A Unified Geodetic Vertical Velocity Field (UGVVF), Version 1.0
NASA Astrophysics Data System (ADS)
Schmalzle, G.; Wdowinski, S.
2014-12-01
Tectonic motion, volcanic inflation or deflation, as well as oil, gas and water pumping can induce vertical motion. In southern California these signals are inter-mingled. In tectonics, properly identifying regions that are contaminated by other signals can be important when estimating fault slip rates. Until recently vertical deformation rates determined by high precision Global Positioning Systems (GPS) had large uncertainties compared to horizontal components and were rarely used to constrain tectonic models of fault motion. However, many continuously occupied GPS stations have been operating for ten or more years, often delivering uncertainties of ~1 mm/yr or less, providing better constraints for tectonic modeling. Various processing centers produced GPS time series and estimated vertical velocity fields, each with their own set of processing techniques and assumptions. We compare vertical velocity solutions estimated by seven data processing groups as well as two combined solutions (Figure 1). These groups include: Central Washington University (CWU) and New Mexico Institute of Technology (NMT), and their combined solution provided by the Plate Boundary Observatory (PBO) through the UNAVCO website. Also compared are the Jet Propulsion Laboratory (JPL) and Scripps Orbit and Permanent Array Center (SOPAC) and their combined solution provided as part of the NASA MEaSUREs project. Smaller velocity fields included are from Amos et al., 2014, processed at the Nevada Geodetic Laboratory, Shen et al., 2011, processed by UCLA and called the Crustal Motion Map 4.0 (CMM4) dataset, and a new velocity field provided by the University of Miami (UM). Our analysis includes estimating and correcting for systematic vertical velocity and uncertainty differences between groups. Our final product is a unified velocity field that contains the median values of the adjusted velocity fields and their uncertainties. This product will be periodically updated when new velocity fields become available. A database and scripts to access the database will be available through the University of Miami (http://www.geodesy.miami.edu) website. Figure 1. Vertical velocity comparisons between processing groups (blue dots). Red line indicates equal velocities. Weighted Root Mean Square (WRMS) is shown.
Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea
NASA Astrophysics Data System (ADS)
Cardona, Yuley; Bracco, Annalisa
The South China Sea is a marginal basin with a complex circulation influenced by the East Asian Monsoon, river discharge and intricate bathymetry. As a result, both the mesoscale eddy field and the near-inertial energy distribution display large spatial variability and they strongly influence the oceanic transport and mixing. With an ensemble of numerical integrations using a regional ocean model, this work investigates how the temporal resolution of the atmospheric forcing fields modifies the horizontal and vertical velocity patterns and impacts the transport properties in the basin. The response of the mesoscale circulation in the South China Sea is investigated under three different forcing conditions: monthly, daily and 6-hourly momentum and heat fluxes. While the horizontal circulation does not display significant differences, the representation of the vertical velocity field displays high sensitivity to the frequency of the wind forcing. If the wind field contains energy at the inertial frequency or higher (daily and 6-hourly cases), then submesoscale fronts, vortex Rossby waves and near inertial waves are excited as ageostrophic expression of the vigorous eddy field. Those quasi- and near-inertial waves dominate the vertical velocity field in the mixed layer (vortex Rossby waves) and below the first hundred meters (near inertial waves) and they are responsible for the differences in the vertical transport properties under the various forcing fields as quantified by frequency spectra, vertical velocity profiles and vertical dispersion of Lagrangian tracers.
Estimates of the seasonal mean vertical velocity fields of the extratropical Northern Hemisphere
NASA Technical Reports Server (NTRS)
White, G. H.
1983-01-01
Indirect methods are employed to estimate the wintertime and summertime mean vertical velocity fields of the extratropical Northern Hemisphere and intercomparisons are made, together with comparisons with mean seasonal patterns of cloudiness and precipitation. Twice-daily NMC operational analyses produced general circulation statistics for 11 winters and 12 summers, permitting calculation of the seasonal NMC averages for 6 hr forecasts, solution of the omega equation, integration of continuity equation downward from 100 mb, and solution of the thermodynamic energy equation in the absence of diabatic heating. The methods all yielded similar vertical velocity patterns; however, the magnitude of the vertical velocities could not be calculated with great accuracy. Orography was concluded to have less of an effect in summer than in winter, when winds are stronger.
NASA Astrophysics Data System (ADS)
LAI, Y. R.; Hsu, Y. J.; You, R. J.
2017-12-01
GPS technique services as the most powerful method in monitoring crustal deformation owing to its advantage of temporal continuity. Geodetic leveling is also widely used not only in engineering but also in geophysics applicants due to its high precision in vertical datum determination and spatial continuity advantages. As widely known, the reference frames of GPS and geodetic leveling are different- the former refers to the reference ellipsoid (WGS84 ellipsoid) and the latter refers to the geoid. In order to combine vertical velocity fields from different datums, we decide to examine discrepancy between these two data sets. Moreover, GPS stations and benchmarks always do not locate at the same places. In place of using a spatial reduced function (Ching et.al, JGR, 2011) to find the discrepancy between them, we focused on comparing termporal variation of GPS vertical motions and geodetic leveling displacements. In this study, we analyzed the vertical velocity field from 238 GPS stations and 1634 benchmarks, including the time-period (2000 to 2015) influenced by postseismiceffects from 1999 Chi-Chi earthquake (Mw 7.6), 2003 Chengkung earthquake (Mw 6.8), and so on. After we thoroughly examined all the process and considered coseismic and postseismic deformation of significant earthquakes, we found that the discrepancy of vertical velocity of the GPS station and its nearby benchmarks is about 1 - 2 mm/yr, including several source of errors in data processing. We suggest that this discrepancy of vertical velocity field can be ignored as tolerable error, and two heterogeneous fields can be integrated together without any mathematical presumptions of spatial regression. The result shows that the western coast is suffering sever subsidence with rates up to 40 mm/yr; the Central Range of Taiwan is uplifting with rates about +10 mm/yr and active landslides with significant subsidence of 5-10 mm/yr in local area. A huge velocity contrast of 30 mm;/yr indicating east over west thrusting is shown across the Longitudinal Valley Fault. Estimation of vertical velocity from 2000 to 2015 is consistent with velocities from 2008 to 2015, indicating our modification process is not affected by the Chi-Chi earthquake (Mw 7.6).
A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging.
Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling
2016-02-08
Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people's daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station's geocentric coordinates and velocities relative to the centre of the Earth's mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.
A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging
Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling
2016-01-01
Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement, as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized, as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement. PMID:26867197
Multi-parameter Full-waveform Inversion for Acoustic VTI Medium with Surface Seismic Data
NASA Astrophysics Data System (ADS)
Cheng, X.; Jiao, K.; Sun, D.; Huang, W.; Vigh, D.
2013-12-01
Full-waveform Inversion (FWI) attracts wide attention recently in oil and gas industry as a new promising tool for high resolution subsurface velocity model building. While the traditional common image point gather based tomography method aims to focus post-migrated data in depth domain, FWI aims to directly fit the observed seismic waveform in either time or frequency domain. The inversion is performed iteratively by updating the velocity fields to reduce the difference between the observed and the simulated data. It has been shown the inversion is very sensitive to the starting velocity fields, and data with long offsets and low frequencies is crucial for the success of FWI to overcome this sensitivity. Considering the importance of data with long offsets and low frequencies, in most geologic environment, anisotropy is an unavoidable topic for FWI especially at long offsets, since anisotropy tends to have more pronounced effects on waves traveled for a great distance. In VTI medium, this means more horizontal velocity will be registered in middle-to-long offset data, while more vertical velocity will be registered in near-to-middle offset data. Up to date, most of real world applications of FWI still remain in isotropic medium, and only a few studies have been shown to account for anisotropy. And most of those studies only account for anisotropy in waveform simulation, but not invert for those anisotropy fields. Multi-parameter inversion for anisotropy fields, even in VTI medium, remains as a hot topic in the field. In this study, we develop a strategy for multi-parameter FWI for acoustic VTI medium with surface seismic data. Because surface seismic data is insensitivity to the delta fields, we decide to hold the delta fields unchanged during our inversion, and invert only for vertical velocity and epsilon fields. Through parameterization analysis and synthetic tests, we find that it is more feasible to invert for the parameterization as vertical and horizontal velocities instead of inverting for the parameterization as vertical velocity and epsilon fields. We develop a hierarchical approach to invert for vertical velocity first but hold epsilon unchanged and only switch to simultaneous inversion when vertical velocity inversion are approaching convergence. During simultaneous inversion, we observe significant acceleration in the convergence when incorporates second order information and preconditioning into inversion. We demonstrate the success of our strategy for VTI FWI using synthetic and real data examples from the Gulf of Mexico. Our results show that incorporation of VTI FWI improves migration of large offset acquisition data, and produces better focused migration images to be used in exploration, production and development of oil fields.
NASA Astrophysics Data System (ADS)
Dagan, Guy; Koren, Ilan; Altaratz, Orit
2018-05-01
Better representation of cloud-aerosol interactions is crucial for an improved understanding of natural and anthropogenic effects on climate. Recent studies have shown that the overall aerosol effect on warm convective clouds is non-monotonic. Here, we reduce the system's dimensions to its center of gravity (COG), enabling distillation and simplification of the overall trend and its temporal evolution. Within the COG framework, we show that the aerosol effects are nicely reflected by the interplay of the system's characteristic vertical velocities, namely the updraft (w) and the effective terminal velocity (η). The system's vertical velocities can be regarded as a sensitive measure for the evolution of the overall trends with time. Using a bin-microphysics cloud-scale model, we analyze and follow the trends of the aerosol effect on the magnitude and timing of w and η, and therefore the overall vertical COG velocity. Large eddy simulation (LES) model runs are used to upscale the analyzed trends to the cloud-field scale and study how the aerosol effects on the temporal evolution of the field's thermodynamic properties are reflected by the interplay between the two velocities. Our results suggest that aerosol effects on air vertical motion and droplet mobility imply an effect on the way in which water is distributed along the atmospheric column. Moreover, the interplay between w and η predicts the overall trend of the field's thermodynamic instability. These factors have an important effect on the local energy balance.
NASA Astrophysics Data System (ADS)
Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin
2018-05-01
The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.
NASA Technical Reports Server (NTRS)
Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.
1979-01-01
The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.
A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus
NASA Technical Reports Server (NTRS)
Cravens, T. E.; Wu, D.; Shinagawa, H.
1990-01-01
The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.
NASA Astrophysics Data System (ADS)
Pan, Ying
This work combines numerical, experimental, and theoretical methods to investigate the dispersion of particles inside and above plant canopies. The large-eddy simulation (LES) approach is used to reproduce turbulence statistics and three-dimensional particle dispersion within the canopy roughness sublayer. The Eulerian description of conservation laws of fluid momentum and particle concentration implies that the continuous concentration field is advected by the continuous flow field. Within the canopy, modifications are required for the filtered momentum and concentration equations, because spatial filtering of flow variables and concentration field is inapplicable to a control volume consisting of both fluid and solid elements. In this work, the canopy region is viewed as a space occupied by air only. The sink of airflow momentum induced by forces acting on the surfaces of canopy elements is parameterized as a non-conservative virtual body force that dissipates the kinetic energy of the air. This virtual body force must reflect the characteristic of the surface forces exerted by canopy elements within the control volume, and is parameterized as a "drag force" following standard practice in LES studies. Specifically, the "drag force" is calculated as a product of a drag coefficient, the projected leaf area density, and the square of velocity. Using a constant drag coefficient, this model allows first-order accuracy in reproducing the vertically integrated sink of momentum within the canopy layer for airflows of high Reynolds number. The corresponding LES results of first- and second-order turbulence statistics are in good agreement with experimental data obtained in the field interior, within and just above mature maize canopies. However, the distribution of momentum sink among weak and strong events has not been well reproduced, inferred from the significant underestition of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events. Using a velocity-dependent drag coefficient that accounts for the effect of plant reconfiguration, the "drag force" model leads to LES results of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events in better agreement with field experimental data. The link between plant reconfiguration and turbulence dynamics within the canopy roughness sublayer is further investigated. The "reconfiguration drag model" using velocity-dependent drag coefficient is revised to incorporate a theoretical model of the force balance on individual crosswind blades. In the LES, the dimension and degree of the reconfiguration of canopy elements affect the magnitude and position of peak streamwise velocity skewness within the canopy as well as the fractions of vertical momentum flux transported by strong events. The streamwise velocity skewness is shown to be related to the penetration of strong events into the canopy, which is associated with the passage of canopy-scale coherent eddies. With the profile of mean vertical momentum flux constrained by field experimental data, changing the model of drag coefficient induces negligible changes in the vertically integrated "drag force" within the canopy layer. Consequently, first- and second-order turbulence statistics remain approximately the same. However, enhancing the rate of decrease of drag coefficient with increasing velocity increases the streamwise and vertical velocity skewness, the fractions of vertical momentum flux transported by strong events, as well as the ratio between vertical momentum flux transported by relatively strong head-down "sweeps" and relatively weak head-up "ejections." These results confirmed the inadequacy of describing the effects of canopy-scale coherent structures using just first- and second-order turbulence statistics. The filtered concentration equation is applied to the dispersion of particles within the canopy roughness sublayer, assuming that a virtual continuous concentration field is advected by a virtual continuous velocity field. A canopy deposition model is used to model the sink of particle concentration associated with the impaction, sedimentation, retention, and re-entrainment of particles on the surfaces of canopy elements. LES results of mean particle concentration field and mean ground deposition rate were evaluated against data obtained during an artificial continuous point-source release experiment. Accounting for the effect of reconfiguration by using a velocity dependent drag coefficient leads to better agreement between LES results and field experimental data of the mean particle concentration field, suggesting the importance of reproducing the distribution of momentum sink among weak and strong events for reproducing the dispersion of particles. LES results obtained using a velocity-dependent drag coefficient are analyzed to estimate essential properties for the occurrence of plant disease epidemics. The most interesting finding is that an existing analytical function can be used to model the crosswind-integrated mean concentration field above the canopy normalized by the escape fraction for particles released from the field interior. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Lane, John E.; Kasparis, Takis; Jones, W. Linwood; Metzger, Philip T.
2009-01-01
Methodologies to improve disdrometer processing, loosely based on mathematical techniques common to the field of particle flow and fluid mechanics, are examined and tested. The inclusion of advection and vertical wind field estimates appear to produce significantly improved results in a Lagrangian hydrometeor trajectory model, in spite of very strict assumptions of noninteracting hydrometeors, constant vertical air velocity, and time independent advection during the scan time interval. Wind field data can be extracted from each radar elevation scan by plotting and analyzing reflectivity contours over the disdrometer site and by collecting the radar radial velocity data to obtain estimates of advection. Specific regions of disdrometer spectra (drop size versus time) often exhibit strong gravitational sorting signatures, from which estimates of vertical velocity can be extracted. These independent wind field estimates become inputs and initial conditions to the Lagrangian trajectory simulation of falling hydrometeors.
STRING: A new drifter for HF radar validation.
NASA Astrophysics Data System (ADS)
Rammou, Anna-Maria; Zervakis, Vassilis; Bellomo, Lucio; Kokkini, Zoi; Quentin, Celine; Mantovani, Carlo; Kalampokis, Alkiviadis
2015-04-01
High-Frequency radars (HFR) are an effective mean of remotely monitoring sea-surface currents, based on recording the Doppler-shift of radio-waves backscattered on the sea surface. Validation of HFRs' measurements takes place via comparisons either with in-situ Eulerian velocity data (usually obtained by surface current-meters attached on moorings) or to Lagrangian velocity fields (recorded by surface drifters). The most common surface drifter used for this purpose is the CODE-type drifter (Davis, 1985), an industry-standard design to record the vertical average velocity of the upper 1 m layer of the water column. In this work we claim that the observed differences between the HFR-derived velocities and Lagrangian measurements can be attributed not just to the different spatial scales recorded by the above instruments but also due to the fact that while the HFR-derived velocity corresponds to exponentially weighted vertical average of the velocity field from the surface to 1 m depth (Stewart and Joy, 1974) the velocity estimated by the CODE drifters corresponds to boxcar-type weighted vertical average due to the orthogonal shape of the CODE drifters' sails. After analyzing the theoretical behavior of a drifter under the influence of wind and current, we proceed to propose a new design of exponentially-shaped sails for the drogues of CODE-based drifters, so that the HFR-derived velocities and the drifter-based velocities will be directly comparable, regarding the way of vertically averaging the velocity field.The new drifter, codenamed STRING, exhibits identical behavior to the classical CODE design under relatively homogeneous conditions in the upper 1 m layer, however it is expected to follow a significantly different track in conditions of high vertical shear and stratification. Thus, we suggest that the new design is the instrument of choice for validation of HFR installations, as it can be used in all conditions and behaves identically to CODEs when vertical shear is insignificant. Finally, we present results from three experiments using both drifter types in HFR-covered regions of the Eastern Mediterranean. More experiments are planned, incorporating design improvements dictated by the results of the preliminary field tests. This work was held in the framework of the project "Specifically Targeted for Radars INnovative Gauge (STRING)", funded by the Greek-French collaboration programme "Plato".
A Laboratory Study of Vortical Structures in Rotating Convection Plumes
NASA Astrophysics Data System (ADS)
Fu, Hao; Sun, Shiwei; Wang, Yuan; Zhou, Bowen; Thermal Turbulence Research Team
2015-11-01
A laboratory study of the columnar vortex structure in rotating Rayleigh-Bénard convection is conducted. A rectangular water tank is uniformly heated from below and cooled from above, with Ra = (6 . 35 +/- 0 . 77) ×107 , Ta = 9 . 84 ×107 , Pr = 7 . 34 . The columnar vortices are vertically aligned and quasi steady. Two 2D PIV systems were used to measure velocity field. One system performs horizontal scans at 9 different heights every 13.6s, covering 62% of the total depth. The other system scans vertically to obtain the vertical velocity profile. The measured vertical vorticity profiles of most vortices are quasi-linear with height while the vertical velocities are nearly uniform with only a small curvature. A simple model to deduce vertical velocity profile from vertical vorticity profile is proposed. Under quasi-steady and axisymmetric conditions, a ``vortex core'' assumption is introduced to simplify vertical vorticity equation. A linear ODE about vertical velocity is obtained whenever a vertical vorticity profile is given and solved with experimental data as input. The result is approximately in agreement with the measurement. This work was supported by Undergraduates Training Project (J1103410).
Flow tilt angle measurements using lidar anemometry
NASA Astrophysics Data System (ADS)
Dellwik, Ebba; Mann, Jakob
2010-05-01
A new way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 minute mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175m above ground level, (2) a reference site in flat agricultural terrain and (3) a second reference site in very complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by comparing tilt estimates at various heights. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. However, the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical, the measurement height and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2 degrees. Other possibilities for utilizing lidars for flow tilt angle and mean vertical velocities are discussed.
Land motion estimates from GPS at tide gauges: a geophysical evaluation
NASA Astrophysics Data System (ADS)
Bouin, M. N.; Wöppelmann, G.
