40. An increase in the size of the vertical tail will not materially improve the controllability of the yawing motions in this range of angle of attack but the use of a yaw damper will make the yawing motions easy to control throughout the entire transitional flight range. The tests also indicated that the airplane can probably be flown sideways satisfactorily at speeds up to approximately 33 knots (full scale) with the normal control system and up to approximately 37 knots (full scale) with both elevons and rudders rigged to move differentially for roll control. At sideways speeds above these values, the airplane will have a strong tendency to diverge uncontrollably in roll.
Flight dynamics and control modelling of damaged asymmetric aircraft
NASA Astrophysics Data System (ADS)
Ogunwa, T. T.; Abdullah, E. J.
2016-10-01
This research investigates the use of a Linear Quadratic Regulator (LQR) controller to assist commercial Boeing 747-200 aircraft regains its stability in the event of damage. Damages cause an aircraft to become asymmetric and in the case of damage to a fraction (33%) of its left wing or complete loss of its vertical stabilizer, the loss of stability may lead to a fatal crash. In this study, aircraft models for the two damage scenarios previously mentioned are constructed using stability derivatives. LQR controller is used as a direct adaptive control design technique for the observable and controllable system. Dynamic stability analysis is conducted in the time domain for all systems in this study.
Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiman, A.
Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields localized near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced by a relatively simple set of parallelogram-shaped coils.
Electromagnetic Modeling of the Passive Stabilization Loop at EAST
NASA Astrophysics Data System (ADS)
Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao
2012-09-01
A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.
Robot Would Climb Steep Terrain
NASA Technical Reports Server (NTRS)
Kennedy, Brett; Ganino, Anthony; Aghazarian, Hrand; Hogg, Robert; McHerny, Michael; Garrett, Michael
2007-01-01
This brief describes the steep terrain access robot (STAR) -- a walking robot that has been proposed for exploring steep terrain on remote planets. The STAR would be able to climb up or down on slopes as steep as vertical, and even beyond vertical to overhangs. Its system of walking mechanisms and controls would be to react forces and maintain stability. To enable the STAR to anchor itself in the terrain on steep slopes to maintain stability and react forces, it would be necessary to equip the tips of the walking legs with new ultrasonic/ sonic drill corers (USDCs) and to develop sensors and control algorithms to enable robust utilization of the USDCs.
NASA Technical Reports Server (NTRS)
Schuldenfrei, Marvin; Comisarow, Paul; Goodson, Kenneth W
1947-01-01
Tests were made of an airplane model having a 45.1 degree swept-back wing with aspect ratio 2.50 and taper ratio 0.42 and a 42.8 degree swept-back horizontal tail with aspect ratio 3.87 and taper ratio 0.49 to determine its low-speed stability and control characteristics. The test Reynolds number was 2.87 x 10(6) based on a mean aerodynamic chord of 2.47 feet except for some of the aileron tests which were made at a Reynolds number of 2.05 x 10(6). With the horizontal tail located near the fuselage juncture on the vertical tail, model results indicated static longitudinal instability above a lift coefficient that was 0.15 below the lift coefficient at which stall occurred. Static longitudinal stability, however, was manifested throughout the life range with the horizontal tail located near the top of the vertical tail. The use of 10 degrees negative dihedral on the wing had little effect on the static longitudinal stability characteristics. Preliminary tests of the complete model revealed an undesirable flat spot in the yawing-moment curves at low angles of attack, the directional stability being neutral for yaw angles of plus-or-minus 2 degrees. This undesirable characteristic was improved by replacing the thick original vertical tail with a thin vertical tail and by flattening the top of the dorsal fairing.
NASA Astrophysics Data System (ADS)
Gawronek, Pelagia; Makuch, Maria
2017-12-01
The classical measurements of stability of railway bridge, in the context of determining the vertical displacements of the object, consisted on precise leveling of girders and trigonometric leveling of controlled points (fixed into girders' surface). The construction elements, which were measured in two ways, in real terms belonged to the same vertical planes. Altitude measurements of construction were carried out during periodic structural stability tests and during static load tests of bridge by train. The specificity of displacement measurements, the type of measured object and the rail land surveying measurement conditions were determinants to define methodology of altitude measurement. The article presents compatibility of vertical displacements of steel railway bridge, which were developed in two measurement methods. In conclusion, the authors proposed the optimum concept of determining the vertical displacements of girders by using precise and trigonometric leveling (in terms of accuracy, safety and economy of measurement).
Foster, Richard J; Whitaker, David; Scally, Andrew J; Buckley, John G; Elliott, David B
2015-05-01
Falls on stairs are a significant cause of morbidity and mortality in elderly people. A simple safety strategy to avoid tripping on stairs is increasing foot clearance. We determined whether a horizontal-vertical illusion superimposed onto stairs to create an illusory perceived increase in stair-riser height would increase stair ascent foot clearance in older participants. Preliminary experiments determined the optimum parameters for the horizontal-vertical illusion. Fourteen older adults (mean age ± 1 SD, 68.5 ± 7.4 years) ascended a three-step staircase with the optimized version of the horizontal-vertical illusion (spatial frequency: 12 cycles per stair riser) positioned either on the bottom or top stair only, or on the bottom and top stair simultaneously. These were compared to a control condition, which had a plain stair riser with edge highlighters positioned flush with each stair-tread edge. Foot clearance and measures of postural stability were compared across conditions. The optimized illusion on the bottom and top stair led to a significant increase in foot clearance over the respective stair edge, compared to the control condition. There were no significant decreases in postural stability. An optimized horizontal-vertical visual illusion led to significant increases in foot clearance in older adults when ascending a staircase, but the effects did not destabilize their postural stability. Inclusion of the horizontal-vertical illusion on raised surfaces (e.g., curbs) or the bottom and top stairs of staircases could improve stair ascent safety in older adults.
Proportioning the airplane for lateral stability
NASA Technical Reports Server (NTRS)
Donlan, C. J.
1976-01-01
Proportioning for lateral aircraft control included: (1) directional stability (slope of curve of yawing moment coefficient against sideslip), and (2) effective dihedral factor (slope of curve of rolling moment coefficient against sideslip). Basic forces influencing the directional stability of aircraft are indicated. Propeller side force, basic fuselage yaw, and vertical tail side force contributed to yaw moment about center of gravity.
High Reynolds Number Effects on HSCT Stability and Control Characteristics
NASA Technical Reports Server (NTRS)
Elzey, Michael B.; Owens, Lewis R., Jr.; Wahls, Richard A.; Wilson, Douglas L.
1999-01-01
Two wind tunnel tests during 1995 in the National Transonic Facility (NTF 070 and 073) served to define Reynolds number effects on longitudinal and lateral-directional stability and control. Testing was completed at both high lift and transonic conditions. The effect of Reynolds number on the total airplane configuration, horizontal and vertical tail effectiveness, forebody chine performance, rudder control and model aeroelastics was investigated. This paper will present pertinent stability and control results from these two test entries. Note that while model aeroelastic effects are examined in this presentation, no corrections for these effects have been made to the data.
Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.
Wang, Jia-Jun
2012-11-01
X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Wolhart, Walter D.; Fletcher, H. S.
1953-01-01
An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the pitching stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient, control deflections, and propeller blade angle were investigated. The tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.
Aircraft directional stability and vertical tail design: A review of semi-empirical methods
NASA Astrophysics Data System (ADS)
Ciliberti, Danilo; Della Vecchia, Pierluigi; Nicolosi, Fabrizio; De Marco, Agostino
2017-11-01
Aircraft directional stability and control are related to vertical tail design. The safety, performance, and flight qualities of an aircraft also depend on a correct empennage sizing. Specifically, the vertical tail is responsible for the aircraft yaw stability and control. If these characteristics are not well balanced, the entire aircraft design may fail. Stability and control are often evaluated, especially in the preliminary design phase, with semi-empirical methods, which are based on the results of experimental investigations performed in the past decades, and occasionally are merged with data provided by theoretical assumptions. This paper reviews the standard semi-empirical methods usually applied in the estimation of airplane directional stability derivatives in preliminary design, highlighting the advantages and drawbacks of these approaches that were developed from wind tunnel tests performed mainly on fighter airplane configurations of the first decades of the past century, and discussing their applicability on current transport aircraft configurations. Recent investigations made by the authors have shown the limit of these methods, proving the existence of aerodynamic interference effects in sideslip conditions which are not adequately considered in classical formulations. The article continues with a concise review of the numerical methods for aerodynamics and their applicability in aircraft design, highlighting how Reynolds-Averaged Navier-Stokes (RANS) solvers are well-suited to attain reliable results in attached flow conditions, with reasonable computational times. From the results of RANS simulations on a modular model of a representative regional turboprop airplane layout, the authors have developed a modern method to evaluate the vertical tail and fuselage contributions to aircraft directional stability. The investigation on the modular model has permitted an effective analysis of the aerodynamic interference effects by moving, changing, and expanding the available airplane components. Wind tunnel tests over a wide range of airplane configurations have been used to validate the numerical approach. The comparison between the proposed method and the standard semi-empirical methods available in literature proves the reliability of the innovative approach, according to the available experimental data collected in the wind tunnel test campaign.
Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.
Park, Hae-Won; Kim, Sangbae
2015-03-25
This paper presents a bio-inspired quadruped controller that allows variable-speed galloping. The controller design is inspired by observations from biological runners. Quadrupedal animals increase the vertical impulse that is generated by ground reaction forces at each stride as running speed increases and the duration of each stance phase reduces, whereas the swing phase stays relatively constant. Inspired by this observation, the presented controller estimates the required vertical impulse at each stride by applying the linear momentum conservation principle in the vertical direction and prescribes the ground reaction forces at each stride. The design process begins with deriving a planar model from the MIT Cheetah 2 robot. A baseline periodic limit cycle is obtained by optimizing ground reaction force profiles and the temporal gait pattern (timing and duration of gait phases). To stabilize the optimized limit cycle, the obtained limit cycle is converted to a state feedback controller by representing the obtained ground reaction force profiles as functions of the state variable, which is monotonically increasing throughout the gait, adding impedance control around the height and pitch trajectories of the obtained limit cycle and introducing a finite state machine and a pattern stabilizer to enforce the optimized gait pattern. The controller that achieves a stable 3 m s(-1) gallop successfully adapts the speed change by scaling the vertical ground reaction force to match the momentum lost by gravity and adding a simple speed controller that controls horizontal speed. Without requiring additional gait optimization processes, the controller achieves galloping at speeds ranging from 3 m s(-1) to 14.9 m s(-1) while respecting the torque limit of the motor used in the MIT Cheetah 2 robot. The robustness of the controller is verified by demonstrating stable running during various disturbances, including 1.49 m step down and 0.18 m step up, as well as random ground height and model parameter variations.
Electrostatic stabilizer for a passive magnetic bearing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Richard F
2016-10-11
Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.
Electrostatic stabilizer for a passive magnetic bearing system
Post, Richard F.
2015-11-24
Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.
NASA Technical Reports Server (NTRS)
Seacord, Charles L; Campbell, John P.
1943-01-01
The effects of mass distribution on lateral stability and control characteristics of an airplane have been determined by flight tests of a model in the NACA free-flight tunnel. In the investigation, the rolling and yawing movements of inertia were increased from normal values to values up to five times normal. For each moment-of-inertia condition, combinations of dihedral and vertical-tail area representing a variety of airplane configurations were tested. The results of the flight tests of the model were correlated with calculated stability and control characteristics and, in general, good agreement was obtained. The tests showed the following effects of increased rolling and yawing moments of inertia: no appreciable change in spiral stability; reductions in oscillatory stability that were serious at high values of dihedral; a reduction in the sensitivity of the model to gust disturbances; and a reduction in rolling acceleration provided by the ailerons, which caused a marked increase in time to reach a given angle of bank. The general flight behavior of the model became worse with increasing moments of inertia but, with combinations of small effective dihedral and large vertical-tail area, satisfactory flight characteristics were obtained at all moment-of-inertia conditions.
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS.
Meardon, Stacey; Klusendorf, Anna; Kernozek, Thomas
2016-06-01
Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Case-control study. Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level 3.
Impact of flight systems integration on future aircraft design
NASA Technical Reports Server (NTRS)
Hood, R. V.; Dollyhigh, S. M.; Newsom, J. R.
1984-01-01
Integrations trends in aircraft are discussed with an eye to manifestations in future aircraft designs through interdisciplinary technology integration. Current practices use software changes or small hardware fixes to solve problems late in the design process, e.g., low static stability to upgrade fuel efficiency. A total energy control system has been devised to integrate autopilot and autothrottle functions, thereby eliminating hardware, reducing the software, pilot workload, and cost, and improving flight efficiency and performance. Integrated active controls offer reduced weight and larger payloads for transport aircraft. The introduction of vectored thrust may eliminate horizontal and vertical stabilizers, and location of the thrust at the vehicle center of gravity can provide vertical takeoff and landing capabilities. It is suggested that further efforts will open a new discipline, aeroservoelasticity, and tests will become multidisciplinary, involving controls, aerodynamics, propulsion and structures.
NASA Technical Reports Server (NTRS)
Schroeder, J. A.; Merrick, V. K.
1990-01-01
Several control and display concepts were evaluated on a variable-stability helicopter prior to future evaluations on a modified Harrier. The control and display concepts had been developed to enable precise hover maneuvers, station keeping, and vertical landings in simulated zero-visibility conditions and had been evaluated extensively in previous piloted simulations. Flight evaluations early in the program revealed several inadequacies in the display drive laws that were later corrected using an alternative design approach that integrated the control and display characteristics with the desired guidance law. While hooded, three pilots performed landing-pad captures followed by vertical landings with attitude-rate, attitude, and translation-velocity-command control systems. The latter control system incorporated a modified version of state-rate-feedback implicit-model following. Precise landing within 2 ft of the desired touchdown point were achieved.
Active Vertical Tail Buffeting Alleviation on an F/A-18 Model in a Wind Tunnel
NASA Technical Reports Server (NTRS)
Moses, Robert W.
1999-01-01
A 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet-Affected Tails (ACROBAT) program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and other aerodynamic devices, and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at a dynamic pressure of 14 psf. By using single-input-single-output control laws at gains well below the physical limits of the control effectors, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. Stability margins indicate that a constant gain setting in the control law may be used throughout the range of angle of attack tested.
Stabilizing detached Bridgman melt crystal growth: Proportional-integral feedback control
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.
2012-10-01
The dynamics, operability limits, and tuning of a proportional-integral feedback controller to stabilize detached vertical Bridgman crystal growth are analyzed using a capillary model of shape stability. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. Open and closed loop dynamics of step changes in these state variables are analyzed under both shape stable and shape unstable growth conditions. Effects of step changes in static contact angle and growth angle are also studied. Proportional and proportional-integral control can stabilize unstable growth, but only within tight operability limits imposed by the narrow range of allowed meniscus shapes. These limits are used to establish safe operating ranges of controller gain. Strong nonlinearity of the capillary model restricts the range of perturbations that can be stabilized, and under some circumstances, stabilizes a spurious operating state far from the set point. Stabilizing detachment at low growth angle proves difficult and becomes impossible at zero growth angle.
NASA Astrophysics Data System (ADS)
Lindvai-Soos, Daniel; Horn, Martin
2018-07-01
In this article a novel vehicle dynamics control concept is designed for a vehicle equipped with wheel individual electric traction machines, electronically controlled brakes and semi-active suspensions. The suspension's cross-couplings between traction forces and vertical forces via anti-dive and anti-squat geometry is utilised in the control concept to improve driving comfort and driving stability. The control concept is divided into one main and two cascaded branches. The main controller consists of a multivariable vehicle dynamics controller and a control allocation scheme to improve the vehicle's driving comfort. The cascaded feedback loops maintain the vehicle's stability according to wheel slip and vehicle sideslip. The performance of the combined vehicle dynamics controller is compared to a standard approach in simulation. It can be stated that the controller piloting semi-active suspensions together with brake and traction devices enables a superior performance regarding comfort and stability.
The addition of body armor diminishes dynamic postural stability in military soldiers.
Sell, Timothy C; Pederson, Jonathan J; Abt, John P; Nagai, Takashi; Deluzio, Jennifer; Wirt, Michael D; McCord, Larry J; Lephart, Scott M
2013-01-01
Poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The additional weight of body armor carried by Soldiers alters static postural stability and may predispose Soldiers to lower extremity musculoskeletal injuries. However, static postural stability tasks poorly replicate the dynamic military environment, which places considerable stress on the postural control system during tactical training and combat. Therefore, the purpose of this study was to examine the effects of body armor on dynamic postural stability during single-leg jump landings. Thirty-six 101st Airborne Division (Air Assault) Soldiers performed single-leg jump landings in the anterior direction with and without wearing body armor. The dynamic postural stability index and the individual stability indices (medial-lateral stability index, anterior-posterior stability index, and vertical stability index) were calculated for each condition. Paired sample t-tests were performed to determine differences between conditions. Significant differences existed for the medial-lateral stability index, anterior-posterior stability index, vertical stability index, and dynamic postural stability index (p < 0.05). The addition of body armor resulted in diminished dynamic postural stability, which may result in increased lower extremity injuries. Training programs should address the altered dynamic postural stability while wearing body armor in attempts to promote adaptations that will result in safer performance during dynamic tasks.
Modeling visual-based pitch, lift and speed control strategies in hoverflies
Vercher, Jean-Louis
2018-01-01
To avoid crashing onto the floor, a free falling fly needs to trigger its wingbeats quickly and control the orientation of its thrust accurately and swiftly to stabilize its pitch and hence its speed. Behavioural data have suggested that the vertical optic flow produced by the fall and crossing the visual field plays a key role in this anti-crash response. Free fall behavior analyses have also suggested that flying insect may not rely on graviception to stabilize their flight. Based on these two assumptions, we have developed a model which accounts for hoverflies´ position and pitch orientation recorded in 3D with a fast stereo camera during experimental free falls. Our dynamic model shows that optic flow-based control combined with closed-loop control of the pitch suffice to stabilize the flight properly. In addition, our model sheds a new light on the visual-based feedback control of fly´s pitch, lift and thrust. Since graviceptive cues are possibly not used by flying insects, the use of a vertical reference to control the pitch is discussed, based on the results obtained on a complete dynamic model of a virtual fly falling in a textured corridor. This model would provide a useful tool for understanding more clearly how insects may or not estimate their absolute attitude. PMID:29361632
76 FR 13546 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This proposed AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are proposing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs = 52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
76 FR 35342 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
Buffet induced structural/flight-control system interaction of the X-29A aircraft
NASA Technical Reports Server (NTRS)
Voracek, David F.; Clarke, Robert
1991-01-01
High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.
ATCA digital controller hardware for vertical stabilization of plasmas in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batista, A. J. N.; Sousa, J.; Varandas, C. A. F.
2006-10-15
The efficient vertical stabilization (VS) of plasmas in tokamaks requires a fast reaction of the VS controller, for example, after detection of edge localized modes (ELM). For controlling the effects of very large ELMs a new digital control hardware, based on the Advanced Telecommunications Computing Architecture trade mark sign (ATCA), is being developed aiming to reduce the VS digital control loop cycle (down to an optimal value of 10 {mu}s) and improve the algorithm performance. The system has 1 ATCA trade mark sign processor module and up to 12 ATCA trade mark sign control modules, each one with 32 analogmore » input channels (12 bit resolution), 4 analog output channels (12 bit resolution), and 8 digital input/output channels. The Aurora trade mark sign and PCI Express trade mark sign communication protocols will be used for data transport, between modules, with expected latencies below 2 {mu}s. Control algorithms are implemented on a ix86 based processor with 6 Gflops and on field programmable gate arrays with 80 GMACS, interconnected by serial gigabit links in a full mesh topology.« less
Stabilizing detached Bridgman melt crystal growth: Model-based nonlinear feedback control
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.
2012-12-01
The dynamics and operability limits of a nonlinear-proportional-integral controller designed to stabilize detached vertical Bridgman crystal growth are studied. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. The controller consists of a model-based nonlinear component coupled with a standard proportional-integral controller. The nonlinear component is based on a capillary model of shape stability. Perturbations to gap width, pressure difference, wetting angle, and growth angle are studied under both shape stable and shape unstable conditions. The nonlinear-PI controller allows a wider operating range of gain than a standard PI controller used alone, is easier to tune, and eliminates solution multiplicity from closed-loop operation.
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS
Klusendorf, Anna; Kernozek, Thomas
2016-01-01
ABSTRACT Background Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. Hypothesis/Purpose The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Design Case-control study Methods Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). Results No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. Conclusions When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level of Evidence Level 3 PMID:27274423
Subsonic Aerodynamic Characteristics of a Circular Body Earth-to-Orbit Vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Ware, George M.; MacConochie, Ian O.
1996-01-01
A test of a generic reusable earth-to-orbit transport was conducted in the 7- by 10-Foot high-speed tunnel at the Langley Research Center at Mach number 0.3. The model had a body with a circular cross section and a thick clipped delta wing as the major lifting surface. For directional control, three different vertical fin arrangements were investigated: a conventional aft-mounted center vertical fin, wingtip fins, and a nose-mounted vertical fin. The configuration was longitudinally stable about the estimated center-of-gravity position of 0.72 body length and had sufficient pitch-control authority for stable trim over a wide range of angle of attack, regardless of fin arrangement. The maximum trimmed lift/drag ratio for the aft center-fin configuration was less than 5, whereas the other configurations had values of above 6. The aft center-fin configuration was directionally stable for all angles of attack tested. The wingtip and nose fins were not intended to produce directional stability but to be active controllers for artificial stabilization. Small rolling-moment values resulted from yaw control of the nose fin. Large adverse rolling-moment increments resulted from tip-fin controller deflection above 13 deg angle of attack. Flow visualization indicated that the adverse rolling-moment increments were probably caused by the influence of the deflected tip-fin controller on wing flow separation.
NASA Technical Reports Server (NTRS)
Whiting, Matthew Robert
1996-01-01
The feasibility of augmenting the available yaw control power on the X-31 through differential deflection of the canard surfaces was studied as well as the possibility of using differential canard control to stabilize the X-31 with its vertical tail removed. Wind-tunnel tests and the results of departure criteria and linear analysis showed the destabilizing effect of the reduction of the vertical tail on the X-31. Wind-tunnel testing also showed that differential canard deflection was capable of generating yawing moments of roughly the same magnitude as the thrust vectoring vanes currently in place on the X-31 in the post-stall regime. Analysis showed that the X-31 has sufficient aileron roll control power that with the addition of differential canard as a yaw controller, the wind-axis roll accelerations will remain limited by yaw control authority. It was demonstrated, however, that pitch authority may actually limit the maximum roll rate which can be sustained. A drop model flight test demonstrated that coordinated, wind axis rolls could be performed with roll rates as high as 50 deg/sec (full scale equivalent) at 50 deg angle of attack. Another drop model test was conducted to assess the effect of vertical tail reduction, and an analysis of using differential canard deflection to stabilize the tailless X-31 was performed. The results of six-degree-of-freedom, non-linear simulation tests were correlated with the drop model flights. Simulation studies then showed that the tailless X-31 could be controlled at angles of attack at or above 20 deg using differential canard as the only yaw controller.
The calculation of lateral stability with free controls
NASA Technical Reports Server (NTRS)
Mathias, Gotthold
1934-01-01
The discussion of the structural methods for obtaining lateral stability discloses the remarkable influence of the constant fuselage and wing proportions to the yawing moments. For the effectiveness of modifications in vertical tail surfaces and tail length, these quotas - little observed heretofore, in this connection - are decisive. This also applies to the amount of dihedral of the wing with regard to the roll stability of the complete wing already existing without angle of the dihedral.
NASA Technical Reports Server (NTRS)
Moses, Robert W.
1997-01-01
A 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at a dynamic pressure of 14 psf. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. Buffeting alleviation results when using the rudder are presented for comparison. Stability margins indicate that a constant gain setting in the control law may be used throughout the range of angle of attack tested.
Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.; Khong, Thuan H.
2013-01-01
A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.
Low speed aerodynamic characteristics of a lifting-body hypersonic research aircraft configuration
NASA Technical Reports Server (NTRS)
Penland, J. A.
1975-01-01
An experimental investigation of the low-speed longitudinal, lateral, and directional stability characteristics of a lifting-body hypersonic research airplane concept was conducted in a low-speed tunnel with a 12-foot (3.66-meter) octagonal test section at the Langley Research Center. The model was tested with two sets of horizontal and vertical tip controls having different planform areas, a center vertical tail and two sets of canard controls having trapezoidal and delta planforms, and retracted and deployed engine modules and canopy. This investigation was conducted at a dynamic pressure of 239.4 Pa (5 psf) (Mach number of 0.06) and a Reynolds number of 2 million based on the fuselage length. The tests were conducted through an angle-of-attack range of 0 deg to 30 deg and through horizontal-tail deflections of 10 deg to minus 30 deg. The complete configuration exhibited excessive positive static longitudinal stability about the design center-of-gravity location. However, the configuration was unstable laterally at low angles of attack and unstable directionally throughout the angle-of-attack range. Longitudinal control was insufficient to trim at usable angles of attack. Experiments showed that a rearward shift of the center of gravity and the use of a center-located vertical tail would result in a stable and controllable vehicle.
Effect of Footwear on Dynamic Stability during Single-leg Jump Landings.
Bowser, Bradley J; Rose, William C; McGrath, Robert; Salerno, Jilian; Wallace, Joshua; Davis, Irene S
2017-06-01
Barefoot and minimal footwear running has led to greater interest in the biomechanical effects of different types of footwear. The effect of running footwear on dynamic stability is not well understood. The purpose of this study was to compare dynamic stability and impact loading across 3 footwear conditions; barefoot, minimal footwear and standard running shoes. 25 injury free runners (21 male, 4 female) completed 5 single-leg jump landings in each footwear condition. Dynamic stability was assessed using the dynamic postural stability index and its directional components (mediolateral, anteroposterior, vertical). Peak vertical ground reaction force and vertical loadrates were also compared across footwear conditions. Dynamic stability was dependent on footwear type for all stability indices (ANOVA, p<0.05). Post-hoc tests showed dynamic stability was greater when barefoot than in running shoes for each stability index (p<0.02) and greater than minimal footwear for the anteroposterior stability index (p<0.01). Peak vertical force and average loadrates were both dependent on footwear (p≤0.05). Dynamic stability, peak vertical force, and average loadrates during single-leg jump landings appear to be affected by footwear type. The results suggest greater dynamic stability and lower impact loading when landing barefoot or in minimal footwear. © Georg Thieme Verlag KG Stuttgart · New York.
Development of a Near Ground Remote Sensing System
Zhang, Yanchao; Xiao, Yuzhao; Zhuang, Zaichun; Zhou, Liping; Liu, Fei; He, Yong
2016-01-01
Unmanned Aerial Vehicles (UAVs) have shown great potential in agriculture and are increasingly being developed for agricultural use. There are still a lot of experiments that need to be done to improve their performance and explore new uses, but experiments using UAVs are limited by many conditions like weather and location and the time it takes to prepare for a flight. To promote UAV remote sensing, a near ground remote sensing platform was developed. This platform consists of three major parts: (1) mechanical structures like a horizontal rail, vertical cylinder, and three axes gimbal; (2) power supply and control parts; (3) onboard application components. This platform covers five degrees of freedom (DOFs): horizontal, vertical, pitch, roll, yaw. A stm32 ARM single chip was used as the controller of the whole platform and another stm32 MCU was used to stabilize the gimbal. The gimbal stabilizer communicates with the main controller via a CAN bus. A multispectral camera was mounted on the gimbal. Software written in C++ language was developed as the graphical user interface. Operating parameters were set via this software and the working status was displayed in this software. To test how well the system works, a laser distance meter was used to measure the slide rail’s repeat accuracy. A 3-axis vibration analyzer was used to test the system stability. Test results show that the horizontal repeat accuracy was less than 2 mm; vertical repeat accuracy was less than 1 mm; vibration was less than 2 g and remained at an acceptable level. This system has high accuracy and stability and can therefore be used for various near ground remote sensing studies. PMID:27164111
A flight evaluation of VTOL jet transport under visual and simulated instrument conditions
NASA Technical Reports Server (NTRS)
Holzhauser, C. A.; Morello, S. A.; Innis, R. C.; Patton, J. M., Jr.
1972-01-01
A flight investigation was performed with the Dornier DO-31 VTOL to evaluate the performance, handling qualities, and operating characteristics that are considered to be important in the operation of a commerical VTOL transport in the terminal area. The DO-31, a 20,000 kilogram transport, has a mixed jet propulsion system; main engines with nozzles deflect from a cruise to a hover position, and vertical lift engines operated below 170 knots. This VTOL mode incorporates pitch and roll attitude and yaw rate stabilization. The tests concentrated on the transition, approach, and vertical landing. The mixed jet propulsion system provided a large usable performance envelope that enabled simulated IFR approaches to be made on 7 deg and 12 deg glide slopes. In these approaches management of thrust magnitude and direction was a primary problem, and some form of integrating the controls will be necessary. The handling qualities evaluation pointed out the need for additional research of define flight path criteria. The aircraft had satisfactory control and stability in hover out of ground effect. The recirculation effects in vertical landing were large below 15 meters.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs = 52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This proposed AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are proposing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh
2017-01-01
Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12-18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm.
Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh
2017-01-01
Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12–18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm. PMID:28713252
Vertical integration models to prepare health systems for capitation.
Cave, D G
1995-01-01
Health systems will profit most under capitation if their vertical integration strategy provides operational stability, a strong primary care physician base, efficient delivery of medical services, and geographic access to physicians. Staff- and equity-based systems best meet these characteristics for success because they have one governance structure and a defined mission statement. Moreover, physician bonds are strong because these systems maximize physicians' income potential and control the revenue stream.
Cesar, Guilherme M; Sigward, Susan M
2016-08-01
Reported differences between children and adults with respect to COM horizontal and vertical position to maintain dynamic stability during running deceleration suggest that this relationship may not be as important in children. This study challenged the current dynamic stability paradigm by determining the features of whole body posture that predicted forward velocity and momentum of running gait termination in adults and children. Sixteen adults and 15 children ran as fast as possible and stopped at pre-determined location. Separate regression analyses determined whether COM posterior and vertical positions and functional limb length (distance between COM and stance foot) predicted velocity and momentum for adults and children. COM posterior position was the strongest predictor of forward velocity and momentum in both groups supporting the previously established relationship during slower tasks. COM vertical position also predicted momentum in children, not adults. Higher COM position in children was related to greater momentum; consistent with previously reported differences between children and adults in COM position across running deceleration. COM vertical position was related to momentum but not velocity in children suggesting that strategies used to terminate running may be driven by demands imposed not just by velocity, but also the mass being decelerated. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Wolhart, Walter D.; Fletcher, H. S.
1953-01-01
An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the rolling stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient were investigated for the complete model and for certain components of the model. Effects of control deflections and of propeller blade angle were investigated for the complete model. Most of the tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Wolhart, w. D.; Fletcher, H. S.
1953-01-01
An experimental investigation has been conducted in the Langley stability tunnel at low speed to deter+nine the yawing stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient were investigated for the complete model and for certain components of the model. Effects of control deflections and of propeller blade angle were investigated for the complete model. Most of the tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this.
75 FR 7945 - Airworthiness Directives; Augustair, Inc. Models 2150, 2150A, and 2180 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... inspect the vertical stabilizer front spar for cracks and loose fasteners, repair any cracks and loose fasteners found, and reinforce the vertical stabilizer spar regardless if cracks are found. This AD results from six reports of airplanes with a cracked vertical stabilizer front spar. We are issuing this AD to...
Design of an Integrated Plasma Control System and Extension of XSCTools to Ignitor
NASA Astrophysics Data System (ADS)
Albanese, R.; Ambrosino, G.; Artaserse, G.; Pironti, A.; Rubinacci, G.; Villone, F.; Ramogida, G.
2010-11-01
The performance of the integrated system for vertical stability, shape and plasma current control for the Ignitor machine has been assessed by means of the CREATELlinearized model of plasma responseootnotetextR. Albanese, F. Villone, Nucl. Fusion 38, 723 (1998) against a set of disturbances for the reference 11 MA limiter configuration and the 9 MA Double Null configuration. A new design, based on the methodology of the eXtreme Shape Controller (XSC) at JET, has been tested : by using all the shape control circuits with the exception of those used to control the vertical stability is possible to control up to four independent linear combinations of the 36 plasma-wall gaps. The results point out a substantial improvement in shape recovery, especially in the presence of a disturbance in li. The new shape controller can also automatically generate, via feedback control, new plasma shapes in the proximity of a given equilibrium configuration. The XSC ToolsootnotetextG. Ambrosino, R. Albanese et al., Fus. Eng.& Des. 74, 521 (2005) have been adapted and extended to develop linearized Ignitor models including 2D eddy currents and to solve inverse linearized plasma equilibria.
Matheron, Eric; Kapoula, Zoï
2015-01-01
Vertical heterophoria (VH) is the latent vertical misalignment of the eyes when the retinal images are dissociated, vertical orthophoria (VO) when there is no misalignment. Studies on postural control, during binocular vision in upright stance, reported that healthy subjects with small VH vs. VO are less stable, but the experimental cancellation of VH with an appropriate prism improves postural stability. The same behavior was recorded in nonspecific chronic back pain subjects, all with VH. It was hypothesized that, without refraction problems, VH indicates a perturbation of the somaesthetic cues required in the sensorimotor loops involved in postural control and the capacity of the CNS to optimally integrate these cues, suggesting prevention possibilities. Sensorimotor conflict can induce pain and modify sensory perception in some healthy subjects; some nonspecific pain or chronic pain could result from such prolonged conflict in which VH could be a sign, with new theoretical and clinical implications.
Thermally driven film climbing a vertical cylinder
NASA Astrophysics Data System (ADS)
Smolka, Linda
2017-11-01
The dynamics of a Marangoni driven film climbing the outside of a vertical cylinder is examined in numerical simulations of a thin film model. The model has three parameters: the scaled cylinder radius R̂, upstream film height h∞ and downstream precursor film thickness b , and reduces to the model for Marangoni driven film climbing a vertical plate when R̂ -> ∞ . The advancing front displays dynamics similar to that along a vertical plate where, depending on h∞ , the film forms a Lax shock, an undercompressive double shock or a rarefaction-undercompressive shock. A linear stability analysis of the Lax shock reveals the number of fingers that form along the contact line increases linearly with cylinder circumference while no fingers form below R̂ 1.15 with b = 0.1 . The substrate curvature controls the Lax shock height, bounds on h∞ that define the three solutions and the maximum growth rate of perturbations when R̂ = O (1) , whereas the shape of solutions and the stability of the Lax shock converge to the behavior on a vertical plate when R̂ >= O (10) . The azimuthal curvatures of the base state and perturbation, arising from the annular geometry of the film, promote instability of the advancing contact line.
NASA Technical Reports Server (NTRS)
Yip, Long P.; Fratello, David J.; Robelen, David B.; Makowiec, George M.
1990-01-01
At the request of the United States Marine Corps, an exploratory wind-tunnel and flight test investigation was conducted by the Flight Dynamics Branch at the NASA Langley Research Center to improve the stability, controllability, and general flight characteristics of the Marine Corps Exdrone RPV (Remotely Piloted Vehicle) configuration. Static wind tunnel tests were conducted in the Langley 12 foot Low Speed Wind Tunnel to identify and improve the stability and control characteristics of the vehicle. The wind tunnel test resulted in several configuration modifications which included increased elevator size, increased vertical tail size and tail moment arm, increased rudder size and aileron size, the addition of vertical wing tip fins, and the addition of leading-edge droops on the outboard wing panel to improve stall departure resistance. Flight tests of the modified configuration were conducted at the NASA Plum Tree Test Site to provide a qualitative evaluation of the flight characteristics of the modified configuration.
NASA Technical Reports Server (NTRS)
Ellis, R. R.; Buchholz, R. E.; Moore, J. A.
1972-01-01
Two 0.00325-scale models of a space shuttle orbiter were tested in trisonic wind tunnel to obtain force, static stability, and control effectiveness data by six component internal strain gauge balance. Two separate configurations were tested; however, the fuselage and basic wing were of one-piece construction. The configurations were varied by replacing the straight wing tip extensions with upswept wing tips. Directional stability was provided for one configuration by a centerline vertical tail. Due to the one-piece body/wing construction, no body-alone data were obtained. The effect of tip fins and vertical tail size were, however, investigated. Both configurations were tested over a Mach range of 0.6 to 4.96 with data taken at angles of attack from minus 4 deg to 60 deg and at angles of sideslip from minus 4 deg to 10 deg.
Wood, Tamara M.; Gartner, Jeffrey W.
2010-01-01
Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.
Patients with migraine correctly estimate the visual verticality.
Crevits, Luc; Vanacker, Leen; Verraes, Anouk
2012-05-01
We wanted to study otolith function by measuring the static subjective visual vertical (SVV) in migraine patients and in controls with and without kinetosis (motion sickness). Forty-seven patients with moderately severe migraine and 96 healthy controls were enrolled. Using a questionnaire, persons with kinetosis were identified. The SVV test was performed in a totally dark room. Subjects wore a stiffneck to stabilize the head in an erect position. They were required to adjust an infrared line to the gravitational vertical with a hand-held infrared remote controlled potentiometer. The deviation of SVV in the group of migraine patients was not significantly different from that of controls, regardless of whether an aura was associated. SVV was not significantly influenced by the presence of dizziness/non specific vertigo or kinetosis. Patients with moderately severe migraine under prophylactic medication correctly estimate the visual verticality in the headache-free period. It is suggested that a deviation of SVV in a headache-free migraine patient may not be attributed to his migraine disorder as such regardless whether kinetosis is associated. Copyright © 2011 Elsevier B.V. All rights reserved.
Full-Body Gaze Control Mechanisms Elicited During Locomotion: Effects Of VOR Adaptation
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Houser, J.; Peters, B.; Miller, C.; Richards, J.; Marshburn, A.; Brady, R.; Cohen, H.; Bloomberg, J. J.
2004-01-01
Control of locomotion requires precise interaction between several sensorimotor subsystems. During locomotion the performer must satisfy two performance criteria: maintain stable forward translation and to stabilize gaze (McDonald, et al., 1997). Precise coordination demands integration of multiple sensorimotor subsystems for fulfilling both criteria. In order to test the general hypothesis that the whole body can serve as an integrated gaze stabilization system, we have previously investigated how the multiple, interdependent full-body sensorimotor subsystems respond to changes in gaze stabilization task constraints during locomotion (Mulavara and Bloomberg, 2003). The results suggest that the full body contributes to gaze stabilization during locomotion, and that its different functional elements respond to changes in visual task constraints. The goal of this study was to determine how the multiple, interdependent, full-body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated after the vestibulo-ocular reflex (VOR) gain has been altered. We investigated the potential of adaptive remodeling of the full-body gaze control system following exposure to visual-vestibular conflict known to adaptively reduce the VOR. Subjects (n=14) walked (6.4 km/h) on the treadmill before and after they were exposed to 0.5X manifying lenses worn for 30 minutes during self-generated sinusoidal vertical head rotations performed while seated. In this study we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. Results indicate that, following exposure to the 0.5X minifying lenses, there was a significant increase in the duration of stance and stride times, alteration in the amplitude of head movement with respect to space and a significant increase in the amount of knee flexion during the initial stance phase of the gait cycle. This study provides further evidence that the full body contributes to gaze stabilization during locomotion, and that different functional elements are responsive to changes in visual task constraints and are subject to adaptive alteration following exposure to visual-vestibular conflict.
Vertically stabilized elongated cross-section tokamak
Sheffield, George V.
1977-01-01
This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.
Feedback stabilization of an oscillating vertical cylinder by POD Reduced-Order Model
NASA Astrophysics Data System (ADS)
Tissot, Gilles; Cordier, Laurent; Noack, Bernd R.
2015-01-01
The objective is to demonstrate the use of reduced-order models (ROM) based on proper orthogonal decomposition (POD) to stabilize the flow over a vertically oscillating circular cylinder in the laminar regime (Reynolds number equal to 60). The 2D Navier-Stokes equations are first solved with a finite element method, in which the moving cylinder is introduced via an ALE method. Since in fluid-structure interaction, the POD algorithm cannot be applied directly, we implemented the fictitious domain method of Glowinski et al. [1] where the solid domain is treated as a fluid undergoing an additional constraint. The POD-ROM is classically obtained by projecting the Navier-Stokes equations onto the first POD modes. At this level, the cylinder displacement is enforced in the POD-ROM through the introduction of Lagrange multipliers. For determining the optimal vertical velocity of the cylinder, a linear quadratic regulator framework is employed. After linearization of the POD-ROM around the steady flow state, the optimal linear feedback gain is obtained as solution of a generalized algebraic Riccati equation. Finally, when the optimal feedback control is applied, it is shown that the flow converges rapidly to the steady state. In addition, a vanishing control is obtained proving the efficiency of the control approach.
NASA Technical Reports Server (NTRS)
Lovell, J Calvin; Wilson, Herbert A JR
1947-01-01
An investigation of the DM-1 Glider, which had approximately triangular plan form, an aspect ratio of 1.8 and a 60 degree sweptback leading edge, has been conducted in the Langley full-scale tunnel. The investigation consisted of the determination of the separate effects of the following modifications made to the glider on its maximum lift and stability characteristics: (a) installation of sharp leading edges over the inboard semispan of the wing, (b) removal of the vertical fin, (c) sealing of the elevon control-balance slots, (d) installation of redesigned thin vertical surfaces, (e) installation of faired sharp leading edges, and (f) installation of canopy. The maximum lift coefficient of the DM-1 glider was increased from 0.61 to 1.01 by the installation of semispan sharp leading edges, and from 1.01 to 1.24 by the removal of the vertical fin and sealing of the elevon control-balance slots. The highest maximum lift coefficient (1.32) was obtained when the faired sharp leading edges and the thin vertical surfaces were attached to the glider. The original DM-1 glider was longitudinally stable. The semispan sharp leading edges shifted the neutral point forward approximately 3 percent of the root chord at moderate lift coefficients, and the glider configuration with these sharp leading edges attached was longitudinally unstable, for the assumed center-of-gravity location, at lift coefficients above 0.73. Sealing the elevon control-balance slots and installing the faired sharp leading edges, the thin vertical surfaces, and the canopy shifted the neutral point forward approximately 8 percent of the root chord.
Design and analysis of control system for VCSEL of atomic interference magnetometer
NASA Astrophysics Data System (ADS)
Zhang, Xiao-nan; Sun, Xiao-jie; Kou, Jun; Yang, Feng; Li, Jie; Ren, Zhang; Wei, Zong-kang
2016-11-01
Magnetic field detection is an important means of deep space environment exploration. Benefit from simple structure and low power consumption, atomic interference magnetometer become one of the most potential detector payloads. Vertical Cavity Surface Emitting Laser (VCSEL) is usually used as a light source in atomic interference magnetometer and its frequency stability directly affects the stability and sensitivity of magnetometer. In this paper, closed-loop control strategy of VCSEL was designed and analysis, the controller parameters were selected and the feedback error algorithm was optimized as well. According to the results of experiments that were performed on the hardware-in-the-loop simulation platform, the designed closed-loop control system is reasonable and it is able to effectively improve the laser frequency stability during the actual work of the magnetometer.
NASA Technical Reports Server (NTRS)
Jordan, J. L.; Platz, S. J.; Schinstock, W. C.
1986-01-01
Flight test results are presented documenting the effect of airframe icing on performance and stability and control of a NASA DHC-6 icing research aircraft. Kohlman System Research, Inc., provided the data acquisition system and data analysis under contract to NASA. Performance modeling methods and MMLE techniques were used to determine the effects of natural ice on the aircraft. Results showed that ice had a significant effect on the drag coefficient of the aircraft and a modest effect on the MMLE derived longitudinal stability coefficients (code version MMLE). Data is also presented on asymmetric power sign slip maneuvers showing rudder floating characteristics with and without ice on the vertical stabilizer.
Postural stabilization after single-leg vertical jump in individuals with chronic ankle instability.
Nunes, Guilherme S; de Noronha, Marcos
2016-11-01
To investigate the impact different ways to define reference balance can have when analysing time to stabilization (TTS). Secondarily, to investigate the difference in TTS between people with chronic ankle instability (CAI) and healthy controls. Cross-sectional study. Laboratory. Fifty recreational athletes (25 CAI, 25 controls). TTS of the center of pressure (CoP) after maximal single-leg vertical jump using as reference method the single-leg stance, pre-jump period, and post-jump period; and the CoP variability during the reference methods. The post-jump reference period had lower values for TTS in the anterior-posterior (AP) direction when compared to single-leg stance (P = 0.001) and to pre-jump (P = 0.002). For TTS in the medio-lateral (ML) direction, the post-jump reference period showed lower TTS when compared to single-leg stance (P = 0.01). We found no difference between CAI and control group for TTS for any direction. The CAI group showed more CoP variability than control group in the single-leg stance reference period for both directions. Different reference periods will produce different results for TTS. There is no difference in TTS after a maximum vertical jump between groups. People with CAI have more CoP variability in both directions during single-leg stance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of model-based control for Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Sonda, Paul; Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey. J.
2004-05-01
We study the feasibility of using crucible rotation with feedback control to suppress oscillatory flows in two prototypical vertical Bridgman crystal growth systems—a stabilizing configuration driven by a time-oscillatory furnace disturbance and a thermally destabilized configuration, which exhibits inherent time-varying flows. Proportional controllers are applied to the two systems, with volume-averaged flow speed chosen as the single controlled output and crucible rotation chosen as the manipulated input. Proportional control is able to significantly suppress oscillations in the stabilizing configuration. For the destabilized case, control is effective for small-amplitude flows but is generally ineffective, due to the exacerbating effect of crucible rotation on the time-dependent flows exhibited by this system.
NASA Technical Reports Server (NTRS)
Mennell, R.; Hughes, T.
1974-01-01
Experimental aerodynamic investigations were conducted on a sting-mounted 0.0405 scale representation of the 140A/B space shuttle orbiter in a 7.75 ft by 11 ft low speed wind tunnel during the period from November 14, 1973 to December 6, 1973. Establishment of basic longitudinal stability characteristics in and out of ground effect, and the establishment of lateral-directional stability characteristics in free air were the primary test objectives. The following effects and configurations were tested: (1) two dual podded nacelle configurations; (2) stability and control characteristics at nominal elevon deflections, rudder deflections, airleron deflections, rudder flare angles, and body flap deflections; (3) effects of various elevon and elevon/fuselage gaps on longitudinal stability and control; (4) pressures on the vertical tail at spanwise stations using pressure bugs; (5) aerodynamic force and moment data measured in the stability axis system by an internally mounted, six-component strain gage balance. For Vol. 1, see N74-32324.
NASA Technical Reports Server (NTRS)
Newsom, William A., Jr.; Tosti, Louis P.
1959-01-01
A wind-tunnel investigation has been made to determine the aerodynamic characteristics of a 1/4-scale model of a tilt-wing vertical-take-off-and-landing aircraft. The model had two 3-blade single-rotation propellers with hinged (flapping) blades mounted on the wing, which could be tilted from an incidence of 4 deg for forward flight to 86 deg for hovering flight. The investigation included measurements of both the longitudinal and lateral stability and control characteristics in both the normal forward flight and the transition ranges. Tests in the forward-flight condition were made for several values of thrust coefficient, and tests in the transition condition were made at several values of wing incidence with the power varied to cover a range of flight conditions from forward-acceleration (or climb) conditions to deceleration (or descent) conditions The control effectiveness of the all-movable horizontal tail, the ailerons and the differential propeller pitch control was also determined. The data are presented without analysis.
Detail view of the vertical stabilizer of the Orbiter Discovery ...
Detail view of the vertical stabilizer of the Orbiter Discovery looking at the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. Note the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation Blanket and the black High-temperature Reusable Surface Insulation tiles along the outer edges (HRSI tiles). The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Detail view of the vertical stabilizer of the Orbiter Discovery ...
Detail view of the vertical stabilizer of the Orbiter Discovery Discovery showing the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation (AFSI) Blanket and the black High-temperature Reusable Surface Insulation (HRSI) tiles along the outer edges . The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view also a good detailed view of the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Results of using the NSTX-U Plasma Control System for scenario development
NASA Astrophysics Data System (ADS)
Boyer, M. D.; Battaglia, D. J.; Gates, D. A.; Gerhardt, S.; Menard, J.; Mueller, D.; Myers, C. E.; Ferron, J.; Sabbagh, S.; NSTX-U Team
2016-10-01
To best use the new capabilities of NSTX-U (e.g., higher toroidal field and additional, more distributed heating and current drive sources) and to achieve the operational goals of the program, major upgrades to the Plasma Control System have been made. These include improvements to vertical control, real-time equilibrium reconstruction, and plasma boundary shape control and the addition of flexible algorithms for beam modulation and gas injection to control the upgraded actuators in real-time, enabling their use in algorithms for stored energy and profile control. Control system commissioning activities have so far focused on vertical position and shape control. The upgraded controllers have been used to explore the vertical stability limits in inner wall limited and diverted discharges, and control of X-point and strike point locations has been demonstrated and is routinely used. A method for controlling the mid-plane inner gap, a challenge for STs, has also been added to improve reproducible control of diverted discharges. A supervisory shutdown handling algorithm has also been commissioned to ramp the plasma down and safely turn off actuators after an event such as loss of vertical control. Use of the upgrades has contributed to achieving 1MA, 0.65T scenarios with greater than 1s pulse length. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.
1996-03-22
During the final phase of tests with the HARV, Dryden technicians installed nose strakes, which were panels that fitted flush against the sides of the forward nose. When the HARV was at a high alpha, the aerodynamics of the nose caused a loss of directional stability. Extending one or both of the strakes results in strong side forces that, in turn, generated yaw control. This approach, along with the aircraft's Thrust Vectoring Control system, proved to be stability under flight conditions in which conventional surfaces, such as the vertical tails, were ineffective.
Study of Globus-M Tokamak Poloidal System and Plasma Position Control
NASA Astrophysics Data System (ADS)
Dokuka, V. N.; Korenev, P. S.; Mitrishkin, Yu. V.; Pavlova, E. A.; Patrov, M. I.; Khayrutdinov, R. R.
