NASA Technical Reports Server (NTRS)
Queijo, M J; Wolhart, Walter D
1951-01-01
An investigation was made to determine the effects of vertical-tail size and length and of fuselage shape and length on the static lateral stability characteristics of a model with wing and vertical tails having the quarter-chord lines swept back 45 degrees. The results indicate that the directional instability of the various isolated fuselages was about two-thirds as large as that predicted by classical theory.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, workers remove the Rudder Speed Brake panel on the vertical tail of the orbiter Atlantis. The Rudder Speed Brake is being removed for inspection and maintenance prior to Return to Flight. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. The Rudder Speed Brake is used to guide and slow the Shuttle as it comes in for a landing.
Impacts of Space Shuttle thermal protection system tile on F-15 aircraft vertical tile
NASA Technical Reports Server (NTRS)
Ko, W. L.
1985-01-01
Impacts of the space shuttle thermal protection system (TPS) tile on the leading edge and the side of the vertical tail of the F-15 aircraft were analyzed under different TPS tile orientations. The TPS tile-breaking tests were conducted to simulate the TPS tile impacts. It was found that the predicted tile impact forces compare fairly well with the tile-breaking forces, and the impact forces exerted on the F-15 aircraft vertical tail were relatively low because a very small fraction of the tile kinetic energy was dissipated in the impact, penetration, and fracture of the tile. It was also found that the oblique impact of the tile on the side of the F-15 aircraft vertical tail was unlikely to dent the tail surface.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2007-01-01
A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- A Rudder Speed Brake Actuator is being removed from the orbiter Atlantis for shipment to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- A Rudder Speed Brake Actuator is being removed from the orbiter Atlantis for shipment to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.
Active Control of F/A-18 Vertical Tail Buffeting using Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Moses, Robert W.; Huttsell, Lawerence J.; Harrand, Vincent J.
2003-01-01
Vertical tail buffeting is a serious multidisciplinary problem that limits the performance of twin-tail fighter aircraft. The buffet problem occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced pressure loads on the vertical tails. This paper describes a multidisciplinary computational investigation for buffet load alleviation of full F/A-18 aircraft using distributed piezoelectric actuators. The inboard and outboard surfaces of the vertical tail are equipped with piezoelectric actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the smart structure are expressed with a three-dimensional finite element model. A single-input-single-output controller is designed to drive the active piezoelectric actuators. High-fidelity multidisciplinary analysis modules for the fluid dynamics, structure dynamics, electrodynamics of the piezoelectric actuators, fluid-structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. Peak values of the power spectral density of tail tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. RMS values of tip acceleration are reduced by as much as 12%.
NASA Technical Reports Server (NTRS)
Pendergraft, O. C., Jr.; Bare, E. A.
1982-01-01
An investigation was conducted in the Langley 16 foot transonic tunnel to determine the longitudinal aerodynamic characteristics of twin two dimensional nozzles and twin baseline axisymmetric nozzles installed on a fully metric 0.047 scale model of the F-15 three surface configuration (canards, wing, horizontal tails). The effects on performance of two dimensional nozzle in flight thrust reversing, locations and orientation of the vertical tails, and deflections of the horizontal tails were also determined. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.20 over an angle of attack range from -2 deg to 15 deg. Nozzle pressure ratio was varied from jet off to about 6.5.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Workers attach a crane to one of the Rudder Speed Brake Actuators that are being removed from the orbiter Atlantis for shipment to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Workers attach a crane to one of the Rudder Speed Brake Actuators that are being removed from the orbiter Atlantis for shipment to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Workers ensure the safe removal of a Rudder Speed Brake Actuator from the orbiter Atlantis. This and three other actuators are being shipped to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- This is a closeup of one of the Rudder Speed Brake Actuators that are being removed from the orbiter Atlantis for shipment to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.
An Active Smart Material Control System for F/A-18 Buffet Alleviation
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Moses, Robert W.; Huttsell, Lawrence J.; Harrand, Vincent J.
2003-01-01
The vertical tail buffet problem of fighter aircraft occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced pressure loads on the vertical tails. The buffet loads imposed upon the vertical tails resulted in a premature fatigue failure of the tails, and consequently limits the performance and super maneuverability of twin-tail fighter aircraft. An active smart material control system using distributed piezoelectric actuators has been developed for buffet alleviation and is presented. The inboard and outboard surfaces of the vertical tail are equipped with piezoelectric actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the piezoelectric actuators are expressed with a three-dimensional finite-element model. A single-input-single-output controller is designed to drive the active piezoelectric actuators. High-fidelity multidisciplinary analysis modules for the fluid dynamics, structure dynamics, electrodynamics of the piezoelectric actuators, control law, fluid structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. At 30 degree angle of attack, RMS values of tip acceleration are reduced by as much as 12%. The peak values of the power spectral density of tail-tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. The actively controlled piezoelectric actuators were also effective in adding damping at wide range of angles of attack.
NASA Technical Reports Server (NTRS)
Phillips, W.H.; Crane, H.L.
1943-01-01
Several tail modifications of the Brewster XSBA-1 scout-bomber were investigated and results compared. Modifications consisted of variation of the chord of the elevator and rudder while the total area of the surfaces is kept constant and variations of the total area of the vertical tail surface. Configuration number 2 reduced trim changes by 50 percent and reduced average elevator control force gradient from 30 to 27 pounds/g. Stick travel required to stall in maneuver was 4.6 inches.
LDV Surveys Over a Fighter Model at Moderate to High Angles of Attack
NASA Technical Reports Server (NTRS)
Sellers, William L., III; Meyers, James F.; Hepner, Timothy E.
2004-01-01
The vortex flowfield over an advanced twin-tailed fighter configuration was measured in a low-speed wind tunnel at two angles of attack. The primary test data consisted of 3-component velocity surveys obtained using a Laser Doppler Velocimeter. Laser light sheet and surface flow visualization were also obtained to provide insight into the flowfield structure. Time-averaged velocities and the root mean square of the velocity fluctuations were obtained at two cross-sections above the model. At 15 degrees angle of attack, the vortices generated by the wing leading edge extension (LEX) were unburst over the model and passed outboard of the vertical tail. At 25 degrees angle of attack, the vortices burst in the vicinity of the wing-LEX intersection and impact directly on the vertical tails. The RMS levels of the velocity fluctuations reach values of approximately 30% in the region of the vertical tails.
NASA Technical Reports Server (NTRS)
Murray, Harry E
1946-01-01
A vertical-tail model with stub fuselage was tested in combination with various simulated horizontal tails to determine the effect of horizontal-tail span and location on the aerodynamic characteristics of the vertical tail. Available theoretical data on end-plate effects were collected and presented in the form most suitable for design purposes. Reasonable agreement was obtained between the measured and theoretical end-plate effects of horizontal tails on vertical tails, and the data indicated that the end-plate effect was determined more by the location of the horizontal tail than by the span of the horizontal tail. The horizontal tail gave most end-plate effect when located near either tip of the vertical tail and, when located near the base of the vertical tail, the end-plate effect was increased by moving the horizontal tail rearward.
Active vertical tail buffeting suppression based on macro fiber composites
NASA Astrophysics Data System (ADS)
Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei
2016-04-01
Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative methods such that the water content of the tailings does not exceed 30 percent by weight. (d) Existing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative methods such that the water content of the tailings does not exceed 30 percent by weight. (d) Existing...
Code of Federal Regulations, 2010 CFR
2010-07-01
... following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative methods such that the water content of the tailings does not exceed 30 percent by weight. (d) Existing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative methods such that the water content of the tailings does not exceed 30 percent by weight. (d) Existing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative methods such that the water content of the tailings does not exceed 30 percent by weight. (d) Existing...
Active Tails Enhance Arboreal Acrobatics in Geckos
2008-03-18
the secret to the gecko s arboreal acrobatics includes an active tail. We examine the tail s role during rapid climbing, aerial descent, and gliding. We show that a gecko s tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to push against the vertical surface, thereby preventing pitch-back of the head and upper body. When pitch-back cannot be prevented, geckos avoid falling by placing their tail in a posture similar to a bicycle s kickstand. Should a gecko fall with its back to the
NASA Technical Reports Server (NTRS)
Seacord, Charles L.; Campbell, John P.
1945-01-01
Force and flight tests were performance on an all-wing model with windmilling propellers. Tests were conducted with deflected and retracted flaps, with and without auxiliary vertical tail surfaces, and with different centers of gravity and trim coefficients. Results indicate serious reduction of stick-fixed longitudinal stability because of wing-tip stalling at high lift coefficient. Directional stability without vertical tail is undesirably low. Low effective dihedral should be maintained. Elevator and rudder control system is satisfactory.
An Advanced Buffet Load Alleviation System
NASA Technical Reports Server (NTRS)
Burnham, Jay K.; Pitt, Dale M.; White, Edward V.; Henderson, Douglas A.; Moses, Robert W.
2001-01-01
This paper describes the development of an advanced buffet load alleviation (BLA) system that utilizes distributed piezoelectric actuators in conjunction with an active rudder to reduce the structural dynamic response of the F/A-18 aircraft vertical tails to buffet loads. The BLA system was defined analytically with a detailed finite-element-model of the tail structure and piezoelectric actuators. Oscillatory aerodynamics were included along with a buffet forcing function to complete the aeroservoelastic model of the tail with rudder control surface. Two single-input-single-output (SISO) controllers were designed, one for the active rudder and one for the active piezoelectric actuators. The results from the analytical open and closed loop simulations were used to predict the system performance. The objective of this BLA system is to extend the life of vertical tail structures and decrease their life-cycle costs. This system can be applied to other aircraft designs to address suppression of structural vibrations on military and commercial aircraft.
NASA Technical Reports Server (NTRS)
Alford, William J., Jr.
1958-01-01
An investigation has been made in the Langley high-speed 7- by 10-foot tunnel of some effects of horizontal-tail position on the vertical-tail pressure distributions of a complete model in sideslip at high subsonic speeds. The wing of the model was swept back 28.82 deg at the quarter-chord line and had an aspect ratio of 3.50, a taper ratio of 0.067, and NACA 65A004 airfoil sections parallel to the model plane of symmetry. Tests were made with the horizontal tail off, on the wing-chord plane extended, and in T-tail arrangements in forward and rearward locations. The test Mach numbers ranged from 0.60 to 0.92, which corresponds to a Reynolds number range from approximately 2.93 x 10(exp 6) to 3.69 x 10(exp 6), based on the wing mean aerodynamic chord. The sideslip angles varied from -3.9 deg to 12.7 deg at several selected angles of attack. The results indicated that, for a given angle of sideslip, increases in angle of attack caused reductions in the vertical-tail loads in the vicinity of the root chord and increases at the midspan and tip locations, with rearward movements in the local chordwise centers of pressure for the midspan locations and forward movements near the tip of the vertical tail. At the higher angles of attack all configurations investigated experienced outboard and rearward shifts in the center of pressure of the total vertical-tail load. Location of the horizontal tail on the wing- chord plane extended produced only small effects on the vertical-tail loads and centers of pressure. Locating the horizontal tail at the tip of the vertical tail in the forward position caused increases in the vertical-tail loads; this configuration, however, experienced considerable reduction in loads with increasing Mach number. Location of the horizontal tail at the tip of the vertical tail in the rearward position produced the largest increases in vertical-tail loads per degree sideslip angle; this configuration experienced the smallest variations of loads with Mach number of any of the configurations investigated.
Spatial Characteristics of the Unsteady Differential Pressures on 16 percent F/A-18 Vertical Tails
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Ashley, Holt
1998-01-01
Buffeting is an aeroelastic phenomenon which plagues high performance aircraft at high angles of attack. For the F/A-18 at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their turbulent wake. The resulting buffeting of the vertical tails is a concern from fatigue and inspection points of view. Previous flight and wind-tunnel investigations to determine the buffet loads on the tail did not provide a complete description of the spatial characteristics of the unsteady differential pressures. Consequently, the unsteady differential pressures were considered to be fully correlated in the analyses of buffet and buffeting. The use of fully correlated pressures in estimating the generalized aerodynamic forces for the analysis of buffeting yielded responses that exceeded those measured in flight and in the wind tunnel. To learn more about the spatial characteristics of the unsteady differential pressures, an available 16%, sting-mounted, F-18 wind-tunnel model was modified and tested in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center as part of the ACROBAT (Actively Controlled Response Of Buffet-Affected Tails) program. Surface pressures were measured at high angles of attack on flexible and rigid tails. Cross-correlation and cross-spectral analyses of the pressure time histories indicate that the unsteady differential pressures are not fully correlated. In fact, the unsteady differential pressure resemble a wave that travels along the tail. At constant angle of attack, the pressure correlation varies with flight speed.
Blended Buffet-Load-Alleviation System for Fighter Airplane
NASA Technical Reports Server (NTRS)
Moses, Robert W.
2005-01-01
The capability of modern fighter airplanes to sustain flight at high angles of attack and/or moderate angles of sideslip often results in immersion of part of such an airplane in unsteady, separated, vortical flow emanating from its forebody or wings. The flows from these surfaces become turbulent and separated during flight under these conditions. These flows contain significant levels of energy over a frequency band coincident with that of low-order structural vibration modes of wings, fins, and control surfaces. The unsteady pressures applied to these lifting surfaces as a result of the turbulent flows are commonly denoted buffet loads, and the resulting vibrations of the affected structures are known as buffeting. Prolonged exposure to buffet loads has resulted in fatigue of structures on several airplanes. Damage to airplanes caused by buffeting has led to redesigns of airplane structures and increased support costs for the United States Air Force and Navy as well as the armed forces of other countries. Time spent inspecting, repairing, and replacing structures adversely affects availability of aircraft for missions. A blend of rudder-control and piezoelectric- actuator engineering concepts was selected as a basis for the design of a vertical-tail buffet-load-alleviation system for the F/A-18 airplane. In this system, the rudder actuator is used to control the response of the first tail vibrational mode (bending at a frequency near 15 Hz), while directional patch piezoelectric actuators are used to control the second tail vibrational mode (tip torsion at a frequency near 45 Hz). This blend of two types of actuator utilizes the most effective features of each. An analytical model of the aeroservoelastic behavior of the airplane equipped with this system was validated by good agreement with measured results from a full-scale ground test, flight-test measurement of buffet response, and an in-flight commanded rudder frequency sweep. The overall performance of the system was found to be characterized by reductions, ranging from 70 to 30 percent, in vertical-tail buffeting under buffet loads ranging from moderate to severe. These reductions were accomplished with a maximum commanded rudder angle of +/-2deg at 15 Hz and about 10 lb (.4.5 kg) of piezoelectric actuators attached to the vertical tail skin and operating at a peak power level of 2 kW. By meeting the design objective, this system would extend the vertical-tail fatigue life beyond two aircraft lifetimes. This system is also adaptable to other aircraft surfaces and other aircraft
NASA Technical Reports Server (NTRS)
Margolis, Kenneth; Bobbitt, Percy J
1956-01-01
Velocity potentials, pressure, distributions, and stability derivatives are derived by use of supersonic linearized theory for families of thin isolated vertical tails performing steady rolling, steady yawing, and constant-lateral-acceleration motions. Vertical-tail families (half-delta and rectangular plan forms) are considered for a broad Mach number range. Also considered are the vertical tail with arbitrary sweepback and taper ratio at Mach numbers for which both the leading edge and trailing edge of the tail are supersonic and the triangular vertical tail with a subsonic leading edge and a supersonic trailing edge. Expressions for potentials, pressures, and stability derivatives are tabulated.
NASA Technical Reports Server (NTRS)
Moses, Robert W.
1997-01-01
Buffet is an aeroelastic phenomenon associated with high performance aircraft especially those with twin vertical tails. In particular, for the F/A-18 aircraft at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their wake. The resulting buffet loads on the vertical tails are a concern from fatigue and inspection points of view. Recently, a 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) Program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at Mach 0.10. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. The results herein illustrate that buffet alleviation of vertical tails can be accomplished using simple active control of the rudder or piezoelectric actuators. In fact, as demonstrated herein, a fixed gain single input single output control law that commands piezoelectric actuators may be active throughout the high angle-of-attack maneuver without requiring any changes during the maneuver. Future tests are mentioned for accentuating the international interest in this area of research.
Spatial Characteristics of F/A-18 Vertical Tail Buffet Pressures Measured in Flight
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Shah, Gautam H.
1998-01-01
Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails, at high angles of attack. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting estimates were computed using the measured buffet pressures and compared to the measured responses. The estimates did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting estimates. Several wind-tunnel investigations were conducted for this purpose. When combined and compared, the results of these tests show that the partial correlation depends on and scales with flight conditions. One of the remaining questions is whether the windtunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the high alpha research vehicle (HARV) indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.
In-flight flow visualization results from the X-29A aircraft at high angles of attack
NASA Technical Reports Server (NTRS)
Delfrate, John H.; Saltzman, John A.
1992-01-01
Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability.
NASA Technical Reports Server (NTRS)
Huffman, J. K.
1975-01-01
The effects were studied of various vertical-tail configurations on the longitudinal and lateral directional-stability characteristics of a general research fighter model utilizing wing-body-canard. The study indicates that the addition of the high canard resulted in an increase in total lift at angles of attack above 4 deg with a maximum lift coefficient about twice as large as that for the wing-body configuration. For the wing-body (canard off) configuration, the center-line vertical tail indicates positive vertical-tail effectiveness throughout the test angle-of-attack range; however, for this configuration none of the wing-mounted vertical-tail locations tested resulted in a positive directional-stability increment at the higher angles of attack. For the wing-body-canard configuration several outboard locations of the wing-mounted vertical tails were found.
Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.
Roberts, Brian; Lind, Rick; Chatterjee, Sankar
2011-06-01
Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.
Analysis of the effects of wing interference on the tail contributions to the rolling derivatives
NASA Technical Reports Server (NTRS)
Michael, William H , Jr
1952-01-01
An analysis of the effects of wing interference on the tail contributions to the rolling stability derivatives of complete airplane configurations is made by calculating the angularity of the air stream at the vertical tail due to rolling and determining the resulting forces and moments. Some of the important factors which affect the resultant angularity on the vertical tail are wing aspect ratio and sweepback, vertical-tail span, and considerations associated with angle of attack and airplane geometry. Some calculated sidewash results for a limited range of plan forms and vertical-tail sizes are presented. Equations taking into account the sidewash results are given for determining the tail contributions to the rolling derivatives. Comparisons of estimated and experimental results indicate that a consideration of wing interference effects improves the estimated values of the tail contributions to the rolling derivatives and that fair agreement with available experimental data is obtained.
NASA Technical Reports Server (NTRS)
Johnson, Harold I.
1946-01-01
Because the results of preliminary flight tests had indicated. the P-63A-1 airplane possessed insufficient directional stability, the NACA and the manufacturer (Bell Aircraft Corporation) suggested three vertical-tail modifications to remedy the deficiencies in the directional characteristics. These modifications included an enlarged vertical tail formed by adding a tip extension to the original vertical tail, a large sharp-edge ventral fin, and a small dorsal fin. The enlarged vertical tail involved only a slight increase in total vertical-tail area from 23.73 to 26.58 square feet but a relatively much larger increase in geometric aspect ratio from 1.24 to 1.73 based on height and area above the horizontal tail. At the request of the Air Material Command, Army Air Forces, flight tests were made to determine the effect of these modifications and of some combinations of these modifications on the directional stability and control characteristics of the airplane, In all, six different vertical-tail. configurations were investigated to determine the lateral and directional oscillation characteristics of the airplane, the sideslip characteristics, the yaw due to ailerons in rudder-fixed rolls from turns and pull-outs, the trim changes due to speed changes; and the trim changes due to power changes. Results of the tests showed that the enlarged vertical tail approximately doubled the directional stability of the airplane and that the pilots considered the directional stability provided by the enlarged vertical tail to be satisfactory. Calculations based on sideslip data obtained at an indicated airspeed of 300 miles per hour showed that the directional stability of the airplane with the original vertical tail corresponded to a value of 0(sub n beta) of -0.00056 whereas for the enlarged vertical tail the estimated va1ue of C(sub n beta) was -0.00130, The ventral fin was found to increase by a moderate amount the directional stability of the airplane with the original vertical tail for smal1 sides1ip angles at low speeds but little consistent change in directional stability was effected by the ventral fin at higher speeds, The effectiveness of the ventral fin was generally much less when used with the enlarged vertical tail than when used with the original vertical tail. The ventral and dorsal fins were found to be very effective in eliminating rudder-force reversals which occurred in low-speed, high-engine-power, sideslipped conditions of flight . Sideslip tests at two altitudes for approximately the sane engine power and indicated airspeed showed that a small decrease in static directional stability occurred with increasing altitude and this decrease in stability was attributed to the increased propeller blade angles required at high altitudes. The variations of rudder pedal force with indicated airspeed using normal rated power and a constant rudder tab setting through the speed range were desirably small for all the configurations tested. The rudder pedal force changed by about 50 pounds for a power change from engine idling power, to normal rated power and this pedal force change was largely independent of airspeed or of vertical-tail configuration for the various configurations tested.
NASA Technical Reports Server (NTRS)
Gatlin, Gregory M.; Vicroy, Dan D.; Carter, Melissa B.
2012-01-01
A low-speed experimental investigation has been conducted on a 5.8-percent scale Hybrid Wing Body configuration in the NASA Langley 14- by 22-Foot Subsonic Tunnel. This Hybrid Wing Body (HWB) configuration was designed with specific intention to support the NASA Environmentally Responsible Aviation (ERA) Project goals of reduced noise, emissions, and fuel burn. This HWB configuration incorporates twin, podded nacelles mounted on the vehicle upper surface between twin vertical tails. Low-speed aerodynamic characteristics were assessed through the acquisition of force and moment, surface pressure, and flow visualization data. Longitudinal and lateral-directional characteristics were investigated on this multi-component model. The effects of a drooped leading edge, longitudinal flow-through nacelle location, vertical tail shape and position, elevon deflection, and rudder deflection have been studied. The basic configuration aerodynamics, as well as the effects of these configuration variations, are presented in this paper.
Performance Enhancement of a Vertical Tail Model with Sweeping Jet Actuators
NASA Technical Reports Server (NTRS)
Seele, Roman; Graff, Emilio; Lin, John; Wygnanski, Israel
2013-01-01
Active Flow Control (AFC) experiments performed at the Caltech Lucas Adaptive Wall Wind Tunnel on a 12%-thick, generic vertical tail model indicated that sweeping jets emanating from the trailing edge (TE) of the vertical stabilizer significantly increased the side force coefficient for a wide range of rudder deflection angles and yaw angles at free-stream velocities approaching takeoff rotation speed. The results indicated that 2% blowing momentum coefficient (C(sub mu) increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. Even C(sub mu) = 0.5% increased the side force in excess of 20% under these conditions. This effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project and the successful demonstration of this flow-control application could have far reaching implications. It could lead to effective applications of AFC technologies on key aircraft control surfaces and lift enhancing devices (flaps) that would aid in reduction of fuel consumption through a decrease in size and weight of wings and control surfaces or a reduction of the noise footprint due to steeper climb and descent.
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1979-01-01
In order to assess the effects on static aerodynamic characteristics of battle damage to an aircraft or missile, wind tunnel studies were performed on models from which all or parts of the wing or horizontal or vertical tail had been removed. The effects of damage on the lift, longitudinal stability, lateral stability and directional stability of a swept-wing fighter are presented, along with the effects of wing removal on the control requirements of a delta-wing fighter. Results indicate that the loss of a major part of the vertical tail will probably result in the loss of the aircraft at any speed, while the loss of major parts of the horizontal tail generally results in catastrophic instability at subsonic speeds but, at low supersonic speeds, may allow the aircraft to return to friendly territory before pilot ejection. Major damage to the wing may be sustained without the loss of aircraft or pilot. The loss of some of the aerodynamic surfaces of cruise or surface-to-air missiles may result in catastrophic instability or may permit a ballistic trajectory to be maintained, depending upon the location of the lost surface with respect to the center of gravity of the missile.
The calculation of lateral stability with free controls
NASA Technical Reports Server (NTRS)
Mathias, Gotthold
1934-01-01
The discussion of the structural methods for obtaining lateral stability discloses the remarkable influence of the constant fuselage and wing proportions to the yawing moments. For the effectiveness of modifications in vertical tail surfaces and tail length, these quotas - little observed heretofore, in this connection - are decisive. This also applies to the amount of dihedral of the wing with regard to the roll stability of the complete wing already existing without angle of the dihedral.
NASA Technical Reports Server (NTRS)
Moses, Robert W.
1997-01-01
A 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at a dynamic pressure of 14 psf. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. Buffeting alleviation results when using the rudder are presented for comparison. Stability margins indicate that a constant gain setting in the control law may be used throughout the range of angle of attack tested.
Feasibility study for a microwave-powered ozone sniffer aircraft, volume 2
NASA Technical Reports Server (NTRS)
1990-01-01
Using 3-D design techniques and the Advanced Surface Design Software on the Computervision Designer V-X Interactive Graphics System, the aircraft configuration was created. The canard, tail, vertical tail, and main wing were created on the system using Wing Generator, a Computervision based program introduced in Appendix A.2. The individual components of the plane were created separately and were later individually imported to the master database. An isometric view of the final configuration is presented.
Mechanics and Hydrodynamics of Acrobatics and Aquabatics by Whales and Dolphins
NASA Astrophysics Data System (ADS)
Fish, Frank
2017-11-01
Cetaceans (whales, dolphins) are extremely energetic, fast swimming, and highly maneuverable in both water and air. Behaviors that cross the interface include breaching, porpoising, tail stands, and spin-leaps. The mechanics of breaching and porpoising entails propulsive movements of the caudal flukes to accelerate the animal vertically through the water surface to become airborne. Porpoising is beneficial to reduce the energetic cost of swimming at high speeds. Tail stands have a vertically oriented dolphin with half or more of its body out of the water. Bubble DPIV was used to quantify the propulsive force matching the weight of the animal supported above the water surface. The propulsive movements produced a jet flow and associated vorticity directed downward. Spin-leaps require a rapid vertical ascend from underwater by a rolling dolphin. Out of the water, the spin rate increases due to conservation of angular momentum and an imbalance between driving and resistive torques. The spin rate is associated with the moment of inertia of the animal's morphology. The physics of these high-energy maneuvers have engineering application for understanding ballistic performance across the air/water interface. Funded from ONR-MURI Grant N0001141410533.
Active Vertical Tail Buffeting Alleviation on an F/A-18 Model in a Wind Tunnel
NASA Technical Reports Server (NTRS)
Moses, Robert W.
1999-01-01
A 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet-Affected Tails (ACROBAT) program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and other aerodynamic devices, and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at a dynamic pressure of 14 psf. By using single-input-single-output control laws at gains well below the physical limits of the control effectors, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. Stability margins indicate that a constant gain setting in the control law may be used throughout the range of angle of attack tested.
The X-31A quasi-tailless flight test results
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Stoliker, P. C.
1996-01-01
A quasi-tailless flight investigation was launched using the X-31A enhanced fighter maneuverability airplane. In-flight simulations were used to assess the effect of partial to total vertical tail removal. The rudder control surface was used to cancel the stabilizing effects of the vertical tail, and yaw thrust vector commands were used to restabilize and control the airplane. The quasi-tailless mode was flown supersonically with gentle maneuvering and subsonically in precision approaches and ground attack profiles. Pilot ratings and a full set of flight test measurements were recorded. This report describes the results obtained and emphasizes the lessons learned from the X-31A flight test experiment. Sensor-related issues and their importance to a quasi-tailless simulation and to ultimately controlling a directionally unstable vehicle are assessed. The X-31A quasi-tailless flight test experiment showed that tailless and reduced tail fighter aircraft are definitely feasible. When the capability is designed into the airplane from the beginning, the benefits have the potential to outweigh the added complexity required.
Automated airplane surface generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.E.; Cordero, Y.; Jones, W.
1996-12-31
An efficient methodology and software axe presented for defining a class of airplane configurations. A small set of engineering design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tall, horizontal tail, and canard components. Wing, canard, and tail surface grids axe manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage is described by an algebraic function with four design parameters. The computed surface grids are suitablemore » for a wide range of Computational Fluid Dynamics simulation and configuration optimizations. Both batch and interactive software are discussed for applying the methodology.« less
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with a single vertical tail are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static pressure coefficients measured on the wing, body, and vertical tail for angles of attack from -4 deg to + 16 deg, angles of sideslip of 0 deg and 5.3 deg, vertical-tail settings of 0 deg and 5 deg, and nominal canard deflections of 0 deg and 10 deg. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2013-01-01
A wind tunnel experiment was conducted in the NASA Langley 8-Foot Transonic Pressure Tunnel to determine the effects of passive porosity on vortex flow interactions about a slender wing configuration at subsonic and transonic speeds. Flow-through porosity was applied in several arrangements to a leading-edge extension, or LEX, mounted to a 65-degree cropped delta wing as a longitudinal instability mitigation technique. Test data were obtained with LEX on and off in the presence of a centerline vertical tail and twin, wing-mounted vertical fins to quantify the sensitivity of the aerodynamics to tail placement and orientation. A close-coupled canard was tested as an alternative to the LEX as a passive flow control device. Wing upper surface static pressure distributions and six-component forces and moments were obtained at Mach numbers of 0.50, 0.85, and 1.20, unit Reynolds number of 2.5 million, angles of attack up to approximately 30 degrees, and angles of sideslip to +/-8 degrees. The off-surface flow field was visualized in cross planes on selected configurations using a laser vapor screen flow visualization technique. Tunnel-to-tunnel data comparisons and a Reynolds number sensitivity assessment were also performed. 15.
NASA Technical Reports Server (NTRS)
Whiting, Matthew Robert
1996-01-01
The feasibility of augmenting the available yaw control power on the X-31 through differential deflection of the canard surfaces was studied as well as the possibility of using differential canard control to stabilize the X-31 with its vertical tail removed. Wind-tunnel tests and the results of departure criteria and linear analysis showed the destabilizing effect of the reduction of the vertical tail on the X-31. Wind-tunnel testing also showed that differential canard deflection was capable of generating yawing moments of roughly the same magnitude as the thrust vectoring vanes currently in place on the X-31 in the post-stall regime. Analysis showed that the X-31 has sufficient aileron roll control power that with the addition of differential canard as a yaw controller, the wind-axis roll accelerations will remain limited by yaw control authority. It was demonstrated, however, that pitch authority may actually limit the maximum roll rate which can be sustained. A drop model flight test demonstrated that coordinated, wind axis rolls could be performed with roll rates as high as 50 deg/sec (full scale equivalent) at 50 deg angle of attack. Another drop model test was conducted to assess the effect of vertical tail reduction, and an analysis of using differential canard deflection to stabilize the tailless X-31 was performed. The results of six-degree-of-freedom, non-linear simulation tests were correlated with the drop model flights. Simulation studies then showed that the tailless X-31 could be controlled at angles of attack at or above 20 deg using differential canard as the only yaw controller.
Detail design of empennage of an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Sarker, Md. Samad; Panday, Shoyon; Rasel, Md; Salam, Md. Abdus; Faisal, Kh. Md.; Farabi, Tanzimul Hasan
2017-12-01
In order to maintain the operational continuity of air defense systems, unmanned autonomous or remotely controlled unmanned aerial vehicle (UAV) plays a great role as a target for the anti-aircraft weapons. The aerial vehicle must comply with the requirements of high speed, remotely controlled tracking and navigational aids, operational sustainability and sufficient loiter time. It can also be used for aerial reconnaissance, ground surveillance and other intelligence operations. This paper aims to develop a complete tail design of an unmanned aerial vehicle using Systems Engineering approach. The design fulfils the requirements of longitudinal and directional trim, stability and control provided by the horizontal and vertical tail. Tail control surfaces are designed to provide sufficient control of the aircraft in critical conditions. Design parameters obtained from wing design are utilized in the tail design process as required. Through chronological calculations and successive iterations, optimum values of 26 tail design parameters are determined.
Skid Landings of Airplanes on Rocker-Type Fuselages
NASA Technical Reports Server (NTRS)
Mayo, Wilbur L.
1961-01-01
A study is made of the landing of an airplane on a fuselage with "planned" curvature of its lower surface. Initial contact is considered to stop the vertical motion of a point remote from the center of gravity, thus causing rocking on the curved lower surface which converts sinking-speed energy into angular energy in pitch for dissipation by damping forces. Analysis is made of loads and motions for a given fuselage shape, and the contours required to give desired load histories are determined. Most of the calculations involve initial contact at the tail, but there are two cases of unflared landings with initial contact at the nose. The calculations are checked experimentally for the tail - low case.
NASA Technical Reports Server (NTRS)
Wing, David J.
1995-01-01
Distributions of static pressure coefficient over the afterbody and axisymmetric nozzles of a generic, twin-tail twin-engine fighter were obtained in the Langley 16-Foot Transonic Tunnel. The longitudinal positions of the vertical and horizontal tails were varied for a total of six aft-end configurations. Static pressure coefficients were obtained at Mach numbers between 0.6 and 1.2, angles of attack between 0 deg and 8 deg, and nozzle pressure ratios ranging from jet-off to 8. The results of this investigation indicate that the influence of the vertical and horizontal tails extends beyond the vicinity of the tail-afterbody juncture. The pressure distribution affecting the aft-end drag is influenced more by the position of the vertical tails than by the position of the horizontal tails. Transonic tail-interference effects are seen at lower free-stream Mach numbers at positive angles of attack than at an angle of attack of 0 deg.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with twin vertical tails are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static-pressure coefficients measured on the wing, body, and one of the vertical tails for angles of attack from -4 degrees to 16 degree angles of sideslip of 0 degrees and 5.3 degrees, and nominal canard deflections of O degrees and 10 degrees. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model are shown and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given. Detailed descriptions of the model and experiments and a brief discussion of some of the results are given. Tabulated results of measurements of the aerodynamic loads on the same canard model but having a single vertical tail instead of twin vertical tails are presented.
Active tails enhance arboreal acrobatics in geckos
Jusufi, Ardian; Goldman, Daniel I.; Revzen, Shai; Full, Robert J.
2008-01-01
Geckos are nature's elite climbers. Their remarkable climbing feats have been attributed to specialized feet with hairy toes that uncurl and peel in milliseconds. Here, we report that the secret to the gecko's arboreal acrobatics includes an active tail. We examine the tail's role during rapid climbing, aerial descent, and gliding. We show that a gecko's tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to push against the vertical surface, thereby preventing pitch-back of the head and upper body. When pitch-back cannot be prevented, geckos avoid falling by placing their tail in a posture similar to a bicycle's kickstand. Should a gecko fall with its back to the ground, a swing of its tail induces the most rapid, zero-angular momentum air-righting response yet measured. Once righted to a sprawled gliding posture, circular tail movements control yaw and pitch as the gecko descends. Our results suggest that large, active tails can function as effective control appendages. These results have provided biological inspiration for the design of an active tail on a climbing robot, and we anticipate their use in small, unmanned gliding vehicles and multisegment spacecraft. PMID:18347344
NASA Technical Reports Server (NTRS)
Savage, Howard F.; Edwards, George G.
1959-01-01
A wind-tunnel investigation has been conducted to determine the effects of an unconventional tail arrangement on the subsonic static longitudinal and lateral stability characteristics of a model having a 63 deg sweptback wing of aspect ratio 3.5 and a fuselage. Tail booms, extending rearward from approximately the midsemispan of each wing panel, supported independent tail assemblies well outboard of the usual position at the rear of the fuselage. The horizontal-tail surfaces had the leading edge swept back 45 deg and an aspect ratio of 2.4. The vertical tail surfaces were geometrically similar to one panel of the horizontal tail. For comparative purposes, the wing-body combination was also tested with conventional fuselage-mounted tail surfaces. The wind-tunnel tests were conducted at Mach numbers from 0.25 to 0.95 with a Reynolds number of 2,000,000, at a Mach number of 0.46 with a Reynolds number of 3,500,000, and at a Mach number of 0.20 with a Reynolds number of 7,000,000. The results of the investigation indicate that longitudinal stability existed to considerably higher lift coefficients for the outboard tail configuration than for the configuration with conventional tail. Wing fences were necessary with both configurations for the elimination of sudden changes in longitudinal stability at lift coefficients between 0.3 and 0.5. Sideslip angles up to 15 deg had only small effects upon the pitching-moment characteristics of the outboard tail configuration. There was an increase in the directional stability for the outboard tail configuration at the higher angles of attack as opposed to a decrease for the conventional tail configuration at most of the Mach numbers and Reynolds numbers of this investigation. The dihedral effect increased rapidly with increasing angle of attack for both the outboard and the conventional tail configurations but the increase was greater for the outboard tail configuration. The data indicate that the outboard tail is an effective roll control.
RLV-TD Flight Measured Aeroacoustic Levels and its Comparison with Predictions
NASA Astrophysics Data System (ADS)
Manokaran, K.; Prasath, M.; Venkata Subrahmanyam, B.; Ganesan, V. R.; Ravindran, Archana; Babu, C.
2017-12-01
The Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a wing body configuration successfully flight tested. One of the important flight measurements is the acoustic levels. There were five external microphones, mounted on the fuselage-forebody, wing, vertical tail, inter-stage (ITS) and core base shroud to measure the acoustic levels from lift-off to splash down. In the ascent phase, core base shroud recorded the overall maximum at both lift-off and transonic conditions. In-flight noise levels measured on the wing is second highest, followed by fuselage and vertical tail. Predictions for flight trajectory compare well at all locations except for vertical tail (4.5 dB). In the descent phase, maximum measured OASPL occurs at transonic condition for the wing, followed by vertical tail and fuselage. Predictions for flight trajectory compare well at all locations except for wing (- 6.0 dB). Spectrum comparison is good in the ascent phase compared to descent phase. Roll Reaction control system (RCS) thruster firing signature is seen in the acoustic measurements on the wing and vertical tail during lift-off.
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Multidisciplinary tools for prediction of single rectangular-tail buffet are extended to single swept-back-tail buffet in transonic-speed flow, and multidisciplinary tools for prediction and control of twin-tail buffet are developed and presented. The configuration model consists of a sharp-edged delta wing with single or twin tails that are oriented normal to the wing surface. The tails are treated as cantilevered beams fixed at the root and allowed to oscillate in both bending and torsion. This complex multidisciplinary problem is solved sequentially using three sets of equations on a dynamic single or multi-block grid structure. The first set is the unsteady, compressible, Reynolds-averaged Navier-Stokes equations which are used for obtaining the flow field vector and the aerodynamic loads on the tails. The Navier-Stokes equations are solved accurately in time using the implicit, upwind, flux-difference splitting, finite volume scheme. The second set is the coupled bending and torsion aeroelastic equations of cantilevered beams which are used for obtaining the bending and torsion deflections of the tails. The aeroelastic equations'are solved accurately in time using, a fifth-order-accurate Runge-Kutta scheme. The third set is the grid-displacement equations and the rigid-body dynamics equations, which are used for updating the grid coordinates due to the tail deflections and rigid-body motions. The tail-buffet phenomenon is predicted for highly-swept, single vertical tail placed at the plane of geometric symmetry, and for highly-swept, vertical twin tails placed at three different spanwise separation distances. The investigation demonstrates the effects of structural inertial coupling and uncoupling of the bending and torsion modes of vibration, spanwise positions of the twin-tail, angle of attack, and pitching and rolling dynamic motions of the configuration model on the tail buffet loading and response. The fundamental issue of twin-tail buffet alleviation is addressed using two active flow-control methods. These methods are the tangential leading-edge blowing and the flow suction from the leading-edge vortex cores along their paths. Qualitative and quantitative comparisons with the available experimental data are presented. The comparisons indicate that the present multidisciplinary aeroelastic analysis tools are robust, accurate and efficient.
NASA Technical Reports Server (NTRS)
Wallace, Arthur R.; Recant, I.G.
1943-01-01
The effect of various vertical tail arrangements upon the stability and control characteristics of an XP-62 fighter model was investigated. Rudder-free yaw characteristics with take-off power and flaps deflected were satisfactory after dorsal fin modifications. Directional stability was obtained with all modified vertical tails. Satisfactory rudder effectiveness resulted partly because the dual-rotation propellers produced no asymmetric yawing moments. Pedal forces in sideslips were undesirably large but may be easily reduced.
Rapid Parameterization Schemes for Aircraft Shape Optimization
NASA Technical Reports Server (NTRS)
Li, Wu
2012-01-01
A rapid shape parameterization tool called PROTEUS is developed for aircraft shape optimization. This tool can be applied directly to any aircraft geometry that has been defined in PLOT3D format, with the restriction that each aircraft component must be defined by only one data block. PROTEUS has eight types of parameterization schemes: planform, wing surface, twist, body surface, body scaling, body camber line, shifting/scaling, and linear morphing. These parametric schemes can be applied to two types of components: wing-type surfaces (e.g., wing, canard, horizontal tail, vertical tail, and pylon) and body-type surfaces (e.g., fuselage, pod, and nacelle). These schemes permit the easy setup of commonly used shape modification methods, and each customized parametric scheme can be applied to the same type of component for any configuration. This paper explains the mathematics for these parametric schemes and uses two supersonic configurations to demonstrate the application of these schemes.
NASA Technical Reports Server (NTRS)
Boshar, John
1947-01-01
Results are presented of a flight investigation conducted on a fighter-type airplane to determine the factors which affect the loads and load distributions on the vertical tail surfaces in maneuvers. An analysis is made of the data obtained in steady flight, rudder kicks, and fishtail maneuvers. For the rudder kicks, the significant loads were the "deflection load" resulting from an abrupt control deflection and the "dynamic load" consisting of a load corresponding to the new static equilibrium condition for the rudder deflected plus a load due to a transient overshoot. The minimum time to reach the maximum control deflection attainable by the pilot in any flight condition was found to be a constant. In the fishtail maneuvers, it was found that the pilot tends to deflect the rudder in phase with the natural frequency of the airplane. The maximum loads measured in fishtails were of the same order of magnitude as those from a rudder kick in which the rudder is returned to zero at the time of maximum sideslip.
NASA Technical Reports Server (NTRS)
Bare, E. A.; Berrier, B. L.; Capone, F. J.
1981-01-01
Investigations were conducted in the Langley 16-Foot Transonic Tunnel to provide data on a 0.10-scale model of the prototype F-18 airplane and a 0.047-scale model of the F-15 three-surface configuration (canard, wing, and horizontal tails). Test data were obtained at static conditions and at Mach numbers from 0.6 to 1.2 over an angle-of-attack range from 2 deg to 15 deg. Nozzle pressure ratio was varied from jet off to about 8.0.
Aircraft empennage structural detail design
NASA Technical Reports Server (NTRS)
Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo
1993-01-01
This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.
30 x 60 foot wind tunnel test highlights for an over-the-tail advanced turboprop configuration
NASA Technical Reports Server (NTRS)
Coe, Paul L., Jr.; Perkins, John N.; Rhodes, Graham S.
1991-01-01
This paper presents results from a recent investigation of the static aerodynamic and stability characteristics of a two-surface advanced turboprop aircraft. The conceptual design places Hamilton Standard SR-7 turboprop blades close to the horizontal and vertical tail for potential acoustic shielding. Evaluation of the data shows generally favorable effects of power on aircraft stability and control, and that lateral directional trim can be achieved with one engine inoperative. The tests did show a marked effect of the direction of propeller rotation on thrust minus drag performance.
Performance Enhancement of a Full-Scale Vertical Tail Model Equipped with Active Flow Control
NASA Technical Reports Server (NTRS)
Whalen, Edward A.; Lacy, Douglas; Lin, John C.; Andino, Marlyn Y.; Washburn, Anthony E.; Graff, Emilio; Wygnanski, Israel J.
2015-01-01
This paper describes wind tunnel test results from a joint NASA/Boeing research effort to advance active flow control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jet actuators was tested at the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The model was tested at a nominal airspeed of 100 knots and across rudder deflections and sideslip angles that covered the vertical tail flight envelope. A successful demonstration of AFC-enhanced vertical tail technology was achieved. A 31- actuator configuration significantly increased side force (by greater than 20%) at a maximum rudder deflection of 30deg. The successful demonstration of this application has cleared the way for a flight demonstration on the Boeing 757 ecoDemonstrator in 2015.
Rapid Airplane Parametric Input Design(RAPID)
NASA Technical Reports Server (NTRS)
Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.
2004-01-01
An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.
NASA Technical Reports Server (NTRS)
Menger, R. P.; Wood, T. L.; Brieger, J. T.
1983-01-01
A model test was conducted to determine the effects of aerodynamic interaction between main rotor, tail rotor, and vertical fin on helicopter performance and noise in hover out of ground effect. The experimental data were obtained from hover tests performed with a .151 scale Model 222 main rotor, tail rotor and vertical fin. Of primary interest was the effect of location of the tail rotor with respect to the main rotor. Penalties on main rotor power due to interaction with the tail rotor ranged up to 3% depending upon tail rotor location and orientation. Penalties on tail rotor power due to fin blockage alone ranged up to 10% for pusher tail rotors and up to 50% for tractor tail rotors. The main rotor wake had only a second order effect on these tail rotor/fin interactions. Design charts are presented showing the penalties on main rotor power as a function of the relative location of the tail rotor.
NASA Technical Reports Server (NTRS)
Dollyhigh, S. M.
1977-01-01
The longitudinal aerodynamic characteristics of a fighter airplane concept has been determined through an investigation over a Mach number range from 0.50 to 2.16. The configuration incorporates a cambered fuselage with a single external compression horizontal ramp inlet, a clipped arrow wing, twin horizontal tails, and a single vertical tail. The wing camber surface was optimized in drag due to lift and was designed to be self trimming at Mach 1.40 and at a lift coefficient of 0.20. The fuselage was cambered to preserve the design wing loadings on the part of the theoretical wing enclosed by the fuselage. An uncambered of flat wing of the same planform and thickness ratio distribution was also tested.
At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull
Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin
2013-01-01
Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.
At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull.
Cruz, Sebastian M; Hooten, Mevin; Huyvaert, Kathryn P; Proaño, Carolina B; Anderson, David J; Afanasyev, Vsevolod; Wikelski, Martin
2013-01-01
Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.
F-100 and F-100A on ramp - comparison showing tail modifications that solved control problems during
NASA Technical Reports Server (NTRS)
1955-01-01
On the left is NACA High-Speed Flight Station's North American F-100A (52-5778) Super Sabre with a modified vertical fin. On the right is an Air Force's North American F-100A (52-5773) with the original vertical fin configuration. 1955. NACA added a larger vertical fin to the airplane in December 1954, adding 10 percent more surface area. Later North American installed an even larger fin, having 27 percent greater area, as well as wingtip extensions. The modifications solved the dangerous directional stability and roll coupling problems that the F-100 was experiencing. The F-100 series went on to a long and distinguished service life.
Windblown Dust Deposition Forecasting and Spread of Contamination around Mine Tailings.
Stovern, Michael; Guzmán, Héctor; Rine, Kyle P; Felix, Omar; King, Matthew; Ela, Wendell P; Betterton, Eric A; Sáez, Avelino Eduardo
2016-02-01
Wind erosion, transport and deposition of windblown dust from anthropogenic sources, such as mine tailings impoundments, can have significant effects on the surrounding environment. The lack of vegetation and the vertical protrusion of the mine tailings above the neighboring terrain make the tailings susceptible to wind erosion. Modeling the erosion, transport and deposition of particulate matter from mine tailings is a challenge for many reasons, including heterogeneity of the soil surface, vegetative canopy coverage, dynamic meteorological conditions and topographic influences. In this work, a previously developed Deposition Forecasting Model (DFM) that is specifically designed to model the transport of particulate matter from mine tailings impoundments is verified using dust collection and topsoil measurements. The DFM is initialized using data from an operational Weather Research and Forecasting (WRF) model. The forecast deposition patterns are compared to dust collected by inverted-disc samplers and determined through gravimetric, chemical composition and lead isotopic analysis. The DFM is capable of predicting dust deposition patterns from the tailings impoundment to the surrounding area. The methodology and approach employed in this work can be generalized to other contaminated sites from which dust transport to the local environment can be assessed as a potential route for human exposure.
Windblown Dust Deposition Forecasting and Spread of Contamination around Mine Tailings
Stovern, Michael; Guzmán, Héctor; Rine, Kyle P.; Felix, Omar; King, Matthew; Ela, Wendell P.; Betterton, Eric A.; Sáez, Avelino Eduardo
2017-01-01
Wind erosion, transport and deposition of windblown dust from anthropogenic sources, such as mine tailings impoundments, can have significant effects on the surrounding environment. The lack of vegetation and the vertical protrusion of the mine tailings above the neighboring terrain make the tailings susceptible to wind erosion. Modeling the erosion, transport and deposition of particulate matter from mine tailings is a challenge for many reasons, including heterogeneity of the soil surface, vegetative canopy coverage, dynamic meteorological conditions and topographic influences. In this work, a previously developed Deposition Forecasting Model (DFM) that is specifically designed to model the transport of particulate matter from mine tailings impoundments is verified using dust collection and topsoil measurements. The DFM is initialized using data from an operational Weather Research and Forecasting (WRF) model. The forecast deposition patterns are compared to dust collected by inverted-disc samplers and determined through gravimetric, chemical composition and lead isotopic analysis. The DFM is capable of predicting dust deposition patterns from the tailings impoundment to the surrounding area. The methodology and approach employed in this work can be generalized to other contaminated sites from which dust transport to the local environment can be assessed as a potential route for human exposure. PMID:29082035
Correlation of Fin Buffet Pressures on an F/A-18 with Scaled Wind-Tunnel Measurements
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Shah, Gautam H.
1999-01-01
Buffeting is an aeroelastic phenomenon occurring at high angles of attack that plagues high performance aircraft, especially those with twin vertical tails. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting responses were computed using the measured buffet pressures and compared to the measured buffeting responses. The calculated results did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting predictions. Several wind-tunnel investigations were conducted for this purpose. When compared, the results of these tests show that the partial correlation scales with flight conditions. One of the remaining questions is whether the wind-tunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the High Alpha Research Vehicle indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.
Oil-flow study of a Space Shuttle orbiter tip-fin controller
NASA Technical Reports Server (NTRS)
Helms, V. T., III
1983-01-01
Possible use of tip-fin controllers instead of a vertical tail on advanced winged entry vehicles was examined. Elimination of the vertical tail and using tip-fins offers the advantages of positive yaw control at high angles of attack and a potential weight savings. Oil-flow technique was used to obtain surface flow patterns on a tip-fin installed on a 0.01-scale Space Shuttle orbiter model for the purpose of assessing the extent of flow interference effects on the wing and tip-fin which might lead to serious heating problems. Tests were conducted in air at Mach 10 for a free-stream Reynolds numbers of .000113 at 20, 30, and 40 degree angle of attack and sideslip angles of 0 and 2 degree. Elevon deflections of -10, 0, and 10 degree and tip-fin control-surface deflections of 0, 20, and 40 degree were employed. Test results were also used to aid in the interpretation of heating data obtained on a Shuttle orbiter tip-fin on another model in a different facility. A limited comparison of oil-flow patterns and heat-transfer data is included. It was determined that elevon deflection angles from -10 to 10 degree and sideslip angles up to 2 degree have very little effect on tip-fin surface flow patterns. Also, there is a minimum of interference between the tip-fin and the wing. The most significant flow interactions occur on the tip-fin onboard surface as a result of its control-surface deflections.
NASA Technical Reports Server (NTRS)
Schuldenfrei, Marvin; Comisarow, Paul; Goodson, Kenneth W
1947-01-01
Tests were made of an airplane model having a 45.1 degree swept-back wing with aspect ratio 2.50 and taper ratio 0.42 and a 42.8 degree swept-back horizontal tail with aspect ratio 3.87 and taper ratio 0.49 to determine its low-speed stability and control characteristics. The test Reynolds number was 2.87 x 10(6) based on a mean aerodynamic chord of 2.47 feet except for some of the aileron tests which were made at a Reynolds number of 2.05 x 10(6). With the horizontal tail located near the fuselage juncture on the vertical tail, model results indicated static longitudinal instability above a lift coefficient that was 0.15 below the lift coefficient at which stall occurred. Static longitudinal stability, however, was manifested throughout the life range with the horizontal tail located near the top of the vertical tail. The use of 10 degrees negative dihedral on the wing had little effect on the static longitudinal stability characteristics. Preliminary tests of the complete model revealed an undesirable flat spot in the yawing-moment curves at low angles of attack, the directional stability being neutral for yaw angles of plus-or-minus 2 degrees. This undesirable characteristic was improved by replacing the thick original vertical tail with a thin vertical tail and by flattening the top of the dorsal fairing.
Hypersonic shock tunnel heat transfer tests of the Space Shuttle SILTS pod configuration
NASA Technical Reports Server (NTRS)
Wittliff, C. E.