2010-01-01
Space geodesy applications have mainly been limited to horizontal deformations due to a number of restrictions on the vertical component accuracy. Monitoring vertical land motion is nonetheless of crucial interest in observations of long-term sea level change or postglacial rebound measurements. Here, we present a global vertical velocity field obtained with more than 200 permanent GPS stations, most of them colocated with tide gauges (TGs). We used a state of the art, homogeneous processing strategy to ensure that the reference frame was stable throughout the observation period of almost 10 yr. We associate realistic uncertainties to our vertical rates, taking into account the time-correlation noise in the time-series. The results are compared with two independent geophysical vertical velocity fields: (1) vertical velocity estimates using long-term TG records and (2) postglacial model predictions from the ICE-5G (VM2) adjustment. The quantitative agreement of the GPS vertical velocities with the `internal estimates' of vertical displacements using the TG record is very good, with a mean difference of -0.13 +/- 1.64 mm yr-1 on more than 100 sites. For 84 per cent of the GPS stations considered, the vertical velocity is confirmed by the TG estimate to within 2 mm yr-1. The overall agreement with the glacial isostatic adjustment (GIA) model is good, with discrepancy patterns related either to a local misfit of the model or to active tectonics. For 72 per cent of the sites considered, the predictions of the GIA model agree with the GPS results to within two standard deviations. Most of the GPS velocities showing discrepancies with respect to the predictions of the GIA model are, however, consistent with previously published space geodesy results. We, in turn, confirm the value of 1.8 +/- 0.5 mm yr-1 for the 20th century average global sea level rise, and conclude that GPS is now a robust tool for vertical land motion monitoring which is accurate at least at 1 mm yr-1.
GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift
NASA Astrophysics Data System (ADS)
Hammond, William C.; Blewitt, Geoffrey; Kreemer, Corné
2016-10-01
We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.
NASA Astrophysics Data System (ADS)
Tulasi Ram, S.; Ajith, K. K.; Yokoyama, T.; Yamamoto, M.; Niranjan, K.
2017-06-01
The vertical rise velocity (Vr) and maximum altitude (Hm) of equatorial plasma bubbles (EPBs) were estimated using the two-dimensional fan sector maps of 47 MHz Equatorial Atmosphere Radar (EAR), Kototabang, during May 2010 to April 2013. A total of 86 EPBs were observed out of which 68 were postsunset EPBs and remaining 18 EPBs were observed around midnight hours. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller ( 26-128 m/s) compared to those observed in postsunset hours ( 45-265 m/s). Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The three-dimensional numerical high-resolution bubble (HIRB) model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model. The smaller vertical rise velocities (Vr) and lower maximum altitudes (Hm) of EPBs during midnight hours are discussed in terms of weak polarization electric fields within the bubble due to weaker background electric fields and reduced background ion density levels.
Two-dimensional, average velocity field across the Asal Rift, Djibouti from 1997-2008 RADARSAT data
NASA Astrophysics Data System (ADS)
Tomic, J.; Doubre, C.; Peltzer, G.
2009-12-01
Located at the western end of the Aden ridge, the Asal Rift is the first emerged section of the ridge propagating into Afar, a region of intense volcanic and tectonic activity. We construct a two-dimensional surface velocity map of the 200x400 km2 region covering the rift using the 1997-2008 archive of InSAR data acquired from ascending and descending passes of the RADARSAT satellite. The large phase signal due to turbulent troposphere conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. We combine the ascending and descending pass LOS velocity fields with the Arabia-Somalia pole of rotation adjusted to regional GPS velocities (Vigny et al., 2007) to compute the fields of the vertical and horizontal, GPS-parallel components of the velocity over the rift. The vertical velocity field shows a ~40 km wide zone of doming centered over the Fieale caldera associated with shoulder uplift and subsidence of the rift inner floor. Differential movement between shoulders and floor is accommodated by creep at 6 mm/yr on Fault γ and 2.7 mm/yr on Fault E. The horizontal field shows that the two shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift to the plate motion rate of ~11 mm/yr. Part of the opening is concentrated on faults γ (5 mm/yr) and E (4 mm/yr) and about 4 mm/yr is distributed between Fault E and Fault H in the southern part of the rift. The observed velocity field along a 60 km-long profile across the eastern part of the rift can be explained with a 2D mechanical model involving a 5-9 km-deep, vertical dyke expanding horizontally at a rate of 5 cm/yr, a 2 km-wide, 7 km-deep sill expanding vertically at 1cm/yr, and down-dip and opening of faults γ and E. Results from 3D rift models describing along-strike velocity decrease away from the Goubbet Gulf and the effects of a pressurized magma chamber will be presented.
The power spectrum of solar convection flows from high-resolution observations and 3D simulations
NASA Astrophysics Data System (ADS)
Yelles Chaouche, L.; Moreno-Insertis, F.; Bonet, J. A.
2014-03-01
Context. Understanding solar surface magnetoconvection requires the study of the Fourier spectra of the velocity fields. Nowadays, observations are available that resolve very small spatial scales, well into the subgranular range, almost reaching the scales routinely resolved in numerical magnetoconvection simulations. Comparison of numerical and observational data at present can provide an assessment of the validity of the observational proxies. Aims: Our aims are: (1) to obtain Fourier spectra for the photospheric velocity fields using the spectropolarimetric observations with the highest spatial resolution so far (~120 km), thus reaching for the first time spatial scales well into the subgranular range; (2) to calculate corresponding Fourier spectra from realistic 3D numerical simulations of magnetoconvection and carry out a proper comparison with their observational counterparts considering the residual instrumental degradation in the observational data; and (3) to test the observational proxies on the basis of the numerical data alone, by comparing the actual velocity field in the simulations with synthetic observations obtained from the numerical boxes. Methods: (a) For the observations, data from the SUNRISE/IMaX spectropolarimeter are used. (b) For the simulations, we use four series of runs obtained with the STAGGER code for different average signed vertical magnetic field values (0, 50, 100, and 200 G). Spectral line profiles are synthesized from the numerical boxes for the same line observed by IMaX (Fe I 5250.2 Å) and degraded to match the performance of the IMaX instrument. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (LCT, for the horizontal component). Fourier power spectra are calculated and a comparison between the synthetic and observational data sets carried out. (c) For the internal comparison of the numerical data, velocity values on constant optical depth surfaces are used instead of on horizontal planes. Results: A very good match between observational and simulated Fourier power spectra is obtained for the vertical velocity data for scales between 200 km and 6 Mm. Instead, a clear vertical shift is obtained when the synthetic observations are not degraded to emulate the degradation in the IMaX data. The match for the horizontal velocity data is much less impressive because of the inaccuracies of the LCT procedure. Concerning the internal comparison of the direct velocity values of the numerical boxes with those from the synthetic observations, a high correlation (0.96) is obtained for the vertical component when using the velocity values on the log τ500 = -1 surface in the box. The corresponding Fourier spectra are near each other. A lower maximum correlation (0.5) is reached (at log τ500 = 0) for the horizontal velocities as a result of the coarseness of the LCT procedure. Correspondingly, the Fourier spectra for the LCT-determined velocities is well below that from the actual velocity components. Conclusions: As measured by the Fourier spectra, realistic numerical simulations of surface magnetoconvection provide a very good match to the observational proxies for the photospheric velocity fields at least on scales from several Mm down to around 200 km. Taking into account the spatial and spectral instrumental blurring is essential for the comparison between simulations and observations. Dopplergrams are an excellent proxy for the vertical velocities on constant-τ isosurfaces, while LCT is a much less reliable method of determining the horizontal velocities.
GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift
Blewitt, Geoffrey; Kreemer, Corné
2016-01-01
Abstract We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5–20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011–2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane. PMID:27917328
GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift.
Hammond, William C; Blewitt, Geoffrey; Kreemer, Corné
2016-10-01
We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.
Evaluation of the Ott Hydromet Qliner for measuring discharge in laboratory and field conditions
McVay, Jason C.
2015-01-01
The U.S. Geological Survey, in collaboration with the University of Iowa IIHR – Hydroscience and Engineering, evaluated the use of the Ott Hydromet Qliner using laboratory flume tests along with field validation tests. Analysis of the flume testing indicates the velocities measured by the Qliner at a 40-second exposure time results in higher dispersion of velocities from the mean velocity of data collected with a 5-minute exposure time. The percent data spread from the mean of a 100-minute mean of Qliner velocities for a 40-second exposure time averaged 16.6 percent for the entire vertical, and a 5-minute mean produced a 6.2 percent data spread from the 100-minute mean. This 16.6 percent variation in measured velocity would result in a 3.32 percent variation in computed discharge assuming 25 verticals while averaging 4 bins in each vertical. The flume testing also provided results that indicate the blanking distance of 0.20 meters is acceptable when using beams 1 and 2, however beam 3 is negatively biased near the transducer and the 0.20-meter blanking distance is not sufficient. Field testing included comparing the measured discharge by the Qliner to the discharge measured by a Price AA mechanical current meter and a Teledyne RDI Rio Grande 1200 kilohertz acoustic Doppler current profiler. The field tests indicated a difference between the discharges measured with the Qliner and the field reference discharge between -14.0 and 8.0 percent; however the average percent difference for all 22 field comparisons was 0.22, which was not statistically significant.
NASA Astrophysics Data System (ADS)
Prabhu, M.; Unnikrishnan, K.
2018-04-01
In the present work, we analyzed the daytime vertical E × B drift velocities obtained from Jicamarca Unattended Long-term Ionosphere Atmosphere (JULIA) radar and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca, and Piura in Peru for 22 geomagnetically disturbed events in which either SC has occurred or Dstmax < -50 nT during the period 2006-2011. The ΔH component of geomagnetic field is measured as the differences in the magnitudes of horizontal H component between magnetometer placed directly on the magnetic equator and one displaced 6-9° away. It will provide a direct measure of the daytime electrojet current, due to the eastward electric field. This will in turn gives the magnitude of vertical E × B drift velocity in the F region. A positive correlation exists between peak values of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of the events. It was observed that 45% of the events have daytime vertical E × B drift velocity peak in the magnitude range 10-20 m/s and 20-30 m/s and 20% have peak ΔH in the magnitude range 50-60 nT and 80-90 nT. It was observed that the time of occurrence of the peak value of both the vertical E × B drift velocity and the ΔH have a maximum (40%) probability in the same time range 11:00-13:00 LT. We also investigated the correlation between E × B drift velocity and Dst index and the correlation between delta H and Dst index. A strong positive correlation is found between E × B drift and Dst index as well as between delta H and Dst Index. Three different techniques of data analysis - linear, polynomial (order 2), and polynomial (order 3) regression analysis were considered. The regression parameters in all the three cases were calculated using the Least Square Method (LSM), using the daytime vertical E × B drift velocity and ΔH. A formula was developed which indicates the relationship between daytime vertical E × B drift velocity and ΔH, for the disturbed periods. The E × B drift velocity was then evaluated using the formulae thus found for the three regression analysis and validated for the 'disturbed periods' of 3 selected events. The E × B drift velocities estimated by the three regression analysis have a fairly good agreement with JULIA radar observed values under different seasons and solar activity conditions. Root Mean Square (RMS) errors calculated for each case suggest that polynomial (order 3) regression analysis provides a better agreement with the observations from among the three.
Flow tilt angles near forest edges - Part 2: Lidar anemometry
NASA Astrophysics Data System (ADS)
Dellwik, E.; Mann, J.; Bingöl, F.
2010-05-01
A novel way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 min mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175 m a.g.l. (above ground level), (2) a reference site in flat agricultural terrain and (3) a second reference site in complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by assuming zero tilt angle at high altitudes. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are potentially slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct, and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. It is demonstrated that the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2°. The results of the vertical conical scans were promising, and yielded positive flow angles for a sector where the forest is fetch-limited. However, more data and analysis are needed for a complete evaluation of the lidar technique.
Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals
Shupe, Matthew
2013-05-22
Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.
Comparison of current meters used for stream gaging
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.
1994-01-01
The U.S. Geological Survey (USGS) is field and laboratory testing the performance of several current meters used throughout the world for stream gaging. Meters tested include horizontal-axis current meters from Germany, the United Kingdom, and the People's Republic of China, and vertical-axis and electromagnetic current meters from the United States. Summarized are laboratory test results for meter repeatability, linearity, and response to oblique flow angles and preliminary field testing results. All current meters tested were found to under- and over-register velocities; errors usually increased as the velocity and angle of the flow increased. Repeatability and linearity of all meters tested were good. In the field tests, horizontal-axis meters, except for the two meters from the People's Republic of China, registered higher velocity than did the vertical-axis meters.
POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in
2016-12-10
For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less
Shear-wave velocity profiling according to three alternative approaches: A comparative case study
NASA Astrophysics Data System (ADS)
Dal Moro, G.; Keller, L.; Al-Arifi, N. S.; Moustafa, S. S. R.
2016-11-01
The paper intends to compare three different methodologies which can be used to analyze surface-wave propagation, thus eventually obtaining the vertical shear-wave velocity (VS) profile. The three presented methods (currently still quite unconventional) are characterized by different field procedures and data processing. The first methodology is a sort of evolution of the classical Multi-channel Analysis of Surface Waves (MASW) here accomplished by jointly considering Rayleigh and Love waves (analyzed according to the Full Velocity Spectrum approach) and the Horizontal-to-Vertical Spectral Ratio (HVSR). The second method is based on the joint analysis of the HVSR curve together with the Rayleigh-wave dispersion determined via Miniature Array Analysis of Microtremors (MAAM), a passive methodology that relies on a small number (4 to 6) of vertical geophones deployed along a small circle (for the common near-surface application the radius usually ranges from 0.6 to 5 m). Finally, the third considered approach is based on the active data acquired by a single 3-component geophone and relies on the joint inversion of the group-velocity spectra of the radial and vertical components of the Rayleigh waves, together with the Radial-to-Vertical Spectral Ratio (RVSR). The results of the analyses performed while considering these approaches (completely different both in terms of field procedures and data analysis) appear extremely consistent thus mutually validating their performances. Pros and cons of each approach are summarized both in terms of computational aspects as well as with respect to practical considerations regarding the specific character of the pertinent field procedures.
Flow over bedforms in a large sand-bed river: A field investigation
Holmes, Robert R.; Garcia, Marcelo H.
2008-01-01
An experimental field study of flows over bedforms was conducted on the Missouri River near St. Charles, Missouri. Detailed velocity data were collected under two different flow conditions along bedforms in this sand-bed river. The large river-scale data reflect flow characteristics similar to those of laboratory-scale flows, with flow separation occurring downstream of the bedform crest and flow reattachment on the stoss side of the next downstream bedform. Wave-like responses of the flow to the bedforms were detected, with the velocity decreasing throughout the flow depth over bedform troughs, and the velocity increasing over bedform crests. Local and spatially averaged velocity distributions were logarithmic for both datasets. The reach-wise spatially averaged vertical-velocity profile from the standard velocity-defect model was evaluated. The vertically averaged mean flow velocities for the velocity-defect model were within 5% of the measured values and estimated spatially averaged point velocities were within 10% for the upper 90% of the flow depth. The velocity-defect model, neglecting the wake function, was evaluated and found to estimate thevertically averaged mean velocity within 1% of the measured values.
Dakin, Roslyn; Fellows, Tyee K; Altshuler, Douglas L
2016-08-02
Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.
Site characterization at Groningen gas field area through joint surface-borehole H/V analysis
NASA Astrophysics Data System (ADS)
Spica, Zack J.; Perton, Mathieu; Nakata, Nori; Liu, Xin; Beroza, Gregory C.
2018-01-01
A new interpretation of the horizontal to vertical (H/V) spectral ratio in terms of the Diffuse Field Assumption (DFA) has fuelled a resurgence of interest in that approach. The DFA links H/V measurements to Green's function retrieval through autocorrelation of the ambient seismic field. This naturally allows for estimation of layered velocity structure. In this contribution, we further explore the potential of H/V analysis. Our study is facilitated by a distributed array of surface and co-located borehole stations deployed at multiple depths, and by detailed prior information on velocity structure that is available due to development of the Groningen gas field. We use the vertical distribution of H/V spectra recorded at discrete depths inside boreholes to obtain shear wave velocity models of the shallow subsurface. We combine both joint H/V inversion and borehole interferometry to reduce the non-uniqueness of the problem and to allow faster convergence towards a reliable velocity model. The good agreement between our results and velocity models from an independent study validates the methodology, demonstrates the power of the method, but more importantly provides further constraints on the shallow velocity structure, which is an essential component of integrated hazard assessment in the area.
Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295
Vertical amplitude phase structure of a low-frequency acoustic field in shallow water
NASA Astrophysics Data System (ADS)
Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.
2016-11-01
We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.
Inference and Biogeochemical Response of Vertical Velocities inside a Mode Water Eddy
NASA Astrophysics Data System (ADS)
Barceló-Llull, B.; Pallas Sanz, E.; Sangrà, P.
2016-02-01
With the aim to study the modulation of the biogeochemical fluxes by the ageostrophic secondary circulation in anticyclonic mesoscale eddies, a typical eddy of the Canary Eddy Corridor was interdisciplinary surveyed on September 2014 in the framework of the PUMP project. The eddy was elliptical shaped, 4 month old, 110 km diameter and 400 m depth. It was an intrathermocline type often also referred as mode water eddy type. We inferred the mesoscale vertical velocity field resolving a generalized omega equation from the 3D density and ADCP velocity fields of a five-day sampled CTD-SeaSoar regular grid centred on the eddy. The grid transects where 10 nautical miles apart. Although complex, in average, the inferred omega velocity field (hereafter w) shows a dipolar structure with downwelling velocities upstream of the propagation path (west) and upwelling velocities downstream. The w at the eddy center was zero and maximum values were located at the periphery attaining ca. 6 m day-1. Coinciding with the occurrence of the vertical velocities cells a noticeable enhancement of phytoplankton biomass was observed at the eddy periphery respect to the far field. A corresponding upward diapycnal flux of nutrients was also observed at the periphery. As minimum velocities where reached at the eddy center, lineal Ekman pumping mechanism was discarded. Minimum values of phytoplankton biomass where also observed at the eddy center. The possible mechanisms for such dipolar w cell are still being investigated, but an analysis of the generalized omega equation forcing terms suggest that it may be a combination of horizontal deformation and advection of vorticity by the ageostrophic current (related to nonlinear Ekman pumping). As expected for Trades, the wind was rather constant and uniform with a speed of ca. 5 m s-1. Diagnosed nonlinear Ekman pumping leaded also to a dipolar cell that mirrors the omega w dipolar cell.
NASA Astrophysics Data System (ADS)
Blanke, Bruno; Speich, Sabrina; Rusciano, Emanuela
2015-01-01
We use the tracer and velocity fields of a climatological ocean model to investigate the ability of Argo-like data to estimate accurately water mass movements and transformations, in the style of analyses commonly applied to the output of ocean general circulation model. To this end, we introduce an algorithm for the reconstruction of a fully non-divergent three-dimensional velocity field from the simple knowledge of the model vertical density profiles and 1000-m horizontal velocity components. The validation of the technique consists in comparing the resulting pathways for Antarctic Intermediate Water in the South Atlantic Ocean to equivalent reference results based on the full model information available for velocity and tracers. We show that the inclusion of a wind-induced Ekman pumping and of a well-thought-out expression for vertical velocity at the level of the intermediate waters is essential for the reliable reproduction of quantitative Lagrangian analyses. Neglecting the seasonal variability of the velocity and tracer fields is not a significant source of errors, at least well below the permanent thermocline. These results give us confidence in the success of the adaptation of the algorithm to true gridded Argo data for investigating the dynamics of flows in the ocean interior.