2017-12-01
In order to provide efficient performance of tokamaks with vertically elongated plasma position, control systems for limited and diverted plasma configuration are required. The accuracy, stability, speed of response, and reliability of plasma position control as well as plasma shape and current control depend on the performance of the control system. Therefore, the problem of the development of such systems is an important and actual task in modern tokamaks. In this study, the measured signals from the magnetic loops and Rogowski coils are used to reconstruct the plasma equilibrium, for which linear models in small deviations are constructed. We apply methods of the H∞-optimization theory to the synthesize control system for vertical and horizontal position of plasma capable to working with structural uncertainty of the models of the plant. These systems are applied to the plasma-physical DINA code which is configured for the tokamak Globus-M plasma. The testing of the developed systems applied to the DINA code with Heaviside step functions have revealed the complex dynamics of plasma magnetic configurations. Being close to the bifurcation point in the parameter space of unstable plasma has made it possible to detect an abrupt change in the X-point position from the top to the bottom and vice versa. Development of the methods for reconstruction of plasma magnetic configurations and experience in designing plasma control systems with feedback for tokamaks provided an opportunity to synthesize new digital controllers for plasma vertical and horizontal position stabilization. It also allowed us to test the synthesized digital controllers in the closed loop of the control system with the DINA code as a nonlinear model of plasma.
Performance Comparison of Sweeping/Steady Jet Actuators
NASA Astrophysics Data System (ADS)
Hirsch, Damian; Mercier, Justin; Noca, Flavio; Gharib, Morteza
2015-11-01
Flow control through the use of steady jet actuators has been used on various aircraft models since the late 1950's. However, the focus of recent studies has shifted towards the use of sweeping jets (fluidic oscillators) rather than steady jet actuators. In this work, experiments using various jet actuator designs were conducted at GALCIT's Lucas Wind Tunnel on a NACA 0012 vertical tail model similar to that of the Boeing 767 vertical stabilizer at Reynolds numbers ranging from 0.5 to 1.2 million. The rudder angle was fixed at 20 degrees. A total of 32 jet actuators were installed along the wingspan perpendicular to the trailing edge and the rudder shoulder of the vertical stabilizer. It is known that these types of flow control prevent separation. However, the goal of this work is to compare different jet designs and evaluate their performance. Parameters such as the number of actuators, their volumetric flow, and the wind tunnel speed were varied. The lift generation capabilities of steady and sweeping jet actuators were then compared. Another set of experiments was conducted to compare a new sweeping jet actuator design with one of the standard versions. Supported by Boeing.
Transition from shod to barefoot alters dynamic stability during running.
Ekizos, Antonis; Santuz, Alessandro; Arampatzis, Adamantios
2017-07-01
Barefoot running recently received increased attention, with controversial results regarding its effects on injury risk and performance. Numerous studies examined the kinetic and kinematic changes between the shod and the barefoot condition. Intrinsic parameters such as the local dynamic stability could provide new insight regarding neuromuscular control when immediately transitioning from one running condition to the other. We investigated the local dynamic stability during the change from shod to barefoot running. We further measured biomechanical parameters to examine the mechanisms governing this transition. Twenty habitually shod, young and healthy participants ran on a pressure plate-equipped treadmill and alternated between shod and barefoot running. We calculated the largest Lyapunov exponents as a measure of errors in the control of the movement. Biomechanical parameters were also collected. Local dynamic stability decreased significantly (d=0.41; 2.1%) during barefoot running indicating worse control over the movement. We measured higher cadence (d=0.35; 2.2%) and total flight time (d=0.58; 19%), lower total contact time (d=0.58; -5%), total vertical displacement (d=0.39; -4%), and vertical impulse (d=1.32; 11%) over the two minutes when running barefoot. The strike index changed significantly (d=1.29; 237%) towards the front of the foot. Immediate transition from shod to the barefoot condition resulted in an increased instability and indicates a worst control over the movement. The increased instability was associated with biomechanical changes (i.e. foot strike patterns) of the participants in the barefoot condition. Possible reasons why this instability arises, might be traced in the stance phase and particularly in the push-off. The decreased stability might affect injury risk and performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Detail view of the lower portion of the vertical stabilizer ...
Detail view of the lower portion of the vertical stabilizer of the Orbiter Discovery. The section below the rudder, often referred to as the "stinger", is used to house the orbiter drag chute assembly. The system consisted of a mortar deployed pilot chute, the main drag chute, a controller assembly and an attach/jettison mechanism. This system was a modification to the original design of the Orbiter Discovery to safely reduce the roll to stop distance without adversely affecting the vehicle handling qualities. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Technical Reports Server (NTRS)
Smith, Williard G.
1954-01-01
Experimental results showing the static longitudinal-stability and control characteristics of a model of a fighter airplane employing a low-aspect-ratio unswept wing and an all-movable horizontal tail are presented. The investigation was made over a Mach number range from 0.60 to 0.90 and from 1.35 to 1.90 at a constant Reynolds number of 2.40 million, based on the wing mean aerodynamic chord. Because of the location of the horizontal tail at the tip of the vertical tail, interference was noted between the vertical tail and the horizontal tail and between the wing and the horizontal tail. This interference produced a positive pitching-moment coefficient at zero lift throughout the Mach number range of the tests, reduced the change in stability with increasing lift coefficient of the wing at moderate lift coefficients in the subsonic speed range, and reduced the stability at low lift coefficients at high supersonic speeds. The lift and pitching-moment effectiveness of the all movable tail was unaffected by the interference effects and was constant throughout the lift-coefficient range of the tests at each Mach number except 1.90.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Reddy, A. S. S. R.; Krishna, R.; James, P. K.
1980-01-01
The dynamics, attitude, and shape control of a large thin flexible square platform in orbit are studied. Attitude and shape control are assumed to result from actuators placed perpendicular to the main surface and one edge and their effect on the rigid body and elastic modes is modelled to first order. The equations of motion are linearized about three different nominal orientations: (1) the platform following the local vertical with its major surface perpendicular to the orbital plane; (2) the platform following the local horizontal with its major surface normal to the local vertical; and (3) the platform following the local vertical with its major surface perpendicular to the orbit normal. The stability of the uncontrolled system is investigated analytically. Once controllability is established for a set of actuator locations, control law development is based on decoupling, pole placement, and linear optimal control theory. Frequencies and elastic modal shape functions are obtained using a finite element computer algorithm, two different approximate analytical methods, and the results of the three methods compared.
Stair-climbing capabilities of USU's T3 ODV mobile robot
NASA Astrophysics Data System (ADS)
Robinson, D. Reed; Wood, Carl G.
2001-09-01
A six-wheeled autonomous omni-directional vehicle (ODV) called T3 has been developed at Utah State University's (USU) Center for Self-Organizing and Intelligent Systems (CSOIS). This paper focuses on T3's ability to climb stairs using its unique configuration of 6 independently driven and steered wheels and active suspension height control. The ability of T3, or any similar vehicle, to climb stairs is greatly dependent on the chassis orientation relative to the stairs. Stability criteria is developed for any vehicle dimensions and orientation, on any staircase. All possible yaw and pitch angles on various staircases are evaluated to find vehicle orientations that will allow T3 to climb with the largest margin of stability. Different controller types are investigated for controlling vertical wheel movement with the objective of keeping all wheels in contact with the stairs, providing smooth load transfer between loaded and unloaded wheels, and maintaining optimum chassis pitch and roll angles. A controller is presented that uses feedback from wheel loading, vertical wheel position, and chassis orientation sensors. The implementation of the controller is described, and T3's stair climbing performance is presented and evaluated.
Aerodynamic Effects and Modeling of Damage to Transport Aircraft
NASA Technical Reports Server (NTRS)
Shah, Gautam H.
2008-01-01
A wind tunnel investigation was conducted to measure the aerodynamic effects of damage to lifting and stability/control surfaces of a commercial transport aircraft configuration. The modeling of such effects is necessary for the development of flight control systems to recover aircraft from adverse, damage-related loss-of-control events, as well as for the estimation of aerodynamic characteristics from flight data under such conditions. Damage in the form of partial or total loss of area was applied to the wing, horizontal tail, and vertical tail. Aerodynamic stability and control implications of damage to each surface are presented, to aid in the identification of potential boundaries in recoverable stability or control degradation. The aerodynamic modeling issues raised by the wind tunnel results are discussed, particularly the additional modeling requirements necessitated by asymmetries due to damage, and the potential benefits of such expanded modeling.
Supplementary active stabilization of nonrigid gravity gradient satellites
NASA Technical Reports Server (NTRS)
Keat, J. E.
1972-01-01
The use of active control for stability augmentation of passive gravity gradient satellites is investigated. The reaction jet method of control is the main interest. Satellite nonrigidity is emphasized. The reduction in the Hamiltonian H is used as a control criteria. The velocities, relative to local vertical, of the jets along their force axes are shown to be of fundamental significance. A basic control scheme which satisfies the H reduction criteria is developed. Each jet is fired when its velocity becomes appropriately large. The jet is de-energized when velocity reaches zero. Firing constraints to preclude orbit alteration may be needed. Control is continued until H has been minimized. This control policy is investigated using impulse and rectangular pulse models of the jet outputs.
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Feth, S.; Hirschfeld, D.; Smith, T. M.; Wang, Ling Jun; Volz, M. P.; Lehoczky, S. L.
1999-01-01
ZnSe crystals were grown by the physical vapor transport technique under horizontal and vertical (stabilized and destabilized) configurations. Secondary ion mass spectroscopy and photoluminescence measurements were performed on the grown ZnSe samples to map the distributions of [Si], [Fe], [Cu], [Al] and [Li or Na] impurities as well as Zn vacancy, [V (sub Zn)]. Annealings of ZnSe under controlled Zn pressures were studied to correlate the measured photoluminescence emission intensity to the equilibrium Zn partial pressure. In the horizontal grown crystals the segregations of [Si], [Fe], [Al] and [V (sub Zn)] were observed along the gravity vector direction whereas in the vertically stabilized grown crystal the segregation of these point defects was radially symmetrical. No apparent pattern was observed on the measured distributions in the vertically destabilized grown crystal. The observed segregations in the three growth configurations were interpreted based on the possible buoyancy-driven convection in the vapor phase.
Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis
Kaltenpoth, Martin; Roeser-Mueller, Kerstin; Koehler, Sabrina; Peterson, Ashley; Nechitaylo, Taras Y.; Stubblefield, J. William; Herzner, Gudrun; Seger, Jon; Strohm, Erhard
2014-01-01
Many insects rely on symbiotic microbes for survival, growth, or reproduction. Over evolutionary timescales, the association with intracellular symbionts is stabilized by partner fidelity through strictly vertical symbiont transmission, resulting in congruent host and symbiont phylogenies. However, little is known about how symbioses with extracellular symbionts, representing the majority of insect-associated microorganisms, evolve and remain stable despite opportunities for horizontal exchange and de novo acquisition of symbionts from the environment. Here we demonstrate that host control over symbiont transmission (partner choice) reinforces partner fidelity between solitary wasps and antibiotic-producing bacteria and thereby stabilizes this Cretaceous-age defensive mutualism. Phylogenetic analyses show that three genera of beewolf wasps (Philanthus, Trachypus, and Philanthinus) cultivate a distinct clade of Streptomyces bacteria for protection against pathogenic fungi. The symbionts were acquired from a soil-dwelling ancestor at least 68 million years ago, and vertical transmission via the brood cell and the cocoon surface resulted in host–symbiont codiversification. However, the external mode of transmission also provides opportunities for horizontal transfer, and beewolf species have indeed exchanged symbiont strains, possibly through predation or nest reuse. Experimental infection with nonnative bacteria reveals that—despite successful colonization of the antennal gland reservoirs—transmission to the cocoon is selectively blocked. Thus, partner choice can play an important role even in predominantly vertically transmitted symbioses by stabilizing the cooperative association over evolutionary timescales. PMID:24733936
NASA Technical Reports Server (NTRS)
Greenberg, Harry; Sternfield, Leonard
1943-01-01
Charts showing the variation in dynamic stability with the rudder hinge-moment characteristics are presented. A stabilizing rudder floating tendency combined with a high degree of aerodynamic balance is shown to lead to oscillations of increasing amplitude. This dynamic instability is increased by viscous-friction in the rudder control system. The presence of solid friction in the rudder control system will cause steady oscillations of constant amplitude if the floating angle of the rudder per unit angle of sideslip is stabilizing and greater than a certain critical value that depends on other airplane parameters, such as vertical-tail area and airplane moment of inertia about the vertical axis. The amplitude of the steady oscillation is proportional to the amount of friction and is generally quite small but increases as the condition of dynamic instability is approached. An approximate method of calculating the amplitudes of the steady oscillation is explained and is illustrated by a numerical example. A more accurate step-by-step calculation of the motion is also made and it is shown that the agreement with the approximate method is good.
75 FR 12441 - Airworthiness Directives; MD Helicopters, Inc. Model MD-900 Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-16
..., DOT. ACTION: Final rule. SUMMARY: This amendment supersedes an existing airworthiness directive (AD... numbers to certain parts, increasing the life limit for various parts, maintaining a previously established life limit for a certain vertical stabilizer control system (VSCS) bellcrank assembly and...
Lyapunov optimal feedback control of a nonlinear inverted pendulum
NASA Technical Reports Server (NTRS)
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
Integrated injury prevention program improves balance and vertical jump height in children.
DiStefano, Lindsay J; Padua, Darin A; Blackburn, J Troy; Garrett, William E; Guskiewicz, Kevin M; Marshall, Stephen W
2010-02-01
Implementing an injury prevention program to athletes under age 12 years may reduce injury rates. There is limited knowledge regarding whether these young athletes will be able to modify balance and performance measures after completing a traditional program that has been effective with older athletes or whether they require a specialized program for their age. The purpose of this study was to compare the effects of a pediatric program, which was designed specifically for young athletes, and a traditional program with no program in the ability to change balance and performance measures in youth athletes. We used a cluster-randomized controlled trial to evaluate the effects of the programs before and after a 9-week intervention period. Sixty-five youth soccer athletes (males: n = 37 mass = 34.16 +/- 5.36 kg, height = 143.07 +/- 6.27 cm, age = 10 +/- 1 yr; females: n = 28 mass = 33.82 +/- 5.37 kg, height = 141.02 +/- 6.59 cm) volunteered to participate and attended 2 testing sessions in a research laboratory. Teams were cluster-randomized to either a pediatric or traditional injury prevention program or a control group. Change scores for anterior-posterior and medial-lateral time-to-stabilization measures and maximum vertical jump height and power were calculated from pretest and post-test sessions. Contrary with our original hypotheses, the traditional program resulted in positive changes, whereas the pediatric program did not result in any improvements. Anterior-posterior time-to-stabilization decreased after the traditional program (mean change +/- SD = -0.92 +/- 0.49 s) compared with the control group (-0.49 +/- 0.59 s) (p = 0.003). The traditional program also increased vertical jump height (1.70 +/- 2.80 cm) compared with the control group (0.20 +/- 0.20 cm) (p = 0.04). There were no significant differences between control and pediatric programs. Youth athletes can improve balance ability and vertical jump height after completing an injury prevention program. Training specificity appears to affect improvements and should be considered with future program design.
On the stability of motion of several types of heavy symmetric gyroscopes with damping torques
NASA Astrophysics Data System (ADS)
Ge, Z.-M.; Wu, M.-H.
Sufficient conditions for the stability of motion of several gyroscopes are obtained using Liapunov's direct method. The stability of a 'temporarily' sleeping top with damping torque is considered for the cases of the support being fixed, being in vertical harmonic motion, and being in vertical periodic motion. Sufficient conditions are also obtained for the stability of a heavy symmetric gyroscope with damping torque and motor torque for the cases of regular precession, vertical axis permanent rotation with and without the axis of the outer gimbal being inclined, and the gyroscope being in a Newtonian central gravitational field.
Design and Analysis of Morpheus Lander Flight Control System
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.
2014-01-01
The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.
NASA Astrophysics Data System (ADS)
Sonda, Paul Julio
This thesis presents a comprehensive examination of the modeling, simulation, and control of axisymmetric flows occurring in a vertical Bridgman crystal growth system with the melt underlying the crystal. The significant complexity and duration of the manufacturing process make experimental optimization a prohibitive task. Numerical simulation has emerged as a powerful tool in understanding the processing issues still prevalent in industry. A first-principles model is developed to better understand the transport phenomena within a representative vertical Bridgman system. The set of conservation equations for momentum, energy, and species concentration are discretized using the Galerkin finite element method and simulated using accurate time-marching schemes. Simulation results detail the occurrence of fascinating nonlinear dynamics, in the form of stable, time-varying behavior for sufficiently large melt regimes and multiple steady flow states. This discovery of time-periodic flows for high intensity flows is qualitatively consistent with experimental observations. Transient simulations demonstrate that process operating conditions have a marked effect on the hydrodynamic behavior within the melt, which consequently affects the dopant concentration profile within the crystal. The existence of nonlinear dynamical behavior within this system motivates the need for feedback control algorithms which can provide superior crystal quality. This work studies the feasibility of using crucible rotation to control flows in the vertical Bridgman system. Simulations show that crucible rotation acts to suppress the axisymmetric flows. However, for the case when the melt lies below the crystal, crucible rotation also acts to accelerate the onset of time-periodic behavior. This result is attributed to coupling between the centrifugal force and the intense, buoyancy-driven flows. Proportional, proportional-integral, and input-output linearizing controllers are applied to vertical Bridgman systems in stabilizing (crystal below the melt) and destabilizing (melt below the crystal) configurations. The spatially-averaged, axisymmetric kinetic energy is the controlled output. The flows are controlled via rotation of the crucible containing the molten material. Simulation results show that feedback controllers using crucible rotation effectively attenuate flow oscillations in a stabilizing configuration with time-varying disturbance. Crucible rotation is not an optimal choice for suppressing inherent flow oscillations in the destabilizing configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulter, Richard J.; Martin, Timothy J.
One of the primary objectives of the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s second Mobile Facility (AMF2) is to obtain reliable measurements from ocean-going vessels. A pillar of the AMF2 strategy in this effort is the use of a stable platform for those instruments that 1) need to look directly at, or be shaded from, direct sunlight or 2) require a truly vertical orientation. Some ARM instruments that fall into these categories include the Multi-Filter Rotating Shadow Band Radiometer (MFRSR) and the Total Sky Imager (TSI), both of which have a shadow band mechanism, upward-lookingmore » radiometry that should be exposed only to the sky, a Microwave Radiometer (MWR) that looks vertically and at specified tilt angles, and vertically pointing radars, for which the vertical component of motion is critically important. During the design and construction phase of AMF2, an inexpensive stable platform was purchased to perform the stabilization tasks for some of these instruments. Computer programs were developed to communicate with the platform controller and with an inertial measurements platform that measures true ship motion components (roll, pitch, yaw, surge, sway, and heave). The platform was then tested on a 3-day cruise aboard the RV Connecticut during June 16-18, 2010, off the east coast of the United States. This initial test period was followed by continued development of the platform control strategy and implementation as time permitted. This is a report of the results of these efforts and the critical points in moving forward.« less
NASA Technical Reports Server (NTRS)
Fortenbaugh, R. L.
1980-01-01
Instructions for using Vertical Attitude Takeoff and Landing Aircraft Simulation (VATLAS), the digital simulation program for application to vertical attitude takeoff and landing (VATOL) aircraft developed for installation on the NASA Ames CDC 7600 computer system are described. The framework for VATLAS is the Off-Line Simulation (OLSIM) routine. The OLSIM routine provides a flexible framework and standardized modules which facilitate the development of off-line aircraft simulations. OLSIM runs under the control of VTOLTH, the main program, which calls the proper modules for executing user specified options. These options include trim, stability derivative calculation, time history generation, and various input-output options.
F-100 and F-100A on ramp - comparison showing tail modifications that solved control problems during
NASA Technical Reports Server (NTRS)
1955-01-01
On the left is NACA High-Speed Flight Station's North American F-100A (52-5778) Super Sabre with a modified vertical fin. On the right is an Air Force's North American F-100A (52-5773) with the original vertical fin configuration. 1955. NACA added a larger vertical fin to the airplane in December 1954, adding 10 percent more surface area. Later North American installed an even larger fin, having 27 percent greater area, as well as wingtip extensions. The modifications solved the dangerous directional stability and roll coupling problems that the F-100 was experiencing. The F-100 series went on to a long and distinguished service life.
Bounded parametric control of plane motions of space tethered system
NASA Astrophysics Data System (ADS)
Bezglasnyi, S. P.; Mukhametzyanova, A. A.
2018-05-01
This paper is focused on the problem of control of plane motions of a space tethered system (STS). The STS is modeled as a heavy rod with two point masses. Point masses are fixed on the rod. A third point mass can move along the rod. The control is realized as a continuous change of the distance from the centre of mass of the tethered system to the movable mass. New limited control laws processes of excitation and damping are built. Diametric reorientation and gravitational stabilization to the local vertical of an STS were obtained. The problem is solved by the method of Lyapunov's functions of the classical theory of stability. The theoretical results are confirmed by numerical calculations.
A passive gust alleviation system for a light aircraft
NASA Technical Reports Server (NTRS)
Roesch, P.; Harlan, R. B.
1975-01-01
A passive aeromechanical gust alleviation system was examined for application to a Cessna 172. The system employs small auxiliary wings to sense changes in angle of attack and to drive the wing flaps to compensate the resulting incremental lift. The flaps also can be spring loaded to neutralize the effects of variations in dynamic pressure. Conditions for gust alleviation are developed and shown to introduce marginal stability if both vertical and horizontal gusts are compensated. Satisfactory behavior is realized if only vertical gusts are absorbed; however, elevator control is effectively negated by the system. Techniques to couple the elevator and flaps are demonstrated to restore full controllability without sacrifice of gust alleviation.
Materials Examination of the Vertical Stabilizer from American Airlines Flight 587
NASA Technical Reports Server (NTRS)
Fox, Matthew R.; Schultheisz, Carl R.; Reeder, James R.; Jensen, Brian J.
2005-01-01
The first in-flight failure of a primary structural component made from composite material on a commercial airplane led to the crash of American Airlines Flight 587. As part of the National Transportation Safety Board investigation of the accident, the composite materials of the vertical stabilizer were tested, microstructure was analyzed, and fractured composite lugs that attached the vertical stabilizer to the aircraft tail were examined. In this paper the materials testing and analysis is presented, composite fractures are described, and the resulting clues to the failure events are discussed.
Stability and Control Characteristics of a Model of an Aerial Vehicle Supported by Four Ducted Fans
NASA Technical Reports Server (NTRS)
Parlett, Lysle P.
1961-01-01
The stability and control characteristics of a simple, lightly loaded model approximately one-third the size of a full-scale vehicle have been investigated by a series of free-flight tests. The model is representative of a type of vertically rising aircraft which would utilize four ducted fans as its sole source of lift and propulsion. The ducts were arranged in a rectangular pattern and were fixed to the airframe so that their axes of revolution were vertical for hovering flight. Control moments were provided by remotely controlled compressed-air jets at the sides and ends of the model. In hovering, the model in its original configuration exhibited divergent oscillations about both the roll and pitch axes. Because these oscillations were of a rather short period., the model was very difficult to control by the use of remote controls only. The model could be completely stabilized by the addition of a sufficient amount of artificial damping. The pitching oscillation was made easier to control by increasing the distance between the forward and rearward pairs of ducts. In forward flight, with the model in its original configuration, the top speed was limited by the development of an uncontrollable pitch-up. Large forward tilt angles were required for trim at the highest speeds attained. With the model rotated so that the shorter axis became the longitudinal axis, the pitch trim problem was found to be less than with the longer axis as the longitudinal axis. The installation of a system of vanes in the slipstream of the forward ducts reduced the tilt angle but increased the power required.
Performance Enhancement of a Vertical Tail Model with Sweeping Jet Actuators
NASA Technical Reports Server (NTRS)
Seele, Roman; Graff, Emilio; Lin, John; Wygnanski, Israel
2013-01-01
Active Flow Control (AFC) experiments performed at the Caltech Lucas Adaptive Wall Wind Tunnel on a 12%-thick, generic vertical tail model indicated that sweeping jets emanating from the trailing edge (TE) of the vertical stabilizer significantly increased the side force coefficient for a wide range of rudder deflection angles and yaw angles at free-stream velocities approaching takeoff rotation speed. The results indicated that 2% blowing momentum coefficient (C(sub mu) increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. Even C(sub mu) = 0.5% increased the side force in excess of 20% under these conditions. This effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project and the successful demonstration of this flow-control application could have far reaching implications. It could lead to effective applications of AFC technologies on key aircraft control surfaces and lift enhancing devices (flaps) that would aid in reduction of fuel consumption through a decrease in size and weight of wings and control surfaces or a reduction of the noise footprint due to steeper climb and descent.
Lussier, Bertrand; Gagnon, Alexandre; Moreau, Maxim; Pelletier, Jean-Pierre; Troncy, Éric
2018-04-01
This study aimed to describe the peak vertical force (PVF) over a 1-year period in a stabilized canine cranial cruciate deficient stifle model. Our hypothesis was that PVF would be restored to Baseline (intact) at the end of the follow-up. Fifteen (> 20 kg) mixed-breed dogs were included in this study. Cranial cruciate ligament was transected on Day (D) 0 followed by lateral suture stabilization at D28. Peak vertical force was acquired at D-1, D14, D26, D91, D210 and D357. When compared to Baseline, the PVF was significantly decreased at D14, D26, and D91. Values at D210 and D357 were not statistically different to Baseline. This study suggests a return to normal baseline peak vertical force in a canine cranial cruciate deficient stifle model when lateral suture stabilization has been performed 28 days after surgical transection.
NASA Astrophysics Data System (ADS)
Aleksandrov, V. V.; Reyes-Romero, M.; Sidorenko, G. Yu.; Temoltzi-Auila, R.
2010-04-01
We consider the problem of choosing a test perturbation of a movable foundation of a single-link inverted pendulum so as to test a vestibular prosthesis prototype located at the top of this pendulum in an extreme situation. The obtained results permit concluding that the information transmitted from otolithic organs of the human vestibular system to muscles of the locomotor apparatus is very important and improves the quality of stabilization of the human vertical posture preventing the possible fall.
VSTOL Systems Research Aircraft (VSRA) Harrier
NASA Technical Reports Server (NTRS)
1994-01-01
NASA's Ames Research Center has developed and is testing a new integrated flight and propulsion control system that will help pilots land aircraft in adverse weather conditions and in small confined ares (such as, on a small ship or flight deck). The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems research Aircraft (VSRA), which is a modified version of the U.S. Marine Corps's AV-8B Harrier jet fighter, which can take off and land vertically. The new automated flight control system features both head-up and panel-mounted computer displays and also automatically integrates control of the aircraft's thrust and thrust vector control, thereby reducing the pilot's workload and help stabilize the aircraft for landing. Visiting pilots will be encouraged to test the new system and provide formal evaluation flights data and feedback. An actual flight test and the display panel of control system are shown in this video.
NASA Technical Reports Server (NTRS)
Stewart, E. C.
1976-01-01
The results of an analytical study of a system using stability derivatives determined in static wind tunnel tests of a 1/6 scale model of a popular, high wing, light airplane equipped with the gust alleviation system are reported. The longitudinal short period mode dynamics of the system are analyzed, and include the following: (1) root loci, (2) airplane frequency responses to vertical gusts, (3) power spectra of the airplane responses in a gust spectrum, (4) time history responses to vertical gusts, and (5) handling characteristics. The system reduces the airplane's normal acceleration response to vertical gusts while simultaneously increasing the pitching response and reducing the damping of the longitudinal short period mode. The normal acceleration response can be minimized by using the proper amount of static alleviation and a fast response system with a moderate amount of damping. The addition of a flap elevator interconnect or a pitch damper system further increases the alleviation while moderating the simultaneous increase in pitching response. The system provides direct lift control and may reduce the stick fixed longitudinal static stability.
Postural stability changes during large vertical diplopia induced by prism wear in normal subjects.
Matsuo, Toshihiko; Yamasaki, Hanako; Yasuhara, Hirotaka; Hasebe, Kayoko
2013-01-01
To test the effect of double vision on postural stability, we measured postural stability by electric stabilometry before prism-wearing and immediately, 15, 30, and 60min after continuous prism-wearing with 6 prism diopters in total (a 3-prism-diopter prism placed with the base up in front of one eye and with the base down in front of the other eye) in 20 normal adult individuals with their eyes open or closed. Changes in stabilometric parameters in the time course of 60min were analyzed statistically by repeated-measure analysis of variance. When subjectsセ eyes were closed, the total linear length (cm) and the unit-time length (cm/sec) of the sway path were significantly shortened during the 60-minute prism-wearing (p<0.05). No significant change was noted in any stabilometric parameters obtained with the eyes open during the time course. In conclusion, postural stability did not change with the eyes open in the condition of large vertical diplopia, induced by prism-wearing for 60min, while the stability became better when measured with the eyes closed. A postural control mechanism other than that derived from visual input might be reinforced under abnormal visual input such as non-fusionable diplopia.
NASA Astrophysics Data System (ADS)
Chen, X. D.; Zhang, C. K.; Zhou, Z.; Gong, Z.; Zhou, J. J.; Tao, J. F.; Paterson, D. M.; Feng, Q.
2017-12-01
Biofilms, consisting of microorganisms and their secreted extracellular polymeric substances (EPSs), serve as "ecosystem engineers" stabilizing sedimentary environments. Natural sediment bed provides an excellent substratum for biofilm growth. The porous structure and rich nutrients allow the EPS matrix to spread deeper into the bed. A series of laboratory-controlled experiments were conducted to investigate sediment colonization of Bacillus subtilis and the penetration of EPS into the sediment bed with incubation time. In addition to EPS accumulation on the bed surface, EPS also penetrated downward. However, EPS distribution developed strong vertical heterogeneity with a much higher content in the surface layer than in the bottom layer. Scanning electron microscope images of vertical layers also displayed different micromorphological properties of sediment-EPS matrix. In addition, colloidal and bound EPSs exhibited distinctive distribution patterns. After the full incubation, the biosedimentary beds were eroded to test the variation of bed stability induced by biological effects. This research provides an important reference for the prediction of sediment transport and hence deepens the understanding of the biologically mediated sediment system and broadens the scope of the burgeoning research field of "biomorphodynamics."
Haptic cues for orientation and postural control in sighted and blind individuals
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Easton, R. D.; Bentzen, B. L.; Lackner, J. R.
1996-01-01
Haptic cues from fingertip contact with a stable surface attenuate body sway in subjects even when the contact forces are too small to provide physical support of the body. We investigated how haptic cues derived from contact of a cane with a stationary surface at low force levels aids postural control in sighted and congenitally blind individuals. Five sighted (eyes closed) and five congenitally blind subjects maintained a tandem Romberg stance in five conditions: (1) no cane; (2,3) touch contact (< 2 N of applied force) while holding the cane in a vertical or slanted orientation; and (4,5) force contact (as much force as desired) in the vertical and slanted orientations. Touch contact of a cane at force levels below those necessary to provide significant physical stabilization was as effective as force contact in reducing postural sway in all subjects, compared to the no-cane condition. A slanted cane was far more effective in reducing postural sway than was a perpendicular cane. Cane use also decreased head displacement of sighted subjects far more than that of blind subjects. These results suggest that head movement control is linked to postural control through gaze stabilization reflexes in sighted subjects; such reflexes are absent in congenitally blind individuals and may account for their higher levels of head displacement.
NASA Astrophysics Data System (ADS)
Nguyen, Quoc-Viet; Chan, Woei Leong; Debiasi, Marco
2015-03-01
We present our recent flying insect-inspired Flapping-Wing Micro Air Vehicle (FW-MAV) capable of hovering flight which we have recently achieved. The FW-MAV has wing span of 22 cm (wing tip-to-wing tip), weighs about 16.6 grams with onboard integration of radio control system including a radio receiver, an electronic speed control (ESC) for brushless motor, three servos for attitude flight controls of roll, pitch, and yaw, and a single cell lithium-polymer (LiPo) battery (3.7 V). The proposed gear box enables the FW-MAV to use one DC brushless motor to synchronously drive four wings and take advantage of the double clap-and-fling effects during one flapping cycle. Moreover, passive wing rotation is utilized to simplify the design, in addition to passive stabilizing surfaces for flight stability. Powered by a single cell LiPo battery (3.7 V), the FW-MAV flaps at 13.7 Hz and produces an average vertical force or thrust of about 28 grams, which is sufficient for take-off and hovering flight. Finally, free flight tests in terms of vertical take-off, hovering, and manual attitude control flight have been conducted to verify the performance of the FW-MAV.
Disruption Event Characterization and Forecasting in Tokamaks
NASA Astrophysics Data System (ADS)
Berkery, J. W.; Sabbagh, S. A.; Park, Y. S.; Ahn, J. H.; Jiang, Y.; Riquezes, J. D.; Gerhardt, S. P.; Myers, C. E.
2017-10-01
The Disruption Event Characterization and Forecasting (DECAF) code, being developed to meet the challenging goal of high reliability disruption prediction in tokamaks, automates data analysis to determine chains of events that lead to disruptions and to forecast their evolution. The relative timing of magnetohydrodynamic modes and other events including plasma vertical displacement, loss of boundary control, proximity to density limits, reduction of safety factor, and mismatch of the measured and desired plasma current are considered. NSTX/-U databases are examined with analysis expanding to DIII-D, KSTAR, and TCV. Characterization of tearing modes has determined mode bifurcation frequency and locking points. In an NSTX database exhibiting unstable resistive wall modes (RWM), the RWM event and loss of boundary control event were found in 100%, and the vertical displacement event in over 90% of cases. A reduced kinetic RWM stability physics model is evaluated to determine the proximity of discharges to marginal stability. The model shows high success as a disruption predictor (greater than 85%) with relatively low false positive rate. Supported by US DOE Contracts DE-FG02-99ER54524, DE-AC02-09CH11466, and DE-SC0016614.
NASA Technical Reports Server (NTRS)
Satran, D. R.
1986-01-01
A 0.36-scale model of a canard general-aviation airplane with a single pusher propeller and winglets was tested in the Langley 30- by 60-Foot Wind Tunnel to determine the static and dynamic stability and control and free-flight behavior of the configuration. Model variables made testing of the model possible with the canard in high and low positions, with increased winglet area, with outboard wing leading-edge droop, with fuselage-mounted vertical fin and rudder, with enlarged rudders, with dual deflecting rudders, and with ailerons mounted closer to the wing tips. The basic model exhibited generally good longitudinal and lateral stability and control characteristics. The removal of an outboard leading-edge droop degraded roll damping and produced lightly damped roll (wing rock) oscillations. In general, the model exhibited very stable dihedral effect but weak directional stability. Rudder and aileron control power were sufficiently adequate for control of most flight conditions, but appeared to be relatively weak for maneuvering compared with those of more conventionally configured models.
Improvement of vertical stabilization on KSTAR
NASA Astrophysics Data System (ADS)
Mueller, D.; Bak, J. G.; Boyer, M. D.; Eideitis, N.; Hahn, S. H.; Humphreys, D. A.; Kim, H. S.; Jeon, Y. M.; Lanctot, M.; Walker, M. L.
2017-10-01
The successful control of strongly shaped plasmas on the Korea Superconducting Tokamak Advanced Research (KSTAR) device requires active feedback of fast motion of the plasma vertical position by the use of internal normal conducting coils (IVC). This has required new electronics to supply relative flux loop differences, for zp, and voltage loop differences, for dzp/dt, as well as a novel technique (Zfast) to use a high-pass filter, typically 1 Hz, on the error in the signal in the feedback loop. Use of Zfast avoids the potential contention encountered when the internal coil attempts to perform control of the plasma shape which should be controlled by the slower and more powerful superconducting coils. A common problem of this contention is saturation of the IVC and loss of fast vertical control. This is eliminated by proper use of the Zfast. A Ziegler-Nichols relay feedback system was used to fine tune the required feedback gains. The selection of the magnetic sensors, filter time constants, control gains and of the Zfast control strategy which allowed vertically stable operation at a plasma elongation, kappa. of up to 2.16 at li = 1.15 and Betap = 2.4 will be discussed which is beyond the design reference of KSTAR of kappa = 2.0 at li = 1.2 and Betap = 1.9. Work Supported by U.S.D.O.E. Contract No. DE-AC02-09CH11466 and DE-SC0010685 and the KSTAR project.
Glow phenomenon surrounding the vertical stabilizer and OMS pods
1994-03-05
STS062-42-026 (4-18 March 1994) --- This 35mm frame, photographed as the Space Shuttle Columbia was orbiting Earth during a "night" pass, documents the glow phenomenon surrounding the vertical stabilizer and the Orbital Maneuvering System (OMS) pods of the spacecraft.
46 CFR 170.200 - Estimated lightweight vertical center of gravity.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Estimated lightweight vertical center of gravity. 170.200 Section 170.200 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and...
46 CFR 170.200 - Estimated lightweight vertical center of gravity.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Estimated lightweight vertical center of gravity. 170.200 Section 170.200 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and...
46 CFR 170.200 - Estimated lightweight vertical center of gravity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Estimated lightweight vertical center of gravity. 170.200 Section 170.200 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and...
46 CFR 170.200 - Estimated lightweight vertical center of gravity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Estimated lightweight vertical center of gravity. 170.200 Section 170.200 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and...
46 CFR 170.200 - Estimated lightweight vertical center of gravity.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Estimated lightweight vertical center of gravity. 170.200 Section 170.200 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and...
Shuttle/tethered satellite system conceptual design study
NASA Technical Reports Server (NTRS)
1976-01-01
A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.
NASA Technical Reports Server (NTRS)
Margolis, Kenneth; Bobbitt, Percy J
1956-01-01
Velocity potentials, pressure, distributions, and stability derivatives are derived by use of supersonic linearized theory for families of thin isolated vertical tails performing steady rolling, steady yawing, and constant-lateral-acceleration motions. Vertical-tail families (half-delta and rectangular plan forms) are considered for a broad Mach number range. Also considered are the vertical tail with arbitrary sweepback and taper ratio at Mach numbers for which both the leading edge and trailing edge of the tail are supersonic and the triangular vertical tail with a subsonic leading edge and a supersonic trailing edge. Expressions for potentials, pressures, and stability derivatives are tabulated.
PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priyambodo, Tri Kuntoro, E-mail: mastri@ugm.ac.id; Putra, Agfianto Eko; Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta
Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constantsmore » are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.« less
78 FR 52870 - Airworthiness Directives; Beechcraft Corporation Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... the front spar cap angles and hat section structure of the vertical stabilizer. This proposed AD would require inspections of the vertical stabilizer spar angles and hat section for cracks with corrective... information identified in this proposed AD, contact Beechcraft Corporation at address: 10511 E. Central...
Aerodynamic stability and control characteristics of TBC shuttle booster AR-11981-3
NASA Technical Reports Server (NTRS)
Phelps, E. R.; Watts, L. L.; Ainsworth, R. W.
1972-01-01
A scale model of the Boeing Company space shuttle booster configuration 3 was tested in the MSFC 14-inch trisonic wind tunnel. This test was proposed to fill-in the original test run schedule as well as to investigate the aerodynamic stability and control characteristics of the booster with three wing configurations not previously tested. The configurations tested included: (1) a cylindrical booster body with an axisymmetric nose, (2) clipped delta canards that had variable incidence from 0 deg to -60 deg, (3) different aft body mounted wing configurations, (4) two vertical fin configurations, and (5) a Grumman G-3 orbiter configuration. Tests were conducted over a Mach range from 0.6 to 5.0.
Identifying Head-Trunk and Lower Limb Contributions to Gaze Stabilization During Locomotion
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar P.; Bloomberg, Jacob J.
2003-01-01
The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as - compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the shank and the transmissibility of the shock wave at heel strike (measured by the peak acceleration ratio of the head/shank) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.
Segmented saddle-shaped passive stabilization conductors for toroidal plasmas
Leuer, James A.
1990-05-01
A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.
Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
Rote, Donald M.; He, Jianliang; Johnson, Larry R.
1994-01-01
A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.
Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
Rote, D.M.; He, J.; Johnson, L.R.
1994-01-04
A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.
Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
Rote, D.M.; He, Jianliang; Johnson, L.R.
1992-01-01
This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.
Vanrenterghem, Bart; Hodnik, Nejc; Bele, Marjan; Šala, Martin; Amelinckx, Giovanni; Neukermans, Sander; Zaplotnik, Rok; Primc, Gregor; Mozetič, Miran; Breugelmans, Tom
2017-08-17
Beside activity, electrocatalyst stability is gaining in importance. The most common degradation mechanism is the loss of the active surface area due to nanoparticle growth via coalescence/agglomeration. We propose a particle confinement strategy via vertically oriented graphene deposition to overcome degradation of the nanoparticles.
Detail view of the vertical stabilizer of the Orbiter Discovery ...
Detail view of the vertical stabilizer of the Orbiter Discovery as it sits at Launch Complex 39 A at Kennedy Space Center being prepared for its launch. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Antiwindup analysis and design approaches for MIMO systems
NASA Technical Reports Server (NTRS)
Marcopoli, Vincent R.; Phillips, Stephen M.
1994-01-01
Performance degradation of multiple-input multiple-output (MIMO) control systems having limited actuators is often handled by augmenting the controller with an antiwindup mechanism, which attempts to maintain system performance when limits are encountered. The goals of this paper are: (1) To develop a method to analyze antiwindup systems to determine precisely what stability and performance degradation is incurred under limited conditions. It is shown that by reformulating limited actuator commands as resulting from multiplicative perturbations to the corresponding controller requests, mu-analysis tools can be utilized to obtain quantitative measures of stability and performance degradation. (2) To propose a linear, time invariant (LTI) criterion on which to base the antiwindup design. These analysis and design methods are illustrated through the evaluation of two competing antiwindup schemes augmenting the controller of a Short Take-Off and Vertical Landing (STOVL) aircraft in transition flight.
Antiwindup analysis and design approaches for MIMO systems
NASA Technical Reports Server (NTRS)
Marcopoli, Vincent R.; Phillips, Stephen M.
1993-01-01
Performance degradation of multiple-input multiple-output (MIMO) control systems having limited actuators is often handled by augmenting the controller with an antiwindup mechanism, which attempts to maintain system performance when limits are encountered. The goals of this paper are: 1) to develop a method to analyze antiwindup systems to determine precisely what stability and performance degradation is incurred under limited conditions. It is shown that by reformulating limited actuator commands as resulting from multiplicative perturbations to the corresponding controller requests, mu-analysis tools can be utilized to obtain quantitative measures of stability and performance degradation. 2) To propose a linear, time invariant (LTI) criterion on which to base the antiwindup design. These analysis and design methods are illustrated through the evaluation of two competing antiwindup schemes augmenting the controller of a Short Take-Off and Vertical Landing (STOVL) aircraft in transition flight.
FIRST BEAM TESTS OF THE APS MBA UPGRADE ORBIT FEEDBACK CONTROLLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sereno, N. S.; Arnold, N.; Brill, A.
The new orbit feedback system required for the APS multi-bend acromat (MBA) ring must meet challenging beam stability requirements. The AC stability requirement is to correct rms beam motion to 10 % the rms beam size at the insertion device source points from 0.01 to 1000 Hz. The vertical plane represents the biggest challenge for AC stability which is required to be 400 nm rms for a 4 micron vertical beam size. In addition long term drift over a period of 7 days is required to be 1 micron or less at insertion de- vice BPMs and 2 microns formore » arc bpms. We present test re- sults of theMBA prototype orbit feedback controller (FBC) in the APS storage ring. In this test, four insertion device BPMs were configured to send data to the FBC for process- ing into four fast corrector setpoints. The configuration of four bpms and four fast correctors creates a 4-bump and the configuration of fast correctors is similar to what will be implemented in the MBA ring. We report on performance benefits of increasing the sampling rate by a factor of 15 to 22.6 kHz over the existing APS orbit feedback system, lim- itations due to existing storage ring hardware and extrapo- lation to theMBA orbit feedback design. FBC architecture, signal flow and processing design will also be discussed.« less
Estimated Flying Qualities of the Martin Model 202 Airplane
NASA Technical Reports Server (NTRS)
Weil, Joseph; Spear, Margaret
1947-01-01
The flying qualities of the Martin model 202 airplane have been estimated chiefly from the results of tests of an 0.0875-scale complete model with power made in the Wright Brothers tunnel at the Massachusetts Institute of Technology and from partial span wing and isolated vertical tail tests made in the Georgia Tech Nine-Foot Tunnel. These estimated handling qualities have been compared with existing Army-Navy and CAA requirements for stability and control. The results of the analysis indicate that the Martin model 202 airplane will possess satisfactory handling qualities in all respects except possibly in the following: The amount of elevator control available for landing or maneuvering in the landing condition is either marginal or insufficient when using the adjustable stabilizer linked to the flaps . Moreover, indications are that the longitudinal trim changes will be neither large nor appreciably worse with a fixed stabilizer than with the contemplated arrangement utilizing the adjustable stabilizer in an attempt to reduce the magnitude of the trim changes caused by flap deflection.
Ko, Dae-Sik; Jung, Dae-In; Jeong, Mi-Ae
2014-11-01
[Purpose] The aim of the present study was to investigate the effects of core stability exercise (CSE) on the physical and psychological functions of elderly women while negotiating general obstacles. [Subjects and Methods] After allocating 10 elderly women each to the core stability training group and the control group, we carried out Performance-Oriented Mobility Assessment (POMA) and measured crossing velocity (CV), maximum vertical heel clearance (MVHC), and knee flexion angle for assessing physical performances. We evaluated depression and fear of falling for assessing psychological functions. [Results] Relative to the control group, the core stability training group showed statistically significant overall changes after the training session: an increase in POMA scores, faster CV, lower MVHC, and a decrease in knee flexion angle. Furthermore, depression and fear of falling decreased significantly. [Conclusion] CSE can have a positive effect on the improvement of physical and psychological performances of older women who are vulnerable to falls as they negotiate everyday obstacles.
Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept
NASA Technical Reports Server (NTRS)
Gerhardt, H. A.; Chen, W. S.
1978-01-01
The aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft was studied. The selected configuration features a tailless clipped delta wing with leading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed.
Rupture of vertical soap films
NASA Astrophysics Data System (ADS)
Rio, Emmanuelle
2014-11-01
Soap films are ephemeral and fragile objects. They tend to thin under gravity, which gives rise to the fascinating variations of colors at their interfaces but leads systematically to rupture. Even a child can create, manipulate and admire soap films and bubbles. Nevertheless, the reason why it suddenly bursts remains a mystery although the soap chosen to stabilize the film as well as the humidity of the air seem very important. One difficulty to study the rupture of vertical soap films is to control the initial solution. To avoid this problem we choose to study the rupture during the generation of the film at a controlled velocity. We have built an experiment, in which we measure the maximum length of the film together with its lifetime. The generation of the film is due to the presence of a gradient of surface concentration of surfactants at the liquid/air interface. This leads to a Marangoni force directed toward the top of the film. The film is expected to burst only when its weight is not balanced anymore by this force. We will show that this leads to the surprising result that the thicker films have shorter lifetimes than the thinner ones. It is thus the ability of the interface to sustain a surface concentration gradient of surfactants which controls its stability.
Segmented saddle-shaped passive stabilization conductors for toroidal plasmas
Leuer, J.A.
1990-05-01
A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.
Low-speed static and dynamic force tests of a generic supersonic cruise fighter configuration
NASA Technical Reports Server (NTRS)
Hahne, David E.
1989-01-01
Static and dynamic force tests of a generic fighter configuration designed for sustained supersonic flight were conducted in the Langley 30- by 60-foot tunnel. The baseline configuration had a 65 deg arrow wing, twin wing mounted vertical tails and a canard. Results showed that control was available up to C sub L,max (maximum lift coefficient) from aerodynamic controls about all axes but control in the pitch and yaw axes decreased rapidly in the post-stall angle-of-attack region. The baseline configuration showed stable lateral-directional characteristics at low angles of attack but directional stability occurred near alpha = 25 deg as the wing shielded the vertical tails. The configuration showed positive effective dihedral throughout the test angle-of-attack range. Forced oscillation tests indicated that the baseline configuration had stable damping characteristics about the lateral-directional axes.
Control at stability's edge minimizes energetic costs: expert stick balancing
Meyer, Ryan; Zhvanetsky, Max; Ridge, Sarah; Insperger, Tamás
2016-01-01
Stick balancing on the fingertip is a complex voluntary motor task that requires the stabilization of an unstable system. For seated expert stick balancers, the time delay is 0.23 s, the shortest stick that can be balanced for 240 s is 0.32 m and there is a ° dead zone for the estimation of the vertical displacement angle in the saggital plane. These observations motivate a switching-type, pendulum–cart model for balance control which uses an internal model to compensate for the time delay by predicting the sensory consequences of the stick's movements. Numerical simulations using the semi-discretization method suggest that the feedback gains are tuned near the edge of stability. For these choices of the feedback gains, the cost function which takes into account the position of the fingertip and the corrective forces is minimized. Thus, expert stick balancers optimize control with a combination of quick manoeuvrability and minimum energy expenditures. PMID:27278361
NASA Technical Reports Server (NTRS)
Mennell, R.; Hughes, T.
1974-01-01
Experimental aerodynamic investigations were conducted on a sting-mounted 0.0405 scale representation of the 140A/B space shuttle orbiter in a 7.75 ft by 11 ft low speed wind tunnel during the time period from November 14, 1973, to December 6, 1973, with the primary test objectives being to establish basic longitudinal stability characteristics in and out of ground effect, as well as lateral-directional stability characteristics in free air. Two dual podded nacelle configurations were also tested, one with three dual podded nacelles on the lower wing surface, and the other with a single dual nacelle on the lower centerline with dual nacelle pylons mounted above each wing. Stability and control characteristics were investigated at nominal elevon, rudder, aileron, and body flap deflections. Pressure bugs were used to determine pressures on the vertical tail at spanwise stations, and aerodynamic force and moment data were measured in the stability axis system by an internally mounted, six component strain gage balance.