1983-01-01
Heat transfer measurements have been made on a 0.0175-scale NASA Space Shuttle orbiter model having a simulated SILTS (Shuttle Infrared Leeside Temperature Sensor) pod on top of the vertical tail. Heat transfer distributions were measured both on the pod and on the vertical tail. The test program covered Mach numbers of 8, 11 and 16 in air, at Reynolds numbers from 100,000 to 18 million, based on model length. The angle of attack ranged from 30 deg to 40 deg at sideslip angles from -2 to +2 deg. Data were obtained with 92 thin film assistance thermometers located on the SILTS pod and on the upper 30 percent of the vertical tail. Heat transfer rates measured on the vertical tail show good agreement with flight data obtained from missions STS-1, -2 and -3. The variation of heat transfer to the pod with Reynolds number, Mach number and angle of attack is discussed.
Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.; Babb, C. Donald
1968-01-01
An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.
Lateral Stability Characteristics of a 1/8.33-Scale Powered Model of the Republic XF-12 Airplane
NASA Technical Reports Server (NTRS)
Pepper, Edward; Foster, Gerald V.
1947-01-01
The XF-12 airplane is a high-performance photo-reconnaissance aircraft designed for the Army Air Forces by the Republic Aviation Corporation. An investigation of a 1/8.33 - scale powered model was made in the Langley l9-foot pressure tunnel to obtain information relative to the aerodynamic design of the airplane. The model was tested with and without the original vertical tail. and with two revised tails. For the revised tail no. 1, the span of the original vertical .tail was increased about 15 percent and the portion of the vertical tail between the stabilizer and fuselage behind the rudder hinge line was allowed to deflect simultaneously with the main rudder. Revision no. 2 incorporated the increased span, but the lower rudder was locked in the neutral position. For all the tail arrangements investigated it was indicated that the airplane will possess positive effective dihedral and will be directionally stable regardless of flap or power condition. The rudder effectiveness is greater for the revised tails than for the original tail, but this is offset by the increase in directional stability caused by the revised tail. All the rudder arrangements appear inadequate in trimming out the resultant yawing moments at zero yaw in a take - off condition with the left-hand outboard propeller windmilling and the remaining engines developing take-off power.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Results of an investigation of the aerodynamic loads on a canard airplane model are presented without detailed analysis for the Mach number range of 0.70 t o 2.22. The model consisted of a triangular wing and canard of aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and either a single body-mounted vertical tail or twin wing mounted vertical tails of low aspect ratio and sweptback plan form. The body, right wing panel, single vertical tail, and left twin vertical tail were instrumented for measuring pressures. Data were obtained for angles of attack ranging from -4 degrees to +16 degrees, nominal canard deflection angles of 0 degrees and 10 degrees, and angles of sideslip of 0 degrees and 5.3 degrees. The Reynolds number was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data are presented in graphical form and attention is directed to some of the results of the investigation. All of the experimental results have been tabulated in the form of pressure coefficients and integrations of the pressure coefficients and are available as supplements to this paper. A brief summary of the contents of the tabular material is given.
At–Sea Behavior Varies with Lunar Phase in a Nocturnal Pelagic Seabird, the Swallow-Tailed Gull
Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin
2013-01-01
Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase. PMID:23468889
Multistage aerospace craft. [perspective drawings of conceptual design
NASA Technical Reports Server (NTRS)
Kelly, D. L. (Inventor)
1973-01-01
A conceptual design of a multi-stage aerospace craft is presented. Two perspective views of the vehicle are developed to show the two component configuration with delta wing, four vertical tail surfaces, tricycle landing gear, and two rocket exhaust nozzles at the rear of the fuselage. Engines for propulsion in the atmosphere are mounted on the fuselage in front of the wing root attachment.
NASA Astrophysics Data System (ADS)
Chen, Yong; Viresh, Wickramasinghe; Zimcik, David
2006-03-01
Twin-tail fighter aircraft such as the F/A-18 may experience intense buffet loads at high angles of attack flight conditions and the broadband buffet loads primarily excite the first bending and torsional modes of the vertical fin that results in severe vibration and dynamic stresses on the vertical fin structures. To reduce the premature fatigue failure of the structure and to increase mission availability, a novel hybrid actuation system was developed to actively alleviate the buffet response of a full-scale F/A-18 vertical fin. A hydraulic rudder actuator was used to control the bending mode of the fin by engaging the rudder inertial force. Multiple Macro Fiber Composites actuators were surface mounted to provide induced strain actuation authority to control the torsional mode. Experimental system identification approach was selected to obtain a state-space model of the system using open-loop test data. An LQG controller was developed to minimize the dynamic response of the vertical fin at critical locations. Extensive simulations were conducted to evaluate the control authority of the actuators and the performance of the controller under various buffet load cases and levels. Closed-loop tests were performed on a full-scale F/A-18 empennage and the results validated the effectiveness of the real-time controller as well as the development methodology. In addition, the ground vibration test demonstrated that the hybrid actuation system is a feasible solution to alleviate the vertical tail buffet loads in high performance fighter aircraft.
Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model
NASA Astrophysics Data System (ADS)
Monastero, Marianne; Lindstrom, Annika; Beyar, Michael; Amitay, Michael
2015-11-01
Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.
Space Shuttle Orbiter Digital Outer Mold Line Scanning
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Wilson, Brad; Pavek, Mike; Berger, Karen
2012-01-01
The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to produce post-flight configuration outer mold line surfaces. Very detailed scans of the windward side of these vehicles provide resolution of the detailed tile step and gap geometry, as well as the reinforced carbon carbon nose cap and leading edges. Lower resolution scans of the upper surface provide definition of the crew cabin windows, wing upper surfaces, payload bay doors, orbital maneuvering system pods and the vertical tail. The process for acquisition of these digital scans as well as post-processing of the very large data set will be described.
NASA Technical Reports Server (NTRS)
Henderson, W. P.
1974-01-01
An investigation has been conducted to determine the effects of canard, canard location, vertical tails, and vertical-tail location on the aerodynamic characteristics of a model having a 59 deg sweptback wing. The investigation was conducted at a Mach number of 0.30, at angles of attack up to 22 deg and at sideslip angles of 0 deg and plus or minus 5 deg. The results of the study indicate that adding the canard to the model had only a slight effect on the lift at the lower angles of attack. At the higher angles of attack there is a significant effect of canard height on lift, canard in the high location (above the wing chord plane) resulting in the highest lifts. The lift drag characteristics are predicted well for the configuration with the mid or high canard locations by combining a potential flow solution on the canard with a potential plus vortex solution on the wing. Variations in the height significantly affect the pitching-moment characteristics of the configuration; the configuration with the low or mid canard location exhibits an increase in stability at the higher lift coefficients, whereas the configuration with the high canard exhibits pitch-up. Adding the vertical tails in the outboard location caused a significant loss in lift at the higher angles of attack; this lift loss was eliminated by moving the vertical tails inboard.
An MRF-based device for the torque stiffness control of all movable vertical tails
NASA Astrophysics Data System (ADS)
Ameduri, Salvatore; Concilio, Antonio; Gianvito, Antonio; Lemme, Manuel
2005-05-01
Aerodynamic control surfaces efficiency is among the major parameters defining the performance of generic aircraft and is strongly affected by geometric and stiffness characteristics. A target of the '3AS' European Project is to estimate the eventual benefits coming from the adaptive control of the torque rigidity of the vertical tail of the EuRAM wind tunnel model. The specific role of CIRA inside the Project is the design of a device based on the "Smart Structures and Materials" concept, able to produce required stiffness variations. Numerical and experimental investigations pointed out that wide excursions of the tail torque rigidity may assure higher efficiency, for several flight regimes. Stiffness variations may be obtained through both classical mechanic-hydraulic and smart systems. In this case, the attainable weight and reliability level may be the significant parameters to drive the choice. For this reason, CIRA focused its efforts also on the design of devices without heavy mechanical parts. The device described in this work is schematically constituted by linear springs linked in a suitably way to the tail shaft. Required stiffness variations are achieved by selectively locking one or more springs, through a hydraulic system, MRF-based. An optimisation process was performed to find the spring features maximising the achievable stiffness range. Then, the hydraulic MRF design was dealt with. Finally, basing on numerical predictions, a prototype was manufactured and an experimental campaign was performed to estimate the device static and dynamic behaviour.
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Pinella, David; Garrison, Peter
1999-01-01
Collection efficiency and ice accretion calculations were made for a commercial transport using the NASA Lewis LEWICE3D ice accretion code, the ICEGRID3D grid code and the CMARC panel code. All of the calculations were made on a Windows 95 based personal computer. The ice accretion calculations were made for the nose, wing, horizontal tail and vertical tail surfaces. Ice shapes typifying those of a 30 minute hold were generated. Collection efficiencies were also generated for the entire aircraft using the newly developed unstructured collection efficiency method. The calculations highlight the flexibility and cost effectiveness of the LEWICE3D, ICEGRID3D, CMARC combination.
NASA Technical Reports Server (NTRS)
Dollyhigh, S. M.
1974-01-01
An investigation has been made in the Mach number range from 0.20 to 2.16 to determine the longitudinal aerodynamic characteristics of a fighter airplane concept. The configuration concept employs a single fixed geometry inlet, a 50 deg leading-edge-angle clipped-arrow wing, a single large vertical tail, and low horizontal tails. The wing camber surface was optimized in drag due to lift and was designed to be self-trimming at Mach 1.40 and at a lift coefficient of 0.20. An uncambered or flat wing of the same planform and thickness ratio was also tested. However, for the present investigation, the fuselage was not cambered. Further tests should be made on a cambered fuselage version, which attempts to preserve the optimum wing loading on that part of the theoretical wing enclosed by the fuselage.
AFC-Enabled Vertical Tail System Integration Study
NASA Technical Reports Server (NTRS)
Mooney, Helen P.; Brandt, John B.; Lacy, Douglas S.; Whalen, Edward A.
2014-01-01
This document serves as the final report for the SMAAART AFC-Enabled Vertical Tail System Integration Study. Included are the ground rule assumptions which have gone into the study, layouts of the baseline and AFC-enabled configurations, critical sizing information, system requirements and architectures, and assumed system properties that result in an NPV assessment of the two candidate AFC technologies.
Aerodynamic Effects and Modeling of Damage to Transport Aircraft
NASA Technical Reports Server (NTRS)
Shah, Gautam H.
2008-01-01
A wind tunnel investigation was conducted to measure the aerodynamic effects of damage to lifting and stability/control surfaces of a commercial transport aircraft configuration. The modeling of such effects is necessary for the development of flight control systems to recover aircraft from adverse, damage-related loss-of-control events, as well as for the estimation of aerodynamic characteristics from flight data under such conditions. Damage in the form of partial or total loss of area was applied to the wing, horizontal tail, and vertical tail. Aerodynamic stability and control implications of damage to each surface are presented, to aid in the identification of potential boundaries in recoverable stability or control degradation. The aerodynamic modeling issues raised by the wind tunnel results are discussed, particularly the additional modeling requirements necessitated by asymmetries due to damage, and the potential benefits of such expanded modeling.
Estimation of Directional Stability Derivatives at Moderate Angles and Supersonic Speeds
NASA Technical Reports Server (NTRS)
Kaattari, George E.
1959-01-01
A study of some of the important aerodynamic factors affecting the directional stability of supersonic airplanes is presented. The mutual interference fields between the body, the lifting surfaces, and the stabilizing surfaces are analyzed in detail. Evaluation of these interference fields on an approximate theoretical basis leads to a method for predicting directional stability of supersonic airplanes. Body shape, wing position and plan form, vertical tail position and plan form, and ventral fins are taken into account. Estimates of the effects of these factors are in fair agreement with experiment.
Dynamics of ultralight aircraft: Dive recovery of hang gliders
NASA Technical Reports Server (NTRS)
Jones, R. T.
1977-01-01
Longitudinal control of a hang glider by weight shift is not always adequate for recovery from a vertical dive. According to Lanchester's phugoid theory, recovery from rest to horizontal flight ought to be possible within a distance equal to three times the height of fall needed to acquire level flight velocity. A hang glider, having a wing loading of 5 kg sq m and capable of developing a lift coefficient of 1.0, should recover to horizontal flight within a vertical distance of about 12 m. The minimum recovery distance can be closely approached if the glider is equipped with a small all-moveable tail surface having sufficient upward deflection.
Flight and Wind-tunnel Tests of an XBM-1 Dive Bomber
NASA Technical Reports Server (NTRS)
Donely, Philip; Pearson, Henry A
1938-01-01
Results are given of pressure-distribution measurements made in flight over the right wing cellule and the right half of the horizontal tail surfaces of a dive-bombing biplane. Simultaneous measurements were also taken of the air speed, control-surface positions, control forces, and normal accelerations during various abrupt maneuvers in vertical plane. These maneuvers consisted of push-downs and pull-ups from level flight, dives and dive pull-ups from inverted flight. Besides the pressure measurements, flight tests were made to obtain (1) wing-fabric deflections during dives and (2) variation of the minimum drag coefficient with Reynolds Number. Supplementary tests were also done in the full-scale wind tunnel to obtain the characteristics of the airplane under various propeller conditions and with various tail settings. The results indicate that: (1) by increasing the fabric deflection between pressure ribs, the span load distribution was considerably modified near the center and the wing moment relations were changed; and (2) the minimum drag was less for the idling propeller than for the propeller locked in a vertical position. The value of C(sub D sub min) was equal to K(Reynolds Number)(exp -0.03) for a range from 2,800,000 to 13,100,000.
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1993-01-01
Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.
Wang, Yi; Yuan, Qunhui; Xu, Hongbo; Zhu, Xuefeng; Gan, Wei
2016-07-21
Low-dimensional molecular motifs with diversity developed via the on-surface chemistry are attracting growing interest for their potential in advanced nanofabrication. In this work, scanning tunneling microscopy was employed to investigate the in situ and ex situ metal coordinations between 4,4'-ditetradecyl-2,2'-bipyridine (bpy) and Zn(ii) or Cu(ii) ions at a highly oriented pyrolytic graphite (HOPG)/1-phenyloctane interface under ambient conditions. The results demonstrate that the bpy adopts a flat-lying orientation with its substituted alkyl chains in a tail-to-tail arrangement in a bpy monolayer. For the in situ coordination, the bpy/Zn(ii) and bpy/Cu(ii) complexes are aligned in edge-on fashions, wherein the bpy stands vertically on the HOPG surface and interdigitates at the alkyl chains. In the two-dimensional arrays of ex situ coordinated complexes, metal dependent motifs have been observed with Zn(ii) and Cu(ii), wherein the bipyridine moieties are parallel to the graphite surface. These results suggest that the desired on-surface coordination architectures may be achieved by the intentional selection of the metal centers.
NASA Technical Reports Server (NTRS)
Lovell, Powell M., Jr.
1954-01-01
An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.
NASA Technical Reports Server (NTRS)
Henderson, W. P.; Huffman, J. K.
1974-01-01
An investigation has been conducted to determine the effects of configuration variables on the lateral-directional stability characteristics of a wing-fuselage configuration. The variables under study included variations in the location of a single center-line vertical tail and twin vertical tails, wing height, fuselage strakes, and horizontal tails. The study was conducted in the Langley high-speed 7-by 10-foot tunnel at a Mach number of 0.30, at angles of attack up to 44 deg and at sideslip angles of 0 deg and plus or minus 5 deg.
Consideration of dynamic loads on the vertical tail by the theory of flat yawing maneuvers
NASA Technical Reports Server (NTRS)
Boshar, John; Davis, Philip
1946-01-01
Dynamic yawing effects on vertical tail loads are considered by a theory of flat yawing maneuvers. A comparison is shown between computed loads and the loads measured in flight in a fighter airplane. The dynamic effects were investigated on a large flying boat for both an abrupt rudder deflection and a sinusoidal rudder deflection. Only a moderate amount of control deflection was found to be necessary to attain the ultimate design load on the tail. In order to take into account dynamic effects in design, specifications of yawing maneuverability or control movement are needed.
Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces
NASA Technical Reports Server (NTRS)
Thomas, A. M.; Tiwari, S. N.
1997-01-01
A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition.
Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail
NASA Technical Reports Server (NTRS)
Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.
2016-01-01
This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.
NASA Technical Reports Server (NTRS)
Arbic, R. G.
1955-01-01
Results are presented of a free-flight investigation between Mach numbers of 0.7 to 1.3 and Reynolds numbers of 3.1 x 10(exp 6) to 7.0 x 10(exp 6) to determine the longitudinal aerodynamic characteristics of the Northrop MX-775A missile. This missile has a weng, body, and vertical tail, but has no horizontal tail. The basic wing plan form has an aspect ratio of 5.5, 45 deg of sweepback of the 0.406 streamwise chord line, and a taper ratio of 0.4. A 1/10-scale steel-wing model of the missile was flown with modifications to the basic wing plan form consisting of leading-edge chord-extensions deflected 7 deg downward together with the forward 15 percent of the wing chord, and inboard trailing-edge flaps deflected 5 deg downward. In addition, the model had a static-pressure tube mounted at the tip of the vertical tail for position-error measurements and had a speed brake also mounted on the vertical tail to trim the model to positive lift coefficients and to permit determination of the trim and drag effectiveness of the brake. The data are uncorrected for the effects of wing elasticity, but experimental wing influence coefficients are presented.
NASA Technical Reports Server (NTRS)
Shrout, B. L.; Corlett, W. A.; Collins, I. K.
1979-01-01
The tabulated results of surface pressure tests conducted on the wing and fuselage of an airplane model in the Langley Unitary Plan wind tunnel are presented without analysis. The model tested was that of a supersonic-cruise airplane with a highly swept arrow-wing planform, two engine nacelles mounted beneath the wing, and outboard vertical tails. Data were obtained at Mach numbers of 2.30, 2.96, and 3.30 for angles of attack from -4 deg to 12 deg. The Reynolds number for these tests was 6,560,000 per meter.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
1991-01-01
A wind tunnel experiment was conducted in the David Taylor Research Center 7- by 10-Foot Transonic Tunnel of the wing leading-edge extension (LEX) and forebody vortex flows at subsonic and transonic speeds about a 0.06-scale model of the F/A-18. The primary goal was to improve the understanding and control of the vortical flows, including the phenomena of vortex breakdown and vortex interactions with the vertical tails. Laser vapor screen flow visualizations, LEX, and forebody surface static pressures, and six-component forces and moments were obtained at angles of attack of 10 to 50 degrees, free-stream Mach numbers of 0.20 to 0.90, and Reynolds numbers based on the wing mean aerodynamic chord of 0.96 x 10(exp 6) to 1.75 x 10(exp 6). The wind tunnel results were correlated with in-flight flow visualizations and handling qualities trends obtained by NASA using an F-18 High-Alpha Research Vehicle (HARV) and by the Navy and McDonnell Douglas on F-18 aircraft with LEX fences added to improve the vertical tail buffet environment. Key issues that were addressed include the sensitivity of the vortical flows to the Reynolds number and Mach number; the reduced vertical tail excitation, and the corresponding flow mechanism, in the presence of the LEX fence; the repeatability of data obtained during high angle-of-attack wind tunnel testing of F-18 models; the effects of particle seeding for flow visualization on the quantitative model measurements; and the interpretation of off-body flow visualizations obtained using different illumination and particle seeding techniques.
NASA Technical Reports Server (NTRS)
Bobbitt, Percy J
1957-01-01
The lifting-surface sidewash behind rolling triangular wings has been derived for a range of supersonic Mach numbers for which the wing leading edges remain swept behind the mark cone emanating from the wing apex. Variations of the sidewash with longitudinal distance in the vertical plane of symmetry are presented in graphical form. An approximate expression for the sidewash has been developed by means of an approach using a horseshoe-vortex approximate-lifting-line theory. By use of this approximate expression, sidewash may be computed for wings of arbitrary plan form and span loading. A comparison of the sidewash computed by lifting-surface and lifting-line expressions for the triangular wing showed good agreement except in the vicinity of the trailing edge when the leading edge approached the sonic condition. An illustrative calculation has been made of the force induced by the wing sidewash on a vertical tail located in various longitudinal positions.
Schein, Stan; Friedrich, Tara
2008-01-01
Carbon atoms self-assemble into the famous soccer-ball shaped Buckminsterfullerene (C60), the smallest fullerene cage that obeys the isolated-pentagon rule (IPR). Carbon atoms self-assemble into larger (n > 60 vertices) empty cages as well—but only the few that obey the IPR—and at least 1 small fullerene (n ≤ 60) with adjacent pentagons. Clathrin protein also self-assembles into small fullerene cages with adjacent pentagons, but just a few of those. We asked why carbon atoms and clathrin proteins self-assembled into just those IPR and small cage isomers. In answer, we described a geometric constraint—the head-to-tail exclusion rule—that permits self-assembly of just the following fullerene cages: among the 5,769 possible small cages (n ≤ 60 vertices) with adjacent pentagons, only 15; the soccer ball (n = 60); and among the 216,739 large cages with 60 < n ≤ 84 vertices, only the 50 IPR ones. The last finding was a complete surprise. Here, by showing that the largest permitted fullerene with adjacent pentagons is one with 60 vertices and a ring of interleaved hexagons and pentagon pairs, we prove that for all n > 60, the head-to-tail exclusion rule permits only (and all) fullerene cages and nanotubes that obey the IPR. We therefore suggest that self-assembly that obeys the IPR may be explained by the head-to-tail exclusion rule, a geometric constraint. PMID:19050075
Space Shuttle Orbiter SILTS Pod Flow Angularity and Aerodynamic Heating Tests (OH-102A and OH-400).
1979-11-01
fabricated from 17 - 4PH stainless steel and instrumented with tnermocouples. A photograph or the 9L-p model with the U.UJZJ scale vertical tail installed is...DISTRIBUTION STATE=MENT (of this ’Report) Approved for public release; distribution unlimited. 17 . DISTRIBUTION STATEMENT (of the abstract entered In...Model Installation ....... .................. . 17 3. Vertical Tail for Flow Angularity ..... .............. ... 18 4. Photograph of 56-) Model
NASA Technical Reports Server (NTRS)
Smith, Williard G.
1954-01-01
Experimental results showing the static longitudinal-stability and control characteristics of a model of a fighter airplane employing a low-aspect-ratio unswept wing and an all-movable horizontal tail are presented. The investigation was made over a Mach number range from 0.60 to 0.90 and from 1.35 to 1.90 at a constant Reynolds number of 2.40 million, based on the wing mean aerodynamic chord. Because of the location of the horizontal tail at the tip of the vertical tail, interference was noted between the vertical tail and the horizontal tail and between the wing and the horizontal tail. This interference produced a positive pitching-moment coefficient at zero lift throughout the Mach number range of the tests, reduced the change in stability with increasing lift coefficient of the wing at moderate lift coefficients in the subsonic speed range, and reduced the stability at low lift coefficients at high supersonic speeds. The lift and pitching-moment effectiveness of the all movable tail was unaffected by the interference effects and was constant throughout the lift-coefficient range of the tests at each Mach number except 1.90.
An Overview of Active Flow Control Enhanced Vertical Tail Technology Development
NASA Technical Reports Server (NTRS)
Lin, John C.; Andino, Marlyn Y.; Alexander, Michael G.; Whalen, Edward A.; Spoor, Marc A.; Tran, John T.; Wygnanski, Israel J.
2016-01-01
This paper summarizes a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency of a vertical tail. Sweeping jet AFC technology was successfully tested on subscale and full-scale models as well as in flight. The subscale test was performed at Caltech on a 14% scale model. More than 50% side force enhancement was achieved by the sweeping jet actuation when the momentum coefficient was 1.7%. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. Subsequently, a full-scale Boeing 757 vertical tail model equipped with sweeping jets was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. There, flow separation control optimization was performed at near flight conditions. Greater than 20% increase in side force were achieved for the maximum rudder deflection of 30deg at the key sideslip angles (0deg and -7.5deg) with a 31-actuator AFC configuration. Based on these tests, the momentum coefficient is shown to be a necessary, but not sufficient parameter to use for design and scaling of sweeping jet AFC from subscale tests to full-scale applications. Leveraging the knowledge gained from the wind tunnel tests, the AFC-enhanced vertical tail technology was successfully flown on the Boeing 757 ecoDemonstrator in the spring of 2015.
The asymptotic structure of a slender coiling fluid thread
NASA Astrophysics Data System (ADS)
Blount, Maurice; Lister, John
2010-11-01
The buckling of a viscous fluid thread as it falls through air onto a stationary surface is a well-known breakfast-time phenomenon which exhibits a rich variety of dynamical regimes [1]. Since the bending resistance of a slender thread is small, bending motion is largely confined to a short region of coiling near the surface. If the height of fall is large enough, then the thread above the coiling region forms a `tail' that falls nearly vertically under gravity but is deflected slightly due to forces exerted on it by the coil. Although it is possible to use force balances in the coil to estimate scalings for the coiling frequency, we analyse the solution structure of the entire thread in the asymptotic limit of a very slender thread and thereby include the dynamic interaction between the coil and the tail. Quantitative predictions of the coiling frequency are obtained which demonstrate the existence of leading-order corrections to scalings previously derived. In particular, we show that in the regime where the deflection of the tail is governed by a balance between centrifugal acceleration, hoop stress and gravity, the tail behaves as a flexible circular pendulum that is forced by bending stress exerted by the coil. The amplitude of the response is calculated and the previously observed resonance when the coiling frequency coincides with one of the eigenfrequencies of a free flexible pendulum is thereby explained. [1] N.M. Ribe et al., J. Fluid Mech. 555, 275-297.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
... track-and-balance of the tail rotor. Finally, this AD requires installing a vertical stabilizer..., track- and-balance of the tail rotor. Accomplishing the tail rotor track-and- balance would involve both...'' state-- almost to the point of takeoff, and the mechanic would accomplish the vibration measurements...
Laser pulse bidirectional reflectance from CALIPSO mission
NASA Astrophysics Data System (ADS)
Lu, Xiaomei; Hu, Yongxiang; Yang, Yuekui; Vaughan, Mark; Liu, Zhaoyan; Rodier, Sharon; Hunt, William; Powell, Kathy; Lucker, Patricia; Trepte, Charles
2018-06-01
This paper presents an innovative retrieval method that translates the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. To better analyze the surface returns, the CALIOP receiver impulse response and the downlinked samples' distribution at 30 m vertical resolution are discussed. The saturated laser pulse magnitudes from snow and ice surfaces are recovered based on information extracted from the tail end of the surface signal. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud-covered regions and MODIS BRDF-albedo model parameters. In addition to the surface bidirectional reflectance, the column top-of-atmosphere bidirectional reflectances are calculated from the CALIOP lidar background data and compared with the bidirectional reflectances derived from WFC radiance measurements. The retrieved CALIOP surface bidirectional reflectance and column top-of-atmosphere bidirectional reflectance results provide unique information to complement existing MODIS standard data products and are expected to have valuable applications for modelers.
NASA Astrophysics Data System (ADS)
Gernez, Pierre; Stramski, Dariusz; Darecki, Miroslaw
2011-07-01
Time series measurements of fluctuations in underwater downward irradiance, Ed, within the green spectral band (532 nm) show that the probability distribution of instantaneous irradiance varies greatly as a function of depth within the near-surface ocean under sunny conditions. Because of intense light flashes caused by surface wave focusing, the near-surface probability distributions are highly skewed to the right and are heavy tailed. The coefficients of skewness and excess kurtosis at depths smaller than 1 m can exceed 3 and 20, respectively. We tested several probability models, such as lognormal, Gumbel, Fréchet, log-logistic, and Pareto, which are potentially suited to describe the highly skewed heavy-tailed distributions. We found that the models cannot approximate with consistently good accuracy the high irradiance values within the right tail of the experimental distribution where the probability of these values is less than 10%. This portion of the distribution corresponds approximately to light flashes with Ed > 1.5?, where ? is the time-averaged downward irradiance. However, the remaining part of the probability distribution covering all irradiance values smaller than the 90th percentile can be described with a reasonable accuracy (i.e., within 20%) with a lognormal model for all 86 measurements from the top 10 m of the ocean included in this analysis. As the intensity of irradiance fluctuations decreases with depth, the probability distribution tends toward a function symmetrical around the mean like the normal distribution. For the examined data set, the skewness and excess kurtosis assumed values very close to zero at a depth of about 10 m.
NASA Technical Reports Server (NTRS)
Graves, E. B.
1972-01-01
A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.
Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft
NASA Technical Reports Server (NTRS)
Boroughs, R. R.; Padmanabhan, V.
1983-01-01
The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described.
1996-03-22
During the final phase of tests with the HARV, Dryden technicians installed nose strakes, which were panels that fitted flush against the sides of the forward nose. When the HARV was at a high alpha, the aerodynamics of the nose caused a loss of directional stability. Extending one or both of the strakes results in strong side forces that, in turn, generated yaw control. This approach, along with the aircraft's Thrust Vectoring Control system, proved to be stability under flight conditions in which conventional surfaces, such as the vertical tails, were ineffective.
Innovative Flow Control Concepts for Drag Reduction
NASA Technical Reports Server (NTRS)
Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.
2016-01-01
This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs. The ERA systems analysis studies performed by NASA indicated that AFC-enhanced vertical tail could produce approximately 0.9% drag reduction for a large twin aisle aircraft and IAM coatings could enable approximately 1.2% drag reduction recovery for a potential total drag reduction of approximately 3.3% for a single aisle aircraft with a natural laminar flow (NLF) wing design.
NASA Astrophysics Data System (ADS)
Rongstad, B.; Marchitto, T. M., Jr.; Koutavas, A.; Mekik, F.
2017-12-01
El Niño Southern Oscillation (ENSO) is Earth's dominant mode of interannual climate variability, and is responsible for widespread climatic, ecological and societal impacts, such as reduced upwelling and fishery collapse in the eastern equatorial Pacific during El Niño events. While corals offer high resolution records of paleo-ENSO, continuous and gap-free records for the tropical Pacific are rare. Individual foraminifera analyses provide an opportunity to create continuous down-core records of ENSO through the construction and comparison of species-specific sea surface temperature (SST) distributions at different time periods; however, there has been little focus on calibrating this technique to modern ENSO conditions. Here, we present data from a core-top calibration of individual Mg/Ca measurements in planktic foraminifera in the eastern tropical Pacific, using surface dweller G. ruber and thermocline dweller N. dutertrei. We convert the individual Mg/Ca measurements to inferred temperature distributions for each species, and then compare the distributions to modern day temperature characteristics including vertical structure, annual mean, seasonality, and interannual variability. ENSO variance is theoretically inferred from the tails of the distributions: El Niño events affect the warm tail and La Niña events affect the cool tail. Finally, we discuss the utility of individual measurements of Mg/Ca in planktic foraminifera to reconstruct ENSO in down-core sections.
Pseudorotational epitaxy of self-assembled octadecyltrichlorosilane monolayers on sapphire (0001)
Steinrück, H. -G.; Magerl, A.; Deutsch, M.; ...
2014-10-06
The structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails. The lattice mismatch of ~1% – 3% to the sapphire’s and the different length scale introduced by the lateral Si-O-Si bonding prohibit positional epitaxy. However, the substrate induces an intriguing increase in themore » crystalline coherence length of the SAM’s powderlike crystallites when rotationally aligned with the sapphire’s lattice. As a result, the increase correlates well with the rotational dependence of the separation of corresponding substrate-monolayer lattice sites.« less
Tests Of Avrocar Annular Jet VTOL Airplane in Ames 40x80 foot Wind Tunnel.
1997-12-30
Rear view of the Avrocar without the tail, with ground board and variable height struts. The air force wanted to test the design of a flying saucer with vertical takeoff and landing capability. The design proved unstable without the tail.
Migration and speciation of heavy metal in salinized mine tailings affected by iron mining.
Zhang, Xu; Yang, Huanhuan; Cui, Zhaojie
2017-10-01
The negative effects of heavy metals have aroused much attention due to their high toxicity to human beings. Migration and transformation trend of heavy metals have a close relationship with soil safety. Researching on migration and transformation of heavy metals in tailings can provide a reliable basis for pollution management and ecosystem restoration. Heavy metal speciation plays an important role in risk assessment. We chose Anshan tailings for our study, including field investigations and laboratory research. Four typical heavy metal elements of mine tailings {Fe (373.89 g/kg), Mn (2,303.80 mg/kg), Pb (40.99 mg/kg) and Cr (199.92 mg/kg)} were studied via Tessier test in vertical and horizontal direction. The main speciation of heavy metals in Anshan tailings was the residual. However, heavy metals have a strong ability for migration and transformation in vertical and horizontal directions. Its tendency to change from stable to unstable speciation results in increasing bioavailability and potential bioavailability. Fe, Mn, Pb and Cr showed different ability in the migration and transformation process (Mn > Pb > Fe > Cr) depending on the characteristics of heavy metals and physicochemical properties of the environment.
NASA Technical Reports Server (NTRS)
Morris, O. A.
1977-01-01
A wind tunnel investigation has been conducted to determine the longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise fighter configuration with a design Mach number of 2.60. The configuration is characterized by a highly swept arrow wing twisted and cambered to minimize supersonic drag due to lift, twin wing mounted vertical tails, and an aft mounted integral underslung duel-engine pod. The investigation also included tests of the configuration with larger outboard vertical tails and with small nose strakes.
Reconstruction of networks from one-step data by matching positions
NASA Astrophysics Data System (ADS)
Wu, Jianshe; Dang, Ni; Jiao, Yang
2018-05-01
It is a challenge in estimating the topology of a network from short time series data. In this paper, matching positions is developed to reconstruct the topology of a network from only one-step data. We consider a general network model of coupled agents, in which the phase transformation of each node is determined by its neighbors. From the phase transformation information from one step to the next, the connections of the tail vertices are reconstructed firstly by the matching positions. Removing the already reconstructed vertices, and repeatedly reconstructing the connections of tail vertices, the topology of the entire network is reconstructed. For sparse scale-free networks with more than ten thousands nodes, we almost obtain the actual topology using only the one-step data in simulations.
Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array
NASA Astrophysics Data System (ADS)
Gallaudet, Timothy Cole
2001-10-01
The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360° imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and horizontal and vertical planes in the volume are constructed from data obtained in 200m deep waters in the Northeastern Gulf of Mexico when the TVSS was towed 78m below the surface, 735m astern of a towship. The processed imagery provide a quasi-synoptic characterization of the spatial and temporal structure of boundary and volume acoustic backscatter and reverberation. Diffraction, element patterns, and high sidelobe levels are shown to be the most serious problems affecting cylindrical arrays such as the TVSS, and an amplitude shading method is presented for reducing the peak sidelobe levels of irregular-line and non-coplanar arrays. Errors in the towfish's attitude and motion sensor, and irregularities in the TVSS's transmitted beampattern produce artifacts in the TVSS-derived bathymetry and seafloor acoustic backscatter imagery. Correction strategies for these problems are described, which are unique in that they use environmental information extracted from both ocean boundaries. Sea surface and volume acoustic backscatter imagery are used to explore and characterize the structure of near-surface bubble clouds, schooling fish, and zooplankton. The simultaneous horizontal and vertical coverage provided by the TVSS is shown to be a primary advantage, motivating further use of multibeam sonars in these applications. Whereas boundary backscatter fluctuations are well described by Weibull, K, and Rayleigh mixture probability distributions, those corresponding to volume backscatter are multi-modal, with the log-normal distribution providing the best fits to the centers of the distributions, and the Rayleigh mixture models providing the best fits to the tails of the distributions. The largest distribution tails result from resonant microbubbles and patchy aggregations of zooplankton. The Office of Naval Research funded this work under ONR-NRL Contract No. N00014-96-1-G9I3.
NASA Astrophysics Data System (ADS)
Ferrer, Gabriel; Sáez, Esteban; Ledezma, Christian
2018-01-01
Copper production is an essential component of the Chilean economy. During the extraction process of copper, large quantities of waste materials (tailings) are produced, which are typically stored in large tailing ponds. Thickened Tailings Disposal (TTD) is an alternative to conventional tailings ponds. In TTD, a considerable amount of water is extracted from the tailings before their deposition. Once a thickened tailings layer is deposited, it loses water and it shrinks, forming a relatively regular structure of tailings blocks with vertical cracks in between, which are then filled up with "fresh" tailings once the new upper layer is deposited. The dynamic response of a representative column of this complex structure made out of tailings blocks with softer material in between was analyzed using a periodic half-space finite element model. The tailings' behavior was modeled using an elasto-plastic multi-yielding constitutive model, and Chilean earthquake records were used for the seismic analyses. Special attention was given to the liquefaction potential evaluation of TTD.
Wind Tunnel Tests Conducted to Develop an Icing Flight Simulator
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.
2001-01-01
As part of NASA's Aviation Safety Program goals to reduce aviation accidents due to icing, NASA Glenn Research Center is leading a flight simulator development activity to improve pilot training for the adverse flying characteristics due to icing. Developing flight simulators that incorporate the aerodynamic effects of icing will provide a critical element in pilot training programs by giving pilots a pre-exposure of icing-related hazards, such as ice-contaminated roll upset or tailplane stall. Integrating these effects into training flight simulators will provide an accurate representation of scenarios to develop pilot skills in unusual attitudes and loss-of-control events that may result from airframe icing. In order to achieve a high level of fidelity in the flight simulation, a series of wind tunnel tests have been conducted on a 6.5-percent-scale Twin Otter aircraft model. These wind tunnel tests were conducted at the Wichita State University 7- by 10-ft wind tunnel and Bihrle Applied Research's Large Amplitude Multiple Purpose Facility in Neuburg, Germany. The Twin Otter model was tested without ice (baseline), and with two ice configurations: 1) Ice on the horizontal tail only; 2) Ice on the wing, horizontal tail, and vertical tail. These wind tunnel tests resulted in data bases of aerodynamic forces and moments as functions of angle of attack; sideslip; control surface deflections; forced oscillations in the pitch, roll, and yaw axes; and various rotational speeds. A limited amount of wing and tail surface pressure data were also measured for comparison with data taken at Wichita State and with flight data. The data bases from these tests will be the foundation for a PC-based Icing Flight Simulator to be delivered to Glenn in fiscal year 2001.
Vortex Flap Technology: a Stability and Control Assessment
NASA Technical Reports Server (NTRS)
Carey, K. M.; Erickson, G. E.
1984-01-01
A comprehensive low-speed wind tunnel investigation was performed of leading edge vortex flaps applied to representative aircraft configurations. A determination was made of the effects of analytically- and empirically-designed vortex flaps on the static longitudinal and lateral-directional aerodynamics, stability, and control characteristics of fighter wings having leading-edge sweep angles of 45 to 76.5 degrees. The sensitivity to several configuration modifications was assessed, which included the effects of flap planform, leading- and trailing-edge flap deflection angles, wing location on the fuselage, forebody strakes, canards, and centerline and outboard vertical tails. Six-component forces and moments, wing surface static pressure distributions, and surface flow patterns were obtained using the Northrop 21- by 30-inch low-speed wind tunnel.
NASA Astrophysics Data System (ADS)
Zhao, Zhou; Junxing, Wang
2018-06-01
Limited by large unit discharge above the overflow weir and deep tail water inside the stilling basin, the incoming flow inside stilling basin is seriously short of enough energy dissipation and outgoing flow still carries much energy with large velocity, bound to result in secondary hydraulic jump outside stilling basin and scour downstream river bed. Based on the RNG k-ɛ turbulence model and the VOF method, this paper comparatively studies flow field between the conventional flat gate pier program and the incompletely flaring gate pier program to reveal energy dissipation mechanism of incomplete flaring gate pier. Results show that incompletely flaring gate pier can greatly promote the longitudinally stretched water jet to laterally diffuse and collide in the upstream region of stilling basin due to velocity gradients between adjacent inflow from each chamber through shrinking partial overflow flow chamber weir chamber, which would lead to large scale vertical axis vortex from the bottom to the surface and enhance mutual shear turbulence dissipation. This would significantly increase energy dissipation inside stilling basin to reduce outgoing velocity and totally solve the common hydraulic problems in large unit discharge and deep tail water projects.
Metamaterial-based "sabre" antenna
NASA Astrophysics Data System (ADS)
Hafdallah Ouslimani, Habiba; Yuan, Tangjie; Kanane, Houcine; Priou, Alain; Collignon, Gérard; Lacotte, Guillaume
2014-05-01
The "sabre" antenna is an array of two monopole elements, vertically polarized with omnidirectional radiation patterns, and placed on either side of a composite material on the tail of an airplane. As an in-phase reflector plane, the antenna uses a compact dual-layer high-impedance surface (DL-HIS) with offset mushroom-like Sivenpiper square shape unit cells. This topology allows one to control both operational frequency and bandgap width, while reducing the total height of the antenna to under λ0/36. The designed antenna structure has a wide bandwidth higher than 24% around 1.4 GHz. The measurements and numerical simulations agree very well.
Pressure measurements on a thick cambered and twisted 58 deg delta wing at high subsonic speeds
NASA Technical Reports Server (NTRS)
Chu, Julio; Lamar, John E.
1987-01-01
A pressure experiment at high subsonic speeds was conducted by a cambered and twisted thick delta wing at the design condition (Mach number 0.80), as well as at nearby Mach numbers (0.75 and 0.83) and over an angle-of-attack range. Effects of twin vertical tails on the wing pressure measurements were also assessed. Comparisons of detailed theoretical and experimental surface pressures and sectional characteristics for the wing alone are presented. The theoretical codes employed are FLO-57, FLO-28, PAN AIR, and the Vortex Lattice Method-Suction Analogy.
Effect of Tail Surfaces on the Base Drag of a Body of Revolution at Mach Numbers of 1.5 and 2.0
NASA Technical Reports Server (NTRS)
Spahr, J Richard; Dickey, Robert R
1951-01-01
Wind-tunnel tests were performed at Mach numbers of 1.5 and 2.0 to investigate the influence of tail surfaces on the base drag of a body of revolution without boattailing and having a turbulent boundary layer. The tail surfaces were of rectangular plan form of aspect ratio 2.33 and has symmetrical, circular-arc airfoil section. The results of the investigation showed that the addition of these tail surfaces with the trailing edges at or near the body base incurred a large increase in the base-drag coefficient. For a cruciform tail having a 10-percent-thick airfoil section, this increase was about 70 percent at a Mach number of 1.5 and 35 percent at a Mach number of 2.0. As the trailing edge of the tail was moved forward or rearward of the base by about one tail-chord length, the base-drag increment was reduced to nearly zero. The increments in base-drag coefficient due to the presence of 10-percent-thick tail surfaces were generally twice those for 5-percent-thick surfaces. The base-drag increments due to the presence of a cruciform tail were less than twice those for a plane tail. An estimate of the change in base pressure due to the tail surfaces was made, based on a simple superposition of the airfoil-pressure field onto the base-pressure field behind the body. A comparison of the results with the experimental values indicated that in most cases the trend in the variation of the base-drag increment with changes in tail position could be predicted by this approximate method but that the quantitative agreement at most tail locations was poor.
NASA Astrophysics Data System (ADS)
Saleem, Amin M.; Andersson, Rickard; Desmaris, Vincent; Enoksson, Peter
2018-01-01
Complete miniaturized on-chip integrated solid-state capacitors have been fabricated based on conformal coating of vertically aligned carbon nanofibers (VACNFs), using a CMOS temperature compatible microfabrication processes. The 5 μm long VACNFs, operating as electrode, are grown on a silicon substrate and conformally coated by aluminum oxide dielectric using atomic layer deposition (ALD) technique. The areal (footprint) capacitance density value of 11-15 nF/mm2 is realized with high reproducibility. The CMOS temperature compatible microfabrication, ultra-low profile (less than 7 μm thickness) and high capacitance density would enables direct integration of micro energy storage devices on the active CMOS chip, multi-chip package and passives on silicon or glass interposer. A model is developed to calculate the surface area of VACNFs and the effective capacitance from the devices. It is thereby shown that 71% of surface area of the VACNFs has contributed to the measured capacitance, and by using the entire area the capacitance can potentially be increased.
NASA Astrophysics Data System (ADS)
Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc
2018-03-01
We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.
Open Rotor Aeroacoustic Installation Effects for Conventional and Unconventional Airframes
NASA Technical Reports Server (NTRS)
Czech, Michael J.; Thomas, Russell H.
2013-01-01
As extensive experimental campaign was performed to study the aeroacoustic installation effects of an open rotor with respect to both a conventional tube and wing type airframe and an unconventional hybrid wing body airframe. The open rotor rig had two counter rotating rows of blades each with eight blades of a design originally flight tested in the 1980s. The aeroacoustic installation effects measured in an aeroacoustic wind tunnel included those from flow effects due to inflow distortion or wake interaction and acoustic propagation effects such as shielding and reflection. The objective of the test campaign was to quantify the installation effects for a wide range of parameters and configurations derived from the two airframe types. For the conventional airframe, the open rotor was positioned in increments in front of and then over the main wing and then in positions representative of tail mounted aircraft with a conventional tail, a T-tail and a U-tail. The interaction of the wake of the open rotor as well as acoustic scattering results in an increase of about 10 dB when the rotor is positioned in front of the main wing. When positioned over the main wing a substantial amount of noise reduction is obtained and this is also observed for tail-mounted installations with a large U-tail. For the hybrid wing body airframe, the open rotor was positioned over the airframe along the centerline as well as off-center representing a twin engine location. A primary result was the documentation of the noise reduction from shielding as a function of the location of the open rotor upstream of the trailing edge of the hybrid wing body. The effects from vertical surfaces and elevon deflection were also measured. Acoustic lining was specially designed and inserted flush with the elevon and airframe surface, the result was an additional reduction in open rotor noise propagating to the far field microphones. Even with the older blade design used, the experiment provided quantification of the aeroacoustic installation effects for a wide range of open rotor and airframe configurations and can be used with data processing methods to evaluate the aeroacoustic installation effects for open rotors with modern blade designs.
NASA Technical Reports Server (NTRS)
Tomek, W. G.; Hall, R. M.; Wahls, R. A.; Luckring, J. M.; Owens, L. R.
2002-01-01
A wind tunnel test of a generic fighter configuration was tested in the National Transonic Facility through a cooperative agreement between NASA Langley Research Center and McDonnell Douglas. The primary purpose of the test was to assess Reynolds number scale effects on a thin-wing, fighter-type configuration up to full-scale flight conditions (that is, Reynolds numbers of the order of 60 million). The test included longitudinal and lateral/directional studies at subsonic and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to flight conditions. Results are presented for three Mach numbers (0.6, 0.8, and 0.9) and three configurations: (1) Fuselage/Wing; (2) Fuselage/Wing/Centerline Vertical Tail/Horizontal Tail; and (3) Fuselage/Wing/Trailing-Edge Extension/Twin Vertical Tails. Reynolds number effects on the longitudinal aerodynamic characteristics are presented herein.
Vertical Take-Off and Landing Vehicle with Increased Cruise Efficiency
NASA Technical Reports Server (NTRS)
Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Johns, Zachary R. (Inventor); Langford, William M. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Laws, Christopher T. (Inventor); Hodges, William T. (Inventor); Webb, Sandy R. (Inventor)
2016-01-01
Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.
Vertical Takeoff and Landing Vehicle with Increased Cruise Efficiency
NASA Technical Reports Server (NTRS)
Langford, William M. (Inventor); Hodges, William T. (Inventor); Laws, Christopher T. (Inventor); Johns, Zachary R. (Inventor); Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Webb, Sandy R. (Inventor)
2018-01-01
Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.
Landing Characteristics of a Lenticular-Shaped Reentry Vehicle
NASA Technical Reports Server (NTRS)
Blanchard, Ulysse J.
1961-01-01
An experimental investigation was made of the landing characteristics of a 1/9-scale dynamic model of a lenticular-shaped reentry vehicle having extendible tail panels for control after reentry and for landing control (flare-out). The landing tests were made by catapulting a free model onto a hard-surface runway and onto water. A "belly-landing" technique in which the vehicle was caused to skid and rock on its curved undersurface (heat shield), converting sinking speed into angular energy, was investigated on a hard-surface runway. Landings were made in calm water and in waves both with and without auxiliary landing devices. Landing motions and acceleration data were obtained over a range of landing attitudes and initial sinking speeds during hard-surface landings and for several wave conditions during water landings. A few vertical landings (parachute letdown) were made in calm water. The hard-surface landing characteristics were good. Maximum landing accelerations on a hard surface were 5g and 18 radians per sq second over a range of landing conditions. Horizontal landings on water resulted in large violent rebounds and some diving in waves. Extreme attitude changes during rebound at initial impact made the attitude of subsequent impact random. Maximum accelerations for water landings were approximately 21g and 145 radians per sq second in waves 7 feet high. Various auxiliary water-landing devices produced no practical improvement in behavior. Reduction of horizontal speed and positive control of impact attitude did improve performance in calm water. During vertical landings in calm water maximum accelerations of 15g and 110 radians per sq second were measured for a contact attitude of -45 deg and a vertical velocity of 70 feet per second.
NASA Technical Reports Server (NTRS)
Hahne, D. E.
1985-01-01
A wind tunnel investigation of concepts to improve the high angle-of-attack stability and control characteristics of a high performance aircraft was conducted. The effect of vertical tail geometry on stability and the effectiveness of several conventional and unusual control concepts was determined. These results were obtained over a large angle-of-attack range. Vertical tail location, cant angle and leading edge sweep could influence both longitudinal and lateral-directional stability. The control concepts tested were found to be effective and to provide control into the post stall angle-of-attack region.
NASA Technical Reports Server (NTRS)
Whalen, Edward A.
2016-01-01
This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.
NASA Astrophysics Data System (ADS)
Saifaldeen, Zubayda S.; Khedir, Khedir R.; Camci, Merve T.; Ucar, Ahmet; Suzer, Sefik; Karabacak, Tansel
2016-08-01
Rough structures with re-entrant property and their subsequent surface energy reduction with long-chain fluorocarbon oligomers are both critical in developing superamphiphobic (SAP, i.e. both super hydrophobic and superoleophobic) surfaces. However, morphology of the low-surface energy layer on a rough re-entrant substrate can strongly depend on the fluorocarbon oligomers used. In this study, the effect of polar end of different kinds of long-chain fluorocarbon oligomers in promoting a self-assembled monolayer with close packed molecules and robust adhesion on multi-scale rough Al alloy surfaces was investigated. Hierarchical Al alloy surfaces with microgrooves and nanograss structures were developed by a simple combination of one-directional mechanical sanding and post treatment in boiling de-ionized water (DIW). Three types of long-chain fluorocarbon oligomers of 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PFDTS), 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane (PFDCS), and perfluorooctanoic acid (PFOA) were chemically vaporized onto these rough Al alloy surfaces. The PFDCS exhibited the lowest surface free energy of less than 10 mN/m. The contact angle and sliding angle measurements for water, ethylene glycol, and peanut oil verified the SAP property of hierarchical rough Al alloy surfaces treated with alkylsilane oligomers (PFDTS, PFDCS). However, the hierarchical surfaces treated with fluorocarbon oligomer with polar acidic tail (PFOA) showed highly amphiphobic properties but could not reach the threshold for SAP. Chemical stability of the hierarchical Al alloy surfaces treated with the fluorocarbon oligomers was tested under the harsh conditions of ultra-sonication in acetone and annealing at high temperature after different treatment times. Contact angle measurements revealed the robustness of the alkylsilane oligomers and deterioration of the PFOA coating particularly for low surface tension liquids. The robust adhesion and close-packing of the alkylsilane molecules as well as their vertical orientation with exposure of more CF3 groups instead of CF2 groups due to the polar silane-based tail are believed to be the main reasons behind their improved chemical stability. The selection of fluorocarbon oligomer with proper polar tail which can promote a self-assembled monolayer with close-packed molecules could make it possible for utilizing shorter fluorocarbon oligomers, which is environmentally favorable, to develop high surface energy materials with SAP properties.
Observation of low-frequency acoustic surface waves in the nocturnal boundary layer.
Talmadge, Carrick L; Waxler, Roger; Di, Xiao; Gilbert, Kenneth E; Kulichkov, Sergey
2008-10-01
A natural terrain surface, because of its porosity, can support an acoustic surface wave that is a mechanical analog of the familiar vertically polarized surface wave in AM radio transmission. At frequencies of several hundred hertz, the acoustic surface wave is attenuated over distances of a few hundred meters. At lower frequencies (e.g., below approximately 200 Hz) the attenuation is much less, allowing surface waves to propagate thousands of meters. At night, a low-frequency surface wave is generally present at long ranges even when downward refraction is weak. Thus, surface waves represent a ubiquitous nighttime transmission mode that exists even when other transmission modes are weak or absent. Data from recent nighttime field experiments and theoretical calculations are presented, demonstrating the persistence of the surface wave under different meteorological conditions. The low-frequency surface wave described here is the "quasiharmonical" tail observed previously in nighttime measurements but not identified by S. Kulichkov and his colleagues (Chunchuzov, I. P. et al. 1990. "On acoustical impulse propagation in a moving inhomogeneous atmospheric layer," J. Acoust. Soc. Am. 88, 455-461).