Miehls, Scott M.; Johnson, Nicholas; Haro, Alexander
2017-01-01
We tested the efficacy of a vertically oriented field of pulsed direct current (VEPDC) created by an array of vertical electrodes for guiding downstream-moving juvenile Sea Lampreys Petromyzon marinus to a bypass channel in an artificial flume at water velocities of 10–50 cm/s. Sea Lampreys were more likely to be captured in the bypass channel than in other sections of the flume regardless of electric field status (on or off) or water velocity. Additionally, Sea Lampreys were more likely to be captured in the bypass channel when the VEPDC was active; however, an interaction between the effects of VEPDC and water velocity was observed, as the likelihood of capture decreased with increases in water velocity. The distribution of Sea Lampreys shifted from right to left across the width of the flume toward the bypass channel when the VEPDC was active at water velocities less than 25 cm/s. The VEPDC appeared to have no effect on Sea Lamprey distribution in the flume at water velocities greater than 25 cm/s. We also conducted separate tests to determine the threshold at which Sea Lampreys would become paralyzed. Individuals were paralyzed at a mean power density of 37.0 µW/cm3. Future research should investigate the ability of juvenile Sea Lampreys to detect electric fields and their specific behavioral responses to electric field characteristics so as to optimize the use of this technology as a nonphysical guidance tool across variable water velocities.
NASA Astrophysics Data System (ADS)
Lavanya, B.
2017-07-01
The present paper analyses a solution for the transient free flow on a viscous and incompressible fluid between two vertical walls as a result of heta and mass transfer. The perturbation technique ahs been used to find the solutions for the velocity and temperature fields by solving the governing partial differential equations. The temperature of the one plate is assumed to be fluctuating. The effcets of the various parametrs entering into the problem, on the velocity and the temprature are depivted graphically. The impact of various parameters (Da, Rv, Pr, R and S) on velocity and temperature fields are shown graphically. The expressions for skin friction at both walls are also obtained.
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, B.; Iudicone, D.; Cotroneo, Y.; Zambianchi, E.; Rio, M. H.
2016-02-01
In the framework of the Italian National Program on Antarctic Research (PNRA), an analysis of the mesoscale dynamics along the Antarctic Circumpolar Current has been carried out starting from a combination of satellite and in situ observations. More specifically, state-of-the-art statistical techniques have been used to combine remotely-sensed sea surface temperature, salinity and absolute dynamical topography with in situ Argo data, providing mesoscale-resolving 3D tracers and geostrophic velocity fields. The 3D reconstruction has been validated with independent data collected during PNRA surveys. These data are then used to diagnose the vertical exchanges in the Southern Ocean through a generalized version of the Omega equation. Intense vertical motion (O(100 m/day)) is found along the ACC, upstream/downstream of its meanders, and within mesoscale eddies, where multipolar vertical velocity patterns are generally observed.
Vertical velocity structure and geometry of clear air convective elements
NASA Technical Reports Server (NTRS)
Rowland, J. R.; Arnold, A.
1975-01-01
The paper discusses observations of individual convective elements with a high-power narrow-beam scanning radar, an FM-CW radar, and an acoustic sounder, including the determination of the vertical air velocity patterns of convective structures with the FM-CW radar and acoustic sounder. Data are presented which link the observed velocity structure and geometrical patterns to previously proposed models of boundary layer convection. It is shown that the high-power radar provides a clear three-dimensional picture of convective cells and fields over a large area with a resolution of 150 m, where the convective cells are roughly spherical. Analysis of time-height records of the FM-CW radar and acoustic sounder confirms the downdraft-entrainment mechanism of the convective cell. The Doppler return of the acoustic sounder and the insect-trail slopes on FM-CW radar records are independent but redundant methods for obtaining the vertical velocity patterns of convective structures.
Field Measurements of Reynolds Stress near a Riverbank
Moody, J.A.; Smith, J.D.; ,
2002-01-01
The Reynolds stress field was measured near the bank of the Powder River in southeastern Montana. The measurements were made from the bank using an aluminum I-beam cantilevered over the water to support a carriage system for positioning an acoustic doppler velocimeter in a vertical plane perpendicular to 1) the bank and 2) the streamwise velocity field. During quasi-steady flow at the peak (71 m3s-1) of the spring snowmelt runoff in May 1996, turbulent velocities were measured at 25 Hertz along six vertical locations spaced 0.5 m apart and within about 3.5 m of the riverbank. When the turbulent velocities are transformed to the ray-isovel coordinate system appropriate for this two-dimension problem, the turbulent characteristics near the bed are consistent with similar field measurements made by others for the one-dimensional problem of uniform flow over a horizontal bed far from lateral boundaries. The three turbulent intensities, (u???2) 1/2, (v???2)1/2 and (w??? 2)1/2, normalized by the local shear velocity, u*, were essentially constant with distance above the bed along a ray and the average values were 2.1, 1.4, and 1.2. Future turbulence measurements could be improved by measuring the streamwise flow first, then determining the approximate location of the rays and isovels so that the turbulence measurements could be made along the approximated rays rather than along verticals. In addition, to improve the possibility making turbulence measurements during steady, uniform flow, the site should be carefully selected to minimize local flow accelerations caused by spatial variability of the riverbank. Also, the measurements should be made at times when the stage is constant, no local erosion or deposition of sediment occurs, and when wind velocities are small.
DOT National Transportation Integrated Search
2003-04-01
Surface wave (Rayleigh wave) seismic data were acquired at six separate bridge sites in southeast Missouri. Each acquired surface wave data set was processed (spectral analysis of surface waves; SASW) and transformed into a site-specific vertical she...
Magnetic activity in the Galactic Centre region - fast downflows along rising magnetic loops
NASA Astrophysics Data System (ADS)
Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Enokiya, Rei; Machida, Mami; Matsumoto, Ryoji
2018-06-01
We studied roles of the magnetic field on the gas dynamics in the Galactic bulge by a three-dimensional global magnetohydrodynamical simulation data, particularly focusing on vertical flows that are ubiquitously excited by magnetic activity. In local regions where the magnetic field is stronger, it is frequently seen that fast downflows slide along inclined magnetic field lines that are associated with buoyantly rising magnetic loops. The vertical velocity of these downflows reaches ˜100 km s-1 near the footpoint of the loops by the gravitational acceleration towards the Galactic plane. The two footpoints of rising magnetic loops are generally located at different radial locations and the field lines are deformed by the differential rotation. The angular momentum is transported along the field lines, and the radial force balance breaks down. As a result, a fast downflow is often observed only at the one footpoint located at the inner radial position. The fast downflow compresses the gas to form a dense region near the footpoint, which will be important in star formation afterwards. Furthermore, the horizontal components of the velocity are also fast near the footpoint because the downflow is accelerated along the magnetic sliding slope. As a result, the high-velocity flow creates various characteristic features in a simulated position-velocity diagram, depending on the viewing angle.
Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight
NASA Technical Reports Server (NTRS)
Moore, Steven T.; Cohen, Bernard; Raphan, Theodore; Berthoz, Alain; Clement, Gilles
2005-01-01
On Earth, eye velocity of horizontal optokinetic nystagmus (OKN) orients to gravito-inertial acceleration (GIA), the sum of linear accelerations acting on the head and body. We determined whether adaptation to micro-gravity altered this orientation and whether ocular pursuit exhibited similar properties. Eye movements of four astronauts were recorded with three-dimensional video-oculography. Optokinetic stimuli were stripes moving horizontally, vertically, and obliquely at 30 degrees/s. Ocular pursuit was produced by a spot moving horizontally or vertically at 20 degrees/s. Subjects were either stationary or were centrifuged during OKN with 1 or 0.5 g of interaural or dorsoventral centripetal linear acceleration. Average eye position during OKN (the beating field) moved into the quick-phase direction by 10 degrees during lateral and upward field movement in all conditions. The beating field did not shift up during downward OKN on Earth, but there was a strong upward movement of the beating field (9 degrees) during downward OKN in the absence of gravity; this likely represents an adaptation to the lack of a vertical 1-g bias in-flight. The horizontal OKN velocity axis tilted 9 degrees in the roll plane toward the GIA during interaural centrifugation, both on Earth and in space. During oblique OKN, the velocity vector tilted towards the GIA in the roll plane when there was a disparity between the direction of stripe motion and the GIA, but not when the two were aligned. In contrast, dorsoventral acceleration tilted the horizontal OKN velocity vector 6 degrees in pitch away from the GIA. Roll tilts of the horizontal OKN velocity vector toward the GIA during interaural centrifugation are consistent with the orientation properties of velocity storage, but pitch tilts away from the GIA when centrifuged while supine are not. We speculate that visual suppression during OKN may have caused the velocity vector to tilt away from the GIA during dorsoventral centrifugation. Vertical OKN and ocular pursuit did not exhibit orientation toward the GIA in any condition. Static full-body roll tilts and centrifugation generating an equivalent interaural acceleration produced the same tilts in the horizontal OKN velocity before and after flight. Thus, the magnitude of tilt in OKN velocity was dependent on the magnitude of interaural linear acceleration, rather than the tilt of the GIA with regard to the head. These results favor a 'filter' model of spatial orientation in which orienting eye movements are proportional to the magnitude of low frequency interaural linear acceleration, rather than models that postulate an internal representation of gravity as the basis for spatial orientation.
Multifractal Analysis of Velocity Vector Fields and a Continuous In-Scale Cascade Model
NASA Astrophysics Data System (ADS)
Fitton, G.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.
2012-04-01
In this study we have compared the multifractal analyses of small-scale surface-layer wind velocities from two different datasets. The first dataset consists of six-months of wind velocity and temperature measurements at the heights 22, 23 and 43m. The measurements came from 3D sonic anemometers with a 10Hz data output rate positioned on a mast in a wind farm test site subject to wake turbulence effects. The location of the test site (Corsica, France) meant the large scale structures were subject to topography effects that therefore possibly caused buoyancy effects. The second dataset (Germany) consists of 300 twenty minute samples of horizontal wind velocity magnitudes simultaneously recorded at several positions on two masts. There are eight propeller anemometers on each mast, recording velocity magnitude data at 2.5Hz. The positioning of the anemometers is such that there are effectively two grids. One grid of 3 rows by 4 columns and a second of 5 rows by 2 columns. The ranges of temporal scale over which the analyses were done were from 1 to 103 seconds for both datasets. Thus, under the universal multifractal framework we found both datasets exhibit parameters α ≈ 1.5 and C1 ≈ 0.1. The parameters α and C1, measure respectively the multifractality and mean intermittency of the scaling field. A third parameter, H, quantifies the divergence from conservation of the field (e.g. H = 0 for the turbulent energy flux density). To estimate the parameters we used the ratio of the scaling moment function of the energy flux and of the velocity increments. This method was particularly useful when estimating the parameter α over larger scales. In fact it was not possible to obtain a reasonable estimate of alpha using the usual double trace moment method. For each case the scaling behaviour of the wind was almost isotropic when the scale ranges remained close to the sphero-scale. For the Corsica dataset this could be seen by the agreement of the spectral exponents of the order of 1.5 for all three components. Given we have only the horizontal wind components over a grid for the Germany dataset the comparable probability distributions of horizontal and vertical velocity increments shows the field is isotropic. The Germany dataset allows us to compare the spatial velocity increments with that of the temporal. We briefly mentioned above that the winds in Corsica were subject to vertical forcing effects over large scales. This means the velocity field scaled as 11/5 i.e. Bolgiano-Obukhov instead of Kolmogorov's. To test this we were required to invoke Taylor's frozen turbulence hypothesis since the data was a one point measurement. Having vertical and horizontal velocity increments means we can further justify the claims of an 11/5 scaling law for vertical shears of the velocity and test the validity of the Taylor's hypothesis. We used the results to first simulate the velocity components using continuous in-scale cascades and then discuss the reconstruction of the full vector fields.
A numerical circulation model with topography for the Martian Southern Hemisphere
NASA Technical Reports Server (NTRS)
Mass, C.; Sagan, C.
1975-01-01
A quasi-geostrophic numerical model, including friction, radiation, and the observed planetary topography, is applied to the general circulation of the Martian atmosphere in the Southern Hemisphere at latitudes south of about 35 deg. Near equilibrium weather systems developed after about 5 model days. To avoid violating the quasi-geostrophic approximation, only 0.8 of the already smoothed relief was employed. Weather systems and velocity fields are strikingly tied to topography. A 2mb middle latitude jet stream is found of remarkably terrestrial aspect. Highest surface velocities, both horizontal and vertical, are predicted in western Hellas Planitia and eastern Argyre Planitia, which are observed to be preferred sites of origin of major Martian dust storms. Mean horizontal velocities and vertical velocities are found just above the surface velocity boundary layer.
Wind tunnel investigation of a 14 foot vertical axis windmill
NASA Technical Reports Server (NTRS)
Muraca, R. J.; Guillotte, R. J.
1976-01-01
A full scale wind tunnel investigation was made to determine the performance characteristics of a 14 ft diameter vertical axis windmill. The parameters measured were wind velocity, shaft torque, shaft rotation rate, along with the drag and yawing moment. A velocity survey of the flow field downstream of the windmill was also made. The results of these tests along with some analytically predicted data are presented in the form of generalized data as a function of tip speed ratio.
On the Magnetism and Dynamics of Prominence Legs Hosting Tornadoes
NASA Astrophysics Data System (ADS)
Martínez González, M. J.; Asensio Ramos, A.; Arregui, I.; Collados, M.; Beck, C.; de la Cruz Rodríguez, J.
2016-07-01
Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires an understanding of their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here we analyze four consecutive spectro-polarimetric scans of a prominence hosting tornadoes on its legs, which helps us shed some light on their magnetic and dynamical properties. We show that the magnetic field is very smooth in all the prominence, which is probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation that is probably related to the motion of the fibrils. Concerning the dynamics, we argue that (1) if rotation exists, it is intermittent, lasting no more than one hour, and (2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).
ON THE MAGNETISM AND DYNAMICS OF PROMINENCE LEGS HOSTING TORNADOES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez González, M. J.; Ramos, A. Asensio; Arregui, I.
2016-07-10
Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires an understanding of their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here we analyze four consecutive spectro-polarimetric scans of a prominence hosting tornadoes on its legs, which helps us shed some light on their magnetic and dynamical properties. We show thatmore » the magnetic field is very smooth in all the prominence, which is probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation that is probably related to the motion of the fibrils. Concerning the dynamics, we argue that (1) if rotation exists, it is intermittent, lasting no more than one hour, and (2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).« less
Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.
Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud
2017-07-01
Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.
Lapham, Wayne W.
1989-01-01
The use of temperature profiles beneath streams to determine rates of vertical ground-water flow and effective vertical hydraulic conductivity of sediments was evaluated at three field sites by use of a model that numerically solves the partial differential equation governing simultaneous vertical flow of fluid and heat in the Earth. The field sites are located in Hardwick and New Braintree, Mass., and in Dover, N.J. In New England, stream temperature varies from about 0 to 25 ?C (degrees Celsius) during the year. This stream-temperature fluctuation causes ground-water temperatures beneath streams to fluctuate by more than 0.1 ?C during a year to a depth of about 35 ft (feet) in fine-grained sediments and to a depth of about 50 ft in coarse-grained sediments, if ground-water velocity is 0 ft/d (foot per day). Upward flow decreases the depth affected by stream-temperature fluctuation, and downward flow increases the depth. At the site in Hardwick, Mass., ground-water flow was upward at a rate of less than 0.01 ft/d. The maximum effective vertical hydraulic conductivity of the sediments underlying this site is 0.1 ft/d. Ground-water velocities determined at three locations at the site in New Braintree, Mass., where ground water discharges naturally from the underlying aquifer to the Ware River, ranged from 0.10 to 0.20 ft/d upward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.4 to 17.1 ft/d. Ground-water velocities determined at three locations at the Dover, N.J., site, where infiltration from the Rockaway River into the underlying sediments occurs because of pumping, were 1.5 ft/d downward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.2 to 2.5 ft/d. Independent estimates of velocity at two of the three sites are in general agreement with the velocities determined using temperature profiles. The estimates of velocities and conductivities derived from the temperature measurements generally fall within the ranges of expected rates of flow in, and conductivities of, the sediments encountered at the test sites. Application of the method at the three test sites demonstrates the feasibility of using the method to determine the rate of ground-water flow between a stream and underlying sediments and the effective vertical hydraulic conductivity of the sediments.
Flow-field Survey of an Empennage Wake Interacting with a Pusher Propeller
NASA Technical Reports Server (NTRS)
Horne, W. Clifton; Soderman, Paul T.
1988-01-01
The flow field between a model empennage and a 591-mm-diameter pusher propeller was studied in the Ames 7- by 10-Foot Wind Tunnel with directional pressure probes and hot-wire anemometers. The region probed was bounded by the empennage trailing edge and downstream propeller. The wake properties, including effects of propeller operation on the empennage wake, were investigated for two empennage geometries: one, a vertical tail fin, the other, a Y-tail with a 34 deg dihedral. Results showed that the effect of the propeller on the empennage wake upstream of the propeller was not strong. The flow upstream of the propeller was accelerated in the streamwise direction by the propeller, but the empennage wake width and velocity defect were relatively unaffected by the presence of the propeller. The peak turbulence in the wake near the propeller tip station, 0.66 diameter behind the vertical tail fin, was approximately 3 percent of the free-stream velocity. The velocity field data can be used in predictions of the acoustic field due to propeller-wake interaction.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe 3 O 4) was selected as a conventional base fluid. In addition, non-magnetic (Al 2 O 3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in
2015-10-10
The dynamical state of the solar and stellar atmospheres depends on the macroscopic velocity fields prevailing within them. The presence of such velocity fields in the line formation regions strongly affects the polarized radiation field emerging from these atmospheres. Thus it becomes necessary to solve the radiative transfer equation for polarized lines in moving atmospheres. Solutions based on the “observer’s frame method” are computationally expensive to obtain, especially when partial frequency redistribution (PRD) in line scattering and large-amplitude velocity fields are taken into account. In this paper we present an efficient alternative method of solution, namely, the comoving frame technique,more » to solve the polarized PRD line formation problems in the presence of velocity fields. We consider one-dimensional planar isothermal atmospheres with vertical velocity fields. We present a study of the effect of velocity fields on the emergent linear polarization profiles formed in optically thick moving atmospheres. We show that the comoving frame method is far superior when compared to the observer’s frame method in terms of the computational speed and memory requirements.« less
NASA Technical Reports Server (NTRS)
Coley, W. R.
1986-01-01
The establishment of the latitudinal and longitudinal structure of the low latitude dynamo electric (DE) field was initiated using data primarily from the Unified Abstract (UA) files of the Atmosphere Explorer E (AE-E) satellite. Mass plots of the vertical ion drift values were made for 1977, 1978, and 1979. The average diurnal variation of V sub v within 20 degrees of the dip equator is remarkably similar to that obtained at Jicamarca in the same years. The average meridional ion drift velocity vectors, obtained as a function of latitude by combining the average vertical and horizontal (nearly north-south) ion drift values from the AE-E, showed the expected variations with local time and season based on the well known equatorial fountain effect theory. The average diurnal variation of the vertical drift was found for four different ranges of dip latitude for a northern solstice season. The effect of the transequatorial neutral winds was as evident in this plotting format as in the meridional or fountain effect format. Finally, the average vertical drift velocity V sub v, not the east-west electric field E sub ew, was found to be approximately independent of longitude, as expected from the dynamo theory.
An exact solution of solute transport by one-dimensional random velocity fields
Cvetkovic, V.D.; Dagan, G.; Shapiro, A.M.
1991-01-01
The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity. ?? 1991 Springer-Verlag.
Modeling dynamic behavior of superconducting maglev systems under external disturbances
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He
2017-08-01
For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.