Jung, Dae-In; Ko, Dae-Sik; Jeong, Mi-Ae
2015-01-01
[Purpose] This study evaluated the changes in balance ability and obstacle gait after lumbar stabilization exercise and Nintendo WiiTM Sports in elderly at risk for falls. [Subjects and Methods] Twenty-four elderly women with at risk for falls were randomly divided into the control, lumbar stabilization exercise, and Nintendo Wii Sports groups. Static balance was measured by the Berg Balance Scale and functional reach test, dynamic balance by the timed up-and-go test, and obstacle negotiation function by crossing velocity and maximum vertical heel clearance. [Results] Both the lumbar stabilization exercise and Nintendo Wii Sports groups showed significant improvements in obstacle negotiation function after the exercise compared to the control group. Berg Balance Scale and functional reach test scores were greater in the lumbar stabilization exercise group, while the timed up-and-go test time was significantly better in the Nintendo Wii Sports groups. [Conclusion] Lumbar stabilization exercises and Nintendo Wii Sports improve falling related balance and obstacle negotiation function in elderly women at risk for falls. PMID:26157228
Jung, Dae-In; Ko, Dae-Sik; Jeong, Mi-Ae
2015-05-01
[Purpose] This study evaluated the changes in balance ability and obstacle gait after lumbar stabilization exercise and Nintendo Wii(TM) Sports in elderly at risk for falls. [Subjects and Methods] Twenty-four elderly women with at risk for falls were randomly divided into the control, lumbar stabilization exercise, and Nintendo Wii Sports groups. Static balance was measured by the Berg Balance Scale and functional reach test, dynamic balance by the timed up-and-go test, and obstacle negotiation function by crossing velocity and maximum vertical heel clearance. [Results] Both the lumbar stabilization exercise and Nintendo Wii Sports groups showed significant improvements in obstacle negotiation function after the exercise compared to the control group. Berg Balance Scale and functional reach test scores were greater in the lumbar stabilization exercise group, while the timed up-and-go test time was significantly better in the Nintendo Wii Sports groups. [Conclusion] Lumbar stabilization exercises and Nintendo Wii Sports improve falling related balance and obstacle negotiation function in elderly women at risk for falls.
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Zeck, H.; Walker, W. H.; Polack, A.
1982-01-01
Control requirements of Controlled Configured Design Approach vehicles with far-aft center of gravity locations are studied. The baseline system investigated is a fully reusable vertical takeoff/horizontal landing single stage-to-orbit vehicle with mission requirements similar to that of the space shuttle vehicle. Evaluations were made to determine dynamic stability boundaries, time responses, trim control, operational center-of-gravity limits, and flight control subsystem design requirements. Study tasks included a baseline vehicle analysis, an aft center of gravity study, a payload size study, and a technology assessment.
Dynamics of a thermally driven film climbing the outside of a vertical cylinder
NASA Astrophysics Data System (ADS)
Smolka, Linda B.
2017-10-01
The dynamics of a film climbing the outside of a vertical cylinder under the competing effects of a thermally driven surface tension gradient and gravity is examined through numerical simulations of a thin-film model for the film height. The model, including boundary conditions, depends on three parameters, the scaled cylinder radius R ̂, the upstream film height h∞, and the downstream precursor film thickness b , and reduces to the model for Marangoni driven film climbing a vertical plate in the limit R ̂→∞ . The axisymmetric advancing front displays dynamics similar to that found along a vertical plate where, depending on h∞, the film forms a single Lax shock, an undercompressive double shock, or a rarefaction-undercompressive shock. A linear stability analysis of the Lax shock reveals the number of fingers that form along the contact line increases linearly with cylinder circumference while no fingers form for sufficiently small cylinders (below R ̂≈1.15 when b =0.1 ). The substrate curvature controls the height of the Lax shock, bounds on h∞ that define the three distinct solutions, and the maximum growth rate of contact line perturbations to the Lax shock when R ̂=O (1 ) , whereas the three solutions and the stability of the Lax shock converge to the behavior one observes on a vertical plate when R ̂≥O (10 ) . An energy analysis reveals that the azimuthal curvatures of the base state and perturbation, which arise from the annular geometry of the film, promote instability of the advancing contact line.
Dynamics of a thermally driven film climbing the outside of a vertical cylinder.
Smolka, Linda B
2017-10-01
The dynamics of a film climbing the outside of a vertical cylinder under the competing effects of a thermally driven surface tension gradient and gravity is examined through numerical simulations of a thin-film model for the film height. The model, including boundary conditions, depends on three parameters, the scaled cylinder radius R[over ̂], the upstream film height h_{∞}, and the downstream precursor film thickness b, and reduces to the model for Marangoni driven film climbing a vertical plate in the limit R[over ̂]→∞. The axisymmetric advancing front displays dynamics similar to that found along a vertical plate where, depending on h_{∞}, the film forms a single Lax shock, an undercompressive double shock, or a rarefaction-undercompressive shock. A linear stability analysis of the Lax shock reveals the number of fingers that form along the contact line increases linearly with cylinder circumference while no fingers form for sufficiently small cylinders (below R[over ̂]≈1.15 when b=0.1). The substrate curvature controls the height of the Lax shock, bounds on h_{∞} that define the three distinct solutions, and the maximum growth rate of contact line perturbations to the Lax shock when R[over ̂]=O(1), whereas the three solutions and the stability of the Lax shock converge to the behavior one observes on a vertical plate when R[over ̂]≥O(10). An energy analysis reveals that the azimuthal curvatures of the base state and perturbation, which arise from the annular geometry of the film, promote instability of the advancing contact line.
NASA Astrophysics Data System (ADS)
Sequeira, Dane; Wang, Xue-She; Mann, B. P.
2018-02-01
This paper examines the bifurcation and stability behavior of inhomogeneous floating bodies, specifically a rectangular prism with asymmetric mass distribution. A nonlinear model is developed to determine the stability of the upright and tilted equilibrium positions as a function of the vertical position of the center of mass within the prism. These equilibria positions are defined by an angle of rotation and a vertical position where rotational motion is restricted to a two dimensional plane. Numerical investigations are conducted using path-following continuation methods to determine equilibria solutions and evaluate stability. Bifurcation diagrams and basins of attraction that illustrate the stability of the equilibrium positions as a function of the vertical position of the center of mass within the prism are generated. These results reveal complex stability behavior with many coexisting solutions. Static experiments are conducted to validate equilibria orientations against numerical predictions with results showing good agreement. Dynamic experiments that examine potential well hopping behavior in a waveflume for various wave conditions are also conducted.
Vortex Flap Technology: a Stability and Control Assessment
NASA Technical Reports Server (NTRS)
Carey, K. M.; Erickson, G. E.
1984-01-01
A comprehensive low-speed wind tunnel investigation was performed of leading edge vortex flaps applied to representative aircraft configurations. A determination was made of the effects of analytically- and empirically-designed vortex flaps on the static longitudinal and lateral-directional aerodynamics, stability, and control characteristics of fighter wings having leading-edge sweep angles of 45 to 76.5 degrees. The sensitivity to several configuration modifications was assessed, which included the effects of flap planform, leading- and trailing-edge flap deflection angles, wing location on the fuselage, forebody strakes, canards, and centerline and outboard vertical tails. Six-component forces and moments, wing surface static pressure distributions, and surface flow patterns were obtained using the Northrop 21- by 30-inch low-speed wind tunnel.
Robust hopping based on virtual pendulum posture control.
Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre
2013-09-01
A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.
NASA Astrophysics Data System (ADS)
Tomikawa, Y.; Yamanouchi, T.
2010-08-01
An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.
Singer, Jonathan C; McIlroy, William E; Prentice, Stephen D
2014-11-07
Research examining age-related changes in dynamic stability during stepping has recognised the importance of the restabilisation phase, subsequent to foot-contact. While regulation of the net ground reaction force (GRFnet) line of action is believed to influence dynamic stability during steady-state locomotion, such control during restabilisation remains unknown. This work explored the origins of age-related decline in mediolateral dynamic stability by examining the line of action of GRFnet relative to the centre of mass (COM) during restabilisation following voluntary stepping. Healthy younger and older adults (n=20 per group) performed three single-step tasks (varying speed and step placement), altering the challenge to stability control. Age-related differences in magnitude and intertrial variability of the angle of divergence of GRFnet line of action relative to the COM were quantified, along with the peak mediolateral and vertical GRFnet components. The angle of divergence was further examined at discrete points during restabilisation, to uncover events of potential importance to stability control. Older adults exhibited a reduced angle of divergence throughout restabilisation. Temporal and spatial constraints on stepping increased the magnitude and intertrial variability of the angle of divergence, although not differentially among the older adults. Analysis of the time-varying angle of divergence revealed age-related reductions in magnitude, with increases in timing and intertrial timing variability during the later phase of restabilisation. This work further supports the idea that age-related challenges in lateral stability control emerge during restabilisation. Age-related alterations during the later phase of restabilisation may signify challenges with reactive control. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Huffman, J. K.
1975-01-01
The effects were studied of various vertical-tail configurations on the longitudinal and lateral directional-stability characteristics of a general research fighter model utilizing wing-body-canard. The study indicates that the addition of the high canard resulted in an increase in total lift at angles of attack above 4 deg with a maximum lift coefficient about twice as large as that for the wing-body configuration. For the wing-body (canard off) configuration, the center-line vertical tail indicates positive vertical-tail effectiveness throughout the test angle-of-attack range; however, for this configuration none of the wing-mounted vertical-tail locations tested resulted in a positive directional-stability increment at the higher angles of attack. For the wing-body-canard configuration several outboard locations of the wing-mounted vertical tails were found.
NASA Astrophysics Data System (ADS)
Lemarié, F.; Debreu, L.
2016-02-01
Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost. To our knowledge no unconditionally stable scheme with such high order accuracy in time and space have been presented so far in the literature. Furthermore, we show how those schemes can be made monotonic without compromising their stability properties.
Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques
NASA Technical Reports Server (NTRS)
Taylor, Brian R.; Yoo, Seung Yeun
2011-01-01
Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.
Longitudinal handling qualities during approach and landing of a powered lift STOL aircraft
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1972-01-01
Longitudinal handling qualities evaluations were conducted on the Ames Research Center Flight Simulator for Advanced Aircraft (FSAA) for the approach and landing tasks of a powered lift STOL research aircraft. The test vehicle was a C-8A aircraft modified with a new wing incorporating internal blowing over an augmentor flap. The investigation included: (1) use of various flight path and airspeed control techniques for the basic vehicle; (2) assessment of stability and command augmentation schemes for pitch attitude and airspeed control; (3) determination of the influence of longitudinal and vertical force coupling for the power control; (4) determination of the influence of pitch axis coupling with the thrust vector control; and (5) evaluations of the contribution of stability and command augmentation to recovery from a single engine failure. Results are presented in the form of pilot ratings and commentary substantiated by landing approach time histories.
Gao, Fangzheng; Yuan, Ye; Wu, Yuqiang
2016-09-01
This paper studies the problem of finite-time stabilization by state feedback for a class of uncertain nonholonomic systems in feedforward-like form subject to inputs saturation. Under the weaker homogeneous condition on systems growth, a saturated finite-time control scheme is developed by exploiting the adding a power integrator method, the homogeneous domination approach and the nested saturation technique. Together with a novel switching control strategy, the designed saturated controller guarantees that the states of closed-loop system are regulated to zero in a finite time without violation of the constraint. As an application of the proposed theoretical results, the problem of saturated finite-time control for vertical wheel on rotating table is solved. Simulation results are given to demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Natural shorelines promote the stability of fish communities in an urbanized coastal system.
Scyphers, Steven B; Gouhier, Tarik C; Grabowski, Jonathan H; Beck, Michael W; Mareska, John; Powers, Sean P
2015-01-01
Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions.
Natural Shorelines Promote the Stability of Fish Communities in an Urbanized Coastal System
Scyphers, Steven B.; Gouhier, Tarik C.; Grabowski, Jonathan H.; Beck, Michael W.; Mareska, John; Powers, Sean P.
2015-01-01
Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions. PMID:26039407
Atlantis OMS Pods and Vertical Stabilizer
2011-07-09
S135-E-006375 (9 July 2011) --- Without the sun's being temporarily available to highlight space shuttle Atlantis' cargo bay and vertical stabilizer, the spacecraft barely shows through as a silhouette in this image photographed from the aft flight deck. The thin blue line of Earth?s atmosphere is the dominant feature in the photo. Photo credit: NASA
Vertical Spin Tunnel Testing and Stability Analysis of Multi-Mission Earth Entry Vehicles
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Morelli, Eugene A.; Fremaux, C. Michael; Bean, Jacob
2014-01-01
Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from space to the surface of the Earth. To achieve high reliability and minimum weight, MMEEVs avoid using limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing phases of flight. Testing in NASA Langley's 20-FT Vertical Spin Tunnel (20-FT VST), dynamically-scaled MMEEV models was conducted to improve subsonic aerodynamic models and validate stability criteria for this class of vehicle. This report documents the resulting data from VST testing for an array of 60-deg sphere-cone MMEEVs. Model configurations included were 1.2 meter, and 1.8 meter designs. The addition of a backshell extender, which provided a 150% increase in backshell diameter for the 1.2 meter design, provided a third test configuration. Center of Gravity limits were established for all MMEEV configurations. An application of System Identification (SID) techniques was performed to determine the aerodynamic coefficients in order to provide databases for subsequent 6-degree-of-freedom simulations.
Aircraft empennage structural detail design
NASA Technical Reports Server (NTRS)
Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo
1993-01-01
This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.
30 x 60 foot wind tunnel test highlights for an over-the-tail advanced turboprop configuration
NASA Technical Reports Server (NTRS)
Coe, Paul L., Jr.; Perkins, John N.; Rhodes, Graham S.
1991-01-01
This paper presents results from a recent investigation of the static aerodynamic and stability characteristics of a two-surface advanced turboprop aircraft. The conceptual design places Hamilton Standard SR-7 turboprop blades close to the horizontal and vertical tail for potential acoustic shielding. Evaluation of the data shows generally favorable effects of power on aircraft stability and control, and that lateral directional trim can be achieved with one engine inoperative. The tests did show a marked effect of the direction of propeller rotation on thrust minus drag performance.
Integrated Locomotor Function Tests for Countermeasure Evaluation
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.
2005-01-01
Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the adaptive remodeling of the full-body gaze control systems following exposure to visual-vestibular conflict. Subjects walked on a treadmill before and after a 30- minute exposure to 0.5X minifying during which self-generated sinusoidal vertical head rotations were performed while seated. Following exposure to visual-vestibular conflict subjects showed a restriction in compensatory head movements, increased knee and ankle flexion after heel-strike and a decrease in the rate of body loading during the rapid weight transfer phase after the heel strike event. Taken together, results from both studies provide evidence that the full body contributes to gaze stabilization during locomotion, and that different functional elements are responsive to changes in visual task constraints and are subject to adaptive alterations following exposure to visual-vestibular conflict. This information provides the basis for the design of a new generation of integrative tests that incorporate the evaluation of multiple neural control systems relevant to astronaut operational performance.
Functional Coordination of a Full-Body Gaze Control Mechanisms Elicited During Locomotion
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Cohen, Helen S.
2003-01-01
Control of locomotion requires precise interaction between several sensorimotor subsystems. Exposure to the microgravity environment of spaceflight leads to postflight adaptive alterations in these multiple subsystems leading to postural and gait disturbances. Countermeasures designed to mitigate these postflight gait alterations will need to be assessed with a new generation of functional tests that evaluate the interaction of various elements central to locomotor control. The goal of this study is to determine how the multiple, interdependent, full- body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated. To explore this question two experiments were performed. In the first study (Study 1) we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects (n=9) performed two discreet gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2m in front at eye level. The second study (Study 2) investigated the potential of adaptive remodeling of the full-body gaze control systems following exposure to visual-vestibular conflict. Subjects (n=14) walked (6.4 km/h) on the treadmill before and after they were exposed to 0.5X minifying lenses worn for 30 minutes during self-generated sinusoidal vertical head rotations performed while seated. In both studies we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. Results from Study 1 showed that while reading numeral characters as compared to the central point target: 1) compensatory head pitch movements were on average 22% greater 2) the peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects 3) the knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle. Results from Study 2 indicate that following exposure to visual-vestibular conflict changes in full-body strategies were observed consistent with the requirement to aid gaze stabilization during locomotion.
Chen, Alexander Z; Shiu, Michelle; Ma, Jennifer H; Alpert, Matthew R; Zhang, Depei; Foley, Benjamin J; Smilgies, Detlef-M; Lee, Seung-Hun; Choi, Joshua J
2018-04-06
Thin films based on two-dimensional metal halide perovskites have achieved exceptional performance and stability in numerous optoelectronic device applications. Simple solution processing of the 2D perovskite provides opportunities for manufacturing devices at drastically lower cost compared to current commercial technologies. A key to high device performance is to align the 2D perovskite layers, during the solution processing, vertical to the electrodes to achieve efficient charge transport. However, it is yet to be understood how the counter-intuitive vertical orientations of 2D perovskite layers on substrates can be obtained. Here we report a formation mechanism of such vertically orientated 2D perovskite in which the nucleation and growth arise from the liquid-air interface. As a consequence, choice of substrates can be liberal from polymers to metal oxides depending on targeted application. We also demonstrate control over the degree of preferential orientation of the 2D perovskite layers and its drastic impact on device performance.
Model of vertical plasma motion during the current quench
NASA Astrophysics Data System (ADS)
Breizman, Boris; Kiramov, Dmitrii
2017-10-01
Tokamak disruptions impair plasma position control, which allows the plasma column to move and hit the wall. These detrimental events enhance thermal and mechanical loads due to halo currents and runaway electron losses. Their fundamental understanding and prevention is one of the high-priority items for ITER. As commonly observed in experiments, the disruptive plasma tends to move vertically, and the timescale of this motion is rather resistive than Alfvenic. These observations suggest that the plasma column is nearly force-free during its vertical motion. In fact, the force-free constraint is already used in disruption simulators. In this work, we consider a geometrically simple system that mimics the tokamak plasma surrounded by the conducting structures. Using this model, we highlight the underlying mechanism of the vertical displacement events during the current quench phase of plasma disruption. We also address a question of ideal MHD stability of the plasma during its resistive motion. Work supported by the U.S. Department of Energy Contracts DEFG02-04ER54742 and DE-SC0016283.
NASA Technical Reports Server (NTRS)
Queijo, M J; Wolhart, Walter D
1951-01-01
An investigation was made to determine the effects of vertical-tail size and length and of fuselage shape and length on the static lateral stability characteristics of a model with wing and vertical tails having the quarter-chord lines swept back 45 degrees. The results indicate that the directional instability of the various isolated fuselages was about two-thirds as large as that predicted by classical theory.
Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability.
Struzzi, Claudia; Scardamaglia, Mattia; Hemberg, Axel; Petaccia, Luca; Colomer, Jean-François; Snyders, Rony; Bittencourt, Carla
2015-01-01
Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.
NASA Astrophysics Data System (ADS)
Grise, K. M.; Thompson, D. W.; Birner, T.
2009-12-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the “tropopause inversion layer,” or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
NASA Astrophysics Data System (ADS)
Grise, Kevin M.; Thompson, David W. J.; Birner, Thomas
2010-05-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the "tropopause inversion layer," or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
NASA Technical Reports Server (NTRS)
Johnson, Joseph L.
1954-01-01
An investigation has been conducted to determine the static stability and control and damping in roll and yaw of a 0.13-scale model of the Convair XFY-1 airplane with propellers off from 0 deg to 90 deg angle of attack. The tests showed that a slightly unstable pitch-up tendency occurred simultaneously with a break in the normal-force curve in the angle-of-attack range from about 27 deg to 36 deg. The top vertical tail contributed positive values of static directional stability and effective dihedral up to an angle of attack of about 35 deg. The bottom tail contributed positive values of static directional stability but negative values of effective dihedral throughout the angle-of-attack range. Effectiveness of the control surfaces decreased to very low values at the high angles of attack, The model had positive damping in yaw and damping in roll about the body axes over the angle-of-attack range but the damping in yaw decreased to about zero at 90 deg angle of attack.
A stability analysis of AVE-4 severe weather soundings
NASA Technical Reports Server (NTRS)
Johnson, D. L.
1982-01-01
The stability and vertical structure of an average severe storm sounding, consisting of both thermodynamic and wind vertical profiles, were investigated to determine if they could be distinguished from an average lag sounding taken 3 to 6 hours prior to severe weather occurrence. The term average is defined here to indicate the arithmetic mean of a parameter, as a function of altitude, determined from a large number of available observations taken either close to severe weather occurrence, or else more than 3 hours before it occurs. The investigative computations were also done to help determine if a severe storm forecast or index could possibly be used or developed. These mean vertical profiles of thermodynamic and wind parameters as a function of severity of the weather, determined from manually digitized radar (MDR) categories are presented. Profile differences and stability index differences are presented along with the development of the Johnson Lag Index (JLI) which is determined entirely upon environmental vertical parameter differences between conditions 3 hours prior to severe weather, and severe weather itself.
NASA Astrophysics Data System (ADS)
Aleksandrov, A. Yu.; Aleksandrova, E. B.; Tikhonov, A. A.
2018-07-01
The paper deals with a dynamically symmetric satellite in a circular near-Earth orbit. The satellite is equipped with an electrodynamic attitude control system based on Lorentz and magnetic torque properties. The programmed satellite attitude motion is such that the satellite slowly rotates around the axis of its dynamical symmetry. Unlike previous publications, we consider more complex and practically more important case where the axis is fixed in the orbital frame in an inclined position with respect to the local vertical axis. The satellite stabilization in the programmed attitude motion is studied. The gravitational disturbing torque acting on the satellite attitude dynamics is taken into account since it is the largest disturbing torque. The novelty of the proposed approach is based on the usage of electrodynamic attitude control system. With the aid of original construction of a Lyapunov function, new conditions under which electrodynamic control solves the problem are obtained. Sufficient conditions for asymptotic stability of the programmed motion are found in terms of inequalities for the values of control parameters. The results of a numerical simulation are presented to demonstrate the effectiveness of the proposed approach.
Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar P.; Bloomberg, Jacob J.
2002-01-01
The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2 m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, tibia and foot, accelerations along the vertical axis at the head and the tibia, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the tibia and the transmission of the shock wave at heel strike (measured by the peak acceleration ratio of the head/tibia and the time lag between the tibial and head peak accelerations) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.
Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick
2009-08-01
Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.
Li, Lingzhi; Gong, Jiangfeng; Liu, Chunyan; ...
2017-03-22
As a p-type multifunctional semiconductor, CuSe nanostructures show great promise in optoelectronic, sensing, and photocatalytic fields. Although great progress has been achieved, controllable synthesis of CuSe nanosheets (NSs) with a desirable spacial orientation and open frameworks remains a challenge, and their use in supercapacitors (SCs) has not been explored. Herein, a highly vertically oriented and interpenetrating CuSe NS film with open channels is deposited on an Au-coated polyethylene terephthalate substrate. Such CuSe NS films exhibit high specific capacitance (209 F g–1) and can be used as a carbon black- and binder-free electrode to construct flexible, symmetric all-solid-state SCs, using polyvinylmore » alcohol–LiCl gel as the solid electrolyte. A device fabricated with such CuSe NS films exhibits high volumetric specific capacitance (30.17 mF cm–3), good cycling stability, excellent flexibility, and desirable mechanical stability. The excellent performance of such devices results from the vertically oriented and interpenetrating configuration of CuSe NS building blocks, which can increase the available surface and facilitate the diffusion of electrolyte ions. Moreover, as a prototype for application, three such solid devices in series can be used to light up a red light-emitting diode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lingzhi; Gong, Jiangfeng; Liu, Chunyan
As a p-type multifunctional semiconductor, CuSe nanostructures show great promise in optoelectronic, sensing, and photocatalytic fields. Although great progress has been achieved, controllable synthesis of CuSe nanosheets (NSs) with a desirable spacial orientation and open frameworks remains a challenge, and their use in supercapacitors (SCs) has not been explored. Herein, a highly vertically oriented and interpenetrating CuSe NS film with open channels is deposited on an Au-coated polyethylene terephthalate substrate. Such CuSe NS films exhibit high specific capacitance (209 F g–1) and can be used as a carbon black- and binder-free electrode to construct flexible, symmetric all-solid-state SCs, using polyvinylmore » alcohol–LiCl gel as the solid electrolyte. A device fabricated with such CuSe NS films exhibits high volumetric specific capacitance (30.17 mF cm–3), good cycling stability, excellent flexibility, and desirable mechanical stability. The excellent performance of such devices results from the vertically oriented and interpenetrating configuration of CuSe NS building blocks, which can increase the available surface and facilitate the diffusion of electrolyte ions. Moreover, as a prototype for application, three such solid devices in series can be used to light up a red light-emitting diode.« less
Exploring bird aerodynamics using radio-controlled models.
Hoey, Robert G
2010-12-01
A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.
Vertical dimensional stability and rigidity of occlusal registration materials.
Walker, Mary P; Wu, Edis; Heckman, M Elizabeth; Alderman, Nicholas
2009-01-01
Dimensionally accurate occlusal registration records are essential for restorative dentistry; moreover, since records are not used immediately or may be used more than once, the registration material should exhibit accuracy over time (a concept known as dimensional stability). It has been speculated that materials with increased hardness or rigidity should produce more accurate registration records due to an increased resistance to distortion. This study compared the rigidity and associated dimensional accuracy of a recently marketed bisacrylic occlusal registration material and a vinyl polysiloxane (VPS). Maxillary and mandibular typodont arches were mounted on a plasterless articulator from which teeth No. 3, 13, and 15 had been removed to simulate edentulous spaces. After preparing teeth No. 2, 4, 12, and 14 as bridge abutments, the remaining teeth were equilibrated selectively to produce even anterior contact. Four digital photographs were taken to make vertical interarch measurements at four locations (teeth No. 3, 7, 10, and 14). Following initial photos (controls), 10 interocclusal records were made using each registration material, with material placed only in the segments in which teeth were prepared. The records were used for mounting the maxillary arch against the mandibular arch after 48, 72, and 120 hours. There were significant effects on vertical dimensional change related to arch location, material, and mounting time. Both materials demonstrated significantly larger posterior vertical openings than anterior vertical openings, while the bisacrylate produced a larger posterior opening than VPS at 48 and 72 hours and a larger anterior opening at all mounting times. There also was a significant difference in hardness/rigidity due to material and measurement time; at all measurement times, bisacrylate exhibited a significantly higher hardness number.
Dunbar, Donald C; Badam, Gyani L; Hallgrímsson, Benedikt; Vieilledent, Stéphane
2004-02-01
This study investigated the patterns of rotational mobility (> or =20 degrees ) and stability (< or =20 degrees ) of the head and trunk in wild Indian monkeys during natural locomotion on the ground and on the flat-topped surfaces of walls. Adult hanuman langurs (Semnopithecus entellus) and bonnet macaques (Macaca radiata) of either gender were cine filmed in lateral view. Whole-body horizontal linear displacement, head and trunk pitch displacement relative to space (earth horizontal), and vertical head displacement were measured from the cine films. Head-to-trunk pitch angle was calculated from the head-to-space and trunk-to-space measurements. Locomotor velocities, cycle durations, angular segmental velocities, mean segmental positions and mean peak frequencies of vertical and angular head displacements were then calculated from the displacement data. Yaw rotations were observed qualitatively. During quadrupedal walks by both species, the head was free to rotate in the pitch and yaw planes on a stabilized trunk. By contrast, during quadrupedal gallops by both species, the trunk pitched on a stabilized head. During both gaits in both species, head and trunk pitch rotations were symmetrical about comparable mean positions in both gaits, with mean head position aligning the horizontal semicircular canals near earth horizontal. Head pitch direction countered head vertical displacement direction to varying degrees during walks and only intermittently during gallops, providing evidence that correctional head pitch rotations are not essential for gaze stabilization. Head-to-space pitch velocities were below 350 deg. s(-1), the threshold above which, at least among humans, the vestibulo-ocular reflex (VOR) becomes saturated. Mean peak frequencies of vertical translations and pitch rotations of the head ranged from 1 Hz to 2 Hz, a lower frequency range than that in which inertia is predicted to be the major stabilizer of the head in these species. Some variables, which were common to both walks and gallops in both species, are likely to reflect constraints in sensorimotor control. Other variables, which differed between the two gaits in both species, are likely to reflect kinematic differences, whereas variables that differed between the two species are attributed primarily to morphological and behavioural differences. It is concluded that either the head or the trunk can provide the nervous system with a reference frame for spatial orientation and that the segment providing that reference can change, depending upon the kinematic characteristics of the chosen gait.
Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells
Hanson, Lindsey; Zhao, Wenting; Lou, Hsin-Ya; Lin, Ziliang Carter; Lee, Seok Woo; Chowdary, Praveen; Cui, Yi; Cui, Bianxiao
2016-01-01
The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells. PMID:25984833
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carretero-Genevrier, Adrian; Oro-Sole, Judith; Gazquez, Jaume
2013-12-13
We developed an original strategy to produce vertical epitaxial single crystalline manganese oxide octahedral molecular sieve (OMS) nanowires with tunable pore sizes and compositions on silicon substrates by using a chemical solution deposition approach. The nanowire growth mechanism involves the use of track-etched nanoporous polymer templates combined with the controlled growth of quartz thin films at the silicon surface, which allowed OMS nanowires to stabilize and crystallize. α-quartz thin films were obtained after thermal activated crystallization of the native amorphous silica surface layer assisted by Sr 2+- or Ba 2+-mediated heterogeneous catalysis in the air at 800 °C. These α-quartzmore » thin films work as a selective template for the epitaxial growth of randomly oriented vertical OMS nanowires. Furthermore, the combination of soft chemistry and epitaxial growth opens new opportunities for the effective integration of novel technological functional tunneled complex oxides nanomaterials on Si substrates.« less
Passive stability and actuation of micro aerial vehicles
NASA Astrophysics Data System (ADS)
Piccoli, Matthew
Micro Aerial Vehicles (MAVs) have increased in popularity in recent years. The most common platform, the quadrotor, has surpassed other MAVs like traditional helicopters and ornithopters in popularity mainly due to their simplicity. Yet the quadrotor design is a century old and was intended to carry people. We set out to design a MAV that is designed specifically to be a MAV, i.e. a vehicle not intended to carry humans as a payload. With this constraint lifted the vehicle can continuously rotate, which would dizzy a human, can sustain larger forces, which would damage a human, or can take advantage of scaling properties, where it may not work at human scale. Furthermore, we aim for simplicity by removing vehicle controllers and reducing the number of actuators, such that the vehicle can be made cost effective, if not disposable. We begin by studying general equations of motion for hovering MAVs. We search for vehicle configurations that exhibit passive stability, allowing the MAV to operate without a controller or actuators to apply control, ideally a single actuator. The analysis suggests two distinct types of passively stabilized MAVs and we create test vehicles for both. With simple hovering achieved, we concentrate on controlled motion with an emphasis on doing so without adding actuators. We find we can attain three degree of freedom control using separation of time scales with our actuator via low frequency for control in the vertical direction and high frequency for control in the horizontal plane. We explore techniques for achieving high frequency actuator control, which also allow the compensation of motor defects, specifically cogging torque. We combine passive stability with the motion control into two vehicles, UNO and Piccolissimo. UNO, the Underactuated-propeller Naturally-stabilized One-motor vehicle, demonstrates the capabilities of simple vehicles by performing maneuvers like conventional quadrotors. Piccolissimo, Italian for very little, demonstrates the merits of passive stability and single actuator control by being the smallest, self-powered, controllable MAV.
Fazi, Stefano; Rossetti, Simona; Pratesi, Paolo; Ceccotti, Marco; Cabassi, Jacopo; Capecchiacci, Francesco; Venturi, Stefania; Vaselli, Orlando
2018-01-01
Volcanic lakes are characterized by physicochemical favorable conditions for the development of reservoirs of C-bearing greenhouse gases that can be dispersed to air during occasional rollover events. By combining a microbiological and geochemical approach, we showed that the chemistry of the CO2- and CH4-rich gas reservoir hosted within the meromictic Lake Averno (Campi Flegrei, southern Italy) are related to the microbial niche differentiation along the vertical water column. The simultaneous occurrence of diverse functional groups of microbes operating under different conditions suggests that these habitats harbor complex microbial consortia that impact on the production and consumption of greenhouse gases. In the epilimnion, the activity of aerobic methanotrophic bacteria and photosynthetic biota, together with CO2 dissolution at relatively high pH, enhanced CO2- and CH4 consumption, which also occurred in the hypolimnion. Moreover, results from computations carried out to evaluate the dependence of the lake stability on the CO2/CH4 ratios, suggested that the water density vertical gradient was mainly controlled by salinity and temperature, whereas the effect of dissolved gases was minor, excepting if extremely high increases of CH4 are admitted. Therefore, biological processes, controlling the composition of CO2 and CH4, contributed to stabilize the lake stratification of the lake. Overall, Lake Averno, and supposedly the numerous worldwide distributed volcanic lakes having similar features (namely bio-activity lakes), acts as a sink for the CO2 supplied from the hydrothermal/magmatic system, displaying a significant influence on the local carbon budget. PMID:29509779
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Hong-Yu; Gu, Wei-Min, E-mail: guwm@xmu.edu.cn
2017-04-20
In the classic picture of standard thin accretion disks, viscous heating is balanced by radiative cooling through the diffusion process, and the radiation-pressure-dominated inner disk suffers convective instability. However, recent simulations have shown that, owing to the magnetic buoyancy, the vertical advection process can significantly contribute to energy transport. In addition, in comparing the simulation results with the local convective stability criterion, no convective instability has been found. In this work, following on from simulations, we revisit the vertical structure of radiation-pressure-dominated thin disks and include the vertical advection process. Our study indicates a link between the additional energy transportmore » and the convectively stable property. Thus, the vertical advection not only significantly contributes to the energy transport, but it also plays an important role in making the disk convectively stable. Our analyses may help to explain the discrepancy between classic theory and simulations on standard thin disks.« less
X-31 quasi-tailless flight demonstration
NASA Technical Reports Server (NTRS)
Huber, Peter; Schellenger, Harvey G.
1994-01-01
The primary objective of the quasi-tailless flight demonstration is to demonstrate the feasibility of using thrust vectoring for directional control of an unstable aircraft. By using this low-cost, low-risk approach it is possible to get information about required thrust vector control power and deflection rates from an inflight experiment as well as insight in low-power thrust vectoring issues. The quasi-tailless flight demonstration series with the X-31 began in March 1994. The demonstration flight condition was Mach 1.2 at 37,500 feet. A series of basic flying quality maneuvers, doublets, bank to bank rolls, and wind-up-turns have been performed with a simulated 100% vertical tail reduction. Flight test and supporting simulation demonstrated that the quasi-tailless approach is effective in representing the reduced stability of tailless configurations. The flights also demonstrated that thrust vectoring could be effectively used to stabilize a directionally unstable configuration and provide control power for maneuver coordination.
Aircraft body-axis rotation measurement system
NASA Technical Reports Server (NTRS)
Cowdin, K. T. (Inventor)
1983-01-01
A two gyro four gimbal attitude sensing system having gimbal lock avoidance is provided with continuous azimuth information, rather than roll information, relative to the magnetic cardinal headings while in near vertical attitudes to allow recovery from vertical on a desired heading. The system is comprised of a means for stabilizing an outer roll gimbal that is common to a vertical gyro and a directional gyro with respect to the aircraft platform which is being angularly displaced about an axis substantially parallel to the outer roll gyro axis. A means is also provided for producing a signal indicative of the magnitude of such displacement as an indication of aircraft heading. Additional means are provided to cause stabilization of the outer roll gimbal whenever the pitch angle of the aircraft passes through a threshold prior to entering vertical flight and destabilization of the outer roll gimbal upon passing through the threshold when departing vertical flight.
Passive magnetic bearing configurations
Post, Richard F [Walnut Creek, CA
2011-01-25
A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.
The X-31A quasi-tailless flight test results
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Stoliker, P. C.
1996-01-01
A quasi-tailless flight investigation was launched using the X-31A enhanced fighter maneuverability airplane. In-flight simulations were used to assess the effect of partial to total vertical tail removal. The rudder control surface was used to cancel the stabilizing effects of the vertical tail, and yaw thrust vector commands were used to restabilize and control the airplane. The quasi-tailless mode was flown supersonically with gentle maneuvering and subsonically in precision approaches and ground attack profiles. Pilot ratings and a full set of flight test measurements were recorded. This report describes the results obtained and emphasizes the lessons learned from the X-31A flight test experiment. Sensor-related issues and their importance to a quasi-tailless simulation and to ultimately controlling a directionally unstable vehicle are assessed. The X-31A quasi-tailless flight test experiment showed that tailless and reduced tail fighter aircraft are definitely feasible. When the capability is designed into the airplane from the beginning, the benefits have the potential to outweigh the added complexity required.
Vertically aligned nanowires from boron-doped diamond.
Yang, Nianjun; Uetsuka, Hiroshi; Osawa, Eiji; Nebel, Christoph E
2008-11-01
Vertically aligned diamond nanowires with controlled geometrical properties like length and distance between wires were fabricated by use of nanodiamond particles as a hard mask and by use of reactive ion etching. The surface structure, electronic properties, and electrochemical functionalization of diamond nanowires were characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) as well as electrochemical techniques. AFM and STM experiments show that diamond nanowire etched for 10 s have wire-typed structures with 3-10 nm in length and with typically 11 nm spacing in between. The electrode active area of diamond nanowires is enhanced by a factor of 2. The functionalization of nanowire tips with nitrophenyl molecules is characterized by STM on clean and on nitrophenyl molecule-modified diamond nanowires. Tip-modified diamond nanowires are promising with respect to biosensor applications where controlled biomolecule bonding is required to improve chemical stability and sensing significantly.
Model based manipulator control
NASA Technical Reports Server (NTRS)
Petrosky, Lyman J.; Oppenheim, Irving J.
1989-01-01
The feasibility of using model based control (MBC) for robotic manipulators was investigated. A double inverted pendulum system was constructed as the experimental system for a general study of dynamically stable manipulation. The original interest in dynamically stable systems was driven by the objective of high vertical reach (balancing), and the planning of inertially favorable trajectories for force and payload demands. The model-based control approach is described and the results of experimental tests are summarized. Results directly demonstrate that MBC can provide stable control at all speeds of operation and support operations requiring dynamic stability such as balancing. The application of MBC to systems with flexible links is also discussed.
NASA Technical Reports Server (NTRS)
Ross, Holly M.; Fears, Scott P.; Moul, Thomas M.
1995-01-01
A wind-tunnel investigation was conducted in the Langley 12-Foot Low-Speed Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section (RCS) of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 70 deg, and all the trailing edges and control surface hinge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved longitudinal characteristics and lateral stability and had three sets of trailing-edge flaps that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Three top body widths and two sizes of twin vertical tails were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced RCS and good flight dynamic characteristics.
Foot Placement Modification for a Biped Humanoid Robot with Narrow Feet
Hattori, Kentaro; Otani, Takuya; Lim, Hun-Ok; Takanishi, Atsuo
2014-01-01
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion. PMID:24592154
Foot placement modification for a biped humanoid robot with narrow feet.
Hashimoto, Kenji; Hattori, Kentaro; Otani, Takuya; Lim, Hun-Ok; Takanishi, Atsuo
2014-01-01
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1979-01-01
In order to assess the effects on static aerodynamic characteristics of battle damage to an aircraft or missile, wind tunnel studies were performed on models from which all or parts of the wing or horizontal or vertical tail had been removed. The effects of damage on the lift, longitudinal stability, lateral stability and directional stability of a swept-wing fighter are presented, along with the effects of wing removal on the control requirements of a delta-wing fighter. Results indicate that the loss of a major part of the vertical tail will probably result in the loss of the aircraft at any speed, while the loss of major parts of the horizontal tail generally results in catastrophic instability at subsonic speeds but, at low supersonic speeds, may allow the aircraft to return to friendly territory before pilot ejection. Major damage to the wing may be sustained without the loss of aircraft or pilot. The loss of some of the aerodynamic surfaces of cruise or surface-to-air missiles may result in catastrophic instability or may permit a ballistic trajectory to be maintained, depending upon the location of the lost surface with respect to the center of gravity of the missile.
Locomotor skills and balance strategies in adolescents idiopathic scoliosis.
Mallau, Sophie; Bollini, Gérard; Jouve, Jean-Luc; Assaiante, Christine
2007-01-01
Locomotor balance control assessment was performed to study the effect of idiopathic scoliosis on head-trunk coordination in 17 patients with adolescent idiopathic scoliosis (AIS) and 16 control subjects. The aim of this study was to explore the functional effects of structural spinal deformations like idiopathic scoliosis on the balance strategies used during locomotion. Up to now, the repercussion of the idiopathic scoliosis on head-trunk coordination and balance strategies during locomotion is relatively unknown. Seventeen patients with AIS (mean age 14 years 3 months, 10 degrees < Cobb angle > 30 degrees) and 16 control subjects (mean age 14 years 1 month) were tested during various locomotor tasks: walking on the ground, walking on a line, and walking on a beam. Balance control was examined in terms of rotation about the vertical axis (yaw) and on a frontal plane (roll). Kinematics of foot, pelvis, trunk, shoulder, and head rotations were measured with an automatic optical TV image processor in order to calculate angular dispersions and segmental stabilizations. Decreasing the walking speed is the main adaptive strategy used in response to balance problems in control subjects as well as patients with AIS. However, patients with AIS performed walking tasks more slowly than normal subjects (around 15%). Moreover, the pelvic stabilization is preserved, despite the structural changes affecting the spine. Lastly, the biomechanical defect resulting from idiopathic scoliosis mainly affects the yaw head stabilization during locomotion. Patients with AIS show substantial similarities with control subjects in adaptive strategies relative to locomotor velocity as well as balance control based on segmental stabilization. In contrast, the loss of the yaw head stabilization strategies, mainly based on the use of vestibular information, probably reflects the presence of vestibular deficits in the patients with AIS.
Retrieval techniques: LVLH and inertially stabilized payloads
NASA Technical Reports Server (NTRS)
Yglesias, J. A.
1980-01-01
Procedures and techniques are discussed for retrieving payloads that are inertially or local vertical/local horizontal (LVLH) stabilized. Selection of the retrieval profile to be used depends on several factors: (1) control authority of the payload, (2) payload sensitivity to primary reaction control system (PRCS) plumes, (3) whether the payload is inertially or LVLH stabilized, (4) location of the grapple fixture, and (5) orbiter propellant consumption. The general retrieval profiles recommended are a V-bar approach for payloads that are LVLH or gravity-gradient stabilized, and the V-bar approach with one or two phase flyaround for inertially stabilized payloads. Once the general type of profile has been selected, the detailed retrieval profile and timeline should consider the various guidelines, groundrules, and constraints associated with a particular payload or flight. Reaction control system (RCS) propellant requirements for the recommended profiles range from 200 to 1500 pounds, depending on such factors as braking techniques, flyaround maneuvers (if necessary), and stationkeeping operations. The time required to perform a retrieval (starting from 1000 feet) varies from 20 to 130 minutes, depending on the complexity of the profile. The goals of this project are to develop a profile which ensures mission success; to make the retrieval profiles simple; and to keep the pilot workload to a minimum by making use of the automatic features of the orbiter flight software whenever possible.
Shiravi, Zeinab; Shadmehr, Azadeh; Moghadam, Saeed Talebian; Moghadam, Behrouz Attarbashi
2017-01-01
Many ankle injuries occur while participating in sports that require jumping and landing such as basketball, volleyball and soccer. Most recent studies have investigated dynamic postural stability of patients with chronic ankle instability after landing from a forward jump. The present study aimed to investigate the dynamic postural stability of the athletes who suffer from chronic ankle sprain while landing from a lateral jump. Twelve athletes with self-reported unilateral chronic ankle instability (4 females and 8 males) and 12 matched controls (3 females and 9 males) voluntarily participated in the study. Dynamic postural stability index and its directional indices were measured while performing lateral jump landing test. No differences were found between athletes with and without chronic ankle instability during our landing protocol by means of the dynamic postural stability index and its directional indices. Findings showed that in each group, medial/lateral stability index is significantly higher than anterior/posterior and vertical stability indexes. Findings showed that dynamic postural stability was not significantly different between the two groups. Future studies should examine chronic ankle instability patients with more severe disabilities and expose them to more challenging dynamic balance conditions to further explore postural stability. IIIa.
Stability versus Maneuvering: Challenges for Stability during Swimming by Fishes.
Webb, Paul W; Weihs, Daniel
2015-10-01
Fishes are well known for their remarkable maneuverability and agility. Less visible is the continuous control of stability essential for the exploitation of the full range of aquatic resources. Perturbations to posture and trajectory arise from hydrostatic and hydrodynamic forces centered in a fish (intrinsic) and from the environment (extrinsic). Hydrostatic instabilities arise from vertical and horizontal separation of the centers of mass (CM) and of buoyancy, thereby creating perturbations in roll, yaw, and pitch, with largely neglected implications for behavioral ecology. Among various forms of hydrodynamic stability, the need for stability in the face of recoil forces from propulsors is close to universal. Destabilizing torques in body-caudal fin swimming is created by inertial and viscous forces through a propulsor beat. The recoil component is reduced, damped, and corrected in various ways, including kinematics, shape of the body and fins, and deployment of the fins. We postulate that control of the angle of orientation, θ, of the trailing edge is especially important in the evolution and lifestyles of fishes, but studies are few. Control of stability and maneuvering are reflected in accelerations around the CM. Accelerations for such motions may give insight into time-behavior patterns in the wild but cannot be used to determine the expenditure of energy by free-swimming fishes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
MHD Stability in Compact Stellarators
NASA Astrophysics Data System (ADS)
Fu, Guoyong
1999-11-01
A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative contributions of individual terms in δ W. It is found the external kinks are mainly driven by the parallel current. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current. These results demonstrate potential of QAS and QOS for disruption-free operations at high-beta without a close-fitting conducting wall and feedback stabilization.
Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging
NASA Astrophysics Data System (ADS)
Tahmasian, Sevak; Woolsey, Craig A.
2017-08-01
A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.
Hawkmoth flight performance in tornado-like whirlwind vortices.
Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L
2014-06-01
Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack.
Wind-Tunnel Tests of a 1/8-Scale Powered Model of the XTB3F-1 Airplane, TED No. NACA 2382
NASA Technical Reports Server (NTRS)
McKee, John W.; Vogler, Raymond D.
1947-01-01
A 1/8 scale model of the Grumman XTB3F-1 airplane was tested in the Langley 7- by 10-foot tunnel to determine the stability and control characteristics and to provide data for estimating the airplane handling qualities. The report includes longitudinal and lateral stability and control characteristics of the complete model, the characteristics of the isolated horizontal tail, the effects of various flow conditions through the jet duct, tests with external stores attached to the underside of the wing, ana tests simulating landing and take-off conditions with a ground board. The handling characteristics of the airplane have not been computed but some conclusions were indicated by the data. An improvement in the longitudinal stability was obtained by tilting the thrust line down. It is shown that if the wing flap is spring loaded so that the flap deflection varies with airspeed, the airplanes will be less stable than with the flap retracted or fully deflected. An increase in size of the vertical tail and of the dorsal fin gave more desirable yawing-moment characteristics than the original vertical tail and dorsal fin. Preventing air flow through the jet duct system or simulating jet operation with unheated air produced only small changes in the model characteristics. The external stores on the underside of the wing had only small effects on the model characteristics. After completion of the investigation, the model was returned to the contractor for modifications indicated by the test results.
NASA Astrophysics Data System (ADS)
Ma, Biao; Zhou, Xiao; Bao, Hua; Li, Xingwei; Wang, Gengchao
2012-10-01
Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods (sGNS/PANI) are successfully synthesized via interfacial polymerization of aniline monomers in the presence of sulfonated graphene nanosheets (sGNS). The FE-SEM images indicate that the morphologies of sGNS/PANI composites can be controlled by adjusting the concentration of aniline monomers. FTIR and Raman spectra reveal that aligned PANI nanorod arrays for sGNS/PANI exhibit higher degree of conjugation compared with pristine PANI nanorods. The hierarchical composite based on the two-electrode cell possesses higher specific capacitance (497 F g-1 at 0.2 A g-1), better rate capability and cycling stability (5.7% capacitance loss after 2000 cycles) than those of pristine PANI nanorods.
Rote, Donald M.; He, Jianliang; Coffey, Howard
1993-01-01
A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.
Rote, D.M.; Jianliang He; Coffey, H.
1993-10-19
A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields. 4 figures.
Improved high speed maglev design
Rote, D.M.; He, Jianliang; Coffey, H.T.
1992-01-01
This report discusses a propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the be vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.
On equilibrium positions and stabilization of electrodynamic tether system in the orbital frame
NASA Astrophysics Data System (ADS)
Tikhonov, A. A.; Shcherbakova, L. F.
2018-05-01
An electrodynamic tether system (EDTS) in a near-Earth circular orbit is considered. EDTS contains conductive tether with lumped masses attached to it at the ends. Possible equilibrium positions of the stretched tether under the influence of gravity gradient, Ampere and Lorentz forces in orbital frame are investigated. It is shown that in addition to the vertical equilibrium position, the "inclined" equilibrium positions of the tensioned tether are also possible. Conditions are obtained for the EDTS parameters, under which there is only one vertical position of the tether equilibrium. On the basis of nonlinear differential equations of motion, using the Lyapunov functions method, sufficient conditions for the stability of the vertical position of the tether equi-librium are obtained. It is shown that stabilization of the tether in this position is possible in the presence of damping in the EDTS system. The results of numerical simulation are presented.
Calabrese, T; Baum, J A; Silverman, B S
2000-12-01
Fligstein (1996) contends that organizations act to exploit the institutional context in which they are embedded so as to stabilize the competition they face. Drawing on Fligstein's theoretical analysis, we conceptualize incumbent biotechnology firms' patent-ing and alliance-building activities as attempts to stabilize and control potential competition and analyze how these activities shape rates of founding in the Canadian biotechnology industry. We find that increases in the level and concentration of incumbents' patenting discourage founding, particularly in human application sectors of the industry where development and approval processes are more costly and time consuming. Incumbents' horizontal alliances depress start-ups; vertical alliances stimulate start-ups. Our findings highlight how technology appropriation and strategic alliances structure the competitive dynamics and evolution of high-technology, knowledge-intensive industries.
NASA Technical Reports Server (NTRS)
Allen, E. C.; Tuttle, T.
1973-01-01
Static stability and control effectiveness characteristics of two 0.004 scale models of the vehicle 3 configuration are reported. The components investigated consisted of a single aft body, vertical/rudder, OMS pods with two interchangeable wings, four interchangeable forward bodies, four trimmers, and a spoiler. The test was conducted in 14 x 14 inch trisonic wind tunnel over a Mach number range from 0.6 to 4.96. Angles of attack from 0 to 60 degrees and angles of sideslip from -10 to 10 degrees at 0, 10, 20,30, and 40 degrees angle of attack were tested. Elevon, body flap, and speed brake deflection composed the parametric considerations. No grit was placed on the models during the test. The tabulated source data and incremental data figures are presented.