Interaction of a Synthetic Jet Actuator with a Severely Separated Crossflow
NASA Astrophysics Data System (ADS)
Jansen, Kenneth; Farnsworth, John; Rasquin, Michel; Rathay, Nick; Monastero, Marianne; Amitay, Michael
2017-11-01
A coordinated experimental/computational study of synthetic jet-based flow control on a vertical tail/rudder assembly has been carried out on a 1/19th scale model operating at 30 degree rudder deflection, 0 degree side slip, and 20m/s free-stream flow. Under these conditions a very strong span-wise separated flow develops over the rudder surface for a majority of its span. Twelve synthetic jets were distributed across the span of the vertical tail just upstream of the rudder hinge-line to determine their ability to reduce flow separation and thereby increase the side force production; to extend the rudder effectiveness. Experiments were completed for the baseline case (i.e. no jets blowing) and for cases where 1, 6, and 12 jets were activated. RANS and DDES computations were completed to match these four experiments. While some experimental results for the same geometry have been previously reported, more detailed results concerning the experiments and their comparison to the DDES computations for the baseline and 1 jet active cases are reported here. Specifically, this effort focuses on the near-jet flow and the phase-averaged vortical structures produced by a single jet interacting with a severely separated, turbulent cross-flow. An award of computer time was provided by the INCITE program and the Theta and Aurora ESP through ALCF which is supported by the DOE under Contract DE-AC02-06CH11357.
Industrial approach to piezoelectric damping of large fighter aircraft components
NASA Astrophysics Data System (ADS)
Simpson, John; Schweiger, Johannes
1998-06-01
Different concepts to damp structural vibrations of the vertical tail of fighter aircraft are reported. The various requirements for a vertical tail bias an integrated approach for the design. Several active vibrations suppression concepts had been investigated during the preparatory phase of a research program shared by Daimler-Benz Aerospace Military Aircraft (Dasa), Daimler-Benz Forschung (DBF) and Deutsche Forschungsandstalt fuer Luftund Raumfahrt (DLR). Now in the main phase of the programme, four concepts were finally chosen: two concepts with aerodynamic control surfaces and two concepts with piezoelectric components. One piezo concept approach will be described rigorously, the other concepts are briefly addressed. In the Dasa concept, thin surface piezo actuators are set out carefully to flatten the dynamic portion of the combined static and dynamic maximum bending moment loading case directly in the shell structure. The second piezo concept by DLR involves pre-loaded lead zirconate titanate (PZT)-block actuators at host structure fixtures. To this end a research apparatus was designed and built as a full scale simplified fin box with carbon fiber reinformed plastic skins and an aluminium stringer-rib substructure restrained by relevant aircraft fixtures. It constitutes a benchmark 3D-structural impedance. The engineering design incorporates 7kg of PZT surface actuators. The structural system then should be excited to more than 15mm tip displacement amplitude. This prepares the final step to total A/C integration. Typical analysis methods using cyclic thermal analogies adapted to induced load levels are compared. Commercial approaches leading onto basic state space model interpretation wrt. actuator sizing and positioning, structural integrity constraints, FE-validation and testing are described. Both piezoelectric strategies are aimed at straight open-loop performance related to concept weight penalty and input electric power. The required actuators, power and integration are then enhanced to specification standards. An adapted qualification program plan is used to improve analytical read across, specifications, manufacturing decisions, handling requirements. The next research goals are outlined.
Intermonolayer Friction and Surface Shear Viscosity of Lipid Bilayer Membranes
den Otter, W. K.; Shkulipa, S. A.
2007-01-01
The flow behavior of lipid bilayer membranes is characterized by a surface viscosity for in-plane shear deformations, and an intermonolayer friction coefficient for slip between the two leaflets of the bilayer. Both properties have been studied for a variety of coarse-grained double-tailed model lipids, using equilibrium and nonequilibrium molecular dynamics simulations. For lipids with two identical tails, the surface shear viscosity rises rapidly with tail length, while the intermonolayer friction coefficient is less sensitive to the tail length. Interdigitation of lipid tails across the bilayer midsurface, as observed for lipids with two distinct tails, strongly enhances the intermonolayer friction coefficient, but hardly affects the surface shear viscosity. The simulation results are compared against the available experimental data. PMID:17468168
Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques
NASA Technical Reports Server (NTRS)
Taylor, Brian R.; Yoo, Seung Yeun
2011-01-01
Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.
STS-53 Discovery, Orbiter Vehicle (OV) 103, lands on runway 22 at EAFB, Calif
1992-12-09
STS-53 Discovery, Orbiter Vehicle (OV) 103, is slowed by a red, white, and blue drag chute during its landing on concrete runway 22 at Edwards Air Force Base (EAFB), California. Main landing gear (MLG) touchdown occurred at 12:43:17 pm (Pacific Standard Time (PST)). This aft view of OV-103 shows the drag chute deployed from its compartment at the base of the vertical tail, the speedbrake/rudder flaps open, and the space shuttle main engines (SSMEs). Both MLG and nose landing gear (NLG) ride along the runway surface. Desert scrub brush appears in the foreground and mountains are seen in the background.
MS Peterson and MS Musgrave in payload bay (PLB) during EVA
NASA Technical Reports Server (NTRS)
1983-01-01
Extravehicular mobility unit (EMU) suited Mission Specialist (MS) Peterson, designated EV2, translates from forward payload bay (PLB) to aft bulkhead worksite along port side sill longeron using tether and slidewire system while MS Musgrave, designated EV1, floats on a tether in center of PLB. Inertial Upper Stage (IUS) Airborne Support Equipment (ASE) forward frame and aft frame tilt actuator (AFTA) table appear in front and behind Musgrave and vertical tail and Orbital Maneuvering System (OMS) pods appear in background highlighted against the cloudy surface of Earth. EMU mini workstation extravehicular activity (EVA) crewmember safety tether reel floats on Musgrave's waist tether.
Low speed aerodynamic characteristics of a lifting-body hypersonic research aircraft configuration
NASA Technical Reports Server (NTRS)
Penland, J. A.
1975-01-01
An experimental investigation of the low-speed longitudinal, lateral, and directional stability characteristics of a lifting-body hypersonic research airplane concept was conducted in a low-speed tunnel with a 12-foot (3.66-meter) octagonal test section at the Langley Research Center. The model was tested with two sets of horizontal and vertical tip controls having different planform areas, a center vertical tail and two sets of canard controls having trapezoidal and delta planforms, and retracted and deployed engine modules and canopy. This investigation was conducted at a dynamic pressure of 239.4 Pa (5 psf) (Mach number of 0.06) and a Reynolds number of 2 million based on the fuselage length. The tests were conducted through an angle-of-attack range of 0 deg to 30 deg and through horizontal-tail deflections of 10 deg to minus 30 deg. The complete configuration exhibited excessive positive static longitudinal stability about the design center-of-gravity location. However, the configuration was unstable laterally at low angles of attack and unstable directionally throughout the angle-of-attack range. Longitudinal control was insufficient to trim at usable angles of attack. Experiments showed that a rearward shift of the center of gravity and the use of a center-located vertical tail would result in a stable and controllable vehicle.
NASA Technical Reports Server (NTRS)
Tomek, W. G.; Wahls, R. A.; Owens, L. R.; Burner, A. B.; Graves, S. S.; Luckring, J. M.
2003-01-01
Two wind tunnel tests of a generic fighter configuration have been completed in the National Transonic Facility. The primary purpose of the tests was to assess Reynolds number scale effects on a thin-wing, fighter-type configuration up to full-scale flight conditions (that is, Reynolds numbers of the order of 60 million). The tests included longitudinal and lateral/directional studies at subsonic and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to flight conditions. Results are presented for three Mach numbers (0.6, 0.8, and 0.9) and three configurations: 1) Fuselage / Wing, 2) Fuselage / Wing / Centerline Vertical Tail / Horizontal Tail, and 3) Fuselage / Wing / Trailing-Edge Extension / Twin Vertical Tails. Reynolds number effects on the lateral-directional aerodynamic characteristics are presented herein, along with longitudinal data demonstrating the effects of fixing the boundary layer transition location for low Reynolds number conditions. In addition, an improved model videogrammetry system and results are discussed.
Russo, Gabrielle A
2016-01-01
This study evaluated the relationship between the morphology of the sacrum-the sole bony link between the tail or coccyx and the rest of the body-and tail length (including presence/absence) and function using a comparative sample of extant mammals spanning six orders (Primates, Carnivora, Rodentia, Diprotodontia, Pilosa, Scandentia; N = 472). Phylogenetically-informed regression methods were used to assess how tail length varied with respect to 11 external and internal (i.e., trabecular) bony sacral variables with known or suspected biomechanical significance across all mammals, only primates, and only non-primates. Sacral variables were also evaluated for primates assigned to tail categories ('tailless,' 'nonprehensile short-tailed,' 'nonprehensile long-tailed,' and 'prehensile-tailed'). Compared to primates with reduced tail lengths, primates with longer tails generally exhibited sacra having larger caudal neural openings than cranial neural openings, and last sacral vertebrae with more mediolaterally-expanded caudal articular surfaces than cranial articular surfaces, more laterally-expanded transverse processes, more dorsally-projecting spinous processes, and larger caudal articular surface areas. Observations were corroborated by the comparative sample, which showed that shorter-tailed (e.g., Lynx rufus [bobcat]) and longer-tailed (e.g., Acinonyx jubatus [cheetah]) non-primate mammals morphologically converge with shorter-tailed (e.g., Macaca nemestrina) and longer-tailed (e.g., Macaca fascicularis) primates, respectively. 'Prehensile-tailed' primates exhibited last sacral vertebrae with more laterally-expanded transverse processes and greater caudal articular surface areas than 'nonprehensile long-tailed' primates. Internal sacral variables performed poorly compared to external sacral variables in analyses of extant primates, and were thus deemed less useful for making inferences concerning tail length and function in extinct primates. The tails lengths of five extinct primates were reconstructed from the external sacral variables: Archaeolemur edwardsi had a 'nonprehensile long tail,' Megaladapis grandidieri, Palaeopropithecus kelyus, and Epipliopithecus vindobonensis probably had 'nonprehensile short tails,' and Proconsul heseloni was 'tailless.' Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Leavitt, L. D.
1983-01-01
The Langley 16-foot transonic tunnel was used to determine the effects of several empennage and afterbody parameters on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. Model variables were as follows: horizontal tail axial location and incidence, vertical tail axial location and configuration (twin- versus single-tail arrangements), tail booms, and nozzle power setting. Tests were conducted over a Mach number range from 0.6 to 1.2 and over an angle-of-attack from -2 deg to 10 deg. Jet total-pressure ratio was varied from jet off to approximately 10.0.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2010-01-01
Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2008-01-01
Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).
Broad plumes rooted at the base of the Earth's mantle beneath major hotspots.
French, Scott W; Romanowicz, Barbara
2015-09-03
Plumes of hot upwelling rock rooted in the deep mantle have been proposed as a possible origin of hotspot volcanoes, but this idea is the subject of vigorous debate. On the basis of geodynamic computations, plumes of purely thermal origin should comprise thin tails, only several hundred kilometres wide, and be difficult to detect using standard seismic tomography techniques. Here we describe the use of a whole-mantle seismic imaging technique--combining accurate wavefield computations with information contained in whole seismic waveforms--that reveals the presence of broad (not thin), quasi-vertical conduits beneath many prominent hotspots. These conduits extend from the core-mantle boundary to about 1,000 kilometres below Earth's surface, where some are deflected horizontally, as though entrained into more vigorous upper-mantle circulation. At the base of the mantle, these conduits are rooted in patches of greatly reduced shear velocity that, in the case of Hawaii, Iceland and Samoa, correspond to the locations of known large ultralow-velocity zones. This correspondence clearly establishes a continuous connection between such zones and mantle plumes. We also show that the imaged conduits are robustly broader than classical thermal plume tails, suggesting that they are long-lived, and may have a thermochemical origin. Their vertical orientation suggests very sluggish background circulation below depths of 1,000 kilometres. Our results should provide constraints on studies of viscosity layering of Earth's mantle and guide further research into thermochemical convection.
The accuracy of image-guided navigation for maxillary positioning in bimaxillary surgery.
Sun, Yi; Luebbers, Heinz-Theo; Agbaje, Jimoh Olubanwo; Lambrichts, Ivo; Politis, Constantinus
2014-05-01
The aim of our study was to evaluate the accuracy of image-guided maxillary positioning in sagittal, vertical, and mediolateral direction. Between May 2011 and July 2012, 17 patients (11 males, 6 females) underwent bimaxillary surgery with the use of intraoperative surgical navigation. During Le Fort I osteotomy, the Kolibri navigation system was used to measure movement of the maxilla at the edge of the upper central upper incisor in sagittal (buccal surface), vertical (incisor edge), and mediolateral (dental midline) direction. Six weeks after surgery, a postoperative CBCT scan was taken and registered to the preoperative cone-beam computed tomography scan to identify the actual surgical movement of the maxilla. Student 2-tailed paired t test was used to evaluate differences between the measured result from navigation system and actual surgical movement of the maxilla, which were 0.44 ± 0.35 mm (P = 0.82) in the sagittal, 0.50 ± 0.35 mm (P = 0.85) in the vertical, and 0.56 ± 0.36 mm (P = 0.81) in the mediolateral direction. Our finding demonstrates that intraoperative computer navigation is a promising tool for measuring the surgical change of the maxilla in bimaxillary surgery.
Some data on the static longitudinal stability and control of airplanes : design of control surfaces
NASA Technical Reports Server (NTRS)
Martinov, A; Kolosov, E
1940-01-01
In the solution of a number of problems on the stability and controllability of airplanes, there arises the necessity for knowing the characteristics of the tail surfaces of the types in common use today. Of those characteristics, the most important are the effectiveness and hinge moments of the tail surfaces. As has been shown in the present paper, there exists the possibility of determining these characteristics by the formulas obtained with a degree of accuracy sufficient for the purposes of preliminary computation. These formulas take into account a number of fundamental tail characteristics such as tail cut-outs on the control surface and the form of the control surface leading edge.
Analysis of Methods to Excite Head-Tail Motion Within the Cornell Electron Storage Ring
NASA Astrophysics Data System (ADS)
Gendler, Naomi; Billing, Mike; Shanks, Jim
The main accelerator complex at Cornell consists of two rings around which electrons and positrons move: the synchrotron, where the particles are accelerated to 5 GeV, and the Storage Ring, where the particles circulate a ta Þxed energy, guided by quadrupole and dipole magnets, with a steady energy due to a sinusoidal voltage source. Keeping the beam stable in the Storage Ring is crucial for its lifetime. A long-lasting, invariable beam means more accurate experiments, as well as brighter, more focused X-rays for use in the Cornell High Energy Synchrotron Source (CHESS). The stability of the electron and positron beams in the Cornell Electron Storage Ring (CESR) is important for the development of accelerators and for usage of the beam in X-ray science and accelerator physics. Bunch oscillations tend to enlarge the beam's cross section, making it less stable. We believe that one such oscillation is ``head-tail motion,'' where the bunch rocks back and forth on a pivot located at the central particle. In this project, we write a simulation of the bunch that induces head-tail motion with a vertical driver. We also excite this motion physically in the storage ring, and observe a deÞnite head-tail signal. In the experiment, we saw a deÞnite persistence of the drive-damp signal within a small band around the head-tail frequency, indicating that the head-tail frequency is a natural vertical mode of the bunch that was being excited. The signal seen in the experiment matched the signal seen in the simulation to within an order of magnitude.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1976-01-01
An experimental investigation was conducted by wind tunnel to measure the static aerodynamic characteristics for bodies of circular and elliptic cross section with various thin flat plate wings and a thin tail consisting of horizontal and vertical parts. The wings had aspect ratios of 4 and taper ratios of about 0, 0.25, and 0.5. Two additional wings, which had taper ratios near 0.25 and aspect ratios of about 3 and 5, were also tested in combination with the bodies and tail. All wings had about the same planform area. The exposed area of the horizontal portion of the tail was about 33 to 36 percent of the exposed area of the wings. The exposed area of the vertical tail fin was about 22 to 24 percent of the exposed area of the wings. The elliptic body, with an a/b = 2 cross section, had the same length and axial distribution of cross sectional area as the circular body. The circular body had a cylindrical aftersection of fineness ratio 7, and it was tested with the wings and tail in combination with tangent ogive noses that had fineness ratios of 2.5, 3.0, 3.5, and 5.0. In addition, an ogive nose with a rounded tip and an ogive nose with two different nose strake arrangements were used. Nineteen configuration combinations were tested at Mach numbers of 0.6, 0.9, 1.5, and 2.0 at angles of attack from 0 to 58 deg. The Reynolds numbers, based on body base diameter, were about 4.3 X 100,000.
NASA Astrophysics Data System (ADS)
Vörös, Z.; Facskó, G.; Khodachenko, M.; Honkonen, I.; Janhunen, P.; Palmroth, M.
2014-08-01
Magnetic reconnection (MR) is a key physical concept explaining the addition of magnetic flux to the magnetotail and closed flux lines back-motion to the dayside magnetosphere. This scenario elaborated by Dungey (1963) can explain many aspects of solar wind-magnetosphere interaction processes, including substorms. However, neither the Dungey model nor its numerous modifications were able to explain fully the onset conditions for MR in the tail. In this paper, we introduce new onset conditions for forced MR in the tail. We call our scenario the "windsock memory conditioned ram pressure effect." Our nonflux transfer-associated forcing is introduced by a combination of the large-scale windsock motions exhibiting memory effects and solar wind dynamic pressure actions on the nightside magnetopause during northward oriented interplanetary magnetic field (IMF). Using global MHD Grand Unified Magnetosphere Ionosphere Coupling Simulation version 4 simulation results, upstream data from Wind, magnetosheath data from Cluster 1 and distant tail data from the two-probe Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun mission, we show that the simultaneous occurrence of vertical windsock motions of the magnetotail and enhanced solar wind dynamic pressure introduces strong nightside disturbances, including enhanced electric fields and persistent vertical cross-tail shear flows. These perturbations, associated with a stream interaction region in the solar wind, drive MR in the tail during episodes of northward oriented interplanetary magnetic field (IMF). We detect MR indirectly, observing plasmoids in the tail and ground-based signatures of earthward moving fast flows. We also consider the application to solar system planets and close-in exoplanets, where the proposed scenario can elucidate some new aspects of solar/stellar wind-magnetosphere interactions.
A grid generation system for multi-disciplinary design optimization
NASA Technical Reports Server (NTRS)
Jones, William T.; Samareh-Abolhassani, Jamshid
1995-01-01
A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.
Rapid Airplane Parametric Input Design (RAPID)
NASA Technical Reports Server (NTRS)
Smith, Robert E.
1995-01-01
RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.
Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2003-01-01
A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow- through porosity was applied to a wind leading-edge extension (LEX) mounted to a 65 deg cropped delta wind model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free- stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp-6) per foot, angles of attack up to 30 deg and angles of sideslip to plus or minus 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex- dominated aerodynamics to the location and level of porosity applied to the LEX.
Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2003-01-01
A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-Foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow-through porosity was applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free-stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp 6)) per foot, angles of attack up to 30 deg, and angles of sideslip to +/- 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex-dominated aerodynamics to the location and level of porosity applied to the LEX.
NASA Technical Reports Server (NTRS)
Re, Richard J.; Pendergraft, Odis C., Jr.; Campbell, Richard L.
2006-01-01
A 1/4-scale wind tunnel model of an airplane configuration developed for short duration flight at subsonic speeds in the Martian atmosphere has been tested in the Langley Research Center Transonic Dynamics Tunnel. The tunnel was pumped down to extremely low pressures to represent Martian Mach/Reynolds number conditions. Aerodynamic data were obtained and upper and lower surface wind pressures were measured at one spanwise station on some configurations. Three unswept wings of the same planform but different airfoil sections were tested. Horizontal tail incidence was varied as was the deflection of plain and split trailing-edge flaps. One unswept wing configuration was tested with the lower part of the fuselage removed and the vertical/horizontal tail assembly inverted and mounted from beneath the fuselage. A sweptback wing was also tested. Tests were conducted at Mach numbers from 0.50 to 0.90. Wing chord Reynolds number was varied from 40,000 to 100,000 and angles of attack and sideslip were varied from -10deg to 20deg and -10deg to 10deg, respectively.
Wing planform effects at supersonic speeds for an advanced fighter configuration
NASA Technical Reports Server (NTRS)
Wood, R. M.; Miller, D. S.
1984-01-01
Four advanced fighter configurations, which differed in wing planform and airfoil shape, were investigated in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Supersonic data were obtained on the four uncambered wings, which were each attached to a single fighter fuselage. The fuselage geometry varied in cross-sectional shape and had two side-mounted, flow-through, half-axisymmetric inlets. Twin vertical tails were attached to the fuselage. The four planforms tested were a 65 deg delta wing, a combination of a 20 deg trapezoidal wing and a 45 deg horizontal tail, a 70 deg/30 deg cranked wing, and a 70 deg/66 deg crank wing, where the angle values refer to the leading-edge sweep angle of the lifting-surface planform. Planform effects on a single fuselage representative of an advanced fighter aircraft were studied. Results show that the highly swept cranked wings exceeded the aerodynamic performance levels, at low lift coefficients, of the 65 deg delta wing and the 20 deg trapezoidal wing at trimmed and untrimmed conditions.
NASA Technical Reports Server (NTRS)
Ballin, M. G.
1982-01-01
The feasibility of using static wind tunnel tests to obtain information about spin damping characteristics of an isolated general aviation aircraft tail was investigated. A representative tail section was oriented to the tunnel free streamline at angles simulating an equilibrium spin. A full range of normally encountered spin conditions was employed. Results of parametric studies performed to determine the effect of spin damping on several tail design parameters show satisfactory agreement with NASA rotary balance tests. Wing and body interference effects are present in the NASA studies at steep spin attitudes, but agreement improves with increasing pitch angle and spin rate, suggesting that rotational flow effects are minimal. Vertical position of the horizontal stabilizer is found to be a primary parameter affecting yaw damping, and horizontal tail chordwise position induces a substantial effect on pitching moment.
NASA Astrophysics Data System (ADS)
Yoshino, R.; Kondoh, T.; Neyatani, Y.; Itami, K.; Kawano, Y.; Isei, N.
1997-02-01
A killer pellet is an impurity pellet that is injected into a tokamak plasma in order to terminate a discharge without causing serious damage to the tokamak machine. In JT-60U neon ice pellets have been injected into OH and NB heated plasmas and fast plasma shutdowns have been demonstrated without large vertical displacement. The heat pulse on the divertor plate has been greatly reduced by killer pellet injection (KPI), but a low-power heat flux tail with a long time duration is observed. The total energy on the divertor plate increases with longer heat flux tail, so it has been reduced by shortening the tail. Runaway electron (RE) generation has been observed just after KPI and/or in the later phase of the plasma current quench. However, RE generation has been avoided when large magnetic perturbations are excited. These experimental results clearly show that KPI is a credible fast shutdown method avoiding large vertical displacement, reducing heat flux on the divertor plate, and avoiding (or minimizing) RE generation.
Flow-field Survey of an Empennage Wake Interacting with a Pusher Propeller
NASA Technical Reports Server (NTRS)
Horne, W. Clifton; Soderman, Paul T.
1988-01-01
The flow field between a model empennage and a 591-mm-diameter pusher propeller was studied in the Ames 7- by 10-Foot Wind Tunnel with directional pressure probes and hot-wire anemometers. The region probed was bounded by the empennage trailing edge and downstream propeller. The wake properties, including effects of propeller operation on the empennage wake, were investigated for two empennage geometries: one, a vertical tail fin, the other, a Y-tail with a 34 deg dihedral. Results showed that the effect of the propeller on the empennage wake upstream of the propeller was not strong. The flow upstream of the propeller was accelerated in the streamwise direction by the propeller, but the empennage wake width and velocity defect were relatively unaffected by the presence of the propeller. The peak turbulence in the wake near the propeller tip station, 0.66 diameter behind the vertical tail fin, was approximately 3 percent of the free-stream velocity. The velocity field data can be used in predictions of the acoustic field due to propeller-wake interaction.
Sweeping Jet Actuators - A New Design Tool for High Lift Generation
NASA Technical Reports Server (NTRS)
Graff, Emilio; Seele, Roman; Lin, John C.; Wygnanski, Israel
2013-01-01
Active Flow Control (AFC) experiments performed at the Caltech Lucas Wind Tunnel on a generic airplane vertical tail model proved the effectiveness of sweeping jets in improving the control authority of a rudder. The results indicated that a momentum coefficient (C(sub u)) of approximately 2% increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. However, sparsely distributed actuators providing a collective C(sub u) approx. = 0.1% were able to increase the side force in excess of 20%. This result is achieved by reducing the spanwise flow along the swept back rudder and its success is attributed to the large sweep back angle of the vertical tail. This current effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project.
NASA Technical Reports Server (NTRS)
Bennett, Charles V.
1947-01-01
An investigation of the low-speed, power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane has been conducted in the Langley free-flight tunnel. In the investigation it was found that with flaps neutral satisfactory flight behavior at low speeds was obtainable with an increase in height of the vertical tail and with the inboard slats opened. In the flap-down slat-open condition the longitudinal stability was satisfactory, but it was impossible to obtain satisfactory lateral-flight characteristics even with the increase in height of the vertical tail because of the negative effective dihedral, low directional stability, and large-adverse yawing moments of the ailerons.
The tails of the satellite auroral footprints at Jupiter
NASA Astrophysics Data System (ADS)
Bonfond, B.; Saur, J.; Grodent, D.; Badman, S. V.; Bisikalo, D.; Shematovich, V.; Gérard, J.-C.; Radioti, A.
2017-08-01
The electromagnetic interaction between Io, Europa, and Ganymede and the rotating plasma that surrounds Jupiter has a signature in the aurora of the planet. This signature, called the satellite footprint, takes the form of a series of spots located slightly downstream of the feet of the field lines passing through the moon under consideration. In the case of Io, these spots are also followed by an extended tail in the downstream direction relative to the plasma flow encountering the moon. A few examples of a tail for the Europa footprint have also been reported in the northern hemisphere. Here we present a simplified Alfvénic model for footprint tails and simulations of vertical brightness profiles for various electron distributions, which favor such a model over quasi-static models. We also report here additional cases of Europa footprint tails, in both hemispheres, even though such detections are rare and difficult. Furthermore, we show that the Ganymede footprint can also be followed by a similar tail. Finally, we present a case of a 320° long Io footprint tail, while other cases in similar configurations do not display such a length.
Radial-based tail methods for Monte Carlo simulations of cylindrical interfaces
NASA Astrophysics Data System (ADS)
Goujon, Florent; Bêche, Bruno; Malfreyt, Patrice; Ghoufi, Aziz
2018-03-01
In this work, we implement for the first time the radial-based tail methods for Monte Carlo simulations of cylindrical interfaces. The efficiency of this method is then evaluated through the calculation of surface tension and coexisting properties. We show that the inclusion of tail corrections during the course of the Monte Carlo simulation impacts the coexisting and the interfacial properties. We establish that the long range corrections to the surface tension are the same order of magnitude as those obtained from planar interface. We show that the slab-based tail method does not amend the localization of the Gibbs equimolar dividing surface. Additionally, a non-monotonic behavior of surface tension is exhibited as a function of the radius of the equimolar dividing surface.
Shielding of Turbomachinery Broadband Noise from a Hybrid Wing Body Aircraft Configuration
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Stead, Daniel J.; Pope, D. Stuart
2014-01-01
The results of an experimental study on the effects of engine placement and vertical tail configuration on shielding of exhaust broadband noise radiation are presented. This study is part of the high fidelity aeroacoustic test of a 5.8% scale Hybrid Wing Body (HWB) aircraft configuration performed in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center. Broadband Engine Noise Simulators (BENS) were used to determine insertion loss due to shielding by the HWB airframe of the broadband component of turbomachinery noise for different airframe configurations and flight conditions. Acoustics data were obtained from flyover and sideline microphones traversed to predefined streamwise stations. Noise measurements performed for different engine locations clearly show the noise benefit associated with positioning the engine nacelles further upstream on the HWB centerbody. Positioning the engine exhaust 2.5 nozzle diameters upstream (compared to 0.5 nozzle diameters downstream) of the HWB trailing edge was found of particular benefit in this study. Analysis of the shielding performance obtained with and without tunnel flow show that the effectiveness of the fuselage shielding of the exhaust noise, although still significant, is greatly reduced by the presence of the free stream flow compared to static conditions. This loss of shielding is due to the turbulence in the model near-wake/boundary layer flow. A comparison of shielding obtained with alternate vertical tail configurations shows limited differences in level; nevertheless, overall trends regarding the effect of cant angle and vertical location are revealed. Finally, it is shown that the vertical tails provide a clear shielding benefit towards the sideline while causing a slight increase in noise below the aircraft.
NASA Technical Reports Server (NTRS)
Spangler, R. H.
1974-01-01
Tests were conducted in wind tunnels during April and May 1973, on a 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from -8 degrees to +8 degrees. The isolated orbiter was tested at angles of attack from -15 degrees to +40 degrees and angles of sideslip from -10 degrees to +10 degrees as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were also investigated. Tabulated pressure data were obtained for upper and lower wing surfaces and left and right vertical tail surfaces.
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1990-01-01
Wind tunnel tests were conducted on monoplanar circular missile configurations with low-profile quadriform tail fins to provide an aerodynamic data base to study and evaluate air-launched missile candidates for efficient conformal carriage on supersonic-cruise-type aircraft. The tests were conducted at Mach numbers from 1.70 to 2.86 for a constant Reynolds number per foot of 2,000,000. Selected test results are presented to show the effects of tail-fin dihedral angle, wing longitudinal and vertical location, and nose-body strakes on the static longitudinal and lateral-directional aerodynamic stability and control characteristics.
Modeling of Wake-vortex Aircraft Encounters. Appendix B
NASA Technical Reports Server (NTRS)
Smith, Sonya T.
1999-01-01
There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal stabilizer and vertical tail were removed there were difficulties modeling the sideforce coefficient and pitching moment. With the removal of only the vertical tail unacceptable errors occurred when modeling the sideforce coefficient and yawing moment. Lift could not be modeled with either the full geometry or the reduced geometry attempts.
Aircraft directional stability and vertical tail design: A review of semi-empirical methods
NASA Astrophysics Data System (ADS)
Ciliberti, Danilo; Della Vecchia, Pierluigi; Nicolosi, Fabrizio; De Marco, Agostino
2017-11-01
Aircraft directional stability and control are related to vertical tail design. The safety, performance, and flight qualities of an aircraft also depend on a correct empennage sizing. Specifically, the vertical tail is responsible for the aircraft yaw stability and control. If these characteristics are not well balanced, the entire aircraft design may fail. Stability and control are often evaluated, especially in the preliminary design phase, with semi-empirical methods, which are based on the results of experimental investigations performed in the past decades, and occasionally are merged with data provided by theoretical assumptions. This paper reviews the standard semi-empirical methods usually applied in the estimation of airplane directional stability derivatives in preliminary design, highlighting the advantages and drawbacks of these approaches that were developed from wind tunnel tests performed mainly on fighter airplane configurations of the first decades of the past century, and discussing their applicability on current transport aircraft configurations. Recent investigations made by the authors have shown the limit of these methods, proving the existence of aerodynamic interference effects in sideslip conditions which are not adequately considered in classical formulations. The article continues with a concise review of the numerical methods for aerodynamics and their applicability in aircraft design, highlighting how Reynolds-Averaged Navier-Stokes (RANS) solvers are well-suited to attain reliable results in attached flow conditions, with reasonable computational times. From the results of RANS simulations on a modular model of a representative regional turboprop airplane layout, the authors have developed a modern method to evaluate the vertical tail and fuselage contributions to aircraft directional stability. The investigation on the modular model has permitted an effective analysis of the aerodynamic interference effects by moving, changing, and expanding the available airplane components. Wind tunnel tests over a wide range of airplane configurations have been used to validate the numerical approach. The comparison between the proposed method and the standard semi-empirical methods available in literature proves the reliability of the innovative approach, according to the available experimental data collected in the wind tunnel test campaign.
NASA Technical Reports Server (NTRS)
Greenberg, Harry
1941-01-01
The pitching and the yawing moments of a vee-type and a conventional type of tail surface were measured. The tests were made in the presence of a fuselage and a wing-fuselage combination in such a way as to determine the moments contributed by the tail surfaces. The results showed that the vee-type tail tested, with a dihedral angle of 35.3 deg, was about 71 percent as effective in pitch as the conventional tail and had a yawing-moment to pitching-moment ratio of 0.3. The conventional tail, the panels of which were all congruent to those of the vee-type tail, had a yawing-moment to pitching-moment ratio of 0.48. These ratios are in fair agreement with values calculated by methods shown in this and previous reports. The values of the measured moments were reduced from 15 to 25 percent of the calculated value by fuselage interference.
Ecological restoration alters microbial communities in mine tailings profiles
NASA Astrophysics Data System (ADS)
Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2016-04-01
Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.
Ecological restoration alters microbial communities in mine tailings profiles.
Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2016-04-29
Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.
Ecological restoration alters microbial communities in mine tailings profiles
Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2016-01-01
Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064
NASA Technical Reports Server (NTRS)
Kassner, D. L.; Wettlaufer, B.
1977-01-01
A typical missile model with nose-mounted canards and cruciform tail surfaces was tested in the Ames 6- by 6-Foot Wind Tunnel to determine the contributions of the component aerodynamic surfaces to the static aerodynamic characteristics at Mach numbers of 0.8, 1.3, and 1.75 and Reynolds number of 625,000 based on body diameter. Data were obtained at angles of attack ranging from 0 deg to 24 deg for various stages of model build-up (i.e., with and without canard and/or tail surfaces). In addition, two different sets of canards and tail surfaces were investigated. For the canard and tail arrangements investigated, the model was trimmable at angles of attack up to about 7 deg with canard deflections of about 10 deg. Also, the tail arrangements studied provided ample pitch stability.
Materials Examination of the Vertical Stabilizer from American Airlines Flight 587
NASA Technical Reports Server (NTRS)
Fox, Matthew R.; Schultheisz, Carl R.; Reeder, James R.; Jensen, Brian J.
2005-01-01
The first in-flight failure of a primary structural component made from composite material on a commercial airplane led to the crash of American Airlines Flight 587. As part of the National Transportation Safety Board investigation of the accident, the composite materials of the vertical stabilizer were tested, microstructure was analyzed, and fractured composite lugs that attached the vertical stabilizer to the aircraft tail were examined. In this paper the materials testing and analysis is presented, composite fractures are described, and the resulting clues to the failure events are discussed.
Crash Testing and Simulation of a Cessna 172 Aircraft: Hard Landing Onto Concrete
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
2016-01-01
A full-scale crash test of a Cessna 172 aircraft was conducted at the Landing and Impact Research Facility at NASA Langley Research Center during the summer of 2015. The purpose of the test was to evaluate the performance of Emergency Locator Transmitters (ELTs) that were mounted at various locations in the aircraft and to generate impact test data for model validation. A finite element model of the aircraft was developed for execution in LSDYNA to simulate the test. Measured impact conditions were 722.4-in/s forward velocity and 276-in/s vertical velocity with a 1.5deg pitch (nose up) attitude. These conditions were intended to represent a survivable hard landing. The impact surface was concrete. During the test, the nose gear tire impacted the concrete, followed closely by impact of the main gear tires. The main landing gear spread outward, as the nose gear stroked vertically. The only fuselage contact with the impact surface was a slight impact of the rearmost portion of the lower tail. Thus, capturing the behavior of the nose and main landing gear was essential to accurately predict the response. This paper describes the model development and presents test-analysis comparisons in three categories: inertial properties, time sequence of events, and acceleration and velocity time-histories.
Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration
NASA Technical Reports Server (NTRS)
Shea, Patrick R.; Flamm, Jeffrey D.; Long, Kurtis R.; James, Kevin D.; Tompkins, Daniel M.; Beyar, Michael D.
2016-01-01
Propulsion airframe integration testing on a 5.75% scale hybrid wing body model us- ing turbine powered simulators was completed at the National Full-Scale Aerodynamics Complex 40- by 80-foot test section. Four rear control surface con gurations including a no control surface de ection con guration were tested with the turbine powered simulator units to investigate how the jet exhaust in uenced the control surface performance as re- lated to the resultant forces and moments on the model. Compared to ow-through nacelle testing on the same hybrid wing body model, the control surface e ectiveness was found to increase with the turbine powered simulator units operating. This was true for pitching moment, lift, and drag although pitching moment was the parameter of greatest interest for this project. With the turbine powered simulator units operating, the model pitching moment was seen to increase when compared to the ow-through nacelle con guration indicating that the center elevon and vertical tail control authority increased with the jet exhaust from the turbine powered simulator units.
NASA Technical Reports Server (NTRS)
Klinar, Walter J.; Jones, Ira P., Jr.
1948-01-01
A supplementary wind-tunnel investigation has been conducted to determine the effect of rearward positions of the center of gravity on the spin, longitudinal-trim, and tumbling characteristics of the 1/20-scale model of the Consolidated Vultee 7002 airplane equipped with the single vertical tail. A few tests were also made with dual vertical tails added to the model. The model was ballasted to represent, the airplane in its approximate design gross weight for two center-of-gravity positions, 3O and 35 percent of the mean aerodynamic chord. The original tests previously reported were for a center-of-gravity position of 24 percent of the mean aerodynamic chord.
Phan, Hoang Vu; Kang, Taesam; Park, Hoon Cheol
2017-04-04
An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.
NASA Technical Reports Server (NTRS)
Dziubala, T.; Esparza, V.; Gillins, R. L.; Petrozzi, M.
1975-01-01
A Rockwell built 0.030-scale 45-0 modified Space Shuttle Orbiter Configuration 14?A/B model and a Boeing built 0.030-scale 747 carrier model were tested to provide six component force and moment data for each vehicle in proximity to the other at a matrix of relative positions, attitudes and test conditions (angles of attack and sideslip were varied). Orbiter model support system tare effects were determined for corrections to obtain support-free aerodynamics. In addition to the balance force data, pressures were measured. Pressure orifices were located at the base of the Orbiter, on either side of the vertical blade strut, and at the mid-root chord on either side of the vertical tail. Strain gages were installed on the Boeing 747 vertical tail to indicate buffet onset. Photographs of aerodynamic configurations tested are shown.
Context-Sensitive Detection of Local Community Structure
2011-04-01
characters in the Victor Hugo novel Les Miserables (lesmis).[77 vertices, 254 edges] [Knu93]. • The neural network of the nematode C. Elegans (c.elegans...adjectives and nouns in the Novel David Cop- perfield by Charles Dickens.[112 vertices, 425 edges] [New06]. • Les Miserables . Co-appearance network of...exponential distribution. The degree distributions of the Network Science, Les Miserables , and Word Adjacencies networks display a similar heavy tail. By
Ground geophysical study of the Buckeye mine tailings, Boulder watershed, Montana
McDougal, Robert R.; Smith, Bruce D.
2000-01-01
The Buckeye mine site is located in the Boulder River watershed along Basin Creek, in northern Jefferson County, Montana. This project is part of the Boulder River watershed Abandoned Mine Lands Initiative, and is a collaborative effort between the U.S. Geological Survey and Bureau of Land Management in the U.S. Department of the Interior, and the U.S. Forest Service in the U.S. Department of Agriculture. The site includes a large flotation milltailing deposit, which extends to the stream and meadows below the mine. These tailings contain elevated levels of metals, such as silver, cadmium, copper, lead, and zinc. Metal-rich fluvial tailings containing these metals, are possible sources of ground and surface water contamination. Geophysical methods were used to characterize the sediments at the Buckeye mine site. Ground geophysical surveys, including electromagnetics, DC resistivity, and total field magnetic methods, were used to delineate anomalies that probably correlate with subsurface metal contamination. Subsurface conductivity was mapped using EM-31 and EM-34 terrain conductivity measuring systems. The conductivity maps represent variation of concentration of dissolved solids in the subsurface from a few meters, to an approximate depth of 30 meters. Conductive sulfides several centimeters thick were encountered in a shallow trench, dug in an area of very high conductivity, at a depth of approximately 1 to1.5 meters. Laboratory measurements of samples of the sulfide layers show the conductivity is on the order of 1000 millisiemens. DC resistivity soundings were used to quantify subsurface conductivity variations and to estimate the depth to bedrock. Total field magnetic measurements were used to identify magnetic metals in the subsurface. The EM surveys identified several areas of relatively high conductivity and detected a conductive plume extending to the southwest, toward the stream. This plume correlates well with the potentiometric surface and direction of ground water flow, and with water quality data from monitoring wells in and around the tailings. The electrical geophysical data suggests there has been vertical migration of high dissolved solids. A DC sounding made on a nearby granite outcrop to the north of the mine showed that the shallow conductivity is on the order of 5 millisiemens/m. Granite underlying the mine tailings, with similar electrical properties as the outcropping area, may be more than 30 meters deep.
1983-03-01
transmnission ratingob gearbox ult uldiatc gOr tail-rotor gearbox Vr vertical tailh hub w wheelhr horizontal tail w/ wheel -type landing-gear legslob...depends on ýhe type of landing gear (skid, fixed- wheel , or retractable). The RTL approach takes into consideration not only gross weight, but also...depending on the helicopter configuration (single- rotor, tandem, or side-by-side), and the type of landing gear ( wheel or skid). For a single-rotor
Theoretical aerodynamic characteristics of a family of slender wing-tail-body combinations
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Byrd, Paul F
1951-01-01
The aerodynamic characteristics of an airplane configuration composed of a swept-back, nearly constant chord wing and a triangular tail mounted on a cylindrical body are presented. The analysis is based on the assumption that the free-stream Mach number is near unity or that the configuration is slender. The calculations for the tail are made on the assumption that the vortex system trailing back from the wing is either a sheet lying entirely in the plane of the flat tail surface or has completely "rolled up" into two point vortices that lie either in, above, or below the plane of the tail surface.
NASA Technical Reports Server (NTRS)
Ellis, R. R.; Buchholz, R. E.; Moore, J. A.
1972-01-01
Two 0.00325-scale models of a space shuttle orbiter were tested in trisonic wind tunnel to obtain force, static stability, and control effectiveness data by six component internal strain gauge balance. Two separate configurations were tested; however, the fuselage and basic wing were of one-piece construction. The configurations were varied by replacing the straight wing tip extensions with upswept wing tips. Directional stability was provided for one configuration by a centerline vertical tail. Due to the one-piece body/wing construction, no body-alone data were obtained. The effect of tip fins and vertical tail size were, however, investigated. Both configurations were tested over a Mach range of 0.6 to 4.96 with data taken at angles of attack from minus 4 deg to 60 deg and at angles of sideslip from minus 4 deg to 10 deg.
A Computational and Experimental Investigation of a Delta Wing with Vertical Tails
NASA Technical Reports Server (NTRS)
Krist. Sherrie L.; Washburn, Anthony E.; Visser, Kenneth D.
2004-01-01
The flow over an aspect ratio 1 delta wing with twin vertical tails is studied in a combined computational and experimental investigation. This research is conducted in an effort to understand the vortex and fin interaction process. The computational algorithm used solves both the thin-layer Navier-Stokes and the inviscid Euler equations and utilizes a chimera grid-overlapping technique. The results are compared with data obtained from a detailed experimental investigation. The laminar case presented is for an angle of attack of 20 and a Reynolds number of 500; 000. Good agreement is observed for the physics of the flow field, as evidenced by comparisons of computational pressure contours with experimental flow-visualization images, as well as by comparisons of vortex-core trajectories. While comparisons of the vorticity magnitudes indicate that the computations underpredict the magnitude in the wing primary-vortex-core region, grid embedding improves the computational prediction.
A computational and experimental investigation of a delta wing with vertical tails
NASA Technical Reports Server (NTRS)
Krist, Sherrie L.; Washburn, Anthony E.; Visser, Kenneth D.
1993-01-01
The flow over an aspect ratio 1 delta wing with twin vertical tails is studied in a combined computational and experimental investigation. This research is conducted in an effort to understand the vortex and fin interaction process. The computational algorithm used solves both the thin-layer Navier-Stokes and the inviscid Euler equations and utilizes a chimera grid-overlapping technique. The results are compared with data obtained from a detailed experimental investigation. The laminar case presented is for an angle of attack of 20 deg and a Reynolds number of 500,000. Good agreement is observed for the physics of the flow field, as evidenced by comparisons of computational pressure contours with experimental flow-visualization images, as well as by comparisons of vortex-core trajectories. While comparisons of the vorticity magnitudes indicate that the computations underpredict the magnitude in the wing primary-vortex-core region, grid embedding improves the computational prediction.
Low-speed static and dynamic force tests of a generic supersonic cruise fighter configuration
NASA Technical Reports Server (NTRS)
Hahne, David E.
1989-01-01
Static and dynamic force tests of a generic fighter configuration designed for sustained supersonic flight were conducted in the Langley 30- by 60-foot tunnel. The baseline configuration had a 65 deg arrow wing, twin wing mounted vertical tails and a canard. Results showed that control was available up to C sub L,max (maximum lift coefficient) from aerodynamic controls about all axes but control in the pitch and yaw axes decreased rapidly in the post-stall angle-of-attack region. The baseline configuration showed stable lateral-directional characteristics at low angles of attack but directional stability occurred near alpha = 25 deg as the wing shielded the vertical tails. The configuration showed positive effective dihedral throughout the test angle-of-attack range. Forced oscillation tests indicated that the baseline configuration had stable damping characteristics about the lateral-directional axes.
NASA Astrophysics Data System (ADS)
Muralidharan, D.; Andrade, R.; Anand, K.; Sathish, R.; Goud, K.
2009-12-01
Mining activities results into generation of disintegrated waste materials attaining increased mobilization status and requires a safe disposal mechanism through back filling process or secluded storage on surface with prevention of its interaction with environment cycle. The surface disposal of waste materials will become more critical in case of mined minerals having toxic or radioactive elements. In such cases, the surface disposal site is to be characterized for its sub-surface nature to understand its role in environmental impact due to the loading of waste materials. Near surface geophysics plays a major role in mapping the geophysical characters of the sub-surface formations in and around the disposal site and even to certain extent helps in designing of the storage structure. Integrated geophysical methods involving resistivity tomography, ground magnetic and shallow seismic studies were carried out over proposed tailings pond area of 0.3 sq. kms underlined by dipping sedimentary rocks consisting of ferruginous shales and dolomitic to siliceous limestone with varying thicknesses. The investigated site being located in tectonically disturbed area, geophysical investigations were carried out with number of profiles to visualize the sub-surface nature with clarity. The integration of results of twenty profiles of resistivity tomography with 2 m (shallow) and 10 m (moderate depth) electrode spacing’s enabled in preparing probable sub-surface geological section along the strike direction of the formation under the tailings pond with some geo-tectonic structure inferred to be a fault. Similarly, two resistivity tomography profiles perpendicular to the strike direction of the formations brought out the existence of buried basic intrusive body on the northern boundary of the proposed tailings pond. Two resistivity tomography profiles in criss-cross direction over the suspected fault zone confirmed fault existence on the north-eastern part of tailings pond. Thirty two magnetic profiles inside the tailings pond and surrounding areas on the southern part of the tailings pond enabled in identifying two parallel east-west intrusive bodies forming the impermeable boundary for the tailings pond. The shallow seismic refraction and the geophysical studies in and around the proposed tailings pond brought out the suitability of the site, even when the toxic elements percolates through the subsurface formations in to the groundwater system, the existence of dykes on either side of the proposed ponding area won’t allow the water to move across them thus by restricting the contamination within the tailings pond area. Similarly, the delineation of a fault zone within the tailings pond area helped in shifting the proposed dam axis of the pond to avoid leakage through the fault zone causing concern to environment pollution.
Horizontal and vertical integration of physicians: a tale of two tails.
Burns, Lawton Robert; Goldsmith, Jeff C; Sen, Aditi
2013-01-01
Researchers recommend a reorganization of the medical profession into larger groups with a multispecialty mix. We analyze whether there is evidence for the superiority of these models and if this organizational transformation is underway. DESIGN/METHODOLOGY APPROACH: We summarize the evidence on scale and scope economies in physician group practice, and then review the trends in physician group size and specialty mix to conduct survivorship tests of the most efficient models. The distribution of physician groups exhibits two interesting tails. In the lower tail, a large percentage of physicians continue to practice in small, physician-owned practices. In the upper tail, there is a small but rapidly growing percentage of large groups that have been organized primarily by non-physician owners. While our analysis includes no original data, it does collate all known surveys of physician practice characteristics and group practice formation to provide a consistent picture of physician organization. Our review suggests that scale and scope economies in physician practice are limited. This may explain why most physicians have retained their small practices. Larger, multispecialty groups have been primarily organized by non-physician owners in vertically integrated arrangements. There is little evidence supporting the efficiencies of such models and some concern they may pose anticompetitive threats. This is the first comprehensive review of the scale and scope economies of physician practice in nearly two decades. The research results do not appear to have changed much; nor has much changed in physician practice organization.
NASA Technical Reports Server (NTRS)
Johnson, Joseph L.
1954-01-01
An investigation has been conducted to determine the static stability and control and damping in roll and yaw of a 0.13-scale model of the Convair XFY-1 airplane with propellers off from 0 deg to 90 deg angle of attack. The tests showed that a slightly unstable pitch-up tendency occurred simultaneously with a break in the normal-force curve in the angle-of-attack range from about 27 deg to 36 deg. The top vertical tail contributed positive values of static directional stability and effective dihedral up to an angle of attack of about 35 deg. The bottom tail contributed positive values of static directional stability but negative values of effective dihedral throughout the angle-of-attack range. Effectiveness of the control surfaces decreased to very low values at the high angles of attack, The model had positive damping in yaw and damping in roll about the body axes over the angle-of-attack range but the damping in yaw decreased to about zero at 90 deg angle of attack.
Wei, Zuoan; Yin, Guangzhi; Wang, J G; Wan, Ling; Li, Guangzhi
2013-01-01
Rapid development of China's economy demands for more mineral resources. At the same time, a vast quantity of mine tailings, as the waste byproduct of mining and mineral processing, is being produced in huge proportions. Tailings impoundments play an important role in the practical surface disposal of these large quantities of mining waste. Historically, tailings were relatively small in quantity and had no commercial value, thus little attention was paid to their disposal. The tailings were preferably discharged near the mines and few tailings storage facilities were constructed in mainland China. This situation has significantly changed since 2000, because the Chinese economy is growing rapidly and Chinese regulations and legislation require that tailings disposal systems must be ready before the mining operation begins. Consequently, data up to 2008 shows that more than 12 000 tailings storage facilities have been built in China. This paper reviews the history of tailings disposal in China, discusses three cases of tailings dam failures and explores failure mechanisms, and the procedures commonly used in China for planning, design, construction and management of tailings impoundments. This paper also discusses the current situation, shortcomings and key weaknesses, as well as future development trends for tailings storage facilities in China.
NASA Technical Reports Server (NTRS)
Emerson, Horace F.; Axelson, John A.
1949-01-01
An additional series of high-speed wind-tunnel tests of a modified 0.17-scale model of the McDonnell XF2H-1 airplane was conducted to evaluate the effects of a reduction in the thickness-to-chord ratios of the tail planes, the displacement of the horizontal tail relative to the vertical tail, and the extension of the trailing edge of the wing. Two tail-intersection fairings designed to improve the flow at the tail were also tested. The pitching-moment characteristics of the model were improved slightly by the use of the thinner tail sections. Rearward or rearward and downward displacements of the horizontal tail increased the critical Mach number at the tail intersection from 0.725 to a maximum of 0.80, but caused an excessive change in pitching-moment coefficient at the higher Mach numbers. Extending the trailing edge of the wing did not improve the static longitudinal-stability characteristics, but increased the pitching-down tendency between 0.725 and 0.825 Mach numbers prior to the pitching-up tendency. The extended wing did, however, increase the Mach numbers at which these tendencies occurred. The increase in the Mach numbers of divergence and the tuft studies indicate a probable increase in the buffet limit of the prototype airplane. No perceptible improvement of flow at the tail intersection was observed with the two fairings tested on the forward tail configuration.
Fractographic Examination of the Vertical Stabilizer and Rudder from American Airlines Flight 587
NASA Technical Reports Server (NTRS)
Fox, Matthew R.; Schultheisz, Carl R.; Reeder, James R.
2005-01-01
The first major structural component failure of a composite part on a commercial airplane occurred during the crash of American Airlines Flight 587. The fractured composite lugs that attached the vertical stabilizer to the aircraft tail and the fractured composite honeycomb rudder were examined as part of the National Transportation Safety Board investigation of the accident. In this paper the composite fractures are described and the resulting clues to the failure events are discussed.
Distribution and mobility of arsenic in soils of a mining area (Western Spain).