The effect of vertical drift on the equatorial F-region stability
NASA Technical Reports Server (NTRS)
Hanson, W. B.; Cragin, B. L.; Dennis, A.
1986-01-01
Time-dependent ionospheric model calculations for day-time and night-time solutions are presented. The behavior of the growth rate and ion-electron recombination rate for the Rayleigh-Taylor instability on the F-region bottomside is examined as a function of the vertical eastward electric field-magnetic field strength drift velocity. It is observed that on the bottomside F-layer the growth rate exceeds the ion-electron recombination rate even without vertical drift; however, an eastward electric field-magnetic field strength drift can produce an increase in the growth rate by an order of magnitude. The calculated data are compared with previous research and good correlation is detected. The formation of bubbles from a seeding mechanism is investigated.
NASA Astrophysics Data System (ADS)
Black, Micheal L.; Burpee, Robert W.; Marks, Frank D., Jr.
1996-07-01
Vertical motions in seven Atlantic hurricanes are determined from data recorded by Doppler radars on research aircraft. The database consists of Doppler velocities and reflectivities from vertically pointing radar rays collected along radial flight legs through the hurricane centers. The vertical motions are estimated throughout the depth of the troposphere from the Doppler velocities and bulk estimates of particle fallspeeds.Portions of the flight tracks are subjectively divided into eyewall, rainband, stratiform, and `other' regions. Characteristics of the vertical velocity and radar structure are described as a function of altitude for the entire dataset and each of the four regions. In all of the regions, more than 70% of the vertical velocities range from 2 to 2 m s1. The broadest distribution of vertical motion is in the eyewall region where 5% of the vertical motions are >5 m s1. Averaged over the entire dataset, the mean vertical velocity is upward at all altitudes. Mean downward motion occurs only in the lower troposphere of the stratiform region. Significant vertical variations in the mean profiles of vertical velocity and reflectivity are discussed and related to microphysical processes.In the lower and middle troposphere, the characteristics of the Doppler-derived vertical motions are similar to those described in an earlier study using flight-level vertical velocities, even though the horizontal resolution of the Doppler data is 750 m compared to 125 m from the in situ flight-level measurements. The Doppler data are available at higher altitudes than those reached by turboprop aircraft and provide information on vertical as well as horizontal variations. In a vertical plane along the radial flight tracks, Doppler up- and downdrafts are defined at each 300-m altitude interval as vertical velocities whose absolute values continuously exceed 1.5 m s1, with at least one speed having an absolute value greater than 3.0 m s1. The properties of the Doppler drafts are lognormally distributed. In each of the regions, updrafts outnumber downdrafts by at least a factor of 2 and updrafts are wider and stronger than downdrafts. Updrafts in the eyewall slope radially outward with height and are significantly correlated over larger radial and vertical extents than in the other three regions. If the downwind (tangential) slope with height of updrafts varies little among the regions, updrafts capable of transporting air with relatively large moist static energy from the boundary layer to the upper troposphere are primarily in the eyewall region. Downdrafts affect a smaller vertical and horizontal area than updrafts and have no apparent radial slope.The total upward or downward mass flux is defined as the flux produced by all of the upward or downward Doppler vertical velocities. The maximum upward mass flux in all but the `other' region is near 1-km altitude, an indication that boundary-layer convergence is efficient in producing upward motion. Above the sea surface, the downward mass flux decreases with altitude. At every altitude, the total net mass flux is upward, except for the lower troposphere in the stratiform region where it is downward. Doppler-derived up- and downdrafts are a subset of the vertical velocity field that occupy small fractions of the total area, yet they contribute a substantial fraction to the total mass flux. In the eyewall and rainband regions, for example, the Doppler updrafts cover less than 30% of the area but are responsible for >75% and >50% to the total upward mass flux, respectively. The Doppler downdrafts typically encompass less than 10% of the area yet provide 50% of the total downward mass flux in the eyewall and 20% of the total downward flux in the rainband, stratiform, and `other' regions.
Relocation of Groningen seismicity using refracted waves
NASA Astrophysics Data System (ADS)
Ruigrok, E.; Trampert, J.; Paulssen, H.; Dost, B.
2015-12-01
The Groningen gas field is a giant natural gas accumulation in the Northeast of the Netherlands. The gas is in a reservoir at a depth of about 3 km. The naturally-fractured gas-filled sandstone extends roughly 45 by 25 km laterally and 140 m vertically. Decades of production have led to significant compaction of the sandstone. The (differential) compaction is thought to have reactivated existing faults and being the main driver of induced seismicity. Precise earthquake location is difficult due to a complicated subsurface, and that is the likely reason, the current hypocentre estimates do not clearly correlate with the well-known fault network. The seismic velocity model down to reservoir depth is quite well known from extensive seismic surveys and borehole data. Most to date earthquake detections, however, were made with a sparse pre-2015 seismic network. For shallow seismicity (<5 km depth) horizontal source-receiver distances tend to be much larger than vertical distances. Consequently, preferred source-receiver travel paths are refractions over high-velocity layers below the reservoir. However, the seismic velocities of layers below the reservoir are poorly known. We estimated an effective velocity model of the main refracting layer below the reservoir and use this for relocating past seismicity. We took advantage of vertical-borehole recordings for estimating precise P-wave (refraction) onset times and used a tomographic approach to find the laterally varying velocity field of the refracting layer. This refracting layer is then added to the known velocity model, and the combined model is used to relocate the past seismicity. From the resulting relocations we assess which of the faults are being reactivated.
The Effect of Low Energy Turbulence in Estuary Margins on Fine Sediment Settling
NASA Astrophysics Data System (ADS)
Allen, R. M.; MacVean, L. J.; Tse, I.; Mazzaro, L. J.; Stacey, M. T.; Variano, E. A.
2014-12-01
Sediment dynamics in estuaries and near shore regions control the growth or erosion of the bed and fringing wetlands, determine the spread of sediment-associated contaminants, and limit the light availability for primary productivity through turbidity. In estuaries such as San Francisco Bay, this sediment is often cohesive, and can flocculate. Changes to the composition of the sediment and waters, the suspended sediment concentration, and the turbulence can all affect the flocculation of suspended sediment. In turn, flocculation controls the particle diameter, settling velocity, density, and particle inertia. These sediment properties drive the turbulent diffusivity, which balances with the settling velocity to impact the vertical distribution of sediment in the water column. The vertical profile strongly affects how sediment is transported through the estuary by lateral flow. Turbulence may also impact settling velocity in non-cohesive particles. In turbulence, dense particles may get trapped in convergent flow regions, thus particles are more likely to get swept along the downward side of a turbulent eddy than the upward side, resulting in enhanced settling velocities. We isolated the impacts of turbulence level, particle size and type, and suspended sediment concentration on particle settling velocities using uniform grain size particles in homogeneous isotropic turbulence. Controlling the turbulence in a well-defined turbulence tank, we used Two Acoustic Doppler Velocimeters, separated vertically, to measure turbulent velocities (w') and suspended sediment concentrations (C), which yield condition dependent settling velocities (ws), via equation 1. Lab characterization of particle settling velocities help to validate the method for measuring settling velocities in the field, and will serve as a foundation for an extensive field experiment in San Francisco Bay. Characterizing the velocity enhancement relative to the Stokes number, the Rouse number, and the turbulent Reynolds number will enable more mechanistic predictions of sediment transport in low energy environments like protected estuary margins.
Kinematic and diabatic vertical velocity climatologies from a chemistry climate model
NASA Astrophysics Data System (ADS)
Marinke Hoppe, Charlotte; Ploeger, Felix; Konopka, Paul; Müller, Rolf
2016-05-01
The representation of vertical velocity in chemistry climate models is a key element for the representation of the large-scale Brewer-Dobson circulation in the stratosphere. Here, we diagnose and compare the kinematic and diabatic vertical velocities in the ECHAM/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model. The calculation of kinematic vertical velocity is based on the continuity equation, whereas diabatic vertical velocity is computed using diabatic heating rates. Annual and monthly zonal mean climatologies of vertical velocity from a 10-year simulation are provided for both kinematic and diabatic vertical velocity representations. In general, both vertical velocity patterns show the main features of the stratospheric circulation, namely, upwelling at low latitudes and downwelling at high latitudes. The main difference in the vertical velocity pattern is a more uniform structure for diabatic and a noisier structure for kinematic vertical velocity. Diabatic vertical velocities show higher absolute values both in the upwelling branch in the inner tropics and in the downwelling regions in the polar vortices. Further, there is a latitudinal shift of the tropical upwelling branch in boreal summer between the two vertical velocity representations with the tropical upwelling region in the diabatic representation shifted southward compared to the kinematic case. Furthermore, we present mean age of air climatologies from two transport schemes in EMAC using these different vertical velocities and analyze the impact of residual circulation and mixing processes on the age of air. The age of air distributions show a hemispheric difference pattern in the stratosphere with younger air in the Southern Hemisphere and older air in the Northern Hemisphere using the transport scheme with diabatic vertical velocities. Further, the age of air climatology from the transport scheme using diabatic vertical velocities shows a younger mean age of air in the inner tropical upwelling branch and an older mean age in the extratropical tropopause region.
Electrostatic turbulence intermittence driven by biasing in Texas Helimak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toufen, D. L.; Institute of Physics, University of São Paulo, 05315-970 São Paulo, São Paulo; Pereira, F. A. C.
We investigate changes in the intermittent sequence of bursts in the electrostatic turbulence due to imposed positive bias voltage applied to control the plasma radial electric field in Texas Helimak [K. W. Gentle and H. He, Plasma Sci. Technol. 10, 284 (2008)]—a toroidal plasma device with a one-dimensional equilibrium, magnetic curvature, and shear. We identify the burst characteristics by analyzing ion saturation current fluctuations collected in a large set of Langmuir probes. The number of bursts increase with positive biasing, giving rise to a long tailed skewed turbulence probability distribution function. The burst shape does not change much with themore » applied bias voltage, while their vertical velocity increases monotonically. For high values of bias voltage, the bursts propagate mainly in the vertical direction which is perpendicular to the radial density gradient and the toroidal magnetic field. Moreover, in contrast with the bursts in tokamaks, the burst velocity agrees with the phase velocity of the overall turbulence in both vertical and radial directions. For a fixed bias voltage, the time interval between bursts and their amplitudes follows exponential distributions. Altogether, these burst characteristics indicate that their production can be modelled by a stochastic process.« less
Evaluating a campaign GNSS velocity field derived from an online precise point positioning service
NASA Astrophysics Data System (ADS)
Holden, L.; Silcock, D.; Choy, S.; Cas, R.; Ailleres, L.; Fournier, N.
2017-01-01
Traditional processing of Global Navigation Satellite System (GNSS) data using dedicated scientific software has provided the highest levels of positional accuracy, and has been used extensively in geophysical deformation studies. To achieve these accuracies a significant level of understanding and training is required, limiting their availability to the general scientific community. Various online GNSS processing services, now freely available, address some of these difficulties and allow users to easily process their own GNSS data and potentially obtain high quality results. Previous research into these services has focused on Continually Operating Reference Station (CORS) GNSS data. Less research exists on the results achievable with these services using large campaign GNSS data sets, which are inherently noisier than CORS data. Even less research exists on the quality of velocity fields derived from campaign GNSS data processed through online precise point positioning services. Particularly, whether they are suitable for geodynamic and deformation studies where precise and reliable velocities are needed. In this research, we process a very large campaign GPS data set (spanning 10 yr) with the online Jet Propulsion Laboratory Automated Precise Positioning Service. This data set is taken from a GNSS network specifically designed and surveyed to measure deformation through the central North Island of New Zealand. This includes regional CORS stations. We then use these coordinates to derive a horizontal and vertical velocity field. This is the first time that a large campaign GPS data set has been processed solely using an online service and the solutions used to determine a horizontal and vertical velocity field. We compared this velocity field to that of another well utilized GNSS scientific software package. The results show a good agreement between the CORS positions and campaign station velocities obtained from the two approaches. We discuss the implications of these results for how future GNSS campaign field surveys might be conducted and how their data might be processed.
Turbulence spectra measured during fire front passage
Daisuke Seto; Craig B. Clements; Warren E. Heilman
2013-01-01
Four field experiments were conducted over various fuel and terrain to investigate turbulence generation during the passage of wildland fire fronts. Our results indicate an increase in horizontal mean winds and friction velocity, horizontal and vertical velocity variances as well as a decreased degree of anisotropy in TKE during fire front passage (FFP) due to fire-...
Analysis of current-meter data at Columbia River gaging stations, Washington and Oregon
Savini, John; Bodhaine, G.L.
1971-01-01
The U.S. Geological Survey developed equipment to measure stream velocity simultaneously with 10 current meters arranged in a vertical and to measure velocity closer to the streambed than attainable with conventional equipment. With the 10 current meters, synchronous velocities were recorded for a period of 66 minutes at 10 different depths in one vertical of one gaging-station cross section. In addition, with a current meter installed on a special bracket to allow measurements to 0.5 foot above streambed, data were obtained at two to four verticals in four gaging-station cross sections. The mean velocity determined for the 66-minute period of record was 3.30 fps (feet per second). The graphic record of velocity was analyzed on a minute-by-minute basis. It was noted that the shape of the vertical velocity curves (plot of horizontal flow velocities measured in a vertical) changed from one minute to the next, but the change seemed to be random. Velocities obtained at different depths in the, profile fluctuated significantly, with the 1-minute velocities obtained at 0.05 depth (5 percent of total depths measured from the surface at indicated vertical) showing the smallest range--0.66 fps--and those at 0.55 depth the largest range--l.22 fps. The standard deviation, expressed in feet per second, of the velocity at each point in the vertical tended to increase with depth--from 0.16 fps at 0.05 depth to a maximum of 0.24 fps at 0.75 depth. The standard deviation, expressed as a percentage of the mean velocity, ranged from about 4 percent near the surface to 11 percent at 0.95 depth. In spite of the fluctuation in mean velocity that occurred during the 66 minutes and observation period of 4 minutes yields a mean velocity that differs from the 66-minute mean by less than one-half of a percent. Determining the mean velocity by averaging the 10-point observations of the 66minute run proved to be as accurate as by plotting the vertical velocity curvy (from the averaged 10 points) and then integrating the depth-velocity profile. In comparing the velocity obtained by integrating the depth-velocity profile with the 10-point mean velocity for other field data, collected beyond that obtained during the 66-minute run, the difference ranged from -1.3 to +1.7 percent and averaged -0.2 percent. Extension of the curve below the 0.95 depth by use of a power function proved to be fairly accurate (when compared with actual measurements within this reach made with the special current-meter bracket). However, the extension did not improve significantly the accuracy of the integrated-curve mean velocity. Both the one- and two-point methods were found to agree with the 10-point velocity. In computing mean river velocity, values determined by the two-point method ranged from -1.4 to +1.6 percent when compared with the base integrated-curve mean river velocity. The one-point method yielded results that ranged from -1.9 to +4.4 percent and averaged 40.1 percent. In determining river flow by use of the midsection and mean-section methods, the mean-section method uniformly yields lower flows for the same dart.. The range in difference is from -0.2 percent to -1.6 percent, with an average difference of -0.6 percent.
Gravitomagnetic acceleration of accretion disk matter to polar jets
NASA Astrophysics Data System (ADS)
Poirier, John; Mathews, Grant
2016-03-01
The motion of the masses of an accretion disk around a black hole creates a general relativistic, gravitomagnetic field (GEM) from the moving matter (be it charged or uncharged) of the accretion disk. This GEM field accelerates moving masses (neutral or charged) near the accretion disk vertically upward and away from the disk, and then inward toward the axis of the disk. As the accelerated material nears the axis with approximately vertical angles, a frame dragging effect contributes to the formation of narrow jets emanating from the poles. This GEM effect is numerically evaluated in the first post Newtonian (1PN) approximation from observable quantities like the mass and velocity of the disk. This GEM force is linear in the total mass of the accretion disk matter and quadratic in the velocity of matter near to the disk with approximately the same velocity. Since these masses and velocities can be quite high in astrophysical contexts, the GEM force, which in other contexts is weak, is quite significant. This GEM effect is compared to the ordinary electromagnetic effects applied to this problem in the past.
NASA Astrophysics Data System (ADS)
Touhid Hossain, M. M.; Afruz-Zaman, Md.; Rahman, Fouzia; Hossain, M. Arif
2013-09-01
In this study the thermal diffusion effect on the steady laminar free convection flow and heat transfer of viscous incompressible MHD electrically conducting fluid above a vertical porous surface is considered under the influence of an induced magnetic field. The governing non-dimensional equations relevant to the problem, containing the partial differential equations, are transformed by usual similarity transformations into a system of coupled non-linear ordinary differential equations and will be solved analytically by using the perturbation technique. On introducing the non-dimensional concept and applying Boussinesq's approximation, the solutions for velocity field, temperature distribution and induced magnetic field to the second order approximations are obtained for large suction with different selected values of the established dimensionless parameters. The influences of these various establish parameters on the velocity and temperature fields and on the induced magnetic fields are exhibited under certain assumptions and are studied graphically in the present analysis. It is observed that the effects of thermal-diffusion and large suction have great importance on the velocity, temperature and induced magnetic fields and mass concentration for several fluids considered, so that their effects should be taken into account with other useful parameters associated. It is also found that the dimensionless Prandtl number, Grashof number, Modified Grashof number and magnetic parameter have an appreciable influence on the concerned independent variables.
NASA Astrophysics Data System (ADS)
Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.
2017-12-01
We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.
Initiation of a Relativistic Magnetron
NASA Astrophysics Data System (ADS)
Kaup, D. J.
2003-10-01
We report on recent results in our studies of relativistic magnetrons. Experimentally, these devices have proven to be very difficult to operate, typically cutting off too quickly after they are initialized, and therefore not delivering the power levels expected [1]. Our analysis is based on our model of a crossed-field device, consisting only of its two dominant modes, a DC background and an RF oscillating mode [2]. This approach has produced generally quantitatively correct values for the operating regime and major features of nonrelativistic devices. We have performed a fully electromagnetic, relativistic analysis of a magnetron of the A6 cylindrical configuration. We will show that when the device should generate maximum power, it enters a regime where the DC background could become potentially unstable. In particular, when a nonrelativistic planar device enters the saturation regime, the DC electron density distribution could become unstable if the vertical DC velocity would ever become equal to the magnitude of the vertical RF velocity [3]. We find that during the initiation phase, for the highest power levels of our model of the A6, near the cathode, the DC vertical velocity does become just less than, and definitely on the order of the magnitude of the vertical RF velocity. Consequently, any localized surge in the currents near the cathode, could easily destroy the smooth upward flow of the electrons, drive the DC background unstable, and thereby shut down the operation of the device. [1] Long-pulse relativistic magnetron experiments, M.R. Lopez, R.M. Gilgenbach, Y.Y. Lau, D.W. Jordan, M.D. Johnston, M.C. Jones, V.B. Neculaes, T.A. Spencer, J.W. Luginsland, M.D. Haworth, R.W.Lemke, D. Price, and L. Ludeking, Proc. of SPIE Aerosense 4720, 10-17, (2002). [2] Theoretical modeling of crossed-field electron vacuum devices, D.J. Kaup, Phys. of Plasmas 8, 2473-80 (2001). [3] Initiation and Stationary Operating States in a Crossed-Field Vacuum Electron Device, D. J. Kaup, Proc. of SPIE Aerosense 4720, 67-74, (2002).