DNA–DNA kissing complexes as a new tool for the assembly of DNA nanostructures
Barth, Anna; Kobbe, Daniela; Focke, Manfred
2016-01-01
Kissing-loop annealing of nucleic acids occurs in nature in several viruses and in prokaryotic replication, among other circumstances. Nucleobases of two nucleic acid strands (loops) interact with each other, although the two strands cannot wrap around each other completely because of the adjacent double-stranded regions (stems). In this study, we exploited DNA kissing-loop interaction for nanotechnological application. We functionalized the vertices of DNA tetrahedrons with DNA stem-loop sequences. The complementary loop sequence design allowed the hybridization of different tetrahedrons via kissing-loop interaction, which might be further exploited for nanotechnology applications like cargo transport and logical elements. Importantly, we were able to manipulate the stability of those kissing-loop complexes based on the choice and concentration of cations, the temperature and the number of complementary loops per tetrahedron either at the same or at different vertices. Moreover, variations in loop sequences allowed the characterization of necessary sequences within the loop as well as additional stability control of the kissing complexes. Therefore, the properties of the presented nanostructures make them an important tool for DNA nanotechnology. PMID:26773051
Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G.; Fu, Xiang-Dong
2009-01-01
Summary SR proteins have been studied extensively as a family of RNA binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and co-localize with genes that are engaged in specific intra- and inter-chromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings therefore highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell cycle progression in higher eukaryotic cells. PMID:19595711
Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G; Fu, Xiang-Dong
2009-07-10
SR proteins have been studied extensively as a family of RNA-binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and colocalize with genes that are engaged in specific intra- and interchromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings, therefore, highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell-cycle progression in higher eukaryotic cells.
NASA Technical Reports Server (NTRS)
Fears, Scott P.; Ross, Holly M.; Moul, Thomas M.
1995-01-01
A wind-tunnel investigation was conducted in the Langley 12-Foot Low-Speed Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section (RCS) of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 50 deg, and all the trailing-edge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved longitudinal characteristics and lateral stability and had trailing-edge flaps in three segments that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Three top body widths and two sizes of twin vertical tails were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced RCS and good flight dynamic characteristics.
NASA Technical Reports Server (NTRS)
Moul, Thomas M.; Fears, Scott P.; Ross, Holly M.; Foster, John V.
1995-01-01
A wind tunnel investigation was conducted in the Langley 12-Foot Low-Speed Wind Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 60 deg, and all the trailing-edge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved pitching-moment characteristics and lateral stability and had three sets of trailing-edge flaps that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Top bodies of three widths and twin vertical tails of various sizes and locations were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced radar cross section and good flight dynamic characteristics.
Adaptive control of nonlinear uncertain active suspension systems with prescribed performance.
Huang, Yingbo; Na, Jing; Wu, Xing; Liu, Xiaoqin; Guo, Yu
2015-01-01
This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Vertex stability and topological transitions in vertex models of foams and epithelia
NASA Astrophysics Data System (ADS)
Spencer, Meryl; Jabeen, Zahera; Lubensky, David
Vertex models are widely used to computationally simulate dry foams and epithelial tissues. This class of models describes the shape and motion of cells as a function of the forces on vertices where 3 or more cells meet. Despite the widespread use of these models, relatively little is known about their basic theoretical properties. One outstanding issue is the stability of fourfold vertices. In real foams, fourfold vertices are always unstable, but it has been unclear whether vertex models necessarily reflect this behavior. In biological tissues, fourfold vertices arise as an intermediate in T1 transitions, which are one of the fundamental processes by which tissues change topology, and stable fourfold vertices have recently been observed in several different epithelia. We show that, when all edges have the same tension, stationary fourfold vertices in vertex models must always break up. However, when tensions depend on edge orientation, as they might in a planar-polarized tissue, fourfold vertices can become stable. These findings pave the way for studies of more biologically realistic models that couple topological transitions to the dynamics of regulatory proteins. NSF Grant No. DMR-1056456 and NSF-GRFP Grant No. DGE-1256260.
Stability characteristics of the mesopause region above the Andes
NASA Astrophysics Data System (ADS)
Yang, F.; Liu, A. Z.
2017-12-01
The structure and seasonal variations of static and dynamic (shear) instabilities in the upper atmosphere (80 to 110 km) are examined using 3-year high-resolution wind and temperature data obtained with the Na Lidar at Andes Lidar Observatory (30S,71W). The stabilities are primarily determined by background temperature and wind, but strongly affected by tidal and gravity wave variations. Gravity waves perturb the atmosphere, causing intermittent unstable layers. The stabilities are characterized by their vertical and seasonal distributions of probability of instabilities. As have been found in previous studies, there is a correlation between high static stability (large N2) and strong vertical wind shear. The mechanism for this relationship is investigated in the context of gravity waves interacting with varying background.
How much vertical displacement of the symphysis indicates instability after pelvic injury?
Golden, Robert D; Kim, Hyunchul; Watson, Jeffrey D; Oliphant, Bryant W; Doro, Christopher; Hsieh, Adam H; Osgood, Greg M; O'Toole, Robert V
2013-02-01
Measures of pubic symphyseal widening are used by at least two classification systems as determinants of injury grade. Recent work has challenged the commonly used parameter of 2.5 cm of pubic symphysis as an accurate marker of pelvic injury grade and has suggested a role of rotation in the flexion-extension plane as a determinant of pelvic stability. We investigated pelvic stability in the flexion-extension plane to determine a threshold of rotational displacement of the hemipelvis above which the potential for instability exists. Cadaveric specimens were mounted onto a servohydraulic biaxial testing machine and subjected to a vertically directed flexion moment. Position of hemipelvis was recorded using a three-dimensional motion capture system and video recording. Displacement of the pubic symphysis and changes in length and position of the sacrospinous and sacrotuberous ligaments were recorded. Amount of force applied was measured and recorded. A yield point was determined as the first point at which the force plot exhibited a decrease in force and was correlated to the corresponding displacement. The mean vertical displacement of the pubic symphysis at the yield point was 16 mm (95% confidence interval, 11-22 mm). Mean sacrospinous ligament strain at yield point was 4% (range, 1.0-9.5%). Pelves with vertical rotational symphyseal displacement of less than 11 mm can reasonably be expected to have rotational stability in the flexion-extension plane. Those with displacement of greater than 22 mm can be expected to have lost some integrity regarding resistance to pelvic flexion. These values may allow clinicians to infer pelvic stability from amount of vertical symphyseal displacement.
Ricard, Daniel; Ferri, Joël
2009-08-01
We describe a new surgical procedure to improve stability when counterclockwise rotation of the maxillomandibular complex and the occlusal plane is intended. This preliminary prospective study evaluated 10 patients (8 female patients and 2 male patients) who each underwent maxillomandibular surgical advancement with counterclockwise rotation of the occlusal plane. A mandibular counterclockwise rotation was done in all cases with bilateral ramus sagittal split osteotomy. After the split of the ramus had been completed, a vertical osteotomy was done distally to the second molar on the internal ramus segment. With the completion of this vertical osteotomy, the internal ramus segment became completely mobile. All osteotomies were stabilized with rigid internal fixation by use of plates with monocortical screws. Ten patients have been treated with the "mobilizing vertical osteotomy of the internal ramus segment." The mean reduction of the occlusal plane angle was 10.1 degrees , showing a substantial counterclockwise rotation of the maxillomandibular complex. All patients had significant improvement of their facial balance. After a 1-year follow-up period, all cases but 1 showed very good stability of their occlusion and occlusal plane angle. An 11.4% relapse of the forward movement of the mandible was noted. On the basis of this prospective study, we conclude that when performing a counterclockwise rotation of the maxillomandibular complex, the mobilizing vertical osteotomy of the internal ramus segment combined with the sagittal split osteotomy of the mandible potentially enhances the occlusal plane angle and occlusal stability after a 1-year period.
Mapping sequence performed during the STS-121 R-Bar Pitch Maneuver
2006-07-06
ISS013-E-47629 (6 July 2006) --- A close-up view of Space Shuttle Discovery's tail section is featured in this image photographed by an Expedition 13 crewmember on the International Space Station during STS-121 R-Pitch Maneuver survey on Flight Day 3. Visible are the shuttle's main engines, vertical stabilizer, orbital maneuvering system (OMS) pods, reaction control system (RCS) jets and a portion of payload bay door radiator and wings.
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III
1996-01-01
Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for demanding vertical landing tasks aboard ship and in confined land-based sites.
Haddas, Ram; Hooper, Troy; James, C Roger; Sizer, Phillip S
2016-12-01
Volitional preemptive abdominal contraction (VPAC) during dynamic activities may alter trunk motion, but the role of the core musculature in positioning the trunk during landing tasks is unclear. To determine whether volitional core-muscle activation incorporated during a drop vertical jump alters lower extremity kinematics and kinetics, as well as trunk and lower extremity muscle activity at different landing heights. Controlled laboratory study. Clinical biomechanics laboratory. Thirty-two young healthy adults, consisting of 17 men (age = 25.24 ± 2.88 years, height = 1.85 ± 0.06 m, mass = 89.68 ± 16.80 kg) and 15 women (age = 23.93 ± 1.33 years, height = 1.67 ± 0.08 m, mass = 89.68 ± 5.28 kg). Core-muscle activation using VPAC. We collected 3-dimensional ankle, knee, and hip motions, moments, and powers; ground reaction forces; and trunk and lower extremity muscle activity during 0.30- and 0.50-m drop vertical-jump landings. During landing from a 0.30-m height, VPAC performance increased external oblique and semitendinosis activity, knee flexion, and knee internal rotation and decreased knee-abduction moment and knee-energy absorption. During the 0.50-m landing, the VPAC increased external oblique and semitendinosis activity, knee flexion, and hip flexion and decreased ankle inversion and hip-energy absorption. The VPAC performance during landing may protect the anterior cruciate ligament during different landing phases from different heights, creating a protective advantage just before ground contact and after the impact phase. Incorporating VPAC during high injury-risk activities may enhance pelvic stability, improve lower extremity positioning and sensorimotor control, and reduce anterior cruciate ligament injury risk while protecting the lumbar spine.
NASA Technical Reports Server (NTRS)
Johnson, Joseph L.
1949-01-01
An investigation of the stability and control characteristics of a 1/10-scale model of a Canadian tailless glider has been conducted in the 10 Langley free-flight tunnel. The glider designated the N.R.L. tailless glider has a straight center section and outboard panels sweptback 43 deg. along the leading edge of the wing. The aspect ratio is 5.83 and the taper ratio is 0.323. From the results of the investigation and on the basis of comparison with higher-scale static tests of the National Research Council of Canada, it is expected that the longitudinal stability of the airplane will be satisfactory with flap up but unsatisfactory near the stall with flap down. The airplane is expected to have unsatisfactory lateral stability and control characteristics in the design configuration with either flap up or flap down. The model flights showed very low damping of the lateral oscillation. Increasing the vertical-tail area improved the lateral stability, and it appeared that a value of the directional-stability parameter C(sub n beta) of at least 0.002 per degree would probably be necessary for satisfactory lateral flying characteristics. A comparison of the calculated dynamic lateral stability characteristics of the N.R.L. tailless glider with those of a conventional-type sweptback airplane having a similar wing plan form and about the same inclination of the principal longitudinal axis of inertia showed that the tailless glider had poorer lateral stability because of the relatively larger radius of gyration in roll and the smaller damping-in-yaw factor C(sub nr).
Vertical ascending electrophoresis of cells with a minimal stabilizing medium
NASA Technical Reports Server (NTRS)
Omenyi, S. N.; Snyder, R. S.
1983-01-01
Vertical fractionation of a mixture of fixed horse and human red blood cells layered over a stabilizing support medium was done to give a valid comparison with proposed space experiments. In particular, the effects of sample thickness and concentration on zone migration rate were investigated. Electrophoretic mobilities of horse and human cells calculated from zone migration rates were compatible with those obtained by microelectrophoresis. Complete cell separation was observed when low power and effective cooling were employed.
Advanced composite vertical stabilizer for DC-10 transport aircraft
NASA Technical Reports Server (NTRS)
Stephens, C. O.
1978-01-01
The structural design configuration for the Composite Vertical Stabilizer is described and the structural design, analysis, and weight activities are presented. The status of fabrication and test activities for the development test portion of the program is described. Test results are presented for the skin panels, spar web, spar cap to cover, and laminate properties specimens. Engineering drawings of vertification test panels and root fittings, rudder support specimens, titanium fittings, and rear spar specimen analysis models are included.
Fractographic Examination of the Vertical Stabilizer and Rudder from American Airlines Flight 587
NASA Technical Reports Server (NTRS)
Fox, Matthew R.; Schultheisz, Carl R.; Reeder, James R.
2005-01-01
The first major structural component failure of a composite part on a commercial airplane occurred during the crash of American Airlines Flight 587. The fractured composite lugs that attached the vertical stabilizer to the aircraft tail and the fractured composite honeycomb rudder were examined as part of the National Transportation Safety Board investigation of the accident. In this paper the composite fractures are described and the resulting clues to the failure events are discussed.
Laser Sintered Porous Ti-6Al-4V Implants Stimulate Vertical Bone Growth.
Cheng, Alice; Cohen, David J; Kahn, Adrian; Clohessy, Ryan M; Sahingur, Kaan; Newton, Joseph B; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi
2017-08-01
The objective of this study was to examine the ability of 3D implants with trabecular-bone-inspired porosity and micro-/nano-rough surfaces to enhance vertical bone ingrowth. Porous Ti-6Al-4V constructs were fabricated via laser-sintering and processed to obtain micro-/nano-rough surfaces. Male and female human osteoblasts were seeded on constructs to analyze cell morphology and response. Implants were then placed on rat calvaria for 10 weeks to assess vertical bone ingrowth, mechanical stability and osseointegration. All osteoblasts showed higher levels of osteocalcin, osteoprotegerin, vascular endothelial growth factor and bone morphogenetic protein 2 on porous constructs compared to solid laser-sintered controls. Porous implants placed in vivo resulted in an average of 3.1 ± 0.6 mm 3 vertical bone growth and osseointegration within implant pores and had significantly higher pull-out strength values than solid implants. New bone formation and pull-out strength was not improved with the addition of demineralized bone matrix putty. Scanning electron images and histological results corroborated vertical bone growth. This study indicates that Ti-6Al-4V implants fabricated by additive manufacturing to have porosity based on trabecular bone and post-build processing to have micro-/nano-surface roughness can support vertical bone growth in vivo, and suggests that these implants may be used clinically to increase osseointegration in challenging patient cases.
Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.
2018-01-01
Abstract An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large‐amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller‐amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying. PMID:29576994
NASA Astrophysics Data System (ADS)
Fritts, David C.; Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.
2018-01-01
An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large-amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller-amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying.
Königshausen, M; Jettkant, B; Sverdlova, N; Ehlert, C; Gessmann, J; Schildhauer, T A; Seybold, D
2015-01-01
There is no biomechanical basis to determine the influence of different length of the central peg of the baseplate anchored within the native scapula in glenoid defect reconstruction in cases of degenerative or posttraumatic glenoid bone loss in reversed shoulder arthroplasty. The purpose of this study was to analyse the stability of different peg lengths used in glenoid bone loss in reversed shoulder arthroplasty. Different lengths of metaglene pegs with different depths of peg anchorage performed with or without metaglene screws in sawbone foam blocks were loaded in vertical and horizontal directions for differentiating load capacities. Simulated physiological loadings were then applied to the peg implants to determine the limits of loading in each depth of anchorage. The loading capacity of the implant was reduced as less of the peg was anchored. The vertically loaded implants showed a significantly higher stability, in contrast to those loaded horizontally at a corresponding peg length and depth of anchorage (p < 0.05). The tests revealed that the metaglene screws are more essential for primary stability than is the peg particularly in the vertically directed loadings (2/3 anchored: peg contributed to 28% of the stability, 1/3 anchorage: peg contributed to 12%). Under the second test conditions, the lowest depth of peg anchorage (1/3) resulted in 322 Newtons [N] in the long peg with a vertical loading direction, and in 130 N in the long peg with a horizontal loading direction (p < 0.05). The pegs should be anchored as deeply as possible into the native scapula bone stock. The metaglene screws play a major role in the initial stability, in contrast to the peg, and they become more important when the depth of the peg anchorage is reduced. If possible, four metaglene screws should be used in cases of uncontained bone loss to guarantee the highest stability.
19. VIEW SOUTHWEST OF INTERMEDIATE VERTICAL PENNSYLVANIA PETIT TRUSS WITH ...
19. VIEW SOUTHWEST OF INTERMEDIATE VERTICAL PENNSYLVANIA PETIT TRUSS WITH CASTLE ROCK IN BACKGROUND. JUNCTION OF INTERMEDIATE VERTICAL AND TOP CHORD WITH STABILIZING LATERAL STRUT ABOVE AND SWAY STRUT BELOW. ORIGINAL PAIRED DIAGONAL EYE BARS LATER REINFORCED WITH TIE ROD - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA
Temperature Control of the Variability of Tropical Tropopause Layer Cirrus Clouds
NASA Astrophysics Data System (ADS)
Tseng, Hsiu-Hui; Fu, Qiang
2017-10-01
This study examines the temperature control of variability of tropical tropopause layer (TTL) cirrus clouds (i.e., clouds with bases higher than 14.5 km) by using 8 years (2006-2014) of observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). It is found that the temporal variability of vertical structure of TTL cirrus cloud fraction averaged between 15°N and 15°S can be well explained by the vertical temperature gradient below 17.5 km but by the local temperature above for both seasonal and interannual time scales. It is also found that the TTL cirrus cloud fraction at a given altitude is best correlated with the temperature at a higher altitude and this vertical displacement increases with a decrease of the cirrus altitude. It is shown that the TTL cirrus cloud fractions at all altitudes are significantly correlated with tropical cold point tropopause (CPT) temperature. The plausible mechanisms that might be responsible for the observed relations between TTL cirrus fraction and temperature-based variables are discussed, which include ice particle sediments, cooling associated with wave propagations, change of atmospheric stability, and vertical gradient of water vapor mixing ratio. We further examine the spatial covariability of TTL total cirrus cloud fraction and CPT temperature for the interannual time scale. It is found that the El Niño-Southern Oscillation and quasi-biennial oscillation are the leading factors in controlling the spatial variability of the TTL cirrus clouds and temperatures.
NASA Technical Reports Server (NTRS)
Johnson, Joseph L.
1951-01-01
An investigation of the low-speed, power-off stability and control characteristics of a 1/10-scale model of the Douglas XF4D-1 airplane has been made in the Langley free-flight tunnel. The model was flown with leading-edge slats retracted and extended over a lift-coefficient range from 0.5 to the stall. Only relatively low-altitude conditions were simulated and no attempt was made to determine the effect on the stability characteristics of freeing the controls. The longitudinal stability and control characteristics of the model were satisfactory for all conditions investigated except near the stall with slats extended, where the model had a slight nosing-up tendency. The lateral stability and control characteristics of the model were considered satisfactory for all conditions investigated except near the stall with slats retracted, where a change in sign of the static- directional-stability parameter Cn(sub beta) caused the model to be directionally divergent. The addition of an extension to the top of the vertical tail did not increase Cn(sub beta) enough to eliminate the directional divergence of the model, but a large increase in Cn(sub beta) that was obtainable by artificial means appeared to eliminate the divergence and flights near the stall could be made. Artificially increasing the stability derivative-Cn(sub r) (yawing moment due to yawing) and Cn(sub p) (yawing moment due to rolling) had little effect on the divergence for the range of these parameters investigated. Calculations indicate that the damping of the lateral oscillation of the airplane with slats retracted or extended will be satisfactory at sea level but will be only marginally satisfactory at 40,000 feet.
Vertical Heterophoria and Postural Control in Nonspecific Chronic Low Back Pain
Matheron, Eric; Kapoula, Zoï
2011-01-01
The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict. PMID:21479210
NASA Technical Reports Server (NTRS)
Kupcis, E. A.
1974-01-01
The effects of the Refan JT8D side engine target thrust reverser on the stability and control characteristics of the Boeing 727-200 airplane were investigated using the Boeing-Vertol 20 x 20 ft Low-Speed Wind Tunnel. A powered model of the 727-200 was tested in groud effect in the landing configuration. The Refan target reverser configuration was evaluated relative to the basic production 727 airplane with its clamshell-deflector door thrust reverser design. The Refan configuration had slightly improved directional control characteristics relative to the basic airplane. Clocking the Refan thrust reversers 20 degrees outboard to direct the reverser flow away from the vertical tail, had little effect on directional control. However, clocking them 20 degrees inboard resulted in a complete loss of rudder effectiveness for speeds greater than 90 knots. Variations in Refan reverser lip/fence geometry had a minor effect on directional control.
NASA Technical Reports Server (NTRS)
Kuhri, Richard E.; Myers, Boyd C., II
1947-01-01
Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The wing-alone tests and the effect of the various vertical-fin modifications, speed-brake modifications, and fuselage modifications on the aerodynamic characteristics in pitch and yaw are presented in the present paper with a limited analysis of the results. Also included are tuft studies of the flow for some of the modifications tested.
Experimental studies of the rotor flow downwash on the Stability of multi-rotor crafts in descent
NASA Astrophysics Data System (ADS)
Veismann, Marcel; Dougherty, Christopher; Gharib, Morteza
2017-11-01
All rotorcrafts, including helicopters and multicopters, have the inherent problem of entering rotor downwash during vertical descent. As a result, the craft is subject to highly unsteady flow, called vortex ring state (VRS), which leads to a loss of lift and reduced stability. To date, experimental efforts to investigate this phenomenon have been largely limited to analysis of a single, fixed rotor mounted in a horizontal wind tunnel. Our current work aims to understand the interaction of multiple rotors in vertical descent by mounting a multi-rotor craft in a low speed, vertical wind tunnel. Experiments were performed with a fixed and rotationally free mounting; the latter allowing us to better capture the dynamics of a free flying drone. The effect of rotor separation on stability, generated thrust, and rotor wake interaction was characterized using force gauge data and PIV analysis for various descent velocities. The results obtained help us better understand fluid-craft interactions of drones in vertical descent and identify possible sources of instability. The presented material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).
NASA Technical Reports Server (NTRS)
Runckel, Jack F.; Schmeer, James W.; Cassetti, Marlowe D.
1960-01-01
An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model (the "Swallow") with the outer wing panels swept 25 deg has been conducted in the Langley 16-foot transonic tunnel. The wing was uncambered and untwisted and had RAE 102 airfoil sections with a thickness-to-chord ratio of 0.14 normal to the leading edge. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. A pair of swept lateral fins and a single vertical fin were mounted on each engine nacelle to provide aerodynamic stability and control. Jets-off data were obtained with flow-through nacelles, stimulating the effects of inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained through a Mach number range of 0.40 to 0.90 at angles of attack and angles of sideslip from 0 deg to 15 deg. Longitudinal, directional, and lateral control were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control.
Aging effects on vertical graphene nanosheets and their thermal stability
NASA Astrophysics Data System (ADS)
Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.
2018-03-01
The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.
Vitale, Jacopo A; La Torre, Antonio; Banfi, Giuseppe; Bonato, Matteo
2018-04-01
Vitale, JA, La Torre, A, Banfi, G, and Bonato, M. Effects of an 8-week body-weight neuromuscular training on dynamic balance and vertical jump performances in elite junior skiing athletes: a randomized controlled trial. J Strength Cond Res 32(4): 911-920, 2018-The aim of the present randomized controlled trial was to evaluate the effects of an 8-week neuromuscular training program focused on core stability, plyometric, and body-weight strengthening exercises on dynamic postural control and vertical jump performance in elite junior skiers. Twenty-four Italian elite junior male skiers were recruited and randomized to either an experimental group (EG), performing neuromuscular warm-up exercises, (EG; n = 12; age 18 ± 1 years; body mass 66 ± 21 kg; height 1.70 ± 0.1 m) or a control group (CG) involved in a standard warm-up (CG; n = 12; age 18 ± 1 years; body mass 62 ± 14 kg; height 1.73 ± 0.1 m). lower quarter Y-Balance Test (YBT), countermovement jump (CMJ), and drop jump (DJ) at baseline (PRE) and at the end (POST) of the experimental procedures were performed. No significant differences between EG and CG were observed at baseline. Results showed that EG achieved positive effects from PRE to POST measures in the anterior, posteromedial, posterolateral directions, and composite score of YBT for both lower limbs, whereas no significant differences were detected for CG. Furthermore, 2-way analysis of variance with Bonferroni's multiple comparisons test did not reveal any significant differences in CMJ and DJ for both EG and CG. The inclusion of an 8-week neuromuscular warm-up program led to positive effects in dynamic balance ability but not in vertical jump performance in elite junior skiers. Neuromuscular training may be an effective intervention to specifically increase lower limb joint awareness and postural control.
Experimental test of theory for the stability of partially saturated vertical cut slopes
Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.
2014-01-01
This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.
NASA Technical Reports Server (NTRS)
Schmeer, James W.; Cassetti, Marlowe D.
1960-01-01
An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model with the outer wing panels swept 75 deg. has been conducted in the Langley 16-foot transonic tunnel. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. The engine nacelles incorporated swept lateral and vertical fins for aerodynamic stability and control. Jet-off data were obtained with flow-through nacelles, simulating inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained at Mach numbers from 0.60 to 1.05 through a range of angles of attack and angles of side-slip. Control characteristics were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control. The results indicate that the basic wing-body configuration becomes neutrally stable or unstable at a lift coefficient of 0.15; addition of nacelles with fins delayed instability to a lift coefficient of 0.30. Addition of nacelles to the wing-body configuration increased minimum drag from 0.0058 to 0.0100 at a Mach number of 0.60 and from 0.0080 to 0.0190 at a Mach number of 1.05 with corresponding reductions in maximum lift-drag ratio of 12 percent and 33 percent, respectively. The nacelle-fin combinations were ineffective as longitudinal controls but were adequate as directional and lateral controls. The model with nacelles and fins was directionally and laterally stable; the stability generally increased with increasing lift. Jet interference effects on stability and control characteristics were small but the adverse effects on drag were greater than would be expected for isolated nacelles.
NASA Technical Reports Server (NTRS)
Ranaudo, R. J.
1977-01-01
The incipient spinning characteristics of general aviation airplanes were studied. Angular rates in pitch, yaw, and roll were measured through the stall during the incipient spin and throughout the recovery along with control positions, angle of attack, and angle of sideslip. The characteristic incipient spinning motion was determined from a given set of entry conditions. The sequence of recovery controls were varied at two distinct points during the incipient spin, and the effect on recovery characteristics was examined. Aerodynamic phenomena associated with flow over the aft portion of the fuselage, vertical stabilizer, and rubber are described.
Baek, Seung-Hak; Kim, Keunwoo; Choi, Jin-Young
2009-11-01
The purpose of this study was to evaluate the range of surgical movement and stability of rotational maxillary setback (MXS) procedure as treatment modality for skeletal class III malocclusion with labioversed upper incisors and/or protrusive maxilla (CIII/LUI-PM). The samples consisted of 20 adult patients (mean [SD] age, 23.55 [4.30] y) who had CIII/LUI-PM and were treated with rotational MXS and mandibular setback using LeFort I osteotomy and bilateral sagittal split ramus osteotomy. The lateral cephalograms were obtained 1 week before (T0), 1 week after (T1), and 1 year after surgery (T2). The amounts of surgical movement, relapse, and stability rate of the upper central incisor (UIE), upper first molar (U6MBC), point A (A), incisive canal point, and posterior nasal spine (PNS) in relation to the reference planes were statistically analyzed. During T1 - T0, there were backward and downward movements of UIE and A, backward and upward movements of U6MBC, and upward and slight forward movements of PNS due to rotational MXS. The center of rotation of the maxilla was placed between A and the upper premolar area. During T2 - T1, skeletal landmarks showed clinically insignificant counterclockwise rotational relapse (<0.5 mm). The anteroposterior (AP) and vertical positions of skeletal landmarks were more stable than dental landmarks. The U6MBC was more stable in the vertical aspect than UIE (P < 0.01). Posterior nasal spine showed significantly higher stability rate in both vertical and AP aspects (P < 0.01, respectively), whereas UIE showed a lower value in the vertical aspect (P < 0.05). Rotational MXS procedure in cases with CIII/LUI-PM can be regarded as a stable one, especially in the vertical and AP positions of PNS. Vertical relapse in UIE should be managed with postoperative orthodontic treatment.
Advanced composite vertical stabilizer for DC-10 transport aircraft
NASA Technical Reports Server (NTRS)
Stephens, C. O.
1979-01-01
Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.
Lyapunov stability analysis for the generalized Kapitza pendulum
NASA Astrophysics Data System (ADS)
Druzhinina, O. V.; Sevastianov, L. A.; Vasilyev, S. A.; Vasilyeva, D. G.
2017-12-01
In this work generalization of Kapitza pendulum whose suspension point moves in the vertical and horizontal planes is made. Lyapunov stability analysis of the motion for this pendulum subjected to excitation of periodic driving forces and stochastic driving forces that act in the vertical and horizontal planes has been studied. The numerical study of the random motion for generalized Kapitza pendulum under stochastic driving forces has made. It is shown the existence of stable quasi-periodic motion for this pendulum.
Vertical Stabilizer and OMS pods from the aft FD window during STS-123 mission
2008-03-11
S123-E-005073 (11 Mar. 2008) --- This view out the aft windows on Endeavour's flight deck was one of a series of images recorded by the STS-123 crewmembers during their first full day in space. The end of the Canadian-built remote manipulator system's robot arm (right edge) along with the shuttle's vertical stabilizer and its two orbital maneuvering system (OMS) pods are visible. A heavily cloud-covered area of Earth fills the top half of the frame.
NASA Technical Reports Server (NTRS)
Axelson, John A.; Emerson, Horace F.
1949-01-01
High-speed wind-tunnel tests were conducted of two versions of a 0.17-scale model of the McDonnell XF2H-1 airplane to ascertain the high-speed stability and control characteristics and to study means for raising the high-speed buffet limit of the airplane, The results for the revised model, employing a thinner wing and tail than the original model, revealed a mild diving tendency from 0.75 to 0.80 Mach number, followed by a marked climbing tendency from 0.80 to 0.875 Mach number. The high-speed climbing tendency was caused principally by the pitching-moment characteristics of the wing. At 0.875 Mach number the results for the revised model indicated stick-fixed directional instability over a limited range of yaw angles, apparently caused by separated flow over the vertical tail. The test results indicate that the high-speed buffet limit of the airplane can probably be raised by reducing the thickness and changing the relative location of the horizontal and vertical tails, and by revising the inner portion of the wing to have a lower thickness-to-chord ratio and reduced trailing-edge angle. The addition of the wing-tip tanks to the revised model resulted in a forward shift in the neutral point below 0.82 Mach number.
Increasing the stability of the articulated lorry at braking by locking the fifth wheel coupling
NASA Astrophysics Data System (ADS)
Skotnikov, G. I.; Jileykin, M. M.; Komissarov, A. I.
2018-02-01
The jackknifing of the articulated lorry is determined by the loss of stability with respect to the vertical axis of the fifth wheel coupling, which can be caused by the failure of the brake system, the displacement of the center of mass of the semitrailer or tractor from the longitudinal axis of the vehicle, the road parameters (longitudinal and transverse slopes), the difference in the friction coefficients under the sides of the articulated lorry. In this regard, the issue of creating devices that prevent the jackknifing, and their control systems is important. A method is proposed for maintaining the stability of the movement of articulated lorry when braking both on a straight line and in a turn by blocking the relative rotation of the tractor and the trailer. Blocking occurs due to the creation of a stabilizing moment in the direction opposite to the angular rate of folding. To test the developed algorithm for locking the fifth wheel coupling, a mathematical model of the spatial motion of the articulated lorry was developed, including the models of interaction of an elastic tire with a rigid terrain, suspension systems, transmission, steering, fifth-wheel coupling. The efficiency and effectiveness of the coupling locking control system is proved by comparing the results of the simulation of a straight-line braking and braking in turn. It is shown that the application of the control system significantly increases the stability of the road train.
Initial Evaluations of LoC Prediction Algorithms Using the NASA Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje; Stepanyan, Vahram; Barlow, Jonathan; Hardy, Gordon; Dorais, Greg; Poolla, Chaitanya; Reardon, Scott; Soloway, Donald
2014-01-01
Flying near the edge of the safe operating envelope is an inherently unsafe proposition. Edge of the envelope here implies that small changes or disturbances in system state or system dynamics can take the system out of the safe envelope in a short time and could result in loss-of-control events. This study evaluated approaches to predicting loss-of-control safety margins as the aircraft gets closer to the edge of the safe operating envelope. The goal of the approach is to provide the pilot aural, visual, and tactile cues focused on maintaining the pilot's control action within predicted loss-of-control boundaries. Our predictive architecture combines quantitative loss-of-control boundaries, an adaptive prediction method to estimate in real-time Markov model parameters and associated stability margins, and a real-time data-based predictive control margins estimation algorithm. The combined architecture is applied to a nonlinear transport class aircraft. Evaluations of various feedback cues using both test and commercial pilots in the NASA Ames Vertical Motion-base Simulator (VMS) were conducted in the summer of 2013. The paper presents results of this evaluation focused on effectiveness of these approaches and the cues in preventing the pilots from entering a loss-of-control event.
Harte, Philip T.
2017-01-01
A common assumption with groundwater sampling is that low (<0.5 L/min) pumping rates during well purging and sampling captures primarily lateral flow from the formation through the well-screened interval at a depth coincident with the pump intake. However, if the intake is adjacent to a low hydraulic conductivity part of the screened formation, this scenario will induce vertical groundwater flow to the pump intake from parts of the screened interval with high hydraulic conductivity. Because less formation water will initially be captured during pumping, a substantial volume of water already in the well (preexisting screen water or screen storage) will be captured during this initial time until inflow from the high hydraulic conductivity part of the screened formation can travel vertically in the well to the pump intake. Therefore, the length of the time needed for adequate purging prior to sample collection (called optimal purge duration) is controlled by the in-well, vertical travel times. A preliminary, simple analytical model was used to provide information on the relation between purge duration and capture of formation water for different gross levels of heterogeneity (contrast between low and high hydraulic conductivity layers). The model was then used to compare these time–volume relations to purge data (pumping rates and drawdown) collected at several representative monitoring wells from multiple sites. Results showed that computation of time-dependent capture of formation water (as opposed to capture of preexisting screen water), which were based on vertical travel times in the well, compares favorably with the time required to achieve field parameter stabilization. If field parameter stabilization is an indicator of arrival time of formation water, which has been postulated, then in-well, vertical flow may be an important factor at wells where low-flow sampling is the sample method of choice.
Anticipatory control of impending postural perturbation in elite springboard divers.
Popa, T; Bonifazi, M; della Volpe, R; Rossi, A; Mazzocchio, R
2008-12-01
Among athletes, elite springboard divers (ED) should develop an optimal anticipatory control of postural stability, as a result of specific training. Postural strategies of ED and healthy subjects (HS) while expecting an impending perturbation were compared. The mean center of pressure (COP) position was analyzed during control quiet stance (cQS) and during anticipatory quiet stance (aQS(1-4)), i.e., in expectation of four backward translations of the support surface. During cQS, COP position in ED was not significantly different as compared to HS. During aQS(1-4,) a significant increase in the mean COP position was observed in both groups with ED adopting a more forward inclined vertical alignment than HS. In ED specific training may have resulted in a reference frame offset in a more anterior direction while expecting an impending perturbation. We suggest that leaning more forward may represent a more reliable way of coping with predictable perturbations of postural stability.
High angle-of-attack aerodynamics of a strake-canard-wing V/STOL fighter configuration
NASA Technical Reports Server (NTRS)
Durston, D. A.; Schreiner, J. A.
1983-01-01
High angle-of-attack aerodynamic data are analyzed for a strake-canard-wing V/STOL fighter configuration. The configuration represents a twin-engine supersonic V/STOL fighter aircraft which uses four longitudinal thrust-augmenting ejectors to provide vertical lift. The data were obtained in tests of a 9.39 percent scale model of the configuration in the NASA Ames 12-Foot Pressure Wind Tunnel, at a Mach number of 0.2. Trimmed aerodynamic characteristics, longitudinal control power, longitudinal and lateral/directional stability, and effects of alternate strake and canard configurations are analyzed. The configuration could not be trimmed (power-off) above 12 deg angle of attack because of the limited pitch control power and the high degree of longitudinal instability (28 percent) at this Mach number. Aerodynamic center location was found to be controllable by varying strake size and canard location without significantly affecting lift and drag. These configuration variations had relatively little effect on the lateral/directional stability up to 10 deg angle of attack.
Optical Injection Locking of a VCSEL in an OEO
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute
2009-01-01
Optical injection locking has been demonstrated to be effective as a means of stabilizing the wavelength of light emitted by a vertical-cavity surface- emitting laser (VCSEL) that is an active element in the frequency-control loop of an opto-electronic oscillator (OEO) designed to implement an atomic clock based on an electromagnetically- induced-transparency resonance. This particular optical-injection- locking scheme is expected to enable the development of small, low-power, high-stability atomic clocks that would be suitable for use in applications involving precise navigation and/or communication. In one essential aspect of operation of an OEO of the type described above, a microwave modulation signal is coupled into the VCSEL. Heretofore, it has been well known that the wavelength of light emitted by a VCSEL depends on its temperature and drive current, necessitating thorough stabilization of these operational parameters. Recently, it was discovered that the wavelength also depends on the microwave power coupled into the VCSEL. Inasmuch as the microwave power circulating in the frequency-control loop is a dynamic frequency-control variable (and, hence, cannot be stabilized), there arises a need for another means of stabilizing the wavelength. The present optical-injection-locking scheme satisfies the need for a means to stabilize the wavelength against microwave- power fluctuations. It is also expected to afford stabilization against temperature and current fluctuations. In an experiment performed to demonstrate this scheme, wavelength locking was observed when about 200 W of the output power of a commercial tunable diode laser was injected into a commercial VCSEL, designed to operate in the wavelength range of 795+/-3 nm, that was generating about 200 microW of optical power. (The use of relatively high injection power levels is a usual practice in injection locking of VCSELs.)
Sekiguchi, Yusuke; Kato, Tomohisa; Honda, Keita; Kanetaka, Hiroyasu; Izumi, Shin-Ichi
2017-08-01
The effect of the grab bar on dynamic stability when elderly people enter the bathtub remains unclear. The purpose of the present study is to examine the age-related effect of the grab bar on dynamic stability during lateral stepping over an obstacle when entering bathtub. Sixteen young, healthy adults and sixteen elderly adults participated. The subjects performed lateral stepping over an obstacle with and without vertical and horizontal bars. Displacement and velocity of the center of mass and utilized friction, which is the required coefficient of friction to avoid slipping, were simultaneously measured by a three-dimensional motion analysis system and two force plates. A post hoc test for two-way ANOVA revealed that velocity of the center of mass in the vertical direction (p<0.05) and peak-to-peak values of the center of mass in the lateral (p<0.05) and vertical directions (p<0.05) with each grab bar were significantly slower and smaller than those without the grab bar in young and elderly people. Moreover, the utilized friction at push off of the trailing leg with the vertical bar in elderly people was lower (p<0.05) than that in participants without the grab bar. The use of each grab bar while performing a lateral step over an obstacle may help maintaining balance in lateral and vertical directions. However, use of the vertical bar while lateral stepping over an object in elderly people may need low utilized friction to prevent slipping. Copyright © 2017 Elsevier Ltd. All rights reserved.
The use of magnetic fields in vertical Bridgman/Gradient Freeze-type crystal growth
NASA Astrophysics Data System (ADS)
Pätzold, Olf; Niemietz, Kathrin; Lantzsch, Ronny; Galindo, Vladimir; Grants, Ilmars; Bellmann, Martin; Gerbeth, Gunter
2013-03-01
This paper outlines advanced vertical Bridgman/Gradient Freeze techniques with flow control using magnetic fields developed for the growth of semiconductor crystals. Low-temperature flow modelling, as well as laboratory-scaled crystal growth under the influence of rotating, travelling, and static magnetic fields are presented. Experimental and numerical flow modelling demonstrate the potential of the magnetic fields to establish a well-defined flow for tailoring heat and mass transfer in the melt during growth. The results of the growth experiments are discussed with a focus on the influence of a rotating field on the segregation of dopants, the influence of a travelling field on the temperature field and thermal stresses, and the potential of rotating and static fields for a stabilization of the melt flow.
Historical Contributions to Vertical Flight at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Hodges, William T.; Gorton, Susan A.; Jackson, Karen E.
2016-01-01
The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.
46 CFR 170.290 - Free surface correction for damage stability calculations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... this subchapter, the virtual increase in the vessel's vertical center of gravity due to liquids in... from the vertical; or (2) Calculating the shift of the center of gravity of the liquid in the tank by...
46 CFR 170.290 - Free surface correction for damage stability calculations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... this subchapter, the virtual increase in the vessel's vertical center of gravity due to liquids in... from the vertical; or (2) Calculating the shift of the center of gravity of the liquid in the tank by...
46 CFR 170.290 - Free surface correction for damage stability calculations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... this subchapter, the virtual increase in the vessel's vertical center of gravity due to liquids in... from the vertical; or (2) Calculating the shift of the center of gravity of the liquid in the tank by...
46 CFR 170.290 - Free surface correction for damage stability calculations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... this subchapter, the virtual increase in the vessel's vertical center of gravity due to liquids in... from the vertical; or (2) Calculating the shift of the center of gravity of the liquid in the tank by...
46 CFR 170.290 - Free surface correction for damage stability calculations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... this subchapter, the virtual increase in the vessel's vertical center of gravity due to liquids in... from the vertical; or (2) Calculating the shift of the center of gravity of the liquid in the tank by...
Rotorcraft handling-qualities design criteria development
NASA Technical Reports Server (NTRS)
Aiken, Edwin W.; Lebacqz, J. Victor; Chen, Robert T. N.; Key, David L.
1988-01-01
Joint NASA/Army efforts at the Ames Research Center to develop rotorcraft handling-qualities design criteria began in earnest in 1975. Notable results were the UH-1H VSTOLAND variable stability helicopter, the VFA-2 camera-and-terrain-board simulator visual system, and the generic helicopter real-time mathematical model, ARMCOP. An initial series of handling-qualities studies was conducted to assess the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation. The ability to conduct in-flight handling-qualities research was enhanced by the development of the NASA/Army CH-47 variable-stability helicopter. Research programs conducted using this vehicle include vertical-response investigations, hover augmentation systems, and the effects of control-force characteristics. The handling-qualities data base was judged to be sufficient to allow an update of the military helicopter handling-qualities specification, MIL-H-8501. These efforts, including not only the in-house experimental work but also contracted research and collaborative programs performed under the auspices of various international agreements. The report concludes by reviewing the topics that are currently most in need of work, and the plans for addressing these topics.
Video image stabilization and registration--plus
NASA Technical Reports Server (NTRS)
Hathaway, David H. (Inventor)
2009-01-01
A method of stabilizing a video image displayed in multiple video fields of a video sequence includes the steps of: subdividing a selected area of a first video field into nested pixel blocks; determining horizontal and vertical translation of each of the pixel blocks in each of the pixel block subdivision levels from the first video field to a second video field; and determining translation of the image from the first video field to the second video field by determining a change in magnification of the image from the first video field to the second video field in each of horizontal and vertical directions, and determining shear of the image from the first video field to the second video field in each of the horizontal and vertical directions.
NASA Technical Reports Server (NTRS)
Mock, W. D.; Latham, R. A.; Tisher, E. D.
1982-01-01
The NASTRAN model plans for the horizontal stabilizer, vertical stabilizer, and nacelle structure were expanded in detail to generate the NASTRAN model for each of these substructures. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. Each substructure model was thoroughly checked out for continuity, connectivity, and constraints. These substructures were processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail models. Finally, a demonstration and validation processing of these substructures was accomplished using the NASTRAN finite element program installed at NASA/DFRC facility.
Spin-stabilized magnetic levitation without vertical axis of rotation
Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM
2009-06-09
The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.
Role of delay and screening in controlling AIDS
NASA Astrophysics Data System (ADS)
Chauhan, Sudipa; Bhatia, Sumit Kaur; Gupta, Surbhi
2016-06-01
We propose a non-linear HIV/ AIDS model to analyse the spread and control of HIV/AIDS. The population is divided into three classes, susceptible, infective and AIDS patients. The model is developed under the assumptions of vertical transmission and time delay in infective class. Time delay is also included to show sexual maturity period of infected newborns. We study dynamics of the model and obtain the reproduction number. Now to control the epidemic, we study the model where aware infective class is also added, i.e., people are made aware of their medical status by way of screening. To make the model more realistic, we consider the situation where aware infective class also interacts with other people. The model is analysed qualitatively by stability theory of ODE. Stability analysis of both disease-free and endemic equilibrium is studied based on reproduction number. Also, it is proved that if (R0)1, R1 ≤ 1 then, disease free equilibrium point is locally asymptotically stable and if (R0)1, R1 > 1 then, disease free equilibrium is unstable. Also, the stability analysis of endemic equilibrium point has been done and it is shown that for (R0)1 > 1 endemic equilibrium point is stable. Global stability analysis of endemic equilibrium point has also been done. At last, it is shown numerically that the delay in sexual maturity of infected individuals result in less number of AIDS patients.
Identification and simulation evaluation of an AH-64 helicopter hover math model
NASA Technical Reports Server (NTRS)
Schroeder, J. A.; Watson, D. C.; Tischler, M. B.; Eshow, M. M.
1991-01-01
Frequency-domain parameter-identification techniques were used to develop a hover mathematical model of the AH-64 Apache helicopter from flight data. The unstable AH-64 bare-airframe characteristics without a stability-augmentation system were parameterized in the convectional stability-derivative form. To improve the model's vertical response, a simple transfer-function model approximating the effects of dynamic inflow was developed. Additional subcomponents of the vehicle were also modeled and simulated, such as a basic engine response for hover and the vehicle stick dynamic characteristics. The model, with and without stability augmentation, was then evaluated by AH-64 pilots in a moving-base simulation. It was the opinion of the pilots that the simulation was a satisfactory representation of the aircraft for the tasks of interest. The principal negative comment was that height control was more difficult in the simulation than in the aircraft.
NASA Astrophysics Data System (ADS)
Eydoux, Benoit; Baris, Bulent; Khoussa, Hassan; Guillermet, Olivier; Gauthier, Sébastien; Bouju, Xavier; Martrou, David
2017-10-01
Noncontact atomic force microscopy images show that gold grows on the (2 ×2 )-Nad reconstructed polar (0001) surface of AlN insulating films, in the form of large monatomic islands. High-resolution images and in situ reflection high-energy electron diffraction spectra reveal two moiré patterns from which an atomic model can be built. Density functional theory calculations confirm this model and give insight into the mechanisms that lead to the stabilization of the monolayer. Gold adsorption is accompanied, first, by a global vertical charge transfer from the AlN substrate that fulfills the electrostatic stability criterion for a polar material, and second, by lateral charge transfers that are driven by the local chemical properties of the (2 ×2 )-Nad reconstruction. These results present alternative strategies to grow metal electrodes onto nitride compounds with a better controlled interface, a crucial issue for applications.
STS-92 - Shuttle Carrier Aircraft (SCA)
2000-10-29
One of NASA’s two modified Boeing 747 Shuttle Carrier Aircraft is bathed in the morning Sun at NASA’s Dryden Flight Research Center at Edwards, California. The modified jumbo jetliners are used to ferry the Space Shuttle orbiters between Dryden and the Kennedy Space Center in Florida and Boeing’s Reusable Space Systems modification facility at Palmdale, California. Features which distinguish the two SCAs from standard 747 jetliners are three struts, with associated interior structural strengthening, which protrude from the top of the fuselage (two aft, one forward) on which the orbiter is attached, and two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability. All interior furnishings and equipment aft of the forward No. 1 doors have also been removed to reduce weight. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Texas.
Gyro Systems (Selected Pages),
1982-03-19
of the oil wells, etc. With the aid of gyro systems determine the direction of meridian and true vertical, measure the angular velocities and the...integrating gyroscopes, gyrostabilizers, course gyro systems, gyroscopic sensors of the direction of the true vertical and inertial systems. The action of...direction of the true vertical are the gyro stabilizer, corrected with the aid of the inductive or magnetic detector, the physical pendulum, the local
NASA Technical Reports Server (NTRS)
Arnold, D. A.; Dobrowolny, M.
1981-01-01
An algorithm for using electric currents to control pendular oscillations induced by various perturbing forces on the Skyhook wire is considered. Transverse and vertical forces on the tether; tether instability modes and causes during retrieval by space shuttle; simple and spherical pendulum motion and vector damping; and current generation and control are discussed. A computer program for numerical integration of the in-plane and out-of-plane displacements of the tether vs time was developed for heuristic study. Some techniques for controlling instabilities during payload retrieval and methods for employing the tether for launching satellites from the space shuttle are considered. Derivations and analyses of a general nature used in all of the areas studied are included.
Method and apparatus for production of subsea hydrocarbon formations
Blandford, Joseph W.
1994-01-01
A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and export riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.
Method and apparatus for production of subsea hydrocarbon formations
Blandford, Joseph W.
1992-01-01
A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and expert riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.
NASA Technical Reports Server (NTRS)
Swaim, R. L.
1978-01-01
The ride quality experienced by passengers is a function of airframe rigid-body, elastic dynamic responses, autopilot, and stability augmentation system control inputs. A frequency response method has been developed to select sinusoidal elevator input time histories yielding vertical load factor distributions, within a given limit, as a function of fuselage station. The numerical technique is illustrated by applying two-degree-of-freedom short-period and first symmetric mode equations of motion to a B-1 aircraft at Mach 0.85 during sea level flight conditions.
2010-01-01
mechanical properties, high electrical conductivity at the metallic state, and high thermal conductivity/stability [1–6]. These interesting properties make...the catalytic particle is lifted up with the growing nanotube, two growth mechanisms , namely ‘‘tip-growth’’ and ‘‘base-growth’’, have been proposed...diameters ranging from 10 to 15 nmwith a tube length of about 150 mmand a tube density of1010–1011 cm2 (Fig. 4B and C). A book of 1480 gwas held
Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications
NASA Astrophysics Data System (ADS)
Weng, Libo
There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.