García-Sánchez, A; Alonso-Rojo, P; Santos-Francés, F
2010-09-01
High levels of total and bioavailable As in soils in mining areas may lead to the potential contamination of surface water and groundwater, being toxic to human, plants, and animals. The soils in the studied area (Province of Salamanca, Spain) recorded a total As concentration that varied from 5.5mg/kg to 150mg/kg, and water-soluble As ranged from 0.004mg/kg to 0.107mg/kg, often exceeding the guideline limits for agricultural soil (50mg/kg total As, 0.04mg/kg water-soluble As). The range of As concentration in pond water was <0.001microg/l-60microg/l, with 40% of samples exceeding the maximum permissible level (10microg/l) for drinking water. Estimated bioavailable As in soil varied from 0.045mg/kg to 0.760mg/kg, around six times higher than water-soluble As fraction, which may pose a high potential risk in regard to its entry into food chain. Soil column leaching tests show an As potential mobility constant threatening water contamination by continuous leaching. The vertical distribution of As through soil profiles suggests a deposition mechanism of this element on the top-soils that involves the wind or water transport of mine tailings. A similar vertical distribution of As and organic matter (OM) contents in soil profiles, as well as, significant correlations between As concentrations and OM and N contents, suggests that type and content of soil OM are major factors for determining the content, distribution, and mobilization of As in the soil. Due to the low supergenic mobility of this element in mining environments, the soil pollution degree in the studied area is moderate, in spite of the elevated As contents in mine tailings. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Boyden, R. P.
1974-01-01
The aerodynamic damping in pitch, yaw, and roll and the oscillatory stability in pitch and yaw of a supercritical-wing research airplane model were determined for Mach numbers of 0.25 to 1.20 by using the small-amplitude forced-oscillation technique. The angle-of-attack range was from -2 deg to 20 deg. The effects of the underwing leading-edge vortex generators and the contributions of the wing, vertical tail, and horizontal tail to the appropriate damping and stability were measured.
Hyper-X Hot Structures Comparison of Thermal Analysis and Flight Data
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Leonard, Charles P.; Bruce, Walter E., III
2004-01-01
The Hyper-X (X-43A) program is a flight experiment to demonstrate scramjet performance and operability under controlled powered free-flight conditions at Mach 7 and 10. The Mach 7 flight was successfully completed on March 27, 2004. Thermocouple instrumentation in the hot structures (nose, horizontal tail, and vertical tail) recorded the flight thermal response of these components. Preflight thermal analysis was performed for design and risk assessment purposes. This paper will present a comparison of the preflight thermal analysis and the recorded flight data.
Klunder, Edgar B [Bethel Park, PA
2011-08-09
The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.
NASA Technical Reports Server (NTRS)
Swanson, Robert S; Crandall, Stewart M
1948-01-01
A limited number of lifting-surface-theory solutions for wings with chordwise loadings resulting from angle of attack, parabolic-ac camber, and flap deflection are now available. These solutions were studied with the purpose of determining methods of extrapolating the results in such a way that they could be used to determine lifting-surface-theory values of the aspect-ratio corrections to the lift and hinge-moment parameters for both angle-of-attack and flap-deflection-type loading that could be used to predict the characteristics of horizontal tail surfaces from section data with sufficient accuracy for engineering purposes. Such a method was devised for horizontal tail surfaces with full-span elevators. In spite of the fact that the theory involved is rather complex, the method is simple to apply and may be applied without any knowledge of lifting-surface theory. A comparison of experimental finite-span and section value and of the estimated values of the lift and hinge-moment parameters for three horizontal tail surfaces was made to provide an experimental verification of the method suggested. (author)
Numerical Simulation of a High-Lift Configuration with Embedded Fluidic Actuators
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Casalino, Damiano; Lin, John C.; Appelbaum, Jason
2014-01-01
Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW(Registered TradeMark) code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. Effect of varying yaw and rudder deflection angles are also presented. In addition, computations have been performed at a higher Reynolds number to assess the performance of fluidic actuators at flight conditions.
A feasibility study regarding the addition of a fifth control to a rotorcraft in-flight simulator
NASA Technical Reports Server (NTRS)
Turner, Simon; Andrisani, Dominick, II
1992-01-01
The addition of a large movable horizontal tail surface to the control system of a rotorcraft in-flight simulator being developed from a Sikorsky UH-60A Black Hawk Helicopter is evaluated. The capabilities of the control surface as a trim control and as an active control are explored. The helicopter dynamics are modeled using the Generic Helicopter simulation program developed by Sikorsky Aircraft. The effect of the horizontal tail on the helicopter trim envelope is examined by plotting trim maps of the aircraft attitude and controls as a function of the flight speed and horizontal tail incidence. The control power of the tail surface relative to that of the other controls is examined by comparing control derivatives extracted from the simulation program over the flight speed envelope. The horizontal tail's contribution as an active control is evaluated using an explicit model following control synthesis involving a linear model of the helicopter in steady, level flight at a flight speed of eighty knots. The horizontal tail is found to provide additional control flexibility in the longitudinal axis. As a trim control, it provides effective control of the trim pitch attitude at mid to high forward speeds. As an active control, the horizontal tail provides useful pitching moment generating capabilities at mid to high forward speeds.
X-36 Tailless Fighter Agility Research Aircraft in flight
1997-10-30
The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997.
Lin, Yi-Chieh; Chen, Bing-Mae; Lu, Wei-Cheng; Su, Chien-I; Prijovich, Zeljko M.; Chung, Wen-Chuan; Wu, Pei-Yu; Chen, Kai-Chuan; Lee, I-Chiao; Juan, Ting-Yi; Roffler, Steve R.
2013-01-01
Membrane-tethered proteins (mammalian surface display) are increasingly being used for novel therapeutic and biotechnology applications. Maximizing surface expression of chimeric proteins on mammalian cells is important for these applications. We show that the cytoplasmic domain from the B7-1 antigen, a commonly used element for mammalian surface display, can enhance the intracellular transport and surface display of chimeric proteins in a Sar1 and Rab1 dependent fashion. However, mutational, alanine scanning and deletion analysis demonstrate the absence of linear ER export motifs in the B7 cytoplasmic domain. Rather, efficient intracellular transport correlated with the presence of predicted secondary structure in the cytoplasmic tail. Examination of the cytoplasmic domains of 984 human and 782 mouse type I transmembrane proteins revealed that many previously identified ER export motifs are rarely found in the cytoplasmic tail of type I transmembrane proteins. Our results suggest that efficient intracellular transport of B7 chimeric proteins is associated with the structure rather than to the presence of a linear ER export motif in the cytoplasmic tail, and indicate that short (less than ~ 10-20 amino acids) and unstructured cytoplasmic tails should be avoided to express high levels of chimeric proteins on mammalian cells. PMID:24073236
Advances in Hot-Structure Development
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin; Glass, David E.
2006-01-01
The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic airframe concepts, including structural arrangement, load paths, thermal-structural wall design, thermal accommodation features, and integration of major components, optimize thermalstructural configurations, and validate concepts through a building block test program and generate data to improve and validate analytical and design tools.
The Pressure Distribution over the Horizontal Tail Surfaces of an Airplane III
NASA Technical Reports Server (NTRS)
Norton, F H; Brown, W G
1923-01-01
This report contains the results of an investigation of the distribution of pressure over the tail surfaces of a full-sized airplane during accelerated flight for the purpose of determining the magnitude of the tail and fuselage stresses in maneuvering. As the pressures in accelerated flight change in value with great rapidity, it was found that the liquid manometer used in the first part of this investigation would not be at all suitable under these conditions; so it was necessary to design and construct a new manometer containing a large number of recording diaphragm gauges for these measurements. Sixty openings on the tail surfaces were connected to this manometer and continuous records of pressures for each pair of holes were taken during various maneuvers. There were also recorded, simultaneously with the pressures, the normal acceleration at the center of gravity and the angular position of all the controls. The present investigation consisted in measuring on a standard rigged JN4H airplane the distribution of pressure over the whole of the horizontal tail surfaces while the airplane was being put through maneuvers as violently as it was thought safe, including spinning and pulling out of dives.
Molecular Packing of Amiphiphiles with Crown Polar Heads at the Air-Water Interface
NASA Astrophysics Data System (ADS)
Larson, K.; Vaknin, D.; Villavicencio, O.; McGrath, D.; Tsukruk, V. V.
2002-03-01
An amphiphilic compound containing a benzyl-15-crown-5 focal point, azobenzene spacer, and a dodecyl tail as a peripheral group has been investigated at the air-water interface. X-ray grazing incident diffraction and reflectivity were preformed on the Langmuir monolayers to elucidate molecular packing and orientation. At high surface pressure, we observed intralayer packing of the alkyl tails with doubling parameters of the conventional orthorhombic unit cell (supercell) and long-range positional ordering. High tilt of the alkyl tails of about 58º from the surface normal was a signature of molecular packing caused by a large mismatch between the cross-sectional areas of the polar heads and the alkyl tail. Higher generation molecules of the same series display straight tail orientation and hexagonal lateral packing.
NASA Technical Reports Server (NTRS)
Clark, L. E.; Richie, C. B.
1977-01-01
The hypersonic aerodynamic characteristics of an air-launched, delta-wing research aircraft concept were investigated at Mach 6. The effect of various components such as nose shape, wing camber, wing location, center vertical tail, wing tip fins, forward delta wing, engine nacelle, and speed brakes was also studied. Tests were conducted with a 0.021 scale model at a Reynolds number, based on model length, of 10.5 million and over an angel of attack range from -4 deg to 20 deg. Results show that most configurations with a center vertical tail have static longitudinal stability at trim, static directional stability at angles of attack up to 12 deg, and static lateral stability throughout the angle of attack range. Configurations with wing tip fins generally have static longitudinal stability at trim, have lateral stability at angles of attack above 8 deg, and are directionally unstable over the angle of attack range.
NASA Technical Reports Server (NTRS)
Yip, Long P.; Fratello, David J.; Robelen, David B.; Makowiec, George M.
1990-01-01
At the request of the United States Marine Corps, an exploratory wind-tunnel and flight test investigation was conducted by the Flight Dynamics Branch at the NASA Langley Research Center to improve the stability, controllability, and general flight characteristics of the Marine Corps Exdrone RPV (Remotely Piloted Vehicle) configuration. Static wind tunnel tests were conducted in the Langley 12 foot Low Speed Wind Tunnel to identify and improve the stability and control characteristics of the vehicle. The wind tunnel test resulted in several configuration modifications which included increased elevator size, increased vertical tail size and tail moment arm, increased rudder size and aileron size, the addition of vertical wing tip fins, and the addition of leading-edge droops on the outboard wing panel to improve stall departure resistance. Flight tests of the modified configuration were conducted at the NASA Plum Tree Test Site to provide a qualitative evaluation of the flight characteristics of the modified configuration.
NASA Technical Reports Server (NTRS)
Berman, Theodore; Pumphrey, Norman E.
1950-01-01
An investigation has been conducted in the Langley 20-foot free-spinning tunnel to determine the spin and recovery characteristics of a 0.057-scale model of the modified Chance Vought XF7U-1 airplane. The primary change in the design from that previously tested was a revision of the twin vertical tails. Tests were also made to determine the effect of installation of external wing tanks. The results indicated that the revision in the vertical tails did not greatly alter the spin and recovery characteristics of the model and recovery by normal use of controls (fill rapid rudder reversal followed approximately one-half turn later by movement of the stick forward of neutral) was satisfactory. Adding the external wing tanks to cause the recovery characteristics to become critical and border on an unsatisfactory condition; however, it was shown that satisfactory recovery could be obtained by jettisoning the tanks, followed by normal recovery technique.
NASA Technical Reports Server (NTRS)
Shrout, B. L.; Fournier, R. H.
1979-01-01
An investigation was made in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30, 2.96, and 3.30 to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise airplane. The configuration, with a design Mach number of 3.0, has a highly swept arrow wing with tip panels of lesser sweep, a fuselage chine, outboard vertical tails, and outboard engines mounted in nacelles beneath the wings. For wind tunnel test conditions, a trimmed value above 6.0 of the maximum lift-drag ratio was obtained at the design Mach number. The configuration was statically stable, both longitudinally and laterally. Data are presented for variations of vertical-tail roll-out and toe-in and for various combinations of components. Some roll control data are shown as are data for the various sand grit sizes used in fixing the boundary layer transition location.
Processing vertical size disparities in distinct depth planes.
Duke, Philip A; Howard, Ian P
2012-08-17
A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.
NASA Technical Reports Server (NTRS)
Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)
1996-01-01
The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since centrifugal force has to be balanced by a lift-like force. She then re-traces her path and injects air into the vortex from her blowhole. She can even make a ring reconnect from the helix. In the second technique, demonstrated a few times, she again swims in a curved path, releases a cloud or group of bubbles from her blowhole and turns sharply away (Which presumably strengthens the vortex). As the bubbles encounter the vortex, they travel to the center of the vortex, merge and, in a flash, elongate along the core of the vortex. In all the three types, the air-water interface is shiny smooth and stable because the pressure gradient in the vortex flow around the bubble stabilizes it. A lot of the interesting physics still remains to be explored.
Dynamics of the liquid film around elongated bubbles rising in vertical capillaries
NASA Astrophysics Data System (ADS)
Magnini, Mirco; Khodaparast, Sepideh; Matar, Omar K.; Stone, Howard A.; Thome, John R.
2017-11-01
We performed a theoretical, numerical and experimental study on elongated bubbles rising in vertical tubes in co-current liquid flows. The flow conditions were characterized by capillary, Reynolds and Bond numbers within the range of Ca = 0.005 - 0.1 , Re = 1 - 2000 and Bo = 0 - 20 . Direct numerical simulations of the two-phase flows are run with a self-improved version of OpenFOAM, implementing a coupled Level Set and Volume of Fluid method. A theoretical model based on an extension of the traditional Bretherton theory, accounting for inertia and the gravity force, is developed to obtain predictions of the profiles of the front and rear menisci of the bubble, liquid film thickness and bubble velocity. Different from the traditional theory for bubbles rising in a stagnant liquid, the gravity force impacts the flow already when Bo < 4 . Gravity effects speed up the bubble compared to the Bo = 0 case, making the liquid film thicker and reducing the amplitude of the undulation on the surface of the bubble near its tail. Gravity effects are more apparent in the visco-capillary regime, i.e. when the Reynolds number is below 1.
Faria, R G; Araujo, A F B
2004-11-01
We studied the ecology of Tropidurus itambere and T. oreadicus that occur syntopically in rocky habitats of Cerrado vegetation in central Brazil during the dry season (April to September 2000). The two species are ecologically similar, but somewhat differentiated in vertical microhabitat use. The two species preferred rocky surface microhabitat. Both species demonstrated a unimodal activity pattern, with a peak between 10 and 15 h. Their diets were similar in composition and prey size. The most frequent item used by both species was ants, whereas the most important preys volumetrically were termites and ants. Small morphological differences observed between the two Tropidurus species could explain minor microhabitat divergence: T. itambere is slightly smaller, heavier, and more robust, and uses lower perches. T. oreadicus is larger, lankier, with longer extremities (tail, fore- and hindlegs), and uses a larger vertical microhabitat range. These ecological differences are slight, when compared with those observed between sympatric species of Tropidurus in spatially more heterogeneous landscapes. Considering the slight ecomorphological divergence between the two Tropidurus species and their high abundance in outcrops, we suggest that interspecific territoriality is the mechanism of coexistence.
Study of Zn-Pb ore tailings and their potential in cement technology
NASA Astrophysics Data System (ADS)
Nouairi, J.; Hajjaji, W.; Costa, C. S.; Senff, L.; Patinha, C.; Ferreira da Silva, E.; Labrincha, J. A.; Rocha, F.; Medhioub, M.
2018-03-01
This paper describes the synthesis of sulfobelite clinkers incorporating mining rejects. The targeted Zn-Pb tailing wastes generated in the diapiric zone (NW Tunisia) were tested in clinker/cement compositions to ensure the inertization of existing hazardous heavy metals. Mineralogical composition of the two selected samples revealed calcite, dolomite, quartz, kaolinite, galena, pyrite and gypsum as crystalline phases. Vertical distributions of dominant heavy metals (Pb, Zn and Cu) in soil profiles show enrichment in the surface layers and decrease towards the depth. In sintered clinkers powders, the presence of the targeted crystalline phases (trialuminate sulphate (C4A3Š), belite (C2S), and ferrite (C4AF)) are in the predicted desirable amounts. Heat flow generated during the hydration of different cement pastes showed a slower reaction for clinkers with higher amounts of C4A3Š or constituted by coarser particles. After 28 days curing, the best mechanical resistance (24.34 MPa under compression) was obtained for the clinker calcined at 1350 °C and showing a suitable particle size distribution. Concerning heavy metals, immobilisation of 75-85% of Pb, Zn and Cu was assessed in the mortars formulated with the produced clinker/cement, posing no hazardous risks to the environment.
NASA Technical Reports Server (NTRS)
Rao, Dhanvada M.; Bhat, M. K.
1992-01-01
A proposed concept to alleviate high alpha asymmetry and lateral/directional instability by decoupling of forebody and wing vortices was studied on a generic chine forebody/ 60 deg. delta configuration in the NASA Langley 7 by 10 foot High Speed Tunnel. The decoupling technique involved inboard leading edge flaps of varying span and deflection angle. Six component force/moment characteristics, surface pressure distributions and vapor-screen flow visualizations were acquired, on the basic wing-body configuration and with both single and twin vertical tails at M sub infinity = 0.1 and 0.4, and in the range alpha = 0 to 50 deg and beta = -10 to +10 degs. Results are presented which highlight the potential of vortex decoupling via leading edge flaps for enhanced high alpha lateral/directional characteristics.
Mine tailings composition in a historic site: implications for ecological restoration.
Courtney, R
2013-02-01
Ecological restoration, using tolerant plant species and nutrient additions, is a low-cost option to decrease environmental risks associated with mine tailings. An attempt was previously made to establish such a vegetation cover on an abandoned tailings facility in Southern Ireland. Historically, the tailings site has been prone to dusting and is a potential source of contamination to the surrounding environment. The site was examined to determine the success of the previous restoration plan used to revegetate the site and to determine its suitability for further restoration. Three distinct floristic areas were identified (grassland, poor grassland and bare area) based on herbage compositions and elemental analysis. Surface and subsurface samples were taken to characterise tailings from within these areas of the tailings site. The pH of bare surface tailings (pH, 2.7) was significantly more acidic (p < 0.5) than in other areas. Additionally, negligible net neutralising potential resulted in the tailings being hostile to plant growth. Total metal concentrations in tailings were high (c. 10,000 mg kg(-1) for Pb and up to 20,000 mg kg(-1) for Zn). DTPA-extractable Zn and Pb were 16 and 11 % of the total amount, respectively. Metal content in grasses growing on some areas of the tailings were elevated and demonstrated the inability of the tailings to support sustainable plant growth. Due to the inherently hostile characteristics of these areas, future restoration work will employ capping with a barrier layer.
Flexible histone tails in a new mesoscopic oligonucleosome model.
Arya, Gaurav; Zhang, Qing; Schlick, Tamar
2006-07-01
We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.
Failure Analysis on Tail Rotor Teeter Pivot Bolt on a Helicopter
NASA Astrophysics Data System (ADS)
Qiang, WANG; Zi-long, DONG
2018-03-01
Tail rotor teeter pivot bolt of a helicopter fractured when in one flight. Failure analysis on the bolt was finished in laboratory. Macroscopic observation of the tailor rotor teeter pivot bolt, macro and microscopic inspection on the fracture surface of the bolt was carried out. Chemical components and metallurgical structure was also carried out. Experiment results showed that fracture mode of the tail rotor teeter pivot bolt is fatigue fracture. Fatigue area is over 80% of the total fracture surface, obvious fatigue band characteristics can be found at the fracture face. According to the results were analyzed from the macroscopic and microcosmic aspects, fracture reasons of the tail rotor teeter pivot bolt were analyzed in detail
Aerodynamic characteristics of a canard-controlled missile at Mach numbers of 1.5 and 2.0.
NASA Technical Reports Server (NTRS)
Kassner, D. L.; Wettlaufer, B.
1977-01-01
A typical missile model with nose mounted canards and cruciform tail surfaces was tested in the Ames 6- by 6-Foot Wind Tunnel to determine the contributions of the component aerodynamic surfaces to the static aerodynamic characteristics at Mach numbers of 1.5 and 2.0 and Reynolds number of 1 million based on body diameter. Data were obtained at angles of attack ranging from -3 deg to 12 deg for various stages of model build-up (i.e., with and without canard and/or tail surfaces). Results were obtained both with the model unrolled and rolled 45 deg. For the canard and tail arrangements investigated, the model was trimmable at angles of attack up to about 10 deg with canard deflections of 9 deg. Also, the tail arrangements studied provided ample pitch stability. there were no appreciable effects of model roll orientation.
NASA Technical Reports Server (NTRS)
Axelson, John A.; Emerson, Horace F.
1949-01-01
High-speed wind-tunnel tests were conducted of two versions of a 0.17-scale model of the McDonnell XF2H-1 airplane to ascertain the high-speed stability and control characteristics and to study means for raising the high-speed buffet limit of the airplane, The results for the revised model, employing a thinner wing and tail than the original model, revealed a mild diving tendency from 0.75 to 0.80 Mach number, followed by a marked climbing tendency from 0.80 to 0.875 Mach number. The high-speed climbing tendency was caused principally by the pitching-moment characteristics of the wing. At 0.875 Mach number the results for the revised model indicated stick-fixed directional instability over a limited range of yaw angles, apparently caused by separated flow over the vertical tail. The test results indicate that the high-speed buffet limit of the airplane can probably be raised by reducing the thickness and changing the relative location of the horizontal and vertical tails, and by revising the inner portion of the wing to have a lower thickness-to-chord ratio and reduced trailing-edge angle. The addition of the wing-tip tanks to the revised model resulted in a forward shift in the neutral point below 0.82 Mach number.
1941-04-01
measured with a bank of pitot -yaw tubes-connected to a direct-reading multiple-tube manometer. The- bank of pitot -yaw tubes was so mounted as- to...neutral and deflected 60°. These Surveys were made on a cross-tunnel line 2.26 inches above the fuselage center line, and the pitot -yaw tubes were...Langley Field-, 7a-., January 30, 1941. NACA Technical Note So. 804 17 REFERENCES 1. Pearson, Henry A., and Jones, Robert T. : Theoretical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veska, E.; Eaton, R.S.
Field and laboratory investigations were undertaken of the environment surrounding abandoned U mill tailings at Rayrock, Northwest Territories, Canada, to examine the extent of 226Ra and U contamination. Samples of ground water, surface water, and unconsolidated geological material from the Rayrock area were collected for chemical and radiochemical analyses. Results indicated that the surface waters contained levels of 226Ra as high as 20 Bq L-1, 210Pb as high as 1.1 Bq L-1, and ground water U as high as 2800 micrograms L-1. Lower levels of 226Ra, 210Pb, and U, 3.6 Bq L-1, 0.5 Bq L-1, and 4 micrograms L-1, respectively,more » were found in a small lake adjacent to the tailings area. Analysis of tailings and soil in the immediate vicinity indicates that the radionuclides and U are mobilized and can move within the tailings. Some of the mobilized radionuclides will be bound by the surrounding peat. The remainder may move to Lake Alpha in ground water. Surface water flow also transports some contaminants both in the water of Alpha Creek and by washing tailings into Lake Alpha. The potential annual external and internal dose equivalents to a hypothetical resident were calculated based on exposure from the abandoned U mill tailings, drinking water, and fish caught in the lakes in the vicinity of the tailings. While Alpha Creek and Lake Alpha water showed evidence of contamination, the rest of the water system and the fish were at natural background levels of radioactivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pell, L.; Liu, A; Edmonds, L
The tail terminator protein (TrP) plays an essential role in phage tail assembly by capping the rapidly polymerizing tail once it has reached its requisite length and serving as the interaction surface for phage heads. Here, we present the 2.7-A crystal structure of a hexameric ring of gpU, the TrP of phage ?. Using sequence alignment analysis and site-directed mutagenesis, we have shown that this multimeric structure is biologically relevant and we have delineated its functional surfaces. Comparison of the hexameric crystal structure with the solution structure of gpU that we previously solved using NMR spectroscopy shows large structural changesmore » occurring upon multimerization and suggests a mechanism that allows gpU to remain monomeric at high concentrations on its own, yet polymerize readily upon contact with an assembled tail tube. The gpU hexamer displays several flexible loops that play key roles in head and tail binding, implying a role for disorder-to-order transitions in controlling assembly as has been observed with other ? morphogenetic proteins. Finally, we have found that the hexameric structure of gpU is very similar to the structure of a putative TrP from a contractile phage tail even though it displays no detectable sequence similarity. This finding coupled with further bioinformatic investigations has led us to conclude that the TrPs of non-contractile-tailed phages, such as ?, are evolutionarily related to those of contractile-tailed phages, such as P2 and Mu, and that all long-tailed phages may utilize a conserved mechanism for tail termination.« less
Earth Observation taken during the STS-41G mission
2009-06-25
41G-121-138 (5-13 Oct 1984) --- A view of the Earth's horizon featuring France and England. The Strait of Dover and the English channel are visible behind the tail (vertical stabilizer) of Challenger. The remote manipulator system (RMS arm rests in its "stow" position at upper left corner.
Romero, Francisco Martín; Canet, Carles; Alfonso, Pura; Zambrana, Rubén N; Soto, Nayelli
2014-05-15
The surface water contamination by potentially toxic elements (PTE) leached from mine tailings is a major environmental concern. However, the formation of insoluble solid phases can control the mobility of PTE, with subsequent decrease of the risk that tailings suppose to the environment. We characterized the tailings from a tin inactive mine in Llallagua, Bolivia in order to assess the risk for surface water quality. These tailings contain high concentrations of PTE, with up to 94,344 mg/kg Fe, 9,135 mg/kg Sn, 4,606 mg/kg As, 1,362 mg/kg Cu, 1,220 mg/kg Zn, 955 mg/kg Pb and 151 mg/kg Cd. Oxidation of sulfide minerals in these tailings generates acid leachates (pH=2.5-3.5), rich in SO4(2-) and dissolved PTE, thereby releasing contaminants to the surface waters. Nevertheless, the concentrations of dissolved Sn, As and Pb in acid leachates are low (Sn<0.01 mg/L; As=0.25-2.55 mg/L; Pb<0.05 mg/L). This indicates that, for the most part, Sn, As and Pb are being retained by the solid phases in the impoundment, so that these elements are not reaching the surface waters. Fe-bearing cassiterite-an insoluble and weathering-resistant oxide mineral-is abundant in the studied tailing deposits; it should be the main solid phase controlling Sn and As mobility in the impoundment. Additionally, jarosite and plumbojarosite, identified among the secondary minerals, could also play an important role controlling the mobility of As and Pb. Taking into account (a) the low solubility constants of cassiterite (Ksp=10(-64.2)), jarosite (Ksp=10(-11)) and plumbojarosite (Ksp=10(-28.66)), and (b) the stability of these minerals under acidic conditions, we can conclude that they control the long-term fate of Sn, As and Pb in the studied tailings. Copyright © 2014 Elsevier B.V. All rights reserved.
Ponce, Concepcion P; Araghi, Hessamaddin Younesi; Joshi, Neeraj K; Steer, Ronald P; Paige, Matthew F
2015-12-22
Controlling aggregation of the dual sensitizer-emitter (S-E) zinc tetraphenylporphyrin (ZnTPP) is an important consideration in solid state noncoherent photon upconversion (NCPU) applications. The Langmuir-Blodgett (LB) technique is a facile means of preparing ordered assemblies in thin films to study distance-dependent energy transfer processes in S-E systems and was used in this report to control the aggregation of a functionalized ZnTPP on solid substrates. This was achieved by synthetic addition of a short polar tail to one of the pendant phenyl rings in ZnTPP in order to make it surface active. The surface active ZnTPP derivative formed rigid films at the air-water interface and exhibited mean molecular areas consistent with approximately vertically oriented molecules under appropriate film compression. A red shift in the UV-vis spectra as well as unquenched fluorescence emission of the LB films indicated formation of well-ordered aggregates. However, NCPU, present in the solution phase, was not observed in the LB films, suggesting that NCPU from ZnTPP as a dual S-E required not just a controlled aggregation but a specific orientation of the molecules with respect to each other.
Imaging the Sources and Full Extent of the Sodium Tail of the Planet Mercury
NASA Technical Reports Server (NTRS)
Baumgardner, Jeffrey; Wilson, Jody; Mendillo, Michael
2008-01-01
Observations of sodium emission from Mercury can be used to describe the spatial and temporal patterns of sources and sinks in the planet s surface-boundary-exosphere. We report on new data sets that provide the highest spatial resolution of source regions at polar latitudes, as well as the extraordinary length of a tail of escaping Na atoms. The tail s extent of approx.1.5 degrees (nearly 1400 Mercury radii) is driven by radiation pressure effects upon Na atoms sputtered from the surface in the previous approx.5 hours. Wide-angle filtered-imaging instruments are thus capable of studying the time history of sputtering processes of sodium and other species at Mercury from ground-based observatories in concert with upcoming satellite missions to the planet. Plasma tails produced by photo-ionization of Na and other gases in Mercury s neutral tails may be observable by in-situ instruments.
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M
2014-01-01
Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.
Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.
2014-01-01
Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806
Mining-influenced water emanating from mine tailings and potentially contaminating surface water and groundwater is one of the most important environmental issues linked to the mining industry. In this study, two subsets of Callahan Mine tailings (mainly comprised of silicates, ...
Mishra, Devi Prasad; Sahu, Patitapaban; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara
2014-02-01
This paper presents a comparative study of (222)Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, (226)Ra and moisture contents on (222)Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10(-3) and 1.03 Bq m(-2) s(-1), respectively. Significant positive linear correlations between (222)Rn emanation rate and the (226)Ra content of ore and tailings were observed. For normalised (226)Ra content, the (222)Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the (226)Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.
Nash, J. Thomas; Stillings, Lisa L.
2003-01-01
Reconnaissance field studies of 40 mining districts in and near the Humboldt River basin have identified 83 mills and associated tailings impoundments and several other kinds of mineral-processing facilities (smelters, mercury retorts, heap-leach pads) related to historic mining. The majority of the mills and tailings sites are not recorded in the literature. All tailings impoundments show evidence of substantial amounts of erosion. At least 11 tailings dams were breached by flood waters, carrying fluvial tailings 1 to 15 km down canyons and across alluvial fans. Most of the tailings sites are dry most of the year, but some are near streams. Tailings that are wet for part of the year do not appear to be reacting significantly with those waters because physical factors such as clay layers and hard-pan cement appear to limit permeability and release of metals to surface waters. The major impact of mill tailings on surface- water quality may be brief flushes of runoff during storm events that carry acid and metals released from soluble mineral crusts. Small ephemeral ponds and puddles that tend to collect in trenches and low areas on tailings impoundments tend to be acidic and extremely enriched in metals, in part through cycles of evaporation. Ponded water that is rich in salts and metals could be acutely toxic to unsuspecting animals. Rare extreme storms have the potential to cause catastrophic failure of tailings impoundments, carry away metals in stormwaters, and transport tailings as debris flows for 1 to 15 km. In most situations these stormwaters and transported tailings could impact wildlife but probably would impact few or no people or domes-tic water wells. Because all identified historic tailings sites are several kilometers or more from the Humboldt River and major tributaries, tailings probably have no measurable impact on water quality in the main stem of the Humboldt River.
Numerical Simulation of a High-Lift Configuration Embedded with High Momentum Fluidic Actuators
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Duda, Benjamin; Fares, Ehab; Lin, John C.
2016-01-01
Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration, just upstream of the hinge line, is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW R code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. A fully compressible version of the PowerFLOW R code valid for high speed flows is used for the present simulations to accurately represent the transonic flow regimes encountered in the flow field due to the actuators operating at higher mass flow (momentum) rates required to mitigate reverse flow regions on a highly-deflected rudder surface. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. The effect of varying the rudder deflection angle on integrated forces and surface pressures is also presented.
NASA Technical Reports Server (NTRS)
Wollner, Bertram C
1949-01-01
Available information on the effects of wing-fuselage-tail and wing-nacelle interference on the distribution of the air load among components of airplanes is analyzed. The effects of wing and nacelle incidence, horizontal andvertical position of wing and nacelle, fuselage shape, wing section and filleting are considered. Where sufficient data were unavailable to determine the distribution of the air load, the change in lift caused by interference between wing and fuselage was found. This increment is affected to the greatest extent by vertical wing position.
Exploring bird aerodynamics using radio-controlled models.
Hoey, Robert G
2010-12-01
A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.
Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.
Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng
2016-05-01
An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Xiaofang; Zhu, Yong-Guan; Shaban, Babak; Bruxner, Timothy J. C.; Bond, Philip L.; Huang, Longbin
2015-01-01
Characterizing the genetic diversity of microbial copper (Cu) resistance at the community level remains challenging, mainly due to the polymorphism of the core functional gene copA. In this study, a local BLASTN method using a copA database built in this study was developed to recover full-length putative copA sequences from an assembled tailings metagenome; these sequences were then screened for potentially functioning CopA using conserved metal-binding motifs, inferred by evolutionary trace analysis of CopA sequences from known Cu resistant microorganisms. In total, 99 putative copA sequences were recovered from the tailings metagenome, out of which 70 were found with high potential to be functioning in Cu resistance. Phylogenetic analysis of selected copA sequences detected in the tailings metagenome showed that topology of the copA phylogeny is largely congruent with that of the 16S-based phylogeny of the tailings microbial community obtained in our previous study, indicating that the development of copA diversity in the tailings might be mainly through vertical descent with few lateral gene transfer events. The method established here can be used to explore copA (and potentially other metal resistance genes) diversity in any metagenome and has the potential to exhaust the full-length gene sequences for downstream analyses. PMID:26286020
NASA Technical Reports Server (NTRS)
Balch, D. T.; Saccullo, A.; Sheehy, T. W.
1983-01-01
To assist in identifying and quantifying the relevant parameters associated with the complex topic of main rotor/fuselage/tail rotor interference, a model scale hover test was conducted in the Model Rotor Hover Facility. The test was conducted using the basic model test rig, fuselage skins to represent a UH-60A BLACK HAWK helicopter, 4 sets of rotor blades of varying geometry (i.e., twist, airfoils and solidity) and a model tail rotor that could be relocated to give changes in rotor clearance (axially, laterally, and vertically), can't angle and operating model (pusher or tractor). The description of the models and the tests, data analysis and summary (including plots) are included. The customary system of units gas used for principal measurements and calculations. Expressions in both SI units and customary units are used with the SI units stated first and the customary units afterwords, in parenthesis.
The Flying Diamond: A joined aircraft configuration design project, volume 1
NASA Technical Reports Server (NTRS)
Ball, Chris; Czech, Joe; Lentz, Bryan; Kobashigawa, Daryl; Oishi, Curtis; Poladian, David
1988-01-01
The results of the analysis conducted on the Joined Wing Configuration study are presented. The joined wing configuration employs a conventional fuselage and incorporates two wings joined together near their tips to form a diamond shape in both plan view and front view. The arrangement of the lifting surfaces uses the rear wing as a horizontal tail and as a forward wing strut. The rear wing has its root at the tip of the vertical stabilizer and is structurally attached to the trailing edge of the forward wing. This arrangement of the two wings forms a truss structure which is inherently resistant to the aerodynamic bending loads generated during flight. This allows for a considerable reduction in the weight of the lifting surfaces. With smaller internal wing structures needed, the Joined Wing may employ thinner wings which are more suitable for supersonic and hypersonic flight, having less induced drag than conventional cantilever winged aircraft. Inherent in the Joined Wing is the capability of the generation of direct lift and side force which enhance the performance parameters.
A study of factors affecting the steady spin of an airplane
NASA Technical Reports Server (NTRS)
Scudder, Nathan F
1933-01-01
Data from wind-tunnel tests on a model of the NY-1 airplane were used in a study of the effect on the steady spin of a number of factors considered to be important. The factors were of two classes, mass distribution effects and aerodynamic effects. The study indicated that mass extended along the longitudinal axis has no detrimental effect or is even slightly beneficial, mass extended along the lateral axis is detrimental if the airplane spins with the inner wing tip far down, and mass extended along the normal axis, if of considerable magnitude, has a strong favorable effect. The aerodynamic effects considered in terms of rolling, pitching, and yawing moments added to those for a conventional airplane showed that added stable rolling moment could contribute favorable effect on the spin only in decreasing the amount of inward sideslip required for equilibrium. Negative pitching moment of moderate magnitude has unfavorable effect on a high-angle-of-attack spin, and stable yawing moment has pronounced beneficial effect on the spin. Experimental data from various sources were available to verify nearly all the deductions resulting from the study of the curves. When these results were considered for the purpose of deciding upon the best means to be developed for controlling the spin, the yawing-moment equilibrium was found to offer the most promising field for research. The wing-cellule yawing moment, of which the shape of the chord-force curve is an approximate measure, should be made as small as possible in the unstable sense and the damping yawing moment of the tail should be made as large as possible. The most serious unfavorable effect on the damping yawing moment of the tail is the blanketing of the vertical surfaces by the other parts of the tail.
NASA Technical Reports Server (NTRS)
Hieser, Gerald; Reid, Charles F.
1954-01-01
The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.
NASA Astrophysics Data System (ADS)
Gitari, M. W.; Akinyemi, S. A.; Thobakgale, R.; Ngoejana, P. C.; Ramugondo, L.; Matidza, M.; Mhlongo, S. E.; Dacosta, F. A.; Nemapate, N.
2018-01-01
The mining industries in South Africa generates huge amounts of mine waste that includes tailings; waste rocks and spoils. The tailings materials are dumped in surface impoundments that turn to be sources of hazards to the environment and the surrounding communities. The main environmental hazards posed by these tailings facilities are associated with their chemical constituents. Exposure to chemical constituents can occur through windblown dust, erosion to surface water bodies, inhalation by human beings and animals and through bioaccumulation and bio magnification by plants. Numerous un-rehabilitated tailings dumps exist in Limpopo province of South Africa. The communities found around these mines are constantly exposed to the environmental hazards posed by these tailing facilities. Development of a cost-effective technology that can beneficially utilize these tailings can reduce the environmental hazards and benefit the communities. This paper presents the initial evaluation of the copper and gold mine tailings in Limpopo, South Africa with a view to assessing the suitability of conversion into beneficial geopolymeric materials. Copper tailings leachates had alkaline pH (7.34-8.49) while the gold tailings had acidic pH. XRD confirmed presence of aluminosilicate minerals. Geochemical fractionation indicates that majority of the major and trace species are present in residual fraction. A significant amount of Ca, Cu and K was available in the mobile fraction and is expected to be released on tailings contacting aqueous solutions. Results from XRF indicates the tailings are rich in SiO2, Al2O3 and CaO which are the main ingredients in geopolymerization process. The SiO2/Al2O3 ratios indicates the tailings would require blending with Al2O3 rich feedstock for them to develop maximum strength. Moreover, the tailings have particle size in the range of fine sand which indicates potential application as aggregates in conventional brick manufacture.
An Investigation at Low Speed of the Spin Instability of Mortar-Shell Tails
NASA Technical Reports Server (NTRS)
Bird, John D.; Lichtenstein, Jacob H.
1957-01-01
An investigation was made in the Langley stability tunnel to study the influence of number of fins, fin shrouding, and fin aspect ratio on the spin instability of mortar-shell tail surfaces. It was found that the 12-fin tails tested spun less rapidly throughout the angle-of-yaw range than did the 6-fin tails and that fin shrouding reduced the spin encountered by a large amount.
Mapping Sequence performed during the STS-120 R-Bar Pitch Maneuver
2007-10-25
ISS016-E-005934 (25 Oct. 2007) --- The Space Shuttle Discovery's tail section is featured in this image photographed by an Expedition 16 crewmember during a backflip maneuver performed by the approaching visitors (STS-120) to the International Space Station. Visible are the shuttle's main engines and vertical stabilizer.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility at NASAs Kennedy Space Center, United Space Alliance tile technician Jimmy Carter works on instrument wire spot bonding on Atlantis vertical tail/rudder speed brake. Atlantis is being processed for launch on the second Return to Flight mission, STS-121, which is scheduled to fly in July.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility at NASAs Kennedy Space Center, United Space Alliance tile technician Jimmy Carter works on instrument wire spot bonding on Atlantis vertical tail/rudder speed brake. Atlantis is being processed for launch on the second Return to Flight mission, STS-121, which is scheduled to fly in July.
14 CFR 29.497 - Ground loading conditions: landing gear with tail wheels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... designed for loading conditions as prescribed in this section. (b) Level landing attitude with only the forward wheels contacting the ground. In this attitude— (1) The vertical loads must be applied under §§ 29... be resisted by angular inertia forces. (c) Level landing attitude with all wheels contacting the...
14 CFR 23.725 - Limit drop tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the airplane in the level attitude (with the nose wheel clear in the case of nose wheel type airplanes... the tail-down attitude; W=W N for nose wheel units lbs.), equal to the vertical component of the... attitude, and applied drag loads, that represent the landing conditions. (d) The value of d used in the...
14 CFR 27.497 - Ground loading conditions: landing gear with tail wheels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... designed for loading conditions as prescribed in this section. (b) Level landing attitude with only the forward wheels contacting the ground. In this attitude— (1) The vertical loads must be applied under §§ 27... be resisted by angular inertia forces. (c) Level landing attitude with all wheels contacting the...
Directional Stability of Towed Airplanes
NASA Technical Reports Server (NTRS)
Soehne, W.
1956-01-01
So far, very careful investigations have been made regarding the flight properties, in particular the static and dynamic stability, of engine-propelled aircraft and of untowed gliders. In contrast, almost no investigations exist regarding the stability of airplanes towed by a towline. Thus, the following report will aim at investigating the directional stability of the towed airplane and, particularly, at determining what parameters of the flight attitude and what configuration properties affect the stability. The most important parameters of the flight attitude are the dynamic pressure, the aerodynamic coefficients of the flight attitude, and the climbing angle. Among the configuration properties, the following exert the greatest influence on the stability: the tow-cable length, the tow-cable attachment point, the ratio of the wing loadings of the towing and the towed airplanes, the moments of inertia, and the wing dihedral of the towed airplane. In addition, the size and shape of the towed airplane vertical tail, the vertical tail length, and the fuselage configuration are decisive factors in determining the yawing moment and side force due to sideslip, respectively.
Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft
NASA Astrophysics Data System (ADS)
Xue, Hui; Khawaja, H.; Moatamedi, M.
2014-12-01
The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.
RSRA vertical drag test report. [rotor systems research aircraft
NASA Technical Reports Server (NTRS)
Flemming, R. J.
1981-01-01
The Rotor Systems Research Aircraft (RSRA), because of its ability to measure rotor loads, was used to conduct an experiment to determine vertical drag, tail rotor blockage, and thrust augmentation as affected by ground clearance and flight velocity. The RSRA was flown in the helicopter configuration at speeds from 0 to 15 knots for wheel heights from 5 to 150 feet, and to 60 knots out of ground effect. The vertical drag trends in hover, predicted by theory and shown in model tests, were generally confirmed. The OGE hover vertical drag is 4.0 percent, 1.1 percent greater than predicted. The vertical drag decreases rapidly as wheel height is reduced, and is zero at a wheel height of 6 feet. The vertical drag also decreases with forward speed, approaching zero at sixty knots. The test data show the effect of wheel height and forward speed on thrust, gross weight capability, and power, and provide the relationships for power and collective pitch at constant gross weight required for the simulation of helicopter takeoffs and landings.
Vertical gradients in carbon flow and methane production in a sulfate-rich oil sands tailings pond.
Stasik, Sebastian; Wendt-Potthoff, Katrin
2016-12-01
Oil sands tailings ponds are primary storage basins for tailings produced during oil sands processing in Alberta (Canada). Due to microbial metabolism, methane production contributes to greenhouse gas emissions, but positively affects tailings densification, which is relevant for operational water re-use. Depending on the age and depth of tailings, the activity of sulfate-reducing bacteria (SRB) may control methanogenesis due to the competition for substrates. To assess the depth-related impact of sulfate reduction on CH 4 emissions, original tailings of two vicinal pond profiles were incubated in anoxic microcosms with/without molybdate as selective inhibitor of microbial sulfate reduction. Integrating methane production rates, considerable volumes of CH 4 emissions (∼5.37 million L d -1 ) may be effectively prevented by the activity of SRB in sulfidic tailings between 3.5 and 7.5 m. To infer metabolic potentials controlling methanogenic pathways, a set of relevant organic acids (acetate, formate, propionate, butyrate, lactate) was added to part of the microcosms. Generally, organic acid transformation shifted with depth, with highest rates (305-446 μmol L -1 d -1 ) measured in fresh tailings at 5.5-7.5 m. In all depths, a transient accumulation of acetate revealed its importance as key intermediate during organic matter decomposition. SRB dominated the transformation of acetate, butyrate and propionate, but were not essential for lactate and formate turnover. Acetate as methanogenic substrate was important only at 13.5 m. At 1-7.5 m, methanogenesis significantly increased in presence of organic acids, most likely due to the syntrophic oxidation of acetate to CO 2 by SRB and subsequent conversion to CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.
Piatt, John F.; Wetzel, J.; Bell, K.; DeGange, A.R.; Balogh, G.R.; Drew, G.S.; Geernaert, T.; Ladd, C.; Byrd, G.V.
2006-01-01
The short-tailed albatross (Phoebastria albatrus) is a rare and endangered seabird that ranges widely over the northern North Pacific. Populations are slowly recovering but birds face several threats at sea, in particular the incidental capture of birds in long-line fisheries. Conservation efforts are hampered by a lack of information about the at-sea distribution of this species, especially knowledge of where it may predictably co-occur with long-line fishing effort. During 18 years of transiting the Aleutian Islands Unit of the Alaska Maritime National Wildlife Refuge on a research vessel, we observed short-tailed albatross on 65 occasions. They were consistently observed near Ingenstrem Rocks (Buldir Pass) in the western Aleutians and near Seguam Pass in the central Aleutians. Based on the oceanographic characteristics of the locations where we saw most of the birds, we hypothesized that short-tailed albatross “hotspots” were located where tidal currents and steep bottom topography generate strong vertical mixing along the Aleutian Archipelago. As a test of this hypothesis, we analyzed a database containing 1432 opportunistic observations of 2463 short-tailed albatross at sea in the North Pacific. These data showed that short-tailed albatross were closely associated with shelf-edge habitats throughout the northern Gulf of Alaska and Bering Sea. In addition to Ingenstrem Rocks and Seguam Pass, important hotspots for short-tailed albatross in the Aleutians included Near Strait, Samalga Pass, and the shelf-edge south of Umnak/Unalaska islands. In the Bering Sea, hotspots were located along margins of Zhemchug, St. Matthews and Pervenets canyons. Because these short-tailed albatross hotspots are predictable, they are also protectable by regulation of threatening activities at local spatial scales.
Characterization of Nonlinear Effects in Optically Pumped Vertical Cavity Surface Emitting Lasers
1993-12-01
Vertical Cavity Surface Emitting Lasers ( VCSELs ) are an exciting...lines A-3 X AFIT/GEOiENP/93 D-01 Abstract The nonlinear characteristics of optically pumped Vertical Cavity Surface Emitting Lasers ( VCSELs ) are...uniformity of the VCSEL fabrication. xi Characterization of Nonlinear Effects in Optically Pumped Vertical Cavity Surface Emitting Lasers
NASA Technical Reports Server (NTRS)
Alexander, Michael G.; Harris, F. Keith; Spoor, Marc A.; Boyland, Susannah R.; Farrell, Thomas E.; Raines, David M.
2016-01-01
This paper presents a systems overview of how the Boeing and NASA team designed, analyzed, fabricated, and integrated the Active Flow Control (AFC) technology and Insect Accretion Mitigation (IAM) systems on the Boeing 757 ecoDemonstrator. The NASA Environmentally Responsible Aviation (ERA) project partnered with Boeing to demonstrate these two technology systems on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The AFC system demonstrated attenuation of flow separation on a highly deflected rudder and increased the side force generated. This AFC system may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff while still operating in a conventional manner over the rest of the flight envelope. The AFC system consisted of ducting to obtain air from the Auxiliary Power Unit (APU), a control valve to modulate the system mass flow, a heat exchanger to lower the APU air temperature, and additional ducting to deliver the air to the AFC actuators located on the vertical tail. The IAM system demonstrated how to mitigate insect residue adhesion on a wing's leading edge. Something as small as insect residue on a leading edge can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. The IAM system consisted of NASA developed Engineered Surfaces (ES) which were thin aluminum sheet substrate panels with coatings applied to the exterior. These ES were installed on slats 8 and 9 on the right wing of the 757 ecoDemonstrator. They were designed to support panel removal and installation in one crew shift. Each slat accommodated 4 panels. Both the AFC and IAM flight test were the culmination of several years of development and produced valuable data for the advancement of modern aircraft designs.
Optically Nonlinear Polymeric Materials.
1983-01-01
distilled water . Polymer A was deposited onto two back-to-back clean glass slides on the upstroke. The subphase surface was cleaned and either behenic acid...having a water soluble head orouc I and a hydrophobic tail group such as a long chain fatty acid. The amphiphiles are spread on the water surface of a L/B...trough (Figure 1). The hydrophilic head group sits on . the water surface, while the hydrophobic alkyl tails orient themselves away from the water By
USDA-ARS?s Scientific Manuscript database
This study evaluates the effect of surface application of dried Class A biosolids on microbial populations within copper mine tailings. Methods and Results: Mine tailing sites were established at ASARCO Mission Mine close to Sahuarita, Arizona. Site 1 (Dec. 1998) was amended with 248 tons ha-1 of C...
The effect of tip shields on a horizontal tail surface
NASA Technical Reports Server (NTRS)
Dronin, Paul V; Ramsden, Earl I; Higgins, George J
1928-01-01
A series of experiments made in the wind tunnel of the Daniel Guggenheim School of Aeronautics, New York University, on the effect of tip shields on a horizontal tail surface are described and discussed. It was found that some aerodynamic gain can be obtained by the use of tip shields though it is considered doubtful whether their use would be practical.
The airplane: A simulated commercial air transportation study
NASA Technical Reports Server (NTRS)
Dauteuil, Mark; Geniesse, Pete; Hunniford, Michael; Lawler, Kathleen; Quirk, Elena; Tognarelli, Michael
1993-01-01
The 'Airplane' is a moderate-range, 70 passenger aircraft. It is designed to serve demands for flights up to 10,000 feet and it cruises at 32 ft/s. The major drivers for the design of the Airplane are economic competitiveness, takeoff performance, and weight minimization. The Airplane is propelled by a single Astro 15 electric motor and a Zinger 12-8 propeller. The wing section is a Spica airfoil which, because of its flat bottom, provides simplicity in manufacturing and thus helps to cut costs. The wing is constructed of a single load bearing mainspar and shape-holding ribs coated with Monokote skin, lending to a light weight structural makeup. The fuselage houses the motor, flight deck and passenger compartments as well as the fuel and control actuating systems. The wing will be attached to the top of the fuselage as will the fuel and control actuator systems for easy disassembly and maintenance. The aircraft is maneuvered about its pitch axis by means of an aft elevator on the flat plate horizontal tail. The twin vertical tail surfaces are also flat plates and each features a rudder for both directional and roll control. Along with wing dihedral, the rudders will be used to roll the aircraft. The Airplane is less costly to operate at its own maximum range and capacity as well as at its maximum range and the HB-40's maximum capacity than the HB-40.
On the role of horizontal displacements in the exhumation of high pressure metamorphic rocks
NASA Astrophysics Data System (ADS)
Brun, J.-P.; Tirel, C.; Philippon, M.; Burov, E.; Faccenna, C.; Gueydan, F.; Lebedev, S.
2012-04-01
High pressure metamorphic rocks exposed in the core of many mountain belts correspond to various types of upper crustal materials that have been buried to mantle depths and, soon after, brought back to surface at mean displacement rates up to few cm/y, comparable to those of plate boundaries. The vertical component of HP rock exhumation velocity back to surface is commonly well constrained by pressure estimates from petrology and geochronological data whereas the horizontal component remains generally difficult or impossible to estimate. Consequently, most available models, if not all, attempt to simulate exhumation with a minimal horizontal component of displacement. Such models, require that the viscosity of HP rocks is low and/or the erosion rate large -i.e. at least equal to the rate of exhumation. However, in some regions like the Aegean, where the exhumation of blueschists and eclogites is driven by slab rollback, it can be shown that the horizontal component of exhumation related displacement, obtained from map view restoration, is 5 to 7 times larger than the vertical one, deduced from metamorphic pressure estimates. Using finite element models performed with FLAMAR, we show that such a situation simply results from the subduction of small continental blocks (< 500km) that stimulate subduction rollback. The continental block is dragged downward and sheared off the downgoing mantle slab by buoyancy force. Exhumation of the crustal block occurs through a one step Caterpillar-type walk, with the block's tail slipping along a basal décollement, approaching the head and making a large buckle, which then unrolls at surface as soon as the entire block is delaminated. Finally, the crustal block emplaces at surface in the space created by trench retreat. This process of exhumation requires neither rheological weakening of HP rocks nor high rates of erosion.