Influence of orbital eye position on vertical saccades in progressive supranuclear palsy
Schneider, Rosalyn; Chen, Athena L.; King, Susan A.; Riley, David E.; Gunzler, Steven A.; Devereaux, Michael. W.; Leigh, R. John
2011-01-01
Disturbance of vertical saccadesis a cardinal feature of progressive supranuclear palsy (PSP). We investigated whether the amplitude and peak velocity of saccades is affected by the orbital position fromwhich movements start in PSP patients and age-matched control subjects. Subjects made vertical saccades in response to ± 5 degree vertical target jumps with their heads in one of three positions: head “center,” head pitched forward ~15 degrees, and head pitched back ~ 15 degrees.All patients showed some effect of starting eye position, whether beginning in the upward or downward field of gaze, on saccade amplitude, peak velocity (PV), and net range of movement. Generally, reduction of amplitude and PV were commensurate and bidirectional in the affected hemifield of gaze. Such findings are unlikelyto be due to orbital factors and could be explained by varying degrees of involvement of rostral midbrain nucleiin the pathological process. PMID:21950977
NASA Astrophysics Data System (ADS)
Biswas, Sayan; Qiao, Li
2017-03-01
A detailed statistical assessment of seedless velocity measurement using Schlieren Image Velocimetry (SIV) was explored using open source Robust Phase Correlation (RPC) algorithm. A well-known flow field, an axisymmetric turbulent helium jet, was analyzed near and intermediate region (0≤ x/d≤ 20) for two different Reynolds numbers, Re d = 11,000 and Re d = 22,000 using schlieren with horizontal knife-edge, schlieren with vertical knife-edge and shadowgraph technique, and the resulted velocity fields from SIV techniques were compared to traditional Particle Image Velocimetry (PIV) measurements. A novel, inexpensive, easy to setup two-camera SIV technique had been demonstrated to measure high-velocity turbulent jet, with jet exit velocities 304 m/s (Mach = 0.3) and 611 m/s (Mach = 0.6), respectively. Several image restoration and enhancement techniques were tested to improve signal to noise ratio (SNR) in schlieren and shadowgraph images. Processing and post-processing parameters for SIV techniques were examined in detail. A quantitative comparison between self-seeded SIV techniques and traditional PIV had been made using correlation statistics. While the resulted flow field from schlieren with horizontal knife-edge and shadowgraph showed excellent agreement with PIV measurements, schlieren with vertical knife-edge performed poorly. The performance of spatial cross-correlations at different jet locations using SIV techniques and PIV was evaluated. Turbulence quantities like turbulence intensity, mean velocity fields, Reynolds shear stress influenced spatial correlations and correlation plane SNR heavily. Several performance metrics such as primary peak ratio (PPR), peak to correlation energy (PCE), the probability distribution of signal and noise were used to compare capability and potential of different SIV techniques.
Lundquist, J. K.; Churchfield, M. J.; Lee, S.; ...
2015-02-23
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s -1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s −1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 s -1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Furthermore, measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.« less
NASA Astrophysics Data System (ADS)
Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.
2015-02-01
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 m s-1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.
Tornado model for a magnetised plasma
NASA Astrophysics Data System (ADS)
Onishchenko, O. G.; Fedun, V.; Smolyakov, A.; Horton, W.; Pokhotelov, O. A.; Verth, G.
2018-05-01
A new analytical model of axially-symmetric magnetic vortices with both a twisted fluid flow and a magnetic field is proposed. The exact solution for the three-dimensional structure of the fluid velocity and the magnetic field is obtained within the framework of the ideal magnetohydrodynamic equations for an incompressible fluid in a gravitational field. A quasi-stationary localised vortex arises when the radial flow that tends to concentrate vorticity in a narrow column around the axis of symmetry is balanced by the vertical vortex advection in the axial direction. The explicit expressions for the velocity and magnetic field components are obtained. The proposed analytic model may be used to parameterise the observed solar tornadoes and can provide a new indirect way for estimating magnetic twist from the observed azimuthal velocity profiles.
El-Dib, Yusry O; Ghaly, Ahmed Y
2004-01-01
The present work studies Kelvin-Helmholtz waves propagating between two magnetic fluids. The system is composed of two semi-infinite magnetic fluids streaming throughout porous media. The system is influenced by an oblique magnetic field. The solution of the linearized equations of motion under the boundary conditions leads to deriving the Mathieu equation governing the interfacial displacement and having complex coefficients. The stability criteria are discussed theoretically and numerically, from which stability diagrams are obtained. Regions of stability and instability are identified for the magnetic fields versus the wavenumber. It is found that the increase of the fluid density ratio, the fluid velocity ratio, the upper viscosity, and the lower porous permeability play a stabilizing role in the stability behavior in the presence of an oscillating vertical magnetic field or in the presence of an oscillating tangential magnetic field. The increase of the fluid viscosity plays a stabilizing role and can be used to retard the destabilizing influence for the vertical magnetic field. Dual roles are observed for the fluid velocity in the stability criteria. It is found that the field frequency plays against the constant part for the magnetic field.
Maximal anaerobic power in Indian national hockey players.
Bhanot, J. L.; Sidhu, L. S.
1983-01-01
Anaerobic power in relation to field position of 90 Indian hockey players has been studied. These players included 10 goalkeepers, 16 backs, 20 half-backs and 44 forwards. The goalkeepers possess maximum and forwards possess minimum anaerobic power while in vertical velocity, the former are the fastest and the latter are the slowest. In body weight the backs are heaviest followed by half-backs, goalkeepers and forwards. Among backs, the lefts are heavier, faster and have more anaerobic power than rights. In half-line players, the centre-half-backs are followed by left-half-backs and right-half-backs both in body weight and anaerobic power, while in vertical velocity, the left-half-backs are the fastest and centre-half-backs are the slowest. Among forwards, the centre-forwards are heaviest with maximum anaerobic power and are followed by inside-forwards and outside-forwards, whereas, in vertical velocity the inside-forwards are fastest followed by centre-forwards and outside-forwards. Images p34-a p34-b PMID:6850203
Present-day Antarctic ice mass changes and crustal motion
NASA Technical Reports Server (NTRS)
James, Thomas S.; Ivins, Erik R.
1995-01-01
The peak vertical velocities predicted by three realistic, but contrasting, present-day scenarios of Antarctic ice sheet mass balance are found to be of the order of several mm/a. One scenario predicts local uplift rates in excess of 5 mm/a. These rates are small compared to the peak Antarctic vertical velocities of the ICE-3G glacial rebound model, which are in excess of 20 mm/a. If the Holocene Antarctic deglaciation history protrayed in ICE-3G is realistic, and if regional upper mantle viscosity is not an order of magnitude below 10(exp 21) Pa(dot)s, then a vast geographical region in West Antarctica is uplifting at a rate that could be detected by a future Global Positioning System (GPS) campaign. While present-day scenarios predict small vertical crustal velocities, their overall continent-ocean mass exchange is large enough to account for a substantial portion of the observed secular polar motion (omega m(arrow dot)) and time-varying zonal gravity field.
Present-day Antarctic Ice Mass Changes and Crustal Motion
NASA Technical Reports Server (NTRS)
James, Thomas S.; Ivins, Erik R.
1995-01-01
The peak vertical velocities predicted by three realistic, but contrasting, present-day scenarios of Antarctic ice sheet mass balance are found to be of the order of several mm/a. One scenario predicts local uplift rates in excess of 5 mm/a. These rates are small compared to the peak Antarctic vertical velocities of the ICE-3G glacial rebound model, which are in excess of 20 mm/a. If the Holocene Antarctic deglaciation history portrayed in ICE-3G is realistic, and if regional upper mantle viscosity is not an order of magnitude below 10(exp 21) pa s, then a vast geographical region in West Antarctica is uplifting at a rate that could be detected by a future Global Positioning System (GPS) campaign. While present-day scenarios predict small vertical crustal velocities, their overall continent-ocean mass exchange is large enough to account for a substantial portion of the observed secular polar motion ((Omega)m(bar)) and time-varying zonal gravity field J(sub 1).
Preflare magnetic and velocity fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.
1986-01-01
A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares
Thermo-Osmotic Flow in Thin Films.
Bregulla, Andreas P; Würger, Alois; Günther, Katrin; Mertig, Michael; Cichos, Frank
2016-05-06
We report on the first microscale observation of the velocity field imposed by a nonuniform heat content along the solid-liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations. From the measured slip velocity we deduce the thermo-osmotic coefficient for both bare glass and Pluronic F-127 covered surfaces. The value for Pluronic F-127 agrees well with Soret data for polyethylene glycol, whereas that for glass differs from literature values and indicates the complex boundary layer thermodynamics of glass-water interfaces.
de Nijs, Michel A J; Pietrzak, Julie D
Measurements of turbulent fluctuations of horizontal and vertical components of velocity, salinity and suspended particulate matter are presented. Turbulent Prandtl numbers are found to increase with stratification and to become larger than 1. Consequently, the vertical turbulent mass transport is suppressed by buoyancy forces, before the turbulent kinetic energy (TKE) and vertical turbulent momentum exchange are inhibited. With increasing stratification, the buoyancy fluxes do not cease, instead they become countergradient. We find that buoyantly driven motions play an active role in the transfer of mass. This is in agreement with trends derived from Monin-Obukhov scaling. For positive Richardson flux numbers (Ri f ), the log velocity profile in the near-bed layer requires correction with a drag reduction. For negative Ri f , the log velocity profile should be corrected with a drag increase, with increasing |Ri f |. This highlights the active role played by buoyancy in momentum transfer and the production of TKE. However, the data do not appear to entirely follow Monin-Obukhov scaling. This is consistent with the notion that the turbulence field is not in equilibrium. The large stratification results in the decay of turbulence and countergradient buoyancy fluxes act to restore equilibrium in the energy budget. This implies that there is a finite adjustment timescale of the turbulence field to changes in velocity shear and density stratification. The energy transfers associated with the source and sink function of the buoyancy flux can be modeled with the concept of total turbulent energy.
Modelling the Dynamics of Bodies Self-Propelled by Exponential Mass Exhaustion
ERIC Educational Resources Information Center
Rodrigues, Hilario; Pinho, Marcos Oliveira; Portes, Dirceu, Jr.; Santiago, Arnaldo Jose
2008-01-01
We present a study of the ascending vertical motion of a self-propelled body under a uniform gravitational field suffering the action of two different types of air friction forces: linear on the velocity, which is valid for slowly moving bodies, and quadratic on the velocity. We study the special case where the thrust force is a decreasing…
Sodars and their application for investigation of the turbulent structure of the lower atmosphere
NASA Astrophysics Data System (ADS)
Krasnenko, N. P.; Shamanaeva, L. G.
2016-11-01
Possibilities of sodar application for investigation of the spatiotemporal dynamics of three components of wind velocity vector, longitudinal and transverse structural functions of wind velocity field, structural characteristics of temperature and wind velocity, turbulent kinetic energy dissipation rate, and outer scales of temperature and dynamic turbulence in the atmospheric boundary layer are analyzed. The original closed iterative algorithm of sodar data processing taking into account the classical and molecular absorption and the turbulent sound attenuation on the propagation path is used that allows the vertical profiles of the characteristics of temperature and wind velocity field to be reconstructed simultaneously and their interrelations to be investigated. It is demonstrated how the structure of temperature and wind turbulence is visualised in real time.
Parametric study and optimization trends for the Von-Kármán-sodium dynamo experiment
NASA Astrophysics Data System (ADS)
Varela, J.
2018-05-01
We present magneto-hydrodynamic simulations of liquid sodium flow performed with the PLUTO compressible MHD code. We investigated the influence of the remanent magnetic field orientation and intensity, the impinging velocity field due to Ekman pumping as well as the impeller dimensions on the magnetic field collimation by helical flows in-between the impeller blades. For a simplified Cartesian geometry, we model the flow dynamics of a multi-blade impeller inspired by the Von-Kármán-Sodium experiment. This study shows that a remanent magnetic field oriented in the toroidal direction is the less efficient configuration to collimate the magnetic field, although if the radial or vertical components are not negligible, the collimation is significantly improved. As the intensity of the remanent magnetic field increases, the system magnetic energy becomes larger, but the magnetic field collimation efficiency remains the same, so the gain of magnetic energy is smaller as the remanent magnetic field intensity increases. The magnetic field collimation is modified if the impinging velocity field changes: the collimation is weaker if the impinging velocity increases from Γ = 0.8 to 0.9 and slightly larger if the impinging velocity decreases from Γ = 0.8 to 0.7. The analysis of the impeller dimensions points out that the most efficient configuration to collimate the magnetic field requires a ratio between the impeller blade height and the base longitude between 0.375 and 0.5. The largest enhancement of the hypothetical α2 dynamo loop, compared to the hypothetical Ω-α dynamo loop, is observed for the model that mimics the TM 73 impeller configuration rotating in the unscooping direction with a remanent magnetic field of 10-3 T orientated in the radial or vertical direction. The optimization trends obtained in the parametric analysis are also confirmed by simulations with a higher resolution and turbulence degree.
NASA Astrophysics Data System (ADS)
Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.
2017-12-01
Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.
The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2003-01-01
Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three-dimensional velocities and angles. These data are then used to test the applicability and limitations of Maxwell's Z Model in representing the subsurface evolution of the excavation-stage flow-field center during vertical and oblique impacts.
Kinematics and dynamics of Nubia-Somalia divergence along the East African rift
NASA Astrophysics Data System (ADS)
Stamps, Dorothy Sarah
Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition is an estimate of basal shear stress from viscous coupling to horizontal mantle flow. The stress field boundary condition is small (˜1.6 MPa) compared to deviatoric stress from GPE gradients (8-20 MPa) and does not improve the fit to surface deformation indicators more than 8% when combined with deviatoric stress from GPE gradients. Hence we suggest the style of deformation across the EAR can be explained by forces derived from gradients in GPE. We then calculate dynamic velocities using two types of forward models to solve the instantaneous momentum equations. One method is regional and requires vertically averaged effective viscosity to define lithospheric structure with velocity boundary conditions and a free-slip basal boundary condition. The second is a global model that accounts for a brittle upper crust and viscous mantle lithosphere with velocity boundary conditions imposed at the base of the lithosphere from 5 mantle flow models. With both methods we find deformation driven by internal lithospheric buoyancy forces provides the best-fit to GPS observations of surface velocities on the Somalian plate. We find that any additional contribution from horizontal tractions results in overpredicting surface velocities. This work indicates horizontal mantle flow plays a minimal role in Nubia-Somalia divergence and the EAR is driven largely by gradients in GPE.
ALFVÉN WAVES IN SIMULATIONS OF SOLAR PHOTOSPHERIC VORTICES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelyag, S.; Cally, P. S.; Reid, A.
Using advanced numerical magneto-hydrodynamic simulations of the magnetized solar photosphere, including non-gray radiative transport and a non-ideal equation of state, we analyze plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit 'tornado'-like behavior or a 'bath-tub' effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tensionmore » in the magnetized intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfvén perturbations propagating along the nearly vertical magnetic field lines with local Alfvén speed.« less
NASA Astrophysics Data System (ADS)
Gigiyatullin, Ayrat; Kurkin, Andrey; Kurkina, Oxana; Rouvinskaya, Ekaterina; Rybin, Artem
2017-04-01
With the use of the Gardner equation, or its variable-coefficient forms, the velocity components of fluid particles in the vertical section induced by a passage of internal waves can be estimated in weakly nonlinear limit. The horizontal velocity gives the greatest contribution into the local current speed. This is a typical property of long waves. This feature of an internal wave field may greatly contribute to the local sediment transport and/or resuspension. The velocity field induced by mode I and II internal solitary waves are studied. The contribution from second-order terms in asymptotic expansion into the horizontal velocity is estimated for the models of two- and three-layer fluid density stratification for solitons of positive and negative polarity, as well as for breathers of different shapes and amplitudes. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of zero horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity while for the leading-order wave field they are horizontal. Also the wavefield accounting for the nonlinear correction for mode I waves has smaller maximal absolute values of negative velocities (near-surface for the soliton of elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. Thus for the solitary internal waves of positive polarity weakly nonlinear theory overestimates the near-bottom velocities and underestimates the near-surface current. For solitary waves of negative polarity, which are the most typical for hydrological conditions of low and middle latitudes, the situation is the opposite. Similar estimations are produced for mode II waves, which possess more complex structure. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-35-00413.
3D Asymmetrical motions of the Galactic outer disc with LAMOST K giant stars
NASA Astrophysics Data System (ADS)
Wang, Haifeng; López-Corredoira, Martín; Carlin, Jeffrey L.; Deng, Licai
2018-07-01
We present a three dimensional velocity analysis of Milky Way disc kinematics using LAMOST K giant stars and the GPS1 proper motion catalogue. We find that Galactic disc stars near the anticentre direction (in the range of Galactocentric distance between R = 8 and 13 kpc and vertical position between Z = -2 and 2 kpc) exhibit asymmetrical motions in the Galactocentric radial, azimuthal, and vertical components. Radial motions are not zero, thus departing from circularity in the orbits; they increase outwards within R ≲ 12 kpc, show some oscillation in the northern (0 < Z < 2 kpc) stars, and have north-south asymmetry in the region corresponding to a well-known nearby northern structure in the velocity field. There is a clear vertical gradient in azimuthal velocity, and also an asymmetry that shifts from a larger azimuthal velocity above the plane near the solar radius to faster rotation below the plane at radii of 11-12 kpc. Stars both above and below the plane at R ≳ 9 kpc exhibit net upward vertical motions. We discuss some possible mechanisms that might create the asymmetrical motions, such as external perturbations due to dwarf galaxy minor mergers or dark matter sub-haloes, warp dynamics, internal processes due to spiral arms or the Galactic bar, and (most likely) a combination of some or all of these components.
Application of laser velocimetry to aircraft wake-vortex measurements
NASA Technical Reports Server (NTRS)
Ciffone, D. L.; Orloff, K. L.
1977-01-01
The theory and use of a laser velocimeter that makes simultaneous measurements of vertical and longitudinal velocities while rapidly scanning a flow field laterally are described, and its direct application to trailing wake-vortex research is discussed. Pertinent measurements of aircraft wake-vortex velocity distributions obtained in a wind tunnel and water towing tank are presented. The utility of the velocimeter to quantitatively assess differences in wake velocity distributions due to wake dissipating devices and span loading changes on the wake-generating model is also demonstrated.
NASA Technical Reports Server (NTRS)
Mlynczak, Pamela E.; Houghton, David D.; Diak, George R.
1986-01-01
Using a numerical mesoscale model, four simulations were performed to determine the effects of suppressing the initial mesoscale information in the moisture and wind fields on the precipitation forecasts. The simulations included a control forecast 12-h simulation that began at 1200 GMT March 1982 and three experiment simulations with modifications to the moisture and vertical motion fields incorporated at 1800 GMT. The forecasts from 1800 GMT were compared to the second half of the control forecast. It was found that, compared to the control forecast, suppression of the moisture and/or wind initial field(s) produces a drier forecast. However, the characteristics of the precipitation forecasts of the experiments were not different enough to conclude that either mesoscale moisture or mesoscale vertical velocity at the initial time are more important for producing a forecast closer to that of the control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Magnetically Controlled Upper Ionosphere of Mars
NASA Astrophysics Data System (ADS)
Majeed, T.; Al Aryani, O.; Al Mutawa, S.; Bougher, S. W.; Haider, S. A.