Park, Ji Hoon; Kim, Yeong-Gyu; Yoon, Seokhyun; Hong, Seonghwan; Kim, Hyun Jae
2014-12-10
We proposed a simple method to deposit a vertically graded oxygen-vacancy active layer (VGA) to enhance the positive bias stress (PBS) stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). We deposited a-IGZO films by sputtering (target composition; In2O3:Ga2O3:ZnO = 1:1:1 mol %), and the oxygen partial pressure was varied during deposition so that the front channel of the TFTs was fabricated with low oxygen partial pressure and the back channel with high oxygen partial pressure. Using this method, we were able to control the oxygen vacancy concentration of the active layer so that it varied with depth. As a result, the turn-on voltage shift following a 10 000 s PBS of optimized VGA TFT was drastically improved from 12.0 to 5.6 V compared with a conventional a-IGZO TFT, without a significant decrease in the field effect mobility. These results came from the self-passivation effect and decrease in oxygen-vacancy-related trap sites of the VGA TFTs.
Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads
Kong, Y. S.; Omar, M. Z.; Chua, L. B.; Abdullah, S.
2013-01-01
This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability. PMID:24298209
Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.
Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S
2013-01-01
This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.
Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity
NASA Astrophysics Data System (ADS)
Nitzsche, Fred
1994-05-01
The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.
Murray, Nicholas G; D'Amico, Nathan R; Powell, Douglas; Mormile, Megan E; Grimes, Katelyn E; Munkasy, Barry A; Gore, Russell K; Reed-Jones, Rebecca J
2017-05-01
Approximately 90% of athletes with concussion experience a certain degree of visual system dysfunction immediately post-concussion. Of these abnormalities, gaze stability deficits are denoted as among the most common. Little research quantitatively explores these variables post-concussion. As such, the purpose of this study was to investigate and compare gaze stability between a control group of healthy non-injured athletes and a group of athletes with concussions 24-48hours post-injury. Ten collegiate NCAA Division I athletes with concussions and ten healthy control collegiate athletes completed two trials of a sport-like antisaccade postural control task, the Wii Fit Soccer Heading Game. During play all participants were instructed to minimize gaze deviations away from a central fixed area. Athletes with concussions were assessed within 24-48 post-concussion while healthy control data were collected during pre-season athletic screening. Raw ocular point of gaze coordinates were tracked with a monocular eye tracking device (240Hz) and motion capture during the postural task to determine the instantaneous gaze coordinates. This data was exported and analyzed using a custom algorithm. Independent t-tests analyzed gaze resultant distance, prosaccade errors, mean vertical velocity, and mean horizontal velocity. Athletes with concussions had significantly greater gaze resultant distance (p=0.006), prosaccade errors (p<0.001), and horizontal velocity (p=0.029) when compared to healthy controls. These data suggest that athletes with concussions had less control of gaze during play of the Wii Fit Soccer Heading Game. This could indicate a gaze stability deficit via potentially reduced cortical inhibition that is present within 24-48hours post-concussion. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schwarzer, H.; Börner, A.; Fix, A.; Günther, B.; Hübers, H.-W.; Raugust, M.; Schrandt, F.; Wirth, M.
2007-09-01
At the German Aerospace Center an airborne multi-wavelength differential absorption LIDAR for the measurement of atmospheric water vapour is currently under development. This instrument will enable the retrieval of the complete humidity profile from the surface up to the lowermost stratosphere with high vertical and horizontal resolution at a systematic error below 5%. The LIDAR will work in the wavelength region around 935 nm at three different water vapour absorption lines and one reference wavelength. A major sub-system of this instrument is a highly frequency stabilized seed laser system for the optical parametrical oscillators which generate the narrowband high energy light pulses. The development of the seed laser system includes the control software, the electronic control unit and the opto-mechanical layout. The seed lasers are Peltier-cooled distributed feedback laser diodes with bandwidths of about 30 MHz, each one operating for 200 μs before switching to the next one. The required frequency stability is +/- 30 MHz ≅ +/- 10 -4 nm under the rough environmental conditions aboard an aircraft. It is achieved by locking the laser wavelength to a water vapour absorption line. The paper describes the opto-mechanical layout of the seed laser system, the stabilization procedure and the results obtained with this equipment.
NASA Technical Reports Server (NTRS)
Clark, L. E.; Richie, C. B.
1977-01-01
The hypersonic aerodynamic characteristics of an air-launched, delta-wing research aircraft concept were investigated at Mach 6. The effect of various components such as nose shape, wing camber, wing location, center vertical tail, wing tip fins, forward delta wing, engine nacelle, and speed brakes was also studied. Tests were conducted with a 0.021 scale model at a Reynolds number, based on model length, of 10.5 million and over an angel of attack range from -4 deg to 20 deg. Results show that most configurations with a center vertical tail have static longitudinal stability at trim, static directional stability at angles of attack up to 12 deg, and static lateral stability throughout the angle of attack range. Configurations with wing tip fins generally have static longitudinal stability at trim, have lateral stability at angles of attack above 8 deg, and are directionally unstable over the angle of attack range.
Sylla, Youssouf Boundou; Kuroda, Masao; Yamada, Masayuki; Matsumoto, Naoko
2006-10-01
Pilot-scale composting was carried out with cow manure to evaluate the performances of two passive aeration systems: a conventional passive aeration system equipped with horizontal pipes and an unusual passive aeration method based on air delivery by means of vertical pipes. The effects of both types of passive aeration apparatus were investigated in order to determine the degree of composting rate by continuously monitoring temperature, moisture content, organic matter, electrical conductivity, pH and C/N ratio in the piles. Temperatures in the range of thermophily (55-65 degrees C) were reached in all runs within 1-2 days then lasting for about 1 week, a span long enough for pathogen abatement. Results suggest that passive aeration carried out by vertical pipes is more effective for air delivery into compost piles than conventional passive aeration of air adduction with horizontal pipes. The variation in the number of vertical pipes was revealed to be an important parameter for the control of composting rate and temperature. Composting rates estimated from the heat balance equation were substantially in agreement with those computed through the conversion ratio of total organic matter decrement. The conversion ratios and composting rates obtained in this study using passive aeration with vertical pipes were well aligned with those found using forced air delivery systems.
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.
Fabrication of precision high quality facets on molecular beam epitaxy material
Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.
2001-01-01
Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.
NASA Technical Reports Server (NTRS)
Naish, J. M.
1979-01-01
Two alternate head-up display devices (HUD) were compared for properties relevant to the accurate performance of concurrent tasks in real flight conditions and in various flight modes. The comparisons were made to find the disorientation resistance of the HUDs along with the tracking accuracy, interference resistance, fixation resistance, and error resistance. The use of displacement and flight path information for vertical control is discussed in terms of flight stability. Several combinations of symbols and driving signals are described, including a compensated control law, which were used in simulated flight to deal with wind shear.
46 CFR 170.295 - Special consideration for free surface of passive roll stabilization tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Special consideration for free surface of passive roll stabilization tanks. 170.295 Section 170.295 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... consideration for free surface of passive roll stabilization tanks. (a) The virtual increase in the vertical...
Directional Stability of Towed Airplanes
NASA Technical Reports Server (NTRS)
Soehne, W.
1956-01-01
So far, very careful investigations have been made regarding the flight properties, in particular the static and dynamic stability, of engine-propelled aircraft and of untowed gliders. In contrast, almost no investigations exist regarding the stability of airplanes towed by a towline. Thus, the following report will aim at investigating the directional stability of the towed airplane and, particularly, at determining what parameters of the flight attitude and what configuration properties affect the stability. The most important parameters of the flight attitude are the dynamic pressure, the aerodynamic coefficients of the flight attitude, and the climbing angle. Among the configuration properties, the following exert the greatest influence on the stability: the tow-cable length, the tow-cable attachment point, the ratio of the wing loadings of the towing and the towed airplanes, the moments of inertia, and the wing dihedral of the towed airplane. In addition, the size and shape of the towed airplane vertical tail, the vertical tail length, and the fuselage configuration are decisive factors in determining the yawing moment and side force due to sideslip, respectively.
Vibrational stability of a cryocooled horizontal double-crystal monochromator
Kristiansen, Paw; Johansson, Ulf; Ursby, Thomas; Jensen, Brian Norsk
2016-01-01
The vibrational stability of a horizontally deflecting double-crystal monochromator (HDCM) is investigated. Inherently a HDCM will preserve the vertical beam stability better than a ‘normal’ vertical double-crystal monochromator as the vibrations of a HDCM will almost exclusively affect the horizontal stability. Here both the relative pitch vibration between the first and second crystal and the absolute pitch vibration of the second crystal are measured. All reported measurements are obtained under active cooling by means of flowing liquid nitrogen (LN2). It is found that it is favorable to circulate the LN2 at high pressures and low flow rates (up to 5.9 bar and down to 3 l min−1 is tested) to attain low vibrations. An absolute pitch stability of the second crystal of 18 nrad RMS, 2–2500 Hz, and a relative pitch stability between the two crystals of 25 nrad RMS, 1–2500 Hz, is obtained under cryocooling conditions that allow for 1516 W to be adsorbed by the LN2 before it vaporizes. PMID:27577758
46 CFR 170.180 - Plans and information required at the stability test.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Displacement and Centers of Gravity § 170.180 Plans and information required at the stability test. The owner...) Capacity plans showing capacities and vertical and longitudinal centers of gravity of stowage spaces and...
46 CFR 170.180 - Plans and information required at the stability test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Displacement and Centers of Gravity § 170.180 Plans and information required at the stability test. The owner...) Capacity plans showing capacities and vertical and longitudinal centers of gravity of stowage spaces and...
46 CFR 170.180 - Plans and information required at the stability test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Displacement and Centers of Gravity § 170.180 Plans and information required at the stability test. The owner.... (c) Capacity plans showing capacities and vertical and longitudinal centers of gravity of stowage...
46 CFR 170.180 - Plans and information required at the stability test.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Displacement and Centers of Gravity § 170.180 Plans and information required at the stability test. The owner...) Capacity plans showing capacities and vertical and longitudinal centers of gravity of stowage spaces and...
46 CFR 170.180 - Plans and information required at the stability test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Displacement and Centers of Gravity § 170.180 Plans and information required at the stability test. The owner...) Capacity plans showing capacities and vertical and longitudinal centers of gravity of stowage spaces and...
Saltmarsh creek bank stability: Biostabilisation and consolidation with depth
NASA Astrophysics Data System (ADS)
Chen, Y.; Thompson, C. E. L.; Collins, M. B.
2012-03-01
The stability of cohesive sediments of a saltmarsh in Southern England was measured in the field and the laboratory using a Cohesive Strength Meter (CSM) and a shear vane apparatus. Cores and sediment samples were collected from two tidal creek banks, covered by Atriplex portulacoides (Sea Purslane) and Juncus maritimus (Sea Rush), respectively. The objectives of the study were to examine the variation of sediment stability throughout banks with cantilevers present and investigate the influence of roots and downcore consolidation on bank stability. Data on erosion threshold and shear strength were interpreted with reference to bank depth, sediment properties and biological influences. The higher average erosion threshold was from the Sea Purslane bank whilst the Sea Rush bank showed higher average vane shear strength. The vertical variation in core sediment stability was mainly affected by roots and downcore consolidation with depth. The data obtained from the bank faces revealed that vertical variations in both erosion threshold and vane shear strength were affected primarily by roots and algae. A quantitative estimate of the relative contributions of roots and downcore consolidation to bank sediment stability was undertaken using the bank stability data and sediment density data. This showed that roots contributed more to the Sea Purslane bank stability than downcore consolidation, whilst downcore consolidation has more pronounced effects on the Sea Rush bank stability.
Compensatory mechanisms of balance to the scaling of arm-swing frequency.
Ko, Ji Hyun; Wang, Zheng; Challis, John H; Newell, Karl M
2015-11-05
The present study investigated the contribution of the Hof (2007) mechanism 1 (M1-moving the center of pressure (COP) with respect to the vertical projection of the center of mass (COMTotal)); and mechanism 2 (M2-rotating the trunk and upper limbs around the COMTotal) to postural control and the stability of COP-COMTotal cophase as a function of lateral arm-swing frequency. Young adults were instructed to stand still on a force platform while alternating their arm swinging from above the head to the side of their thigh to create perturbations to postural control. Scaling the frequency of arm-swing (random step changes of 0.2 Hz within a bandwidth of 0.2 to 1.6 Hz) increased the SD of COP but decreased the SD of COMTotal. Increments in arm-swing frequency induced a progressive increase in M1 and decrease in M2 in terms of their relative contribution to postural stability. The cophase between COP and COMTotal became more tightly in-phase over increments of arm-swing frequency. These findings show an adaptive compensatory role of M1 and M2 within the stability of COP-COMTotal coupling in the regulation of human balance control. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Arabian, Donald D.; Schmeer, James W.
1955-01-01
An investigation of the lateral stability and control effectiveness of a 0.0858-scale model of the Lockheed XF-104 airplane has been conducted in the Langley 16-foot transonic tunnel. The model has a low aspect ratio, 3.4-percent-thick wing with negative dihedral. The horizontal tail is located on top of the vertical tail. The investigation was made through a Mach number range of 0.80 to 1.06 at sideslip angles of -5 deg. to 5 deg. and angles of attack from 0 deg. to 16 deg. The control effectiveness of the aileron, rudder, and yaw damper were determined through the Mach number and angle-of-attack range. The results of the investigation indicated that the directional stability derivative was stable and that positive effective dihedral existed throughout the lift-coefficient range and Mach number range tested. The total aileron effectiveness, which in general produced favorable yaw with rolling moment, remained fairly constant for lift coefficients up to about 0.8 for the Mach number range tested. Yawing-moment effectiveness of the rudder changed little through the Mach number range. However, the yaw damper effectiveness decreased about 30 percent at the intermediate test Mach numbers.
Stability and optimised H∞ control of tripped and untripped vehicle rollover
NASA Astrophysics Data System (ADS)
Jin, Zhilin; Zhang, Lei; Zhang, Jiale; Khajepour, Amir
2016-10-01
Vehicle rollover is a serious traffic accident. In order to accurately evaluate the possibility of untripped and some special tripped vehicle rollovers, and to prevent vehicle rollover under unpredictable variations of parameters and harsh driving conditions, a new rollover index and an anti-roll control strategy are proposed in this paper. Taking deflections of steering and suspension induced by the roll at the axles into consideration, a six degrees of freedom dynamic model is established, including lateral, yaw, roll, and vertical motions of sprung and unsprung masses. From the vehicle dynamics theory, a new rollover index is developed to predict vehicle rollover risk under both untripped and special tripped situations. This new rollover index is validated by Carsim simulations. In addition, an H-infinity controller with electro hydraulic brake system is optimised by genetic algorithm to improve the anti-rollover performance of the vehicle. The stability and robustness of the active rollover prevention control system are analysed by some numerical simulations. The results show that the control system can improve the critical speed of vehicle rollover obviously, and has a good robustness for variations in the number of passengers and longitude position of the centre of gravity.
Control of Post-disruption Runaway Electron Beams in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Eidietis, N. W.
2011-10-01
Recent experiments on DIII-D have demonstrated real-time control of post-disruption runaway electron (RE) beams, presenting the possibility for slow, controlled dissipation of the beam energy. RE beams will present a greater challenge to ITER than present tokamaks due to ITER's high RE avalanche gain constant [Nucl.Fusion 37, 1355-62 (1997)] and the difficulty repairing potential damage to its first wall. In the rare event that disruption control and mitigation schemes fail to suppress RE generation, active control of the RE beam may be an important line of defense to prevent rapid, localized deposition of RE beam energy on the first wall. Initially, sustaining a RE beam plateau requires avoiding radial collapse of the beam into the inner wall during the first 1-2 wall penetration times following the current quench (CQ). This collapse is caused by attractive induced currents in the wall and a lack of radial equilibrium with slow vertical field coils. The collapse is avoided by slewing the inner PF coils to push the RE beam off the wall while reducing the outer PF coil currents. Beam survival through this phase requires sufficient RE plateau current (IRE) and power supply slew rates to re-establish equilibrium. Following that transient period, RE beam vertical position was dynamically controlled, and stabilization was maintained in an elongated (κ <= 1 . 8) DND configuration for up 250ms. Most controlled RE beams end in a rapid vertical displacement event (VDE), indicating that the profiles evolve even as the position is controlled. Experimental radial evolution and VDE onset are shown to be consistent with theoretical calculations of controllability boundaries. However, ohmic regulation of IRE has been shown to delay VDEs to the pre-programmed ramp-down time, indicating that steady-state control may be achievable. Supported by the US DOE under DE-FC02-04ER54698.
Lowry, Kristin A; Carrel, Andrew J; McIlrath, Jessica M; Smiley-Oyen, Ann L
2010-04-01
To determine if gait stability, as measured by harmonic ratios (HRs) derived from trunk accelerations, is improved during 3 amplitude-based cueing strategies (visual cues, lines on the floor 20% longer than preferred step length; verbal cues, experimenter saying "big step" every third; cognitive cues, participants think "big step") in people with Parkinson's disease. Gait analysis with a triaxial accelerometer. University research laboratory. A volunteer sample of persons with Parkinson's disease (N=7) (Hoehn and Yahr stages 2-3). Not applicable Gait stability was quantified by anterior-posterior (AP), vertical, and mediolateral (ML) HRs; higher ratios indicated improved gait stability. Spatiotemporal parameters assessed were walking speed, stride length, cadence, and the coefficient of variation for stride time. Of the amplitude-based cues, verbal and cognitive resulted in the largest improvements in the AP HR (P=.018) with a trend in the vertical HR as well as the largest improvements in both stride length and velocity. None of the cues positively affected stability in the ML direction. Descriptively, all participants increased speed and stride length, but only those in Hoehn and Yahr stage 2 (not Hoehn and Yahr stage 3) showed improvements in HRs. Cueing for "big steps" is effective for improving gait stability in the AP direction with modest improvements in the vertical direction, but it is not effective in the ML direction. These data support the use of trunk acceleration measures in assessing the efficacy of common therapeutic interventions. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
El-Dib, Yusry O; Ghaly, Ahmed Y
2004-01-01
The present work studies Kelvin-Helmholtz waves propagating between two magnetic fluids. The system is composed of two semi-infinite magnetic fluids streaming throughout porous media. The system is influenced by an oblique magnetic field. The solution of the linearized equations of motion under the boundary conditions leads to deriving the Mathieu equation governing the interfacial displacement and having complex coefficients. The stability criteria are discussed theoretically and numerically, from which stability diagrams are obtained. Regions of stability and instability are identified for the magnetic fields versus the wavenumber. It is found that the increase of the fluid density ratio, the fluid velocity ratio, the upper viscosity, and the lower porous permeability play a stabilizing role in the stability behavior in the presence of an oscillating vertical magnetic field or in the presence of an oscillating tangential magnetic field. The increase of the fluid viscosity plays a stabilizing role and can be used to retard the destabilizing influence for the vertical magnetic field. Dual roles are observed for the fluid velocity in the stability criteria. It is found that the field frequency plays against the constant part for the magnetic field.
Pappas, Evangelos; Kremenic, Ian; Liederbach, Marijeanne; Orishimo, Karl F; Hagins, Marshall
2011-07-01
To determine the effect of gender and inclined floor on time to stability (TTS) after landing from a vertical jump. This study used a repeated measures design with male and female professional dancers landing on a flat and 4 inclined floors. A repeated measures univariate analysis of variance (gender × floor) was performed on TTS in the anterior-posterior and medial-lateral directions. Biomechanics laboratory. Twenty-three female and 13 male professional dancers. Gender and floor inclination (flat, posterior, anterior, lateral, and medial). Time to stability in the anterior-posterior and medial-lateral directions after landing from a vertical jump. Female dancers exhibited longer TTS in both directions (P ≤ 0.05). Floor inclination or the interaction of gender × floor did not have an effect on TTS (P > 0.3). Female dancers exhibited longer TTS after landing from a vertical jump compared with their male counterparts. This balance difference may be a factor related to the higher rate of ankle sprain among female dancers. Additionally, professional dancers exhibited similar TTS when landing on flat and inclined floors.
Rehabilitation of patients with thoracic spine injury treated by spring alloplasty.
Kiwerski, J
1983-12-01
Stabilization of the traumatic injured spine by means of springs, called spring alloplasty, was introduced into clinical practice by Professor M. Weiss in 1965 and has been applied in the Warsaw Medical Academy Rehabilitation Clinic ( Konstancin ) ever since. The springs here replace the damaged system of posterior ligaments of the spine, restoring its stability and alleviating the front (often damaged) part of the body. This method has been used in surgery on about 350 patients mainly with spinal injury in the thoracic and thoracolumbar levels. Spine stabilization by the method in question usually makes it possible to start an early verticalization and an active rehabilitation. The verticalization of the patient in a specially designed bed is introduced as early as a few days after the accident, and attempts at active verticalization are made in 2-3 weeks time after surgery, thus the rehabilitation process is substantially precipitated and the period of hospital treatment is significantly reduced. The methodology of rehabilitation of the patients in question has been presented and functional effects of the treatment have been discussed in the paper.
Paloski, W H; Black, F O; Reschke, M F; Calkins, D S; Shupert, C
1993-01-01
Orbital spaceflight exposes astronauts to an environment in which gravity is reduced to negligible magnitudes of 10(-3) to 10(-6) G. Upon insertion into earth orbit, the abrupt loss of the constant linear acceleration provided by gravity removes the otolith stimulus for vestibular sensation of vertical orientation constantly present on Earth. Since the central nervous system (CNS) assesses spatial orientation by simultaneously interpreting sensory inputs from the vestibular, visual, and proprioceptive systems, loss of the otolith-mediated vertical reference input results in an incorrect estimation of spatial orientation, which, in turn, causes a degradation in movement control. Over time, however, the CNS adapts to the loss of gravitational signals. Upon return to Earth, the vertical reference provided by gravitational stimulation of the otolith organ reappears. As a result, a period of CNS readaptation must occur upon return to terrestrial environment. Among the physiological changes observed during the postflight CNS readaptation period is a disruption of postural equilibrium control. Using a dynamic posturography system (modified NeuroCom EquiTest), 16 astronauts were tested at 60, 30, and 10 days preflight and retested at 1 to 5 hours, and 8 days postflight. All astronauts tested demonstrated decreased postural stability immediately upon return to Earth. The most dramatic increases in postural sway occurred during those sensory conditions in which both the visual and proprioceptive feedback information used for postural control were altered by the dynamic posturography system, requiring reliance primarily upon vestibular function for control of upright stance. Less marked but statistically significant increases in sway were observed under those conditions in which visual and foot support surface inputs alone were altered.(ABSTRACT TRUNCATED AT 250 WORDS)
Influence of wheel load shape on vertical stress reaching subgrade through an aggregate layer
DOT National Transportation Integrated Search
2001-03-01
The U.S. Army design procedure to stabilize low-bearing capacity soil with geotextiles is based on the assumption that the applied surface load (the wheel load) is in the shape of a circle. The maximum vertical stress that reaches the subgrade throug...
RHIC BPM SYSTEM MODIFICATIONS AND PERFORMANCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SATOGATA, T.; CALAGA, R.; CAMERON, P.
2005-05-16
The RHIC beam position monitor (BPM) system provides independent average orbit and turn-by-turn (TBT) position measurements. In each ring, there are 162 measurement locations per plane (horizontal and vertical) for a total of 648 BPM planes in the RHIC machine. During 2003 and 2004 shutdowns, BPM processing electronics were moved from the RHIC tunnel to controls alcoves to reduce radiation impact, and the analog signal paths of several dozen modules were modified to eliminate gain-switching relays and improve signal stability. This paper presents results of improved system performance, including stability for interaction region beam-based alignment efforts. We also summarize performancemore » of recently-added DSP profile scan capability, and improved million-turn TBT acquisition channels for 10 Hz triplet vibration, nonlinear dynamics, and echo studies.« less
Design and control of a vertical takeoff and landing fixed-wing unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Malang, Yasir
With the goal of extending capabilities of multi-rotor unmanned aerial vehicles (UAVs) for wetland conservation missions, a novel hybrid aircraft design consisting of four tilting rotors and a fixed wing is designed and built. The tilting rotors and nonlinear aerodynamic effects introduce a control challenge for autonomous flight, and the research focus is to develop and validate an autonomous transition flight controller. The overall controller structure consists of separate cascaded Proportional Integral Derivative (PID) controllers whose gains are scheduled according to the rotors' tilt angle. A control mechanism effectiveness factor is used to mix the multi-rotor and fixed-wing control actuators during transition. A nonlinear flight dynamics model is created and transition stability is shown through MATLAB simulations, which proves gain-scheduled control is a good fit for tilt-rotor aircraft. Experiments carried out using the prototype UAV validate simulation results for VTOL and tilted-rotor flight.
Robotic tilt table reduces the occurrence of orthostatic hypotension over time in vegetative states.
Taveggia, Giovanni; Ragusa, Ivana; Trani, Vincenzo; Cuva, Daniele; Angeretti, Cristina; Fontanella, Marco; Panciani, Pier Paolo; Borboni, Alberto
2015-06-01
The aim of this study is to evaluate the effects of verticalization with or without combined movement of the lower limbs in patients in a vegetative state or a minimally conscious state. In particular, we aimed to study whether, in the group with combined movement, there was better tolerance to verticalization. This was a randomized trial conducted in a neurorehabilitation hospital. Twelve patients with vegetative state and minimally conscious state 3-18 months after acute acquired brain injuries were included. Patients were randomized into A and B treatment groups. Study group A underwent verticalization with a tilt table at 65° and movimentation of the lower limbs with a robotic system for 30 min three times a week for 24 sessions. Control group B underwent the same rehabilitation treatment, with a robotic verticalization system, but an inactive lower-limb movement system. Systolic and diastolic blood pressure and heart rate were determined. Robotic movement of the lower limbs can reduce the occurrence of orthostatic hypotension in hemodynamically unstable patients. Despite the small number of patients involved (only eight patients completed the trial), our results indicate that blood pressures and heart rate can be stabilized better (with) by treatment with passive leg movements in hemodynamically unstable patients.
Adaptive Control of a Transport Aircraft Using Differential Thrust
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan
2009-01-01
The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.
NASA Technical Reports Server (NTRS)
Henderson, W. P.; Huffman, J. K.
1974-01-01
An investigation has been conducted to determine the effects of configuration variables on the lateral-directional stability characteristics of a wing-fuselage configuration. The variables under study included variations in the location of a single center-line vertical tail and twin vertical tails, wing height, fuselage strakes, and horizontal tails. The study was conducted in the Langley high-speed 7-by 10-foot tunnel at a Mach number of 0.30, at angles of attack up to 44 deg and at sideslip angles of 0 deg and plus or minus 5 deg.
Effect of midsole thickness of dance shoes on dynamic postural stability.
Wyon, Matthew A; Cloak, Ross; Lucas, Josephine; Clarke, Frances
2013-12-01
Landing from jumps is one of the main causes of injury within dance. A number of studies have reported a negative effect of shoe midsole thickness on lower limb kinematics during running due to the reduction in afferent sensory outputs from the foot's epithelium. The purpose of this study was to examine the influence of varying midsole thicknesses in dance shoes on dynamic postural stability during a single-leg landing. Twenty-eight female undergraduate dance participants volunteered for the study. They carried out three trials under four conditions: barefoot and in ballet flats (2 mm midsole thickness), jazz shoes (7 mm), and dance sneakers (30 mm). The task consisted of a single-leg forward jump over a hurdle at 50% of their maximal vertical jump height, landing on a force platform, and balancing for 3 seconds. The stability indices for vertical stability (VSI), anterior-posterior stability (APSI), medial-lateral stability (MLSI), and dynamic postural stability (DPSI) were calculated using Wikstrom's revised method. Significant differences were reported between the midsole thicknesses for both DPSI and VSI (p<0.01). No statistical differences were noted for the indices SPSI or MLSI. The present data agree with the running studies in that increased midsole thickness has a negative influence on landing stability.
A family of compact high order coupled time-space unconditionally stable vertical advection schemes
NASA Astrophysics Data System (ADS)
Lemarié, Florian; Debreu, Laurent
2016-04-01
Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost.
Low-speed wind-tunnel test of a STOL supersonic-cruise fighter concept
NASA Technical Reports Server (NTRS)
Coe, Paul L., Jr.; Riley, Donald R.
1988-01-01
A wind-tunnel investigation was conducted to examine the low-speed static stability and control characteristics of a 0.10 scale model of a STOL supersonic cruise fighter concept. The concept, referred to as a twin boom fighter, was designed as a STOL aircraft capable of efficient long range supersonic cruise. The configuration name is derived from the long twin booms extending aft of the engine to the twin vertical tails which support a high center horizontal tail. The propulsion system features a two dimensional thrust vectoring exhaust nozzle which is located so that the nozzle hinge line is near the aircraft center of gravity. This arrangement is intended to allow large thrust vector angles to be used to obtain significant values of powered lift, while minimizing pitching moment trim changes. Low speed stability and control information was obtained over an angle of attack range including the stall. A study of jet induced power effects was included.
Augmentation of maneuver performance by spanwise blowing
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Campbell, J. F.
1977-01-01
A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.
Keshner, E A; Kenyon, R V
2000-01-01
We examined the effect of a 3-dimensional stereoscopic scene on segmental stabilization. Eight subjects participated in static sway and locomotion experiments with a visual scene that moved sinusoidally or at constant velocity about the pitch or roll axes. Segmental displacements, Fast Fourier Transforms, and Root Mean Square values were calculated. In both pitch and roll, subjects exhibited greater magnitudes of motion in head and trunk than ankle. Smaller amplitudes and frequent phase reversals suggested control of the ankle by segmental proprioceptive inputs and ground reaction forces rather than by the visual-vestibular signals. Postural controllers may set limits of motion at each body segment rather than be governed solely by a perception of the visual vertical. Two locomotor strategies were also exhibited, implying that some subjects could override the effect of the roll axis optic flow field. Our results demonstrate task dependent differences that argue against using static postural responses to moving visual fields when assessing more dynamic tasks.
Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices.
Huang, Liqiang; Wang, Gang; Zhou, Weihua; Fu, Boyi; Cheng, Xiaofang; Zhang, Lifu; Yuan, Zhibo; Xiong, Sixing; Zhang, Lin; Xie, Yuanpeng; Zhang, Andong; Zhang, Youdi; Ma, Wei; Li, Weiwei; Zhou, Yinhua; Reichmanis, Elsa; Chen, Yiwang
2018-05-22
High-efficiency organic solar cells (OSCs) can be produced through optimization of component molecular design, coupled with interfacial engineering and control of active layer morphology. However, vertical stratification of the bulk-heterojunction (BHJ), a spontaneous activity that occurs during the drying process, remains an intricate problem yet to be solved. Routes toward regulating the vertical separation profile and evaluating the effects on the final device should be explored to further enhance the performance of OSCs. Herein, we establish a connection between the material surface energy, absorption, and vertical stratification, which can then be linked to photovoltaic conversion characteristics. Through assessing the performance of temporary, artificial vertically stratified layers created by the sequential casting of the individual components to form a multilayered structure, optimal vertical stratification can be achieved. Adjusting the surface energy offset between the substrate results in donor and acceptor stabilization of that stratified layer. Further, a trade-off between the photocurrent generated in the visible region and the amount of donor or acceptor in close proximity to the electrode was observed. Modification of the substrate surface energy was achieved using self-assembled small molecules (SASM), which, in turn, directly impacted the polymer donor to acceptor ratio at the interface. Using three different donor polymers in conjunction with two alternative acceptors in an inverted organic solar cell architecture, the concentration of polymer donor molecules at the ITO (indium tin oxide)/BHJ interface could be increased relative to the acceptor. Appropriate selection of SASM facilitated a synchronized enhancement in external quantum efficiency and power conversion efficiencies over 10.5%.
NASA Technical Reports Server (NTRS)
DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro
2011-01-01
The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.
Reich, Waldemar; Schweyen, Ramona; Heinzelmann, Christian; Hey, Jeremias; Al-Nawas, Bilal; Eckert, Alexander Walter
2017-10-30
Short implants often have the disadvantage of reduced primary stability. The present study was conducted to evaluate the feasibility and safety of a new expandable short dental implant system intended to increase primary stability. As a "proof of concept", a prospective clinical cohort study was designed to investigate intraoperative handling, primary and secondary implant stability (resonance frequency analysis), crestal bone changes, implant survival and implant success, of an innovative short expandable screw implant. From 2014 until 2015, 9 patients (7-9-mm vertical bone height) with 30 implants (length 5-7 mm, diameter 3.75-4.1 mm) were recruited consecutively. All 30 implants in the 9 patients (age 44 to 80 years) could be inserted and expanded without intraoperative problems. Over the 3-year follow-up period, the implant success rate was 28/30 (93.3%). The mean implant stability quotients (ISQ) were as follows: primary stability, 69.7 ± 10.3 ISQ units, and secondary stability, 69.8 ± 10.2 ISQ units (p = 0.780), both without significant differences between the maxilla and mandible (p ≥ 0.780). The mean crestal bone changes after loading were (each measured from the baseline) as follows: in the first year, 1.0 ± 0.9 mm in the maxilla and 0.7 ± 0.4 mm in the mandible, and in the second year, 1.3 ± 0.8 mm and 1.0 ± 0.7 mm, respectively. Compared to other prospective studies, in this indication, the success rate is acceptable. Implant stability shows high initial and secondary stability values. The system might present an extension of functional rehabilitation to the group of elderly patients with limited vertical bone height. Further long-term investigations should directly compare this compressive implant with standard short implants.
Modeling and Control of a Fixed Wing Tilt-Rotor Tri-Copter
NASA Astrophysics Data System (ADS)
Summers, Alexander
The following thesis considers modeling and control of a fixed wing tilt-rotor tri-copter. An emphasis of the conceptual design is made toward payload transport. Aerodynamic panel code and CAD design provide the base aerodynamic, geometric, mass, and inertia properties. A set of non-linear dynamics are created considering gravity, aerodynamics in vertical takeoff and landing (VTOL) and forward flight, and propulsion applied to a three degree of freedom system. A transition strategy, that removes trajectory planning by means of scheduled inputs, is theorized. Three discrete controllers, utilizing separate control techniques, are applied to ensure stability in the aerodynamic regions of VTOL, transition, and forward flight. The controller techniques include linear quadratic regulation, full state integral action, gain scheduling, and proportional integral derivative (PID) flight control. Simulation of the model control system for flight from forward to backward transition is completed with mass and center of gravity variation.
A Flight Study of the Conversion Maneuver of a Tilt-Duct VTOL Aircraft
NASA Technical Reports Server (NTRS)
Tapscott, Robert J.; Kelley, Henry L.
1960-01-01
Flight records are presented from an early flight test of a wing-tip mounted tilting-ducted-fan, vertical-take-off and landing (VTOL) aircraft configuration. Time histories of the aircraft motions, control positions, and duct pitching-moment variation are presented to illustrate the characteristics of the aircraft in hovering, in conversion from hovering to forward flight, and in conversion from forward flight to hovering. The results indicate that during essentially continuous slow level- flight conversions, this aircraft experiences excessive longitudinal trim changes. Studies have shown that the large trim changes are caused primarily by the variation of aerodynamic moments acting on the duct units. Action of the duct-induced downwash on the horizontal stabilizer during the conversion also contributes to the longitudinal trim variations. Time histories of hovering and slow vertical descent in the final stages of landing in calm air show angular motions of the aircraft as great as +/- 10 deg. about all axes. Stick and pedal displacements required to control the aircraft during the landing maneuver were on the order of 50 to 60 percent of the total travel available.
Fast global orbit feedback system in PLS-II
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, C.; Kim, J. M.; Kim, K. R.; Lee, E. H.; Lee, J. W.; Lee, T. Y.; Park, C. D.; Shin, S.; Yoon, J. C.; Cho, W. S.; Park, G. S.; Kim, S. C.
2016-12-01
The transverse position of the electron beam in the Pohang Light Source-II is stabilized by the global orbit feedback system. A slow orbit feedback system has been operating at 2 Hz, and a fast orbit feedback (FOFB) system at 813 Hz was installed recently. This FOFB system consists of 96 electron-beam-position monitors, 48 horizontal fast correctors, 48 vertical fast correctors and Versa Module Europa bus control system. We present the design and implementation of the FOFB system and its test result. Simulation analysis is presented and future improvements are suggested.
Detail view of the aft section, port side, of the ...
Detail view of the aft section, port side, of the Orbiter Discovery from an elevated platform in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the removed Orbiter Maneuvering System/Reaction Control System pod from the base of the vertical stabilizer the strongback ground-support equipment attached to the payload bay door. This view is also a good view of the leading edge and top surface of the Orbiter wing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Contrasting Drainage and Stratification in Horizontal Vs Vertical Micellar Foam Films
NASA Astrophysics Data System (ADS)
Wojcik, Ewelina; Yilixiati, Subinuer; Zhang, Yiran; Sharma, Vivek
Understanding and controlling the drainage kinetics of thin films is an important problem that underlies the stability, lifetime and rheology of foams and emulsions. In foam films formed with micellar solutions, the surfactant is present as interfacially-adsorbed layer at both liquid-air interfaces, as well as in bulk as self-assembled supramolecular structures called micelles. Ultrathin micellar films exhibit stratification due to confinement-induced structuring and layering of micelles. Stratification in micellar foam films is manifested as stepwise thinning over time, and it leads to the coexistence of flat domains with discretely different thicknesses. In this contribution we use Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols to visualize and analyze thickness transitions and variations associated with stratification in micellar foam films made with sodium dodecyl sulfate (SDS). We contrast the drainage and stratification dynamics in horizontal and vertical foam films, and investigate the role played by gravitational, viscous, interfacial and surface forces.
Effect of settling particles on the stability of a particle-laden flow in a vertical plane channel
NASA Astrophysics Data System (ADS)
Boronin, S. A.; Osiptsov, A. N.
2018-03-01
The stability of a viscous particle-laden flow in a vertical plane channel in the presence of the gravity force is studied. The flow is described using a two-fluid "dusty-gas" model with negligibly small volume fraction of fines and two-way coupling of the phases. Two different profiles of the particle number density in the main flow are considered: homogeneous and non-homogeneous in the form of two layers symmetric about the channel axis. The novel element of the linear-stability problem formulation is a particle velocity slip in the main flow caused by the gravity-induced settling of the dispersed phase. The eigenvalue problem for a linearized system of governing equations is solved using the orthonormalization and QZ algorithms. For a uniform particle number density distribution, it is found that there exists a domain in the plane of Froude and Stokes numbers, in which the two-phase flow in a vertical channel is stable for an arbitrary Reynolds number. This stability domain corresponds to relatively small-inertia particles and large velocity-slip in the main flow. In contrast to the flow with a uniform particle number density distribution, the stratified dusty-gas flow in a vertical channel is unstable over a wide range of governing parameters. The instability at small Reynolds numbers is determined by the gravitational mode characterized by small wavenumbers (long-wave instability), while at larger Reynolds numbers the instability is dominated by the shear mode with the time-amplification factor larger than that of the gravitational mode. The results of the study can be used for optimization of a large number of technological processes, including those in riser reactors, pneumatic conveying in pipeline systems, hydraulic fracturing, and well cementing.
Disruption Neutral Point Experiment on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Granetz, R. S.; Nakamura, Y.
2000-10-01
Disruptions of single-null elongated plasmas generally result in loss of vertical position control, leading to a current quench occurring at the top or bottom of the machine, with all the attendant problems of halo and eddy currents flowing in divertor structures. On JT-60U, it has been found that if the plasma is operated with its magnetic axis at a particular height, called the neutral point, the initial vertical drift after a thermal quench is significantly slower than usual, and sometimes can even be arrested, thereby avoiding a current quench in the divertor region entirely. In an ongoing collaboration between MIT and JAERI, the neutral point concept is being tested in Alcator C-Mod, which has a significantly higher plasma elongation than JT-60U (1.65 vs 1.3). Calculations using TSC predict a neutral point at z~=+1 cm above the midplane (a=22 cm). The existence of a neutral point has now been experimentally confirmed, albeit at a height of z=+2.7 cm. The plasma has remained vertically stable for up to 9 ms after the disruption thermal quench, which in principle, is long enough for the PF control system to respond, if programmed appropriately. In addition, the physics of the neutral point stability on C-Mod appears to be somewhat different than that on JT-60U.
Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Li, Jinyan; Bai, Yiming; Wang, Fuzhi; Bian, Xingming; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao
2017-12-20
For bulk heterojunction polymer solar cells (PSCs), the donors and acceptors featuring specific phase separation and concentration distribution within the electron donor/acceptor blends crucially affect the exciton dissociation and charge transportation. Herein, efficient and stable nonfullerene inverted PSCs incorporating a phase separated photoactive layer and a titanium chelate electrode modification layer are demonstrated. Water contact angle (WCA), scanning kelvin probe microscopy (SKPM), and atomic force microscopy (AFM) techniques are implemented to characterize the morphology of photoactive layers. Compared with the control conventional device, the short-circuit current density (J sc ) is enhanced from 14.74 to 17.45 mAcm -2 . The power conversion efficiency (PCE) for the inverted PSCs with a titanium (diisopropoxide)-bis-(2,4-pentanedionate) (TIPD) layer increases from 9.67% to 11.69% benefiting from the declined exciton recombination and fairly enhanced charge transportation. Furthermore, the nonencapsulated inverted device with a TIPD layer demonstrates the best long-term stability, 85% of initial PCE remaining and an almost undecayed open-circuit voltage (V oc ) after 1440 h. Our results reveal that the titanium chelate is an excellent electrode modification layer to incorporate with a vertical phase separated photoactive layer for producing high-efficiency and high-stability inverted nonfullerene PSCs.
Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review.
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Paterson, Marie; Wittmeier, Kristy D
2017-10-01
To identify measures of standing balance validated in pediatric populations, and to determine the components of postural control captured in each tool. Electronic searches of MEDLINE, Embase, and CINAHL databases using key word combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests, and child/pediatrics; gray literature; and hand searches. Inclusion criteria were measures with a stated objective to assess balance, with pediatric (≤18y) populations, with at least 1 psychometric evaluation, with at least 1 standing task, with a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. There were 21 measures included. Two reviewers extracted descriptive characteristics, and 2 investigators independently coded components of balance in each measure using a systems perspective for postural control, an established framework for balance in pediatric populations. Components of balance evaluated in measures were underlying motor systems (100% of measures), anticipatory postural control (72%), static stability (62%), sensory integration (52%), dynamic stability (48%), functional stability limits (24%), cognitive influences (24%), verticality (9%), and reactive postural control (0%). Assessing children's balance with valid and comprehensive measures is important for ensuring development of safe mobility and independence with functional tasks. Balance measures validated in pediatric populations to date do not comprehensively assess standing postural control and omit some key components for safe mobility and independence. Existing balance measures, that have been validated in adult populations and address some of the existing gaps in pediatric measures, warrant consideration for validation in children. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
CMG-Augmented Control of a Hovering VTOL Platform
NASA Technical Reports Server (NTRS)
Lim, K. B.; Moerder, D. D.
2007-01-01
This paper describes how Control Moment Gyroscopes (CMGs) can be used for stability augmentation to a thrust vectoring system for a generic Vertical Take-Off and Landing platform. The response characteristics of the platform which uses only thrust vectoring and a second configuration which includes a single-gimbal CMG array are simulated and compared for hovering flight while subject to severe air turbulence. Simulation results demonstrate the effectiveness of a CMG array in its ability to significantly reduce the agility requirement on the thrust vectoring system. Albeit simplifying physical assumptions on a generic CMG configuration, the numerical results also suggest that reasonably sized CMGs will likely be sufficient for a small hovering vehicle.
NASA Technical Reports Server (NTRS)
Polanco, Michael
2010-01-01
The forward and vertical impact stability of a composite honeycomb Deployable Energy Absorber (DEA) was evaluated during a full-scale crash test of an MD-500 helicopter at NASA Langley?s Landing and Impact Research Facility. The lower skin of the helicopter was retrofitted with DEA components to protect the airframe subfloor upon impact and to mitigate loads transmitted to Anthropomorphic Test Device (ATD) occupants. To facilitate the design of the DEA for this test, an analytical study was conducted using LS-DYNA(Registered TradeMark) to evaluate the performance of a shell-based DEA incorporating different angular cell orientations as well as simultaneous vertical and forward impact conditions. By conducting this study, guidance was provided in obtaining an optimum design for the DEA that would dissipate the kinetic energy of the airframe while maintaining forward and vertical impact stability.
Lin, Jinghuang; Jia, Henan; Liang, Haoyan; Chen, Shulin; Cai, Yifei; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Fei, Weidong; Feng, Jicai
2018-03-01
NiO is a promising electrode material for supercapacitors. Herein, the novel vertically standing nanosized NiO encapsulated in graphene layers (G@NiO) are rationally designed and synthesized as nanosheet arrays. This unique vertical standing structure of G@NiO nanosheet arrays can enlarge the accessible surface area with electrolytes, and has the benefits of short ion diffusion path and good charge transport. Further, an interconnected graphene conductive network acts as binder to encapsulate the nanosized NiO particles as core-shell structure, which can promote the charge transport and maintain the structural stability. Consequently, the optimized G@NiO hybrid electrodes exhibit a remarkably enhanced specific capacity up to 1073 C g -1 and excellent cycling stability. This study provides a facial strategy to design and construct high-performance metal oxides for energy storage.
Phan, Hoang Vu; Kang, Taesam; Park, Hoon Cheol
2017-04-04
An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.
Film stability in a vertical rotating tube with a core-gas flow.
NASA Technical Reports Server (NTRS)
Sarma, G. S. R.; Lu, P. C.; Ostrach, S.
1971-01-01
The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.
Stability of vertical magnetic chains
2017-01-01
A linear stability analysis is performed for a pair of coaxial vertical chains made from permanently magnetized balls under the influence of gravity. While one chain rises from the ground, the other hangs from above, with the remaining ends separated by a gap of prescribed length. Various boundary conditions are considered, as are situations in which the magnetic dipole moments in the two chains are parallel or antiparallel. The case of a single chain attached to the ground is also discussed. The stability of the system is examined with respect to three quantities: the number of balls in each chain, the length of the gap between the chains, and a single dimensionless parameter which embodies the competition between magnetic and gravitational forces. Asymptotic scaling laws involving these parameters are provided. The Hessian matrix is computed in exact form, allowing the critical parameter values at which the system loses stability and the respective eigenmodes to be determined up to machine precision. A comparison with simple experiments for a single chain attached to the ground shows good agreement. PMID:28293135
NASA Astrophysics Data System (ADS)
Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel
2018-05-01
The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.
Stability of vertical magnetic chains
NASA Astrophysics Data System (ADS)
Schönke, Johannes; Fried, Eliot
2017-02-01
A linear stability analysis is performed for a pair of coaxial vertical chains made from permanently magnetized balls under the influence of gravity. While one chain rises from the ground, the other hangs from above, with the remaining ends separated by a gap of prescribed length. Various boundary conditions are considered, as are situations in which the magnetic dipole moments in the two chains are parallel or antiparallel. The case of a single chain attached to the ground is also discussed. The stability of the system is examined with respect to three quantities: the number of balls in each chain, the length of the gap between the chains, and a single dimensionless parameter which embodies the competition between magnetic and gravitational forces. Asymptotic scaling laws involving these parameters are provided. The Hessian matrix is computed in exact form, allowing the critical parameter values at which the system loses stability and the respective eigenmodes to be determined up to machine precision. A comparison with simple experiments for a single chain attached to the ground shows good agreement.
Effect of placement angle on the stability of loaded titanium microscrews in beagle jaws.
Xu, Zhenrui; Wu, Yeke; Zhao, Lixing; Zhou, Yuqiao; Wei, Xing; Tang, Na; Feng, Xiaoxia; Tang, Tian; Zhao, Zhihe
2013-07-01
To evaluate the effect of insertion angle on stability of loaded titanium microscrews in beagle jaws. Forty-eight microscrews were inserted at four different angles (30°, 50°, 70°, and 90°) into the intraradicular zones of the mandibular first molars and third premolars of 12 beagles and immediately loaded with a force of 2 N for 8 weeks. Microcomputed tomography (micro-CT) and biomechanical pull-out tests were used to assess osseointegration of the interface. All micro-CT parameters and maximum pull-out force (FMAX) of the microscrews were affected by insertion angles of microscrews. Higher micro-CT parameters and FMAX were seen for implants inserted at angles between 50° and 70° (P < .05). Excessive oblique and vertical insertion angles resulted in reduced stability (P < .05). An insertion angle of 50° to 70° is more favorable than excessive oblique or vertical angles to achieve stability of microscrews.
NASA Technical Reports Server (NTRS)
Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.
2003-01-01
The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall handling qualities of the aircraft.
Wright, Cynthia J.; Arnold, Brent L.; Ross, Scott E.
2016-01-01
Context It has been proposed that altered dynamic-control strategies during functional activity such as jump landings may partially explain recurrent instability in individuals with functional ankle instability (FAI). Objective To capture jump-landing time to stabilization (TTS) and ankle motion using a multisegment foot model among FAI, coper, and healthy control individuals. Design Cross-sectional study. Setting Laboratory. Patients or Other Participants Participants were 23 individuals with a history of at least 1 ankle sprain and at least 2 episodes of giving way in the past year (FAI), 23 individuals with a history of a single ankle sprain and no subsequent episodes of instability (copers), and 23 individuals with no history of ankle sprain or instability in their lifetime (controls). Participants were matched for age, height, and weight (age = 23.3 ± 3.8 years, height = 1.71 ± 0.09 m, weight = 69.0 ± 13.7 kg). Intervention(s) Ten single-legged drop jumps were recorded using a 12-camera Vicon MX motion-capture system and a strain-gauge force plate. Main Outcome Measures Mediolateral (ML) and anteroposterior (AP) TTS in seconds, as well as forefoot and hindfoot sagittal- and frontal-plane angles at jump-landing initial contact and at the point of maximum vertical ground reaction force were calculated. Results For the forefoot and hindfoot in the sagittal plane, group differences were present at initial contact (forefoot: P = .043, hindfoot: P = .004). At the hindfoot, individuals with FAI displayed more dorsiflexion than the control and coper groups. Time to stabilization differed among groups (AP TTS: P < .001; ML TTS: P = .040). Anteroposterior TTS was longer in the coper group than in the FAI or control groups, and ML TTS was longer in the FAI group than in the control group. Conclusions During jump landings, copers showed differences in sagittal-plane control, including less plantar flexion at initial contact and increased AP sway during stabilization, which may contribute to increased dynamic stability. PMID:26794631
Integrated control of lateral and vertical vehicle dynamics based on multi-agent system
NASA Astrophysics Data System (ADS)
Huang, Chen; Chen, Long; Yun, Chaochun; Jiang, Haobin; Chen, Yuexia
2014-03-01
The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.