Stumbea, Dan
2013-11-01
The present study focuses on the mineralogical and geochemical patterns of mining and ore-processing wastes from some occurrences in the Eastern Carpathians; its aim is to identify the main factors and processes that could lead to the pollution of the environment. In this respect, the following types of solid waste were investigated: efflorescent salts developed on the surface of rock blocks from a quarry, ore-processing waste from two tailings ponds, and salt crusts developed at the surface of a tailings pond. The potential risks emphasized by these preliminary investigations are the following: (1) the risk of wind-driven removal and transport of the waste from the surface of tailings ponds, given that fine grains prevail (up to 80%); (2) the risk of tailings removal through mechanical transport by water, during heavy rainfall; (3) the appearance of hydrated sulfates on the rock fragments from the mining waste, sulfates which are highly susceptible to the generation of acid mine drainage (pH<4); (4) the high amount of toxic elements (Pb, Cd, Cu, Zn, As, etc.) that acid mine drainage leachates contain; and (5) the development of a salt crust on the flat, horizontal surfaces of the waste deposit, due to this very shape. Statistical data regarding the amount of both major and minor elements in the tailings have revealed two statistical populations for nearly all the toxic metals. This suggests that, beyond the effect that the tailings have upon the environment through their mere presence in a given area, there are alleged additional factors and processes which intensify the pollution: the location of the waste deposit relative to the topography of the area; the shape of the waste deposit; the development of low areas on the surface of the deposit, areas which favor the appearance of salt crusts; and the mineralogy of efflorescent aggregates.
Tail Service Mast Umbilical Arrival
2016-08-02
Technicians assist as a crane is used to lift the first Tail Service Mast Umbilical (TSMU) into the vertical position at the Launch Equipment Test Facility (LETF) at NASA’s Kennedy Space Center in Florida. Two TSMUs will provide liquid propellants and power to the Space Launch System (SLS) rocket’s core stage engine. Both TSMUs will connect to the zero-level deck on the mobile launcher, providing fuel and electricity to the SLS rocket before it launches on Exploration Mission 1. The TSMU will undergo testing and validation at the LETF to verify it is functioning properly. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.
Cryo-Electron Microscopy of Viruses Infecting Bacterium
NASA Astrophysics Data System (ADS)
Chiu, Wah
2010-03-01
Single particle cryo-EM can yield structures of infectious bacterial viruses with and without imposed icosahedral symmetry at subnanometer resolution. Reconstructions of infectious and empty phage particles show substantial differences in the portal vertex protein complex at one of the 12 pentameric vertices in the icosahedral virus particle through which the viral genomes are packaged or released. In addition, electron cryo-tomography of viruses during infecting its bacterial host cell displayed multiple conformations of the tail fiber of the virus. Our structural observations by single particle and tomographic reconstructions suggest a mechanism whereby the viral tail fibers, upon binding to the host cell, induce a cascade of structural alterations of the portal vertex protein complex that triggers DNA release.
Proportioning the airplane for lateral stability
NASA Technical Reports Server (NTRS)
Donlan, C. J.
1976-01-01
Proportioning for lateral aircraft control included: (1) directional stability (slope of curve of yawing moment coefficient against sideslip), and (2) effective dihedral factor (slope of curve of rolling moment coefficient against sideslip). Basic forces influencing the directional stability of aircraft are indicated. Propeller side force, basic fuselage yaw, and vertical tail side force contributed to yaw moment about center of gravity.
Vertical axis wind turbine airfoil
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich
2012-12-18
A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.
2002-06-03
Molecular beam epitaxy ; Planar microcavities; Vertical cavity surface emitting lasers 1... Vertical Cavity Surface Emitting Lasers Grown by MBE DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the...S-581 83 Linkiping, Sweden Abstract The design of the vertical cavity surface emitting lasers ( VCSELs ) needs proper tuning of many
Zhou, Dan; Niu, Jiqiang
2017-01-01
Trains with different numbers of cars running in the open air were simulated using the delayed detached-eddy simulation (DDES). The numbers of cars included in the simulation are 3, 4, 5 and 8. The aim of this study was to investigate how train length influences the boundary layer, the wake flow, the surface pressure, the aerodynamic drag and the friction drag. To certify the accuracy of the mesh and methods, the drag coefficients from numerical simulation of trains with 3 cars were compared with those from the wind tunnel test, and agreement was obtained. The results show that the boundary layer is thicker and the wake vortices are less symmetric as the train length increases. As a result, train length greatly affects pressure. The upper surface pressure of the tail car reduced by 2.9%, the side surface pressure of the tail car reduced by 8.3% and the underneath surface pressure of the tail car reduced by 19.7% in trains that included 3 cars to those including 8 cars. In addition, train length also has a significant effect on the friction drag coefficient and the drag coefficient. The friction drag coefficient of each car in a configuration decreases along the length of the train. In a comparison between trains consisting of 3 cars to those consisting of 8 cars, the friction drag coefficient of the tail car reduced by 8.6% and the drag coefficient of the tail car reduced by 3.7%. PMID:29261758
Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China
Wang, Lingqing; Liang, Tao
2015-01-01
Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China’s largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 104 mg·kg−1 with an average value of 4.67 × 103 mg·kg−1, which was significantly higher than the average value in China (181 mg·kg−1). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (LaN/YbN, LaN/SmN and GdN/YbN). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind. PMID:26198417
Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China.
Wang, Lingqing; Liang, Tao
2015-07-22
Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China's largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 10(4) mg·kg(-1) with an average value of 4.67 × 10(3) mg·kg(-1), which was significantly higher than the average value in China (181 mg·kg(-1)). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N) and Gd(N)/Yb(N)). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind.
NASA Technical Reports Server (NTRS)
Fournier, Paul G.
1959-01-01
Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel to determine the effect of tail dihedral on lateral control effectiveness of a complete-model configuration having differentially deflected horizontal-tail surfaces. Limited tests were made to determine the lateral characteristics as well as the longitudinal characteristics in sideslip. The wing had an aspect ratio of 3, a taper ratio of 0.14, 28.80 deg sweep of the quarter-chord line with zero sweep at the 80-percent-chord line, and NACA 65A004 airfoil sections. The test Mach number range extended from 0.60 to 0.92. There are only small variations in the roll effectiveness parameter C(sub iota delta) with negative tail dihedral angle. The tail size used on the test model, however, is perhaps inadequate for providing the roll rates specified by current military requirements at subsonic speeds. The lateral aerodynamic characteristics were essentially constant throughout the range of sideslip angle from 12 deg to -12 deg. A general increase in yawing moment was noted with increased negative dihedral throughout the Mach number range.
NASA Astrophysics Data System (ADS)
Lee, Myongsoo; Kim, Jung-Woo; Yoo, Yong-Sik; Peleshanko, Sergey; Larson, Kirsten; Vaknin, David; Markutsya, Sergei; Tsukruk, Vladimir V.
2002-03-01
Amphiphilic branched discotics consisting of the aromatic core and oligoethers as the branched peripheral chains have been characterized in bulk and monolayer states. The discotics based on di-branched oligoether side chains have been observed to self-organize into an ordered hexagonal columnar structure within liquid crystalline (LC) phases. The tetrabranched molecule showed only an isotropic liquid. The LC molecules with di-branched tails have been observed to form stable monolayers on the water surface in contrast to the tetra-branched tails. We suggest a crab-like molecular conformation and cluster-segregated monolayers with six-fold symmetry of face-on packing on a solid surface.
NASA Astrophysics Data System (ADS)
Kavanagh, Janine L.; Burns, Alec J.; Hilmi Hazim, Suraya; Wood, Elliot P.; Martin, Simon A.; Hignett, Sam; Dennis, David J. C.
2018-04-01
Volcanic eruptions are fed by plumbing systems that transport magma from its source to the surface, mostly fed by dykes. Here we present laboratory experiments that model dyke ascent to eruption using a tank filled with a crust analogue (gelatine, which is transparent and elastic) that is injected from below by a magma analogue (dyed water). This novel experimental setup allows, for the first time, the simultaneous measurement of fluid flow, sub-surface and surface deformation during dyke ascent. During injection, a penny-shaped fluid-filled crack is formed, intrudes, and traverses the gelatine slab vertically to then erupt at the surface. Polarised light shows the internal stress evolution as the dyke ascends, and an overhead laser scanner measures the surface elevation change in the lead-up to dyke eruption. Fluorescent passive-tracer particles that are illuminated by a laser sheet are monitored, and the intruding fluid's flow dynamics and gelatine's sub-surface strain evolution is measured using particle image velocimetry and digital image correlation, respectively. We identify 4 previously undescribed stages of dyke ascent. Stage 1, early dyke growth: the initial dyke grows from the source, and two fluid jets circulate as the penny-shaped crack is formed. Stage 2, pseudo-steady dyke growth: characterised by the development of a rapidly uprising, central, single pseudo-steady fluid jet, as the dyke grows equally in length and width, and the fluid down-wells at the dyke margin. Sub-surface host strain is localised at the head region and the tail of the dyke is largely static. Stage 3, pre-eruption unsteady dyke growth: an instability in the fluid flow appears as the central fluid jet meanders, the dyke tip accelerates towards the surface and the tail thins. Surface deformation is only detected in the immediate lead-up to eruption and is characterised by an overall topographic increase, with axis-symmetric topographic highs developed above the dyke tip. Stage 4 is the onset of eruption, when fluid flow is projected outwards and focused towards the erupting fissure as the dyke closes. A simultaneous and abrupt decrease in sub-surface strain occurs as the fluid pressure is released. Our results provide a comprehensive physical framework upon which to interpret evidence of dyke ascent in nature, and suggest dyke ascent models need to be re-evaluated to account for coupled intrusive and extrusive processes and improve the recognition of monitoring signals that lead to volcanic eruptions in nature.
1974-12-01
defect types were tested at various levels: Comet- Tail, Dig-Nick, Dirt Brinell, Grind-Skip Lines, Impingement, Orange Peel , Pit, Scratch and "Liney...Shallow irregular indentation of surface. <.0015 max. dim. -(<.0008)*’ Otange Peel Pebbly appearance of raceway surface. Small ** Comet Tail Pit...scratch; dig-nick; impingement; grind-skip lines; and orange peel . The data obtained indicated that these defects in most cases, affected bearing
NASA Technical Reports Server (NTRS)
Kassner, D. L.; Wettlaufer, B.
1977-01-01
A blunt-nosed missile model with nose-mounted canards and cruciform tail surfaces was tested in the Ames 6 by 6-Foot Wind Tunnel to determine the contributions of the component aerodynamic surfaces to the static aerodynamic characteristics at Mach numbers of 1.5 and 2.0 and Reynolds number of 1 million based on body diameter. Data were obtained at angles of attack ranging from -3 deg to 12 deg and canard-deflection angles from -3 deg to 15 deg for various stages of model build-up (i.e., with and without canard and/or tail surfaces). Results were obtained with the canards at two different nose locations. For the canard and tail arrangements investigated, the model was trimmable at angles of attack up to about 4 deg or 5 deg with canard deflections of 9 deg. For this blunt-nosed model, there was little effect of canard location on trim angle of attack. The tail arrangements studied provided ample pitch stability.
Flight Tests on U.S.S. Los Angeles. Part I : Full Scale Pressure Distribution Investigation
NASA Technical Reports Server (NTRS)
De France, S J
1930-01-01
The primary purpose of this investigation was to obtain simultaneous data on the loads and stress experience in flight by the U. S. S. Los Angeles which could be used in rigid airship structure design. A secondary object of the investigation was to determine the turning and drag characteristics of the airship. The aerodynamic loading was obtained by measuring the pressure at 95 locations on the tail surfaces, 54 on the hull, and 5 on the passenger car. These measurements were made during a series of maneuvers consisting of turns and reversals in smooth air and during a cruise in rough air which was just short of squall proportions. The results of the pressure measurements on the hull indicate that the forces on the forebody of an airship are relatively small. The tail surface measurements show conclusively that the forces caused by gusts are much greater than those caused by horizontal maneuvers. In this investigation the tail surface loadings caused by gusts closely approached the designed loads of the tail structure. The turning and drag characteristics will be reported in separate reports.
Flapping foil power generator performance enhanced with a spring-connected tail
NASA Astrophysics Data System (ADS)
Liu, Zhengliang; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.
2017-12-01
The flexibility effects on the performance of a flapping foil power generator are numerically studied by using the immersed boundary-lattice Boltzmann method at a Reynolds number of 1100. The flapping foil system consists of a rigid NACA0015 foil undergoing harmonic pitch and plunge motions and a passively actuated flat plate pinned to the trailing edge of the rigid foil. The flexibility is modeled by a torsional spring model at the conjuncture of the rigid foil and the tail. Here, a parametric study on mass density and natural frequency is conducted under the optimum kinematic condition of the rigid system identified from the literature and numerical simulations made for reduced frequency f* = 0.04-0.24 and pitch amplitude θ0 = 40°-90°. Four typical cases are discussed in detail by considering time histories of hydrodynamic loads and tail deformations under the optimal and non-optimal kinematic conditions. Results show that under the rigid-system optimal kinematic condition, a tail with appropriate mass density (μ = 0.60) and resonant frequency ( fr*=1.18 ) can improve the maximum efficiency by 7.24% accompanied by an increase of 6.63% in power compared to those of a rigid foil with a rigid tail. This is because the deflection of the tail reduces the low pressure region on the pressure surface (i.e., the lower surface during the upstroke or the upper surface during the downstroke) caused by the leading edge vortex after the stroke reversal, resulting in a higher efficiency. At high flapping frequencies, a spring-connected tail ( fr*=0.13 ) eliminates the large spike in the moment observed in high stiffness cases, reducing the power required for the pitch motion, resulting in 117% improvement in efficiency over that with a rigid tail at a reduced frequency of 0.24.
Expansion joint for guideway for magnetic levitation transportation system
Rossing, Thomas D.
1993-01-01
An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.
Expansion joint for guideway for magnetic levitation transportation system
Rossing, T.D.
1993-02-09
An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.
Polymeric waveguide array with 45 degree slopes fabricated by bottom side tilted exposure
NASA Astrophysics Data System (ADS)
Lin, Xiaohui; Dou, Xinyuan; Wang, Alan X.; Chen, Ray T.
2011-01-01
This paper demonstrated a practical fabrication process of polymeric waveguide array (12 channels) with 50μm(W)×50μm(H)×23mm(L) dimension and mirror embedded 45° degree slopes for vertical coupling purpose. The entire process contained three main parts: a SU8 pre-mold with 45° slope, a PDMS mold and the final waveguide array device. The key step of fabricating the pre-mold included a bottom side tilted exposure of SU8 photo resist. By placing the sample upside down, tilting by 58.7° and immersing into DI water, the ultraviolet (UV) beam that shined vertically was directed to go through from the bottom of the glass substrate into top side SU8 resist with 45° angle to form the surface. This method was able to guarantee no-gap contact between the mask pattern and the photo resist when exposing. By comparing the process complexity and achieved structure of the top and bottom side exposure, the later was proved to be a promising method for making high quality tilted structure without any tailing effect. The reversed PDMS mold was then fabricated on the SU8 pre-mold. The PDMS mold was used to imprint the cladding layer of the waveguide array. After metal deposition, core filling and top cladding layer coating, the final polymeric waveguide array device was achieved. For performance evaluation, 850nm laser beam from VCSEL was modulated to 10Gbps signals and vertically coupled into the waveguide array. The eye diagrams revealed high Q factor when transmitting signals along these waveguide array.
NASA Technical Reports Server (NTRS)
Tobak, Murray
1954-01-01
The concept of indicial aerodynamic functions is applied to the analysis of the short-period pitching mode of aircraft. By the use of simple physical relationships associated with the indicial-function relationships concept, quantitative studies are made of the separate effects on the damping in pitch of changes in Mach number, aspect ratio, plan-form shape, and frequency. The concept is further shown to be of value in depicting physically the induced effects on a tail surface which follows in the wake of a starting forward surface. Considerable effort is devoted to the development of theoretical techniques whereby the transient response in lift at the tail to the wing wake may be estimated. Numerical results for several representative cases are presented, and these are analyzed to reassess the importance of the contribution to the rotary damping moment of the interference lift at the tail.
Hierarchical Organization and Disassortative Mixing of Correlation-Based Weighted Financial Networks
NASA Astrophysics Data System (ADS)
Cai, Shi-Min; Zhou, Yan-Bo; Zhou, Tao; Zhou, Pei-Ling
Correlation-based weighted financial networks are analyzed to present cumulative distribution of strength with a power-law tail, which suggests that a small number of hub-like stocks have greater influence on the whole fluctuation of financial market than others. The relationship between clustering and connectivity of vertices emphasizes hierarchical organization, which has been depicted by minimal span tree in previous work. These results urge us to further study the mixing patter of financial network to understand the tendency for vertices to be connected to vertices that are like (or unlike) them in some way. The measurement of average nearest-neighbor degree running over classes of vertices with degree k shows a descending trend when k increases. This interesting result is first uncovered in our work, and suggests the disassortative mixing of financial network which refers to a bias in favor of connections between dissimilar vertices. All the results in weighted complex network aspect may provide some insights to deeper understand the underlying mechanism of financial market and model the evolution of financial market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludlam, J.R.
1985-01-01
This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation foe the US Department of Energy (DOE), Grand Junction Project Office, in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. the objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of themore » areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on-pile sampling was required to determine the depth of the 15-pCi/g Ra-226 interface in an area where wind and water erosion has taken place.« less
de Araujo, Daniele Ribeiro; Padula, Cristina; Cereda, Cíntia Maria Saia; Tófoli, Giovana Radomille; Brito, Rui Barbosa; de Paula, Eneida; Nicoli, Sara; Santi, Patrizia
2010-08-01
The aim of this work was to develop anesthetic bioadhesive films containing benzocaine and study their in vitro skin permeation and in vivo performance, in comparison with commercial formulations. Films containing 3% and 5% w/w of benzocaine were prepared and characterized by weight, drug content, thickness and morphology. In vitro permeation assays were performed in vertical diffusion cells using full-thickness pig ear skin as barrier. Intensity and duration of analgesia were evaluated in rats by tail-flick test, and skin histological analysis was carried out. Tail-flick test showed that the duration of benzocaine-induced analgesia was significantly prolonged with the films compared to commercial creams, in agreement with the higher in vitro permeation. Histological analysis of the rat tail skin did not reveal morphological tissue changes nor cell infiltration signs after application of the commercial creams or films. Results from our study indicate that the films developed in this work can be considered as innovative dermal/transdermal therapeutic systems for benzocaine local delivery.
Augmentation of maneuver performance by spanwise blowing
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Campbell, J. F.
1977-01-01
A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.
Strategic Acoustic Control of a Hummingbird Courtship Dive.
Clark, Christopher J; Mistick, Emily A
2018-04-23
Male hummingbirds court females with a high-speed dive in which they "sing" with their tail feathers. The male's choice of trajectory provides him strategic control over acoustic frequency and pressure levels heard by the female. Unlike related species, male Costa's hummingbirds (Calypte costae) choose to place their dives to the side of females. Here we show that this minimizes an audible Doppler curve in their dive sound, thereby depriving females of an acoustic indicator that would otherwise reveal male dive speed. Wind-tunnel experiments indicate that the sounds produced by their feathers are directional; thus, males should aim their tail toward females. High-speed video of dives reveal that males twist half of their tail vertically during the dive, which acoustic-camera video shows effectively aims this sound sideways, toward the female. Our results demonstrate that male animals can strategically modulate female perception of dynamic aspects of athletic motor displays, such as their speed. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khaska, Mahmoud; Le Gal La Salle, Corinne; Verdoux, Patrick
2015-04-01
Arsenic contamination represents a major risk to human health as one of the most prominent environmental causes of cancer mortality. Mining activities, particularly those involving arsenic rich ores have an impact on the environment and on human health that may persist for many decades after mine closure. The relationships between As released from alluvial aquifer in the vicinity of the sulfide-rich mine dumps was demonstrated with geochemical and isotopic tracers (major and traces elements, 87Sr/86Sr, 18O, 2H). Strontium isotopes were used to trace the transport of As downstream from a As rich tailing dam. Increasing As and Fe concentrations in surface water are explained by As release associated with alluvial groundwater discharge to the stream. This process occurs in a moderately reduced section of the stream downgradient from the sulfide-rich tailing dam. High As, total Fe and low Eh in groundwater confirm the discharge of alluvial groundwater and explain its impact on surface water. Transport of As between surface and groundwater can be described as follows: 1- Subsurface moderately reducing conditions prevail in groundwater downgradient from the tailing dams. This suggests a flux of reduced water from sulfide-rich tailing dams which is characterized by its high As and Fe content resulting from the reduction of Fe-sulfides. 2- Upon mixing with surface water, oxidizing conditions prevails and precipitate as Fe hydroxide on the stream bed. As and Sr subsequently adsorbed on the Fe -oxyhydroxide surface. This process contributes to the immobilization of As in surface water. Remaining dissolved As in surface water can be re-introduced in alluvial groundwater downstream of the reducing zone.
Cao, Congcong; Wang, Li; Li, Hairong; Wei, Binggan; Yang, Linsheng
2018-05-09
Metal contamination in soil from tailings induces risks for the ecosystem and for humans. In this study, the concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil contaminated by a tailing from Yangshuo (YS) lead and zinc (Pb⁻Zn) mine, which collapsed for more than 40 years, were determined in 2015. The mean concentrations of Zn, Pb, Cu, and Cd were 1301.79, 768.41, 82.60, and 4.82 mg/kg, respectively, which, with years of remediation activities, decreased by 66.9%, 61.7%, 65.4%, and 65.3% since 1986, but still exceed the national standards. From 1986 to 2015, soil pH increased significantly, with available concentrations of Zn, Pb, Cu and Cd decreasing by 13%, 81%, 77%, and 67%, respectively, and potential ecological risk indexes ( E r ) of the determined metals decreasing by more than 60%. Horizontally, total contents and percentages of available concentrations of Zn, Pb, Cu, and Cd decreased with the distance from the tailing heap in SD village, while pH values showed the reverse pattern. Vertically, Zn and Cd, Pb, and Cu showed similar vertical distribution patterns in the soil profiles. There was a slight downward migration for the determined metals in soil of M and H area and the mobility was in the order of Cd > Zn > Pb > Cu. It can be concluded that although concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil decreased significantly, SD village is still a high risk area, and the priority pollutant is Cd.
Cao, Congcong; Wang, Li; Li, Hairong; Wei, Binggan
2018-01-01
Metal contamination in soil from tailings induces risks for the ecosystem and for humans. In this study, the concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil contaminated by a tailing from Yangshuo (YS) lead and zinc (Pb–Zn) mine, which collapsed for more than 40 years, were determined in 2015. The mean concentrations of Zn, Pb, Cu, and Cd were 1301.79, 768.41, 82.60, and 4.82 mg/kg, respectively, which, with years of remediation activities, decreased by 66.9%, 61.7%, 65.4%, and 65.3% since 1986, but still exceed the national standards. From 1986 to 2015, soil pH increased significantly, with available concentrations of Zn, Pb, Cu and Cd decreasing by 13%, 81%, 77%, and 67%, respectively, and potential ecological risk indexes (Er) of the determined metals decreasing by more than 60%. Horizontally, total contents and percentages of available concentrations of Zn, Pb, Cu, and Cd decreased with the distance from the tailing heap in SD village, while pH values showed the reverse pattern. Vertically, Zn and Cd, Pb, and Cu showed similar vertical distribution patterns in the soil profiles. There was a slight downward migration for the determined metals in soil of M and H area and the mobility was in the order of Cd > Zn > Pb > Cu. It can be concluded that although concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil decreased significantly, SD village is still a high risk area, and the priority pollutant is Cd. PMID:29747376
Wind-Tunnel Tests of a 1/8-Scale Powered Model of the XTB3F-1 Airplane, TED No. NACA 2382
NASA Technical Reports Server (NTRS)
McKee, John W.; Vogler, Raymond D.
1947-01-01
A 1/8 scale model of the Grumman XTB3F-1 airplane was tested in the Langley 7- by 10-foot tunnel to determine the stability and control characteristics and to provide data for estimating the airplane handling qualities. The report includes longitudinal and lateral stability and control characteristics of the complete model, the characteristics of the isolated horizontal tail, the effects of various flow conditions through the jet duct, tests with external stores attached to the underside of the wing, ana tests simulating landing and take-off conditions with a ground board. The handling characteristics of the airplane have not been computed but some conclusions were indicated by the data. An improvement in the longitudinal stability was obtained by tilting the thrust line down. It is shown that if the wing flap is spring loaded so that the flap deflection varies with airspeed, the airplanes will be less stable than with the flap retracted or fully deflected. An increase in size of the vertical tail and of the dorsal fin gave more desirable yawing-moment characteristics than the original vertical tail and dorsal fin. Preventing air flow through the jet duct system or simulating jet operation with unheated air produced only small changes in the model characteristics. The external stores on the underside of the wing had only small effects on the model characteristics. After completion of the investigation, the model was returned to the contractor for modifications indicated by the test results.
An Operational Summary of the BERMEX81-V3 Experiment: 17-19 September 1981.
1982-07-01
1979 and 1980) were to utilize the Versatile Experimental Kevlar Array (VEKA-3B), a two-hydrophone, vertically moored system with an RF telemetry link to...the nose and tail sections of a MK35 tor- pedo . Operational parameters of the BTS 9029 are presented in Table C-3. The BTS 9029 system was fully
Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger.
Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael
2016-03-01
This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. Copyright © 2015 Elsevier B.V. All rights reserved.
Flow Separation Control on A Full-Scale Vertical Tail Model Using Sweeping Jet Actuators
NASA Technical Reports Server (NTRS)
Andino, Marlyn Y.; Lin, John C.; Washburn, Anthony E.; Whalen, Edward A.; Graff, Emilio C.; Wygnanski, Israel J.
2015-01-01
This paper describes test results of a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jets AFC was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The flow separation control optimization was performed at 100 knots, a maximum rudder deflection of 30deg, and sideslip angles of 0deg and -7.5deg. Greater than 20% increments in side force were achieved at the two sideslip angles with a 31-actuator AFC configuration. Flow physics and flow separation control associated with the AFC are presented in detail. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. The momentum coefficient (C sub mu) is shown to be a useful parameter to use for scaling-up sweeping jet AFC from sub-scale tests to full-scale applications. Reducing the number of actuators at a constant total C(sub mu) of approximately 0.5% and tripling the actuator spacing did not significantly affect the flow separation control effectiveness.
Aerodynamic characteristics of horizontal tail surfaces
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1940-01-01
Collected data are presented on the aerodynamic characteristics of 17 horizontal tail surfaces including several with balanced elevators and two with end plates. Curves are given for coefficients of normal force, drag, and elevator hinge moment. A limited analysis of the results has been made. The normal-force coefficients are in better agreement with the lifting-surface theory of Prandtl and Blenk for airfoils of low aspect ratio than with the usual lifting-line theory. Only partial agreement exists between the elevator hinge-moment coefficients and those predicted by Glauert's thin-airfoil theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodin, A.; Laloo, R.; Abeilhou, P.
2013-09-15
We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The resultsmore » obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.« less
Bistable Vertical-Cavity Surface-Emitting Laser. Structures on GaAs and Si Substrates
1994-06-01
vertical - cavity surface - emitting lasers ( VCSELs ) [1,5,6 of publications below], fabrication processes to realize low...May 91 through 1 June 94 R&T Number: Contract / Grant Number: N00014-91-J-1952 Contract / Grant Title: Bistable Vertical - Cavity Surface - Emitting Laser ...T.J. Rogers, B.G. Streetman, S.C. Smith, and R.D. Burnham, "Cascadabity of an Optically Iathing Vertical - Cavity Surface - Emitting Laser
NASA Technical Reports Server (NTRS)
Sherman, Albert
1939-01-01
An investigation of the interference associated with tail surfaces added to wing-fuselage combinations was included in the interference program in progress in the NACA variable-density tunnel. The results indicate that, in aerodynamically clean combinations, the increment to the high-speed drag can be estimated from section characteristics within useful limits of accuracy. The interference appears mainly as effects on the downwash angel and as losses in the tail. An interference burble, which markedly increases the glide-path angle and the stability in pitch before the actual stall, may be considered a means of obtaining satisfactory stalling characteristics for a complete combination.
Study on the Influence of Elevation of Tailing Dam on Stability
NASA Astrophysics Data System (ADS)
Wan, Shuai; Wang, Kun; Kong, Songtao; Zhao, Runan; Lan, Ying; Zhang, Run
2017-12-01
This paper takes Yunnan as the object of a tailing, by theoretical analysis and numerical calculation method of the effect of seismic load effect of elevation on the stability of the tailing, to analyse the stability of two point driven safety factor and liquefaction area. The Bishop method is adopted to simplify the calculation of dynamic safety factor and liquefaction area analysis using comparison method of shear stress to analyse liquefaction, so we obtained the influence of elevation on the stability of the tailing. Under the earthquake, with the elevation increased, the safety coefficient of dam body decreases, shallow tailing are susceptible to liquefy. Liquefaction area mainly concentrated in the bank below the water surface, to improve the scientific basis for the design and safety management of the tailing.
1994-03-01
Epitaxial structure of vertical cavity surface - emitting laser ( VCSEL ...diameter (75 tum < d< 150 prm) vertical - cavity surface - emitting lasers fabricated from an epitaxial structure containing a single In0 .2Ga 8.,As quantum...development of vertical - cavity surface - emitting lasers ( VCSELs ) [1] has enabled III-V semiconductor technology to be applied to cer- tain optical
Does trampoline or hard surface jumping influence lower extremity alignment?
Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby
2017-12-01
[Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.
Does trampoline or hard surface jumping influence lower extremity alignment?
Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby
2017-01-01
[Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592
The FM-007: An advanced jet commuter for HUB to spoke transportation
NASA Technical Reports Server (NTRS)
Blouke, Peter Scott; Engel, George Bryan; Fordham, Kari Suzanne; Layne, Steven James; Moore, Joel David; Shaver, Frederick Martin; Thornton, Douglas Hershal, Jr.
1991-01-01
Due to the increasing need for new commuter aircraft, the FM-007 is proposed, a technologically advanced jet propelled short takeoff and landing (STOL) airplane. The proposed commuter is designed for hub to spoke air travel. In order to reduce drag, natural laminar flow technology is integrated into the design using the natural laminar flow airfoil section for the wing. A three lifting surface configuration provides for more efficient cruise flight. This unique design includes a small forward wing (canard), a rear mounted high aspect ratio main wing, and a small horizontal stabilizer high atop the vertical tail. These three surfaces act together to reduce drag by minimizing the downward force the horizontal stabilizer has to account for due to the nose down pitching moment. Commuter aircraft must also incorporate passenger comfort. This is achieved by providing a spacious pressurized cabin with a large galley and reduced cabin noise due to incorporation of noise reduction gear. A basic oval design is adopted, as opposed to a circular design in order to allow for the seating of five passengers abreast. To get STOL capability, an over the wing blown flap is used using a Rolls Royce Tay series engine.
ChemCam investigation of the John Klein and Cumberland drill holes and tailings, Gale crater, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, R. S.; Wiens, R. C.; Vaniman, D. T.
The ChemCam instrument on the Mars Science Laboratory rover analyzed the rock surface, drill hole walls, tailings, and unprocessed and sieved dump piles to investigate chemical variations with depth in the first two martian drill holes and possible fractionation or segregation effects of the drilling and sample processing. Furthermore, the drill sites are both in Sheepbed Mudstone, the lowest exposed member of the Yellowknife Bay formation. Yellowknife Bay is composed of detrital basaltic materials in addition to clay minerals and an amorphous component. The drill tailings are a mixture of basaltic sediments and diagenetic material like calcium sulfate veins, whilemore » the shots on the drill site surface and walls of the drill holes are closer to those pure end members. The sediment dumped from the sample acquisition, processing, and handling subsystem is of similar composition to the tailings; however, due to the specifics of the drilling process the tailings and dump piles come from different depths within the hole. This then allows the ChemCam instrument to analyze samples representing the bulk composition from different depths. On the pre-drill surfaces, the Cumberland site has a greater amount of CaO and evidence for calcium sulfate veins, than the John Klein site. But, John Klein has a greater amount of calcium sulfate veins below the surface, as seen in mapping, drill hole wall analysis, and observations in the drill tailings and dump pile. In addition, the Cumberland site does not have any evidence of variations in bulk composition with depth down the drill hole, while the John Klein site has evidence for a greater amount of CaO (calcium sulfates) in the top portion of the hole compared to the middle section of the hole, where the drill sample was collected.« less
ChemCam investigation of the John Klein and Cumberland drill holes and tailings, Gale crater, Mars
Jackson, R. S.; Wiens, R. C.; Vaniman, D. T.; ...
2016-05-13
The ChemCam instrument on the Mars Science Laboratory rover analyzed the rock surface, drill hole walls, tailings, and unprocessed and sieved dump piles to investigate chemical variations with depth in the first two martian drill holes and possible fractionation or segregation effects of the drilling and sample processing. Furthermore, the drill sites are both in Sheepbed Mudstone, the lowest exposed member of the Yellowknife Bay formation. Yellowknife Bay is composed of detrital basaltic materials in addition to clay minerals and an amorphous component. The drill tailings are a mixture of basaltic sediments and diagenetic material like calcium sulfate veins, whilemore » the shots on the drill site surface and walls of the drill holes are closer to those pure end members. The sediment dumped from the sample acquisition, processing, and handling subsystem is of similar composition to the tailings; however, due to the specifics of the drilling process the tailings and dump piles come from different depths within the hole. This then allows the ChemCam instrument to analyze samples representing the bulk composition from different depths. On the pre-drill surfaces, the Cumberland site has a greater amount of CaO and evidence for calcium sulfate veins, than the John Klein site. But, John Klein has a greater amount of calcium sulfate veins below the surface, as seen in mapping, drill hole wall analysis, and observations in the drill tailings and dump pile. In addition, the Cumberland site does not have any evidence of variations in bulk composition with depth down the drill hole, while the John Klein site has evidence for a greater amount of CaO (calcium sulfates) in the top portion of the hole compared to the middle section of the hole, where the drill sample was collected.« less
NASA Astrophysics Data System (ADS)
Favaro, Elena A.; Hugenholtz, Christopher H.; Barchyn, Thomas E.
2017-10-01
Aeolian rat-tails (ARTs) are a previously undocumented, regionally-ubiquitous aeolian abrasion feature observed on matrix-supported ignimbrite surfaces in the Puna Plateau of Northwest Argentina. ARTs consist of an abrasion-resistant lithic clast projecting above the surface with a lee tail or 'keel' in the more erodible matrix. Size is controlled by the dimensions of the windward lithic clast, ranging from centimetre to meter scale; spatial density varies with clast content, which may reflect variations in ignimbrite facies. Field observations suggest ARTs follow a definable evolutionary sequence. First, an abrasion-resistant lithic clast contained within the ignimbrite is exposed to abrasion at the surface. Impacts from abrading particles erode the softer ignimbrite matrix adjacent to the clast. The clast shelters the leeward surface under a unimodal abrasion direction, creating a tail that tapers downwind and elongates as the clast emerges. Clasts become dislodged from the matrix as the surrounding surface erodes, ultimately destroying the feature if the clast is small enough to be mobilized directly by wind or impacting particles. This evolutionary sequence explains the morphology of ARTs and the presence of loose clasts on the ignimbrite surface, which contributes to the development of other landforms in the region, such as periodic bedrock ridges, yardangs, and megaripples. Satellite and rover images suggest similar features also exist on Mars. Because the formation and preservation of ARTs is contingent on unimodal abrasion direction, their orientation can be used as an indicator of long-term aeolian sediment transport direction.
Prehensile and non-prehensile tails among syngnathid fishes: what's the difference?
Neutens, Céline; de Dobbelaer, Bart; Claes, Peter; Adriaens, Dominique
2017-02-01
All syngnathid fishes are characterized by a tail with a vertebral column that is surrounded by dermal Plates - four per vertebra. Seahorses and pipehorses have prehensile tails, a unique characteristic among teleosts that allows them to grasp and hold onto substrates. Pipefishes, in contrast, possess a more rigid tail. Previous research (Neutens et al., 2014) showed a wide range of variation within the skeletal morphology of different members in the syngnathid family. The goal of this study is to explore whether the diversity in the three-dimensional (3D) shape of different tail types reflects grasping performance, and to what degree grasping tails occupy a different and more constrained diversity. For this, a 3D morphometrical analysis based on surfaces was performed. Four different analyses were performed on the tail skeleton of nine species exhibiting different levels of tail grasping capacities (four pipehorse, three seahorse, one pipefish and one seadragon species) to examine the intra-individual variation across the anteroposterior and dorso-ventral axis. In the two interspecific analyses, all vertebrae and all dermal plates were mutually compared. Overall, intra-individual variation was larger in species with a prehensile tail. The analysis on the vertebrae showed differences in the length and orientation of the hemal spine as well as the inclination angle between the anterior and posterior surface of the vertebral body. This was observed at an intra-individual level across the anteroposterior axis in prehensile species and at an inter-individual level between prehensile and non-prehensile species. Across the anteroposterior axis in prehensile tails, the overall shape of the plates changes from rectangular at the anterior end to square at the posterior end. Across the dorso-ventral axis, the ventral dermal plates carry a significantly longer caudal spine than the dorsal ones in all prehensile-tailed species. It can therefore be concluded that prehensile tails exhibit a larger anteroposterior and dorso-ventral shape variation than non-prehensile ones. However, the hypothesis that there is a more constrained shape variation among prehensile species compared to non-prehensile ones had to be rejected. Copyright © 2016 Elsevier GmbH. All rights reserved.
Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.
Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq
2015-01-01
Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Predicting Tail Buffet Loads of a Fighter Airplane
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Pototzky, Anthony S.
2006-01-01
Buffet loads on aft aerodynamic surfaces pose a recurring problem on most twin-tailed fighter airplanes: During maneuvers at high angles of attack, vortices emanating from various surfaces on the forward parts of such an airplane (engine inlets, wings, or other fuselage appendages) often burst, immersing the tails in their wakes. Although these vortices increase lift, the frequency contents of the burst vortices become so low as to cause the aft surfaces to vibrate destructively. Now, there exists a new analysis capability for predicting buffet loads during the earliest design phase of a fighter-aircraft program. In effect, buffet pressures are applied to mathematical models in the framework of a finite-element code, complete with aeroelastic properties and working knowledge of the spatiality of the buffet pressures for all flight conditions. The results of analysis performed by use of this capability illustrate those vibratory modes of a tail fin that are most likely to be affected by buffet loads. Hence, the results help in identifying the flight conditions during which to expect problems. Using this capability, an aircraft designer can make adjustments to the airframe and possibly the aerodynamics, leading to a more robust design.
Surface tension profiles in vertical soap films
NASA Astrophysics Data System (ADS)
Adami, N.; Caps, H.
2015-01-01
Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strachan, C.L.; Raabe, K.L.
1997-12-31
In 1992, Panna Maria Uranium Operations (PMUO) initiated licensing and engineering activities for closure of the Panna Maria mill and 150-acre tailings impoundment located in southeast Texas. Closure of the tailings impoundment is permitted by license amendment through the Texas Natural Resources Conservation Commission (TNRCC), and based on closure criteria outlined in Texas regulations. The closure plan for the Panna Maria tailings impoundment was submitted for Texas regulatory agency review in April 1993, with details of the closure plan modified in 1994, 1995, and 1996. The closure plan included a multi-layered cover over the regraded tailings surface which was designedmore » for long-term isolation of tailings, reduction of radon emanation to regulated levels, and reduction of infiltration to TNRCC-accepted levels. The cover and embankment slope surfaces and surrounding areas were designed to provide acceptable erosional stability as compared to runoff velocities from the Probable Maximum Precipitation event. Cover materials were selected from on-site materials and evaluated for suitability based on permeability, radon attenuation, and soil dispersivity characteristics. Off-site materials were used when necessary. The cover over the tailings has a maximum slope of 0.5 percent, and the regraded embankment slopes outside the perimeter of the impoundment have a maximum slope of 20 percent. All reclaimed slopes are covered with topsoil and revegetated. A riprap-lined channel is to be used to convey runoff from within the perimeter of the reclaimed impoundment to the north of the impoundment.« less
NASA Technical Reports Server (NTRS)
Sherman, Albert
1939-01-01
An investigation of the interference associated with tail surfaces added to wing-fuselage combinations was included in the interference program in progress in the NACA variable-density tunnel. The results indicate that, in aerodynamically clean combinations, the increment of the high-speed drag can be estimated from section characteristics within useful limits of accuracy. The interference appears mainly as effects on the downwash angle and as losses in the tail effectiveness and varies with the geometry of the combination. An interference burble, which markedly increases the glide-path angle and the stability in pitch before the actual stall, may be considered a means of obtaining satisfactory stalling characteristics for complete combination.
STS-5 deployment of communications satellites
NASA Technical Reports Server (NTRS)
1982-01-01
The Telesat Canada ANIK C-3 communications satellite rises from its protective 'cradle' (obscured by another such device in the foreground) in the cargo bay of the Space Shuttle Columbia. The empty, closed shield in the cargo bay (foreground) earlier had protected Satellite Business Systems (SBS-3) satellite. Both orbital maneuvering system (OMS) pods, part of the vertical tail and part of the wing stand out in this photo.
Statical longitudinal stability of airplanes
NASA Technical Reports Server (NTRS)
Warner, Edward P
1921-01-01
This report, which is a continuation of the "Preliminary report on free flight testing" (report no. NACA-TR-70), presents a detailed theoretical analysis of statical stability with free and locked controls and also the results of many free flight test on several types of airplanes. In developing the theory of stability with locked controls an expression for pitching moment is derived in simple terms by considering the total moment as the sum of the moments due to wings and tail surface. This expression, when differentiated with respect to angle of incidence, enables an analysis to be made of the factors contributing to the pitching moment. The effects of slipstream and down wash are also considered and it is concluded that the C. G. Location has but slight effect or stability, and that stability is much improved by increasing the efficiency of the tail surfaces, which may be done by using an "inverted" tail plane. The results of free flight tests with locked controls are discussed at length and it is shown that the agreement between the experimental results and theory is very satisfactory. The theory of stability with free controls is not amendable to the simple mathematical treatment used in the case of locked controls, but a clear statement of the conditions enables several conclusions to be drawn, one of which is that the fixed tail surfaces should be much larger than the movable surfaces.
Element flows associated with marine shore mine tailings deposits.
Dold, Bernhard
2006-02-01
From 1938 until 1975, flotation tailings from the Potrerillos--El Salvador mining district (porphyry copper deposits) were discharged into the El Salado valley and transported in suspension to the sea at Chaliaral Bay, Atacama Desert, northern Chile. Over 220 Mt of tailings, averaging 0.8 +/- 0.25 wt % of pyrite, were deposited into the bay, resulting in over a 1 kilometer seaward displacement of the shoreline and an estimated 10-15 m thick tailings accumulation covering a approximately 4 km2 surface area. The Chaniaral case was classified by the United Nations Environmental Programme (UNEP) in 1983 as one of the most serious cases of marine contamination in the Pacific area. Since 1975, the tailings have been exposed to oxidation, resulting in a 70-188 cm thick low-pH (2.6-4) oxidation zone at the top with liberation of divalent metal cations, such as Cu2+, Ni2+, and Zn2+ (up to 2265 mg/L, 18.1 mg/L, and 20.3 mg/ L, respectively). Evaporation-induced transport capillarity led to metal enrichment atthe tailings surface (e.g. up to 2.4% Cu) in the form of secondary chlorides and/or sulfates (dominated by eriochalcite [CuCl.H2O] and halite). These, mainly water-soluble, secondary minerals were exposed to eolian transport in the direction of the Village of Chañaral by the predominant W-SW winds. Two element-flow directions (toward the tailings surface, via capillarity, and toward the sea) and two element groups with different geochemical behaviors (cations such as Cu, Zn, Ni, and oxyanions such as As and Mo) could be distinguished. It can be postulated, that the sea is mainly affected by the following: As, Mo, Cu, and Zn contamination, which were liberated from the oxidation zone from the tailings and mobilized through the tidal cycle, and by Cu and Zn from the subsurface waters flowing in the El Salado valley (up to 19 mg/L and 12 mg/L Zn, respectively), transported as chloro complexes at neutral pH.
Aeolian Rat Tails (ARTs): A New Morphological Indicator of Abrasion Direction
NASA Astrophysics Data System (ADS)
Favaro, E. A.; Hugenholtz, C.; Barchyn, T.
2016-12-01
Aeolian rat tails (ARTs) are a previously undocumented aeolian abrasion feature observed on ignimbrite surfaces in the Puna Plateau of Northwest Argentina and bare morphological similarity to small-scale features on Mars. We describe the terrestrial features and present an evolutionary sequence from inception to demise. ARTs are regionally-ubiquitous and characterized by a windward abrasion-resistant lithic clast and a downwind-tapering tail. The size of ARTs is controlled by the diameter of the windward lithic clast, observed on the sub-decimeter to meter scale. Their distribution throughout the Campo de Piedra Pómez, and adjacent regions is determined by the ignimbrite clast content. ARTs develop under a uni-modal abrasion direction when lithic clasts are eroded out of the ignimbrite matrix, protrude from the surface, and shelter material directly behind the clast. As the surrounding material is eroded away, a downwind-tapered tail develops. Continued erosion of the adjacent surface leads to the undercutting of clasts, liberating them from the feature where, if small enough, the clasts can be transported downwind, leading to the destruction of the tail and ultimately the feature. This evolutionary sequence accounts not only for the morphology of the feature, but also the presence of loose clasts on the ignimbrite surface, which plays a role in the development of other enigmatic landforms in the area, such as periodic bedrock ridges, yardangs, and megaripples. The significance of the identification of ARTs is due to the necessity of uni-modal abrasion direction for their development, thereby making their orientation a diagnostic indicator of long-term aeolian abrasion direction. ARTs are likely analogs of features identified by MSL Curiosity Rover on Mars, possibly providing information on past and present wind regimes.
Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming
2017-04-01
Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.
The Distant Sodium Tail of Mercury
NASA Technical Reports Server (NTRS)
Potter, A. E.; Killen, R. M.; Morgan, T. H.
2001-01-01
Models of the sodium atmosphere of Mercury predict the possible existence of a cornet-like sodium tail. Detection and mapping of the predicted sodium tail would provide quantitative data on the energy of the process that produces sodium atoms from the planetary surface. Previous efforts to detect the sodium tail by means of observations done during daylight hours have been only partially successful because scattered sunlight obscured the weak sodium emissions in the tail. However, at greatest eastern elongation around the March equinox in the northern hemisphere, Mercury can be seen as an evening star in astronomical twilight. At this time, the intensity of scattered sunlight is low enough that sodium emissions as low as 500 Rayleighs can be detected. Additional information is contained in the original extended abstract.
Aqueous Foam Stabilized by Tricationic Amphiphilic Surfactants
NASA Astrophysics Data System (ADS)
Heerschap, Seth; Marafino, John; McKenna, Kristin; Caran, Kevin; Feitosa, Klebert; Kevin Caran's Research Group Collaboration
2015-03-01
The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. The development of novel architectures with multi-cephalic/tailed molecules have enhanced their anti-bacterial activity in connection with tail length and the nature of the head group. Here we report on the foamability of two triple head double, tail cationic surfactants (M-1,14,14, M-P, 14,14) and a triple head single tail cationic surfactant (M-1,1,14) and compare them with commercially available single headed, single tailed anionic and cationic surfactants (SDS,CTAB and DTAB). The results show that bubble rupture rate decrease with the length of the carbon chain irrespective of head structure. The growth rate of bubbles with short tailed surfactants (SDS) and longer, single tailed tricationic surfactants (M-1,1,14) was shown to be twice as high as those with longer tailed surfactants (CTAB, M-P,14,14, M-1,14,14). This fact was related to the size variation of bubbles, where the foams made with short tail surfactants exhibited higher polydispersivity than those with short tails. This suggests that foams with tricationic amphiphilics are closed linked to their tail length and generally insensitive to their head structure.
Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J
2016-10-01
Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.
STS-44 Earth observation shows purplish twilight over the Atlantic Ocean
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Earth observation taken aboard Atlantis, Orbiter Vehicle (OV) 104, shows twilight over the Atlantic Ocean. OV-104 was at a point in the north Atlantic located at 28 degrees north latitude and 37 degrees west longitude. The spacecraft has just passed sundown on the Earth's surface, but it was still daylight at an altitude of 195 nautical miles. During the mission, the astronauts noted that the limb of the Earth displayed a more purplish tint instead of its normal blue. This effect, according to NASA scientists, is attributed to the high altitude residue (mostly sulfuric acid particles) from the Mount Pinatubo eruptions of mid June 1991. Note the broad band of twilight in the center of the image. This band is another indicator of the upper atmospheric scattering of sunlight caused by this layer of haze that exists between 20 and 30 kilometers above Earth. Sunlight highlights the empty payload bay (PLB), the vertical tail, and orbital maneuvering system (OMS) pods against the black
NASA Technical Reports Server (NTRS)
Erickson, Gary E.; Brandon, Jay M.
1987-01-01
An exploratory investigation was conducted of the nonlinear aerodynamic and stability characteristics of a tailless generic fighter configuration featuring a chine-shaped forebody coupled to a slender cropped delta wing in the NASA Langley Research Center's 12-Foot Low-Speed Wind Tunnel. Forebody and wing vortex flow mechanisms were identified through off-body flow visualizations to explain the trends in the longitudinal and lateral-directional characteristics at extreme attitudes (angles of attack and sideslip). The interactions of the vortical motions with centerline and wing-mounted vertical tail surfaces were studied and the flow phenomena were correlated with the configuration forces and moments. Single degree of freedom, free-to-roll tests were used to study the wing rock susceptibility of the generic fighter model. Modifications to the nose region of the chine forebody were examined and fluid mechanisms were established to account for their ineffectiveness in modulating the highly interactive forebody and wing vortex systems.
NASA Astrophysics Data System (ADS)
Joseph, C. N.; Waugh, W.; Glenn, E.
2015-12-01
The U.S. Department of Energy (DOE) is responsible for long-term stewardship of disposal cells for uranium mill tailings throughout the United States. Rock-armored disposal cell covers create favorable habitat for deep-rooted plants by reducing soil evaporation, increasing soil water storage, and trapping windblown dust, thereby providing water and nutrients for plant germination and establishment. DOE is studying the tradeoffs of potential detrimental and beneficial effects of plants growing on disposal cell covers to develop a rational and consistent vegetation management policy. Plant roots often extend vertically through disposal cell covers into underlying tailings, therefore, uptake of tailings contaminants and dissemination through animals foraging on stems and leaves is a possible exposure pathway. The literature shows that plant uptake of contaminants in uranium mill tailings occurs, but levels can vary widely depending on plant species, tailings and soil chemistry, and cover soil hydrology. Our empirical field study measured concentrations of uranium, radium, thorium, molybdenum, selenium, manganese, lead, and arsenic in above ground tissues harvested from plants growing on disposal cells near Native American communities in western states that represent a range of climates, cover designs, cover soil types, and vegetation types. For risk screening, contaminant levels in above ground tissues harvested from plants on disposal cells were compared to Maximum Tolerance Levels (MTLs) set for livestock by the National Research Council, and to tissue levels in the same plant species growing in reference areas near disposal cells. Although tailings were covered with uncontaminated soils, for 14 of 46 comparisons, levels of uranium and other contaminants were higher in plants growing on disposal cells compared to reference area plants, indicating possible mobilization of these elements from the tailing into plant tissues. However, with one exception, all plant levels were well below MTLs. Selenium, the only element that exceeded its MTL, likely originated in local seleniferous soil found both at reference areas and in disposal cell covers, and not in the underlying tailings. Our screening risk assessment suggests that allowing plants to grow on disposal cells appears to be safe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwasako, Kenji, E-mail: kuwasako@med.miyazaki-u.ac.jp; Sekiguchi, Toshio; Nagata, Sayaka
2016-02-19
Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM{sub 1} receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM{sub 1} receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM{sub 1} receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [{sup 125}I]AM binding andmore » AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β{sub 2}-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449–453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM{sub 1} receptor and further determined the region of the CLR C-tail responsible for this GRK function. - Highlights: • We discovered a novel function of GRKs in GPCR trafficking using human CLR/RAMP2. • GRKs 4 and 5 markedly inhibited the cell surface expression of human CLR/RAMP2. • Both GRKs exhibited highly significant receptor signaling inhibition. • Five residues of the C-terminal tail of CLR govern this function of GRKs.« less
Aguilar, Maria; Richardson, Elisabeth; Tan, BoonFei; Walker, Giselle; Dunfield, Peter F; Bass, David; Nesbø, Camilla; Foght, Julia; Dacks, Joel B
2016-11-01
Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next-generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds. In metagenomes prepared from tailings sediment and surface water, we detected very low numbers of sequences encoding eukaryotic small subunit ribosomal RNA representing seven major taxonomic groups of protists. We also produced and analysed three amplicon-based 18S rRNA libraries prepared from sediment samples. These revealed a more diverse set of taxa, 169 different OTUs encompassing up to eleven higher order groups of eukaryotes, according to detailed classification using homology searching and phylogenetic methods. The 10 most abundant OTUs accounted for > 90% of the total of reads, vs. large numbers of rare OTUs (< 1% abundance). Despite the anoxic and hydrocarbon-enriched nature of the environment, the tailings ponds harbour complex communities of microbial eukaryotes indicating that these organisms should be taken into account when studying the microbiology of the oil sands. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
NASA Astrophysics Data System (ADS)
Pedretti, D.; Molinari, A.; Fallico, C.; Guzzi, S.