2017-12-01
The electron density (Ne) profiles measured by the Mars Express spacecraft over regions of strong crustal magnetic fields have shown anomalous characteristics of the topside plasma distribution with variable scale heights. One of such Ne profiles is located at 82oS and 180oE whose topside ionosphere is extended up to an altitude of 700 km. The crustal magnetic field at this southern site is nearly vertical and open to the access of solar wind plasma through magnetic reconnection with the interplanetary magnetic field. This can lead to the acceleration of electrons and ions during the daytime ionosphere. The downward accelerated electrons with energies >200 eV can penetrate deep into the Martian upper ionosphere along vertical magnetic field lines and cause heating, excitation and ionization of the background atmosphere. The upward acceleration of ions resulting from energy input by precipitating electrons can lead to enhance ion escape rate and modify scale heights of the topside ionosphere. We have developed a 1-D chemical diffusive model from 100 km to 400 km to interpret the Martian ionospheric structure at 82oS latitude. The primary source of ionization in the model is due to solar EUV radiation. An extra ionization source due to precipitating electrons of 0.25 keV, peaking near an altitude of 145 km is added in the model to reasonably reproduce the measured ionospheric structure below an altitude of 180 km. The behavior of the topside ionosphere can be interpreted by the vertical plasma transport caused by precipitating electrons. The vertical transport of plasma in our model is simulated by vertical ion velocities, whose values can be interpreted as drift velocities along magnetic field lines. We find that the variation of the topside Ne scale heights is sensitive to the magnitudes of upward and downward drifts with an imposed outward flux boundary condition at the top of the model. The model requires an upward flux of more than 107 ions cm-2 s-1 for both O2+ and O+, and drift speeds of 200 m/s to interpret the measured topside ionospheric structure for altitudes >180 km. The magnitudes of outward ion fluxes and drift velocities are compared with those simulated by existing models. The model results will be presented in comparison with the measured electron density profile. This work is supported by MBRSC, Dubai, UAE.
NASA Astrophysics Data System (ADS)
Lee, Dong-In; Kim, Dong-Kyun; Kim, Ji-Hyeon; Kang, Yunhee; Kim, Hyeonjoon
2017-04-01
During a summer monsoon season each year, severe weather phenomena caused by front, mesoscale convective systems, or typhoons often occur in the southern Korean Peninsula where is mostly comprised of complex high mountains. These areas play an important role in controlling formation, amount, and distribution of rainfall. As precipitation systems move over the mountains, they can develop rapidly and produce localized heavy rainfall. Thus observational analysis in the mountainous areas is required for studying terrain effects on the rapid rainfall development and its microphysics. We performed intensive field observations using two s-band operational weather radars around Mt. Jiri (1950 m ASL) during summertime on June and July in 2015-2016. Observation data of DSD (Drop Size Distribution) from Parsivel disdrometer and (w component) vertical velocity data from ultrasonic anemometers were analyzed for Typhoon Chanhom on 12 July 2015 and the heavy rain event on 1 July 2016. During the heavy rain event, a dual-Doppler radar analysis using Jindo radar and Gunsan radar was also conducted to examine 3-D wind fields and vertical structure of reflectivity in these areas. For examining up-/downdrafts in the windward or leeward side of Mt. Jiri, we developed a new scheme technique to estimate vertical velocities (w) from drop size and fall velocity spectra of Parsivel disdrometers at different stations. Their comparison with the w values observed by the 3D anemometer showed quite good agreement each other. The Z histogram with regard to the estimated w was similar to that with regard to R, indicating that Parsivel-estimated w is quite reasonable for classifying strong and weak rain, corresponding to updraft and downdraft, respectively. Mostly, positive w values (upward) were estimated in heavy rainfall at the windward side (D1 and D2). Negative w values (downward) were dominant even during large rainfall at the leeward side (D4). For D1 and D2, the upward w percentages were larger than the downward w percentages. At the leeward side, the downward w percentages were larger than the upward at D4. Importantly, this suggests that rainfall with R >10 mm hr-1 at the leeward side was more associated by negative w-components of winds. Therefore, we confirmed the possibility of w (up/down draft) estimation by DSD observation using disdrometers and quantitative contribution of w in orographic precipitation, roughly. In addition, the rainrates (R) of precipitation, radar reflectivities (Z) and vertical velocities (w) characteristics are related to the size and fall velocity spectra distributions by disdrometer. The vertical velocities contributed to the orographic precipitation development and dissipation and they clearly showed different values between windward side and leeward side with R variation. Acknowledgement This work was funded by the Korea Meteorological Industry Promotion Agency under Grants KMIPA 2015-5060 and KMIPA 2015-1050.
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Norman, Thomas R.
1987-01-01
A wind tunnel experiment simulating a steady three-dimensional helicopter rotor blade/vortex interaction is reported. The experimental configuration consisted of a vertical semispan vortex-generating wing, mounted upstream of a horizontal semispan rotor blade airfoil. A three-dimensional laser velocimeter was used to measure the velocity field in the region of the blade. Sectional lift coefficients were calculated by integrating the velocity field to obtain the bound vorticity. Total lift values, obtained by using an internal strain-gauge balance, verified the laser velocimeter data. Parametric variations of vortex strength, rotor blade angle of attack, and vortex position relative to the rotor blade were explored. These data are reported (with attention to experimental limitations) to provide a dataset for the validation of analytical work.
A case study using kinematic quantities derived from a triangle of VHF Doppler wind profilers
NASA Technical Reports Server (NTRS)
Carlson, Catherine A.; Forbes, Gregory S.
1989-01-01
Horizontal divergence, relative vorticity, kinematic vertical velocity, and geostrophic and ageostrophic winds are computed from Colorado profiler network data to investigate an upslope snowstorm in northeastern Colorado. Horizontal divergence and relative vorticity are computed using the Gauss and Stokes theorems, respectively. Kinematic vertical velocities are obtained from the surface to 9 km by vertically integrating the continuity equation. The geostrophic and ageostrophic winds are computed by applying a finite differencing technique to evaluate the derivatives in the horizontal equations of motion. Comparison of the synoptic-scale data with the profiler network data reveals that the two datasets are generally consistent. Also, the profiler-derived quantities exhibit coherent vertical and temporal patterns consistent with conceptual and theoretical flow fields of various meteorological phenomena. It is suggested that the profiler-derived quantities are of potential use to weather forecasters in that they enable the dynamic and kinematic interpretation of weather system structure to be made and thus have nowcasting and short-term forecasting value.
NASA Astrophysics Data System (ADS)
Li, Zhijin; Chao, Yi; Farrara, John D.; McWilliams, James C.
2013-07-01
A set of data assimilation experiments, known as Observing System Experiments (OSEs) are performed to assess the relative impacts of different types of observations acquired during the 2009 Prince William Sound Field Experiment. The observations assimilated consist primarily of two types: High Frequency (HF) radar surface velocities and vertical profiles of temperature/salinity (T/S) measured by ships, moorings, an Autonomous Underwater Vehicle and a glider. The impact of all the observations, HF radar surface velocities, and T/S profiles is assessed. Without data assimilation, a frequently occurring cyclonic eddy in the central Sound is overly persistent and intense. The assimilation of the HF radar velocities effectively reduces these biases and improves the representation of the velocities as well as the T/S fields in the Sound. The assimilation of the T/S profiles improves the large scale representation of the temperature/salinity and also the velocity field in the central Sound. The combination of the HF radar surface velocities and sparse T/S profiles results in an observing system capable of representing the circulation in the Sound reliably and thus producing analyses and forecasts with useful skill.
Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-06-08
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Clustering of vertically constrained passive particles in homogeneous isotropic turbulence.
De Pietro, Massimo; van Hinsberg, Michel A T; Biferale, Luca; Clercx, Herman J H; Perlekar, Prasad; Toschi, Federico
2015-05-01
We analyze the dynamics of small particles vertically confined, by means of a linear restoring force, to move within a horizontal fluid slab in a three-dimensional (3D) homogeneous isotropic turbulent velocity field. The model that we introduce and study is possibly the simplest description for the dynamics of small aquatic organisms that, due to swimming, active regulation of their buoyancy, or any other mechanism, maintain themselves in a shallow horizontal layer below the free surface of oceans or lakes. By varying the strength of the restoring force, we are able to control the thickness of the fluid slab in which the particles can move. This allows us to analyze the statistical features of the system over a wide range of conditions going from a fully 3D incompressible flow (corresponding to the case of no confinement) to the extremely confined case corresponding to a two-dimensional slice. The background 3D turbulent velocity field is evolved by means of fully resolved direct numerical simulations. Whenever some level of vertical confinement is present, the particle trajectories deviate from that of fluid tracers and the particles experience an effectively compressible velocity field. Here, we have quantified the compressibility, the preferential concentration of the particles, and the correlation dimension by changing the strength of the restoring force. The main result is that there exists a particular value of the force constant, corresponding to a mean slab depth approximately equal to a few times the Kolmogorov length scale η, that maximizes the clustering of the particles.
Lu, Chunsong; Liu, Yangang; Zhang, Guang J.; ...
2016-02-01
This work examines the relationships of entrainment rate to vertical velocity, buoyancy, and turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that a combination of multiple variables can better represent entrainment ratemore » in both the observations and LES than any single-variable fitting. Three commonly used parameterizations are also tested on the individual cloud scale. A new parameterization is therefore presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored.« less
Evaluation of the depth-integration method of measuring water discharge in large rivers
Moody, J.A.; Troutman, B.M.
1992-01-01
The depth-integration method oor measuring water discharge makes a continuos measurement of the water velocity from the water surface to the bottom at 20 to 40 locations or verticals across a river. It is especially practical for large rivers where river traffic makes it impractical to use boats attached to taglines strung across the river or to use current meters suspended from bridges. This method has the additional advantage over the standard two- and eight-tenths method in that a discharge-weighted suspended-sediment sample can be collected at the same time. When this method is used in large rivers such as the Missouri, Mississippi and Ohio, a microwave navigation system is used to determine the ship's position at each vertical sampling location across the river, and to make accurate velocity corrections to compensate for shift drift. An essential feature is a hydraulic winch that can lower and raise the current meter at a constant transit velocity so that the velocities at all depths are measured for equal lengths of time. Field calibration measurements show that: (1) the mean velocity measured on the upcast (bottom to surface) is within 1% of the standard mean velocity determined by 9-11 point measurements; (2) if the transit velocity is less than 25% of the mean velocity, then average error in the mean velocity is 4% or less. The major source of bias error is a result of mounting the current meter above a sounding weight and sometimes above a suspended-sediment sampling bottle, which prevents measurement of the velocity all the way to the bottom. The measured mean velocity is slightly larger than the true mean velocity. This bias error in the discharge is largest in shallow water (approximately 8% for the Missouri River at Hermann, MO, where the mean depth was 4.3 m) and smallest in deeper water (approximately 3% for the Mississippi River at Vickbsurg, MS, where the mean depth was 14.5 m). The major source of random error in the discharge is the natural variability of river velocities, which we assumed to be independent and random at each vertical. The standard error of the estimated mean velocity, at an individual vertical sampling location, may be as large as 9%, for large sand-bed alluvial rivers. The computed discharge, however, is a weighted mean of these random velocities. Consequently the standard error of computed discharge is divided by the square root of the number of verticals, producing typical values between 1 and 2%. The discharges measured by the depth-integrated method agreed within ??5% of those measured simultaneously by the standard two- and eight-tenths, six-tenth and moving boat methods. ?? 1992.
Evaluation of wind field statistics near and inside clouds using a coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Lottman, Brian Todd
1998-09-01
This work proposes advanced techniques for measuring the spatial wind field statistics near and inside clouds using a vertically pointing solid state coherent Doppler lidar on a fixed ground based platform. The coherent Doppler lidar is an ideal instrument for high spatial and temporal resolution velocity estimates. The basic parameters of lidar are discussed, including a complete statistical description of the Doppler lidar signal. This description is extended to cases with simple functional forms for aerosol backscatter and velocity. An estimate for the mean velocity over a sensing volume is produced by estimating the mean spectra. There are many traditional spectral estimators, which are useful for conditions with slowly varying velocity and backscatter. A new class of estimators (novel) is introduced that produces reliable velocity estimates for conditions with large variations in aerosol backscatter and velocity with range, such as cloud conditions. Performance of traditional and novel estimators is computed for a variety of deterministic atmospheric conditions using computer simulated data. Wind field statistics are produced for actual data for a cloud deck, and for multi- layer clouds. Unique results include detection of possible spectral signatures for rain, estimates for the structure function inside a cloud deck, reliable velocity estimation techniques near and inside thin clouds, and estimates for simple wind field statistics between cloud layers.
Combined effects on MHD flow of Newtonian fluid past infinite vertical porous plate
NASA Astrophysics Data System (ADS)
Subbanna, K.; Mohiddin, S. Gouse; Vijaya, R. Bhuvana
2018-05-01
In this paper, we discussed free convective flow of a viscous fluid past an infinite vertical porous plate under the influence of uniform transverse magnetic field. Time dependent permeability and oscillatory suction is considered. The equations of the flow field are solved by a routine perturbation method for small amplitude of the permeability. The solutions for the velocity, temperature and concentration have been derived analytically and also its behavior is computationally discussed with the help of profiles. The shear stress, the Nusselt number and Sherwood number are also obtained and their behavior discussed computationally
NASA Astrophysics Data System (ADS)
Tóth, Zsuzsanna; Spiess, Volkhard; Mogollón, José M.; Jensen, Jørn Bo
2014-12-01
A 2-D high-resolution velocity field was obtained from marine seismic data to quantify free gas content in shallow muddy sediments at in situ pressure and temperature. The velocities were acquired applying Migration Velocity Analysis on prestack time-migrated data. Compressional wave velocities are highly sensitive to free gas as very small amounts of gas can cause a significant decrease in the medium velocity. The analyzed profile crosses a depression filled with organic-rich Holocene mud in the Bornholm Basin, Baltic Sea. The interval velocity field reveals two low-velocity patches, which extend from the reversed polarity reflections marking the top of the gassy sediment layer down to the base of the Holocene mud. Average interval velocities within the gassy mud are lower than the seafloor migration velocity by up to ˜500 m/s. This decrease, using a geoacoustic model, is caused by an average 0.046% gas volume fraction. The interval velocities in individual cells of the velocity field are reduced to ˜200 m/s predicting up to 3.4% gas content. The velocity field is limited in resolution due to velocity determination at and between reflections; however, together with the stratigraphic interpretation, geological units containing free gas could be identified. Shallow gas occurs vertically throughout most of the Holocene mud in the gassy area. Comparison with biogeochemical studies at other Baltic Sea sites suggests that the distribution of free gas is likely to be patchy in the sediment, but the gas concentration may peak below the sulfate-methane transition zone and gradually decrease below.
NASA Astrophysics Data System (ADS)
Lai, Y. P.; Ching, K. E.; Chuang, R.; Wen, Y. Y.; Chen, C. L.
2016-12-01
The ML 6.6 Meinong earthquake occurred in SW Taiwan, which is located at 22.92°N, 120.54°E, and depth of 14.6 km, at 03:57:26.1 (UTC+8) on February 6th 2016 in SW Taiwan. To understand the kinematics and geodynamics of this earthquake event, we select 43 continuous GPS (CGPS) stations, installed by the CGS, CWB, IES and NCKU, 94 campaign-mode GPS (RGPS) stations and 4 precise leveling routes, surveyed by the CGS from 2002 to 2016. The GPS coordinate daily solution is calculated using the software Bernese v.5.0 under the ITRF2008 as the velocity and coseismic displacement fields are relative to the station KMNM at the Chinese continental margin. To verify the reliability of the velocity inferred from the RGPS stations, we first consider the misfit value which is highly correlated to the quality of the time series. The misfit values from 67 stations are smaller than 20 mm and the misfit values from the other 27 stations are larger than 20 mm. We then interpolated the velocities from 43 CGPS stations into 67 RGPS stations, and compared the residuals between the observed velocities and the interpolated velocities with three standard deviation of the observation. All of the 67 RGPS stations meet the standard so we interpolated the velocity from 43 CGPS stations and 67 RGPS stations into the rest 27 RGPS stations, and then checked the value of residuals between the observed velocity and the interpolated velocity divided by the observed velocity. Finally, 19 RGPS stations are rejected, and the remaining stations are believe to increase the constraint of modeling. By using CGPS data, we correct the coseismic displacement fields of the RGPS stations and the precise leveling route by removing the postseismic effect. The horizontal coseismic displacement fields show a spreading trend start from the epicenter to the SW, west and NW while the horizontal velocity fields show only westward in the interseismic period. The vertical coseismic displacement fields are mainly uplift at the west of the epicenter while subsidence at the east of the epicenter. The maximum vertical coseismic displacement area is slightly north of the area that has the highest uplift velocity from precise leveling during the interseismic period. Joint inversion of the GPS and teleseismic data will soon be processed for the spatial and temporal distribution of earthquake slip.
Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics
NASA Technical Reports Server (NTRS)
Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valledares, C.E.; Pfaff, R. F.
2012-01-01
Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian approx. 37 deg and 290 deg E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation, such as from VEFI onboard Communication/Navigation Outage Forecasting System (C/NOFS) satellite and JULIA radar, is equally promising. The observations at different longitudes suggest that the vertical drift velocities and the vertical density distribution have significant longitudinal differences; especially the equatorial anomaly peaks expand to higher latitudes more in American sector than the African sector, indicating that the vertical drift in the American sector is stronger than the African sector.
Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field
NASA Astrophysics Data System (ADS)
Chavanne, C. P.; Klein, P.
2016-02-01
A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.
Cross-correlation least-squares reverse time migration in the pseudo-time domain
NASA Astrophysics Data System (ADS)
Li, Qingyang; Huang, Jianping; Li, Zhenchun
2017-08-01
The least-squares reverse time migration (LSRTM) method with higher image resolution and amplitude is becoming increasingly popular. However, the LSRTM is not widely used in field land data processing because of its sensitivity to the initial migration velocity model, large computational cost and mismatch of amplitudes between the synthetic and observed data. To overcome the shortcomings of the conventional LSRTM, we propose a cross-correlation least-squares reverse time migration algorithm in pseudo-time domain (PTCLSRTM). Our algorithm not only reduces the depth/velocity ambiguities, but also reduces the effect of velocity error on the imaging results. It relieves the accuracy requirements on the migration velocity model of least-squares migration (LSM). The pseudo-time domain algorithm eliminates the irregular wavelength sampling in the vertical direction, thus it can reduce the vertical grid points and memory requirements used during computation, which makes our method more computationally efficient than the standard implementation. Besides, for field data applications, matching the recorded amplitudes is a very difficult task because of the viscoelastic nature of the Earth and inaccuracies in the estimation of the source wavelet. To relax the requirement for strong amplitude matching of LSM, we extend the normalized cross-correlation objective function to the pseudo-time domain. Our method is only sensitive to the similarity between the predicted and the observed data. Numerical tests on synthetic and land field data confirm the effectiveness of our method and its adaptability for complex models.
Orientation of human optokinetic nystagmus to gravity: a model-based approach
NASA Technical Reports Server (NTRS)
Gizzi, M.; Raphan, T.; Rudolph, S.; Cohen, B.