MIT's interferometer CST testbed
NASA Technical Reports Server (NTRS)
Hyde, Tupper; Kim, ED; Anderson, Eric; Blackwood, Gary; Lublin, Leonard
1990-01-01
The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.
NASA Astrophysics Data System (ADS)
Jensen, M. F.; Nilsson, J.; Nisancioglu, K. H.
2016-02-01
In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea-ice covered and salinity stratified ocean, and consists of a sea-ice component and a two-layer ocean; a cold, fresh surface layer above a warmer, more saline layer. The sea-ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea-ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the vertical mixing. In a system where the vertical diffusivity is constant, the sea ice acts as a positive feedback on a freshwater perturbation. If the vertical diffusivity is derived from a constant mixing energy constraint, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and small changes in temperature and freshwater inputs can provoke abrupt changes in sea ice.
Nanda, Aditi; Jain, Veena; Srivastava, Achal
2011-01-01
To investigate the effect of restoration of lost vertical by centric stabilizing splint on electromyographic (EMG) activity of masseter and anterior temporalis muscles bilaterally in patients with generalized attrition of teeth. EMG activity of anterior temporalis and masseter muscle was recorded bilaterally for 10 patients whose vertical was restored with centric stabilizing splint. The recording was done at postural rest position and in maximum voluntary clenching for each subject before the start of treatment, immediately after placement of splint and at subsequent recall visits, with splint and without the splint. The EMG activity at postural rest position (PRP) and maximum voluntary clench (MVC) decreased till 1 month for both the muscles. In the third month, an increase in muscle activity toward normalization was noted at PRP, both with and without splint. At MVC in the third month, the muscle activity without splint decreased significantly as compared to pretreatment values for anterior temporalis and masseter, while with the splint an increase was seen beyond the pretreatment values. A definite response of anterior temporalis and masseter muscle was observed over a period of 3 months. This is suggestive that the reversible increase in vertical prior to irreversible intervention must be carried out for a minimum of 3 months to achieve neuromuscular deprogramming. This allows the muscle to get adapted to the new postural position and attain stability in occlusion following splint therapy.
Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical
NASA Technical Reports Server (NTRS)
1996-01-01
Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical stabilizer and the aft cargo bay area during the entry phase of the flight. Horowitz, pilot, joined four other astronauts and an international payload specialist for 16 days of scientific research in Earth-orbit.
Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Chernikov, A.; Wichmann, M.; Shakfa, M. K.; Scheller, M.; Moloney, J. V.; Koch, S. W.; Koch, M.
2012-01-01
The temporal stability of a two-color vertical-external-cavity surface-emitting laser is studied using single-shot streak-camera measurements. The collected data is evaluated via quantitative statistical analysis schemes. Dynamically stable and unstable regions for the two-color operation are identified and the dependence on the pump conditions is analyzed.
Urban, Istvan A; Monje, Alberto; Wang, Hom-Lay
2015-01-01
Severe vertical ridge deficiency in the anterior maxilla represents one of the most challenging clinical scenarios in the bone regeneration arena. As such, a combination of vertical bone augmentation using various biomaterials and soft tissue manipulation is needed to obtain successful outcomes. The present case series describes a novel approach to overcome vertical deficiencies in the anterior atrophied maxillae by using a mixture of autologous and anorganic bovine bone. Soft tissue manipulation including, but not limited to, free soft tissue graft was used to overcome the drawbacks of vertical bone augmentation (eg, loss of vestibular depth and keratinized mucosa). By combining soft and hard tissue grafts, optimum esthetic and long-term implant prosthesis stability can be achieved and sustained.
Balance control during gait initiation: State-of-the-art and research perspectives.
Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis
2017-11-18
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.
Imposed Faster and Slower Walking Speeds Influence Gait Stability Differently in Parkinson Fallers.
Cole, Michael H; Sweeney, Matthew; Conway, Zachary J; Blackmore, Tim; Silburn, Peter A
2017-04-01
To evaluate the effect of imposed faster and slower walking speeds on postural stability in people with Parkinson disease (PD). Cross-sectional cohort study. General community. Patients with PD (n=84; 51 with a falls history; 33 without) and age-matched controls (n=82) were invited to participate via neurology clinics and preexisting databases. Of those contacted, 99 did not respond (PD=36; controls=63) and 27 were not interested (PD=18; controls=9). After screening, a further 10 patients were excluded; 5 had deep brain stimulation surgery and 5 could not accommodate to the treadmill. The remaining patients (N=30) completed all assessments and were subdivided into PD fallers (n=10), PD nonfallers (n=10), and age-matched controls (n=10) based on falls history. Not applicable. Three-dimensional accelerometers assessed head and trunk accelerations and allowed calculation of harmonic ratios and root mean square (RMS) accelerations to assess segment control and movement amplitude. Symptom severity, balance confidence, and medical history were established before participants walked on a treadmill at 70%, 100%, and 130% of their preferred speed. Head and trunk control was lower for PD fallers than PD nonfallers and older adults. Significant interactions indicated head and trunk control increased with speed for PD nonfallers and older adults, but did not improve at faster speeds for PD fallers. Vertical head and trunk accelerations increased with walking speed for PD nonfallers and older adults, while the PD fallers demonstrated greater anteroposterior RMS accelerations compared with both other groups. The results suggest that improved gait dynamics do not necessarily represent improved walking stability, and this must be respected when rehabilitating gait in patients with PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Balance control during gait initiation: State-of-the-art and research perspectives
Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis
2017-01-01
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices. PMID:29184756
NASA Astrophysics Data System (ADS)
Kabiri, Meisam; Atrianfar, Hajar; Menhaj, Mohammad B.
2018-01-01
This paper addresses the adaptive formation control of a group of vertical take-off and landing (VTOL) unmanned aerial vehicles (UAV) with switching-directed interaction topologies. In addition, to tackle the adverse effect of disturbances, a couple of smooth bounded estimators are involved in the procedure design. Exploiting an extraction algorithm, we take advantage of the fully actuated rotational dynamics, to control the translational dynamics of each vehicle. We propose a distributed control scheme such that all vehicles track a desired reference velocity signal while keeping a desired prespecified formation. In this framework, the underlying topology of the agents may switch among several directed graphs, each having a spanning tree. The stability of the overall closed-loop system is proved through Lyapunov function. Finally, simulation results are given to better highlight the effectiveness of the proposed control scheme.
Detail design of empennage of an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Sarker, Md. Samad; Panday, Shoyon; Rasel, Md; Salam, Md. Abdus; Faisal, Kh. Md.; Farabi, Tanzimul Hasan
2017-12-01
In order to maintain the operational continuity of air defense systems, unmanned autonomous or remotely controlled unmanned aerial vehicle (UAV) plays a great role as a target for the anti-aircraft weapons. The aerial vehicle must comply with the requirements of high speed, remotely controlled tracking and navigational aids, operational sustainability and sufficient loiter time. It can also be used for aerial reconnaissance, ground surveillance and other intelligence operations. This paper aims to develop a complete tail design of an unmanned aerial vehicle using Systems Engineering approach. The design fulfils the requirements of longitudinal and directional trim, stability and control provided by the horizontal and vertical tail. Tail control surfaces are designed to provide sufficient control of the aircraft in critical conditions. Design parameters obtained from wing design are utilized in the tail design process as required. Through chronological calculations and successive iterations, optimum values of 26 tail design parameters are determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.
1995-04-01
Vertical profiles of solar and terrestrial radiative fluxes are key research needs for global climate change research. These fluxes are expected to change as radiatively active trace gases are emitted to the earth`s atmosphere as a consequence of energy production and industrial and other human activities. Models suggest that changes in the concentration of such gases will lead to radiative flux divergences that will produce global warming of the earth`s atmosphere. Direct measurements of the vertical variation of solar and terrestrial radiative fluxes that lead to these flux divergences have been largely unavailable because of the expense of making suchmore » measurements from airplanes. These measurements are needed to improve existing atmospheric radiative transfer models, especially under the cloudy conditions where the models have not been adequately tested. A tethered-balloon-borne Radiometric Sounding System has been developed at Pacific Northwest Laboratory to provide an inexpensive means of making routine vertical soundings of radiative fluxes in the earth`s atmospheric boundary layer to altitudes up to 1500 m above ground level. Such vertical soundings would supplement measurements being made from aircraft and towers. The key technical challenge in the design of the Radiometric Sounding System is to develop a means of keeping the radiometers horizontal while the balloon ascends and descends in a turbulent atmospheric environment. This problem has been addressed by stabilizing a triangular radiometer-carrying platform that is carried on the tetherline of a balloon sounding system. The platform, carried 30 m or more below the balloon to reduce the balloon`s effect on the radiometric measurements, is leveled by two automatic control loops that activate motors, gears and pulleys when the platform is off-level. The sensitivity of the automatic control loops to oscillatory motions of various frequencies and amplitudes can be adjusted using filters.« less
David, Pascal; Laval, David; Terrien, Jérémy; Petitjean, Michel
2012-01-01
The present study sought to establish links between hyperventilation and postural stability. Eight university students were asked to stand upright under two hyperventilation conditions applied randomly: (1) a metabolic hyperventilation induced by 5 min of hypercapnic-hyperoxic rebreathing (CO(2)-R); and, (2) a voluntary hyperventilation (VH) of 3 min imposed by a metronome set at 25 cycles per min. Recordings were obtained with eyes open, with the subjects standing on a force plate over 20-s periods. Ventilatory response, displacements in the centre of pressure in both the frontal and sagittal planes and fluctuations in the three planes of the ground reaction force were monitored in the time and frequency domains. Postural changes related to respiratory variations were quantified by coherence analysis. Myoelectric activities of the calf muscles were recorded using surface electromyography. Force plate measurements revealed a reduction in postural stability during both CO(2)-R and VH conditions, mainly in the sagittal plane. Coherence analysis provided evidence of a ventilatory origin in the vertical ground reaction force fluctuations during VH. Electromyographic analyses showed different leg muscles strategies, assuming the existence of links between the control of respiration and the control of posture. Our results suggest that the greater disturbing effects caused by voluntary hyperventilation on body balance are more compensated when respiration is under automatic control. These findings may have implications for understanding the organisation of postural and respiratory activities and suggest that stability of the body may be compromised in situations in which respiratory demand increases and requires voluntary control.
NASA Astrophysics Data System (ADS)
Perruche, Coralie; Rivière, Pascal; Pondaven, Philippe; Carton, Xavier
2010-04-01
This paper aims at studying analytically the functioning of a very simple ecosystem model with two phytoplankton species. First, using the dynamical system theory, we determine its nonlinear equilibria, their stability and characteristic timescales with a focus on phytoplankton competition. Particular attention is paid to the model sensitivity to parameter change. Then, the influence of vertical mixing and sinking of detritus on the vertically-distributed ecosystem model is investigated. The analytical results reveal a high diversity of ecosystem structures with fixed points and limit cycles that are mainly sensitive to variations of light intensity and total amount of nitrogen matter. The sensitivity to other parameters such as re-mineralisation, growth and grazing rates is also specified. Besides, the equilibrium analysis shows a complete segregation of the two phytoplankton species in the whole parameter space. The embedding of our ecosystem model into a one-dimensional numerical model with diffusion turns out to allow coexistence between phytoplankton species, providing a possible solution to the 'paradox of plankton' in the sense that it prevents the competitive exclusion of one phytoplankton species. These results improve our knowledge of the factors that control the structure and functioning of plankton communities.
Katalinic, Andrej; Trinajstic Zrinski, Magda; Roksandic Vrancic, Zlatka; Spalj, Stjepan
2017-02-01
The study focused on the influence of screwdriver design in combination with and without predrilling a pilot hole of inner implant diameter on insertion torque of orthodontic mini-implants, controlling for cortical thickness and vertical insertion force as cofactors. One hundred twenty mini-implants (Forestadent) of 1.7 mm in diameter and 6 and 8 mm in length were manually inserted into 120 swine rib bone samples. Maximal insertion torque as a measure of primary stability and vertical force were measured. The study included procedures with and without pilot hole and different screwdriver handles and shaft length and 2 implant lengths. Design of manual screwdriver does not modify insertion torque to a significant extent. In multiple linear regression model, significant predictors of insertion torque are thicker cortical bone (explaining 16.6% of variability), higher vertical force at maximal torque (13.5%), 6-mm implant length (2.5%), and the presence of pilot hole (2.3%). Handle type and shaft length of manual screwdriver do not significantly influence insertion torque, whereas predrilling a pilot hole has low impact on torque values of manually inserted self-drilling orthodontic mini-implants.
Vibration waveform effects on dynamic stabilization of ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Lucchio, L. Di; Rodriguez Prieto, G.
2011-08-15
An analysis of dynamic stabilization of Rayleigh-Taylor instability in an ablation front is performed by considering a general square wave for modulating the vertical acceleration of the front. Such a kind of modulation allows for clarifying the role of thermal conduction in the mechanism of dynamic stabilization. In addition, the study of the effect of different modulations by varying the duration and amplitude of the square wave in each half-period provides insight on the optimum performance of dynamic stabilization.
Prathama, Aditya Heru; Pantano, Carlos
2017-08-09
Here, we study the inviscid linear stability of a vertical interface separating two fluids of different densities and subject to a gravitational acceleration field parallel to the interface. In this arrangement, the two free streams are constantly accelerated, which means that the linear stability analysis is not amenable to Fourier or Laplace solution in time. Instead, we derive the equations analytically by the initial-value problem method and express the solution in terms of the well-known parabolic cylinder function. The results, which can be classified as an accelerating Kelvin–Helmholtz configuration, show that even in the presence of surface tension, the interfacemore » is unconditionally unstable at all wavemodes. This is a consequence of the ever increasing momentum of the free streams, as gravity accelerates them indefinitely. The instability can be shown to grow as the exponential of a quadratic function of time.« less
NASA Technical Reports Server (NTRS)
Allison, Michael; Atkinson, David H.; Hansen, James E. (Technical Monitor)
2001-01-01
Doppler radio tracking of the Galileo probe-to-orbiter relay, previously analyzed for its in situ measure of Jupiter's zonal wind at the equatorial entry site, also shows a record of significant residual fluctuations apparently indicative of varying vertical motions. Regular oscillations over pressure depth in the residual Doppler measurements of roughly 1-8 Hz (increasing upward), as filtered over a 134 sec window, are most plausibly interpreted as gravity waves, and imply a weak, but downward increasing static stability within the 5 - 20 bar region of Jupiter's atmosphere. A matched extension to deeper levels of an independent inertial stability constraint from the measured vertical wind shear at 1 - 4 bars is roughly consistent with a static stability of approximately 0.5 K/km near the 20 bar level, as independently detected by the probe Atmospheric Structure Instrument.
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco
2018-06-07
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
Gravitational modulation of thermosolutal convection during directional solidification
NASA Astrophysics Data System (ADS)
Murray, B. T.; Coriell, S. R.; McFadden, G. B.; Wheeler, A. A.; Saunders, B. V.
1993-03-01
During directional solidification of a binary alloy at constant velocity, thermosolutal convection may occur due to the temperature and solute gradients associated with the solidification process. For vertical growth in an ideal furnace (lacking horizontal gradients) a quiescent state is possible. The effect of a time-periodic vertical gravitational acceleration (or equivalently vibration) on the onset of thermosolutal convection is calculated based on linear stability using Floquet theory. Numerical calculations for the onset of instability have been carried out for a semiconductor alloy with Schmidt number of 10 and Prandtl number of 0.1 with primary emphasis on large modulation frequencies in a microgravity environment for which the background gravitational acceleration is negligible. The numerical results demonstrate that there is a significant difference in stability depending on whether a heavier or lighter solute is rejected. For large modulation frequencies, the stability behavior can be described by either the method of averaging or an asymptotic resonant mode analysis.
NASA Astrophysics Data System (ADS)
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco
2018-06-01
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
NASA Astrophysics Data System (ADS)
Moc, Jerzy
2012-01-01
We report correlated ab initio calculations for the Al13H- cluster anion isomers, their kinetic stability and vertical detachment energies (VDEs). Of the two most energetically favored anion structures involving H atom in terminal and threefold bridged sites of the icosahedral Al13-, the higher energy ‘threefold bridged' isomer is shown to be of low kinetic stability. Our results are consistent with the recent photoelectron spectroscopy (PE) study of Grubisic et al. who observed two distinct Al13H- isomers, one of them identified as ‘metastable'. The VDE energies computed at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level for the ‘terminal' and ‘threefold bridged' Al13H- isomers of 3.21 and 2.32 eV are in good agreement with those determined in the PE study.
Assessing Videogrammetry for Static Aeroelastic Testing of a Wind-Tunnel Model
NASA Technical Reports Server (NTRS)
Spain, Charles V.; Heeg, Jennifer; Ivanco, Thomas G.; Barrows, Danny A.; Florance, James R.; Burner, Alpheus W.; DeMoss, Joshua; Lively, Peter S.
2004-01-01
The Videogrammetric Model Deformation (VMD) technique, developed at NASA Langley Research Center, was recently used to measure displacements and local surface angle changes on a static aeroelastic wind-tunnel model. The results were assessed for consistency, accuracy and usefulness. Vertical displacement measurements and surface angular deflections (derived from vertical displacements) taken at no-wind/no-load conditions were analyzed. For accuracy assessment, angular measurements were compared to those from a highly accurate accelerometer. Shewhart's Variables Control Charts were used in the assessment of consistency and uncertainty. Some bad data points were discovered, and it is shown that the measurement results at certain targets were more consistent than at other targets. Physical explanations for this lack of consistency have not been determined. However, overall the measurements were sufficiently accurate to be very useful in monitoring wind-tunnel model aeroelastic deformation and determining flexible stability and control derivatives. After a structural model component failed during a highly loaded condition, analysis of VMD data clearly indicated progressive structural deterioration as the wind-tunnel condition where failure occurred was approached. As a result, subsequent testing successfully incorporated near- real-time monitoring of VMD data in order to ensure structural integrity. The potential for higher levels of consistency and accuracy through the use of statistical quality control practices are discussed and recommended for future applications.
Perceived object stability depends on multisensory estimates of gravity.
Barnett-Cowan, Michael; Fleming, Roland W; Singh, Manish; Bülthoff, Heinrich H
2011-04-27
How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object's stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information. In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity). Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall.
Landslide Hazard Probability Derived from Inherent and Dynamic Determinants
NASA Astrophysics Data System (ADS)
Strauch, Ronda; Istanbulluoglu, Erkan
2016-04-01
Landslide hazard research has typically been conducted independently from hydroclimate research. We unify these two lines of research to provide regional scale landslide hazard information for risk assessments and resource management decision-making. Our approach combines an empirical inherent landslide probability with a numerical dynamic probability, generated by combining routed recharge from the Variable Infiltration Capacity (VIC) macro-scale land surface hydrologic model with a finer resolution probabilistic slope stability model run in a Monte Carlo simulation. Landslide hazard mapping is advanced by adjusting the dynamic model of stability with an empirically-based scalar representing the inherent stability of the landscape, creating a probabilistic quantitative measure of geohazard prediction at a 30-m resolution. Climatology, soil, and topography control the dynamic nature of hillslope stability and the empirical information further improves the discriminating ability of the integrated model. This work will aid resource management decision-making in current and future landscape and climatic conditions. The approach is applied as a case study in North Cascade National Park Complex, a rugged terrain with nearly 2,700 m (9,000 ft) of vertical relief, covering 2757 sq km (1064 sq mi) in northern Washington State, U.S.A.
Status of the planar electrostatic gradiometer GREMLIT for airborne geodesy
NASA Astrophysics Data System (ADS)
Boulanger, D.; Foulon, B.; Lebat, V.; Bresson, A.; Christophe, B.
2016-12-01
Taking advantage of technologies, developed by ONERA for the GRACE and GOCE space missions, the GREMLIT airborne gravity gradiometer is based of a planar electrostatic gradiometer configuration. The feasibility of the instrument and of its performance was proved by realistic simulations, based on actual data and recorded environmental aircraft perturbations, with performance of about one Eötvös along the two horizontal components of the gravity gradient. In order to assess the operation of the electrostatic gradiometer on its associated stabilized platform, a one axis prototype has also been built. The next step is the realization of the stabilization platform, controlled by the common mode outputs of the instrument itself, in order to reject the perturbations induced by the airborne environment in the horizontal directions. One of the interests of the GREMLIT instrument is the possibility of an easy hybrid configuration with a vertical one axis Cold Atoms Interferometer gravity gradiometer called GIBON and also under development at ONERA. In such hybrid instrument, The CAI instrument takes also advantage of the platform stabilized by the electrostatic one. The poster will emphasize the status of realization of the instrument and of its stabilized platform.
Numerical study of effects of atmosphere temperature profile on wildfire behavior
Chunmei Xia; M. Yousuff Hussaini; Philip Cunningham; Rodman R. Linn; Scott L. Goodrick
2003-01-01
The vertical temperature profile and hence the stability in the atmosphere near the ground vanes significantly between day and night. Typically, the potential temperature at the surface is higher than that above the ground during the day and lower than that above the ground during the night. Such differences in the vertical temperature profile might act to accelerate...
ERIC Educational Resources Information Center
Martin, John Levi
2009-01-01
Social psychological investigations of hierarchy formation have been almost entirely confined to the case of task-oriented groups and hence have produced theories that turn on the existence of such a task. But other forms of vertical hierarchy may emerge in non-task groups. One form, orderings of dominance, has been studied among animals using…
STS-40 Spacelab Life Science 1 (SLS-1) module in OV-102's payload bay (PLB)
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 Spacelab Life Science 1 (SLS-1) module is documented in the payload bay (PLB) of Columbia, Orbiter Vehicle (OV) 102. Included in the view are: the spacelab (SL) transfer tunnel joggle section and support struts; SLS-1 module forward end cone with the European Space Agency (ESA) SL insignia, SLS-1 payload insignia, and the upper feed through plate (center); the orbiter maneuvering system (OMS) pods; and the vertical stabilizer with the Detailed Test Objective (DTO) 901 Shuttle Infrared Leeside Temperature Sensing (SILTS) at the top 24 inches. The vertical stabilizer is parallel to the Earth's limb which is highlighted by the sunlight at sunrise/sunset.
STS-40 Spacelab Life Science 1 (SLS-1) module in OV-102's payload bay (PLB)
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 Spacelab Life Science 1 (SLS-1) module is documented in the payload bay (PLB) of Columbia, Orbiter Vehicle (OV) 102. Included in the view are: the spacelab (SL) transfer tunnel joggle section and support struts; SLS-1 module forward end cone with the European Space Agency (ESA) SL insignia, SLS-1 payload insignia, and the upper feed through plate (center); the orbiter maneuvering system (OMS) pods; and the vertical stabilizer with the Detailed Test Objective (DTO) 901 Shuttle Infrared Leeside Temperature Sensing (SILTS) at the top 24 inches. The vertical stabilizer points to the Earth's limb and the cloud-covered surface of the Earth below.
Radiating Instabilities of Internal Inertio-gravity Waves
NASA Astrophysics Data System (ADS)
Kwasniok, F.; Schmitz, G.
The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Straus, Sharon E; Jaglal, Susan B
2015-01-01
To identify components of postural control included in standardized balance measures for adult populations. Electronic searches of MEDLINE, EMBASE, and CINAHL databases using keyword combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests/validation studies, instrument construction/instrument validation, geriatric assessment/disability evaluation, gray literature, and hand searches. Inclusion criteria were measures with a stated objective to assess balance, adult populations (18y and older), at least 1 psychometric evaluation, 1 standing task, a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. Sixty-six measures were included. A research assistant extracted descriptive characteristics and 2 reviewers independently coded components of balance in each measure using the Systems Framework for Postural Control, a widely recognized model of balance. Components of balance evaluated in these measures were underlying motor systems (100% of measures), anticipatory postural control (71%), dynamic stability (67%), static stability (64%), sensory integration (48%), functional stability limits (27%), reactive postural control (23%), cognitive influences (17%), and verticality (8%). Thirty-four measures evaluated 3 or fewer components of balance, and 1 measure-the Balance Evaluation Systems Test-evaluated all components of balance. Several standardized balance measures provide only partial information on postural control and omit important components of balance related to avoiding falls. As such, the choice of measure(s) may limit the overall interpretation of an individual's balance ability. Continued work is necessary to increase the implementation of comprehensive balance assessment in research and practice. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Paterno, Mark V.; Schmitt, Laura C.; Ford, Kevin R.; Rauh, Mitchell J.; Myer, Gregory D.; Huang, Bin; Hewett, Timothy E.
2016-01-01
Background Athletes who return to sport participation after anterior cruciate ligament reconstruction (ACLR) have a higher risk of a second anterior cruciate ligament injury (either reinjury or contralateral injury) compared with non–anterior cruciate ligament–injured athletes. Hypotheses Prospective measures of neuromuscular control and postural stability after ACLR will predict relative increased risk for a second anterior cruciate ligament injury. Study Design Cohort study (prognosis); Level of evidence, 2. Methods Fifty-six athletes underwent a prospective biomechanical screening after ACLR using 3-dimensional motion analysis during a drop vertical jump maneuver and postural stability assessment before return to pivoting and cutting sports. After the initial test session, each subject was followed for 12 months for occurrence of a second anterior cruciate ligament injury. Lower extremity joint kinematics, kinetics, and postural stability were assessed and analyzed. Analysis of variance and logistic regression were used to identify predictors of a second anterior cruciate ligament injury. Results Thirteen athletes suffered a subsequent second anterior cruciate ligament injury. Transverse plane hip kinetics and frontal plane knee kinematics during landing, sagittal plane knee moments at landing, and deficits in postural stability predicted a second injury in this population (C statistic = 0.94) with excellent sensitivity (0.92) and specificity (0.88). Specific predictive parameters included an increase in total frontal plane (valgus) movement, greater asymmetry in internal knee extensor moment at initial contact, and a deficit in single-leg postural stability of the involved limb, as measured by the Biodex stability system. Hip rotation moment independently predicted second anterior cruciate ligament injury (C = 0.81) with high sensitivity (0.77) and specificity (0.81). Conclusion Altered neuromuscular control of the hip and knee during a dynamic landing task and postural stability deficits after ACLR are predictors of a second anterior cruciate ligament injury after an athlete is released to return to sport. PMID:20702858
Digital adaptive control of a VTOL aircraft
NASA Technical Reports Server (NTRS)
Reid, G. F.
1976-01-01
A technique has been developed for calculating feedback and feedforward gain matrices that stabilize a VTOL aircraft while enabling it to track input commands of forward and vertical velocity. Leverrier's algorithm is used in a procedure for determining a set of state variable, feedback gains that force the closed loop poles and zeroes of one pilot input transfer function to be at preselected positions in the s plane. This set of feedback gains is then used to calculate the feedback and feedforward gains for the velocity command controller. The method is computationally attractive since the gains are determined by solving systems of linear, simultaneous equations. Responses obtained using a digital simulation of the longitudinal dynamics of the CH-47 helicopter are presented.
Dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks
NASA Astrophysics Data System (ADS)
Wang, Xue-She; Mazzoleni, Michael J.; Mann, Brian P.
2018-03-01
This paper presents the results of an investigation on the dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks. The full equation of motion for both rocking disks is derived from first principles. For unforced behavior, Lamb's method is used to derive the linear natural frequency of both disks, and harmonic balance is used to determine their amplitude-dependent rocking frequencies. A stability analysis then reveals that the equilibria and stability of the two disks are considerably different, as the semi-elliptical disk has a super-critical pitchfork bifurcation that enables it to exhibit bistable rocking behavior. Experimental studies were conducted to verify the trends. For vertically forced behavior, numerical investigations show the disk's responses to forward and reverse frequency sweeps. Three modes of periodicity were observed for the steady state behavior. Experiments were performed to verify the frequency responses and the presence of the three rocking modes. Comparisons between the experiments and numerical investigations show good agreement.
NASA Technical Reports Server (NTRS)
Duvual, Walter M. B.; Batur, Celal; Bennett, Robert J.
1998-01-01
We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful in scientific and commercial applications for determining the optimized process parameters for crystal growth.
MOBI: Microgravity Observations of Bubble Interactions
NASA Technical Reports Server (NTRS)
Koch, Donald L.; Sangani, Ashok
2004-01-01
One of the greatest uncertainties affecting the design of multiphase flow technologies for space exploration is the spatial distribution of phases that will arise in microgravity or reduced gravity. On Earth, buoyancy-driven motion predominates whereas the shearing of the bubble suspension controls its behavior in microgravity. We are conducting a series of ground-based experiments and a flight experiment spanning the full range of ratios of buoyancy to shear. These include: (1) bubbles rising in a quiescent liquid in a vertical channel; (2) weak shear flow induced by slightly inclining the channel; (3) moderate shear flow in a terrestrial vertical pipe flow; and (4) shearing of a bubble suspension in a cylindrical Couette cell in microgravity. We consider nearly monodisperse suspensions of 1 to 1.8 mm diameter bubbles in aqueous electrolyte solutions. The liquid velocity disturbance produced by bubbles in this size range can often be described using an inviscid analysis. Electrolytic solutions lead to hydrophilic repulsion forces that stabilize the bubble suspension without causing Marangoni stresses. We will discuss the mechanisms that control the flow behavior and phase distribution in the ground-based experiments and speculate on the factors that may influence the suspension flow and bubble volume fraction distribution in the flight experiment.
NASA Astrophysics Data System (ADS)
Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración
2010-01-01
Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.
NASA Technical Reports Server (NTRS)
Shy, Shenqyang S.
1990-01-01
The existence and persistence of marine stratocumulus play a significant role in the overall energy budget of the earth. Their stability and entrainment process are important in global climate studies, as well as for local weather forecasting. The purposes of the experimental simulations are to study this process and to address this paradox. The effects of buoyancy reversal is investigated, followed by two types of experiments. An instability experiment involves the behavior of a fully turbulent wake near the inversion generated by a sliding plate. Due to buoyancy reversal, the heavy, mixed fluid starts to sink, turning the potential energy created by the mixing process into kinetic energy, thereby increasing the entrainment rate. An entrainment experiment, using a vertically oscillating grid driven by a controllable speed motor, produces many eddy-induced entrainments at a surface region on scales much less than the depth of the layer.
NASA Technical Reports Server (NTRS)
McKinney, Marion O.; Maggin, Bernard
1944-01-01
An investigation has been made in the Langley free-flight tunnel to obtain an experimental verification of the theoretical rudder-free stability characteristics of an airplane model equipped with conventional rudders having negative floating tendencies and negligible friction. The model used in the tests was equipped with a conventional single vertical tail having rudder area 40 percent of the vertical tail area. The model was tested both in free flight and mounted on a strut that allowed freedom only in yaw. Tests were made with three different amounts of rudder aerodynamic balance and with various values of mass, moment of inertia, and center-of-gravity location of the rudder. Most of the stability derivatives required for the theoretical calculations were determined from forced and free-oscillation tests of the particular model tested. The theoretical analysis showed that the rudder-free motions of an airplane consist largely of two oscillatory modes - a long-period oscillation somewhat similar to the normal rudder-fixed oscillation and a short-period oscillation introduced only when the rudder is set free. It was found possible in the tests to create lateral instability of the rudder-free short-period mode by large values of rudder mass parameters even though the rudder-fixed condition was highly stable. The results of the tests and calculation indicated that for most present-day airplanes having rudders of negative floating tendency, the rudder-free stability characteristics may be examined by simply considering the dynamic lateral stability using the value of the directional-stability parameter Cn(sub p) for the rudder-free condition in the conventional controls-fixed lateral-stability equations. For very large airplanes having relatively high values of the rudder mass parameters with respect to the rudder aerodynamic parameters, however, analysis of the rudder-free stability should be made with the complete equations of motion. Good agreement between calculated and measured rudder-free stability characteristics was obtained by use of the general rudder-free stability theory, in which four degrees of lateral freedom are considered. When this assumption is made that the rolling motions alone or the lateral and rolling motions may be neglected in the calculations of rudder-free stability, it is possible to predict satisfactorily the characteristics of the long-period (Dutch roll type) rudder-free oscillation for airplanes only when the effective-dihedral angle is small. With these simplifying assumptions, however, satisfactory prediction of the short-period oscillation may be obtained for any dihedral. Further simplification of the theory based on the assumption that the rudder moment of inertia might be disregarded was found to be invalid because this assumption made it impossible to calculate the characteristics of the short-period oscillations.
A tale of two tails: developing an avian inspired morphing actuator for yaw control and stability.
Gamble, Lawren L; Inman, Daniel J
2018-02-09
Motivated by the lack of research in tailless morphing aircraft in addition to the current inability to measure the resultant aerodynamic forces and moments of bird control maneuvers, this work aims to develop and test a multi-functional morphing control surface based on the horizontal tail of birds for a low-radar-signature unmanned aerial vehicle. Customized macro fiber composite actuators were designed to achieve yaw control across a range of sideslip angles by inducing 3D curvature as a result of bending-twisting coupling, a well-known phenomenon in classical fiber composite theory. This allows for yaw control, pitch control, and limited air break control. The structural response of the customized actuators was determined numerically using both a piezoelectric and an equivalent thermal model in order to optimize the fiber direction to allow for maximized deflection in both the vertical and lateral directions. In total, three control configurations were tested experimentally: symmetric deflection for pitch control, single-sided deflection for yaw control, and antisymmetric deflection for air brake control. A Reynolds-averaged-Navier-Stokes fluid simulation was also developed to compare with the experimental results for the unactuated baseline configuration. The actuator was shown to provide better yaw control than traditional split aileron methods, remain effective in larger sideslip angles, and provide directional yaw stability when unactuated. Furthermore, it was shown to provide adequate pitch control in sideslip in addition to limited air brake capabilities. This design is proposed to provide complete aircraft control in concert with spanwise morphing wings.
Estimation of Directional Stability Derivatives at Moderate Angles and Supersonic Speeds
NASA Technical Reports Server (NTRS)
Kaattari, George E.
1959-01-01
A study of some of the important aerodynamic factors affecting the directional stability of supersonic airplanes is presented. The mutual interference fields between the body, the lifting surfaces, and the stabilizing surfaces are analyzed in detail. Evaluation of these interference fields on an approximate theoretical basis leads to a method for predicting directional stability of supersonic airplanes. Body shape, wing position and plan form, vertical tail position and plan form, and ventral fins are taken into account. Estimates of the effects of these factors are in fair agreement with experiment.
Development of a 5.5 m diameter vertical axis wind turbine, phase 3
NASA Astrophysics Data System (ADS)
Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.
1982-06-01
In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.
Ying, Jinwei; Teng, Honglin; Qian, Yunfan; Hu, Yingying; Wen, Tianyong; Ruan, Dike; Zhu, Minyu
2018-01-01
Background Ossification of the nuchal ligament (ONL) caused by chronic injury to the nuchal ligament (NL) is very common in instability-related cervical disorders. Purpose To determine possible correlations between ONL, sagittal alignment, and segmental stability of the cervical spine. Material and Methods Seventy-three patients with cervical spondylotic myelopathy (CSM) and ONL (ONL group) and 118 patients with CSM only (control group) were recruited. Radiographic data included the characteristics of ONL, sagittal alignment and segmental stability, and ossification of the posterior longitudinal ligament (OPLL). We performed comparisons in terms of radiographic parameters between the ONL and control groups. The correlations between ONL size, cervical sagittal alignment, and segmental stability were analyzed. Multivariate logistic regression was used to identify the independent risk factors of the development of ONL. Results C2-C7 sagittal vertical axis (SVA), T1 slope (T1S), T1S minus cervical lordosis (T1S-CL) on the lateral plain, angular displacement (AD), and horizontal displacement (HD) on the dynamic radiograph increased significantly in the ONL group compared with the control group. The size of ONL significantly correlated with C2-C7 SVA, T1S, AD, and HD. The incidence of ONL was higher in patients with OPLL and segmental instability. Cervical instability, sagittal malalignment, and OPLL were independent predictors of the development of ONL through multivariate analysis. Conclusion Patients with ONL are more likely to have abnormal sagittal alignment and instability of the cervical spine. Thus, increased awareness and appreciation of this often-overlooked radiographic finding is warranted during diagnosis and treatment of instability-related cervical pathologies and injuries.
Parsons, Rachel J; Breitbart, Mya; Lomas, Michael W; Carlson, Craig A
2012-02-01
There are an estimated 10(30) virioplankton in the world oceans, the majority of which are phages (viruses that infect bacteria). Marine phages encompass enormous genetic diversity, affect biogeochemical cycling of elements, and partially control aspects of prokaryotic production and diversity. Despite their importance, there is a paucity of data describing virioplankton distributions over time and depth in oceanic systems. A decade of high-resolution time-series data collected from the upper 300 m in the northwestern Sargasso Sea revealed recurring temporal and vertical patterns of virioplankton abundance in unprecedented detail. An annual virioplankton maximum developed between 60 and 100 m during periods of summer stratification and eroded during winter convective mixing. The timing and vertical positioning of this seasonal pattern was related to variability in water column stability and the dynamics of specific picophytoplankton and heterotrophic bacterioplankton lineages. Between 60 and 100 m, virioplankton abundance was negatively correlated to the dominant heterotrophic bacterioplankton lineage SAR11, as well as the less abundant picophytoplankton, Synechococcus. In contrast, virioplankton abundance was positively correlated to the dominant picophytoplankton lineage Prochlorococcus, and the less abundant alpha-proteobacteria, Rhodobacteraceae. Seasonally, virioplankton abundances were highly synchronous with Prochlorococcus distributions and the virioplankton to Prochlorococcus ratio remained remarkably constant during periods of water column stratification. The data suggest that a significant fraction of viruses in the mid-euphotic zone of the subtropical gyres may be cyanophages and patterns in their abundance are largely determined by Prochlorococcus dynamics in response to water column stability. This high-resolution, decadal survey of virioplankton abundance provides insight into the possible controls of virioplankton dynamics in the open ocean.
Parsons, Rachel J; Breitbart, Mya; Lomas, Michael W; Carlson, Craig A
2012-01-01
There are an estimated 1030 virioplankton in the world oceans, the majority of which are phages (viruses that infect bacteria). Marine phages encompass enormous genetic diversity, affect biogeochemical cycling of elements, and partially control aspects of prokaryotic production and diversity. Despite their importance, there is a paucity of data describing virioplankton distributions over time and depth in oceanic systems. A decade of high-resolution time-series data collected from the upper 300 m in the northwestern Sargasso Sea revealed recurring temporal and vertical patterns of virioplankton abundance in unprecedented detail. An annual virioplankton maximum developed between 60 and 100 m during periods of summer stratification and eroded during winter convective mixing. The timing and vertical positioning of this seasonal pattern was related to variability in water column stability and the dynamics of specific picophytoplankton and heterotrophic bacterioplankton lineages. Between 60 and 100 m, virioplankton abundance was negatively correlated to the dominant heterotrophic bacterioplankton lineage SAR11, as well as the less abundant picophytoplankton, Synechococcus. In contrast, virioplankton abundance was positively correlated to the dominant picophytoplankton lineage Prochlorococcus, and the less abundant alpha-proteobacteria, Rhodobacteraceae. Seasonally, virioplankton abundances were highly synchronous with Prochlorococcus distributions and the virioplankton to Prochlorococcus ratio remained remarkably constant during periods of water column stratification. The data suggest that a significant fraction of viruses in the mid-euphotic zone of the subtropical gyres may be cyanophages and patterns in their abundance are largely determined by Prochlorococcus dynamics in response to water column stability. This high-resolution, decadal survey of virioplankton abundance provides insight into the possible controls of virioplankton dynamics in the open ocean. PMID:21833038
NASA Astrophysics Data System (ADS)
Fisher, A. W.; Sanford, L. P.; Scully, M. E.
2016-12-01
Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer transitions to a turbulent log layer. The influences of fetch-limited wind waves, density stratification, and surface buoyancy fluxes will also be discussed.
Electromagnetic confinement and movement of thin sheets of molten metal
Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.
1990-01-01
An apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.
Adaptive control of a millimeter-scale flapping-wing robot.
Chirarattananon, Pakpong; Ma, Kevin Y; Wood, Robert J
2014-06-01
Challenges for the controlled flight of a robotic insect are due to the inherent instability of the system, complex fluid-structure interactions, and the general lack of a complete system model. In this paper, we propose theoretical models of the system based on the limited information available from previous work and a comprehensive flight controller. The modular flight controller is derived from Lyapunov function candidates with proven stability over a large region of attraction. Moreover, it comprises adaptive components that are capable of coping with uncertainties in the system that arise from manufacturing imperfections. We have demonstrated that the proposed methods enable the robot to achieve sustained hovering flights with relatively small errors compared to a non-adaptive approach. Simple lateral maneuvers and vertical takeoff and landing flights are also shown to illustrate the fidelity of the flight controller. The analysis suggests that the adaptive scheme is crucial in order to achieve millimeter-scale precision in flight control as observed in natural insect flight.
Inverted Spring Pendulum Driven by a Periodic Force: Linear versus Nonlinear Analysis
ERIC Educational Resources Information Center
Arinstein, A.; Gitterman, M.
2008-01-01
We analyse the stability of the spring inverted pendulum with the vertical oscillations of the suspension point. An important factor in the stability analysis is the interaction between radial and oscillating modes. In addition to the small oscillations near the upper position, the nonlinearity of the problem leads to the appearance of limit-cycle…
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Ouzts, Peter J.
1991-01-01
Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented.
One-dimensional terahertz imaging of surfactant-stabilized dodecane-brine emulsion
NASA Astrophysics Data System (ADS)
Nickel, Daniel Vincent
Terahertz line-images of surfactant-stabilized dodecane(C12H 26)-brine emulsions are obtained by translating the emulsified region through the focus of a terahertz time-domain spectrometer, capturing a time-domain waveform at each vertical position. From these images, relative dodecane content, emulsion size, and stability can be extracted to evaluate the efficacy of the surfactant in solvating the dodecane. In addition, the images provide insight into the dynamics of concentrated emulsions after mixing.
Long term stability following genioplasty: a cephalometric study.
Kumar, B Lakshman; Raju, G Kranthi Praveen; Kumar, N Dilip; Reddy, G Vivek; Naik, B Ravindra; Achary, C Ravindranath
2015-04-01
A receding chin associated with an orthognathic mandible is a common situation and surgical changes in chin position are often required to improve the overall harmony of the face. Genioplasty is one such procedure. Stability of hard and soft tissue changes following genioplasty on a long term basis needs to be assessed. Studies on the stability of hard and soft tissue changes following genioplasty on a short term basis have revealed it as a procedure with good stability. This study is done to assess the stability of hard and soft tissue changes following genioplasty on a long term basis. Pre-surgical, postsurgical and long term post-surgical cephalograms of 15 cases treated by vertical reduction augmentation genioplasty were obtained. Paired t-test was used to compare the changes between pre-surgical, postsurgical and long term postsurgical cephalograms. Findings of this study demonstrated that genioplasty is a stable procedure. After long term follow-up period, there was a relapse of 1.5 mm at the pogonion accounting for 24% of the surgical advancement. This is attributed to the remodeling that occurs at the surgical site, but not the instability due to the surgical procedure. With the present study, it can be concluded that vertical reduction and advancement genioplasty can be considered as an adjunctive procedure that produces predictable results and the bony and soft tissue stability were generally very good.
Long Term Stability Following Genioplasty: A Cephalometric Study
Kumar, B Lakshman; Raju, G Kranthi Praveen; Kumar, N Dilip; Reddy, G Vivek; Naik, B Ravindra; Achary, C Ravindranath
2015-01-01
Background: A receding chin associated with an orthognathic mandible is a common situation and surgical changes in chin position are often required to improve the overall harmony of the face. Genioplasty is one such procedure. Stability of hard and soft tissue changes following genioplasty on a long term basis needs to be assessed. Studies on the stability of hard and soft tissue changes following genioplasty on a short term basis have revealed it as a procedure with good stability. This study is done to assess the stability of hard and soft tissue changes following genioplasty on a long term basis. Materials and Methods: Pre-surgical, postsurgical and long term post-surgical cephalograms of 15 cases treated by vertical reduction augmentation genioplasty were obtained. Paired t-test was used to compare the changes between pre-surgical, postsurgical and long term postsurgical cephalograms. Results: Findings of this study demonstrated that genioplasty is a stable procedure. After long term follow-up period, there was a relapse of 1.5 mm at the pogonion accounting for 24% of the surgical advancement. This is attributed to the remodeling that occurs at the surgical site, but not the instability due to the surgical procedure. Conclusion: With the present study, it can be concluded that vertical reduction and advancement genioplasty can be considered as an adjunctive procedure that produces predictable results and the bony and soft tissue stability were generally very good. PMID:25954070
Reproducibility of the vertical dimension of occlusion with an improved measuring gauge.
Morikawa, M; Kozono, Y; Noguchi, B S; Toyoda, S
1988-07-01
An improved gauge using an eyeglass frame, the TOM gauge, was devised. The reproducibility of the record of vertical dimension with this gauge was evaluated through repeated measurements on subjects having a definite centric stop with the natural dentition. Because of the stabilization provided by the frame and the reference point on the apex nasi, the TOM gauge showed excellent reproducibility of the record compared with the conventional gauges. The TOM gauge can be expected to significantly reduce the risk of errors in measuring the vertical dimension of occlusion especially in complete denture fabrication.
The linear stability of vertical mixture seepage into the close porous filter with clogging
NASA Astrophysics Data System (ADS)
Maryshev, Boris S.
2017-02-01
In the present paper, filtration of a mixture through a close porous filter is considered. A heavy solute penetrates from the upper side of the filter into the filter body due to seepage flow and diffusion. In the presence of heavy solute a domain with a heavy fluid is formed near the upper boundary of the filter. The stratification, at which the heavy fluid is located above the light, is unstable. When the mass of the heavy solute exceeds the critical value, one can observe the onset of instability. As a result, two regimes of vertical filtration can occur: (1) homogeneous seepage and (2) convective filtration. Filtration of a mixture in porous media is a complex process. It is necessary to take into account the solute immobilization (or sorption) and clogging of porous medium. We consider the case of low solute concentrations, in which the immobilization is described by the linear MIM (mobile/immobile media) model. The clogging is described by the dependence of permeability on porosity in terms of the Carman-Kozeny formula. The presence of immobile (or adsorbed) particles of the solute decreases the porosity of media and porous media becomes less permeable. The purpose of the paper is to find the stability conditions for the homogeneous vertical seepage of the mixture into the close porous filter. The linear stability problem is solved using the quasi-static approach. The critical times of instability are estimated. The stability maps have been plotted in the space of system parameters. The applicability of quasi-static approach is substantiated by direct numerical simulation.
Stabilization of cat paw trajectory during locomotion
Klishko, Alexander N.; Farrell, Bradley J.; Beloozerova, Irina N.; Latash, Mark L.
2014-01-01
We investigated which of cat limb kinematic variables during swing of regular walking and accurate stepping along a horizontal ladder are stabilized by coordinated changes of limb segment angles. Three hypotheses were tested: 1) animals stabilize the entire swing trajectory of specific kinematic variables (performance variables); and 2) the level of trajectory stabilization is similar between regular and ladder walking and 3) is higher for forelimbs compared with hindlimbs. We used the framework of the uncontrolled manifold (UCM) hypothesis to quantify the structure of variance of limb kinematics in the limb segment orientation space across steps. Two components of variance were quantified for each potential performance variable, one of which affected it (“bad variance,” variance orthogonal to the UCM, VORT) while the other one did not (“good variance,” variance within the UCM, VUCM). The analysis of five candidate performance variables revealed that cats during both locomotor behaviors stabilize 1) paw vertical position during the entire swing (VUCM > VORT, except in mid-hindpaw swing of ladder walking) and 2) horizontal paw position in initial and terminal swing (except for the entire forepaw swing of regular walking). We also found that the limb length was typically stabilized in midswing, whereas limb orientation was not (VUCM ≤ VORT) for both limbs and behaviors during entire swing. We conclude that stabilization of paw position in early and terminal swing enables accurate and stable locomotion, while stabilization of vertical paw position in midswing helps paw clearance. This study is the first to demonstrate the applicability of the UCM-based analysis to nonhuman movement. PMID:24899676
Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A
Cahoon, D.R.; Lynch, J.C.
1997-01-01
Simultaneous measurements of vertical accretion from artificial soil marker horizons and soil elevation change from sedimentation-erosion table (SET) plots were used to evaluate the processes related to soil building in range, basin, and overwash mangrove forests located in a low-energy lagoon which recieves minor inputs of terregenous sediments. Vertical accretion measures reflect the contribution of surficial sedimentation (sediment deposition and surface root growth). Measures of elevation change reflect not only the contributions of vertical accretion but also those of subsurface processes such as compaction, decomposition and shrink-swell. The two measures were used to calculate amounts of shallow subsidence (accretion minus elevation change) in each mangrove forest. The three forest types represent different accretionary envrionments. The basin forest was located behind a natural berm. Hydroperiod here was controlled primarily by rainfall rather than tidal exchange, although the basin flooded during extreme tidal events. Soil accretion here occurred primarily by autochthonous organic matter inputs, and elevation was controlled by accretion and shrink-swell of the substrate apparently related to cycles of flooding-drying and/or root growth-decomposition. This hydrologically-restricted forest did not experience an accretion or elevation deficit relative to sea-level rise. The tidally dominated fringe and overwash island forests accreted through mineral sediment inputs bound in place by plant roots. Filamentous turf algae played an important role in stabilizing loose muds in the fringe forest where erosion was prevalent. Elevation in these high-energy environments was controlled not only by accretion but also by erosion and/or shallow subsidence. The rate of shallow subsidence was consistently 3-4 mm y-1 in the fringe and overwash island forests but was negligible in the basin forest. Hence, the vertical development of mangrove soils was influenced by both surface and subsurface processes and the procces controlling soil elevation differed among forest types. The mangrove ecosystem at Rookery Bay has remained stable as sea level has risen during the past 70 years. Yet, lead-210 accretion data suggest a substantial accretion deficit has occurred in the past century (accretion was 10-20 cm < sea-level rise from 1930 to 1990) in the fringe and island forests at Rookery Bay. In contrast, our measures of elevation change mostly equalled the estimates of sea-level rise and shallow subsidence. These data suggest that (1) vertical accretion in this system is driven by local sea-level rise and shallow subsidence, and (2) the mangrove forests are mostly keeping pace with sea-level rise. Thus, the vulnerability of this mangrove ecosystem to sea-level rise is best described in terms of an elevation deficit (elevation change minus sea-level rise) based on annual measures rather than an accretion deficit (accretion minus sea-level rise) based on decadal measures.