2016-10-01
A series of experimental tracer tests were performed to explore the implications of the change in the pressure status of a heterogeneous bimodal aquifer for scale-dependent dispersion and mass-transfer processes. The sandbox was filled with sands and gravel channels and patches to form an alluvial-like bimodal aquifer. We performed multiple injections of a conservative tracer from 26 different locations of the sandbox and interpreted the resulting depth-integrated breakthrough curves (BTCs) at the central pumping well to obtain a scale-dependent distribution of local and field-integrated apparent longitudinal dispersivity (respectively, αLloc and αLapp). We repeated the experiments under confined (CS) and unconfined (UNS) pressure status, keeping the same heterogeneous configuration. Results showed that αLloc(associated with transport through gravel zones) was poorly influenced by the change in aquifer pressure and the presence of channels. Instead, αLapp(i.e. macrodispersion) strongly increased when changing from CS to UNS. In specific, we found αLapp ≈ 0.03 r for the CS and αLapp ≈ 0.15 r for the UNS (being r the distance from the well). Second-to-fourth-order temporal moments showed strong spatial dependence in the UNS and no spatial dependence in the CS. These results seem consistent with a ;vadose-zone-driven; kinetic mass-transfer process occurring in the UNS but not in the CS. The vadose zone enhances vertical flow due to the presence of free surface and large contrasts in hydraulic conductivity triggered by the desaturation of gravel channels nearby the pumping well. The vadose zone enhances vertical mixing between gravel and sands and generates BTC tailing. In the CS vertical mixing is negligible and anomalous transport is not observed.
NASA Technical Reports Server (NTRS)
Sarver, D.; Mulkey, T. L.; Lindahl, R. H.
1975-01-01
The performance, stability, and control characteristics of various carrier aircraft configurations are presented. Aerodynamic characteristics of the carrier mated with the Orbiter, carrier alone, and Orbiter alone were investigated. Carrier support system tare and interference effects were determined. Six-component force and moment data were recorded for the carrier and Orbiter. Buffet onset characteristics of the carrier vertical tail and horizontal tail were recorded. Angles of attack from -3 deg through 26 deg and angles of slideslip between +12 deg and -12 deg were investigated at Mach numbers from 0.15 through 0.70. Photographs are included.
Biological effects of long term fine limestone tailings discharge in a fjord ecosystem.
Brooks, Lucy; Melsom, Fredrik; Glette, Tormod
2015-07-15
Benthic infaunal data collected from 1993 to 2010 were analysed to examine the effect of long term discharge of fine limestone tailings on macrofaunal species assemblages in a fjord. Relative distance from the outfall and proportion of fine tailings in the sediment were correlated with benthic community structure. Diversity decreased with increasing proportion of fine tailings. Biological Traits Analysis (BTA) was used to explore the temporal and spatial effects of the tailings gradient on macrofaunal functional attributes. BTA revealed that all stations along a pressure gradient of fine limestone tailings were dominated by free-living species. As the proportion of fine tailings in the sediment increased, there was an increase in fauna that were smaller, highly mobile, living on or nearer the surface sediment, with shorter lifespans. There was a decrease in permanent tube dwellers, those fauna with low or no mobility, that live deeper in the sediment and have longer lifespans (>5 yrs). Copyright © 2015 Elsevier Ltd. All rights reserved.
Terrillion, Chantelle E.; Piantadosi, Sean C.; Bhat, Shambhu; Gould, Todd D.
2012-01-01
The tail-suspension test is a mouse behavioral test useful in the screening of potential antidepressant drugs, and assessing of other manipulations that are expected to affect depression related behaviors. Mice are suspended by their tails with tape, in such a position that it cannot escape or hold on to nearby surfaces. During this test, typically six minutes in duration, the resulting escape oriented behaviors are quantified. The tail-suspension test is a valuable tool in drug discovery for high-throughput screening of prospective antidepressant compounds. Here, we describe the details required for implementation of this test with additional emphasis on potential problems that may occur and how to avoid them. We also offer a solution to the tail climbing behavior, a common problem that renders this test useless in some mouse strains, such as the widely used C57BL/6. Specifically, we prevent tail climbing behaviors by passing mouse tails through a small plastic cylinder prior to suspension. Finally, we detail how to manually score the behaviors that are manifested in this test. PMID:22315011
Modeling of Longitudinal Unsteady Aerodynamics of a Wing-Tail Combination
NASA Technical Reports Server (NTRS)
Klein, Vladislav
1999-01-01
Aerodynamic equations for the longitudinal motion of an aircraft with a horizontal tail were developed. In this development emphasis was given on obtaining model structure suitable for model identification from experimental data. The resulting aerodynamic models included unsteady effects in the form of linear indicial functions. These functions represented responses in the lift on the wing and tail alone, and interference between those two lifting surfaces. The effect of the wing on the tail was formulated for two different expressions concerning the downwash angle at the tail. The first expression used the Cowley-Glauert approximation known-as "lag-in-downwash," the second took into account growth of the wing circulation and delay in the development of the lift on the tail. Both approaches were demonstrated in two examples using the geometry of a fighter aircraft and a large transport. It was shown that the differences in the two downwash formulations would increase for an aircraft with long tail arm performing low-speed, rapid maneuvers.
Postsacral vertebral morphology in relation to tail length among primates and other mammals.
Russo, Gabrielle A
2015-02-01
Tail reduction/loss independently evolved in a number of mammalian lineages, including hominoid primates. One prerequisite to appropriately contextualizing its occurrence and understanding its significance is the ability to track evolutionary changes in tail length throughout the fossil record. However, to date, the bony correlates of tail length variation among living taxa have not been comprehensively examined. This study quantifies postsacral vertebral morphology among living primates and other mammals known to differ in relative tail length (RTL). Linear and angular measurements with known biomechanical significance were collected on the first, mid-, and transition proximal postsacral vertebrae, and their relationship with RTL was assessed using phylogenetic generalized least-squares regression methods. Compared to shorter-tailed primates, longer-tailed primates possess a greater number of postsacral vertebral features associated with increased proximal tail flexibility (e.g., craniocaudally longer vertebral bodies), increased intervertebral body joint range of motion (e.g., more circularly shaped cranial articular surfaces), and increased leverage of tail musculature (e.g., longer spinous processes). These observations are corroborated by the comparative mammalian sample, which shows that distantly related short-tailed (e.g., Phascolarctos, Lynx) and long-tailed (e.g., Dendrolagus, Acinonyx) nonprimate mammals morphologically converge with short-tailed (e.g., Macaca tonkeana) and long-tailed (e.g., Macaca fascicularis) primates, respectively. Multivariate models demonstrate that the variables examined account for 70% (all mammals) to 94% (only primates) of the variance in RTL. Results of this study may be used to infer the tail lengths of extinct primates and other mammals, thereby improving our understanding about the evolution of tail reduction/loss. © 2014 Wiley Periodicals, Inc.
Radiation data input for the design of dry or semi-dry U tailings disposal.
Kvasnicka, J
1986-09-01
Before discussion of design criteria for the handling of dry or semi-dry tailings, it is necessary to obtain an insight into the radiation levels associated with the tailings particles and to study the basic physical properties of dry tailings. This article presents the experimental results of assessing Ra and specific alpha-activity distribution with respect to particle size of the Ranger (RUM) and Nabarlek (QML) uranium mines dry tailings samples. The variation of Rn emanation coefficient versus particle size of dry tailings has also been measured. The nuclear-track detection technique, gamma spectrometry and alpha counting were used for the above measurements. Surface Rn flux from the hypothetical Nabarlek semi-infinite dry tailings pile is 32 Bq m-2 s-1 and the Rn flux for Ranger is 10 Bq m-2 s-1. The theoretical exposure rates for 1 m above these hypothetical tailings piles are 0.95 microC kg-1 h-1 and 0.28 microC kg-1 h-1, respectively. The derived air alpha-contamination limits (DAAC) for the tailings dust were calculated to be 1.2 Bq m-3 for workers and 0.034 Bq m-3 for a member of the public. The limit for workers corresponds to the air tailings dust concentration of 0.79 mg m-3 for QML tailings and 2.2 mg m-3 for RUM tailings. The DAAC limit for the public corresponds to the air tailings dust concentration of 0.022 mg m-3 for QML tailings and 0.064 mg m-3 for RUM tailings.
Actin-based propulsion of a microswimmer.
Leshansky, A M
2006-07-01
A simple hydrodynamic model of actin-based propulsion of microparticles in dilute cell-free cytoplasmic extracts is presented. Under the basic assumption that actin polymerization at the particle surface acts as a force dipole, pushing apart the load and the free (nonanchored) actin tail, the propulsive velocity of the microparticle is determined as a function of the tail length, porosity, and particle shape. The anticipated velocities of the cargo displacement and the rearward motion of the tail are in good agreement with recently reported results of biomimetic experiments. A more detailed analysis of the particle-tail hydrodynamic interaction is presented and compared to the prediction of the simplified model.
Spectral induced polarization (SIP) response of mine tailings
NASA Astrophysics Data System (ADS)
Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi
2015-02-01
Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000 Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Vertical Surfaces § 23.443 Gust loads. (a) Vertical surfaces must be designed to withstand, in unaccelerated flight at speed V C... computed as follows: ER09FE96.000 Where— Lvt=Vertical surface loads (lbs.); ER09FE96.001 ER09FE96.002 Ude...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Vertical Surfaces § 23.443 Gust loads. (a) Vertical surfaces must be designed to withstand, in unaccelerated flight at speed V C... computed as follows: ER09FE96.000 Where— Lvt=Vertical surface loads (lbs.); ER09FE96.001 ER09FE96.002 Ude...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Vertical Surfaces § 23.443 Gust loads. (a) Vertical surfaces must be designed to withstand, in unaccelerated flight at speed V C... computed as follows: ER09FE96.000 Where— Lvt=Vertical surface loads (lbs.); ER09FE96.001 ER09FE96.002 Ude...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Vertical Surfaces § 23.443 Gust loads. (a) Vertical surfaces must be designed to withstand, in unaccelerated flight at speed V C... computed as follows: ER09FE96.000 Where— Lvt=Vertical surface loads (lbs.); ER09FE96.001 ER09FE96.002 Ude...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Vertical Surfaces § 23.443 Gust loads. (a) Vertical surfaces must be designed to withstand, in unaccelerated flight at speed V C... computed as follows: ER09FE96.000 Where— Lvt=Vertical surface loads (lbs.); ER09FE96.001 ER09FE96.002 Ude...
49 CFR 571.10 - Designation of seating positions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maximum width of a seating surface measured in a zone extending from a transverse vertical plane 150 mm (5.9 inches) behind the front leading surface of that seating surface to a transverse vertical plane... (5.5 inches), as measured in each transverse vertical plane within that measurement zone, or (B) A...
Venus - 3D Perspective View of Latona Corona and Dali Chasma
NASA Technical Reports Server (NTRS)
1992-01-01
This computer-generated perspective view of Latona Corona and Dali Chasma on Venus shows Magellan radar data superimposed on topography. The view is from the northeast and vertical exaggeration is 10 times. Exaggeration of relief is a common tool scientists use to detect relationships between structure (i.e. faults and fractures) and topography. Latona Corona, a circular feature approximately 1,000 kilometers (620 miles) in diameter whose eastern half is shown at the left of the image, has a relatively smooth, radar-bright raised rim. Bright lines or fractures within the corona appear to radiate away from its center toward the rim. The rest of the bright fractures in the area are associated with the relatively deep (approximately 3 kilometers or 1.9 miles) troughs of Dali Chasma. The Dali and Diana Chasma system consist of deep troughs that extend for 7,400 kilometers (4,588 miles) and are very distinct features on Venus. Those chasma connect the Ovda and Thetis highlands with the large volcanoes at Atla Regio and thus are considered to be the 'Scorpion Tail' of Aphrodite Terra. The broad, curving scarp resembles some of Earth's subduction zones where crustal plates are pushed over each other. The radar-bright surface at the highest elevation along the scarp is similar to surfaces in other elevated regions where some metallic mineral such as pyrite (fool's gold) may occur on the surface.
Integration of photoactive and electroactive components with vertical cavity surface emitting lasers
Bryan, R.P.; Esherick, P.; Jewell, J.L.; Lear, K.L.; Olbright, G.R.
1997-04-29
A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications. 9 figs.
Integration of photoactive and electroactive components with vertical cavity surface emitting lasers
Bryan, Robert P.; Esherick, Peter; Jewell, Jack L.; Lear, Kevin L.; Olbright, Gregory R.
1997-01-01
A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications.
NASA Astrophysics Data System (ADS)
Tanaka, Takahisa; Uchida, Ken
2018-06-01
Band tails in heavily doped semiconductors are one of the important parameters that determine transfer characteristics of tunneling field-effect transistors. In this study, doping concentration and doing profile dependences of band tails in heavily doped Si nanowires were analyzed by a nonequilibrium Green function method. From the calculated band tails, transfer characteristics of nanowire tunnel field-effect transistors were numerically analyzed by Wentzel–Kramer–Brillouin approximation with exponential barriers. The calculated transfer characteristics demonstrate that the band tails induced by dopants degrade the subthreshold slopes of Si nanowires from 5 to 56 mV/dec in the worst case. On the other hand, surface doping leads to a high drain current while maintaining a small subthreshold slope.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.; Rogers, Lawrence W.
1992-01-01
A wind tunnel data base was established for the effects of chine-like forebody strakes and Mach number on the longitudinal and lateral-directional characteristics of a generalized 55 degree cropped delta wing-fuselage-centerline vertical tail configuration. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center at free-stream Mach numbers of 0.40 to 1.10 and Reynolds numbers based on the wing mean aerodynamic chord of 1.60 x 10(exp 6) to 2.59 x 10(exp 6). The best matrix included angles of attack from 0 degree to a maximum of 28 degree, angles of sidesip of 0, +5, and -5 degrees, and wing leading-edge flat deflection angles of 0 and 30 degrees. Key flow phenomena at subsonic and transonic conditions were identified by measuring off-body flow visualization with a laser screen technique. These phenomena included coexisting and interacting vortex flows and shock waves, vortex breakdown, vortex flow interactions with the vertical tail, and vortices induced by flow separation from the hinge line of the deflected wing flap. The flow mechanisms were correlated with the longitudinal and lateral-directional aerodynamic data trends.
NASA Technical Reports Server (NTRS)
Seacord, Charles L; Campbell, John P.
1943-01-01
The effects of mass distribution on lateral stability and control characteristics of an airplane have been determined by flight tests of a model in the NACA free-flight tunnel. In the investigation, the rolling and yawing movements of inertia were increased from normal values to values up to five times normal. For each moment-of-inertia condition, combinations of dihedral and vertical-tail area representing a variety of airplane configurations were tested. The results of the flight tests of the model were correlated with calculated stability and control characteristics and, in general, good agreement was obtained. The tests showed the following effects of increased rolling and yawing moments of inertia: no appreciable change in spiral stability; reductions in oscillatory stability that were serious at high values of dihedral; a reduction in the sensitivity of the model to gust disturbances; and a reduction in rolling acceleration provided by the ailerons, which caused a marked increase in time to reach a given angle of bank. The general flight behavior of the model became worse with increasing moments of inertia but, with combinations of small effective dihedral and large vertical-tail area, satisfactory flight characteristics were obtained at all moment-of-inertia conditions.
Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants
Bouchal, Roza; Hamel, Abdellah; Hesemann, Peter; In, Martin; Prelot, Bénédicte; Zajac, Jerzy
2016-01-01
Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group. PMID:26861309
Fabrication of precision high quality facets on molecular beam epitaxy material
Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.
2001-01-01
Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.
NASA Astrophysics Data System (ADS)
Boodoo, K. S.; Schelker, J.; Battin, T. J.
2016-12-01
Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. During warm summer months, diurnal vertical temperature patterns were most pronounced and were detected throughout all one-meter-depth profiles. Furthermore, permanently wetted GB sediment (-56 cm depth) temperatures above that of stream and groundwater occurred 17% of the year, particularly during summer. This is further evidence for downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB temperatures were associated with increased CO2 evasion fluxes; the strength of the relationship increased with depth (max. r2 = 0.61 at -100cm depth). This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn and winter, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. The importance of these processes is likely to increase, particularly in cold-water streams, due to the occurrence of more frequent and intense warm temperature events, as well as altered flow regimes, likely consequences of climatic change.
NASA Astrophysics Data System (ADS)
Finocchio, Peter M.
The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for shallow layers of upper-level shear. Many of the wind profiles tested in the idealized simulations have shear height or depth values on the tails of these distributions, suggesting that the environmental wind profiles around real TCs do not exhibit enough structural variability to have the clear statistical relationship to intensity change that we expected. In the final part of this dissertation, we use the reanalyzed TC environments to initialize ensembles of idealized simulations. Using a new modeling technique that allows for time-varying environments, these simulations examine the predictability implications of exposing a TC to different structures and magnitudes of vertical wind shear during its life cycle. We find that TCs in more deeply distributed vertical wind shear environments have a more uncertain intensity evolution than TCs exposed to shallower layers of upper-level shear. This higher uncertainty arises from a more marginal boundary layer environment that the deeply distributed shear establishes, which enhances the TC sensitivity to the magnitude of deep-layer shear. Simulated radar reflectivity also appears to evolve in a more uncertain fashion in environments with deeply distributed vertical shear. However, structural predictability timescales, computed as the time it takes for errors in the amplitude or phase of azimuthal asymmetries of reflectivity to saturate, are similar for wind profiles with shallow upper-level shear and deeply distributed shear. Both ensembles demonstrate predictability timescales of two to three days for the lowest azimuthal wavenumbers of amplitude and phase. As the magnitude of vertical wind shear increases to universally destructive levels, structural and intensity errors begin to decrease. Shallow upper-level shear primes the TC for a more pronounced recovery in the predictability of the wavenumber-one precipitation structure in stronger shear. The recovered low-wavenumber predictability of TC precipitation structure and the collapse in intensity spread in strong shear suggests that vertical wind shear is most effective at reducing TC predictability when its magnitude is near the threshold between favorable and unfavorable values and when it is deeply distributed through the troposphere. By isolating the effect of the environmental flow, the simulations and analyses in this dissertation offer a unique understanding of how vertical wind shear affects TCs. In particular, the results have important implications for designing and implementing future environmental observing strategies that will be critical for improving forecasts of these destructive storms.
NASA Astrophysics Data System (ADS)
Mendenhall, Jonathan D.
Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc's and other micellization properties for a variety of linear and branched surfactant chemical architectures which are commonly encountered in practice. Single-component surfactant solutions are investigated, in order to clarify the specific contributions of the surfactant head and tail to the free energy of micellization, a quantity which determines the cmc and all other aspects of micellization. First, a molecular-thermodynamic (MT) theory is presented which makes use of bulk-phase thermodynamics and a phenomenological thought process to describe the energetics related to the formation of a micelle from its constituent surfactant monomers. Second, a combined computer-simulation/molecular-thermodynamic (CSMT) framework is discussed which provides a more detailed quantification of the hydrophobic effect using molecular dynamics simulations. A novel computational strategy to identify surfactant head and tail using an iterative dividing surface approach, along with simulated micelle results, is proposed. Force-field development for novel surfactant structures is also discussed. Third, a statistical-thermodynamic, single-chain, mean-field theory for linear and branched tail packing is formulated, which enables quantification of the specific energetic penalties related to confinement and constraint of surfactant tails within micelles. Finally, these theoretical and simulations-based strategies are used to predict the micellization behavior of 55 linear surfactants and 28 branched surfactants. Critical micelle concentration and optimal micelle properties are reported and compared with experiment, demonstrating good agreement across a range of surfactant head and tail types. In particular, the CSMT framework is found to provide improved agreement with experimental cmc's for the branched surfactants considered. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Molecular modeling of proteinlike inclusions in lipid bilayers: lipid-mediated interactions.
Kik, Richard A; Leermakers, Frans A M; Kleijn, J Mieke
2010-02-01
We investigated the insertion of transmembrane structures in a lipid bilayer and their interactions using self-consistent field theory. The lipids are coarse-grained on a united-atom level and consist of a phosphatidylcholinelike headgroup and two hydrophobic tails. The inclusions, acting as simple models for proteins that span biological membranes, are rigid rods (radius R ) with a hydrophobic surface and hydrophilic end caps. The insertion free energy Omega of an individual rod is strongly regulated by the affinity between its hydrophobic surface and the lipid tails. This affinity also controls the best match of the hydrophobic length of the rod with that of the bilayer. The line tension tau(=Omega/2piR) is practically independent of R . The perturbations in the bilayer as a function of distance from the inclusion, have the shape of a damped oscillation. The wavelength and decay length are related to the elastic properties of the bilayer and do not depend on R . These results are used to analyze how the lipid matrix affects the interaction between transmembrane objects, for computational reasons considering the limit of R-->infinity . Contributions on different length scales can be distinguished: (i) a long-range elastic interaction, which is an exponentially decaying oscillation; (ii) an exponentially decaying repulsion on an intermediate length scale, resulting from the loss of conformational entropy of the lipid tails; and (iii) a short-range interaction due to the finite compressibility of the lipid tails, which manifests either as a depletion attraction if there is no affinity between the tails and the inclusions' surface or, otherwise, as an oscillatory structural force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 557-acre Coalinga Asbestos Mine site, a former asbestos processing area and chromite mine, comprises part of the Johns Manville Coalinga Asbestos Mill site in western Fresno County, California. This rural mountainous area is used primarily for recreational purposes. From 1962 to 1974, asbestos ore from several local mines was processed and sorted onsite, and the resulting asbestos mill tailings were periodically bulldozed into an intermittent stream channel. Subsequently, from 1975 to 1977, a chromite milling operation was conducted onsite. Tailings were often washed downstream during periods of stream flow, and the resuspension of asbestos fibers from the tailings intomore » the air produced a significant inhalation hazard. As a result of these activities, approximately 450,000 cubic yards of mill tailings and asbestos ore remain onsite within a large tailing pile. In 1980 and 1987, State investigations indicated that the site was contributing a significant amount of asbestos into the surface water. The site will be remediated as two Operable Units (OU). The Record of Decision (ROD) addresses the remedial action for OU2, the Johns Manville Coalinga Asbestos Mill Area. The primary contaminant of concern affecting the surface water is asbestos.« less
NASA Technical Reports Server (NTRS)
1976-01-01
The methodology used to predict full scale space shuttle solid rocket booster (SRB) water impact loads from scale model test data is described. Tests conducted included 12.5 inch and 120 inch diameter models of the SRB. Geometry and mass characteristics of the models were varied in each test series to reflect the current SRB baseline configuration. Nose first and tail first water entry modes were investigated with full-scale initial impact vertical velocities of 40 to 120 ft/sec, horizontal velocities of 0 to 60 ft/sec., and off-vertical angles of 0 to plus or minus 30 degrees. The test program included a series of tests with scaled atmospheric pressure.
NASA Astrophysics Data System (ADS)
Yamaguchi, R.; Suga, T.
2016-12-01
Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.
NASA Astrophysics Data System (ADS)
Boodoo, Kyle; Battin, Tom; Schelker, Jakob
2017-04-01
Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. We extended our study to 13 other gravel bars of varying physical characteristics within the surrounding Ybbs and Erlauf catchments, conducting diurnal spot samplings in summer 2016. Temperatures within the observed permanently wetted hyporheic zone (-56 to -100cm depth below GB surface) of the OSB, were warmer than both end members, surface water and groundwater >18% of the year, particularly during summer. There was a general increase in exceedance within the periodically wetted gravel bar sediment toward the gravel bar surface, further evidencing downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB seasonal temperatures were associated with increased CO2 evasion fluxes within the OSB, particularly during summer. This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. Furthermore, catchment CO2 outgassing fluxes significantly exceeded that of the stream, with higher diurnal CO2 outgassing fluxes observed for all 13 GBs within the Ybbs and Erlauf catchments as compared to their respective streams. We found DOC concentration did not significantly correlate to CO2 outgassing. But, vertical temperature gradient as a measure of heat flux to the hyporheic zone explained 55% and 69% of the variability in observed CO2 efflux from the OSB gravel bar (seasonal samplings during summer 2015 - winter 2016) and 11 catchment gravel bars (2 GBs excluded due to equipment malfunction) respectively. These results highlight the effect of temperature on physical and biochemical stream processes, particularly in cold-water streams, due to the occurrence of more frequent and intense warm temperature events, as well as altered flow regimes, likely consequences of climatic change.
Effects of turbulent hyporheic mixing on reach-scale solute transport
NASA Astrophysics Data System (ADS)
Roche, K. R.; Li, A.; Packman, A. I.
2017-12-01
Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of flow and mixing over the surface-subsurface continuum must be explicitly considered to properly interpret solute transport in coarse-bed streams.
NASA Astrophysics Data System (ADS)
Minami, K.; Yamamoto, M.; Nishimura, T.; Nakahara, H.; Shiomi, K.
2013-12-01
Seismic interferometry using vertical borehole arrays is a powerful tool to estimate the shallow subsurface structure and its time lapse changes. However, the wave fields surrounding borehole arrays are non-isotropic due to the existence of ground surface and non-uniform distribution of sources, and do not meet the requirements of the seismic interferometry in a strict sense. In this study, to examine differences between wave fields of coda waves and ambient noise, and to estimate their effects on the results of seismic interferometry, we conducted a temporal seismic experiment using zero-offset and offset vertical arrays. We installed two 3-components seismometers (hereafter called Surface1 and Surface2) at the ground surface in the vicinity of NIED Iwanuma site (Miyagi Pref., Japan). Surface1 is placed just above the Hi-net downhole seismometer whose depth is 101 m, and Surface2 is placed 70 m away from Surface1. To extract the wave propagation between these 3 seismometers, we compute the cross-correlation functions (CCFs) of coda-wave and ambient noise for each pair of the zero-offset vertical (Hi-net-Surface1), finite-offset vertical (Hi-net-Surface2), and horizontal (Surface1-Surface2) arrays. We use the frequency bands of 4-8, 8-16 Hz in the CCF computation. The characteristics of obtained CCFs are summarized as follows; (1) in all frequency bands, the peak lag times of CCFs from coda waves are almost the same between the vertical and offset-vertical arrays irrespective of different inter-station distance, and those for the horizontal array are around 0 s. (2) the peak lag times of CCFs from ambient noise show slight differences, that is, those obtained from the vertical array are earlier than those from the offset-vertical array, and those from the horizontal array are around 0.05 s. (3) the peak lag times of CCFs for the vertical array obtained from ambient noise analyses are earlier than those from the coda-wave analyses. These results indicate that wave fields of coda-wave are mainly composed of vertically propagating waves, while those of ambient noise are composed of both vertically and horizontally propagating waves. To explain these characteristics of the CCFs obtained from different wave fields, we conducted a numerical simulation of interferometry based on the concept of stationary phase. Here, we assume isotropic upward incidence of SV-wave into a homogeneous half-space, and compute CCFs for the zero-offset and finite-offset vertical arrays by taking into account the reflection and conversion of P-SV waves at the free surface. Due to the effectively non-isotropic wave field, the simulated CCF for the zero-offset vertical array shows slight delay in peak lag time and its amplitudes decrease in the acausal part. On the other hand, the simulated CCF for finite-offset vertical array shows amplitude decrease and no peak lag time shift. These results are consistent with the difference in peak lag times obtained from coda-wave and ambient noise analyses. Our observations and theoretical consideration suggest that the careful consideration of wave fields is important in the application of seismic interferometry to borehole array data.
Curved tails in polymerization-based bacterial motility
NASA Astrophysics Data System (ADS)
Rutenberg, Andrew D.; Grant, Martin
2001-08-01
The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.
Provenance and environmental risk of windblown materials from mine tailing ponds, Murcia, Spain.
Khademi, Hossein; Abbaspour, Ali; Martínez-Martínez, Silvia; Gabarrón, María; Shahrokh, Vajihe; Faz, Angel; Acosta, Jose A
2018-05-31
Atmospheric particulates play a vital role in the transport of potentially toxic metals, being an important exposure pathways of people to toxic elements, which is faster and can occur in a much larger scale than water, soil and biota transport. Windblown materials in abandoned tailing ponds have not been well examined. The objectives of this investigation were: to study the major physical and geochemical properties of the materials eroded by wind inside the tailing ponds, and to understand the relative contribution of different sources to its heavy metals concentration. Study area is located in Cartagena-La Union mining district (SE Spain), where metallic mining of Fe, Pb and Zn has been developed for more than 2500 years. Wind-eroded particulates were monthly collected at 3 different heights (20, 50, and 80 cm) from the ground for a period of a full year using 4 dust collectors. Four tailing samples and 4 surface soil samples from the surrounding hills were also taken. Dust, soil, and tailing samples were examined for pH, particle size distribution, electrical conductivity, calcium carbonate content, Pb, Cu, Zn, Cd, Mn, Co, Ni, Ti and Zr concentrations. The results indicated that very coarse textured, slightly saline, and almost neutral wind-eroded deposits were generated with a very high temporal variability throughout the year. They also showed that the concentration of Cd, Mn, Pb and Zn, in the dust samples is extraordinarily high (18, 1254, 1831, and 5747 mg kg -1 respectively), whereas Co, Ni, and Cu had concentrations into the range of background concentrations found in the Earth's crust (3.8, 12, and 60 mg kg -1 respectively). Besides, the concentration of both categories of heavy metals in the dust samples was higher than that in tailing and less than that of the soils. The barren surfaces of tailing ponds and also the surface soils of the surrounding area seem to be the major contributors to the dust collected. Therefore, abandoned mines as well as their tailing ponds should be rehabilitated by proper technologies and then well stabilized and/or covered by appropriate plant vegetation to control the transfer, particularly by air, of environmentally hazardous materials to other areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Othmani, Mohamed Ali; Souissi, Fouad; Bouzahzah, Hassan; Bussière, Bruno; da Silva, Eduardo Ferreira; Benzaazoua, Mostafa
2015-02-01
The underground extraction of Pb-Zn mineralization in the Touiref area stopped in 1958. A large volume of flotation tailings (more than 500 Mt) containing sulfides were deposited in a tailings impoundment. The goals of this study are to evaluate the neutralization capacity of the unoxidized and oxidized tailings, to assess the speciation of metals between the different components of the tailings material, and to assess the mobility of metals and the secondary minerals' precipitation in pore waters using geochemical modeling. To accomplish these objectives, representative samples from both fresh and oxidized zones were collected along a vertical profile through the tailings pile. Physical, chemical (ICP-MS), and mineralogical characterization (X-ray diffraction (XRD), reflected light microscopy, scanning electron microscope (SEM)) of these samples was performed. Grain size analysis shows that the tailings are dominated by silt- to sand-sized fractions. The microscopic observation highlights the presence of pyrite, marcasite, galena, and sphalerite as primary minerals in a carbonated matrix. The study reveals also the presence of secondary minerals represented by cerussite, smithsonite, anglesite, and Fe oxi-hydroxides as important scavengers for trace elements. The static tests show that the presence of calcite in the tailing samples ensures acid-neutralizing capacity (ANC), which is significantly greater than the acidity potential (PA). The geochemical characterization of the unoxidized samples shows higher Cd, Pb, and Zn concentrations than the oxidized samples containing the highest values for Fe and SO4. Sequential extraction tests show that significant percentages of metals are distributed between the acid-soluble fractions (Cd, Pb, and Zn) and the reducible one (Zn). Pore water analysis indicates that Ca is the dominant cation (8,170 and 6,200 mg L(-1), respectively), whereas sulfate is the principal anion (6,900 and 5,100 mg L(-1), respectively). Saturation index (SI) calculations of minerals in pore water extracted from both the oxidized and unoxidized samples are indicative of gypsum (SI >0) and Fe(III) oxides (SI ≫0) precipitation. The latter controls the Fe concentration in solution.
NASA Technical Reports Server (NTRS)
Allen, J. M.; Hernandez, G.; Lamb, M.
1983-01-01
Tabulated body surface pressure data for two monoplane-wing missile configurations are presented and analyzed. Body pressure data are presented for body-alone, body-tail, and body-wing-tail combinations. For the lost combination, data are presented for tail-fin deflection angles of 0 deg and 30 deg to simulate pitch, yaw, and roll control for both configurations. The data cover angles of attack from -5 deg to 25 deg and angles of roll from 0 deg to 90 deg at a Mach number of 2.50 and a Reynolds number of 6.56 x 1,000,000 per meter. Very consistent, systematic trends with angle of attack and angle of roll were observed in the data, and very good symmetry was found at a roll angle of 0 deg. Body pressures depended strongly on the local body cross-section shape, with very little dependence on the upstream shape. Undeflected fins had only a small influence on the pressures on the aft end of the body; however, tail-fin deflections caused large changes in the pressures.
Low Threshold Voltage Continuous Wave Vertical-Cavity Surface-Emitting Lasers
1993-04-26
Data are presented demonstrating a design and fabrication process for the realization of low- threshold , high-output vertical-cavity surface-emitting...layers), the low series resistance of the design results in a bias voltage on o 1.8 V at a threshold current of 1.9 mA for 10-micrometer-diam devices.... Vertical-cavity surface-emitting lasers.
Pre- and post-remediation characterization of acid-generating fluvial tailings material
Smith, Kathleen S.; Walton-Day, Katherine; Hoal, Karin O.; Driscoll, Rhonda L.; Pietersen, K.
2012-01-01
The upper Arkansas River south of Leadville, Colorado, USA, contains deposits of fluvial tailings from historical mining operations in the Leadville area. These deposits are potential non-point sources of acid and metal contamination to surface- and groundwater systems. We are investigating a site that recently underwent in situ remediation treatment with lime, fertilizer, and compost. Pre- and post-remediation fluvial tailings material was collected from a variety of depths to examine changes in mineralogy, acid generation, and extractable nutrients. Results indicate sufficient nutrient availability in the post-remediation near-surface material, but pyrite and acid generation persist below the depth of lime and fertilizer addition. Mineralogical characterization performed using semi-quantitative X-ray diffraction and quantitative SEM-based micro-mineralogy (Mineral Liberation Analysis, MLA) reveal formation of gypsum, jarosite, and complex coatings surrounding mineral grains in post-remediation samples.
Adaptive Suction and Blowing for Twin-Tail Buffet Control
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Yang, Zhi
1999-01-01
Adaptive active flow control for twin-tail buffet alleviation is investigated. The concept behind this technique is to place control ports on the tail outer and inner surfaces with flow suction or blowing applied through these ports in order to minimize the pressure difference across the tail. The suction or blowing volume flow rate from each port is proportional to the pressure difference across the tail at this location. A parametric study of the effects of the number and location of these ports on the buffet response is carried out. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, using a dynamic multi-block grid structure. The computational model is pitched at 30 deg angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span. Comparison of the time history and power spectral density responses of the tails for various distributions of the control ports are presented and discussed.
Effect of Configuration Pitching Motion on Twin Tail Buffet Response
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Kandil, Osama A.
1998-01-01
The effect of dynamic pitch-up motion of delta wing on twin-tail buffet response is investigated. The computational model consists of a delta wing-twin tail configuration. The computations are carried out on a dynamic multi-block grid structure. This multidisciplinary problem is solved using three sets of equations which consists of the unsteady Navier-Stokes equations, the aeroelastic equations, and the grid displacement equations. The configuration is pitched-up from zero up to 60 deg. angle of attack, and the freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. With the twin tail fixed as rigid surfaces and with no-forced pitch-up motion, the problem is solved for the initial flow conditions. Next, the problem is solved for the twin-tail response for uncoupled bending and torsional vibrations due to the unsteady loads on the twin tail and due to the forced pitch-up motion. The dynamic pitch-up problem is also solved for the flow response with the twin tail kept rigid. The configuration is investigated for inboard position of the twin tail which corresponds to a separation distance between the twin tail of 33% wing chord. The computed results are compared with the available experimental data.
Spectral induced polarization (SIP) response of mine tailings.
Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi
2015-02-01
Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers. Copyright © 2014 Elsevier B.V. All rights reserved.
Generation of Parametric Equivalent-Area Targets for Design of Low-Boom Supersonic Concepts
NASA Technical Reports Server (NTRS)
Li, Wu; Shields, Elwood
2011-01-01
A tool with an Excel visual interface is developed to generate equivalent-area (A(sub e)) targets that satisfy the volume constraints for a low-boom supersonic configuration. The new parametric Ae target explorer allows users to interactively study the tradeoffs between the aircraft volume constraints and the low-boom characteristics (e.g., loudness) of the ground signature. Moreover, numerical optimization can be used to generate the optimal A(sub e) target for given A(sub e) volume constraints. A case study is used to demonstrate how a generated low-boom Ae target can be matched by a supersonic configuration that includes a fuselage, wing, nacelle, pylon, aft pod, horizontal tail, and vertical tail. The low-boom configuration is verified by sonic-boom analysis with an off-body pressure distribution at three body lengths below the configuration
Transmission of Guanarito and Pirital Viruses among Wild Rodents, Venezuela
Milazzo, Mary L.; Cajimat, Maria N.B.; Duno, Gloria; Duno, Freddy; Utrera, Antonio
2011-01-01
Samples from rodents captured on a farm in Venezuela in February 1997 were tested for arenavirus, antibody against Guanarito virus (GTOV), and antibody against Pirital virus (PIRV). Thirty-one (48.4%) of 64 short-tailed cane mice (Zygodontomys brevicauda) were infected with GTOV, 1 Alston’s cotton rat (Sigmodon alstoni) was infected with GTOV, and 36 (64.3%) of 56 other Alston’s cotton rats were infected with PIRV. The results of analyses of field and laboratory data suggested that horizontal transmission is the dominant mode of GTOV transmission in Z. brevicauda mice and that vertical transmission is an important mode of PIRV transmission in S. alstoni rats. The results also suggested that bodily secretions and excretions from most GTOV-infected short-tailed cane mice and most PIRV-infected Alston’s cotton rats may transmit the viruses to humans. PMID:22172205
TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knierman, Karen A.; Scowen, Paul; Veach, Todd
2013-09-10
The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and H{alpha} narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 {mu}m [C II] emission at themore » location of the three most luminous H{alpha} sources in the eastern tail, but not at the location of the even brighter H{alpha} source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation.« less
NASA Astrophysics Data System (ADS)
Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall
2004-05-01
We devise a stochastic model for the effects of breaking waves and fit its distribution functions to laboratory and field data. This is used to represent the space time structure of momentum and energy forcing of the oceanic boundary layer in turbulence-resolving simulations. The aptness of this breaker model is evaluated in a direct numerical simulation (DNS) of an otherwise quiescent fluid driven by an isolated breaking wave, and the results are in good agreement with laboratory measurements. The breaker model faithfully reproduces the bulk features of a breaking event: the mean kinetic energy decays at a rate approaching t(-1) , and a long-lived vortex (eddy) is generated close to the water surface. The long lifetime of this vortex (more than 50 wave periods) makes it effective in energizing the surface region of oceanic boundary layers. Next, a comparison of several different DNS of idealized oceanic boundary layers driven by different surface forcing (i.e. constant current (as in Couette flow), constant stress, or a mixture of constant stress plus stochastic breakers) elucidates the importance of intermittent stress transmission to the underlying currents. A small amount of active breaking, about 1.6% of the total water surface area at any instant in time, significantly alters the instantaneous flow patterns as well as the ensemble statistics. Near the water surface a vigorous downwelling upwelling pattern develops at the head and tail of each three-dimensional breaker. This enhances the vertical velocity variance and generates both negative- and positive-signed vertical momentum flux. Analysis of the mean velocity and scalar profiles shows that breaking effectively increases the surface roughness z_o by more than a factor of 30; for our simulations z_o/lambda {≈} 0.04 to 0.06, where lambda is the wavelength of the breaking wave. Compared to a flow driven by a constant current, the extra mixing from breakers increases the mean eddy viscosity by more than a factor of 10 near the water surface. Breaking waves alter the usual balance of production and dissipation in the turbulent kinetic energy (TKE) budget; turbulent and pressure transports and breaker work are important sources and sinks in the budget. We also show that turbulent boundary layers driven by constant current and constant stress (i.e. with no breaking) differ in fundamental ways. The additional freedom provided by a constant-stress boundary condition permits finite velocity variances at the water surface, so that flows driven by constant stress mimic flows with weakly and statistically homogeneous breaking waves.
A potential role for bat tail membranes in flight control.
Gardiner, James D; Dimitriadis, Grigorios; Codd, Jonathan R; Nudds, Robert L
2011-03-30
Wind tunnel tests conducted on a model based on the long-eared bat Plecotus auritus indicated that the positioning of the tail membrane (uropatagium) can significantly influence flight control. Adjusting tail position by increasing the angle of the legs ventrally relative to the body has a two-fold effect; increasing leg-induced wing camber (i.e., locally increased camber of the inner wing surface) and increasing the angle of attack of the tail membrane. We also used our model to examine the effects of flying with and without a tail membrane. For the bat model with a tail membrane increasing leg angle increased the lift, drag and pitching moment (nose-down) produced. However, removing the tail membrane significantly reduced the change in pitching moment with increasing leg angle, but it had no significant effect on the level of lift produced. The drag on the model also significantly increased with the removal of the tail membrane. The tail membrane, therefore, is potentially important for controlling the level of pitching moment produced by bats and an aid to flight control, specifically improving agility and manoeuvrability. Although the tail of bats is different from that of birds, in that it is only divided from the wings by the legs, it nonetheless, may, in addition to its prey capturing function, fulfil a similar role in aiding flight control.
A Potential Role for Bat Tail Membranes in Flight Control
Gardiner, James D.; Dimitriadis, Grigorios; Codd, Jonathan R.; Nudds, Robert L.
2011-01-01
Wind tunnel tests conducted on a model based on the long-eared bat Plecotus auritus indicated that the positioning of the tail membrane (uropatagium) can significantly influence flight control. Adjusting tail position by increasing the angle of the legs ventrally relative to the body has a two-fold effect; increasing leg-induced wing camber (i.e., locally increased camber of the inner wing surface) and increasing the angle of attack of the tail membrane. We also used our model to examine the effects of flying with and without a tail membrane. For the bat model with a tail membrane increasing leg angle increased the lift, drag and pitching moment (nose-down) produced. However, removing the tail membrane significantly reduced the change in pitching moment with increasing leg angle, but it had no significant effect on the level of lift produced. The drag on the model also significantly increased with the removal of the tail membrane. The tail membrane, therefore, is potentially important for controlling the level of pitching moment produced by bats and an aid to flight control, specifically improving agility and manoeuvrability. Although the tail of bats is different from that of birds, in that it is only divided from the wings by the legs, it nonetheless, may, in addition to its prey capturing function, fulfil a similar role in aiding flight control. PMID:21479137
Bed site selection by neonate deer in grassland habitats on the northern Great Plains
Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.
2010-01-01
Bed site selection is an important behavioral trait influencing neonate survival. Vegetation characteristics of bed sites influence thermal protection of neonates and concealment from predators. Although previous studies describe bed site selection of neonatal white-tailed deer (Odocoileus virginianus) in regions of forested cover, none determined microhabitat effects on neonate bed site selection in the Northern Great Plains, an area of limited forest cover. During summers 2007–2009, we investigated bed site selection (n = 152) by 81 radiocollared neonate white-tailed deer in north-central South Dakota, USA. We documented 80 (52.6%) bed sites in tallgrass–Conservation Reserve Program lands, 35 (23.0%) bed sites in forested cover, and 37 (24.3%) in other habitats (e.g., pasture, alfalfa, wheat). Bed site selection varied with age and sex of neonate. Tree canopy cover (P < 0.001) and tree basal area (P < 0.001) decreased with age of neonates, with no bed sites observed in forested cover after 18 days of age. Male neonates selected sites with less grass cover (P < 0.001), vertical height of understory vegetation (P < 0.001), and density of understory vegetation (P < 0.001) but greater bare ground (P = 0.047), litter (P = 0.028), and wheat (P = 0.044) than did females. Odds of bed site selection increased 3.5% (odds ratio = 1.035, 95% CI = 1.008–1.062) for every 1-cm increase in vertical height of understory vegetation. Management for habitat throughout the grasslands of South Dakota that maximizes vertical height of understory vegetation would enhance cover characteristics selected by neonates.
NASA Technical Reports Server (NTRS)
Dollyhigh, S. M.
1979-01-01
Two 0.085-scale full span wind-tunnel models of a Mach 1.60 design supercruiser configuration were tested at Mach numbers from 0.60 to 2.70. One model incorporated a varying dihedral (swept-up) wing to obtain the desired lateral-directional characteristics; the other incorporated more conventional twin vertical tails. The data from the wind-tunnel tests are presented without analysis.
Mapping sequence performed during the STS-121 R-Bar Pitch Maneuver
2006-07-06
ISS013-E-47629 (6 July 2006) --- A close-up view of Space Shuttle Discovery's tail section is featured in this image photographed by an Expedition 13 crewmember on the International Space Station during STS-121 R-Pitch Maneuver survey on Flight Day 3. Visible are the shuttle's main engines, vertical stabilizer, orbital maneuvering system (OMS) pods, reaction control system (RCS) jets and a portion of payload bay door radiator and wings.
Shallow Water Acoustic Experiments and Preliminary Planning for FY06 Fieldwork
2011-03-21
To) 5/1/2005-12/31/2010 4. TITLE AND SUBTITLE Shallow Water Acoustic Experiments and Preliminary Planning for FY06 Fieldwork 5a. CONTRACT NUMBERS...numerical computations show horizontal interference patterns within the duct. Richly de - tailed sound radiation fields are predicted at locations far...4) for the vertical modal amplitude Tm at x^L is now de - scribed in detail. First, the assumption of total transmission at the open-ended
Dubovskaia, O P; Gladyshev, M I; Makhutova, O N
2004-01-01
The vertical distribution of net zooplankton in head-water of Krasnoyarsk hydroelectric power station and its horizontal distribution in the tail-water were studied during two years in winter and summer seasons. In order to distinguish living and dead individuals the special staining was used. It was revealed that on average 77% of living plankton pass through high-head dam with deep water scoop to the tailwater. While passing through dam aggregates some individuals of the reservoir plankton are traumatized and die, that results in some increase of portion of dead individuals in the tail water near dam (from 3 to 6%). Alive zooplankton passed through the dam aggregates is eliminated under the Upper Yenisei highly turbulent conditions. There is approximately 10% of it in 32 km from the dam if compare with biomass in 20-40 m layer of reservoir, the portion of dead increases to 11%. The biomass of zooplankton suspended in the water column of the tail-water sometimes increases (till > 1 g/m3) due to large Copepoda Heteroscope borealis, which inhabits near-bottom and near-shore river zones and can be found in the central part of the river during reproductive period. Limnetic zooplankton from the reservoir cannot be considered as important food for planktivores in the tail-water.
Assessment and distribution of antimony in soils around three coal mines, Anhui, China
Qi, C.; Liu, Gaisheng; Kang, Y.; Lam, P.K.S.; Chou, C.
2011-01-01
Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasmaoptical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg-1, which is lower than in coals from this region (6.2 mg kg-1). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5-20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils. ?? 2011 Air & Waste Management Association.
Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Jun, E-mail: Jun.Liu.1@uth.tmc.edu; Chen Chengyen; Shiomi, Daisuke
2011-09-01
Bacteriophage P1 has a contractile tail that targets the conserved lipopolysaccharide on the outer membrane surface of the host for initial adsorption. The mechanism by which P1 DNA enters the host cell is not well understood, mainly because the transient molecular interactions between bacteriophage and bacteria have been difficult to study by conventional approaches. Here, we engineered tiny E. coli host cells so that the initial stages of P1-host interactions could be captured in unprecedented detail by cryo-electron tomography. Analysis of three-dimensional reconstructions of frozen-hydrated specimens revealed three predominant configurations: an extended tail stage with DNA present in the phagemore » head, a contracted tail stage with DNA, and a contracted tail stage without DNA. Comparative analysis of various conformations indicated that there is uniform penetration of the inner tail tube into the E. coli periplasm and a significant movement of the baseplate away from the outer membrane during tail contraction.« less
A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV.
Li, Huanyu; Wu, Linfeng; Li, Yingjie; Li, Chunwen; Li, Hangyu
2016-12-02
Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs), especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL) UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy.
A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV
Li, Huanyu; Wu, Linfeng; Li, Yingjie; Li, Chunwen; Li, Hangyu
2016-01-01
Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs), especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL) UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy. PMID:27918422
A tale of two tails: developing an avian inspired morphing actuator for yaw control and stability.
Gamble, Lawren L; Inman, Daniel J
2018-02-09
Motivated by the lack of research in tailless morphing aircraft in addition to the current inability to measure the resultant aerodynamic forces and moments of bird control maneuvers, this work aims to develop and test a multi-functional morphing control surface based on the horizontal tail of birds for a low-radar-signature unmanned aerial vehicle. Customized macro fiber composite actuators were designed to achieve yaw control across a range of sideslip angles by inducing 3D curvature as a result of bending-twisting coupling, a well-known phenomenon in classical fiber composite theory. This allows for yaw control, pitch control, and limited air break control. The structural response of the customized actuators was determined numerically using both a piezoelectric and an equivalent thermal model in order to optimize the fiber direction to allow for maximized deflection in both the vertical and lateral directions. In total, three control configurations were tested experimentally: symmetric deflection for pitch control, single-sided deflection for yaw control, and antisymmetric deflection for air brake control. A Reynolds-averaged-Navier-Stokes fluid simulation was also developed to compare with the experimental results for the unactuated baseline configuration. The actuator was shown to provide better yaw control than traditional split aileron methods, remain effective in larger sideslip angles, and provide directional yaw stability when unactuated. Furthermore, it was shown to provide adequate pitch control in sideslip in addition to limited air brake capabilities. This design is proposed to provide complete aircraft control in concert with spanwise morphing wings.
NASA Technical Reports Server (NTRS)
Rhode, M. N.; Engelund, Walter C.; Mendenhall, Michael R.
1995-01-01
Experimental longitudinal and lateral-directional aerodynamic characteristics were obtained for the Pegasus and Pegasus XL configurations over a Mach number range from 1.6 to 6 and angles of attack from -4 to +24 degrees. Angle of sideslip was varied from -6 to +6 degrees, and control surfaces were deflected to obtain elevon, aileron, and rudder effectiveness. Experimental data for the Pegasus configuration are compared with engineering code predictions performed by Nielsen Engineering & Research, Inc. (NEAR) in the aerodynamic design of the Pegasus vehicle, and with results from the Aerodynamic Preliminary Analysis System (APAS) code. Comparisons of experimental results are also made with longitudinal flight data from Flight #2 of the Pegasus vehicle. Results show that the longitudinal aerodynamic characteristics of the Pegasus and Pegasus XL configurations are similar, having the same lift-curve slope and drag levels across the Mach number range. Both configurations are longitudinally stable, with stability decreasing towards neutral levels as Mach number increases. Directional stability is negative at moderate to high angles of attack due to separated flow over the vertical tail. Dihedral effect is positive for both configurations, but is reduced 30-50 percent for the Pegasus XL configuration because of the horizontal tail anhedral. Predicted longitudinal characteristics and both longitudinal and lateral-directional control effectiveness are generally in good agreement with experiment. Due to the complex leeside flowfield, lateral-directional characteristics are not as well predicted by the engineering codes. Experiment and flight data are in good agreement across the Mach number range.
The stable isotopes of site wide waters at an oil sands mine in northern Alberta, Canada
NASA Astrophysics Data System (ADS)
Baer, Thomas; Barbour, S. Lee; Gibson, John J.
2016-10-01
Oil sands mines have large disturbance footprints and contain a range of new landforms constructed from mine waste such as shale overburden and the byproducts of bitumen extraction such as sand and fluid fine tailings. Each of these landforms are a potential source of water and chemical release to adjacent surface and groundwater, and consequently, the development of methods to track water migration through these landforms is of importance. The stable isotopes of water (i.e. 2H and 18O) have been widely used in hydrology and hydrogeology to characterize surface water/groundwater interactions but have not been extensively applied in mining applications, or specifically to oil sands mining in northern Alberta. A prerequisite for applying these techniques is the establishment of a Local Meteoric Water Line (LMWL) to characterize precipitation at the mine sites as well as the development of a 'catalogue' of the stable water isotope signatures of various mine site waters. This study was undertaken at the Mildred Lake Mine Site, owned and operated by Syncrude Canada Ltd. The LMWL developed from 2 years (2009/2012) of sample collection is shown to be consistent with other LMWLs in western Canada. The results of the study highlight the unique stable water isotope signatures associated with hydraulically placed tailings (sand or fluid fine tailings) and overburden shale dumps relative to natural surface water and groundwater. The signature associated with the snow melt water on reclaimed landscapes was found to be similar to ground water recharge in the region. The isotopic composition of the shale overburden deposits are also distinct and consistent with observations made by other researchers in western Canada on undisturbed shales. The process water associated with the fine and coarse tailings streams has highly enriched 2H and 18O signatures. These signatures are developed through the non-equilibrium fractionation of imported fresh river water during evaporation from cooling towers used within the raw water process circuit. This highly fractionated surface water eventually becomes part of the recycled tailings water circuit, and as a consequence it undergoes further non-equilibrium fractionation as a result of surface evaporation, leading to additional enrichment along local evaporation lines.