1994-01-01
Optokinetic nystagmus (OKN) was induced by having subjects watch a moving display in a binocular, head-fixed apparatus. The display was composed of 3.3 degrees stripes moving at 35 degrees/s for 45 s. It subtended 88 degrees horizontally by 72 degrees vertically of the central visual field and could be oriented to rotate about axes that were upright or tilted 45 degrees or 90 degrees. The head was held upright or was tilted 45 degrees left or right on the body during stimulation. Head-horizontal (yaw axis) and head-vertical (pitch axis) components of OKN were recorded with electro-oculography (EOG). Slow phase velocity vectors were determined and compared with the axis of stimulation and the spatial vertical (gravity axis). With the head upright, the axis of eye rotation during yaw axis OKN was coincident with the stimulus axis and the spatial vertical. With the head tilted, a significant vertical component of eye velocity appeared during yaw axis stimulation. As a result the axis of eye rotation shifted from the stimulus axis toward the spatial vertical. Vertical components developed within 1-2 s of stimulus onset and persisted until the end of stimulation. In the six subjects there was a mean shift of the axis of eye rotation during yaw axis stimulation of approximately 18 degrees with the head tilted 45 degrees on the body. Oblique optokinetic stimulation with the head upright was associated with a mean shift of the axis of eye rotation toward the spatial vertical of 9.2 degrees. When the head was tilted and the same oblique stimulation was given, the axis of eye rotation rotated to the other side of the spatial vertical by 5.4 degrees. This counterrotation of the axis of eye rotation is similar to the "Muller (E) effect," in which the perception of the upright is counterrotated to the opposite side of the spatial vertical when subjects are tilted in darkness. The data were simulated by a model of OKN with a "direct" and "indirect" pathway. It was assumed that the direct visual pathway is oriented in a body, not a spatial frame of reference. Despite the short optokinetic after-nystagmus time constants, strong horizontal to vertical cross-coupling could be produced if the horizontal and vertical time constants were in proper ratio and there were no suppression of nystagmus in directions orthogonal to the stimulus direction. The model demonstrates that the spatial orientation of OKN can be achieved by restructuring the system matrix of velocity storage. We conclude that an important function of velocity storage is to orient slow-phase velocity toward the spatial vertical during movement in a terrestrial environment.
Design and performance of a horizontal mooring for upper-ocean research
Grosenbaugh, Mark; Anderson, Steven; Trask, Richard; Gobat, Jason; Paul, Walter; Butman, Bradford; Weller, Robert
2002-01-01
This paper describes the design and performance of a two-dimensional moored array for sampling horizontal variability in the upper ocean. The mooring was deployed in Massachusetts Bay in a water depth of 84 m for the purpose of measuring the horizontal structure of internal waves. The mooring was instrumented with three acoustic current meters (ACMs) spaced along a 170-m horizontal cable that was stretched between two subsurface buoys 20 m below the sea surface. Five 25-m-long vertical instrument strings were suspended from the horizontal cable. A bottom-mounted acoustic Doppler current profiler (ADCP) was deployed nearby to measure the current velocity throughout the water column. Pressure sensors mounted on the subsurface buoys and the vertical instrument strings were used to measure the vertical displacements of the array in response to the currents. Measurements from the ACMs and the ADCP were used to construct time-dependent, two-dimensional current fields. The current fields were used as input to a numerical model that calculated the deformation of the array with respect to the nominal zero-current configuration. Comparison of the calculated vertical offsets of the downstream subsurface buoy and downstream vertical instrument string with the pressure measurements were used to verify the numerical code. These results were then used to estimate total deformation of the array due to the passage of the internal waves. Based on the analysis of the three internal wave events with the highest measured vertical offsets, it is concluded that the geometry of the main structure (horizontal cable and anchor legs) was kept to within ±2.0 m, and the geometry of the vertical instrument strings was kept to within ±4.0 m except for one instance when the current velocity reached 0.88 m s−1.
The Application of Depth Migration for Processing GPR Data
NASA Astrophysics Data System (ADS)
Hoai Trung, Dang; Van Giang, Nguyen; Thanh Van, Nguyen
2018-03-01
Migration methods play a significant role in processing ground penetrating radar data. Beside recovering the true image of subsurface structures from the prior designed velocity model and the raw GPR data, the migration algorithm could be an effective tool in bulding real environmental velocity model. In this paper, we have proposed one technique using energy diagram extracted from migrated data as a criterion of looking for the correct velocity. Split Step Fourier migration, a depth migration, is chosen for facing the challenge where the velocity varies laterally and vertically. Some results verified on field data on Vietnam show that migrated sections with calculated velocity from energy diagram have the best quality.
NASA Astrophysics Data System (ADS)
Cornelius, S.; Castagna, J. P.
2016-12-01
ABSTRACT A well log database of approximately 300 well logs from the Keathley Canyon and Walker Ridge areas of the Gulf of Mexico plus Mad Dog Field and Mission Deep Field in Green Canyon has been created for the purpose of building a geologically based 3D velocity model. While in the process of calibrating the finished velocity model, a scatter plot was made of all salt interval velocities versus latitude and an unexpected correlation was observed. Five different interval velocity zones have been identified with each having certain associated mineralogies within a latitude range. The salt interval velocity in the southern limits of the study area is higher than 15,000 ft/sec (4572 m/sec) due to the presence of gypsum. The northern most wells in the project area have anhydrite present inside the salt matrix such that their interval velocity can be as high as 18,535 ft/sec (5650 m/sec). In the mid-latitude zones, sylvite, siltstone, claystone, shale, tar and bitumen, with small traces of both anhydrite and gypsum, are found within the salt, yielding salt interval velocity variation from 14,388 ft/sec to 14,909 ft/sec (4386 m/sec to 4544 m/sec). The mineralogical content of the salt in each well was roughly estimated from mud logs and the corresponding interval velocities were determined from vertical seismic profiles, checkshot surveys, and sonic logs. Both geothermal gradients and overburden geopressure gradients between the mudline and the true vertical depth at well bottom calculated from this well database do not show the same correlation with latitude as the salt interval velocities. Mineralogical modeling of the salt composition using Hashin-Shtrikman bounds shows that these various inclusions within the salt matrix can be the cause of the observed variations in the salt interval velocities.
Far-Field and Middle-Field Vertical Velocities Associated with Megathrust Earthquakes
NASA Astrophysics Data System (ADS)
Fleitout, L.; Trubienko, O.; Klein, E.; Vigny, C.; Garaud, J.; Shestakov, N.; Satirapod, C.; Simons, W. J.
2013-12-01
The recent megathrust earthquakes (Sumatra, Chili and Japan) have induced far-field postseismic subsidence with velocities from a few mm/yr to more than 1cm/yr at distances from 500 to 1500km from the earthquake epicentre, for several years following the earthquake. This subsidence is observed in Argentina, China, Korea, far-East Russia and in Malaysia and Thailand as reported by Satirapod et al. ( ASR, 2013). In the middle-field a very pronounced uplift is localized on the flank of the volcanic arc facing the trench. This is observed both over Honshu, in Chile and on the South-West coast of Sumatra. In Japan, the deformations prior to Tohoku earthquake are well measured by the GSI GPS network: While the East coast was slightly subsiding, the West coast was raising. A 3D finite element code (Zebulon-Zset) is used to understand the deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes. The meshes designed for each region feature a broad spherical shell portion with a viscoelastic asthenosphere. They are refined close to the subduction zones. Using these finite element models, we find that the pattern of the predicted far-field vertical postseismic displacements depends upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. A low viscosity asthenosphere at shallow depth, just below the lithosphere is required to explain the subsidence at distances from 500 to 1500km. A thick (for example 600km) asthenosphere with a uniform viscosity predicts subsidence too far away from the trench. Slip on the subduction interface is unable tot induce the observed far-field subsidence. However, a combination of relaxation in a low viscosity wedge and slip or relaxation on the bottom part of the subduction interface is necessary to explain the observed postseismic uplift in the middle-field (volcanic arc area). The creep laws of the various zones used to explain the postseismic data can be injected in models predicting deformations through the whole seismic cycle. In the far-field, the uplift compensating the postseismic subsidence occurs at a rather moderate rate. In the middle field, a slight subsidence or a velocity close to zero is expected on the subduction side of the volcanic arc while uplift is expected on the continent side of the arc. This is in good agreement with the pattern of vertical velocities observed in Northern Honshu previous to Tohoku earthquake.
Forced Gravity Waves and the Tropospheric Response to Convection
NASA Astrophysics Data System (ADS)
Halliday, O. J.; Griffiths, S. D.; Parker, D. J.; Stirling, A.
2017-12-01
It has been known for some time that gravity waves facilitate atmospheric adjustment to convective heating. Further, convectively forced gravity waves condition the neighboring atmosphere for the initiation and / or suppression of convection. Despite this, the radiation of gravity waves in macro-scale models (which are typically forced at the grid-scale, by existing parameterization schemes) is not well understood. We present here theoretical and numerical work directed toward improving our understanding of convectively forced gravity wave effects at the mesoscale. Using the linear hydrostatic equations of motion for an incompressible (but non-Boussinesq) fluid with vertically varying buoyancy frequency, we find a radiating solution to prescribed sensible heating. We then interrogate the spatial and temporal sensitivity of the vertical velocity and potential temperature response to different heating functions, considering the remote and near-field forced response both to steady and pulsed heating. We find that the meso-scale tropospheric response to convection is significantly dependent on the upward radiation characteristics of the gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and stratification of the domain. Moving from a trapped to upwardly-radiating solution there is a 50% reduction in tropospherically averaged vertical velocity, but significant perturbations persist for up to 4 hours in the far-field. We find the tropospheric adjustment to be sensitive to the horizontal length scale which characterizes the heating, observing a 20% reduction in vertical velocity when comparing the response from a 10 km to a 100 km heat source. We assess the implications for parameterization of convection in coarse-grained models in the light of these findings. We show that an idealized `full-physics' nonlinear simulation of deep convection in the UK Met Office Unified Model is qualitatively described by the linear solution: departures are quantified and explored.
NASA Astrophysics Data System (ADS)
Becker, Matthias; Leinen, Stefan; Läufer, Gwendolyn; Lehné, Rouwen
2013-04-01
Six years of GPS data have been reprocessed in ITRF2008 for a regional SAPOS CORS network in the federal state of Hesse with 25 stations and some anchor sites of IGS and EPN to derive accurate and consistent coordinate time series. Based on daily network solutions coordinate time series parameters like velocities, offsets in case of antenna changes and annual periodic variation have been estimated. The estimation process includes the fitting of a sophisticated stochastic model for the time series which accounts for inherent time correlation. The results are blended with geological data to verify information from geology on potential recent deformations by the geodetic analyses. Besides of some information on the reprocessing of the GNSS the results the stochastics of the derived velocity field will be discussed in detail. Special emphasis will be on the intra-plate deformation: for the horizontal component the residual velocity field after removal of a plate rotation model is presented, while for the vertical velocities the datum-induced systematic effect is removed in order to analyze the remaining vertical motion. The residual velocity field is then matched with the geology for Hesse. Correlation of both vertical and horizontal movements with major geological structures reveals good accordance. SAPOS stations with documented significant subsidence are mainly located in tertiary Graben structures such as the Lower Hessian Basin (station Kassel), the Wetterau (station Kloppenheim) or the Upper Rhine Graben (Station Darmstadt). From the geological point of view these structures are supposed to be subsiding ones. Other major geological features, i.e. the Rhenish Shield as well as the East Hessian Bunter massif are supposed to be affected by recent uplift. SAPOS stations located in these regions match the assumed movement (e.g. Weilburg, Wiesbaden, Bingen, Fulda). Furthermore SAPOS-derived horizontal movements seem to trace tectonic movements in the region, i.e. extension along the tertiary Graben structures, including a sinistral strike slip component. However, a more detailed analysis is needed to confirm the link between detected movement and geodynamic processes.
Assimilation of GOES-Derived Cloud Fields Into MM5
NASA Astrophysics Data System (ADS)
Biazar, A. P.; Doty, K. G.; McNider, R.
2007-12-01
This approach for the assimilation of GOES-derived cloud data into an atmospheric model (the Fifth-Generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model, or MM5) was performed in two steps. In the first step, multiple linear regression equations were developed using a control MM5 simulation to develop relationships for several dependent variables in model columns that had one or more layers of clouds. In the second step, the regression equations were applied during an MM5 simulation with assimilation in which the hourly GOES satellite data were used to determine the cloud locations and some of the cloud properties, but with all the other variables being determined by the model data. The satellite-derived fields used were shortwave cloud albedo and cloud top pressure. Ten multiple linear regression equations were developed for the following dependent variables: total cloud depth, number of cloud layers, depth of the layer that contains the maximum vertical velocity, the maximum vertical velocity, the height of the maximum vertical velocity, the estimated 1-h stable (i.e., grid scale) precipitation rate, the estimated 1-h convective precipitation rate, the height of the level with the maximum positive diabatic heating, the magnitude of the maximum positive diabatic heating, and the largest continuous layer of upward motion. The horizontal components of the divergent wind were adjusted to be consistent with the regression estimate of the maximum vertical velocity. The new total horizontal wind field with these new divergent components was then used to nudge an ongoing MM5 model simulation towards the target vertical velocity. Other adjustments included diabatic heating and moistening at specified levels. Where the model simulation had clouds when the satellite data indicated clear conditions, procedures were taken to remove or diminish the errant clouds. The results for the period of 0000 UTC 28 June - 0000 UTC 16 July 1999 for both a continental 32-km grid and an 8-km grid over the Southeastern United States indicate a significant improvement in the cloud bias statistics. The main improvement was the reduction of high bias values that indicated times and locations in the control run when there were model clouds but when the satellite indicated clear conditions. The importance of this technique is that it has been able to assimilate the observed clouds in the model in a dynamically sustainable manner. Acknowledgments. This work was partially funded by the following grants: a GEWEX grant from NASA , the Cooperative Agreement between the University of Alabama in Huntsville and the Minerals Management Service on Gulf of Mexico Issues, a NASA applications grant, and a NSF grant.
The Effects of Eccentric, Velocity-Based Training on Strength and Power in Collegiate Athletes
DOLEZAL, SAMANTHA M.; FRESE, DEREK L.; LLEWELLYN, TAMRA L.
2016-01-01
The purpose of this study was to determine if combining velocity-based training with eccentric focus (VEB) and velocity-based training (VBT) results in power and strength gains. Nineteen men and women collegiate track and field athletes participated in this study. The subjects completed a 12-week intervention with either a VEB program or a VBT program. To determine the effectiveness of each program, the subjects completed four exercise tests before and after the training period: vertical jump, medicine ball put test, 1RM projected bench press and 1RM projected squat. There were no significant differences between the VBT results and the VEB results. However, there were significant improvements between the pre-test and post-test measures for each group. There were increases in 1RM projected squat for VEB men, VBT men, and VBT women. There were also significant improvements in the VEB male vertical jump and medicine ball put test pre- to post-intervention. For track and field athletes, both programs may result in strength and power gains, however, the results cannot be used to conclude that one resistance training program is superior. PMID:27990226
The Effects of Eccentric, Velocity-Based Training on Strength and Power in Collegiate Athletes.
Dolezal, Samantha M; Frese, Derek L; Llewellyn, Tamra L
2016-01-01
The purpose of this study was to determine if combining velocity-based training with eccentric focus (VEB) and velocity-based training (VBT) results in power and strength gains. Nineteen men and women collegiate track and field athletes participated in this study. The subjects completed a 12-week intervention with either a VEB program or a VBT program. To determine the effectiveness of each program, the subjects completed four exercise tests before and after the training period: vertical jump, medicine ball put test, 1RM projected bench press and 1RM projected squat. There were no significant differences between the VBT results and the VEB results. However, there were significant improvements between the pre-test and post-test measures for each group. There were increases in 1RM projected squat for VEB men, VBT men, and VBT women. There were also significant improvements in the VEB male vertical jump and medicine ball put test pre- to post-intervention. For track and field athletes, both programs may result in strength and power gains, however, the results cannot be used to conclude that one resistance training program is superior.
Vertical motions in the equatorial middle atmosphere
NASA Technical Reports Server (NTRS)
Weisman, M. L.
1979-01-01
A single station vertical velocity equation which considers ageostrophic and diabatic effects derived from the first law of thermodynamics and a generalized thermal wind relation is presented. An analysis and verification procedure which accounts for measurement and calculation errors as well as time and space continuity arguments and theoretical predictions are described. Vertical velocities are calculated at every kilometer between 25 and 60 km and for approximately every three hours for the above diurnal period at Kourou (French Guiana), Fort Sherman (Panama Canal Zone), Ascension Island, Antigua (British West Indies) and Natal (Brazil). The results, plotted as time series cross sections, suggest vertical motions ranging in magnitude from 1 or 2 cm/sec at 30 km to as much as 15 cm/sec at 60 km. Many of the general features of the results agree well with atmospheric tidal predictions but many particular features suggest that both smaller time scale gravity waves (periods less than 6 hours) and synoptic type waves (periods greater than 1 day) may be interacting significantly with the tidal fields. The results suggest that vertical motions can be calculated for the equatorial middle atmosphere and must be considered a significant part of the motion for time scales from 8 to 24 hours.
NASA Astrophysics Data System (ADS)
Korotenko, K. A.; Sentchev, A. V.
2008-10-01
Using a combined model that couples a three-dimensional ocean circulation model, a model for tidal currents, and a model for particle transport, the structure of the velocity field of the tidal current and the transport of particles migrating over the vertical were studied in the zone of the influence of the riverine runoff in the eastern part of the English Channel. It was found that the interaction between the tidal current and the baroclinic flow formed by the riverine runoff off the northeastern coast of France generates a steady-state intensive (˜0.3 m/s) residual current in the zone of the effect of the riverine runoff. In order to assess the influence of different types of particle migration (which simulate ichthyoplankton) on the processes of their transport in the region under consideration, we performed numerical experiments with particle clusters, for which parameterization of their migration was implemented on the basis of the field observations over the proper vertical movements of different types of ichthyoplankton. The experiments showed that the distribution of the fields of the particle concentrations and the velocities of their movements depend not only on the background hydrophysical conditions but also on the character of the vertical migration of the particles. In this paper, a comparison between the results of the modeling and those of the field observations in the region under consideration are presented.
Convective flows of generalized time-nonlocal nanofluids through a vertical rectangular channel
NASA Astrophysics Data System (ADS)
Ahmed, Najma; Vieru, Dumitru; Fetecau, Constantin; Shah, Nehad Ali
2018-05-01
Time-nonlocal generalized model of the natural convection heat transfer and nanofluid flows through a rectangular vertical channel with wall conditions of the Robin type are studied. The generalized mathematical model with time-nonlocality is developed by considering the fractional constitutive equations for the shear stress and thermal flux defined with the time-fractional Caputo derivative. The Caputo power-law non-local kernel provides the damping to the velocity and temperature gradient; therefore, transport processes are influenced by the histories at all past and present times. Analytical solutions for dimensionless velocity and temperature fields are obtained by using the Laplace transform coupled with the finite sine-cosine Fourier transform which is suitable to problems with boundary conditions of the Robin type. Particularizing the fractional thermal and velocity parameters, solutions for three simplified models are obtained (classical linear momentum equation with damped thermal flux; fractional shear stress constitutive equation with classical Fourier's law for thermal flux; classical shear stress and thermal flux constitutive equations). It is found that the thermal histories strongly influence the thermal transport for small values of time t. Also, the thermal transport can be enhanced if the thermal fractional parameter decreases or by increasing the nanoparticles' volume fraction. The velocity field is influenced on the one hand by the temperature of the fluid and on the other by the damping of the velocity gradient introduced by the fractional derivative. Also, the transport motions of the channel walls influence the motion of the fluid layers located near them.