Sato, Kimitake; Mokha, Monique
2009-01-01
Although strong core muscles are believed to help athletic performance, few scientific studies have been conducted to identify the effectiveness of core strength training (CST) on improving athletic performance. The aim of this study was to determine the effects of 6 weeks of CST on ground reaction forces (GRFs), stability of the lower extremity, and overall running performance in recreational and competitive runners. After a screening process, 28 healthy adults (age, 36.9 +/- 9.4 years; height, 168.4 +/- 9.6 cm; mass, 70.1 +/- 15.3 kg) volunteered and were divided randomly into 2 groups (n = 14 in each group). A test-retest design was used to assess the differences between CST (experimental) and no CST (control) on GRF measures, lower-extremity stability scores, and running performance. The GRF variables were determined by calculating peak impact, active vertical GRFs (vGRFs), and duration of the 2 horizontal GRFs (hGRFs), as measured while running across a force plate. Lower-extremity stability was assessed using the Star Excursion Balance Test. Running performance was determined by 5000-m run time measured on outdoor tracks. Six 2 (pre, post) x 2 (CST, control) mixed-design analyses of variance were used to determine the influence of CST on each dependent variable, p < 0.05. Twenty subjects completed the study (nexp = 12 and ncon = 8). A significant interaction occurred, with the CST group showing faster times in the 5000-m run after 6 weeks. However, CST did not significantly influence GRF variables and lower-leg stability. Core strength training may be an effective training method for improving performance in runners.
5-Beam ADCP Deployment Strategy Considerations
NASA Astrophysics Data System (ADS)
Moore, T.; Savidge, D. K.; Gargett, A.
2016-02-01
With the increasing availability of 5 beam ADCPs and expanding opportunities for their deployment within both observatory and dedicated process study settings, refinements in deployment strategies are needed.Measuring vertical velocities directly with a vertically oriented acoustic beam requires that the instrument be stably mounted and leveled within fractions of a degree. Leveled shallow water deployments to date have utilized divers to jet pipes into the sand for stability, manually mount the instruments on the pipes, and level them. Leveling has been guided by the deployed instrument's pitch and roll output, available in real-time because of the observatory settings in which the deployments occurred. To expand the range of feasible deployments to deeper, perhaps non-real-time capable settings, alternatives to diver deployment and leveling must be considered. To determine stability requirements, mooring motion (heading, pitch and roll) has been sampled at 1Hz by gimballed ADCPs at a range of instrument deployment depths, and in shrouded and unshrouded cages. Conditions under which ADCP cages resting on the bottom experience significant shifts in tilt, roll or heading are assessed using co-located wind and wave measurements. The accuracy of estimating vertical velocities using all five beams relative to a well leveled vertical single beam is assessed from archived high frequency five beam data, to explore whether easing the leveling requirement is feasible.
NASA Astrophysics Data System (ADS)
Ali, Sajid; Kamran, Muhammad Ali; Khan, Sikandar
2017-11-01
The fluid sloshing in partially filled road tankers has significantly increased the number of road accidents for the last few decades. Significant research is needed to investigate and to come up with optimum baffles designs that can help to increase the rollover stability of the partially filled tankers. In this investigation, a detailed analysis of the anti-slosh effectiveness of different baffle configurations is presented. This investigation extends the already available studies in the literature by introducing new modified rectangular tank's shapes that correspond to maximum rollover stability as compared to the already available standard tank designs. The various baffles configurations that are analysed in this study are horizontal, vertical, vertical-horizontal and diagonal. In the current study, numerical investigations are performed for rectangular, elliptical and circular tank shapes. Lateral sloshing, caused by constant radius turn manoeuvre, was simulated numerically using the volume-of-fluid method, and effect of the different baffle configurations was analysed. The effect of tank fill levels on sloshing measured in terms of horizontal force and pressure moments is also reported for with and without baffles configurations. Vertical baffles were the most effective at reducing sloshing in modified rectangular tanks, whereas a combination of horizontal and vertical baffles gave better results for the circular and elliptical tanks geometries.
NASA Astrophysics Data System (ADS)
Dowdy, Andrew J.; Pepler, Acacia
2018-02-01
Extreme wildfires with strong convective processes in their plumes have recently led to disastrous impacts on various regions of the world. The Continuous Haines index (CH) is used in Australia to represent vertical atmospheric stability and humidity measures relating to pyroconvective processes. CH climatology is examined here using reanalysis data from 1979 to 2016, revealing large spatial and seasonal variations throughout Australia. Various measures of severity are investigated, including regionally specific thresholds. CH is combined with near-surface fire weather conditions, as a type of compound event, and is examined in relation to environmental conditions associated with pyroconvection. Significant long-term changes in CH are found for some regions and seasons, with these changes corresponding to changes in near-surface conditions in some cases. In particular, an increased risk of pyroconvection is identified for southeast Australia during spring and summer, due to decreased vertical atmospheric stability and humidity combined with more severe near-surface conditions.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko
2007-10-01
The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.
NASA Astrophysics Data System (ADS)
Li, Jun; Xia, Qing; Wang, Xiaofa
2017-10-01
Based on the extended spin-flip model, the all-optical flip-flop stability maps of the 1550nm vertical-cavity surface-emitting laser have been studied. Theoretical results show that excellent agreement is found between theoretical and the reported experimental results in polarization switching point current which is equal to 1.95 times threshold. Furthermore, the polarization bistable region is wide which is from 1.05 to 1.95 times threshold. A new method is presented that uses power difference between two linear polarization modes as the judging criterion of trigger degree and stability maps of all-optical flip-flop operation under different injection parameters are obtained. By alternately injecting set and reset pulse with appropriate parameters, the mutual conversion switching between two polarization modes is realized, the feasibility of all-optical flip-flop operation is checked theoretically. The results show certain guiding significance on the experimental study on all optical buffer technology.
Three-dimensional baroclinic instability of a Hadley cell for small Richardson number
NASA Technical Reports Server (NTRS)
Antar, B. N.; Fowlis, W. W.
1985-01-01
A three-dimensional, linear stability analysis of a baroclinic flow for Richardson number, Ri, of order unity is presented. The model considered is a thin horizontal, rotating fluid layer which is subjected to horizontal and vertical temperature gradients. The basic state is a Hadley cell which is a solution of the complete set of governing, nonlinear equations and contains both Ekman and thermal boundary layers adjacent to the rigid boundaries; it is given in a closed form. The stability analysis is also based on the complete set of equations; and perturbation possessing zonal, meridional, and vertical structures were considered. Numerical methods were developed for the stability problem which results in a stiff, eighth-order, ordinary differential eigenvalue problem. The previous work on three-dimensional baroclinic instability for small Ri was extended to a more realistic model involving the Prandtl number, sigma, and the Ekman number, E, and to finite growth rates and a wider range of the zonal wavenumber.
Stability numerical analysis of soil cave in karst area to drawdown of underground water level
NASA Astrophysics Data System (ADS)
Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei
2018-05-01
With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.
Wang, Ying; Chen, Yajuan; Ding, Liping; Zhang, Jiewei; Wei, Jianhua; Wang, Hongzhi
2016-01-01
The vertical segments of Populus stems are an ideal experimental system for analyzing the gene expression patterns involved in primary and secondary growth during wood formation. Suitable internal control genes are indispensable to quantitative real time PCR (qRT-PCR) assays of gene expression. In this study, the expression stability of eight candidate reference genes was evaluated in a series of vertical stem segments of Populus tomentosa. Analysis through software packages geNorm, NormFinder and BestKeeper showed that genes ribosomal protein (RP) and tubulin beta (TUBB) were the most unstable across the developmental stages of P. tomentosa stems, and the combination of the three reference genes, eukaryotic translation initiation factor 5A (eIF5A), Actin (ACT6) and elongation factor 1-beta (EF1-beta) can provide accurate and reliable normalization of qRT-PCR analysis for target gene expression in stem segments undergoing primary and secondary growth in P. tomentosa. These results provide crucial information for transcriptional analysis in the P. tomentosa stem, which may help to improve the quality of gene expression data in these vertical stem segments, which constitute an excellent plant system for the study of wood formation.
NASA Astrophysics Data System (ADS)
Holford, S. P.; Green, P. F.; Hillis, R. R.; Duddy, I. R.; Turner, J. P.; Stoker, M. S.
2008-12-01
The magma-rich NE Atlantic passive margin provides a superb natural laboratory for studying vertical motions associated with continental rifting and the rift-drift transition. Here we present an extensive apatite fission-track analysis (AFTA) database from the British Isles which we combine with a detailed stratigraphic framework for the Cretaceous-Cenozoic sedimentary record of the NE Atlantic margin to constrain the uplift history along and inboard of this margin during the past 120 Myr. We show that the British Isles experienced a series of uplift episodes which began between 120 and 115 Ma, 65 and 55 Ma, 40 and 25 Ma and 20 and 15 Ma, respectively. Each episode is of regional extent (~100,000 sq km) and represents a major period of exhumation involving removal of up to 1 km or more of section. These uplift episodes can be correlated with a number of major tectonic unconformities recognised within the sedimentary succession of the NE Atlantic margin, suggesting that the margin was also affected by these uplift episodes. Anomalous syn- and post-rift uplift along this margin have been interpreted in terms of permanent and/or transient movements controlled by the Iceland plume, but neither the timing nor distribution of the uplift episodes, with the exception of the 65 to 55 Ma episode, supports a first-order control by plume activity on vertical motions. Each uplift episode correlates closely with key deformation events at adjacent plate boundaries, suggesting a causative link, and we examine the ways in which plate boundary forces can account for the observed uplift episodes. Similar km-scale uplift events are revealed by thermochronological studies in other magma-rich and magma-poor continental margins, e.g. SE Australia, South Africa, Brazil. The low angle unconformities which result from these regional episodes of km-scale burial and subsequent uplift are often incorrectly interpreted as representing periods of non-deposition and tectonic stability. Similar considerations have also led to an erroneous view of the post-rift stability of many continental margins. Our results indicate that km-scale regional uplift has affected many regions previously interpreted as areas of long-term stability, and that plate boundary deformation exerts the primary control on such episodes.
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1990-01-01
Wind tunnel tests were conducted on monoplanar circular missile configurations with low-profile quadriform tail fins to provide an aerodynamic data base to study and evaluate air-launched missile candidates for efficient conformal carriage on supersonic-cruise-type aircraft. The tests were conducted at Mach numbers from 1.70 to 2.86 for a constant Reynolds number per foot of 2,000,000. Selected test results are presented to show the effects of tail-fin dihedral angle, wing longitudinal and vertical location, and nose-body strakes on the static longitudinal and lateral-directional aerodynamic stability and control characteristics.
Dynamic stabilization of classical Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Piriz, S. A.; Tahir, N. A.
2011-09-15
Dynamic stabilization of classical Rayleigh-Taylor instability is studied by modeling the interface vibration with the simplest possible wave form, namely, a sequence of Dirac deltas. As expected, stabilization results to be impossible. However, in contradiction to previously reported results obtained with a sinusoidal driving, it is found that in general the perturbation amplitude is larger than in the classical case. Therefore, no beneficial effect can be obtained from the vertical vibration of a Rayleigh-Taylor unstable interface between two ideal fluids.
NASA Astrophysics Data System (ADS)
Catalano, G.; Povero, P.; Fabiano, M.; Benedetti, F.; Goffart, A.
1997-01-01
The relationships among vertical stability, estimated nutrient utilisation and particulate organic matter in the Ross Sea are analysed from data collected during two cruises in the summers of 1987-1988 and 1989-1990. In the upper mixed layer (UML), identified through the vertical stability E( Z(UML)), nutrient consumption is calculated as the difference between the "diluted" nutrient value and the mean calculated from the integrated value in the UML. The nutrient utilisation ratio and E( Z(UML)) are linearly related for E( Z(UML))≤25, whereas for values > 25, the distribution pattern is more scattered and independent of E( Z(UML)). For E( Z(UML))≥25, utilisation values were ≥4, 0.4 and 10 mmol m -3 for nitrate, phosphate and silicate, respectively. Significant relationships between nutrient depletion and both particulate organic carbon (POC) and particulate protein/particulate carbohydrate ratios (PPRT/PCHO) are found. The analysis of particulate matter distribution vs nutrient utilisation shows that the stations could be divided into two groups having different characteristics. The first group includes coastal stations, where high nutrient utilisation, POC and PPRT/PCHO are typical of areas with high production. In the second group (pelagic stations), nutrient utilisation, POC and PPRT/PCHO are lower. The vertical stability can be used to discriminate among the factors that influence primary production.
Lateral Stability Characteristics of a 1/8.33-Scale Powered Model of the Republic XF-12 Airplane
NASA Technical Reports Server (NTRS)
Pepper, Edward; Foster, Gerald V.
1947-01-01
The XF-12 airplane is a high-performance photo-reconnaissance aircraft designed for the Army Air Forces by the Republic Aviation Corporation. An investigation of a 1/8.33 - scale powered model was made in the Langley l9-foot pressure tunnel to obtain information relative to the aerodynamic design of the airplane. The model was tested with and without the original vertical tail. and with two revised tails. For the revised tail no. 1, the span of the original vertical .tail was increased about 15 percent and the portion of the vertical tail between the stabilizer and fuselage behind the rudder hinge line was allowed to deflect simultaneously with the main rudder. Revision no. 2 incorporated the increased span, but the lower rudder was locked in the neutral position. For all the tail arrangements investigated it was indicated that the airplane will possess positive effective dihedral and will be directionally stable regardless of flap or power condition. The rudder effectiveness is greater for the revised tails than for the original tail, but this is offset by the increase in directional stability caused by the revised tail. All the rudder arrangements appear inadequate in trimming out the resultant yawing moments at zero yaw in a take - off condition with the left-hand outboard propeller windmilling and the remaining engines developing take-off power.
Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein
2015-09-14
Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.
Walsh, Mark; Peper, Andreas; Bierbaum, Stefanie; Karamanidis, Kiros; Arampatzis, Adamantios
2011-04-01
The present study aimed to investigate the effect of lower extremity muscle fatigue on the dynamic stability control of physically active adults during forward falls. Thirteen participants (body mass: 70.2kg, height: 175cm) were instructed to regain balance with a single step after a sudden induced fall from a forward-leaning position before and after the fatigue protocol. The ground reaction forces were collected using four force plates at a sampling rate of 1080Hz. Kinematic data were recorded with 12 vicon cameras operating at 120Hz. Neither the reaction time nor the duration until touchdown showed any differences (p>0.05). The ability of the subjects to prevent falling did not change after the fatigue protocol. In the fatigued condition, the participants demonstrated an increase in knee flexion during the main stance phase and an increased time to decelerate the horizontal CM motion (both p<0.05). Significant (p<0.05) decreases were seen post-fatigue in average horizontal and vertical force and maximum knee and ankle joint moments. The fatigue related decrease in muscle strength did not affect the margin of stability, the boundary of the base of support or the position of the extrapolated centre of mass during the forward induced falls, indicating an appropriate adjustment of the motor commands to compensate the deficit in muscle strength. Copyright © 2010 Elsevier Ltd. All rights reserved.
Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems
McKee, K.L.
2011-01-01
Habitat stability of coastal ecosystems, such as marshes and mangroves, depends on maintenance of soil elevations relative to sea level. Many such systems are characterized by limited mineral sedimentation and/or rapid subsidence and are consequently dependent upon accumulation of organic matter to maintain elevations. However, little field information exists regarding the contribution of specific biological processes to vertical accretion and elevation change. This study used biogenic mangrove systems in carbonate settings in Belize (BZ) and southwest Florida (FL) to examine biophysical controls on elevation change. Rates of elevation change, vertical accretion, benthic mat formation, and belowground root accumulation were measured in fringe, basin, scrub, and dwarf forest types plus a restored forest. Elevation change rates (mm yr-1) measured with Surface Elevation Tables varied widely: BZ-Dwarf (-3.7), BZ-Scrub (-1.1), FL-Fringe (0.6), FL-Basin (2.1), BZ-Fringe (4.1), and FL-Restored (9.9). Root mass accumulation varied across sites (82-739 g m-2 yr-1) and was positively correlated with elevation change. Root volumetric contribution to vertical change (mm yr-1) was lowest in BZ-Dwarf (1.2) and FL-Fringe (2.4), intermediate in FL-Basin (4.1) and BZ-Scrub (4.3), and highest in BZ-Fringe (8.8) and FL-Restored (11.8) sites. Surface growth of turf-forming algae, microbial mats, or accumulation of leaf litter and detritus also made significant contributions to vertical accretion. Turf algal mats in fringe and scrub forests accreted faster (2.7 mm yr-1) than leaf litter mats in basin forests (1.9 mm yr-1), but similarly to microbial mats in dwarf forests (2.1 mm yr-1). Surface accretion of mineral material accounted for only 0.2-3.3% of total vertical change. Those sites with high root contributions and/or rapid growth of living mats exhibited an elevation surplus (+2 to +8 mm yr-1), whereas those with low root inputs and low (or non-living) mat accumulation showed an elevation deficit (-1 to -5.7 mm yr-1). This study indicates that biotic processes of root production and benthic mat formation are important controls on accretion and elevation change in mangrove ecosystems common to the Caribbean Region. Quantification of specific biological controls on elevation provides better insight into how sustainability of such systems might be influenced by global (e.g., climate, atmospheric CO2) and local (e.g., nutrients, disturbance) factors affecting organic matter accumulation, in addition to relative sea-level rise. ?? 2010.
Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems
NASA Astrophysics Data System (ADS)
McKee, Karen L.
2011-03-01
Habitat stability of coastal ecosystems, such as marshes and mangroves, depends on maintenance of soil elevations relative to sea level. Many such systems are characterized by limited mineral sedimentation and/or rapid subsidence and are consequently dependent upon accumulation of organic matter to maintain elevations. However, little field information exists regarding the contribution of specific biological processes to vertical accretion and elevation change. This study used biogenic mangrove systems in carbonate settings in Belize (BZ) and southwest Florida (FL) to examine biophysical controls on elevation change. Rates of elevation change, vertical accretion, benthic mat formation, and belowground root accumulation were measured in fringe, basin, scrub, and dwarf forest types plus a restored forest. Elevation change rates (mm yr -1) measured with Surface Elevation Tables varied widely: BZ-Dwarf (-3.7), BZ-Scrub (-1.1), FL-Fringe (0.6), FL-Basin (2.1), BZ-Fringe (4.1), and FL-Restored (9.9). Root mass accumulation varied across sites (82-739 g m -2 yr -1) and was positively correlated with elevation change. Root volumetric contribution to vertical change (mm yr -1) was lowest in BZ-Dwarf (1.2) and FL-Fringe (2.4), intermediate in FL-Basin (4.1) and BZ-Scrub (4.3), and highest in BZ-Fringe (8.8) and FL-Restored (11.8) sites. Surface growth of turf-forming algae, microbial mats, or accumulation of leaf litter and detritus also made significant contributions to vertical accretion. Turf algal mats in fringe and scrub forests accreted faster (2.7 mm yr -1) than leaf litter mats in basin forests (1.9 mm yr -1), but similarly to microbial mats in dwarf forests (2.1 mm yr -1). Surface accretion of mineral material accounted for only 0.2-3.3% of total vertical change. Those sites with high root contributions and/or rapid growth of living mats exhibited an elevation surplus (+2 to +8 mm yr -1), whereas those with low root inputs and low (or non-living) mat accumulation showed an elevation deficit (-1 to -5.7 mm yr -1). This study indicates that biotic processes of root production and benthic mat formation are important controls on accretion and elevation change in mangrove ecosystems common to the Caribbean Region. Quantification of specific biological controls on elevation provides better insight into how sustainability of such systems might be influenced by global (e.g., climate, atmospheric CO 2) and local (e.g., nutrients, disturbance) factors affecting organic matter accumulation, in addition to relative sea-level rise.
Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Owens, B. C.; Griffith, D. T.
2014-06-01
The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.
Spazzin, Aloísio Oro; Henriques, Guilherme Elias Pessanha; de Arruda Nóbilo, Mauro Antônio; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Mesquita, Marcelo Ferraz
2009-01-01
Objectives: This study evaluated the influence of prosthetic screw material on joint stability in implantsupported dentures at two levels of fit. Methods: Ten mandibular implant-supported dentures were fabricated. Twenty cast models were fabricated using these dentures. Four groups (n=10) were tested, according to the vertical fit of the dentures [passive and non-passive] and prosthetic screw materials [titanium (Ti) or gold (Au) alloy]. The one-screw test was performed to quantify the vertical misfits using an optic microscope. The loosening torque for the prosthetic screws was measured 24 hours after the tightening torque (10 Ncm) using a digital torque meter. Data were analyzed by two-way ANOVA and Tukey’s test (α=0.05). Results: Overall, dentures with passive fit and Ti screws resulted in significantly higher loosening torque of the prosthetic screws (p<0.05). No significant interaction was found between fit level and screw material (p=0.199). The prosthetic screw material and fit of implant-supported dentures have an influence on screw joint stability. Ti screws presented higher joint stability than Au screws and minimum of misfit should be found clinically to improve the mechanical behavior of the screw joint. PMID:20148135
BOILING SLURRY REACTOR AND METHOD FO CONTROL
Petrick, M.; Marchaterre, J.F.
1963-05-01
The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)
NASA Astrophysics Data System (ADS)
Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.
2018-01-01
Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor. Supplementary Fig. 2 Relation between the total site and high-elevation discharge-volume relation slope for all sites where both relations are available (n = 33). Supplementary Fig. 3 Change in sandbar volume since 1990 for Marble versus Grand Canyon sites. Solid vertical gray lines indicate controlled floods, and dashed vertical gray lines indicate other high test flows in 1997 and 2000 as discussed in the text. Photographs by U.S. Geological Survey, 2008-2015.
Okada, Shinsuke; Koretake, Katsunori; Miyamoto, Yasunari; Oue, Hiroshi; Akagawa, Yasumasa
2013-01-01
The aim of this study was to evaluate whether increased crown-to-implant (C/I) ratio influences implant stability or not under proper healthy control of peri-implant mucosa. The hypothesis of this study is that implant stability can be maintained despite High C/I, under appropriate plaque control. Five male Beagle-Labrador hybrid dogs (2 years old) were used. Their bilateral mandibular premolar extraction was performed. After allowing 12 weeks for bone healing, 3 types of vertical marginal bone loss were simultaneously prepared randomly. Then, 30 titanium implants were placed in the edentulous areas and defined as High C/I, Mid C/I and Low C/I groups. This time point was designated as the baseline (0 Week). Twelve weeks after implant placement, metal superstructures were cemented to the implants and an occlusal plate was set at the opposite side. At the same time, Calcein green was injected for remodeling evaluation. Implants were loaded by feeding the dogs a hard pellet diet. Tooth brushing was performed 5 days per week during the study to maintain healthy peri-implant mucosa. Twenty-four weeks following implant placement, the interface structure was evaluated clinically, radiologically, and histologically. Implant stability quotient (ISQ) increased with time in all 3 groups, without any significant correlation with the C/I value (p >0.05). Moreover, mean marginal bone loss adjacent around implants in all 3 groups ranged between 0.11 and 0.19 mm, with no significant difference (p >0.05). Many fluorescence-labeled bones are shown in the High C/I group. It is considered that high remodeling activity prevent marginal bone loss in the High C/I group and this may provide favorable implant stability under proper plaque control. These findings suggest that increased C/I may not be a risk factor for implant failure if the peri-implant mucosa is kept healthy, as was the case in this animal model.
NASA Technical Reports Server (NTRS)
Sleeman, William C., Jr.
1957-01-01
The present investigation was conducted in the Langley high-speed 7-by 10-foot tunnel to determine the static longitudinal and lateral stability characteristics at high subsonic speeds of two canard airplane configurations previously tested at supersonic speeds. The Mach number range of this investigation extended from 0.60 to 0.94 and a maximum angle-of-attack range of -2dewg to 24deg was obtained at the lowest test Mach number. Two wing plan forms of equal area were studied in the present tests; one was a 60deg delta wing and the other was a trapezoid wing having an aspect ratio of 3, taper ratio of 0.143, and an unswept 80-percent-chord line. The canard control had a trapezoidal plan form and its area was approximately 11.5 percent of the wing area. The model also had a low-aspect-ratio highly swept vertical tail and twin ventral fins. The longitudinal control characteristics of the models were consistent with past experience at low speed on canard configurations in that stalling of the canard surface occurred at moderate and high control deflections for moderate values of angle of attack. This stalling could impose appreciable limitations on the maximum trim-lift coefficient attainable. The control effectiveness and maximum value of trim-lift was significantly increased by addition of a body flap having a conical shape and located slightly behind the canard surface on the bottom of the body. Addition of the canard surface at 0deg deflection had relatively little effect on overall directional stability of the delta-wing configuration; however, deflection of the canard surface from 0deg to 10deg had a large favorable effect on directional stability at high angles of attack for both the trapezoid- and delta-wing configurations.
An Investigation of Rotorcraft Stability-Phase Margin Requirements in Hover
NASA Technical Reports Server (NTRS)
Blanken, Chris L.; Lusardi, Jeff A.; Ivler, Christina M.; Tischler, Mark B.; Hoefinger, Marc T.; Decker, William A.; Malpica, Carlos A.; Berger, Tom; Tucker, George E.
2009-01-01
A cooperative study was performed to investigate the handling quality effects from reduced flight control system stability margins, and the trade-offs with higher disturbance rejection bandwidth (DRB). The piloted simulation study, perform on the NASA-Ames Vertical Motion Simulator, included three classes of rotorcraft in four configurations: a utility-class helicopter; a medium-lift helicopter evaluated with and without an external slung load; and a large (heavy-lift) civil tiltrotor aircraft. This large aircraft also allowed an initial assessment of ADS-33 handling quality requirements for an aircraft of this size. Ten experimental test pilots representing the U.S. Army, Marine Corps, NASA, rotorcraft industry, and the German Aerospace Center (DLR), evaluated the four aircraft configurations, for a range of flight control stability-margins and turbulence levels, while primarily performing the ADS-33 Hover and Lateral Reposition MTEs. Pilot comments and aircraft-task performance data were analyzed. The preliminary stability margin results suggest higher DRB and less phase margin cases are preferred as the aircraft increases in size. Extra care will need to be taken to assess the influence of variability when nominal flight control gains start with reduced margins. Phase margins as low as 20-23 degrees resulted in low disturbance-response damping ratios, objectionable oscillations, PIO tendencies, and a perception of an incipient handling qualities cliff. Pilot comments on the disturbance response of the aircraft correlated well to the DRB guidelines provided in the ADS-33 Test Guide. The A D-3S3 mid-term response-to-control damping ratio metrics can be measured and applied to the disturbance-response damping ratio. An initial assessment of LCTR yaw bandwidth shows the current Level 1 boundary needs to be relaxed to help account for a large pilot off-set from the c.g. Future efforts should continue to investigate the applicability/refinement of the current ADS-33 requirements to large vehicles, like an LCTR.
Fingertip touch improves postural stability in patients with peripheral neuropathy.
Dickstein, R; Shupert, C L; Horak, F B
2001-12-01
The purpose of this work was to determine whether fingertip touch on a stable surface could improve postural stability during stance in subjects with somatosensory loss in the feet from diabetic peripheral neuropathy. The contribution of fingertip touch to postural stability was determined by comparing postural sway in three touch conditions (light, heavy and none) in eight patients and eight healthy control subjects who stood on two surfaces (firm or foam) with eyes open or closed. In the light touch condition, fingertip touch provided only somatosensory information because subjects exerted less than 1 N of force with their fingertip to a force plate, mounted on a vertical support. In the heavy touch condition, mechanical support was available because subjects transmitted as much force to the force plate as they wished. In the no touch condition, subjects held the right forefinger above the force plate. Antero-posterior (AP) and medio-lateral (ML) root mean square (RMS) of center of pressure (CoP) sway and trunk velocity were larger in subjects with somatosensory loss than in control subjects, especially when standing on the foam surface. The effects of light and heavy touch were similar in the somatosensory loss and control groups. Fingertip somatosensory input through light touch attenuated both AP and ML trunk velocity as much as heavy touch. Light touch also reduced CoP sway compared to no touch, although the decrease in CoP sway was less effective than with heavy touch, particularly on the foam surface. The forces that were applied to the touch plate during light touch preceded movements of the CoP, lending support to the suggestion of a feedforward mechanism in which fingertip inputs trigger the activation of postural muscles for controlling body sway. These results have clinical implications for understanding how patients with peripheral neuropathy may benefit from a cane for postural stability in stance.
Flame stabilizer for stagnation flow reactor
Hahn, David W.; Edwards, Christopher F.
1999-01-01
A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.
Chang, Won-Du; Cha, Ho-Seung; Im, Chang-Hwan
2016-01-01
This paper introduces a method to remove the unwanted interdependency between vertical and horizontal eye-movement components in electrooculograms (EOGs). EOGs have been widely used to estimate eye movements without a camera in a variety of human-computer interaction (HCI) applications using pairs of electrodes generally attached either above and below the eye (vertical EOG) or to the left and right of the eyes (horizontal EOG). It has been well documented that the vertical EOG component has less stability than the horizontal EOG one, making accurate estimation of the vertical location of the eyes difficult. To address this issue, an experiment was designed in which ten subjects participated. Visual inspection of the recorded EOG signals showed that the vertical EOG component is highly influenced by horizontal eye movements, whereas the horizontal EOG is rarely affected by vertical eye movements. Moreover, the results showed that this interdependency could be effectively removed by introducing an individual constant value. It is therefore expected that the proposed method can enhance the overall performance of practical EOG-based eye-tracking systems. PMID:26907271
Effect of reflective p-type ohmic contact on thermal reliability of vertical InGaN/GaN LEDs
NASA Astrophysics Data System (ADS)
Son, Jun Ho; Song, Yang Hee; Kim, Buem Joon; Lee, Jong-Lam
2014-11-01
We report on the enhanced thermal reliability of vertical-LEDs (VLEDs) using novel reflective p-type ohmic contacts with good thermal stability. The reflective p-type ohmic contacts with Ni/Ag-Cu alloy multi-layer structure shows low contact resistivity, as low as 9.3 × 10-6 Ωcm2, and high reflectance of 86% after annealing at 450°C. The V-LEDs with Ni/Ag-Cu alloy multi-layer structure show good thermal reliability with stress time at 300°C in air ambient. The improved thermal stability of the reflective ohmic contacts to p-type GaN is believed to play a critical role in the thermal reliability of V-LEDs. [Figure not available: see fulltext.
The Design of Ocean Turbulence Measurement with a Free Fall Vertical Profiler
NASA Astrophysics Data System (ADS)
Luan, Xin; Xin, Jia; Zhu, Tieyi; Yang, Hua; Teng, Yuru; Song, Dalei
2018-03-01
The newly designed instrument Free Fall Vertical Profiler (FFVP) developed by Ocean University of China (OUC) had been deployed in the Western Pacific in March 08, 2017 and succeed to collect turbulence signals about 350-m-deep water. According to the requirements of turbulence measurement, the mechanical design was developed for turbulence platform to achieve stability and good flow tracking. By analysing the Heading, Pitch and Roll, the results suggested that the platform satisfies the requirements of stability. The power spectrum of the cleaned shear signals using the noise correction algorithm match well with the theoretical Nasmyth spectrum and the rate of turbulence dissipation are approximately 10-8 W/kg. In general, the FFVP was rationally designed and provided a good measurement platform for turbulence observation.
Patterns, Instabilities, Colors, and Flows in Vertical Foam Films
NASA Astrophysics Data System (ADS)
Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek
2015-03-01
Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qian; Fan, Jiwen; Hagos, Samson M.
Understanding of critical processes that contribute to the organization of mesoscale convective systems is important for accurate weather forecast and climate prediction. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of cloud systems using the Weather Research & Forecasting (WRF) model with a spectral-bin microphysical scheme. The sensitivity experiments are performed by increasing wind shear at the lower (0-5 km), middle (5-10 km), upper (> 10 km) and the entire troposphere, respectively, based on a control run for a mesoscale convective system (MCS) with weak wind shear. We findmore » that increasing wind shear at the both lower and middle vertical levels reduces the domain-accumulated precipitation and the occurrence of heavy rain, while increasing wind shear at the upper levels changes little on precipitation. Although increasing wind shear at the lower-levels is favorable for a more organized quasi-line system which leads to enlarged updraft core area, and enhanced updraft velocities and vertical mass fluxes, the precipitation is still reduced by 18.6% compared with the control run due to stronger rain evaporation induced by the low-level wind shear. Strong wind shear in the middle levels only produces a strong super-cell over a narrow area, leading to 67.3% reduction of precipitation over the domain. By increasing wind shear at the upper levels only, the organization of the convection is not changed much, but the increased cloudiness at the upper-levels leads to stronger surface cooling and then stabilizes the atmosphere and weakens the convection. When strong wind shear exists over the entire vertical profile, a deep dry layer (2-9 km) is produced and convection is severely suppressed. There are fewer very-high (cloud top height (CTH) > 15 km) and very-deep (cloud thickness > 15 km) clouds, and the precipitation is only about 11.8% of the control run. The changes in cloud microphysical properties further explain the reduction of surface rain by strong wind shear especially at the lower- and middle-levels. The insights obtained from this study help us better understand the cloud system organization and provide foundation for better parameterizing organized MCS.« less
Jing, Linhong; Nash, John J.
2009-01-01
The factors that control the reactivities of aryl radicals toward hydrogen-atom donors were studied by using a dual-cell Fourier-transform ion cyclotron resonance mass spectrometer (FT – ICR). Hydrogen-atom abstraction reaction efficiencies for two substrates, cyclohexane and isopropanol, were measured for twenty-three structurally different, positively-charged aryl radicals, which included dehydrobenzenes, dehydronaphthalenes, dehydropyridines, and dehydro(iso)quinolines. A logarithmic correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) vertical electron affinities (EA) of the aryl radicals. Transition state energies calculated for three of the aryl radicals with isopropanol were found to correlate linearly with their (calculated) EAs. No correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) enthalpy changes for the reactions. Measurement of the reaction efficiencies for the reactions of several different hydrogen-atom donors with a few selected aryl radicals revealed a logarithmic correlation between the hydrogen-atom abstraction reaction efficiencies and the vertical ionization energies (IE) of the hydrogen-atom donors, but not the lowest homolytic X – H (X = heavy atom) bond dissociation energies of the hydrogen-atom donors. Examination of the hydrogen-atom abstraction reactions of twenty-nine different aryl radicals and eighteen different hydrogen-atom donors showed that the reaction efficiency increases (logarithmically) as the difference between the IE of the hydrogen-atom donor and the EA of the aryl radical decreases. This dependence is likely to result from the increasing polarization, and concomitant stabilization, of the transition state as the energy difference between the neutral and ionic reactants decreases. Thus, the hydrogen-atom abstraction reaction efficiency for an aryl radical can be “tuned” by structural changes that influence either the vertical EA of the aryl radical or the vertical IE of the hydrogen atom donor. PMID:19061320
Fukawa, Toshihiko; Hirakawa, Takashi; Maegawa, Jiro
2014-01-01
Background: We have developed a hybrid facial osteogenesis distraction system that combines the advantages of external and internal distraction devices to enable control of both the distraction distance and vector. However, when the advanced maxilla has excessive clockwise rotation and shifts more downward vertically than planned, it might be impossible to pull it up to correct it. We invented devices attached to external distraction systems that can control the vertical vector of distraction to resolve this problem. The purpose of this article is to describe the result of utilizing the distraction system for syndromic craniosynostosis. Methods: In addition to a previously reported hybrid facial distraction system, the devices for controlling the vertical direction of the advanced maxilla were attached to the external distraction device. The vertical direction of the advanced maxilla can be controlled by adjustment of the spindle units. This system was used for 2 patients with Crouzon and Apert syndrome. Results: The system enabled control of the vertical distance, with no complications during the procedures. As a result, the maxilla could be advanced into the planned position including overcorrection without excessive clockwise rotation of distraction. Conclusion: Our system can alter the cases and bring them into the planned position, by controlling the vertical vector of distraction. We believe that this system might be effective in infants with syndromic craniosynostosis as it involves 2 osteotomies and horizontal and vertical direction of elongation can be controlled. PMID:25289307
Physical vapor deposition as a route to glasses with liquid crystalline order
NASA Astrophysics Data System (ADS)
Gomez, Jaritza
Physical vapor deposition (PVD) is an effective route to prepare glasses with a unique combination of properties. Substrate temperatures near the glass transition (Tg) and slow deposition rates can access enhanced mobility at the surface of the glass allowing molecules at the surface additional time to sample different molecular configurations. The temperature of the substrate can be used to control molecular mobility during deposition and properties in the resulting glasses such as higher density, kinetic stability and preferential molecular orientation. PVD was used to prepare glasses of itraconazole, a smectic A liquid crystal. We characterized molecular orientation using infrared and ellipsometry. Molecular orientation can be controlled by choice of Tsubstrate in a range of temperatures near Tg. Glasses deposited at Tsubstrate = Tg show nearly vertical molecular orientation relative to the substrate; at lower Tsubstrate, molecules are nearly parallel to the substrate. The molecular orientation depends on the temperature of the substrate during preparation and not on the molecular orientation of the underlying layer. This allows preparing samples of layers with differing orientations. We find these glasses are homogeneous solids without evidence of domain boundaries and are molecularly flat. We interpret the combination of properties obtained for vapor-deposited glasses of itraconazole to result from a process where molecular orientation is determined by the structure and dynamics at the free surface of the glass during deposition. We report the thermal and structural properties of glasses prepared using PVD of a rod-like molecule, posaconazole, which does not show equilibrium liquid crystal phases. These glasses show substantial molecular orientation that can be controlled by choice of Tsubstrate during deposition. Ellipsometry and IR indicate that glasses prepared at Tg - 3 K are highly ordered. At these Tsubstrate, molecules show preferential vertical orientation and orientation is similar to that measured in aligned nematic liquid crystal. Our results are consistent with a recently proposed mechanism where molecular orientation in equilibrium liquids can be trapped in PVD glasses and suggest that the orientation at the free surface of posaconazole is nematic-like. In addition, we show posaconazole glasses show high kinetic stability controlled by Tsubstrate.
Whole body frontal plane mechanics across walking, running, and sprinting in young and older adults.
Kulmala, J-P; Korhonen, M T; Kuitunen, S; Suominen, H; Heinonen, A; Mikkola, A; Avela, J
2017-09-01
This study investigated the whole body frontal plane mechanics among young (26 ± 6 years), early old (61 ± 5 years), and old (78 ± 4 years) adults during walking, running, and sprinting. The age-groups had similar walking (1.6 m/s) and running (4.0 m/s) speeds, but different maximal sprinting speed (young 9.3 m/s, early old 7.9 m/s, and old 6.6 m/s). Surprisingly, although the old group exerted much lower vertical ground reaction force during running and sprinting, the hip frontal plane moment did not differ between the age-groups. Kinematic analysis demonstrated increased hip adduction and pelvis drop, as well as reduced trunk lateral flexion among old adults, especially during sprinting. These alterations in the hip and pelvis motions may reflect insufficient force production of hip abductors to stabilize the pelvis during single-limb support, while limited trunk lateral flexion may enhance control of the mediolateral balance. On the other hand, larger trunk side-to-side movement among the young and early old adults may provide a mechanism to prevent the increase of the hip frontal moment despite greater vertical ground reaction force. This, in turn, can assist hip abductors to maintain stability of the pelvis during sprinting while allowing powerful force generation by a large adductor muscle group. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
On the stability treatment in WAsP
NASA Astrophysics Data System (ADS)
Giebel, G.; Gryning, S.-E.
2003-04-01
An assessment of the treatment of atmospheric stability in the standard package for wind resource estimation, WAsP (from Risø National Laboratory), is presented. Emphasis is on the vertical wind profiles in WAsP and the treatment of stability therein, under special consideration of the nightly situation. The study starts with an introduction to WAsP and the way it treats the vertical extrapolation, under special consideration of the stability. The two parameters available for changing the stability treatment in WAsP are identified as RMS heat flux and offset heat flux. Four years worth of data from the meteorological mast at Risø, plus data from Egypt and Bermuda, is used for the identification of the parameter settings for stable conditions. To this aim, the measured heat fluxes from the mast were used to extract three data sets with successively higher stability in four different heights. These data sets were then run through the Observed Wind Climate Wizard (part of the WAsP package), resulting in Weibull fits to the data. Using these observed wind climates, a prediction of the highest level wind climate using the lowest level wind climate under all different stable conditions is undertaken and compared with the measured data set. To expand on this study, a systematic variation of the two heat flux parameters in WAsP is done, finding the parameters yielding the lowest overall errors for the predictions. Parts of this study were financed by the Landesumweltamt Brandenburg.
Study of working principle and thermal balance process of a double longitudinal-mode He-Ne laser
NASA Astrophysics Data System (ADS)
Wang, Li-qiang
2009-07-01
A double longitudinal mode He-Ne laser with frequency stabilization is proposed. Compared with general methods, such as Lamb dip, Zeeman splitting and molecule saturation absorption method, this design has some advantages, such as no piezocrystal or magnetic field, a short frequency-stabilized time, lower cost, and higher frequency stability and reproducibility. The metal wire is uniformly wrapped on the discharge tube of the laser. When the metal wire is heated up, the resonant cavity changes with the temperature field around the discharge tube to make the frequency of the laser to be tuned. The polarizations of the two longitudinal modes from the laser must be orthogonal. The parallelly polarized light and the vertically polarized light compete with each other, i. e., the parallelly polarized light generates a larger output power, while, the vertically polarized light correspondingly generates a smaller one, but an equal value is found at the reference frequencies by automatically adjusting the length of the resonant cavity, due to change of the temperature in the discharge tube. Consequently the frequencies of the laser are stabilized. In my experiment, an intracavity He-Ne laser whose length of the resonant cavity is larger than 50mm and smaller than 300mm is selected for the double longitudinal-mode laser. Influence factors of frequency stability of this laser is only change of the length of the resonant cavity. The laser includes three stages: mode hopping, transition stage, and modes stability from startup to laser stability. When this laser is in modes stability, the waveform of heating metal wire is observed to a pulse whose duty is almost 50%, and thermal balances of the resonant cavity mainly rely on discharge tube.
Preliminary design of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft
NASA Technical Reports Server (NTRS)
Cox, Brian; Borchers, Paul; Gomer, Charlie; Henderson, Dean; Jacobs, Tavis; Lawson, Todd; Peterson, Eric; Ross, Tweed, III; Bellmard, Larry
1990-01-01
The preliminary design study of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter is presented. A brief historical survey of powered lift vehicles was presented, followed by a technology assessment of the latest supersonic STOVL engine cycles under consideration by industry and government in the U.S. and UK. A survey of operational fighter/attack aircraft and the modern battlefield scenario were completed to develop, respectively, the performance requirements and mission profiles for the study. Three configurations were initially investigated with the following engine cycles: a hybrid fan vectored thrust cycle, a lift+lift/cruise cycle, and a mixed flow vectored thrust cycle. The lift+lift/cruise aircraft configuration was selected for detailed design work which consisted of: (1) a material selection and structural layout, including engine removal considerations, (2) an aircraft systems layout, (3) a weapons integration model showing the internal weapons bay mechanism, (4) inlet and nozzle integration, (5) an aircraft suckdown prediction, (6) an aircraft stability and control analysis, including a takeoff, hover, and transition control analysis, (7) a performance and mission capability study, and (8) a life cycle cost analysis. A supersonic fighter aircraft with STOVL capability with the lift+lift/cruise engine cycle seems a viable option for the next generation fighter.
UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers
NASA Technical Reports Server (NTRS)
Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor
2017-01-01
This paper documents a study that drove the development of a mathematical expression in the minimum operational performance standards (MOPS) of detect-and-avoid (DAA) systems for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance could be provided during recovery of well clear separation with a non-cooperative VFR aircraft in addition to horizontal maneuver guidance. Although suppressing vertical maneuver guidance in these situations increased the minimum horizontal separation from 500 to 800 feet, the maximum severity of loss of well clear increased in about 35 of the encounters compared to when a vertical maneuver was preferred and allowed. Additionally, analysis of individual cases led to the identification of a class of encounter where vertical rate error had a large effect on horizontal maneuvers due to the difficulty of making the correct left-right turn decision: crossing conflict with intruder changing altitude. These results supported allowing vertical maneuvers when UAS vertical performance exceeds the relative vertical position and velocity accuracy of the DAA tracker given the current velocity of the UAS and the relative vertical position and velocity estimated by the DAA tracker. Looking ahead, these results indicate a need to improve guidance algorithms by utilizing maneuver stability and near mid-air collision risk when determining maneuver guidance to regain well clear separation.
Single Null Negative Triangularity Tokamak for Power Handling
NASA Astrophysics Data System (ADS)
Kikuchi, Mitsuru; Medvedev, S.; Takizuka, T.; Sauter, O.; Merle, A.; Coda, S.; Chen, D.; Li, J. X.
2017-10-01
Power and particle control in fusion reactor is challenge and we proposed the negative triangularity tokamak (NTT) to eliminate ELM by operating L-mode edge with improved core confinement. The SN configuration has more flexibility in shaping by adopting rectangular-shaped TF coils. The limiting normalized beta is 3.56 with wall stabilization and 3.14 without wall. The vertical stability is assured under a reasonable control system. The wetted area on the divertor plates becomes wider in proportion to the larger major radius at the divertor strike points due to the NT configuration. In addition to the major-radius effect, the ``Flux Tune Expansion (FTE)'' is adopted to further reduce the heat load on the divertor plate by factor of 2.6 with a coil current 3 MA. L-mode edge also allows further increase in wetted area. The fusion power of 3 GW is deliverable only at normalized beta 2.1. Therefore this reactor may be operable stably against the serious MHD activities. The CD power for SS operation is 175 MW at Q = 17. AC operation is also possible option. A required HH factor is relatively modest H = 1.12.
NASA Technical Reports Server (NTRS)
Peters, Brian T.; vanEmmerik, Richard E. A.; Bloomberg, Jacob J.
2006-01-01
Gaze stabilization was quantified in subjects (n=11) as they walked on a motorized treadmill (1.8 m/s) and viewed visual targets at two viewing distances. A "far" target was positioned at 4 m (FAR) in front of the subject and the "near" target was placed at a distance of 0.5 m (NEAR). A direct measure of visual acuity was used to assess the overall effectiveness of the gaze stabilization system. The contributions of nonocular mechanisms to the gaze goal were also quantified using a measure of the distance between the subject and point in space where fixation of the visual target would require the least eye movement amplitude (i.e. the head fixation distance (HFD)). Kinematic variables mirrored those of previous investigations with the vertical trunk translation and head pitch signals, and the lateral translation and head yaw signals maintaining what appear as antiphase relationships. However, an investigation of the temporal relationships between the maxima and minima of the vertical translation and head pitch signals show that while the maximum in vertical translation occurs at the point of the minimum head pitch signal, the inverse is not true. The maximum in the head pitch signal lags the vertical translation minimum by an average of greater than 12 percent of the step cycle time. Three HFD measures, one each for data in the sagittal and transverse planes, and one that combined the movements from both planes, all revealed changes between the FAR and NEAR target viewing conditions. This reorganization of the nonocular degrees of freedom while walking was consistent with a strategy to reduce the magnitude of the eye movements required when viewing the NEAR target. Despite this reorganization, acuity measures show that image stabilization is not occurring while walking and viewing the NEAR target. Group means indicate that visual acuity is not affected while walking in the FAR condition, but a decrement of 0.15 logMAR (i.e. 1.5 eye chart lines) exists between the standing and walking acuity measures when viewing the NEAR target.
Habibzadeh, Sareh; Safaeian, Shima; Behruzibakhsh, Marjan; Kaviyani, Parisa; Kharazifard, Mohamadjavad
2016-01-01
Objectives: This study aimed to assess the effect of storage time and temperature on dimensional stability of impressions made with Cavex Outline zinc oxide impression paste. Materials and Methods: A round stainless steel mold with five grooves (three horizontal and two vertical) was used in this in-vitro experimental study. Cavex Outline impression paste was prepared according to the manufacturer’s instructions and applied to the mold. The mold was placed on a block and stored at 35°C and 100% humidity for setting. The impressions were poured with stone immediately and also after 30, 120, 240 and 420 minutes and 24 hours. The distance between the vertical lines on the casts was measured and compared with that in the immediately poured cast. Results: Storage in a refrigerator and at room temperature for zero to seven hours had no significant effect on dimensional stability of the impressions; however, 24 hours of storage in a refrigerator or at room temperature decreased the dimensional stability of Cavex Outline (P=0.001). Also, a significant association was found between dimensional changes following 24 hours of storage in a refrigerator (4°C) and at room temperature (23°C; P<0.01). Conclusions: The optimal pouring time of Cavex Outline impressions with stone is between zero to seven hours, and 24 hours of storage significantly decreases the dimensional stability. PMID:28392816
NASA Astrophysics Data System (ADS)
Zhao, Jing; Wong, Pak Kin; Ma, Xinbo; Xie, Zhengchao
2017-01-01
This paper proposes a novel integrated controller with three-layer hierarchical structure to coordinate the interactions among active suspension system (ASS), active front steering (AFS) and direct yaw moment control (DYC). First of all, a 14-degree-of-freedom nonlinear vehicle dynamic model is constructed. Then, an upper layer is designed to calculate the total corrected moment for ASS and intermediate layer based on linear moment distribution. By considering the working regions of the AFS and DYC, the intermediate layer is functionalised to determine the trigger signal for the lower layer with corresponding weights. The lower layer is utilised to separately trace the desired value of each local controller and achieve the local control objectives of each subsystem. Simulation results show that the proposed three-layer hierarchical structure is effective in handling the working region of the AFS and DYC, while the quasi-experimental result shows that the proposed integrated controller is able to improve the lateral and vertical dynamics of the vehicle effectively as compared with a conventional electronic stability controller.
NASA Astrophysics Data System (ADS)
Pandey, Gaind P.; Klankowski, Steven A.; Liu, Tao; Wu, Judy; Li, Jun
2017-02-01
A novel solid-state battery-supercapacitor hybrid device is fabricated for high-performance electrical energy storage using a Si anode and a TiO2 cathode in conjunction with a flexible, solid-like gel polymer electrolyte film as the electrolyte and separator. The electrodes were fabricated as three-dimensional nanostructured vertical arrays by sputtering active materials as conformal shells on vertically aligned carbon nanofibers (VACNFs) which serve as the current collector and structural template. Such nanostructured vertical core-shell array-electrodes enable short Li-ion diffusion path and large pseudocapacitive contribution by fast surface reactions, leading to the hybrid features of batteries and supercapacitors that can provide high specific energy over a wide range of power rates. Due to the improved mechanical stability of the infiltrated composite structure, the hybrid cell shows excellent cycling stability and is able to retain more than 95% of the original capacity after 3500 cycles. More importantly, this solid-state device can stably operate in a temperature range from -20 to 60 °C with a very low self-discharge rate and an excellent shelf life. This solid-state architecture is promising for the development of highly stable thin-film hybrid energy storage devices for unconventional applications requiring largely varied power, wider operation temperature, long shelf-life and higher safety standards.