Quantitative Analysis of Filament Branch Orientation in Listeria Actin Comet Tails.
Jasnin, Marion; Crevenna, Alvaro H
2016-02-23
Several bacterial and viral pathogens hijack the host actin cytoskeleton machinery to facilitate spread and infection. In particular, Listeria uses Arp2/3-mediated actin filament nucleation at the bacterial surface to generate a branched network that will help propel the bacteria. However, the mechanism of force generation remains elusive due to the lack of high-resolution three-dimensional structural data on the spatial organization of the actin mother and daughter (i.e., branch) filaments within this network. Here, we have explored the three-dimensional structure of Listeria actin tails in Xenopus laevis egg extracts using cryo-electron tomography. We found that the architecture of Listeria actin tails is shared between those formed in cells and in cell extracts. Both contained nanoscopic bundles along the plane of the substrate, where the bacterium lies, and upright filaments (also called Z filaments), both oriented tangentially to the bacterial cell wall. Here, we were able to identify actin filament intersections, which likely correspond to branches, within the tails. A quantitative analysis of putative Arp2/3-mediated branches in the actin network showed that mother filaments lie on the plane of the substrate, whereas daughter filaments have random deviations out of this plane. Moreover, the analysis revealed that branches are randomly oriented with respect to the bacterial surface. Therefore, the actin filament network does not push directly toward the surface but rather accumulates, building up stress around the Listeria surface. Our results favor a mechanism of force generation for Listeria movement where the stress is released into propulsive motion. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ortega, Jason M.; Sabari, Kambiz
2006-03-07
An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.
DOT National Transportation Integrated Search
2003-04-01
Surface wave (Rayleigh wave) seismic data were acquired at six separate bridge sites in southeast Missouri. Each acquired surface wave data set was processed (spectral analysis of surface waves; SASW) and transformed into a site-specific vertical she...
A new model for the surface arrangement of myosin molecules in tarantula thick filaments.
Offer, G; Knight, P J; Burgess, S A; Alamo, L; Padrón, R
2000-04-28
Three-dimensional reconstructions of the negatively stained thick filaments of tarantula muscle with a resolution of 50 A have previously suggested that the helical tracks of myosin heads are zigzagged, short diagonal ridges being connected by nearly axial links. However, surface views of lower contour levels reveal an additional J-shaped feature approximately the size and shape of a myosin head. We have modelled the surface array of myosin heads on the filaments using as a building block a model of a two-headed regulated myosin molecule in which the regulatory light chains of the two heads together form a compact head-tail junction. Four parameters defining the radius, orientation and rotation of each myosin molecule were varied. In addition, the heads were allowed independently to bend in a plane perpendicular to the coiled-coil tail at three sites, and to tilt with respect to the tail and to twist at one of these sites. After low-pass filtering, models were aligned with the reconstruction, scored by cross-correlation and refined by simulated annealing. Comparison of the geometry of the reconstruction and the distance between domains in the myosin molecule narrowed the choice of models to two main classes. A good match to the reconstruction was obtained with a model in which each ridge is formed from the motor domain of a head pointing to the bare zone together with the head-tail junction of a neighbouring molecule. The heads pointing to the Z-disc intermittently occupy the J-position. Each motor domain interacts with the essential and regulatory light chains of the neighbouring heads. A near-radial spoke in the reconstruction connecting the backbone to one end of the ridge can be identified as the start of the coiled-coil tail. Copyright 2000 Academic Press.
Linearly Polarized Dual-Wavelength Vertical-External-Cavity Surface-Emitting Laser (Postprint)
2007-03-01
Lamb, Jr., Laser Physics Addison-Wesley, Reading, MA, 1974, pp. 125-126. 7A. E. Siegman , Lasers University Sciences Books, Sausalito, CA, 1986, pp...AFRL-RY-WP-TP-2008-1171 LINEARLY POLARIZED DUAL-WAVELENGTH VERTICAL-EXTERNAL-CAVITY SURFACE-EMITTING LASER (Postprint) Li Fan, Mahmoud...LINEARLY POLARIZED DUAL-WAVELENGTH VERTICAL-EXTERNAL- CAVITY SURFACE-EMITTING LASER (Postprint) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER 5c
Disintegration phenomena in Comet West
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1976-01-01
Two peculiarities of Comet West, the multiple splitting of the nucleus as seen in telescope observations and the complex structure of the dust tail, are discussed. A method of analysis based on the premise that the observed rate of separation of a fragment from the principal nucleus is determined by the difference in effective solar attraction acting on the bodies is applied to investigate the motion of the four fragments that separated from the nucleus of Comet West. The predicted motion of the fragments is in good agreement with available observations. It is suggested that the 'synchronic' bands of the dust tail consist of tiny fragments from relatively large particles that burst after release from the comet. The unusual orientation of these bands and their high surface brightness relative to the diffuse tail are explained by a sudden increase in the particle acceleration and in the total scattering surface as the result of the disintegration of the larger particles.
Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept
NASA Astrophysics Data System (ADS)
Dannberg, Juliane; Sobolev, Stephan V.
2015-04-01
The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15-20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years.
The Pressure Distribution over the Wings and Tail Surfaces of a PW-9 Pursuit Airplane in Flight
NASA Technical Reports Server (NTRS)
Rhode, Richard
1931-01-01
This report presents the results of an investigation to determine (1) the magnitude and distribution of aerodynamic loads over the wings and tail surfaces of a pursuit-type airplane in the maneuvers likely to impose critical loads on the various subassemblies of the airplane structure. (2) To study the phenomenon of center of pressure movement and normal force coefficient variation in accelerated flight, and (3) to measure the normal accelerations at the center of gravity, wing-tip, and tail, in order to determine the nature of the inertia forces acting simultaneously with the critical aerodynamic loads. The results obtained throw light on a number of important questions involving structural design. Some of the more interesting results are discussed in some detail, but in general the report is for the purpose of making this collection of airplane-load data obtained in flight available to those interested in airplane structures.
Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals.
McDaniel, Jesse G; Yethiraj, Arun
2017-05-18
Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those with longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ∼20-50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.
Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.
Li, Mingze; Wang, Zhenhua; Yang, Liang; Pan, Desheng; Li, Da; Gao, Xuan P A; Zhang, Zhidong
2018-08-03
Controlling the growth direction (planar versus vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional layered materials. We report a simple method to fabricate continuous films of vertical Bi 2 Se 3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi 2 Se 3 nanoplate film, vertical Bi 2 Se 3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi 2 Se 3 nanoplates, we realized an effective tuning of the weak antilocalization effect from topological surface states in Bi 2 Se 3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film.
NASA Technical Reports Server (NTRS)
1956-01-01
Convair JF-102A (54-1374) on the ramp at NACA High-Speed Flight Station , Edwards, California in 1956. The most prominent new feature distinguishing the JF-102A from the YF-102 was a longer fuselage with a pinched or 'coke-bottle' waist. Note wing-fences on both wings. The JF-102A Characteristics are: Wing Span, ft. 38.1 Fuselage length, ft. 63.4 Vertical Tail height, ft. 21.2 Power Plant: Pratt & Whitney J57-P-23 turbojet
F-16 Ventral Fin Buffet Alleviation Using Piezoelectric Actuators
2009-09-01
collocated design to alleviate the vibrations of the first two modes of the ventral fin. A switching amplifier was de - signed and custom built to drive the...6M per year [22]. 1 Figure 1.1: LANTIRN Pod and Ventral Fin Locations [cour- tesy USAF] Buffet induced vibrations affect more than just vertical tail...appropriate sensors and actuators for the ventral fin. Several de - viations were necessary, including individual actuator size and orientation and the
Contour variations of the body and tail of the pancreas: evaluation with MDCT.
Omeri, Ahmad Khalid; Matsumoto, Shunro; Kiyonaga, Maki; Takaji, Ryo; Yamada, Yasunari; Kosen, Kazuhisa; Mori, Hiromu; Miyake, Hidetoshi
2017-06-01
To analyze morphology/contour variations of the pancreatic body and tail in subjects free of pancreatic disease. We retrospectively reviewed triple-phase, contrast-enhanced multi-detector row computed tomography (3P-CE-MDCT) examinations of 449 patients who had no clinical or CT evidence of pancreatic diseases. These patients were evaluated for morphologic/contour variations of the pancreatic body and tail, which were classified into two types. In Type I, a portion of normal pancreatic parenchyma protrudes >1 cm in maximum diameter from the body or tail (Ia-anteriorly; Ib-posteriorly). Type II was defined as a morphologic anomaly of the pancreatic tail (IIa-globular; IIb-lobulated; IIc-tapered; IId-bifid). Thirty-eight (8.5%) out of 449 patients had body or tail variations. Of those, 23 patients showed Type I variant: Ia in 21 and Ib in two. Type II variant was identified in 15 patients: IIa in eight, IIb in two, IIc in two and IId in three. Protrusion of the anterior surface of the normal pancreas, especially in the tail, was the most frequently occurring variant. Recognizing the types and subtypes of morphology/contour variations of the pancreatic body and tail could help prevent misinterpretation of normal variants as pancreatic tumors on unenhanced MDCT.
Adams, Rick A.; Snode, Emily R.; Shaw, Jason B.
2012-01-01
Historically, studies concerning bat flight have focused primarily on the wings. By analyzing high-speed video taken on 48 individuals of five species of vespertilionid bats, we show that the capacity to flap the tail-membrane (uropatagium) in order to generate thrust and lift during takeoffs and minimal-speed flight (<1 m s−1) was largely underestimated. Indeed, bats flapped the tail-membrane by extensive dorso-ventral fanning motions covering as much as 135 degrees of arc consistent with thrust generation by air displacement. The degree of dorsal extension of the tail-membrane, and thus the potential amount of thrust generated during platform launches, was significantly correlated with body mass (P = 0.02). Adduction of the hind limbs during upstrokes collapsed the tail-membrane thereby reducing its surface area and minimizing negative lift forces. Abduction of the hind limbs during the downstroke fully expanded the tail-membrane as it was swept ventrally. The flapping kinematics of the tail-membrane is thus consistent with expectations for an airfoil. Timing offsets between the wings and tail-membrane during downstrokes was as much as 50%, suggesting that the tail-membrane was providing thrust and perhaps lift when the wings were retracting through the upstoke phase of the wing-beat cycle. The extent to which the tail-membrane was used during takeoffs differed significantly among four vespertilionid species (P = 0.01) and aligned with predictions derived from bat ecomorphology. The extensive fanning motion of the tail membrane by vespertilionid bats has not been reported for other flying vertebrates. PMID:22393378
Pressure-Distribution Measurements on the Tail Surfaces of a Rotating Model of the Design BFW - M31
NASA Technical Reports Server (NTRS)
Kohler, M.; Mautz, W.
1949-01-01
In order to obtain insight into the flow conditions on tail surfaces on airplanes during spins, pressure-distribution measurements were performed on a rotating model of the design BFW-M31. For the time being, the tests were made for only one angle of attack (alpha = 60 degrees) and various angles of yaw and rudder angles. The results of these measurements are given; the construction of the model, and the test arrangement used are described. Measurements to be performed later and alterations planned in the test arrangement are pointed out.
Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J.; Wahl, James K.; Johnson, Keith R.; Mehta, Parmender P.
2015-01-01
Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. PMID:25548281
Johnson, J E; Rodgers, W; Rose, J K
1998-11-25
Previous studies showed that the HIV-1 envelope (Env) protein was not incorporated into vesicular stomatitis virus (VSV) virions unless its cytoplasmic tail was replaced with that of the VSV glycoprotein (G). To determine whether the G tail provided a positive incorporation signal for Env, or if sequences in the Env tail prevented incorporation, we generated mutants of Env with its 150-amino-acid tail shortened to 29, 10, or 3 amino acids (Envtr mutants). Cells infected with VSV recombinants expressing these proteins or an Env-G tail hybrid showed similar amounts of Env protein at the surface. The Env-G tail hybrid or the Envtr3 mutant were incorporated at the highest levels into budding VSV virions. In contrast, the Envtr29 or Envtr10 mutants were incorporated poorly. These results defined a signal preventing incorporation within the 10 membrane-proximal amino acids of the Env tail. Confocal microscopy revealed that this signal functioned by causing localization of human immunodeficiency virus type 1 Env to plasma membrane domains distinct from the VSV budding sites, where VSV proteins were concentrated. Copyright 1998 Academic Press.
Trampoline Effect: Observations and Modeling
NASA Astrophysics Data System (ADS)
Guyer, R.; Larmat, C. S.; Ulrich, T. J.
2009-12-01
The Iwate-Miyagi earthquake at site IWTH25 (14 June 2008) had large, asymmetric at surface vertical accelerations prompting the sobriquet trampoline effect (Aoi et. al. 2008). In addition the surface acceleration record showed long-short waiting time correlations and vertical-horizontal acceleration correlations. A lumped element model, deduced from the equations of continuum elasticity, is employed to describe the behavior at this site in terms of a surface layer and substrate. Important ingredients in the model are the nonlinear vertical coupling between the surface layer and the substrate and the nonlinear horizontal frictional coupling between the surface layer and the substrate. The model produces results in qualitative accord with observations: acceleration asymmetry, Fourier spectrum, waiting time correlations and vertical acceleration-horizontal acceleration correlations. [We gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program for this work].
Initial piloted simulation study of geared flap control for tilt-wing V/STOL aircraft
NASA Technical Reports Server (NTRS)
Guerrero, Lourdes M.; Corliss, Lloyd D.
1991-01-01
A simulation study of a representative tilt wing transport aircraft was conducted in 1990 on the Ames Vertical Motion Simulator. This simulation is in response to renewed interest in the tilt wing concept for use in future military and civil applications. For past tilt wing concepts, pitch control in hover and low-speed flight has required a tail rotor or reaction jets at the tail. Use of mono cyclic propellers or a geared flap have also been proposed as alternate methods for providing pitch control at low speed. The geared flap is a subject of this current study. This report describes the geared flap concept, the tilt wing aircraft, the simulation model, the simulation facility and experiment setup, the pilots' evaluation tasks and procedures, and the results obtained from the simulation experiment. The pilot evaluations and comments are also documented in the report appendix.
CFD Assessment of Aerodynamic Degradation of a Subsonic Transport Due to Airframe Damage
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Pirzadeh, Shahyar Z.; Atkins, Harold L.; Viken, Sally A.; Morrison, Joseph H.
2010-01-01
A computational study is presented to assess the utility of two NASA unstructured Navier-Stokes flow solvers for capturing the degradation in static stability and aerodynamic performance of a NASA General Transport Model (GTM) due to airframe damage. The approach is to correlate computational results with a substantial subset of experimental data for the GTM undergoing progressive losses to the wing, vertical tail, and horizontal tail components. The ultimate goal is to advance the probability of inserting computational data into the creation of advanced flight simulation models of damaged subsonic aircraft in order to improve pilot training. Results presented in this paper demonstrate good correlations with slope-derived quantities, such as pitch static margin and static directional stability, and incremental rolling moment due to wing damage. This study further demonstrates that high fidelity Navier-Stokes flow solvers could augment flight simulation models with additional aerodynamic data for various airframe damage scenarios.
In-Flight Flow Visualization Using Infrared Thermography
NASA Technical Reports Server (NTRS)
vanDam, C. P.; Shiu, H. J.; Banks D. W.
1997-01-01
The feasibility of remote infrared thermography of aircraft surfaces during flight to visualize the extent of laminar flow on a target aircraft has been examined. In general, it was determined that such thermograms can be taken successfully using an existing airplane/thermography system (NASA Dryden's F-18 with infrared imaging pod) and that the transition pattern and, thus, the extent of laminar flow can be extracted from these thermograms. Depending on the in-flight distance between the F-18 and the target aircraft, the thermograms can have a spatial resolution of as little as 0.1 inches. The field of view provided by the present remote system is superior to that of prior stationary infrared thermography systems mounted in the fuselage or vertical tail of a subject aircraft. An additional advantage of the present experimental technique is that the target aircraft requires no or minimal modifications. An image processing procedure was developed which improves the signal-to-noise ratio of the thermograms. Problems encountered during the analog recording of the thermograms (banding of video images) made it impossible to evaluate the adequacy of the present imaging system and image processing procedure to detect transition on untreated metal surfaces. The high reflectance, high thermal difussivity, and low emittance of metal surfaces tend to degrade the images to an extent that it is very difficult to extract transition information from them. The application of a thin (0.005 inches) self-adhesive insulating film to the surface is shown to solve this problem satisfactorily. In addition to the problem of infrared based transition detection on untreated metal surfaces, future flight tests will also concentrate on the visualization of other flow phenomena such as flow separation and reattachment.
Steerable vertical to horizontal energy transducer for mobile robots
Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.
2001-01-01
The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.
Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Honghao, E-mail: honghaoyu@hotmail.com; College of Material Science and Engineering, Shenyang Ligong University, Shenyang, 110168; Xue Xiangxin
2009-11-15
Highly ordered mesoporous materials were successfully synthesized by using the iron ore tailings as the silica source and n-hexadecyltrimethyl ammonium bromide as the template. The samples were detail characterized by powder X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and N{sub 2} physisorption. The as-synthesized materials had high surface area of 527 m{sup 2} g{sup -1} and the mean pore diameter of 2.65 nm with a well-ordered two-dimensional hexagonal structure. It is feasible to prepare mesoporous MCM-41 materials using the iron ore tailings as precursor.
Fin Buffeting Features of an Early F-22 Model
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Huttsell, Lawrence
2000-01-01
Fin buffeting is an aeroelastic phenomenon encountered by high performance aircraft, especially those with twin vertical tails that must operate at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. To date, the buffet (unsteady pressures) and buffeting (structural response) characteristics of the F-15 and F/A-18 fins have been studied extensively using flow visualization, flow velocity measurements, pressure transducers, and response gages. By means of windtunnel and flight tests of the F-15 and F/A-18, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can he increased by structural enhancements to these airframes. However, prior to the present research, data was not available outside the F-22 program regarding fin buffeting on the F-22 configuration. During a test in the Langley Transonic Dynamics Tunnel, flow visualization and unsteady fin surface pressures were recorded for a 13.3%-scale F-22 model at high angles of attack for the purpose of comparing with results available for similar aircraft configurations. Details of this test and fin buffeting are presented herein.
NASA Technical Reports Server (NTRS)
Nichols, M. E.
1976-01-01
The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.
NASA Technical Reports Server (NTRS)
Soard, T. L.
1975-01-01
Wind tunnel tests of a 0.0405 scale model of the -1404A/B configuration of the Space Shuttle Vehicle Orbiter are presented. Pressure loads data were obtained from the orbiter in the landing configuration in the presence of the ground for structural strength analysis. This was accomplished by locating as many as 30 static pressure bugs at various locations on external model surfaces as each configuration was tested. A complete pressure loads survey was generated for each configuration by combining data from all bug locations, and these loads are described for the fuselage, wing, vertical tail, and landing gear doors. Aerodynamic force data was measured by a six component internal strain gage balance. This data was recorded to correct model angles of attack and sideslip for sting and balance deflections and to determine the aerodynamic effects of landing gear extension. All testing was conducted at a Mach number of 0.165 and a Reynolds number of 1.2 million per foot. Photographs of test configurations are shown.
NASA Technical Reports Server (NTRS)
Mennell, R.; Hughes, T.
1974-01-01
Experimental aerodynamic investigations were conducted on a sting-mounted 0.0405 scale representation of the 140A/B space shuttle orbiter in a 7.75 ft by 11 ft low speed wind tunnel during the time period from November 14, 1973, to December 6, 1973, with the primary test objectives being to establish basic longitudinal stability characteristics in and out of ground effect, as well as lateral-directional stability characteristics in free air. Two dual podded nacelle configurations were also tested, one with three dual podded nacelles on the lower wing surface, and the other with a single dual nacelle on the lower centerline with dual nacelle pylons mounted above each wing. Stability and control characteristics were investigated at nominal elevon, rudder, aileron, and body flap deflections. Pressure bugs were used to determine pressures on the vertical tail at spanwise stations, and aerodynamic force and moment data were measured in the stability axis system by an internally mounted, six component strain gage balance.
Support mechanism for a mirrored surface or other arrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cutburth, R.W.
1987-02-03
A mechanism is described for supporting first means including a planer surface for movement relative to a vertical plane defined by particular intersecting x and y axes which extend horizontally and vertically, respectively, the mechanism comprising: (a) second means including a plurality of segments of an annular surface which forms part of a sphere whose center defines the intersection of the x and y axes. The annular surface defines a z axis extending through the intersection of the x and y axes perpendicular to the vertical plane; (b) third means connecting the planer surface including first means with the secondmore » means such that the planer surface is positionably within the vertical plane and is itself intersected by the z axis at a particular point thereon. The third means includes bearing means disposed between the first means and the segments of the annular surface of the second means for allowing the first means to move in any direction on the annular surface segments including certain specific directions which allow the planer surface to pivot back and forth to a limited extent about both the x and y axes relative to the vertical plane; and (c) fourth means interconnecting the first and second means and cooperating with the third means for limiting the movement of the first means to the certain specific directions.« less
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Ma, XinCheng; Tie, Xuexi; Huang, Mengyu; Zhao, Chunsheng
In this study, aerosol vertical distributions of 17 in-situ aircraft measurements during 2005 and 2006 springs are analyzed. The 17 flights are carefully selected to exclude dust events, and the analyses are focused on the vertical distributions of aerosol particles associated with anthropogenic activities. The results show that the vertical distributions of aerosol particles are strongly affected by weather and meteorological conditions, and 3 different types of aerosol vertical distributions corresponding to different weather systems are defined in this study. The measurement with a flat vertical gradient and low surface aerosol concentrations is defined as type-1; a gradual decrease of aerosols with altitudes and modest surface aerosol concentrations is defined as type-2; a sharp vertical gradient (aerosols being strongly depressed in the PBL) with high surface aerosol concentrations is defined as type-3. The weather conditions corresponding to the 3 different aerosol types are high pressure, between two high pressures, and low pressure systems (frontal inversions), respectively. The vertical mixing and horizontal transport for the 3 different vertical distributions are analyzed. Under the type-1 condition, the vertical mixing and horizontal transport were rapid, leading to strong dilution of aerosols in both vertical and horizontal directions. As a result, the aerosol concentrations in PBL (planetary boundary layer) were very low, and the vertical distribution was flat. Under the type-2 condition, the vertical mixing was strong and there was no strong barrier at the PBL height. The horizontal transport (wind flux) was modest. As a result, the aerosol concentrations were gradually reduced with altitude, with modest surface aerosol concentrations. Under the type-3 condition, there was a cold front near the region. As a result, a frontal inversion associated with weak vertical mixing appeared at the top of the inversion layer, forming a very strong barrier to prevent aerosol particles being exchanged from the PBL height to the free troposphere. As a result, the aerosol particles were strongly depressed in the PBL height, producing high surface aerosol concentrations. The measured vertical aerosol distributions have important implications for studying the effects of aerosols on photochemistry. The J[O 3] values are reduced by 11%, 48%, and 50%, under the type-1, type-2, and type-3 conditions, respectively. This result reveals that atmospheric oxidant capacity (OH concentrations) is modestly reduced under the type-1 condition, but is significantly reduced under the type-2 and type-3 conditions. This result also suggests that the effect of aerosol particles on surface solar flux is an integrated column effect, and detailed vertical distributions of aerosol particles are very important for assessing the impacts of aerosol on photochemistry.
Surface-Piercing Activities of the Humpback Whale, Megaptera, Related to Parasites and Mechanics}
NASA Astrophysics Data System (ADS)
Galvin, C.
2006-12-01
Humpback whales leap out of the water (breach), strike the water surface with their long fins (flipper), strike the water surface with their tail (lobtail), and hold motionless in a vertical position with their heads above water (spyhop). These four surface-piercing activities were known to early whalers, but their explanations remain uncertain. A whale breaches by swimming from depth toward the water surface at an oblique angle, propelling himself into the air at an angle to the water's surface (0 to 70 degrees), rotating about his long axis, and landing on his back, belly up to the sky. Rotation requires applying angular momentum to the whale's trunk, which photographs suggest comes from flinging out the flipper on the side rotating upward, and keeping the downward-rotating flipper closer to the trunk. The humpback has unusually long flippers (long moment arms) up to 30 percent of trunk length. Its generic name, Megaptera, can translate as `long flipper'. Continued use of one flipper as the moment arm raises the possibility of right-handed or left-handed whales, but Whitehead's (1985) data do not support that result. Parasites as a cause of breaching is a hypothesis at least as old as Beale (1839), but in the last half of the 20th century, breaching, flippering, and lobtailing came to be understood as social activities of whales. Whitehead's work in the 1980s provides much data on humpback activities, as well as a prevailing social interpretation of the data. External parasites (loosely defined) include whale lice (fingernail-sized crablike animals) and barnacles (both fixed shell and flexible goosenecked species). Thousands of these animals may inhabit a single whale. Whale lice populate crevices of the jaws and eyes, the pleats in the throat pouch under the jaw, and shelter at fixed barnacles. Fixed barnacles thrive on exposed bumps on the whale's head and flippers. Gooseneck barnacles appear in photos attached to trailing edges of fins and tail. Some parasites may pierce the skin and blubber to reach sensitive flesh. Whales also have relict hairs around their mouth, which may allow purchase for fixed barnacles, and provide pain for the whale. The single best correlation between breaching frequency and an environmental variable in Whitehead's (1985) data shows breaching to increase as wind speed rises. The social explanation of such a relation is not obvious, but increased wind will increase wave action. Waves induce oscillation of the water; oscillating water puts a drag on loose parasites, concentrating stress on the whale's surface. Humpbacks summer in Canadian waters, where they feed heavily, and winter in the Caribbean, where they eat little. Total breaching is more common by a factor of 4 or 5 in Caribbean waters (Whitehead, 1985). Those warmer waters may promote the growth of parasites. Reduced feeding in the Caribbean means that the recesses of the pleats of the throat pouch will be exposed less frequently, allowing more shelter for whale lice. Spyhopping appears to be a social activity. It has not yet been associated with parasites. Spyhopping is accomplished by whales (sometimes in groups) rising vertically, at a slow velocity, to put their heads above the water surface. The prevailing opinion is that whales spyhop to check for landmarks. Could the relatively stealthy rise of the whale's head into the air induce whale lice in the crevices around the eyes and jaws to venture out on the whale's stationary head to harvest peeling skin? Then, by suddenly submerging, the ambulatory whale lice might be floated off to relieve the whale of a few pests.
Griffin, Robert J; Revelle, Meghan K; Dabdub, Donald
2004-02-01
Metrics associated with ozone (O3) formation are investigated using the California Institute of Technology (CIT) three-dimensional air-quality model. Variables investigated include the O3 production rate (P(O3)), O3 production efficiency (OPE), and total reactivity (the sum of the reactivity of carbon monoxide (CO) and all organic gases that react with the hydroxyl radical). Calculations are spatially and temporally resolved; surface-level and vertically averaged results are shown for September 9, 1993 for three Southern California locations: Central Los Angeles, Azusa, and Riverside. Predictions indicate increasing surface-level O3 concentrations with distance downwind, in line with observations. Surface-level and vertically averaged P(O3) values peak during midday and are highest downwind; surface P(O3) values are greater than vertically averaged values. Surface OPEs generally are highest downwind and peak during midday in downwind locations. In contrast, peaks occur in early morning and late afternoon in the vertically averaged case. Vertically averaged OPEs tend to be greater than those for the surface. Total reactivities are highest in upwind surface locations and peak during rush hours; vertically averaged reactivities are smaller and tend to be more uniform temporally and spatially. Total reactivity has large contributions from CO, alkanes, alkenes, aldehydes, unsubstituted monoaromatics, and secondary organics. Calculations using estimated emissions for 2010 result in decreases in P(O3) values and reactivities but increases in OPEs.
Eads, David E.; Biggins, Dean E.
2012-01-01
Black-tailed prairie dogs (Cynomys ludovicianus) can surface-plug openings to a burrow occupied by a black-footed ferret (Mustela nigripes). At a coarse scale, surface plugs are more common in colonies of prairie dogs occupied by ferrets than in colonies without ferrets. However, little is known about spatial and temporal patterns of surface plugging in a colony occupied by ferrets. In a 452-ha colony of black-tailed prairie dogs in South Dakota, we sampled burrow openings for surface plugs and related those data to locations of ferrets observed during spotlight surveys. Of 67,574 burrow openings in the colony between June and September 2007, 3.7% were plugged. In a colony-wide grid of 80 m × 80 m cells, the occurrence of surface plugging (≥1 opening plugged) was greater in cells used by ferrets (93.3% of cells) than in cells not observably used by ferrets (70.6%). Rates of surface plugging (percentages of openings plugged) were significantly higher in cells used by ferrets (median = 3.7%) than in cells without known ferret use (median = 3.2%). Also, numbers of ferret locations in cells correlated positively with numbers of mapped surface plugs in the cells. To investigate surface plugging at finer temporal and spatial scales, we compared rates of surface plugging in 20-m-radius circle-plots centered on ferret locations and in random plots 1–4 days after observing a ferret (Jun–Oct 2007 and 2008). Rates of surface plugging were greater in ferret-plots (median = 12.0%) than in random plots (median = 0%). For prairie dogs and their associates, the implications of surface plugging could be numerous. For instance, ferrets must dig to exit or enter plugged burrows (suggesting energetic costs), and surface plugs might influence microclimates in burrows and consequently influence species that cannot excavate soil (e.g., fleas that transmit the plague bacterium Yersinia pestis).
New halo formation mechanism at the KEK compact energy recovery linac
NASA Astrophysics Data System (ADS)
Tanaka, Olga; Nakamura, Norio; Shimada, Miho; Miyajima, Tsukasa; Ueda, Akira; Obina, Takashi; Takai, Ryota
2018-02-01
The beam halo mitigation is a very important challenge for reliable and safe operation of a high-energy machine. A systematic beam halo study was conducted at the KEK compact energy recovery linac (cERL) since non-negligible beam loss was observed in the recirculation loop during a common operation. We found that the beam loss can be avoided by making use of the collimation system. Beam halo measurements have demonstrated the presence of vertical beam halos at multiple locations in the beam line (except the region near the electron gun). Based on these observations, we made a conjecture that the transverse beam halo is attributed to the longitudinal bunch tail arising at the photocathode. The transfer of particles from the longitudinal space to a transverse halo may have been observed and studied in other machines, considering nonlinear effects as their causes. However, our study demonstrates a new unique halo formation mechanism, in which a transverse beam halo can be generated by a longitudinal bunch tail due to transverse rf kicks from the accelerating (monopole) fields of the radio-frequency cavities. This halo formation occurs when nonrelativistic particles enter the cavities with a transverse offset, even if neither nonlinear optics nor nonlinear beam effects are present. A careful realignment of the injector system will mitigate the present halo. Another possible cure is to reduce the bunch tails by changing the photocathode material from the present GaAs to a multi-alkali that is known to have a shorter longitudinal tail.
Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, Michael
2014-01-01
Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.
NASA Astrophysics Data System (ADS)
Liang, Qizhen; Yao, Xuxia; Wang, Wei; Wong, C. P.
2012-02-01
Low operation temperature and efficient heat dissipation are important for device life and speed in current electronic and photonic technologies. Being ultra-high thermally conductive, graphene is a promising material candidate for heat dissipation improvement in devices. In the application, graphene is expected to be vertically stacked between contact solid surfaces in order to facilitate efficient heat dissipation and reduced interfacial thermal resistance across contact solid surfaces. However, as an ultra-thin membrane-like material, graphene is susceptible to Van der Waals forces and usually tends to be recumbent on substrates. Thereby, direct growth of vertically aligned free-standing graphene on solid substrates in large scale is difficult and rarely available in current studies, bringing significant barriers in graphene's application as thermal conductive media between joint solid surfaces. In this work, a three-dimensional vertically aligned multi-layer graphene architecture is constructed between contacted Silicon/Silicon surfaces with pure Indium as a metallic medium. Significantly higher equivalent thermal conductivity and lower contact thermal resistance of vertically aligned multilayer graphene are obtained, compared with those of their recumbent counterpart. This finding provides knowledge of vertically aligned graphene architectures, which may not only facilitate current demanding thermal management but also promote graphene's widespread applications such as electrodes for energy storage devices, polymeric anisotropic conductive adhesives, etc.
Dahl, Peter H; Plant, William J; Dall'Osto, David R
2013-09-01
Results of an experiment to measure vertical spatial coherence from acoustic paths interacting once with the sea surface but at perpendicular azimuth angles are presented. The measurements were part of the Shallow Water 2006 program that took place off the coast of New Jersey in August 2006. An acoustic source, frequency range 6-20 kHz, was deployed at depth 40 m, and signals were recorded on a 1.4 m long vertical line array centered at depth 25 m and positioned at range 200 m. The vertical array consisted of four omni-directional hydrophones and vertical coherences were computed between pairs of these hydrophones. Measurements were made over four source-receiver bearing angles separated by 90°, during which sea surface conditions remained stable and characterized by a root-mean-square wave height of 0.17 m and a mixture of swell and wind waves. Vertical coherences show a statistically significant difference depending on source-receiver bearing when the acoustic frequency is less than about 12 kHz, with results tending to fade at higher frequencies. This paper presents field observations and comparisons of these observations with two modeling approaches, one based on bistatic forward scattering and the other on a rough surface parabolic wave equation utilizing synthetic sea surfaces.
NASA Astrophysics Data System (ADS)
McClintock, W. E.; Bradley, E. T.; Izenberg, N. R.; Killen, R. M.; Kochte, M. C.; Lankton, M. R.; Mouawad, N.; Sprague, A. L.; Vervack, R. J.
2008-12-01
Mercury's surface-bound exosphere is the interface between the planet's surface and the external stimuli that interact with it. Its composition and structure are controlled by surface, magnetosphere, and solar-wind processes. Prior to the MESSENGER mission the exosphere was known to contain H, He, and O from Mariner 10 observations, as well as Na, K, and Ca that were discovered during ground-based observations. Na has been extensively studied since its discovery in 1985, including observations of a neutral Na tail first reported in 2002. Undetected species, including Mg, Fe, Al, and S, are also expected to exist in the exosphere. MESSENGER's initial flyby of Mercury, which occurred on January 14, 2008, offered the first opportunity to measure the planet's neutral tail from space. As the spacecraft approached the planet from the nightside, the UltraViolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) scanned the tail beginning at altitudes of 24,500 km behind Mercury's nightside surface and covering a region of space approximately three planet diameters tall and centered on the Sun-Mercury line. The UVVS measured emissions from Na during the entire observation. It also observed neutral hydrogen beginning approximately 5,000 km above the nightside surface. The spatial distributions of both species were seen to be asymmetric, with enhanced densities occurring in the northern hemisphere. UVVS observations of Ca, which were made as the spacecraft traversed the nightside exosphere, exhibited enhanced emission toward the dawn terminator, with north-south behavior similar to that of Na and H. These observations suggest that the relatively high-energy source processes that give rise to species observed in the tail were localized near the northern and morning hemispheres during the flyby. This inference is supported by magnetic field observations made with the MESSENGER Magnetometer, which observed a strong radial component of the interplanetary magnetic field (Bx) directed antisunward after MESSENGER passed outside the magnetosphere. This magnetic field orientation is expected to result in a greater number of open field lines in the northern hemisphere, preferentially allowing solar wind plasma to impinge upon the surface in that region.
NASA Astrophysics Data System (ADS)
Ginocchio, Rosanna; Arellano, Eduardo; Morales-Ladron de Guevara, Arturo
2016-04-01
Phytostabilization of massive mine tailings (>400 he) under semiarid environments is challenging, particularly when no organic amendments are locally available and no irrigation is possible. Increasing tendency for reprocessing old tailings to recover valued metals further pioneer the need for simple but effective plant covers. The choice of plant species and form of management are thus very important. CODELCO-Chile chose the Cauquenes post-operational tailings storage facility (TFS; 700 ha), that will be reprocessed for copper and other elements in the near future, to evaluate efficacy of the phytostabilization technology under semiarid conditions in central Chile. Surface application of a polymer (Soiltac TM) has been used for wind control of tailings but phytostabilization is considered as a best cost-effective alternative. A field study was performed to define a management program to improve the establishment and cover of an annual native grass (Vulpia myuros var. megalura), a spontaneous colonizer of the TSF. Considered management factors were control of macro herbivores (with and without fence), macronutrient improvement (with and without application of N-rich foliar fertilizer), and improvement of seed retention in the substrate (with and without small-scale rugosity; with and without lived wind-breakers; with and without mechanical wind-breakers). Each treatment was replicated three times and established in 2 m x 2 m quadrats. Plant response variables were monitored after 1 and 2 grass growing seasons. Application of N-rich foliar fertilizer and any wind control mechanism for seed retention in the substrate were effective for significantly improving both grass cover and biomass production in time, irrespective of macro-herbivore control. Seed production was significantly improved when macro herbivores were excluded and was positively and significantly correlated to vegetative biomass production. When applying this management program for tailings phytostabilization at large-scaale, surface ploughing of tailings would be a cheaper alternative for seed retention in the substrate than lived or mechanical wind-breakers. Study funded by CODELCO El Teniente
Self-assembled monolayer structures of hexadecylamine on Cu surfaces: density-functional theory.
Liu, Shih-Hsien; Balankura, Tonnam; Fichthorn, Kristen A
2016-12-07
We used dispersion-corrected density-functional theory to probe possible structures for adsorbed layers of hexadecylamine (HDA) on Cu(100) and Cu(111). HDA forms self-assembled layers on these surfaces, analogous to alkanethiols on various metal surfaces, and it binds by donating electrons in the amine group to the Cu surface atoms, consistent with experiment. van der Waals interactions between the alkyl tails of HDA molecules are stronger than the interaction between the amine group and the Cu surfaces. Strong HDA-tail interactions lead to coverage-dependent tilting of the HDA layers, such that the tilt angle is larger for lower coverages. At full monolayer coverage, the energetically preferred binding configuration for HDA on Cu(100) is a (5 × 3) pattern - although we cannot rule out incommensurate structures - while the pattern is preferred on Cu(111). A major motivation for this study is to understand the experimentally observed capability of HDA as a capping agent for producing {100}-faceted Cu nanocrystals. Consistent with experiment, we find that HDA binds more strongly to Cu(100) than to Cu(111). This strong binding stems from the capability of HDA to form more densely packed layers on Cu(100), which leads to stronger HDA-tail interactions, as well as the stronger binding of the amine group to Cu(100). We estimate the surface energies of HDA-covered Cu(100) and Cu(111) surfaces and find that these surfaces are nearly isoenergetic. By drawing analogies to previous theoretical work, it seems likely that HDA-covered Cu nanocrystals could have kinetic shapes that primarily express {100} facets, as is seen experimentally.
1974-06-01
stiffness, lb-in. I Integer used to designate wing strip number 2 I Airplanw pitching moment of inertia, slug ft 2 I Airplane yawing moment of inertia...slug ft J Integer used to designated wing-loading distribution, i.e., J-l, loading due to angle of attack J=2> loading due to flap deflection J-3...moment at intersection of load reference line and body interface station (for vertical tail), in.-lb Integer used to designate type of wing airload
NASA Technical Reports Server (NTRS)
1982-01-01
A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.
2015-02-18
tends to resurge when the cost of petroleum rises as it did during the energy crisis of the 1970’s. Wind turbines are divided into two categories that...include horizontal axis and vertical axis. Horizontal-axis wind turbines have a main rotor driving an electrical generator on... turbines . They convert significantly more power in medium and higher winds than drag blades. Blades are attached directly to a hub just like on a
1982-02-01
monoplane, with no sign that tis a max-mum. Trirned CLax comparisons are i’:en in g. 2O. 70 o.g- 0.2- 0.0- -o.2- G8WHD v+ 7s- PL’Ns 36 f7 L I I I I I I L... ACca equal to approximately 70% of that given by the vertical tail of configuration BUHDV. This is much more than would be expected from the relative
On the large-scale structure of the tail current as measured by THEMIS
NASA Astrophysics Data System (ADS)
Kalegaev, V. V.; Alexeev, I. I.; Nazarkov, I. S.; Angelopoulos, V.; Runov, A.
2014-11-01
The magnetic field structure and the spatial characteristics of the large-scale currents in the magnetospheric tail were studied during quiet and moderately disturbed geomagnetic conditions in 2009. The magnetic field of the currents other than the tail current was calculated in terms of a paraboloid model of the Earth’s magnetosphere, A2000, and was subtracted from measurements. It was found on the base of obtained tail current magnetic field radial distribution that the inner edge of the tail current sheet is located in the night side magnetosphere, at distances of about 10 RE and of about 7 RE during quiet and disturbed periods respectively. During the disturbance of February 14, 2009 (Dstmin ∼ -35 nT), the Bx and the Bz component of the tail current magnetic field near its inner edge were about 60 nT, and -60 nT that means that strong cross-tail current have been developed. The tail current parameters at different time moments during February 14, 2009 have been estimated. Solar wind conditions during this event were consistent with those during moderate magnetic storms with minimum Dst of about -100 nT. However, the magnetospheric current systems (magnetopause and cross-tail currents) were located at larger geocentric distances than typical during the 2009 extremely quiet epoch and did not provide the expected Dst magnitude. Very small disturbance on the Earth’s surface was detected consistent with an “inflated” magnetosphere.
Effects of orientation and downward-facing convex curvature on pool-boiling critical heat flux
NASA Astrophysics Data System (ADS)
Howard, Alicia Ann Harris
Photographic studies of near-saturated pool boiling on both inclined flat surfaces and a downward-facing convex surface were conducted in order to determine the physical mechanisms that trigger critical heat flux (CHF). Based on the vapor behavior observed just prior to CHF, it is shown for the flat surfaces that the surface orientations can be divided into three regions: upward-facing (0-60°), near-vertical (60-165°), and downward-facing (165-180°) each region is associated with a unique CHIP trigger mechanism. In the upward-facing region, the buoyancy forces remove the vapor vertically off the heater surface. The near- vertical region is characterized by a wavy liquid-vapor interface which sweeps along the heater surface. In the downward-facing region, the vapor repeatedly stratifies on the heater surface, greatly decreasing CHF. The vapor behavior along the convex surface is cyclic in nature and similar to the nucleation/coalescence/stratification/release procedure observed for flat surfaces in the downward-facing region. The vapor stratification occurred at the bottom (downward-facing) heaters on the convex surface. CHF is always triggered on these downward-facing heaters and then propagates up the convex surface, and the orientations of these heaters are comparable with the orientation range of the flat surface downward-facing region. The vast differences between the observed vapor behavior within the three regions and on the convex surface indicate that a single overall pool boiling CHF model cannot possibly account for all the observed effects. Upward-facing surfaces have been examined and modeled extensively by many investigators and a few investigators have addressed downward-facing surfaces, so this investigation focuses on modeling the near-vertical region. The near-vertical CHF model incorporates classical two-dimensional interfacial instability theory, a separated flow model, an energy balance, and a criterion for separation of the wavy interface from the surface at CHF. The model was tested for different fluids and shows good agreement with CHF data. Additionally, the instability theory incorporated into this model accurately predicts the angle of transition between the near-vertical and downward-facing regions.
2015-07-16
SECURITY CLASSIFICATION OF: The InAs quantum dot (QD) grown on GaAs substrates represents a highly performance active region in the 1 - 1.3 µm...2015 Approved for Public Release; Distribution Unlimited Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface...ABSTRACT Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene Report
2013-01-01
Background The objective of this study was to examine the potential environmental risk of tailings resulted after precious and base metal ores processing, stored in seven impoundments located in the Aries river basin, Romania. The tailings were characterized by mineralogical and elemental composition, contamination indices, acid rock drainage generation potential and water leachability of hazardous/priority hazardous metals and ions. Multivariate statistical methods were used for data interpretation. Results Tailings were found to be highly contaminated with several hazardous/priority hazardous metals (As, Cu, Cd, Pb), and pose potential contamination risk for soil, sediments, surface and groundwater. Two out of the seven studied impoundments does not satisfy the criteria required for inert wastes, shows acid rock drainage potential and thus can contaminate the surface and groundwater. Three impoundments were found to be highly contaminated with As, Pb and Cd, two with As and other two with Cu. The tailings impoundments were grouped based on the enrichment factor, geoaccumulation index, contamination factor and contamination degree of 7 hazardous/priority hazardous metals (As, Cd, Cr, Cu, Ni, Pb, Zn) considered typical for the studied tailings. Principal component analysis showed that 47% of the elemental variability was attributable to alkaline silicate rocks, 31% to acidic S-containing minerals, 12% to carbonate minerals and 5% to biogenic elements. Leachability of metals and ions was ascribed in proportion of 61% to silicates, 11% to acidic minerals and 6% to the organic matter. A variability of 18% was attributed to leachability of biogenic elements (Na, K, Cl-, NO3-) with no potential environmental risk. Pattern recognition by agglomerative hierarchical clustering emphasized the grouping of impoundments in agreement with their contamination degree and acid rock drainage generation potential. Conclusions Tailings stored in the studied impoundments were found to be contaminated with some hazardous/ priority hazardous metals, fluoride and sulphate and thus presents different contamination risk for the environment. A long term monitoring program of these tailings impoundments and the expansion of the ecologization measures in the area is required. PMID:23311708
Bacterial and chemical oxidation of pyritic mine tailings at low temperatures
NASA Astrophysics Data System (ADS)
Elberling, Bo; Schippers, Axel; Sand, Wolfgang
2000-02-01
Microbial and chemical sulfide oxidation activity and oxygen consumption was investigated in the active layer of pyritic mine tailings at Nanisivik Mine, located in a permafrost area on Baffin Island in northern Canada. Samples of tailings were collected up to a depth of 60 cm in mid-August 1998 at 4 sites, for which the metabolic activity of sulfur- and iron-oxidizing leaching bacteria besides the chemical pyrite oxidation activity were measured on 39 tailings samples and 7 samples from a natural pyritic site by calorimetry. The tailings of varying age and water content were deposited under alkaline conditions. In situ oxygen uptake rates were measured at the tailings surface every third day, prior to sampling. In addition, cell counts of iron(II), sulfur, and thiosulfate oxidizing, lithotrophic bacteria and chemoorganotrophic microorganisms were determined quantitatively by the most-probable-number technique or by agar-plating. Results show consistent pyrite oxidation rates based on in situ oxygen uptake rates, and laboratory heat output measurements. Litho- and organotrophic bacteria were found in the tailings. Calorimetric measurements revealed that the present bacterial activity is responsible for approximately one third of the ongoing oxidation. Although leaching bacteria have previously been found in the Arctic, this study is the first to prove the significance of bacterial activity in the overall pollution resulting from tailings deposited in the Arctic.
[Single cell gel electrophoresis of a magnesium alloy coated with beta-tricalcium phosphate].
Hao, Yu-quan; Tan, Li-li; Yan, Ting-ting; Yan, Xiu-lin; Yang, Ke; Ai, Hong-jun
2009-10-01
To evaluate the genotoxicity of a magnesium alloy coated with beta-tricalcium phosphate (beta-TCP). Four groups were designed. In the first group, AZ31B magnesium alloy surface was coated with beta-TCP using chemical bath deposition, and in the second group magnesium alloy was tested. The other two groups were negative control (pure titanium) and positive control groups (0.5 mg/L bleomycin). Single cell gel electrophoresis was adopted to investigate genotoxicity of the alloy samples in different groups, and 60 cells from each group were analysed. Tail moment and tail DNA percentage were used as reliable indicators to show DNA damage in lymphocytes induced by every testing sample. Student-Newman-Keuls (SNK) test was used to compare results from 4 groups. There were no significant differences in tail moment and tail DNA percentage between magnesium alloy group [(0.52 +/- 0.12), (6.82 +/- 1.81)%] and magnesium alloy coated with beta-TCP group [(0.51 +/- 0.12), (6.89 +/- 1.93)%, P > 0.05]. Tail moment and tail DNA percentage in negative group were (0.47 +/- 0.14) and (6.29 +/- 1.64)%, and tail moment and tail DNA percentage in positive group were (5.17 +/- 1.23) and (22.09 +/- 4.51)%. No significant increase was found in DNA damage in lymphocytes induced by magnesium alloy coated with beta-TCP.
Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals
McDaniel, Jesse G.; Yethiraj, Arun
2017-04-26
Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those withmore » longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ~20–50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.« less
Cart3D Analysis of Plume and Shock Interaction Effects on Sonic Boom
NASA Technical Reports Server (NTRS)
Castner, Raymond
2015-01-01
A plume and shock interaction study was developed to collect data and perform CFD on a configuration where a nozzle plume passed through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedge-shaped shock generator. Three configurations were analyzed consisting of two strut mounted wedges and one propulsion pod with an aft deck from a low boom vehicle concept. Research efforts at NASA were intended to enable future supersonic flight over land in the United States. Two of these efforts provided data for regulatory change and enabled design of low boom aircraft. Research has determined that sonic boom is a function of aircraft lift and volume distribution. Through careful tailoring of these variables, the sonic boom of concept vehicles has been reduced. One aspect of vehicle tailoring involved how the aircraft engine exhaust interacted with aft surfaces on a supersonic aircraft, such as the tail and wing trailing edges. In this work, results from Euler CFD simulations are compared to experimental data collected on sub-scale components in a wind tunnel. Three configurations are studied to simulate the nozzle plume interaction with representative wing and tail surfaces. Results demonstrate how the plume and tail shock structure moves with increasing nozzle pressure ratio. The CFD captures the main features of the plume and shock interaction. Differences are observed in the plume and deck shock structure that warrant further research and investigation.
Weis, Michael; Maisner, Andrea
2015-01-01
Nipah virus (NiV) is a highly pathogenic paramyxovirus which encodes two surface glycoproteins: the receptor-binding protein G and the fusion protein F. As for all paramyxoviruses, proteolytic activation of the NiV-F protein is an indispensable prerequisite for viral infectivity. Interestingly, proteolytic activation of NiV-F differs principally from other paramyxoviruses with respect to protease usage (cathepsins instead of trypsin- or furin-like proteases), and the subcellular localization where cleavage takes place (endosomes instead of Golgi or plasma membrane). To allow efficient F protein activation needed for productive virus replication and cell-to-cell fusion, the NiV-F cytoplasmic tail contains a classical tyrosine-based endocytosis signal (Y525RSL) that we have shown earlier to be needed for F uptake and proteolytic activation. In this report, we furthermore revealed that an intact endocytosis signal alone is not sufficient for full bioactivity. The very C-terminus of the cytoplasmic tail is needed in addition. Deletions of more than four residues did not affect F uptake or endosomal cleavage but downregulated the surface expression, likely by delaying the intracellular trafficking through endosomal-recycling compartments. Given that the NiV-F cytoplasmic tail is needed for timely and correct intracellular trafficking, endosomal cleavage and fusion activity, the influence of tail truncations on NiV-mediated cell-to-cell fusion and on pseudotyping lentiviral vectors is discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.
The effect of Ga pre-deposition on Si (111) surface for InAs nanowire selective area hetero-epitaxy
NASA Astrophysics Data System (ADS)
Liu, Ziyang; Merckling, Clement; Rooyackers, Rita; Franquet, Alexis; Richard, Olivier; Bender, Hugo; Vila, María; Rubio-Zuazo, Juan; Castro, Germán R.; Collaert, Nadine; Thean, Aaron; Vandervorst, Wilfried; Heyns, Marc
2018-04-01
Vertical InAs nanowires (NWs) grown on a Si substrate are promising building-blocks for next generation vertical gate-all-around transistor fabrication. We investigate the initial stage of InAs NW selective area epitaxy (SAE) on a patterned Si (111) substrate with a focus on the interfacial structures. The direct epitaxy of InAs NWs on a clean Si (111) surface is found to be challenging. The yield of vertical InAs NWs is low, as the SAE is accompanied by high proportions of empty holes, inclined NWs, and irregular blocks. In contrast, it is improved when the NW contains gallium, and the yield of vertical InxGa1-xAs NWs increased with higher Ga content. Meanwhile, unintentional Ga surface contamination on a patterned Si substrate induces high yield vertical InAs NW SAE, which is attributed to a GaAs-like seeding layer formed at the InAs/Si interface. The role of Ga played in the III-V NW nucleation on Si is further discussed. It stabilizes the B-polarity on a non-polar Si (111) surface and enhances the nucleation. Therefore, gallium incorporation on a Si surface is identified as an important enabler for vertical InAs NW growth. A new method for high yield (>99%) vertical InAs NW SAE on Si using an InGaAs nucleation layer is proposed based on this study.