NASA Technical Reports Server (NTRS)
Hemingway, J. C.
1984-01-01
The objective was to determine whether the Sternberg item-recognition task, employed as a secondary task measure of spare mental capacity for flight handling qualities (FHQ) simulation research, could help to differentiate between different flight-control conditions. FHQ evaluations were conducted on the Vertical Motion Simulator at Ames Research Center to investigate different primary flight-control configurations, and selected stability and control augmentation levels for helicopters engaged in low-level flight regimes. The Sternberg task was superimposed upon the primary flight-control task in a balanced experimental design. The results of parametric statistical analysis of Sternberg secondary task data failed to support the continued use of this task as a measure of pilot workload. In addition to the secondary task, subjects provided Cooper-Harper pilot ratings (CHPR) and responded to workload questionnaire. The CHPR data also failed to provide reliable statistical discrimination between FHQ treatment conditions; some insight into the behavior of the secondary task was gained from the workload questionnaire data.
The Sternberg Task as a Workload Metric in Flight Handling Qualities Research
NASA Technical Reports Server (NTRS)
Hemingway, J. C.
1984-01-01
The objective of this research was to determine whether the Sternberg item-recognition task, employed as a secondary task measure of spare mental capacity for flight handling qualities (FHQ) simulation research, could help to differentiate between different flight-control conditions. FHQ evaluations were conducted on the Vertical Motion Simulator at Ames Research Center to investigate different primary flight-control configurations, and selected stability and control augmentation levels for helicopers engaged in low-level flight regimes. The Sternberg task was superimposed upon the primary flight-control task in a balanced experimental design. The results of parametric statistical analysis of Sternberg secondary task data failed to support the continued use of this task as a measure of pilot workload. In addition to the secondary task, subjects provided Cooper-Harper pilot ratings (CHPR) and responded to a workload questionnaire. The CHPR data also failed to provide reliable statistical discrimination between FHQ treatment conditions; some insight into the behavior of the secondary task was gained from the workload questionnaire data.
NASA Technical Reports Server (NTRS)
Lebacqz, J. V.; Forrest, R. D.; Gerdes, R. M.
1982-01-01
A ground-simulation experiment was conducted to investigate the influence and interaction of flight-control system, fight-director display, and crew-loading situation on helicopter flying qualities during terminal area operations in instrument conditions. The experiment was conducted on the Flight Simulator for Advanced Aircraft at Ames Research Center. Six levels of control complexity, ranging from angular rate damping to velocity augmented longitudinal and vertical axes, were implemented on a representative helicopter model. The six levels of augmentation were examined with display variations consisting of raw elevation and azimuth data only, and of raw data plus one-, two-, and three-cue flight directors. Crew-loading situations simulated for the control-display combinations were dual-pilot operation (representative auxiliary tasks of navigation, communications, and decision-making). Four pilots performed a total of 150 evaluations of combinations of these parameters for a representative microwave landing system (MLS) approach task.
Grimm, Wolf Dieter; Dannan, Aous; Giesenhagen, Bernd; Schau, Ingmar; Varga, Gabor; Vukovic, Mark Alexander; Sirak, Sergey Vladimirovich
2014-01-01
The management of facial defects has rapidly changed in the last decade. Functional and esthetic requirements have steadily increased along with the refinements of surgery. In the case of advanced atrophy or jaw defects, extensive horizontal and vertical bone augmentation is often unavoidable to enable patients to be fitted with implants. Loss of vertical alveolar bone height is the most common cause for a non primary stability of dental implants in adults. At present, there is no ideal therapeutic approach to cure loss of vertical alveolar bone height and achieve optimal pre-implantological bone regeneration before dental implant placement. Recently, it has been found that specific populations of stem cells and/or progenitor cells could be isolated from different dental resources, namely the dental follicle, the dental pulp and the periodontal ligament. Our research group has cultured palatal-derived stem cells (paldSCs) as dentospheres and further differentiated into various cells of the neuronal and osteogenic lineage, thereby demonstrating their stem cell state. In this publication will be shown whether paldSCs could be differentiated into the osteogenic lineage and, if so, whether these cells are able to regenerate alveolar bone tissue in vivo in an athymic rat model. Furthermore, using these data we have started a proof of principle clinical- and histological controlled study using stem cell-rich palatal tissues for improving the vertical alveolar bone augmentation in critical size defects. The initial results of the study demonstrate the feasibility of using stem cell-mediated tissue engineering to treat alveolar bone defects in humans. PMID:24921024
Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere
NASA Astrophysics Data System (ADS)
Yi, Tae-Hyeong; Park, Ja-Rin
2017-06-01
A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.
Ring-shaped stain patterns driven by solute reactive mesogens in liquid crystal solution
NASA Astrophysics Data System (ADS)
Cha, Tae Woon; Bulliard, Xavier; Choi, Sang Gun; Lee, Hyoung Sub; Kong, Hyang-Shik; Han, Sang Youn
2014-07-01
We report on the formation of ring-shaped stain patterns in a polymer-stabilized patterned vertical alignment mode liquid crystal display (LCD) during the cell filling process. Through the interpretation of the formation mechanism, an effective way to control its development is provided. Systematic trace of the reactive mesogens reveals that the formation of patterns is strongly related to the segregation of solute mesogens in the stain area. These undesirable patterns can be avoided or controlled by reducing the drop volume at each droplet using an inkjet printing technique, meaning that the printing technique could be a useful solution in display technology. For the formation of ring-shaped patterns, the dragging of reactive mesogens during the spreading of the liquid crystal solution plays a key role in the closed LCD cell.
From convection rolls to finger convection in double-diffusive turbulence
Verzicco, Roberto; Lohse, Detlef
2016-01-01
Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars' transfer rate and flow structures. Here we systematically investigate DDC flow between two horizontal plates, driven by an unstable salinity gradient and stabilized by a temperature gradient. Counterintuitively, when increasing the stabilizing temperature gradient, the salinity flux first increases, even though the velocity monotonically decreases, before it finally breaks down to the purely diffusive value. The enhanced salinity transport is traced back to a transition in the overall flow pattern, namely from large-scale convection rolls to well-organized vertically oriented salt fingers. We also show and explain that the unifying theory of thermal convection originally developed by Grossmann and Lohse for Rayleigh–Bénard convection can be directly applied to DDC flow for a wide range of control parameters (Lewis number and density ratio), including those which cover the common values relevant for ocean flows. PMID:26699474
Interfacial fluid instabilities and Kapitsa pendula.
Krieger, Madison S
2017-07-01
The onset and development of instabilities is one of the central problems in fluid mechanics. Here we develop a connection between instabilities of free fluid interfaces and inverted pendula. When acted upon solely by the gravitational force, the inverted pendulum is unstable. This position can be stabilized by the Kapitsa phenomenon, in which high-frequency low-amplitude vertical vibrations of the base creates a fictitious force which opposes the gravitational force. By transforming the dynamical equations governing a fluid interface into an appropriate pendulum-type equation, we demonstrate how stability can be induced in fluid systems by properly tuned vibrations. We construct a "dictionary"-type relationship between various pendula and the classical Rayleigh-Taylor, Kelvin-Helmholtz, Rayleigh-Plateau and the self-gravitational instabilities. This makes several results in control theory and dynamical systems directly applicable to the study of tunable fluid instabilities, where the critical wavelength depends on the external forces or the instability is suppressed entirely. We suggest some applications and instances of the effect ranging in scale from microns to the radius of a galaxy.
Analysis of Nonplanar Wing-tip-mounted Lifting Surfaces on Low-speed Airplanes
NASA Technical Reports Server (NTRS)
Vandam, C. P.; Roskam, J.
1983-01-01
Nonplanar wing tip mounted lifting surfaces reduce lift induced drag substantially. Winglets, which are small, nearly vertical, winglike surfaces, are an example of these devices. To achieve reduction in lift induced drag, winglets produce significant side forces. Consequently, these surfaces can seriously affect airplane lateral directional aerodynamic characteristics. Therefore, the effects of nonplanar wing tip mounted surfaces on the lateral directional stability and control of low speed general aviation airplanes were studied. The study consists of a theoretical and an experimental, in flight investigation. The experimental investigation involves flight tests of winglets on an agricultural airplane. Results of these tests demonstrate the significant influence of winglets on airplane lateral directional aerodynamic characteristics. It is shown that good correlations exist between experimental data and theoretically predicted results. In addition, a lifting surface method was used to perform a parametric study of the effects of various winglet parameters on lateral directional stability derivatives of general aviation type wings.
NASA Technical Reports Server (NTRS)
Boyden, R. P.
1974-01-01
The aerodynamic damping in pitch, yaw, and roll and the oscillatory stability in pitch and yaw of a supercritical-wing research airplane model were determined for Mach numbers of 0.25 to 1.20 by using the small-amplitude forced-oscillation technique. The angle-of-attack range was from -2 deg to 20 deg. The effects of the underwing leading-edge vortex generators and the contributions of the wing, vertical tail, and horizontal tail to the appropriate damping and stability were measured.
NASA Astrophysics Data System (ADS)
Thorsen, Adam
This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight regime. An energy management system was developed in order to manage performance limits (namely power required) to promote carefree maneuvering and alleviate pilot workload. This system features limits on pilot commands and has additional logic for preserving control margins and limiting maximum speed in a dive. Nonlinear dynamic inversion (NLDI) is the framework of the unified controller, which incorporates primary and redundant controls. The inner loop of the NLDI controller regulates bank angle, pitch attitude, and yaw rate, while the outer loop command structure is varied (three modes). One version uses an outer loop that commands velocities in the longitudinal and vertical axes (velocity mode), another commands longitudinal acceleration and vertical speed (acceleration mode), and the third commands longitudinal acceleration and transitions from velocity to acceleration command in the vertical axis (aerobatic mode). The flight envelope is discretized into low, cruise, and high speed flight regimes. The unified outer loop primary control effectors for the longitudinal and vertical axes (collective pitch, pitch attitude, and propeller pitch) vary depending on flight regime. A weighted pseudoinverse is used to phase either the collective or propeller pitch in/out of a redundant control role. The controllers were evaluated in Penn State's Rotorcraft Flight Simulator retaining the cyclic stick for vertical and lateral axis control along with pedal inceptors for yaw axis control. A throttle inceptor was used in place of the pilot's traditional left hand inceptor for longitudinal axis control. Ultimately, a simple rigid body model of the aircraft was sufficient enough to design a controller with favorable performance and stability characteristics. This unified flight control system promoted a low enough pilot workload so that an untrained pilot (the author) was able to pilot maneuvers of varying complexity with ease. The framework of this unified system is generalized enough to be able to be applied to any rotorcraft with redundant controls. Minimum power propeller thrust shares ranged from 50% - 90% in high speed flight, while lift shares at high speeds tended towards 60% wing and 40% main rotor.
Vertical and horizontal control dilemmas in public hospitals.
Pettersen, Inger Johanne; Solstad, Elsa
2015-01-01
The hospital sector in Norway has been continuously reorganized since 2002 and the reforms have created organizations that are functionally/vertically controlled, whereas the production lines are coordinated on a process or a lateral basis. The purpose of this paper is to focus on both the perceived functional vertical control and horizontal controls within and between the local hospitals and the regional administrative levels. A national survey study, complemented with interviews of some key informants and document studies. The study shows that the functional and vertical lines of management control are perceived to be operating according to the traditional views of management control. The study indicates that the horizontal tasks are not very well implemented, and we did not find interactive and lateral uses of management control systems for managerial purposes. New control problems arise when services are to be coordinated between autonomous units. The paper focuses on the control problems found within the horizontal, flat relationship between production units in hospitals; new organizational structures have emerged where lateral relations are important, but traditional control practices follow functional, vertical lines.
NASA Technical Reports Server (NTRS)
Sarma, G. S. R.
1982-01-01
Thermocapillary stability characteristics of a horizontal liquid layer heated from below rotating about a vertical axis and subjected to a uniform vertical magnetic field are analyzed under a variety of thermal and electromagnetic boundary conditions. Results based on analytical solutions to the pertinent eigenvalue problems are discussed in the light of earlier work on special cases of the more general problem considered here to show in particular the effects of the heat transfer, nonzero curvature and gravity waves at the two-fluid interface. Although the expected stabilizing action of the Coriolis and Lorentz force fields in this configuration are in evidence the optimal choice of an appropriate range for the relevant parameters is shown to be critically dependent on the interfacial effects mentioned above.
Transverse oscillations and stability of prominences in a magnetic field dip
NASA Astrophysics Data System (ADS)
Kolotkov, D. Y.; Nisticò, G.; Nakariakov, V. M.
2016-05-01
Aims: We developed an analytical model of the global transverse oscillations and mechanical stability of a quiescent prominence in the magnetised environment with a magnetic field dip that accounts for the mirror current effect. Methods: The model is based on the interaction of line currents through the Lorentz force. Within this concept the prominence is treated as a straight current-carrying wire, and the magnetic dip is provided by two photospheric current sources. Results: Properties of both vertical and horizontal oscillations are determined by the value of the prominence current, its density and height above the photosphere, and the parameters of the magnetic dip. The prominence can be stable in both horizontal and vertical directions simultaneously when the prominence current dominates in the system and its height is less than the half-distance between the photospheric sources.
Three-dimensional baroclinic instability of a Hadley cell for small Richardson number
NASA Technical Reports Server (NTRS)
Antar, B. N.; Fowlis, W. W.
1983-01-01
For the case of a baroclinic flow whose Richardson number, Ri, is of order unity, a three-dimensional linear stability analysis is conducted on the basis of a model for a thin, horizontal, rotating fluid layer which is subjected to horizontal and vertical temperature gradients. The Hadley cell basic state and stability analysis are both based on the Navier-Stokes and energy equations, and perturbations possessing zonal, meridional, and vertical structures are considered. An attempt is made to extend the previous theoretical work on three-dimensional baroclinic instability for small Ri to a more realistic model involving the Prandtl and Ekman numbers, as well as to finite growth rates and a wider range of the zonal wavenumber. In general, it is found that the symmetric modes of maximum growth are not purely symmetric, but have a weak zonal structure.
Bifurcation and stability of finite amplitude convection in a rotating layer
NASA Astrophysics Data System (ADS)
Soward, A. M.
1985-01-01
The nature of small amplitude Rayleigh-Bénard convection for a horizontal plane layer of fluid rotating about a vertical axis and heated from below is considered. When the usual approximations are made the evolution of three convective rolls with axes inclined at 60° one to another is described by the coupled non-linear Gause-Lotka-Volterra equations. For sufficiently large rotation rates they have no steady solutions. Instead there is a degenerate time-periodic solution of infinite period in which the phase space trajectory passes successively from one unstable equilibrium point, a single roll, to another (a heteroclinic orbit). In this paper additional terms, which correspond to vertical asymmetries in the physical system, are included and as a result the degeneracy is removed. The steady state and time-periodic solutions are derived and their stability discussed.
Habitability from Tidally Induced Tectonics
NASA Astrophysics Data System (ADS)
Valencia, Diana; Tan, Vivian Yun Yan; Zajac, Zachary
2018-04-01
The stability of Earth’s climate on geological timescales is enabled by the carbon–silicate cycle that acts as a negative feedback mechanism stabilizing surface temperatures via the intake and outgassing of atmospheric carbon. On Earth, this thermostat is enabled by plate tectonics that sequesters outgassed CO2 back into the mantle via weathering and subduction at convergent margins. Here we propose a separate tectonic mechanism—vertical recycling—that can serve as the vehicle for CO2 outgassing and sequestration over long timescales. The mechanism requires continuous tidal heating, which makes it particularly relevant to planets in the habitable zone of M stars. Dynamical models of this vertical recycling scenario and stability analysis show that temperate climates stable over timescales of billions of years are realized for a variety of initial conditions, even as the M star dims over time. The magnitude of equilibrium surface temperatures depends on the interplay of sea weathering and outgassing, which in turn depends on planetary carbon content, so that planets with lower carbon budgets are favored for temperate conditions. The habitability of planets such as found in the Trappist-1 system may be rooted in tidally driven tectonics.
Numerical Investigation of Synthetic-jet based Flow Control on Vertical-axis Wind Turbine Blades
NASA Astrophysics Data System (ADS)
Menon, Ashwin; Tran, Steven; Sahni, Onkar
2013-11-01
Vertical-axis wind turbines encounter large unsteady aerodynamic loads in a sustained fashion due to the continuously varying angle of attack that is experienced by turbine blades during each revolution. Moreover, the detachment of the leading edge vortex at high angles of attack leads to sudden change in aerodynamic loads that result in structural vibrations and fatigue, and possibly failure. This numerical study focuses on using synthetic-jet based fluidic actuation to reduce the unsteady loading on VAWT blades. In the simulations, the jets are placed at the dominant separation location that is observed in the baseline case. We consider different tip-speed ratios, O(2-5), and we also study the effect of blowing ratio (to be in O(0.5-1.5)) and reduced frequency, i.e., ratio of jet frequency to flow frequency (to be in O(5-15)). For all cases, unsteady Reynolds-averaged Navier-Stokes simulations are carried out by using the Spallart-Allamaras turbulence model, where stabilized finite element method is employed for spatial discretization along with an implicit time-integration scheme.
Design of Multistable Origami Structures
NASA Astrophysics Data System (ADS)
Gillman, Andrew; Fuchi, Kazuko; Bazzan, Giorgio; Reich, Gregory; Alyanak, Edward; Buskohl, Philip
Origami is being transformed from an art to a mathematically robust method for device design in a variety of scientific applications. These structures often require multiple stable configurations, e.g. efficient well-controlled deployment. However, the discovery of origami structures with mechanical instabilities is challenging given the complex geometric nonlinearities and the large design space to investigate. To address this challenge, we have developed a topology optimization framework for discovering origami fold patterns that realize stable and metastable positions. The objective function targets both the desired stable positions and nonlinear loading profiles of specific vertices in the origami structure. Multistable compliant structures have been shown to offer advantages in their stability and efficiency, and certain origami fold patterns exhibit multistable behavior. Building on this previous work of single vertex multistability analysis, e.g. waterbomb origami pattern, we are expanding the solution set of multistable mechanisms to include multiple vertices and a broader set of reference configurations. Collectively, these results enable an initial classification of geometry-induced mechanical instabilities that can be programmed into active material systems. This work was supported by the Air Force Office of Scientific Research.
Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize
McKee, K.L.; Faulkner, P.L.
2000-01-01
The substrate beneath mangrove forests in the Pelican Cays complex is predominately peat composed mainly of mangrove roots. Leaves and wood account for less than 20% of the peat mass. At Cat Cay, the depth of the peat ranges from 0.2 m along the shoreline to 1.65 m in the island center, indicating that the island has expanded horizontally as well as vertically through below-ground, biogenic processes. Mangrove roots thus play a critical role in the soil formation, vertical accretion, and stability of these mangrove cays. The species composition of fossil roots changes markedly with depth: Rhizophora mangle (red mangrove) was the initial colonizer on a coral base, followed by Avicennia germinans (black mangrove), which increased in abundance and expanded radially from the center of the island. The center of the Avicennia stand ultimately died, leaving an unvegetated, shallow pond. The peat thus retains a record of mangrove development, succession, and deterioration in response to sea-level change and concomitant hydroedaphic conditions controlling dispersal, establishment, growth, and mortality of mangroves on oceanic islands in Belize.
Reuss, Jose M; Pi-Anfruns, Joan; Moy, Peter K
2018-04-01
The aim of this study was to assess the clinical effectiveness of alveolar distraction osteogenesis (ADO) versus recombinant human bone morphogenetic protein-2 (rh-BMP-2) for vertical ridge augmentation. Few data have been published on vertical bone regeneration using rh-BMP-2. The authors implemented a retrospective cohort study and enrolled a sample composed of patients with deficient alveolar vertical bone height. The primary predictor variable was vertical augmentation with BMP-2 and a titanium mesh or ADO. The primary outcome variable was gain in vertical bone height (millimeters) measured using computed tomography. The secondary outcome variable was postoperative complications, namely need for further grafting before or simultaneous with implant placement, soft tissue dehiscence, paresthesia, infection, implant failure, and pain. Other outcomes included implant stability at time of placement and follow-up (implant stability quotient by resonance frequency analysis), surgical time (minutes), and total treatment time until implant placement (weeks). Other study variables included location of reconstruction (maxilla or mandible). Appropriate bivariate statistics were computed and statistical significance was set a P value less than .05. The retrospective review yielded 21 patients in the BMP group and 19 in the ADO group. For the BMP-2 group, the average vertical bone gain was 2.96 ± 1.8 mm overall (maxilla, mean 3.6 ± 3.1 mm; mandible, mean 2.32 ± 1.8 mm). For the ADO group, this gain was 4 ± 1.69 mm overall (maxilla, mean 2.8 ± 1.94 mm; mandible, mean 5.2 ± 4.67 mm). For complications, group BMP showed a statistically minor tendency for more postoperative problems, such as wound dehiscence. For implant survival, group BMP showed a 92.2% survival rate versus 96.3% in group ADO at 3 to 45 months after delivery of the prosthesis (average, 22 months). The 2 techniques showed similar values in absolute vertical bone gain. Group ADO showed a slightly better outcome in outright vertical regenerative potential, albeit with a more frequent need for regrafting before and simultaneous with implant placement. Group BMP showed a lesser need for regrafting, despite having a higher postoperative complication rate. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51269 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm (out of frame) grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth. Discovery's vertical stabilizer is at left.
Aeroelastic stability analysis of a Darrieus wind turbine
NASA Astrophysics Data System (ADS)
Popelka, D.
1982-02-01
An aeroelastic stability analysis was developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.
Dual-keel electrodynamic maglev system
He, Jianliang; Wang, Zian; Rote, Donald M.; Coffey, Howard T.; Hull, John R.; Mulcahy, Thomas M.; Cal, Yigang
1996-01-01
A propulsion and stabilization system with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle.
Krauss, K.W.; Allen, J.A.; Cahoon, D.R.
2003-01-01
Root systems in mangrove swamps have captured the attention of scientists for decades. Among the postulated roles of root structures include a contribution to the geomorphological stability of mangrove soils through sediment trapping and binding. In this study, we used feldspar marker horizons and sediment pins to investigate the influence of three different functional root types - prop roots in Rhizophora spp., root knees in Bruguiera gymnorrhiza, and pneumatophores in Sonneratia alba - on vertical accretion and elevation change in three mangrove forests in the Federated States of Micronesia. Prop roots facilitated vertical accretion (11.0 mm year-1) more than pneumatophores or bare soil controls (mean, 8.3 mm year-1). Sediment elevation, on the other hand, increased at an average rate of only 1.3 mm year-1 across all root types, with rate differences by root type, ranging from -0.2 to 3.4 mm year-1, being detected within river basins. This investigation demonstrates that prop roots can assist in the settling of suspended sediments from estuarine waters, yet prop root structures are not as successful as pneumatophores in maintaining sediment elevation over 2.5 years. As root densities increase over time, an increase in turbulence-induced erosion and in shallow subsidence as organic peat layers form is expected in Micronesian mangrove forests. ?? 2003 Elsevier Science B.V. All rights reserved.
Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen
2016-08-02
Many methods have been proposed to assess the stability of human postural balance by using a force plate. While most of these approaches characterize postural stability by extracting features from the trajectory of the center of pressure (COP), this work develops stability measures derived from components of the ground reaction force (GRF). In comparison with previous GRF-based approaches that extract stability features from the GRF resultant force, this study proposes three feature sets derived from the correlation patterns among the vertical GRF (VGRF) components. The first and second feature sets quantitatively assess the strength and changing speed of the correlation patterns, respectively. The third feature set is used to quantify the stabilizing effect of the GRF coordination patterns on the COP. In addition to experimentally demonstrating the reliability of the proposed features, the efficacy of the proposed features has also been tested by using them to classify two age groups (18-24 and 65-73 years) in quiet standing. The experimental results show that the proposed features are considerably more sensitive to aging than one of the most effective conventional COP features and two recently proposed COM features. By extracting information from the correlation patterns of the VGRF components, this study proposes three sets of features to assess human postural stability during quiet standing. As demonstrated by the experimental results, the proposed features are not only robust to inter-trial variability but also more accurate than the tested COP and COM features in classifying the older and younger age groups. An additional advantage of the proposed approach is that it reduces the force sensing requirement from 3D to 1D, substantially reducing the cost of the force plate measurement system.
Harte, Philip T.
1994-01-01
Proper discretization of a ground-water-flow field is necessary for the accurate simulation of ground-water flow by models. Although discretiza- tion guidelines are available to ensure numerical stability, current guidelines arc flexible enough (particularly in vertical discretization) to allow for some ambiguity of model results. Testing of two common types of vertical-discretization schemes (horizontal and nonhorizontal-model-layer approach) were done to simulate sloping hydrogeologic units characteristic of New England. Differences of results of model simulations using these two approaches are small. Numerical errors associated with use of nonhorizontal model layers are small (4 percent). even though this discretization technique does not adhere to the strict formulation of the finite-difference method. It was concluded that vertical discretization by means of the nonhorizontal layer approach has advantages in representing the hydrogeologic units tested and in simplicity of model-data input. In addition, vertical distortion of model cells by this approach may improve the representation of shallow flow processes.
Granata, K P; Padua, D A; Wilson, S E
2002-04-01
Leg stiffness was compared between age-matched males and females during hopping at preferred and controlled frequencies. Stiffness was defined as the linear regression slope between the vertical center of mass (COM) displacement and ground-reaction forces recorded from a force plate during the stance phase of the hopping task. Results demonstrate that subjects modulated the vertical displacement of the COM during ground contact in relation to the square of hopping frequency. This supports the accuracy of the spring-mass oscillator as a representative model of hopping. It also maintained peak vertical ground-reaction load at approximately three times body weight. Leg stiffness values in males (33.9+/-8.7 kN/m) were significantly (p<0.01) greater than in females (26.3+/-6.5 kN/m) at each of three hopping frequencies, 3.0, 2.5 Hz, and a preferred hopping rate. In the spring-mass oscillator model leg stiffness and body mass are related to the frequency of motion. Thus male subjects necessarily recruited greater leg stiffness to drive their heavier body mass at the same frequency as the lighter female subjects during the controlled frequency trials. However, in the preferred hopping condition the stiffness was not constrained by the task because frequency was self-selected. Nonetheless, both male and female subjects hopped at statistically similar preferred frequencies (2.34+/-0.22 Hz), therefore, the females continued to demonstrate less leg stiffness. Recognizing the active muscle stiffness contributes to biomechanical stability as well as leg stiffness, these results may provide insight into the gender bias in risk of musculoskeletal knee injury.
Controls on the distributions of organic carbon and nitrogen in the eastern Pacific Ocean
NASA Astrophysics Data System (ADS)
Hansell, Dennis A.; Waterhouse, Tye Y.
1997-05-01
Measurements of total organic carbon (TOC) and nitrogen (TON) were made on the WOCE P18 line (from 67°S to 23°N along 103°/110°W). There was an accumulation of TOC on the equator and in the oligotrophic waters north and south of the equator. The concentrations of TOC were well correlated with temperature, indicating an important physical control on its distribution. The boundary separating shallow, TOC-rich water from deep, TOC-poor water overlaid the main thermocline. This observation suggests that water column stability or residence time imparted by the main thermocline is a primary determinant of TOC accumulation. Elevated TON concentrations were found in all surface waters, with the lowest values found in the region of 20-35°S. Net TON drawdown in the South Pacific subtropical gyre, likely due to biological utilization and vertical export of the nitrogen, was initiated with depletion of equatorially upwelled nitrate. The degree to which inorganic nitrogen was limiting in the surface layer south of the equator served to control the concentrations of TON. Such controls were not exerted on organic carbon, as reflected by increasing C:N ratios of organic matter as TON was removed. Unlike the findings in the South Pacific, TON concentrations in oligotrophic waters north of the equator were frequently higher than on the equator. Such accumulations are hypothesized to be maintained from nitrogen fixation, nitrogen input due to vertical migration of autotrophs or diffusive flux of inorganic nitrogen into the euphotic zone across the relatively shallow nitracline.
NASA Technical Reports Server (NTRS)
Cullen, John J.; Lewis, Marlon R.; Davis, Curtiss O.; Barber, Richard T.
1992-01-01
Macronutrients persist in the surface layer of the equatorial Pacific because the production of phytoplankton is limited; the nature of this limitation has yet to be resolved. Measurements of photosynthesis as a function of irradiance (P-I) provide information on the control of primary productivity, a question of great biogeochemical importance. Accordingly, P-I was measured in the equatorial Pacific along 150 deg W, during February-March 1988. Diel variability of P-I showed a pattern consistent with nocturnal vertical mixing in the upper 20 m followed by diurnal stratification, causing photoinhibition near the surface at midday. Otherwise, the distribution of photosynthetic parameters with depth and the stability of P-I during simulated in situ incubations over 2 days demonstrated that photoadaptation was nearly complete at the time of sampling: photoadaptation had not been effectively countered by upwelling or vertical mixing. Measurements of P-I and chlorophyll during manipulations of trace elements showed that simple precautions to minimize contamination were sufficient to obtain valid rate measurements and that the specific growth rates of phytoplankton were fairly high in situ, a minimum of 0.6/d. Diel variability of beam attenuation also indicated high specific growth rates of phytoplankton and a strong coupling of production with grazing. It appears that grazing is the proximate control on the standing crop of phytoplankton. Nonetheless, the supply of a trace nutrient such as iron might ultimately regulate productivity by influencing species composition and food-web structure.
Kwon, Soonbang; Jang, Seonghoon; Choi, Jae-Wan; Choi, Sanghyeon; Jang, Sukjae; Kim, Tae-Wook; Wang, Gunuk
2017-12-13
The controllability of switching conductive filaments is one of the central issues in the development of reliable metal-oxide resistive memory because the random dynamic nature and formation of the filaments pose an obstacle to desirable switching performance. Here, we introduce a simple and novel approach to control and form a single silicon nanocrystal (Si-NC) filament for use in SiO x memory devices. The filament is formed with a confined vertical nanoscale gap by using a well-defined single vertical truncated conical nanopore (StcNP) structure. The physical dimensions of the Si-NC filaments such as number, size, and length, which have a significant influence on the switching properties, can be simply engineered by the breakdown of an Au wire through different StcNP structures. In particular, we demonstrate that the designed SiO x memory junction with a StcNP of pore depth of ∼75 nm and a bottom diameter of ∼10 nm exhibited a switching speed of up to 6 ns for both set and reset process, significantly faster than reported SiO x memory devices. The device also exhibited a high ON-OFF ratio, multistate storage ability, acceptable endurance, and retention stability. The influence of the physical dimensions of the StcNP on the switching features is discussed based on the simulated temperature profiles of the Au wire and the nanogap size generated inside the StcNP structure during electromigration.
Control for small-speed lateral flight in a model insect.
Zhang, Yan Lai; Sun, Mao
2011-09-01
Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.
Aerodynamic flight control to increase payload capability of future launch vehicles
NASA Technical Reports Server (NTRS)
Cochran, John E., Jr.; Cheng, Y.-M.; Leleux, Todd; Bigelow, Scott; Hasbrook, William
1993-01-01
In this report, we provide some examples of French, Russian, Chinese, and Japanese launch vehicles that have utilized fins in their designs. Next, the aerodynamic design of the fins is considered in Section 3. Some comments on basic static stability and control theory are followed by a brief description of an aerodynamic characteristics prediction code that was used to estimate the characteristics of a modified NLS 1.5 Stage vehicle. Alternative fin designs are proposed and some estimated aerodynamic characteristics presented and discussed. Also included in Section 3 is a discussion of possible methods of enhancement of the aerodynamic efficiency of fins, such as vortex generators and jet flaps. We consider the construction of fins for launch vehicles in Section 4 and offer an assessment of the state-of-the-art in the use of composites for aerodynamic control surfaces on high speed vehicles. We also comment on the use of smart materials for launch vehicle fins. The dynamic stability and control of a launch vehicle that utilizes both thrust vector control (engine nozzle gimballing) and movable fins is the subject addressed in Section 5. We give a short derivation of equations of motion for a launch vehicle moving in a vertical plane above a spherical earth, discuss the use of a gravity-turn nominal trajectory, and give the form of the period equations linearized about such a nominal. We then consider feedback control of vehicle attitude using both engine gimballing and fin deflection. Conclusions are stated and recommendations made in Section 6. An appendix contains aerodynamic data in tabular and graphical formats.
Interferometric rotation sensor
NASA Technical Reports Server (NTRS)
Walsh, T. M.
1972-01-01
Sensor generates interference fringes varying in number (horizontally and vertically) as a function of the total angular deviation relative to the line-of-sight axis. Device eliminates errors from zero or null shift due to lack of electrical circuitry stability.
Local Dynamic Stability Assessment of Motion Impaired Elderly Using Electronic Textile Pants.
Liu, Jian; Lockhart, Thurmon E; Jones, Mark; Martin, Tom
2008-10-01
A clear association has been demonstrated between gait stability and falls in the elderly. Integration of wearable computing and human dynamic stability measures into home automation systems may help differentiate fall-prone individuals in a residential environment. The objective of the current study was to evaluate the capability of a pair of electronic textile (e-textile) pants system to assess local dynamic stability and to differentiate motion-impaired elderly from their healthy counterparts. A pair of e-textile pants comprised of numerous e-TAGs at locations corresponding to lower extremity joints was developed to collect acceleration, angular velocity and piezoelectric data. Four motion-impaired elderly together with nine healthy individuals (both young and old) participated in treadmill walking with a motion capture system simultaneously collecting kinematic data. Local dynamic stability, characterized by maximum Lyapunov exponent, was computed based on vertical acceleration and angular velocity at lower extremity joints for the measurements from both e-textile and motion capture systems. Results indicated that the motion-impaired elderly had significantly higher maximum Lyapunov exponents (computed from vertical acceleration data) than healthy individuals at the right ankle and hip joints. In addition, maximum Lyapunov exponents assessed by the motion capture system were found to be significantly higher than those assessed by the e-textile system. Despite the difference between these measurement techniques, attaching accelerometers at the ankle and hip joints was shown to be an effective sensor configuration. It was concluded that the e-textile pants system, via dynamic stability assessment, has the potential to identify motion-impaired elderly.
Lee, Han Eol; Choi, JeHyuk; Lee, Seung Hyun; Jeong, Minju; Shin, Jung Ho; Joe, Daniel J; Kim, DoHyun; Kim, Chang Wan; Park, Jung Hwan; Lee, Jae Hee; Kim, Daesoo; Shin, Chan-Soo; Lee, Keon Jae
2018-05-18
Flexible inorganic-based micro light-emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light-extraction efficiency on plastics. Here, high-performance flexible vertical GaN light-emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical μLEDs (f-VLEDs) with high optical power (30 mW mm -2 ), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light-emitting system on the human skin is successfully realized by transferring the electrical power f-VLED. Finally, the high-density GaN f-VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiang, Xiangfen; Bastakoti, Bishnu Prasad; Weng, Wu; Higuchi, Tetsuya; Oveisi, Hamid; Suzuki, Norihiro; Chen, Wei-Jung; Huang, Yu-Tzu; Yamauchi, Yusuke
2013-08-12
Ordered mesoporous alumina-doped titania thin films with anatase crystalline structure were prepared by using triblock copolymer Pluronic P123 as structure-directing agent. Uniform Al doping was realized by using aluminum isopropoxide as a dopant source which can be hydrolyzed together with titanium tetraisopropoxide. Aluminum doping into the titania framework can prevent rapid crystallization to the anatase phase, thereby drastically increasing thermal stability. With increasing Al content, the crystallization temperatures tend to increase gradually. Even when the Al content doped into the framework was increased to 15 mol %, a well-ordered mesoporous structure was obtained, and the mesostructural ordering was still maintained after calcination at 550 °C. During the calcination process, large uniaxial shrinkage occurred along the direction perpendicular to the substrate with retention of the horizontal mesoscale periodicity, whereby vertically oriented nanopillars were formed in the film. The resulting vertical porosity was successfully exploited to fabricate a high-speed and high-quality passive-matrix electrochromic display by using a leuco dye. The vertical nanospace in the films can effectively prevent drifting of the leuco dye. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Launiainen, Samuli; Vesala, Timo; Mölder, Meelis; Mammarella, Ivan; Smolander, Sampo; Rannik, Üllar; Kolari, Pasi; Hari, Pertti; Lindroth, Anders; Katul, Gabriel G.
2007-11-01
Among the fundamental problems in canopy turbulence, particularly near the forest floor, remain the local diabatic effects and linkages between turbulent length scales and the canopy morphology. To progress on these problems, mean and higher order turbulence statistics are collected in a uniform pine forest across a wide range of atmospheric stability conditions using five 3-D anemometers in the subcanopy. The main novelties from this experiment are: (1) the agreement between second-order closure model results and measurements suggest that diabatic states in the layer above the canopy explain much of the modulations of the key velocity statistics inside the canopy except in the immediate vicinity of the trunk space and for very stable conditions. (2) The dimensionless turbulent kinetic energy in the trunk space is large due to a large longitudinal velocity variance but it is inactive and contributes little to momentum fluxes. (3) Near the floor layer, a logarithmic mean velocity profile is formed and vertical eddies are strongly suppressed modifying all power spectra. (4) A spectral peak in the vertical velocity near the ground commensurate with the trunk diameter emerged at a moderate element Reynolds number consistent with Strouhal instabilities describing wake production.
Initial Computations of Vertical Displacement Events with NIMROD
NASA Astrophysics Data System (ADS)
Bunkers, Kyle; Sovinec, C. R.
2014-10-01
Disruptions associated with vertical displacement events (VDEs) have potential for causing considerable physical damage to ITER and other tokamak experiments. We report on initial computations of generic axisymmetric VDEs using the NIMROD code [Sovinec et al., JCP 195, 355 (2004)]. An implicit thin-wall computation has been implemented to couple separate internal and external regions without numerical stability limitations. A simple rectangular cross-section domain generated with the NIMEQ code [Howell and Sovinec, CPC (2014)] modified to use a symmetry condition at the midplane is used to test linear and nonlinear axisymmetric VDE computation. As current in simulated external coils for large- R / a cases is varied, there is a clear n = 0 stability threshold which lies below the decay-index criterion for the current-loop model of a tokamak to model VDEs [Mukhovatov and Shafranov, Nucl. Fusion 11, 605 (1971)]; a scan of wall distance indicates the offset is due to the influence of the conducting wall. Results with a vacuum region surrounding a resistive wall will also be presented. Initial nonlinear computations show large vertical displacement of an intact simulated tokamak. This effort is supported by U.S. Department of Energy Grant DE-FG02-06ER54850.
NASA Astrophysics Data System (ADS)
MacMackin, C. T.; Wells, A.
2017-12-01
While relatively small in mass, ice shelves play an important role in buttressing ice sheets, slowing their flow into the ocean. As such, an understanding of ice shelf stability is needed for predictions of future sea level rise. Networks of channels have been observed underneath Antarctic ice shelves and are thought to affect their stability. While the origins of channels running parallel to ice flow are thought to be well understood, transverse channels have also been observed and the mechanism for their formation is less clear. It has been suggested that seasonal variations in ice and ocean properties could be a source and we run nonlinear, vertically integrated 1-D simulations of a coupled ice shelf and plume to test this hypothesis. We also examine how these variations might alter the shape of internal radar reflectors within the ice, suggesting a new technique to model their distribution using a vertically integrated model of ice flow. We examine a range of sources for seasonal forcing which might lead to channel formation, finding that variability in subglacial discharge results in small variations of ice thickness. Additional mechanisms would be required to expand these into large transverse channels.
NASA Technical Reports Server (NTRS)
Hieser, Gerald; Reid, Charles F.
1954-01-01
The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.
Hydrologic control on the root growth of Salix cuttings at the laboratory scale
NASA Astrophysics Data System (ADS)
Bau', Valentina; Calliari, Baptiste; Perona, Paolo
2017-04-01
Riparian plant roots contribute to the ecosystem functioning and, to a certain extent, also directly affect fluvial morphodynamics, e.g. by influencing sediment transport via mechanical stabilization and trapping. There is much both scientific and engineering interest in understanding the complex interactions among riparian vegetation and river processes. For example, to investigate plant resilience to uprooting by flow, one should quantify the probability that riparian plants may be uprooted during specific flooding event. Laboratory flume experiments are of some help to this regard, but are often limited to use grass (e.g., Avena and Medicago sativa) as vegetation replicate with a number of limitations due to fundamental scaling problems. Hence, the use of small-scale real plants grown undisturbed in the actual sediment and within a reasonable time frame would be particularly helpful to obtain more realistic flume experiments. The aim of this work is to develop and tune an experimental technique to control the growth of the root vertical density distribution of small-scale Salix cuttings of different sizes and lengths. This is obtained by controlling the position of the saturated water table in the sedimentary bed according to the sediment size distribution and the cutting length. Measurements in the rhizosphere are performed by scanning and analysing the whole below-ground biomass by means of the root analysis software WinRhizo, from which root morphology statistics and the empirical vertical density distribution are obtained. The model of Tron et al. (2015) for the vertical density distribution of the below-ground biomass is used to show that experimental conditions that allow to develop the desired root density distribution can be fairly well predicted. This augments enormously the flexibility and the applicability of the proposed methodology in view of using such plants for novel flow erosion experiments. Tron, S., Perona, P., Gorla, L., Schwarz, M., Laio, F., and L. Ridolfi (2015). The signature of randomness in riparian plant root distributions. Geophys. Res. Letts., 42, 7098-7106
NASA Technical Reports Server (NTRS)
Moses, Robert W.
1997-01-01
Buffet is an aeroelastic phenomenon associated with high performance aircraft especially those with twin vertical tails. In particular, for the F/A-18 aircraft at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their wake. The resulting buffet loads on the vertical tails are a concern from fatigue and inspection points of view. Recently, a 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) Program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at Mach 0.10. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. The results herein illustrate that buffet alleviation of vertical tails can be accomplished using simple active control of the rudder or piezoelectric actuators. In fact, as demonstrated herein, a fixed gain single input single output control law that commands piezoelectric actuators may be active throughout the high angle-of-attack maneuver without requiring any changes during the maneuver. Future tests are mentioned for accentuating the international interest in this area of research.
Pfile, Kate R.; Hart, Joseph M.; Herman, Daniel C.; Hertel, Jay; Kerrigan, D. Casey; Ingersoll, Christopher D.
2013-01-01
Context: Anterior cruciate ligament (ACL) injuries are common in female athletes and are related to poor neuromuscular control. Comprehensive neuromuscular training has been shown to improve biomechanics; however, we do not know which component of neuromuscular training is most responsible for the changes. Objective: To assess the efficacy of either a 4-week core stability program or plyometric program in altering lower extremity and trunk biomechanics during a drop vertical jump (DVJ). Design: Cohort study. Setting: High school athletic fields and motion analysis laboratory. Patients or Other Participants: Twenty-three high school female athletes (age = 14.8 ± 0.8 years, height = 1.7 ± 0.07 m, mass = 57.7 ± 8.5 kg). Intervention(s): Independent variables were group (core stability, plyometric, control) and time (pretest, posttest). Participants performed 5 DVJs at pretest and posttest. Intervention participants engaged in a 4-week core stability or plyometric program. Main Outcome Measure(s): Dependent variables were 3-dimensional hip, knee, and trunk kinetics and kinematics during the landing phase of a DVJ. We calculated the group means and associated 95% confidence intervals for the first 25% of landing. Cohen d effect sizes with 95% confidence intervals were calculated for all differences. Results: We found within-group differences for lower extremity biomechanics for both intervention groups (P ≤ .05). The plyometric group decreased the knee-flexion and knee internal-rotation angles and the knee-flexion and knee-abduction moments. The core stability group decreased the knee-flexion and knee internal-rotation angles and the hip-flexion and hip internal-rotation moments. The control group decreased the knee external-rotation moment. All kinetic changes had a strong effect size (Cohen d > 0.80). Conclusions: Both programs resulted in biomechanical changes, suggesting that both types of exercises are warranted for ACL injury prevention and should be implemented by trained professionals. PMID:23768121
Multi-muscle synergies in an unusual postural task: quick shear force production.
Robert, Thomas; Zatsiorsky, Vladimir M; Latash, Mark L
2008-05-01
We considered a hypothetical two-level hierarchy participating in the control of vertical posture. The framework of the uncontrolled manifold (UCM) hypothesis was used to explore the muscle groupings (M-modes) and multi-M-mode synergies involved in the stabilization of a time profile of the shear force in the anterior-posterior direction. Standing subjects were asked to produce pulses of shear force into a target using visual feedback while trying to minimize the shift of the center of pressure (COP). Principal component analysis applied to integrated muscle activation indices identified three M-modes. The composition of the M-modes was similar across subjects and the two directions of the shear force pulse. It differed from the composition of M-modes described in earlier studies of more natural actions associated with large COP shifts. Further, the trial-to-trial M-mode variance was partitioned into two components: one component that does not affect a particular performance variable (V(UCM)), and its orthogonal component (V(ORT)). We argued that there is a multi-M-mode synergy stabilizing this particular performance variable if V(UCM) is higher than V(ORT). Overall, we found a multi-M-mode synergy stabilizing both shear force and COP coordinate. For the shear force, this synergy was strong for the backward force pulses and nonsignificant for the forward pulses. An opposite result was found for the COP coordinate: the synergy was stronger for the forward force pulses. The study shows that M-mode composition can change in a task-specific way and that two different performance variables can be stabilized using the same set of elemental variables (M-modes). The different dependences of the ΔV indices for the shear force and COP coordinate on the force pulse direction supports applicability of the principle of superposition (separate controllers for different performance variables) to the control of different mechanical variables in postural tasks. The M-mode composition allows a natural mechanical interpretation.
Background and principles of throttles-only flight control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.
1995-01-01
There have been many cases in which the crew of a multi-engine airplane had to use engine thrust for emergency flight control. Such a procedure is very difficult, because the propulsive control forces are small, the engine response is slow, and airplane dynamics such as the phugoid and dutch roll are difficult to damp with thrust. In general, thrust increases are used to climb, thrust decreases to descend, and differential thrust is used to turn. Average speed is not significantly affected by changes in throttle setting. Pitch control is achieved because of pitching moments due to speed changes, from thrust offset, and from the vertical component of thrust. Roll control is achieved by using differential thrust to develop yaw, which, through the normal dihedral effect, causes a roll. Control power in pitch and roll tends to increase as speed decreases. Although speed is not controlled by the throttles, configuration changes are often available (lowering gear, flaps, moving center-of-gravity) to change the speed. The airplane basic stability is also a significant factor. Fuel slosh and gyroscopic moments are small influences on throttles-only control. The background and principles of throttles-only flight control are described.
Test of Monin-Obukhov similarity theory using distributed temperature sensing
NASA Astrophysics Data System (ADS)
Cheng, Y.; Sayde, C.; Li, Q.; Gentine, P.
2017-12-01
Monin-Obukhov similarity theory [Monin and Obukhov, 1954] (MOST) has been widely used to calculate atmospheric surface fluxes applying the structure correction functions [Stull, 1988]. The exact forms of the structure correction functions for momentum and heat, which depend on the vertical gradient velocity and temperature, have been determined empirically mostly from the Kansas experiment [Kaimal et al., 1972]. However, due to the limitation of point measurement, the vertical gradient of temperature and horizontal wind speed are not well captured. Here we propose a way to measure the vertical gradient of temperature and horizontal wind speed with high resolution in space (every 12.7 cm) and time (every second) using the Distributed Temperature Sensing [Selker et al., 2006] (DTS), thus determining the exact form of the structure correction functions of MOST under various stability conditions. Two parallel vertical fiber optics will be placed on a tower at the central facility of ARM SGP site. Vertical air temperature will be measured every 12.7 cm by the fiber optics and horizontal wind speed along fiber will be measured. Then vertical gradient of temperature and horizontal wind speed will be calculated and stability correction functions for momentum and heat will be determined. ReferencesKaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R. (1972), Spectral characteristics of surface-layer turbulence, Quarterly Journal of the Royal Meteorological Society, 98(417), 563-589, doi: 10.1002/qj.49709841707. Monin, A., and Obukhov, A. (1954), Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24(151), 163-187. Selker, J., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., Stejskal, M., Zeman, J., Westhoff, M., and Parlange, M. B. (2006), Distributed fiber-optic temperature sensing for hydrologic systems, Water Resources Research, 42, W12202, doi: 10.1029/2006wr005326. Stull, R. (1988), An Introduction to Boundary Layer Meteorology, pp. 666, Kluwer Academic Publishers, Dordrecht.
Chiou, Yi-Deng; Tsai, Dah-Shyang; Lam, Hoa Hung; Chang, Chuan-hua; Lee, Kuei-Yi; Huang, Ying-Sheng
2013-09-07
The miniature ultracapacitors, with interdigitated electrodes of vertically aligned carbon nanotubes (VACNTs) and an inter-electrode gap of 20 μm, have been prepared in the LiPF6 organic electrolyte with and without PVdF-HFP gel. PVdF-HFP between two opposing electrodes enhances the device reliability, but lessens its power performance because of the extra diffusion resistance. Also noteworthy are the gel influences on the cycle stability. When the applied voltage is 2.0 or 2.5 V, both the LiPF6 and the gel capacitors exhibit excellent stability, typified by a retention ratio of ≥95% after 10,000 cycles. Their coulombic efficiencies quickly rise up, and hold steady at 100%. Nonetheless, when the applied voltage is 3.5 or 4.0 V, the cycle stability deteriorates, since the negative electrode potential descends below 0.9 V (vs. Li), leading to electrolyte decomposition and SEI formation. For the LiPF6 capacitor, its retention ratio could be around 60% after 10,000 cycles and the coulombic efficiency of 100% is difficult to reach throughout its cycle life. On the other hand, the gel capacitor cycles energy with a much higher retention ratio, >80% after 10,000 cycles, and a better coulombic efficiency, even though electrolyte decomposition still occurs. We attribute the superior stability of the gel capacitor to its extra diffusion resistance which slows down the performance deterioration.