Balch, William M; Bowler, Bruce C; Drapeau, David T; Lubelczyk, Laura C; Lyczkowski, Emily
2018-01-01
Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m -3 ) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained-variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone.
Bowler, Bruce C.; Drapeau, David T.; Lubelczyk, Laura C.; Lyczkowski, Emily
2018-01-01
Abstract Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m−3) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained‐variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone. PMID:29576683
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Sangmin; Desikan, Ramya; Thundat, Thomas George
Young's equation, which is commonly used for determining the contact angle of liquid drops on a solid surface, ignores the vertical component of the surface energy. Although this force is extremely small and its effect on the solid can be ignored, it plays a significant role for flexible surfaces such as microcantilevers. A gold-coated silicon microcantilever and a dodecanethiol coated silicon microcantilever were used to detect real-time formation of nanobubbles on their surfaces when exposed to air-rich water. As air nanobubbles form on the surfaces of the cantilever, the cantilever undergoes bending, and we relate this to the vertical componentmore » of surface energy in Young's equation. This implies that the vertical component of the surface tension should be considered for flexible solid surfaces, and the formation of nanobubbles should be avoided when cantilevers are used as sensors to avoid artifacts.« less
Effectiveness of various cover scenarios on the rate of sulfide oxidation of mine tailings
NASA Astrophysics Data System (ADS)
Romano, Connie G.; Ulrich Mayer, K.; Jones, David R.; Ellerbroek, David A.; Blowes, David W.
2003-02-01
Long term environmentally sound disposal of the millions of tons of mining residue is a serious challenge to the international mining industry. This paper evaluates, through a numerical investigation, the potential performance of desulfurized tailings as a cover material for the reduction of acidic drainage from sulfidic tailings. This evaluation is facilitated through a comparison of various cover types as decommissioning options. The cover types considered consist of a desulfurized tailings material cover exposed to ambient climate conditions, a water cover (flooded tailings), and a combination cover type. As part of the evaluation of cover performances, the effect of climatic variability on the potential rate of sulfide oxidation in tailings with an open ground surface, was also assessed. The numerical analysis was conducted using the model PYROX, which was modified to allow for variably-saturated conditions, time varying moisture contents, and to account for the temperature dependence of Henry's law and gas diffusion. In the case study presented here, the benign cover material consists of a low sulfide waste stream (cassiterite float tails, CFT), a by-product of the production of tin concentrate (cassiterite, SnO 2). Modelling results after a simulation period of 100 years indicate that a water cover alone or an exposed CFT cover alone are both less effective options than the combined cover type. A water cover alone leads to a reduction of approximately 99.1%, in the oxidation rate relative to uncovered tailings while the combined cover type results in the lowest potential extent of sulfide oxidation after mine closure-an approximately 99.8% reduction. Importantly, a CFT cover exposed to ambient environmental conditions can still substantially reduce the sulfide oxidation rate, by approximately 75-82% over a 100-year time period, relative to uncovered tailings. Variability in precipitation (and hence percent saturation of the surface layer) had less of an effect on the potential sulfide oxidation rate than did the cover type. The performance of the exposed CFT cover varied by less than 10%, within the range of climatic conditions expected at the Renison Bell mine site in southwest Tasmania, Australia. Although the modelling results indicate that the combined water and CFT cover is the best option, this approach achieves only a minor improvement over the water cover alone.
VARIATION OF SPECTRAL AND TIMING PROPERTIES IN THE EXTENDED BURST TAILS FROM THE MAGNETAR 4U 0142+61
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Manoneeta; Göğüş, Ersin; Muş, Sinem Şaşmaz
2016-03-10
Extended emission episodes with an intensity above the preburst level are observed following magnetar bursts from a number of soft gamma repeaters and anomalous X-ray pulsars (AXPs). Such extended tail emissions were observed following two events detected from AXP 4U 0142+61. We investigated in detail the evolution of spectral and temporal properties during these two tail segments using Rossi X-ray Timing Explorer/Proportional Counter Array observations, and report distinct variations in the spectral and temporal behavior throughout the tails. In particular, in both cases we observed a sudden enhancement of the pulsation amplitude in conjunction with bursts and a smooth declinemore » of X-ray emission (cooling) during the tail. We suggest that an inefficiently radiating trapped fireball formed during the burst, which can heat up the stellar surface, is able to explain the tail properties and its energetics. We also present the episodic detection of absorption and emission features during tails. One possible mechanism that has been proposed to give rise to such spectral lines is the proton/ion cyclotron resonance process, which has been suggested as offering a valuable tool in probing the complex magnetic field of magnetars.« less
NASA Technical Reports Server (NTRS)
Fabbiano, G.
1998-01-01
We present optical and archival X-ray data on the disturbed morphology radio elliptical NGC 1316 (Fornax A) that displays numerous low surface brightness shells, loops and tails. An extended (81x27 min or 9x3 kpc) emission line region (EELR) at a projected distance of 35 kpc from the nucleus has been discovered in a approximately 9Ox35 kpc, approximately 3.Ox1O(solar luminosity(B)) tidal tail. The position and extreme size of the EELR suggest it is related to the merger process. We suggest that the ionization mechanism of the EELR is shock excitation, and the gas is remnant from the merger progenitor. X-ray emission is detected near two tidal tails. Hot, approximately 5 x 10(exp 6)K gas is probably the predominant gas component in the tidal tail ISM. However based on the current tidal tail (cold + warm + hot) gas mass, a large fraction of the tidal tail progenitor gas may already reside in the nucleus of NGC 1316. The numerous and varied tidal tail system suggests that a disk-disk or disk-E merger could have taken place greater than or equal to 1 Gyr ago, whilst a low mass, gas rich galaxy started to merge approximately 0.5 Gyr ago.
Nucleosome Recognition by the Piccolo NuA4 Histone Acetyltransferase Complex†
Berndsen, Christopher E.; Selleck, William; McBryant, Steven J.; Hansen, Jeffrey C.; Tan, Song; Demi, John M.
2007-01-01
The mechanisms by which multisubunit histone acetyltransferase (HAT) complexes recognize and perform efficient acetylation on nucleosome substrates are largely unknown. Here, we use a variety of biochemical approaches and compare histone-based substrates of increasing complexity to determine the critical components of nucleosome recognition by the MOZ, Ybf2/Sas3, Sas2, Tip60 family HAT complex, Piccolo NuA4 (picNuA4). We find the histone tails to be dispensable for binding to both nucleosomes and free histones and that the H2A, H3, and H2B tails do not influence the ability of picNuA4 to tetra-acetylate the H4 tail within the nucleosome. Most notably, we discovered that the histone-fold domain (HFD) regions of histones, particularly residues 21–52 of H4, are critical for tight binding and efficient tail acetylation. Presented evidence suggests that picNuA4 recognizes the open surface of the nucleosome on which the HFD of H4 is located. This binding mechanism serves to direct substrate access to the tails of H4 and H2A and allows the enzyme to be “tethered”, thereby increasing the effective concentration of the histone tail and permitting successive cycles of H4 tail acetylation. PMID:17274630
NASA Technical Reports Server (NTRS)
Zinberg, H.
1982-01-01
The design, fabrication, and testing phases of a program to obtain long term flight service experience on representative helicopter airframe structural components operating in typical commercial environments are described. The aircraft chosen is the Bell Helicopter Model 206L. The structural components are the forward fairing, litter door, baggage door, and vertical fin. The advanced composite components were designed to replace the production parts in the field and were certified by the FAA to be operable through the full flight envelope of the 206L. A description of the fabrication process that was used for each of the components is given. Static failing load tests on all components were done. In addition fatigue tests were run on four specimens that simulated the attachment of the vertical fin to the helicopter's tail boom.
Trace Element Cycling in Lithogenic Particles at Station ALOHA
NASA Astrophysics Data System (ADS)
Morton, P. L.; Weisend, R.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.
2014-12-01
Trace element cycling in marine particles is influenced by atmospheric deposition, vertical export, biological uptake and remineralization, scavenging, and lateral transport processes. To investigate the cycling of lithogenic particles in the central North Pacific Ocean, surface and vertical profile samples of marine suspended particulate matter (SPM) were collected July-August 2012 during the HOE-DYLAN cruises at Station ALOHA. In the late summer, atmospheric dust inputs from the Gobi desert (which peak during the spring, April-May) were sparse, as indicated by low surface particulate Ti (pTi) concentrations. In contrast, surface pAl concentrations did not follow pTi trends as expected, but appear to be dominated by scavenging/uptake of dissolved Al during diatom blooms. Surface pMn concentrations were low, but vertical profiles of pMn and pMn/pTi reveal a strong sedimentary source at 200 m, originating from the Hawaiian continental shelf through a combination of redox mobilization and resuspension processes. The redox active elements Ce and Co can have chemistries similar to that of Mn, but in these samples the pCe and pCo distributions were distinct from Mn and each other in both surface trends and vertical profiles. Surface pREE (e.g., La, Ce, Pr) were highest during the earliest sampling events and quickly decreased to consistently low concentrations, while vertical distributions were characterized by scavenging onto biotic particles and mid-depth inputs. The surface particulate Co trend is similar to those of pAl and pP, while the pCo vertical profiles reflect surface enrichment but low concentrations and little variability at depth. A second, complementary poster is also being presented which examines the biological influence over particulate trace element cycling (Weisend et al., "Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA").
Bayless, E. Randall; Arihood, Leslie D.; Fowler, Kathleen K.
2011-01-01
The Green Valley reclaimed coal refuse site, near Terre Haute, Ind., was mined for coal from 1948 to 1963. Subsurface coal was cleaned and sorted at land surface, and waste material was deposited over the native glacial till. Approximately 2.7 million cubic yards of waste was deposited over 159 acres (92.3 hectares) in tailings ponds and gob piles. During 1993, the Indiana Department of Natural Resources, Division of Reclamation, improved the site by grading gob piles, filling tailings ponds, and covering the refuse with a layer of glacial drift. During 2008, the Division of Reclamation and U.S. Geological Survey initiated a cooperative investigation to characterize the hydrogeology of the site and construct a calibrated groundwater flow model that could be used to simulate the results of future remedial actions. In support of the modeling, a data-collection network was installed at the Green Valley site to measure weather components, geophysical properties, groundwater levels, and stream and seep flow. Results of the investigation indicate that (1) there is negligible overland flow from the site, (2) the prevailing groundwater-flow direction is from northeast to southwest, with a much smaller drainage to the northeast, (3) there is not a direct hydraulic connection between the refuse and West Little Sugar Creek, (4) about 24 percent of the groundwater recharge emerges through seeps, and water from the seeps evaporates or eventually flows to West Little Sugar Creek and the Green Valley Mine Pond, and (5) about 72 percent of groundwater recharge moves vertically downward from the coal refuse into the till and follows long, slow flow paths to eventual dischage points.
A field experiment on Rn flux from reclaimed uranium mill tailings.
Hinton, T G; Whicker, F W
1985-04-01
Design and construction techniques are described for a 1.6 ha experimental reclamation plot consisting of a 1-m-thick slab of uranium mill tailings covered with various depths of overburden. A passive, activated charcoal device was developed and used for measurements of Rn flux at the soil surface. Observations on Rn flux vs overburden depth indicated that tailings covered with 1.5 m of revegetated or 0.3 m of bare overburden had Rn exhalation rates comparable to background. Vegetated subplots exhibited a significantly higher (often an order of magnitude) flux than the bare subplots. A positive correlation was observed between precipitation quantities and Rn flux.
NASA Astrophysics Data System (ADS)
Straub, K. M.; Ganti, V. K.; Paola, C.; Foufoula-Georgiou, E.
2010-12-01
Stratigraphy preserved in alluvial basins houses the most complete record of information necessary to reconstruct past environmental conditions. Indeed, the character of the sedimentary record is inextricably related to the surface processes that formed it. In this presentation we explore how the signals of surface processes are recorded in stratigraphy through the use of physical and numerical experiments. We focus on linking surface processes to stratigraphy in 1D by quantifying the probability distributions of processes that govern the evolution of depositional systems to the probability distribution of preserved bed thicknesses. In this study we define a bed as a package of sediment bounded above and below by erosional surfaces. In a companion presentation we document heavy-tailed statistics of erosion and deposition from high-resolution temporal elevation data recorded during a controlled physical experiment. However, the heavy tails in the magnitudes of erosional and depositional events are not preserved in the experimental stratigraphy. Similar to many bed thickness distributions reported in field studies we find that an exponential distribution adequately describes the thicknesses of beds preserved in our experiment. We explore the generation of exponential bed thickness distributions from heavy-tailed surface statistics using 1D numerical models. These models indicate that when the full distribution of elevation fluctuations (both erosional and depositional events) is symmetrical, the resulting distribution of bed thicknesses is exponential in form. Finally, we illustrate that a predictable relationship exists between the coefficient of variation of surface elevation fluctuations and the scale-parameter of the resulting exponential distribution of bed thicknesses.
Kopitz, Jürgen; Vértesy, Sabine; André, Sabine; Fiedler, Sabine; Schnölzer, Martina; Gabius, Hans-Joachim
2014-09-01
Many human proteins have a modular design with receptor and structural domains. Using adhesion/growth-regulatory galectin-3 as model, we describe an interdisciplinary strategy to define the functional significance of its tail established by nine non-triple helical collagen-like repeats (I-IX) and the N-terminal peptide. Genetic engineering with sophisticated mass spectrometric product analysis provided the tools for biotesting, i.e. eight protein variants with different degrees of tail truncation. Evidently,various aspects of galectin-3 activity (cis binding and cell bridging) are affected by tail shortening in a different manner. Thus, this combined approach reveals an unsuspected complexity of structure-function relationship, encouraging further application beyond this chimera-type galectin. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept
Dannberg, Juliane; Sobolev, Stephan V.
2015-01-01
The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15–20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years. PMID:25907970
NASA Astrophysics Data System (ADS)
Wang, Hua
2018-02-01
In the mine construction, the surface pre-grouting technology is an important method to prevent water blast in excavation process of vertical shaft when the shaft must pass through the thick, water-rich and high water-pressure bedrock aquifer. It has been nearly 60 years since the technology was used to reform wall rock of vertical shaft in coal mine in China for the first time, and the existing technology can basically meet the needs of constructing 1000m deep vertical shaft. Firstly, the article introduces that in view of Magg’s spherical seepage theory and Karol’s spherical seepage theory, Chinese scholars found that the diffusion of grout from borehole into the surrounding strata in horizontal direction is irregular through a lot of research and engineering practice of using the surface pre-grouting technology to reform wall rock of vertical shafts, and put forward the selecting principles of grout’s effective diffusion radius in one grouting engineering; Secondly, according to the shape of the grouting boreholes, surface pre-grouting technology of vertical shaft is divided into two stages: vertical borehole stage and S-type borehole stage. Thirdly, the development status of grouting materials and grouting equipment for the technology is introduced. Fourthly, grouting mode, stage height and pressure of the technology are introduced. Finally, it points out that with the increasing depth of coal mining in China, the technology of reforming wall rock of 1000~2000m deep vertical shafts will face many problems, such as grouting theory, grouting equipment, grouting finishing standard, testing and evaluation of grouting effect, and so on. And it put forward a preliminary approach to solving these problems. This paper points out future research directions of the surface pre-grouting technology in China.
Does the S.D.E.P. increase performance?
NASA Astrophysics Data System (ADS)
Syltebo, Andy
2003-05-01
Through the guidance of the program, "Physical Systems," at The Evergreen State College in Olympia Washington, Andy Syltebo will be investigating how the Surface Drive Enhancement Project will affect the performance of a planing hull powered by surface drive propulsion. A radio controlled model boat of the forementioned design is the prototype vehicle used for experimentation and analysis. The idea of this project revolves around harnessing the energy in the water of a rooster tail ejected from the wake of a surface drive propeller of a boat with a planing hull design. The Surface Drive Enhancement Project (S.D.E.P. for short) is an angled set of adjustable platforms placed in the path of the rooster tail. Theoretically, it experiences the normal force of the water on its surface which, through conservation of momentum, distributes a force on the boat, with which the S.D.E.P. is attached, in both the upwards and forwards directions. This design will be tested and documented to see if it increases forward velocity without sacrificing handling characteristics.
Impact of magnetic fields on ram pressure stripping in disk galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruszkowski, M.; Brüggen, M.; Lee, D.
Ram pressure stripping can remove significant amounts of gas from galaxies in clusters and massive groups and thus has a large impact on the evolution of cluster galaxies. Recent observations have shown that key properties of ram-pressure-stripped tails of galaxies, such as their width and structure, are in conflict with predictions by simulations. To increase the realism of existing simulations, we simulated for the first time a disk galaxy exposed to a uniformly magnetized wind including radiative cooling and self-gravity of the gas. We find that magnetic fields have a strong effect on the morphology of the gas in themore » tail of the galaxy. While in the purely hydrodynamical case the tail is very clumpy, the magnetohydrodynamical case shows very filamentary structures in the tail. The filaments can be strongly supported by magnetic pressure and, wherever this is the case, the magnetic fields vectors tend to be aligned with the filaments. The ram pressure stripping process may lead to the formation of magnetized density tails that appear as bifurcated in the plane of the sky and resemble the double tails observed in ESO 137-001 and ESO 137-002. Such tails can be formed under a variety of situations, both for the disks oriented face-on with respect to the intracluster medium (ICM) wind and for the tilted ones. While this bifurcation is the consequence of the generic tendency for the magnetic fields to produce very filamentary tail morphology, the tail properties are further shaped by the combination of the magnetic field orientation and the sliding of the field past the disk surface exposed to the wind. Despite the fact that the effect of the magnetic field on the morphology of the tail is strong, magnetic draping does not strongly change the rate of gas stripping. For a face-on galaxy, the field tends to reduce the amount of gas stripping compared to the pure hydrodynamical case, and is associated with the formation of a stable magnetic draping layer on the side of the galaxy exposed to the incoming ICM wind. For significantly tilted disks, the situation may be reversed and the stripping rate may be enhanced by the 'scraping' of the disk surface by the magnetic fields sliding past the ISM/ICM interface. Instabilities, such as gravitational instabilities, undo the protective effect of this layer and allow the gas to leak out of the galaxy.« less
NASA Technical Reports Server (NTRS)
Marshall, B. A.; Marroquin, J.
1984-01-01
Detailed orbiter aerodynamic and aeroacoustic pressure data were obtained in a three-part experimental investigation (OA-310A, B and C). The tests were conducted in three NASA facilities: OA-310A in the Ames 11x11-foot Transonic Wind Tunnel; OA-310B in the Lewis 8x6-foot Supersonic Wind Tunnel; and OA-310C in the Lewis 10x10-foot Supersonic Wind Tunnel. Test data were obtained to support analysis of the Space Transportation System (STS)-6 advanced flexible reusable surface insulation (AFRSI) anomaly using the 0.035-scale space shuttle vehicle pressure-loads Model 84-0. Data were obtained in the areas of the orbiter where AFRSI is to be applied to OV-099 and OV-103. Emphasis was placed on acquiring detailed aeroacoustic data and time-averaged pressure distributions on five affected areas: (1) canopy; (2) side of fuselage; (3) upper surface of wing; (4) OMS pods; and (5) vertical tail. Data were obtained at nominal ascent and entry atmospheric flight trajectory conditions between M=0.6 through M-3.5. Sample plotted data are given. aba M.G.
Turbulence Hazard Metric Based on Peak Accelerations for Jetliner Passengers
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
2005-01-01
Calculations are made of the approximate hazard due to peak normal accelerations of an airplane flying through a simulated vertical wind field associated with a convective frontal system. The calculations are based on a hazard metric developed from a systematic application of a generic math model to 1-cosine discrete gusts of various amplitudes and gust lengths. The math model simulates the three degree-of- freedom longitudinal rigid body motion to vertical gusts and includes (1) fuselage flexibility, (2) the lag in the downwash from the wing to the tail, (3) gradual lift effects, (4) a simplified autopilot, and (5) motion of an unrestrained passenger in the rear cabin. Airplane and passenger response contours are calculated for a matrix of gust amplitudes and gust lengths. The airplane response contours are used to develop an approximate hazard metric of peak normal accelerations as a function of gust amplitude and gust length. The hazard metric is then applied to a two-dimensional simulated vertical wind field of a convective frontal system. The variations of the hazard metric with gust length and airplane heading are demonstrated.
A low complexity visualization tool that helps to perform complex systems analysis
NASA Astrophysics Data System (ADS)
Beiró, M. G.; Alvarez-Hamelin, J. I.; Busch, J. R.
2008-12-01
In this paper, we present an extension of large network visualization (LaNet-vi), a tool to visualize large scale networks using the k-core decomposition. One of the new features is how vertices compute their angular position. While in the later version it is done using shell clusters, in this version we use the angular coordinate of vertices in higher k-shells, and arrange the highest shell according to a cliques decomposition. The time complexity goes from O(n\\sqrt n) to O(n) upon bounds on a heavy-tailed degree distribution. The tool also performs a k-core-connectivity analysis, highlighting vertices that are not k-connected; e.g. this property is useful to measure robustness or quality of service (QoS) capabilities in communication networks. Finally, the actual version of LaNet-vi can draw labels and all the edges using transparencies, yielding an accurate visualization. Based on the obtained figure, it is possible to distinguish different sources and types of complex networks at a glance, in a sort of 'network iris-print'.
Different stages and status of vertical transporting process of Cu in Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Li, Haixia; Wang, Qi; Zhang, Xiaolong; Ding, Jun
2017-12-01
Understanding the stages and status of vertical transporting process of pollutant in marine bay is essential to pollution control. This paper analyzed the stages and status of Cu’s vertical transporting process in waters in Jiaozhou Bay. Results showed that the vertical transporting process in waters in Jiaozhou Bay included four stages of 1) Cu was imported to the bay by major sources, 2) Cu was transported to surface waters, 3) Cu was transported from surface waters to sediment in sea bottom, and 4) Cu was fixed and buried in sediment. Furthermore, Cu’s vertical transporting process could be divided into seven status in detail, and he characteristics of the vertical transport process of Cu were also analyzed.
Jørgensen, Astrid S; Adogamhe, Pontian E; Laufer, Julia M; Legler, Daniel F; Veldkamp, Christopher T; Rosenkilde, Mette M; Hjortø, Gertrud M
2018-05-16
CCL19 is more potent than CCL21 in inducing chemotaxis of human dendritic cells (DC). This difference is attributed to 1) a stronger interaction of the basic C-terminal tail of CCL21 with acidic glycosaminoglycans (GAGs) in the environment and 2) an autoinhibitory function of this C-terminal tail. Moreover, different receptor docking modes and tissue expression patterns of CCL19 and CCL21 contribute to fine-tuned control of CCR7 signaling. Here, we investigate the effect of the tail of CCL21 on chemokine binding to GAGs and on CCR7 activation. We show that transfer of CCL21-tail to CCL19 (CCL19 CCL21-tail ) markedly increases binding of CCL19 to human dendritic cell surfaces, without impairing CCL19-induced intracellular calcium release or DC chemotaxis, although it causes reduced CCR7 internalization. The more potent chemotaxis induced by CCL19 and CCL19 CCL21-tail compared to CCL21 is not transferred to CCL21 by replacing its N-terminus with that of CCL19 (CCL21 CCL19-N-term ). Measurements of cAMP production in CHO cells uncover that CCL21-tail transfer (CCL19 CCL21-tail ) negatively affects CCL19 potency, whereas removal of CCL21-tail (CCL21 tailless ) increases signaling compared to full-length CCL21, indicating that the tail negatively affects signaling via cAMP. Similar to chemokine-driven calcium mobilization and chemotaxis, the potency of CCL21 in cAMP is not improved by transfer of the CCL19 N-terminus to CCL21 (CCL21 CCL19-N-term ). Together these results indicate that ligands containing CCL21 core and C-terminal tail (CCL21 and CCL21 CCL19-N-term ) are most restricted in their cAMP signaling; a phenotype attributed to a stronger GAG binding of CCL21 and defined structural differences between CCL19 and CCL21. ©2018 Society for Leukocyte Biology.
Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J; Wahl, James K; Johnson, Keith R; Mehta, Parmender P
2015-02-20
Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Tserendavga, Tsend-Ayush
The importance of flotation separation has long been, and continues to be, an important technology for the mining industry, especially to metallurgical engineers. However, the flotation process is quite complex and expensive, in addition to being influenced by many variables. Understanding the variables affecting flotation efficiency and how valuable minerals are lost to the tailings gives metallurgists an advantage in their attempts to increase efficiency by designing operations to target the areas of greatest potential value. A successful, accurate evaluation of lost minerals in the tailings and appropriate solutions to improve flotation efficiency can save millions of dollars in the effective utilization of our mineral resources. In this dissertation research, an attempt has been made to understand the reasons for the loss of valuable mineral particles in the tailings from Kennecott Utah Copper ores. Possibilities include liberation, particle aggregation (slime coating) and surface chemistry issues associated with the flotation separation. This research generally consisted of three main aspects. The first part involved laboratory flotation experiments and factors, which affect the flotation efficiency. Results of flotation testing are reported that several factors such as mineral exposure/liberation and slime coating and surface oxidation strongly affect the flotation efficiency. The second part of this dissertation research was to develop a rapid scan dual energy (DE) methodology using 2D radiography to identify, isolate, and prepare lost sulfide mineral particles with the advantages of simple sample preparation, short analysis time, statistically reliable accuracy and confident identification. The third part of this dissertation research was concerned with detailed characterization of lost particles including such factors as liberation, slime coating, and surface chemistry characteristics using advanced analytical techniques and instruments. Based on the results from characterization, the extent to which these factors contribute to the loss of sulfide mineral particles in the tailings were determined.
Adsorption of naphthenic acids on high surface area activated carbons.
Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B
2014-01-01
In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC.
Visualization of the herpes simplex virus portal in situ by cryo-electron tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardone, Giovanni; Winkler, Dennis C.; Trus, Benes L.
2007-05-10
Herpes simplex virus type 1 (HSV-1), the prototypical herpesvirus, has an icosahedral nucleocapsid surrounded by a proteinaceous tegument and a lipoprotein envelope. As in tailed bacteriophages, the icosahedral symmetry of the capsid is broken at one of the 12 vertices, which is occupied by a dodecameric ring of portal protein, UL6, instead of a pentamer of the capsid protein, UL19. The portal ring serves as a conduit for DNA entering and exiting the capsid. From a cryo-EM reconstruction of capsids immuno-gold-labeled with anti-UL6 antibodies, we confirmed that UL6 resides at a vertex. To visualize the portal in the context ofmore » the assembled capsid, we used cryo-electron tomography to determine the three-dimensional structures of individual A-capsids (empty, mature capsids). The similarity in size and overall shape of the portal and a UL19 pentamer - both are cylinders of {approx} 800 kDa - combined with residual noise in the tomograms, prevented us from identifying the portal vertices directly; however, this was accomplished by a computational classification procedure. Averaging the portal-containing subtomograms produced a structure that tallies with the isolated portal, as previously reconstructed by cryo-EM. The portal is mounted on the outer surface of the capsid floor layer, with its narrow end pointing outwards. This disposition differs from that of known phage portals in that the bulk of its mass lies outside, not inside, the floor. This distinction may be indicative of divergence at the level of portal-related functions other than its role as a DNA channel.« less
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.
2014-01-01
Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO−3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M
2014-01-01
Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.
Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea.
Ahn, Joo Sung; Park, Young Seog; Kim, Ju-Yong; Kim, Kyoung-Woong
2005-04-01
The mineralogical and chemical characteristics of As solid phases in arsenic-rich mine tailings from the Nakdong As-Bi mine in Korea was investigated. The tailings generated from the ore roasting process contained 4.36% of As whereas the concentration was up to 20.2% in some tailings from the cyanidation process for the Au extraction. Thin indurated layers and other secondary precipitates had formed at the surfaces of the tailings piles and the As contents of the hardened layers varied from 2.87 to 16.0%. Scorodite and iron arsenate (Fe3AsO7) were the primary As-bearing crystalline minerals. Others such as arsenolamprite, bernardite and titanium oxide arsenate were also found. The amorphous As-Fe phases often showed framboidal aggregates and gel type textures with desiccation cracks. Sequential extraction results also showed that 55.7-91.1% of the As in tailings were NH(4)-oxalate extractable As, further confirmed the predominance of amorphous As-Fe solid phases. When the tailings were equilibrated with de-ionized water, the solution exhibited extremely acidic conditions (pH 2.01-3.10) and high concentrations of dissolved As (up to 29.5 mg L(-1)), indicating high potentials for As to be released during rainfall events. The downstream water was affected by drainage from tailings and contained 12.7-522 microg L(-1) of As. The amorphous As-Fe phases in tailings have not entirely been stabilized through the long term natural weathering processes. To remediate the environmental harms they had caused, anthropogenic interventions to stabilize or immobilize As in the tailings pile should be explored.
Waning, David L.; Schmitt, Anthony P.; Leser, George P.; Lamb, Robert A.
2002-01-01
The efficient release of many enveloped viruses from cells involves the coalescence of viral components at sites of budding on the plasma membrane of infected cells. This coalescence is believed to require interactions between the cytoplasmic tails of surface glycoproteins and the matrix (M) protein. For the paramyxovirus simian virus 5 (SV5), the cytoplasmic tail of the hemagglutinin-neuraminidase (HN) protein has been shown previously to be important for normal virus budding. To investigate a role for the cytoplasmic tail of the fusion (F) protein in virus assembly and budding, we generated a series of F cytoplasmic tail-truncated recombinant viruses. Analysis of these viruses in tissue culture indicated that the cytoplasmic tail of the F protein was dispensable for normal virus replication and budding. To investigate further the requirements for assembly and budding of SV5, we generated two double-mutant recombinant viruses that lack 8 amino acids of the predicted 17-amino-acid HN protein cytoplasmic tail in combination with truncation of either 10 or 18 amino acids from the predicted 20-amino-acid F protein cytoplasmic tail. Both of the double mutant recombinant viruses displayed a replication defect in tissue culture and a budding defect, the extent of which was dependant on the length of the remaining F cytoplasmic tail. Taken together, this work and our earlier data on virus-like particle formation (A. P. Schmitt, G. P. Leser, D. L. Waning, and R. A. Lamb, J. Virol. 76:3953-3964, 2002) suggest a redundant role for the cytoplasmic tails of the HN and F proteins in virus assembly and budding. PMID:12186912
Hammond, Corin M; Root, Robert A; Maier, Raina M; Chorover, Jon
2018-02-06
Phytostabilization is a cost-effective long-term bioremediation technique for the immobilization of metalliferous mine tailings. However, the biogeochemical processes affecting metal(loid) molecular stabilization and mobility in the root zone remain poorly resolved. The roots of Prosopis juliflora grown for up to 36 months in compost-amended pyritic mine tailings from a federal Superfund site were investigated by microscale and bulk synchrotron X-ray absorption spectroscopy (XAS) and multiple energy micro-X-ray fluorescence imaging to determine iron, arsenic, and sulfur speciation, abundance, and spatial distribution. Whereas ferrihydrite-bound As(V) species predominated in the initial bulk mine tailings, the rhizosphere speciation of arsenic was distinctly different. Root-associated As(V) was immobilized on the root epidermis bound to ferric sulfate precipitates and within root vacuoles as trivalent As(III)-(SR) 3 tris-thiolate complexes. Molar Fe-to-As ratios of root epidermis tissue were two times higher than the 15% compost-amended bulk tailings growth medium. Rhizoplane-associated ferric sulfate phases that showed a high capacity to scavenge As(V) were dissimilar from the bulk-tailings mineralogy as shown by XAS and X-ray diffraction, indicating a root-surface mechanism for their formation or accumulation.
The microbiology of oil sands tailings: past, present, future.
Foght, Julia M; Gieg, Lisa M; Siddique, Tariq
2017-05-01
Surface mining of enormous oil sands deposits in northeastern Alberta, Canada since 1967 has contributed greatly to Canada's economy but has also received negative international attention due largely to environmental concerns and challenges. Not only have microbes profoundly affected the composition and behavior of this petroleum resource over geological time, they currently influence the management of semi-solid tailings in oil sands tailings ponds (OSTPs) and tailings reclamation. Historically, microbial impacts on OSTPs were generally discounted, but next-generation sequencing and biogeochemical studies have revealed unexpectedly diverse indigenous communities and expanded our fundamental understanding of anaerobic microbial functions. OSTPs that experienced different processing and management histories have developed distinct microbial communities that influence the behavior and reclamation of the tailings stored therein. In particular, the interactions of Deltaproteobacteria and Firmicutes with methanogenic archaea impact greenhouse gas emissions, sulfur cycling, pore water toxicity, sediment biogeochemistry and densification, water usage and the trajectory of long-term mine waste reclamation. This review summarizes historical data; synthesizes current understanding of microbial diversity and activities in situ and in vitro; predicts microbial effects on tailings remediation and reclamation; and highlights knowledge gaps for future research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
SUN, G.; Hu, Z.; Ma, Y.; Ma, W.
2017-12-01
The land-atmospheric interactions over a heterogeneous surface is a tricky issue for accurately understanding the energy-water exchanges between land surface and atmosphere. We investigate the vertical transport of energy and water over a heterogeneous land surface in Tibetan Plateau during the evolution of the convective boundary layer using large eddy simulation (WRF_LES). The surface heterogeneity is created according to remote sensing images from high spatial resolution LandSat ETM+ images. The PBL characteristics over a heterogeneous surface are analyzed in terms of secondary circulations under different background wind conditions based on the horizontal and vertical distribution and evolution of wind. The characteristics of vertical transport of energy and heat over a heterogeneous surface are analyzed in terms of the horizontal distribution as well as temporal evolution of sensible and latent heat fluxes at different heights under different wind conditions on basis of the simulated results from WRF_LES. The characteristics of the heat and water transported into the free atmosphere from surface are also analyzed and quantified according to the simulated results from WRF_LES. The convective transport of energy and water are analyzed according to horizontal and vertical distributions of potential temperature and vapor under different background wind conditions. With the analysis based on the WRF_LES simulation, the performance of PBL schemes of mesoscale simulation (WRF_meso) is evaluated. The comparison between horizontal distribution of vertical fluxes and domain-averaged vertical fluxes of the energy and water in the free atmosphere is used to evaluate the performance of PBL schemes of WRF_meso in the simulation of vertical exchange of energy and water. This is an important variable because only the energy and water transported into free atmosphere is able to influence the regional and even global climate. This work would will be of great significance not only for understanding the land atmosphere interactions over a heterogeneous surface by evaluating and improving the performance PBL schemes in WRF-meso, but also for the understanding the profound effect of Tibetan Plateau on the regional and global climate.
Spin-tunnel investigation of a 1/15-scale model of an Australian trainer airplane
NASA Technical Reports Server (NTRS)
Bowman, James S., Jr.; Whipple, Raymond D.; White, William L.
1987-01-01
An investigation was conducted in the Langley Spin Tunnel of the spin and spin-recovery characteristics of a 1/15-scale model of an Australian trainer airplane. The invesigation included erect and inverted spins; configuration variables such as a long tail, fuselage strakes, 20 deg. elevator cutouts, and rudder modifications; and determination of the parachute size for emergency spin recovery. Also included in the investigation were wing leading-edge modifications to evaluate Reynolds number effects. Results indicate that the basic configuration will spin erect at an angle of attack of about 63 deg. at about 2 to 2.3 seconds per turn. Recovery from this spin was unsatisfactory by rudder reversal or by rudder reversal and ailerons deflected to full with the spin. The elevators had a pronounced effect on the recovery characteristics. The elevators-down position was very adverse to recoveries, whereas the elevators-up position provided favorable recovery effects. Moving the vertical tail aft (producing a long tail configuration) improved the spin characteristics, but the recoveries were still considered marginal. An extension to the basic rudder chord and length made a significant improvement in the spin and recovery characteristics. Satisfactory recoveries were obtained by deflecting the rudder to full against the spin and the elevators and ailerons to neutral.
PSR J0357+3205: THE TAIL OF THE TURTLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marelli, M.; De Luca, A.; Salvetti, D.
2013-03-01
Using a new XMM-Newton observation, we have characterized the X-ray properties of the middle-aged radio-quiet {gamma}-ray pulsar J0357+3205 (named Morla) and its tail. The X-ray emission from the pulsar is consistent with a magnetospheric non-thermal origin plus a thermal emission from a hot spot (or hot spots). The lack of a thermal component from the whole surface makes Morla the coldest neutron star in its age range. We found marginal evidence for a double-peaked modulation of the X-ray emission. The study of the 9' long tail confirmed the lack of extended emission near the pulsar itself. The tail shows amore » very asymmetric brightness profile and its spectrum lacks any spatial variation. We found the nebular emission to be inconsistent with a classical bow shock, ram-pressure-dominated pulsar wind nebula. We propose thermal bremsstrahlung as an alternative mechanism for Morla's tail emission. In this scenario, the tail emission comes from the shocked interstellar medium (ISM) material heated up to X-ray temperatures. This can fully explain the peculiar features of the tail, assuming a hot, moderately dense ISM around the pulsar. For a bremsstrahlung-emitting tail, we can estimate the pulsar distance to be between 300 and 900 pc. A pulsar velocity of {approx}1900 km s{sup -1} is required, which would make Morla the pulsar with the largest velocity, and high inclination angles (>70 Degree-Sign ) are preferred. We propose Morla's nebula as the first example of a new 'turtle's tail' class of thermally emitting nebulae associated with high-velocity pulsars.« less
Brigmon, Robin L.; Berry, Christopher J.; Wade, Arielle; ...
2016-05-04
Oil sands are a major source of oil, but their industrial processing generates tailings ponds that are an environmental hazard. The main concerns are mature fine tailings (MFT) composed of residual hydrocarbons, water, and fine clay. Tailings ponds include toxic contaminants such as heavy metals, and toxic organics including naphthenics. Naphthenic acids and polyaromatic hydrocarbons (PAHs) degrade very slowly and pose a long-term threat to surface and groundwater, as they can be transported in the MFT. Research into improved technologies that would enable densification and settling of the suspended particles is ongoing. In batch tests, BioTiger™, a microbial consortium thatmore » can metabolize PAHs, demonstrated improved oil sands tailings settling from a Canadian tailings pond. Results also showed, depending on the timing of the measurements, lower suspended solids and turbidity. Elevated total organic carbon was observed in the first 48 hours in the BioTiger™-treated columns and then decreased in overlying water. Oil sands tailings mixed with BioTiger™ showed a two-fold reduction in suspended solids within 24 hours as compared to abiotic controls. The tailings treated with BioTiger™ increased in microbial densities three orders of magnitude from 8.5 × 105 CFU/mL to 1.2 × 108 CFU/mL without any other carbon or energy source added, indicating metabolism of hydrocarbons and other available nutrients. Results demonstrated that bioaugmentation of BioTiger™ increased separation of organic carbon from particles in oil sands and enhanced settling with tailings with improved water quality.« less
Thermobaricity, cabbeling, and water-mass conversion
NASA Astrophysics Data System (ADS)
McDougall, Trevor J.
1987-05-01
The efficient mixing of heat and salt along neutral surfaces (by mesoscale eddies) is shown to lead to vertical advection through these neutral surfaces. This is due to the nonlinearities of the equation of state of seawater through terms like ∂2ρ/∂θ∂p (thermobaric effect) and ∂2ρ/∂ θ2 (cabbeling). Cabbeling always causes a sinking or downwelling of fluid through neutral surfaces, whereas thermobaricity can lead to a vertical velocity (relative to neutral surfaces) of either sign. In this paper it is shown that for reasonable values of the lateral scalar diffusivity (especially below a depth of 1000 m), these two processes cause vertical velocities of the order of 10-7 m s-1 through neutral surfaces (usually downward!) and cause water-mass conversion of a magnitude equal to that caused by a vertical diffusivity of 10-4 m2 s-1 (often equivalent to a negative diffusivity). Both thermobaricity and cabbeling can occur in the presence of any nonzero amount of small-scale turbulence and so will not be detected by microstructure measurements. The conservation equations for tracers are considered in a nonorthogonal coordinate frame that moves with neutral surfaces in the ocean. Since only mixing processes cause advection across neutral surfaces, it is useful to regard this vertical advection as a symptom of various mixing processes rather than as a separate physical process. It is possible to derive conservative equations for scalars that do not contain the vertical advective term explicity. In these conservation equations, the terms that represent mixing processes are substantially altered. It is argued that this form of the conservation equations is the most appropriate when considering water-mass transformation, and some examples are given of its application in the North Atlantic. It is shown that the variation of the vertical diffusivity with height does not cause water-mass transformation. Also, salt fingering is often 3-4 times more effective at changing the potential temperature of a water mass than would be implied by simply calculating the vertical derivative of the fingering heat flux.
Tikhonova, Irina G.; Ivetic, Aleksandar; Schu, Peter
2017-01-01
L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of μ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-μ1A and the GST-μ1A C-terminal domain, but not the GST-μ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans-Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues (356RR357, 359KK360, and 362KK363) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues (369DD370) in the membrane-distal end of the L-selectin tail involved in μ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of μ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-μ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of μ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo. Molecular docking of the L-selectin tail to μ1A was used to identify the μ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates μ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans-Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin. PMID:28235798
Dib, Karim; Tikhonova, Irina G; Ivetic, Aleksandar; Schu, Peter
2017-04-21
L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of μ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-μ1A and the GST-μ1A C-terminal domain, but not the GST-μ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans -Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues ( 356 RR 357 , 359 KK 360 , and 362 KK 363 ) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues ( 369 DD 370 ) in the membrane-distal end of the L-selectin tail involved in μ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of μ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-μ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of μ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo Molecular docking of the L-selectin tail to μ1A was used to identify the μ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates μ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans -Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Optoelectronic Materials Center
1991-06-11
surface - emitting GaAs/AIGaAs vertical - cavity laser (TJ- VCSEL ) incorporating wavelength-resonant...multi-quantum well, vertical cavity surface - emitted laser . This structure consists entirely of undoped epilayers, thus simplifying the problems of... cavity surface - emitting lasers ( VCSELs ) for doubling and for parallel optical data processing. Progress - GaAIAs/GaAs and InGaAs/GaAs RPG- VCSEL
Miniature modular microwave end-to-end receiver
NASA Technical Reports Server (NTRS)
Sukamto, Lin M. (Inventor); Cooley, Thomas W. (Inventor); Janssen, Michael A. (Inventor); Parks, Gary S. (Inventor)
1993-01-01
An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall.
Optimization of freeform surfaces using intelligent deformation techniques for LED applications
NASA Astrophysics Data System (ADS)
Isaac, Annie Shalom; Neumann, Cornelius
2018-04-01
For many years, optical designers have great interests in designing efficient optimization algorithms to bring significant improvement to their initial design. However, the optimization is limited due to a large number of parameters present in the Non-uniform Rationaly b-Spline Surfaces. This limitation was overcome by an indirect technique known as optimization using freeform deformation (FFD). In this approach, the optical surface is placed inside a cubical grid. The vertices of this grid are modified, which deforms the underlying optical surface during the optimization. One of the challenges in this technique is the selection of appropriate vertices of the cubical grid. This is because these vertices share no relationship with the optical performance. When irrelevant vertices are selected, the computational complexity increases. Moreover, the surfaces created by them are not always feasible to manufacture, which is the same problem faced in any optimization technique while creating freeform surfaces. Therefore, this research addresses these two important issues and provides feasible design techniques to solve them. Finally, the proposed techniques are validated using two different illumination examples: street lighting lens and stop lamp for automobiles.
Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field
NASA Astrophysics Data System (ADS)
Chavanne, C. P.; Klein, P.
2016-02-01
A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.
Schein, Stan
2009-03-27
Fullerene cages have n trivalent vertices, 12 pentagonal faces, and (n-20)/2 hexagonal faces. The smallest cage in which all of the pentagons are surrounded by hexagons and thus isolated from each other has 60 vertices and is shaped like a soccer ball. The protein clathrin self-assembles into fullerene cages of a variety of sizes and shapes, including smaller ones with adjacent pentagons as well as larger ones, but the variety is limited. To explain the range of clathrin architecture and how these fullerene cages self-assemble, we proposed a hypothesis, the "head-to-tail exclusion rule" (the "Rule"). Of the 5769 small clathrin cage isomers with n< or =60 vertices and adjacent pentagons, the Rule permits just 15, three identified in 1976 and 12 others. A "weak version" of the Rule permits another 99. Based on cryo-electron tomography, Cheng et al. reported six raw clathrin fullerene cages. One was among the three identified in 1976. Here, (1) we identify the remaining five. (2) Four are new and are among the 12 others permitted by the Rule. (3) One, also new, is among the 99 weak version cages. (4) Of particular note, none of the remaining 5565 excluded cages has been identified. These findings provide powerful experimental confirmation of the Rule and the principle on which it is based. (5) Surprisingly, the newly identified clathrin cages are among the least symmetric of those permitted. (6) By devising a method for counting assembly paths, (7) we show that asymmetric cages can be assembled by larger numbers of paths, thus providing a kinetic explanation for the prevalence of asymmetric cages. (8) Finally, we show that operation during cage growth of the Rule greatly increases the likelihood of producing a closed fullerene cage, specifically one of those permitted, but efficient assembly still appears to require internal remodeling.
Hybrid radiator cooling system
France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.
2016-03-15
A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.
Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank
NASA Astrophysics Data System (ADS)
Xue, Mi-An; Zheng, Jinhai; Lin, Pengzhi; Xiao, Zhong
2017-08-01
A finite difference model for solving Navier Stokes equations with turbulence taken into account is used to investigate viscous liquid sloshing-wave interaction with baffles in a tank. The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.
Pressure-Distribution Measurements on O-2H Airplane in Flight
NASA Technical Reports Server (NTRS)
Pearson, H A
1937-01-01
Results are given of pressure-distribution measurements made over two different horizontal tail surfaces and the right wing cellule, including the slipstream area, of an observation-type biplane. Measurements were also taken of air speed, control-surface positions, control-stick forces, angular velocities, and accelerations during various abrupt maneuvers. These maneuvers consisted of push-downs and pull-ups from level flight, dive pull-outs, and aileron rolls with various thrust conditions. The results from the pressure-distribution measurements over the wing cellule are given on charts showing the variation of individual rib coefficients with wing coefficients; the data from the tail-surface pressure-distribution measurements are given mainly as total loads and moments. These data are supplemented by time histories of the measured quantities and isometric views of the rib pressure distributions occurring in abrupt maneuvers.
Observations of the Hot Horizontal Branch Stars in the Metal-Rich Bulge Globular Cluster NGC 6388
NASA Technical Reports Server (NTRS)
Moehler, S.; Sweigart, A. V.
2006-01-01
The metal-rich bulge globular cluster NGC 6388 shows a distinct blue horizontal-branch tail in its colour-magnitude diagram (Rich et al. 1997) and is thus a strong case of the well-known 2nd Parameter Problem. In addition, its horizontal branch (HB) shows an upward tilt toward bluer colours, which cannot be explained by canonical evolutionary models. Several non-canonical scenarios have been proposed to explain these puzzling observations. In order to test the predictions of these scenarios, we have obtained medium resolution spectra to determine the atmospheric parameters of a sample of the blue HB stars in NGC 6388.Using the medium resolution spectra, we determine effective temperatures, surface gravities and helium abundances by fitting the observed Balmer and helium lines with appropriate theoretical stellar spectra. As we know the distance to the cluster, we can verify our results by determining masses for the stars. During the data reduction we took special care to correctly subtract the background, which is dominated by the overlapping spectra of cool stars. The cool blue tail stars in our sample with T(sub eff) approximately 10000 K have lower than canonical surface gravities, suggesting that these stars are, on average, approximately equal to 0.4 mag brighter than canonical HB stars in agreement with the observed upward slope of the HB in NGC 6388. Moreover, the mean mass of these stars agrees well with theoretical predictions. In contrast, the hot blue tail stars in our sample with T(sub eff) greater than or equal to 12000 K show significantly lower surface gravities than predicted by any scenario, which can reproduce the photometric observations. Their masses are also too low by about a factor of 2 compared to theoretical predictions. The physical parameters of the blue HB stars at about 10,000 K support the helium pollution scenario. The low gravities and masses of the hot blue tail stars, however, are probably caused by problems with the data reduction, most likely due to remaining background light in the spectra, which would affect the fainter hot blue tail stars much more strongly than the brighter cool blue tail stars. Our study of the hot blue tail stars in NGC 6388 illustrates the obstacles which are encountered when attempting to determine the atmospheric parameters of hot HB stars in very crowded fields using ground-based observations. We discuss these obstacles and offer possible solutions for future projects.
McClintock, William E; Vervack, Ronald J; Bradley, E Todd; Killen, Rosemary M; Mouawad, Nelly; Sprague, Ann L; Burger, Matthew H; Solomon, Sean C; Izenberg, Noam R
2009-05-01
Mercury is surrounded by a tenuous exosphere that is supplied primarily by the planet's surface materials and is known to contain sodium, potassium, and calcium. Observations by the Mercury Atmospheric and Surface Composition Spectrometer during MESSENGER's second Mercury flyby revealed the presence of neutral magnesium in the tail (anti-sunward) region of the exosphere, as well as differing spatial distributions of magnesium, calcium, and sodium atoms in both the tail and the nightside, near-planet exosphere. Analysis of these observations, supplemented by observations during the first Mercury flyby, as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.
Cahoon, D.R.; Reed, D.J.; Day, J.W.
1995-01-01
Simultaneous measurements of vertical accretion and change in surface elevation relative to a shallow (3-5 m) subsurface datum were made in selected coastal salt marshes of Louisiana, Florida, and North Carolina to quantitatively test Kaye and Barghoorn's contention that vertical accretion is not a good surrogate for surface elevation change because of autocompaction of the substrate. Rates of subsidence of the upper 3-5 m of marsh substrate were calculated for each marsh as the difference between vertical accretion and elevation change measured with feldspar marker horizons and a sedimentation-erosion table. Surface elevation change was significantly lower than vertical accretion at each site after 2 years, indicating a significant amount of shallow subsidence had occurred, ranging from 0.45 to 4.90 cm. The highest rate of shallow subsidence occurred in the Mississippi delta. Results confirm Kaye and Barghoorn's contention that vertical accretion is not generally a good surrogate for elevation change because of processes occurring in the upper few meters of the substrate, including not only compaction but also apparently shrink-swell from water storage and/or plant production--decomposition at some sites. Indeed, surface elevation change was completely decoupled from vertical accretion at the Florida site. The assumption of a 1:1 relationship between accretionary and substrate processes. Consequently, the potential for coastal marsh submergence should be expressed as an elevation deficit based on direct measures of surface elevation change rather than accretion deficits. These findings also indicate the need for greater understanding of the influence of subsurface and small-scale hydrologic processes on marsh surface elevation.
Radiological survey of the inactive uranium-mill tailings at Durango, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, F.F.; Perdue, P.T.; Shinpaugh, W.H.
1980-03-01
Results of a radiological survey of the inactive uranium-mill site at Durango, Colorado, conducted in April 1976, in cooperation with a team from Ford, Bacon and Davis Utah Inc., are presented together with descriptions of the instruments and techniques used to obtain the data. Direct above-ground gamma measurements and analysis of surface soil and sediment samples indicate movement of tailings from the piles toward Lightner Creek on the north and the Animas River on the east side of the piles. The concentration of /sup 226/Ra in the former raffinate pond area is only slightly above the background level. Two structuresmore » in Durango were found to contain high concentrations of airborne radon daughters, where tailings are known to have been utilized in construction. Near-background concentrations of radon daughters were found in a well-ventilated building close to the tailings.« less
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented. The theoretical formulation, the numerical procedure, and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are considered.
NASA Astrophysics Data System (ADS)
Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu
2017-11-01
A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.
Boey, Hannelore; Aeles, Jeroen; Schütte, Kurt; Vanwanseele, Benedicte
2017-06-01
Research has focused on parameters that are associated with injury risk, e.g. vertical acceleration. These parameters can be influenced by running on different surfaces or at different running speeds, but the relationship between them is not completely clear. Understanding the relationship may result in training guidelines to reduce the injury risk. In this study, thirty-five participants with three different levels of running experience were recruited. Participants ran on three different surfaces (concrete, synthetic running track, and woodchip trail) at two different running speeds: a self-selected comfortable speed and a fixed speed of 3.06 m/s. Vertical acceleration of the lower leg was measured with an accelerometer. The vertical acceleration was significantly lower during running on the woodchip trail in comparison with the synthetic running track and the concrete, and significantly lower during running at lower speed in comparison with during running at higher speed on all surfaces. No significant differences in vertical acceleration were found between the three groups of runners at fixed speed. Higher self-selected speed due to higher performance level also did not result in higher vertical acceleration. These results may show that running on a woodchip trail and slowing down could reduce the injury risk at the tibia.