NASA Astrophysics Data System (ADS)
Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said
2017-01-01
Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.
NASA Astrophysics Data System (ADS)
Kervalishvili, G.; Lühr, H.
2016-12-01
This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame for both signs of IMF By, but speeds are larger for positive By. FAC shows a systematic imbalance between downward (upward) and upward (downward) peaks equatorward and poleward of the reference point for positive (negative) IMF By. The influence of upflow events depends strongly on the amplitude of IMF By, to a lesser extend on Bz.
Improvement of Long-Jump Performance During Competition Using a Plyometric Exercise.
Bogdanis, Gregory C; Tsoukos, Athanasios; Veligekas, Panagiotis
2017-02-01
To examine the acute effects of a conditioning plyometric exercise on long-jump performance during a simulated long-jump competition. Eight national-level track and field decathletes performed 6 long-jump attempts with a full approach run separated by 10-min recoveries. In the experimental condition subjects performed 3 rebound vertical jumps with maximal effort 3 min before the last 5 attempts, while the 1st attempt served as baseline. In the control condition the participants performed 6 long jumps without executing the conditioning exercise. Compared with baseline, long-jump performance progressively increased only in the experimental condition, from 3.0%, or 17.5 cm, in the 3rd attempt (P = .046, d = 0.56), to 4.8%, or 28.2 cm, in the 6th attempt (P = .0001, d = 0.84). The improvement in long-jump performance was due to a gradual increase in vertical takeoff velocity from the 3rd (by 8.7%, P = .0001, d = 1.82) to the 6th jump (by 17.7%, P = .0001, d = 4.38). Horizontal-approach velocity, takeoff duration, and horizontal velocity at takeoff were similar at all long-jump attempts in both conditions (P = .80, P = .36, and P = .15, respectively). Long-jump performance progressively improved during a simulated competition when a plyometric conditioning exercise was executed 3 min before each attempt. This improvement was due to a progressive increase in vertical velocity of takeoff, while there was no effect on the horizontal velocity.
NASA Astrophysics Data System (ADS)
Chamecki, M.; Pan, Y.; Nepf, H. M.; Follett, E.
2014-12-01
Flexible plants bend in response to fluid motion and this reconfiguration mechanism allows plants to minimize the increase of drag force with increasing velocity, ensuring survival in flow-dominated habitats. The effect of reconfiguration on the flow field can be modeled by introducing a drag coefficient that decreases with increasing velocity. Typically, a power-law decrease of the drag coefficient with increasing velocity is used, and the negative exponent is known as the Vogel number. In practice, the Vogel number is a function of canopy rigidity and flow conditions. In this work we show that accounting for the effect of reconfiguration is required for large-eddy simulation (LES) models to reproduce the skewness of the streamwise and vertical velocity components and the distribution of sweeps and ejections observed in a large cornfield. Additional LES runs are conducted to investigate the structure of turbulence in different reconfiguration regimes, with mean vertical momentum flux constrained by measurements. The change of the Vogel number has negligible effects on LES predictions of the total vertical momentum flux and the components of turbulent kinetic energy, but produces profound changes in the mechanisms of momentum transport. This work demonstrates the necessity to model the effect of reconfiguration in LES studies of canopy flows. It also highlights the impacts of reconfiguration on the structure of turbulence and the dynamics of momentum fluxes, as well as any other process that depends on velocity fluctuations above and within the canopy region.
Surprises from the field: Novel aspects of aeolian saltation observed under natural turbulence
NASA Astrophysics Data System (ADS)
Martin, R. L.; Kok, J. F.; Chamecki, M.
2015-12-01
The mass flux of aeolian (wind-blown) sediment transport - critical for understanding earth and planetary geomorphology, dust generation, and soil stability - is difficult to predict. Recent work suggests that competing models for saltation (the characteristic hopping of aeolian sediment) fail because they do not adequately account for wind turbulence. To address this issue, we performed field deployments measuring high-frequency co-variations of aeolian saltation and near-surface winds at multiple sites under a range of conditions. Our observations yield several novel findings not currently captured by saltation models: (1) Saltation flux displays no significant lag relative to horizontal wind velocity; (2) Characteristic height of the saltation layer remains constant with changes in shear velocity; and (3) During saltation, the vertical profile of mean horizontal wind velocity is steeper than expected from the Reynolds stress. We examine how the interactions between saltation and turbulence in field settings could explain some of these surprising observations.
Disk mass and disk heating in the spiral galaxy NGC 3223
NASA Astrophysics Data System (ADS)
Gentile, G.; Tydtgat, C.; Baes, M.; De Geyter, G.; Koleva, M.; Angus, G. W.; de Blok, W. J. G.; Saftly, W.; Viaene, S.
2015-04-01
We present the stellar and gaseous kinematics of an Sb galaxy, NGC 3223, with the aim of determining the vertical and radial stellar velocity dispersion as a function of radius, which can help to constrain disk heating theories. Together with the observed NIR photometry, the vertical velocity dispersion is also used to determine the stellar mass-to-light (M/L) ratio, typically one of the largest uncertainties when deriving the dark matter distribution from the observed rotation curve. We find a vertical-to-radial velocity dispersion ratio of σz/σR = 1.21 ± 0.14, significantly higher than expectations from known correlations, and a weakly-constrained Ks-band stellar M/L ratio in the range 0.5-1.7, which is at the high end of (but consistent with) the predictions of stellar population synthesis models. Such a weak constraint on the stellar M/L ratio, however, does not allow us to securely determine the dark matter density distribution. To achieve this, either a statistical approach or additional data (e.g. integral-field unit) are needed. Based on observations collected at the European Southern Observatory, Chile, under proposal 68.B-0588.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newsom, R. K.; Sivaraman, C.; Shippert, T. R.
Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosismore » from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.« less
NASA Astrophysics Data System (ADS)
Wang, Yuebing
2017-04-01
Based on the observation data of Compass/GPSobserved at five stations, time span from July 1, 2014 to June 30, 2016. UsingPPP positioning model of the PANDA software developed by Wuhan University,Analyzedthe positioning accuracy of single system and Compass/GPS integrated resolving, and discussed the capability of Compass navigation system in crustal motion monitoring. The results showed that the positioning accuracy in the east-west directionof the Compass navigation system is lower than the north-south direction (the positioning accuracy de 3 times RMS), in general, the positioning accuracyin the horizontal direction is about 1 2cm and the vertical direction is about 5 6cm. The GPS positioning accuracy in the horizontal direction is better than 1cm and the vertical direction is about 1 2cm. The accuracy of Compass/GPS integrated resolving is quite to GPS. It is worth mentioning that although Compass navigation system precision point positioning accuracy is lower than GPS, two sets of velocity fields obtained by using the Nikolaidis (2002) model to analyze the Compass and GPS time series results respectively, the results showed that the maximum difference of the two sets of velocity field in horizontal directions is 1.8mm/a. The Compass navigation system can now be used to monitor the crustal movement of the large deformation area, based on the velocity field in horizontal direction.
NASA Astrophysics Data System (ADS)
Shen, W.; Pan, Y.; Hwang, C.; Ding, H.
2015-12-01
We use 168 Continuous Global Positioning System (CGPS) stations distributed in the Tibetan Plateau (TP) and Nepal from lengths of 2.5 to 14 years to estimate the present-day velocity field in this area, including the horizontal and vertical deformations under the frame ITRF2008. We estimate and remove common mode errors in regional GPS time series using the principal component analysis (PCA), obtaining a time series with high signal to noise ratio. Following the maximum estimation analysis, a power law plus white noise stochastic model are adopted to estimate the velocity field. The highlight of Tibetan region is the crust vertical deformation. GPS vertical time series present seasonal oscillations caused by temporal mass loads, hence GRACE data from CSR are used to study the mass loads change. After removing the mass load deformations from GPS vertical rates, the results are improved. Leveling data about 48 years in this region are also used to estimate the rates of vertical movements. Our study suggests that the boundary of south Nepal is still sinking due to the fact that the India plate is crashing into the Eurasian plate. The uplift rates from south to north of TP reduce gradually. Himalayas region and north Nepal uplift around 6 mm/yr in average. The uplift rate along East TP in Qinhai is around 2.7 mm/yr in average. In contrast, the southeast of Tibetan Plateau, south Yunnan and Tarim in Xinjiang sink with different magnitudes. Our observation results suggest complicated mechanism of the mass migration in TP. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).
Attentional sensitivity and asymmetries of vertical saccade generation in monkey
NASA Technical Reports Server (NTRS)
Zhou, Wu; King, W. M.; Shelhamer, M. J. (Principal Investigator)
2002-01-01
The first goal of this study was to systematically document asymmetries in vertical saccade generation. We found that visually guided upward saccades have not only shorter latencies, but higher peak velocities, shorter durations and smaller errors. The second goal was to identify possible mechanisms underlying the asymmetry in vertical saccade latencies. Based on a recent model of saccade generation, three stages of saccade generation were investigated using specific behavioral paradigms: attention shift to a visual target (CUED paradigm), initiation of saccade generation (GAP paradigm) and release of the motor command to execute the saccade (DELAY paradigm). Our results suggest that initiation of a saccade (or "ocular disengagement") and its motor release contribute little to the asymmetry in vertical saccade latency. However, analysis of saccades made in the CUED paradigm indicated that it took less time to shift attention to a target in the upper visual field than to a target in the lower visual field. These data suggest that higher attentional sensitivity to targets in the upper visual field may contribute to shorter latencies of upward saccades.
Using GPS Imaging to Unravel Vertical Land Motions in the Interior Pacific Northwest
NASA Astrophysics Data System (ADS)
Overacker, J.; Hammond, W. C.; Kraner, M.; Blewitt, G.
2017-12-01
GPS Imaging uses robust trends in time series of GPS positions to create a velocity field that can reveal rates and patterns of vertical motions that would be otherwise difficult to detect. We have constructed an image of vertical land velocities within the interior Pacific Northwest region of the United States using GPS Imaging. The image shows a 50-250 km wide swath of approximately 2 mm/yr of subsidence seemingly unrelated to topographic features of the region. The extent of the signal roughly corresponds to the Juan de Fuca plate subduction latitudes and longitude of the Cascade arc. This suggests that the signal could be associated with ongoing crustal deformation possibly related to plate-scale geodynamic forces arising from interseismic coupling, long term plate boundary tractions, volcanic loading, and/or mantle flow. However, hydrological loading from accumulating precipitation in the Cascades and in the region's groundwater basins, and possible effects from Glacial Isostatic Adjustment (GIA) near its hinge line cannot be discounted as potential contributors to the observed subsidence signal. Here we attempt to unravel the contributions of hydrological loading and GIA to the vertical GPS signal observed within the interior Pacific Northwest. In order to determine the non-tectonic contributions to the observed vertical GPS Image, we will examine how the subsidence rate changes over time using early and late period comparisons. GPS, GRACE, and climatic data will be used in conjunction to disentangle the hydrological effect from the GPS Image. GIA models of the Western Cordillera will be compared with the patterns in the GPS Image to assess whether the signal can be explained with current models of GIA. Our presentation will document the signals, uncertainties, and hypotheses for the possible mechanisms behind this subsidence and attempt to quantify their relation and contribution to the observed deformation signal. Figure 1: Pacific Northwest GPS Imaging result of vertical velocity field plotted over topographic relief map. Red is up, blue is down. GPS station locations are shown in green. Greatest amount of subsidence shown by GPS Imaging appear uncorrelated with topographic features.
A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow
NASA Technical Reports Server (NTRS)
Oseguera, Rosa M.; Bowles, Roland L.
1988-01-01
A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations.
Great Bend tornadoes of August 30, 1974
NASA Technical Reports Server (NTRS)
Umenhofer, T. A.; Fujita, T. T.; Dundas, R.
1977-01-01
Photogrammetric analyses of movies and still pictures taken of the Great Bend, Kansas Tornado series have been used to develop design specifications for nuclear power plants and facilities. A maximum tangential velocity of 57 m/sec and a maximum vertical velocity of 27 m/sec are determined for one suction vortex having a translational velocity of 32 m/sec. Three suction vortices with radii in the 20 to 30 m range are noted in the flow field of one tornado; these suction vortices apparently form a local convergence of inflow air inside the outer portion of the tornado core.
NASA Astrophysics Data System (ADS)
Iliescu, Ciprian; Tresset, Guillaume; Xu, Guolin
2007-06-01
This letter presents a dielectrophoretic (DEP) separation method of particles under continuous flow. The method consists of flowing two particle populations through a microfluidic channel, in which the vertical walls are the electrodes of the DEP device. The irregular shape of the electrodes generates both electric field and fluid velocity gradients. As a result, the particles that exhibit negative DEP can be trapped in the fluidic dead zones, while the particles that experience positive DEP are concentrated in the regions with high velocity and collected at the outlet. The device was tested with dead and living yeast cells.
NASA Astrophysics Data System (ADS)
Delandmeter, Philippe; Lambrechts, Jonathan; Legat, Vincent; Vallaeys, Valentin; Naithani, Jaya; Thiery, Wim; Remacle, Jean-François; Deleersnijder, Eric
2018-03-01
The discontinuous Galerkin (DG) finite element method is well suited for the modelling, with a relatively small number of elements, of three-dimensional flows exhibiting strong velocity or density gradients. Its performance can be highly enhanced by having recourse to r-adaptivity. Here, a vertical adaptive mesh method is developed for DG finite elements. This method, originally designed for finite difference schemes, is based on the vertical diffusion of the mesh nodes, with the diffusivity controlled by the density jumps at the mesh element interfaces. The mesh vertical movement is determined by means of a conservative arbitrary Lagrangian-Eulerian (ALE) formulation. Though conservativity is naturally achieved, tracer consistency is obtained by a suitable construction of the mesh vertical velocity field, which is defined in such a way that it is fully compatible with the tracer and continuity equations at a discrete level. The vertically adaptive mesh approach is implemented in the three-dimensional version of the geophysical and environmental flow Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM 3D; www.climate.be/slim). Idealised benchmarks, aimed at simulating the oscillations of a sharp thermocline, are dealt with. Then, the relevance of the vertical adaptivity technique is assessed by simulating thermocline oscillations of Lake Tanganyika. The results are compared to measured vertical profiles of temperature, showing similar stratification and outcropping events.
Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones
ERIC Educational Resources Information Center
Monteiro, Martín; Martí, Arturo C.
2017-01-01
We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…
Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.
2008-01-01
In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.
Doppler radar echoes of lightning and precipitation at vertical incidence
NASA Technical Reports Server (NTRS)
Zrnic, D. S.; Rust, W. D.; Taylor, W. L.
1982-01-01
Digital time series data at 16 heights within two storms were collected at vertical incidence with a 10-cm Doppler radar. On several occasions during data collection, lightning echoes were observed as increased reflectivity on an oscilloscope display. Simultaneously, lightning signals from nearby electric field change antennas were recorded on an analog recorder together with the radar echoes. Reflectivity, mean velocity, and Doppler spectra were examined by means of time series analysis for times during and after lightning discharges. Spectra from locations where lightning occurred show peaks, due to the motion of the lightning channel at the air speed. These peaks are considerably narrower than the ones due to precipitation. Besides indicating the vertical air velocity that can then be used to estimate hydrometeor-size distribution, the lightning spectra provide a convenient means to estimate the radar cross section of the channel. Subsequent to one discharge, we deduce that a rapid change in the orientation of hydrometeors occurred within the resolution volume.
Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods
NASA Technical Reports Server (NTRS)
Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)
2007-01-01
A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.
NASA Astrophysics Data System (ADS)
Saria, E.; Calais, E.; Altamimi, Z.; Willis, P.; Farah, H.
2013-04-01
We analyzed 16 years of GPS and 17 years of Doppler orbitography and radiopositioning integrated by satellite (DORIS) data at continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. The resulting velocity field describes horizontal and vertical motion at 133 GPS sites and 9 DORIS sites. Horizontal velocities at sites located on stable Nubia fit a single plate model with a weighted root mean square residual of 0.6 mm/yr (maximum residual 1 mm/yr), an upper bound for plate-wide motions and for regional-scale deformation in the seismically active southern Africa and Cameroon volcanic line. We confirm significant southward motion ( ˜ 1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We update a plate motion model for the East African Rift and revise the counterclockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. Vertical velocities range from - 2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). Except for a few regions, the African continent remains largely under-sampled by continuous space geodetic data. Efforts are needed to augment the geodetic infrastructure and openly share existing data sets so that the objectives of AFREF can be fully reached.
Natural convection heat transfer in an oscillating vertical cylinder
Ali Shah, Nehad; Tassaddiq, Asifa; Mustapha, Norzieha; Kechil, Seripah Awang
2018-01-01
This paper studies the heat transfer analysis caused due to free convection in a vertically oscillating cylinder. Exact solutions are determined by applying the Laplace and finite Hankel transforms. Expressions for temperature distribution and velocity field corresponding to cosine and sine oscillations are obtained. The solutions that have been obtained for velocity are presented in the forms of transient and post-transient solutions. Moreover, these solutions satisfy both the governing differential equation and all imposed initial and boundary conditions. Numerical computations and graphical illustrations are used in order to study the effects of Prandtl and Grashof numbers on velocity and temperature for various times. The transient solutions for both cosine and sine oscillations are also computed in tables. It is found that, the transient solutions are of considerable interest up to the times t = 15 for cosine oscillations and t = 1.75 for sine oscillations. After these moments, the transient solutions can be neglected and, the fluid moves according with the post-transient solutions. PMID:29304161
Natural convection heat transfer in an oscillating vertical cylinder.
Khan, Ilyas; Ali Shah, Nehad; Tassaddiq, Asifa; Mustapha, Norzieha; Kechil, Seripah Awang
2018-01-01
This paper studies the heat transfer analysis caused due to free convection in a vertically oscillating cylinder. Exact solutions are determined by applying the Laplace and finite Hankel transforms. Expressions for temperature distribution and velocity field corresponding to cosine and sine oscillations are obtained. The solutions that have been obtained for velocity are presented in the forms of transient and post-transient solutions. Moreover, these solutions satisfy both the governing differential equation and all imposed initial and boundary conditions. Numerical computations and graphical illustrations are used in order to study the effects of Prandtl and Grashof numbers on velocity and temperature for various times. The transient solutions for both cosine and sine oscillations are also computed in tables. It is found that, the transient solutions are of considerable interest up to the times t = 15 for cosine oscillations and t = 1.75 for sine oscillations. After these moments, the transient solutions can be neglected and, the fluid moves according with the post-transient solutions.
NASA Technical Reports Server (NTRS)
Cornish, C. R.
1988-01-01
The first clear-air observations of vertical velocities in the tropical upper troposphere and lower stratosphere (8-22 km) using the Arecibo 430-MHz radar are presented. Oscillations in the vertical velocity near the Brunt-Vaisala period are observed in the lower stratosphere during the 12-hour observation period. Frequency power spectra from the vertical velocity time series show a slope between -0.5 and -1.0. Vertical wave number spectra computed from the height profiles of vertical velocities have slopes between -1.0 and -1.5. These observed slopes do not agree well with the slopes of +1/3 and -2.5 for frequency and vertical wave number spectra, respectively, predicted by a universal gravity-wave spectrum model. The spectral power of wave number spectra of a radial beam directed 15 deg off-zenith is enhanced by an order of magnitude over the spectral power levels of the vertical beam. This enhancement suggests that other geophysical processes besides gravity waves are present in the horizontal flow. The steepening of the wave number spectrum of the off-vertical beam in the lower stratosphere to near -2.0 is attributed to a quasi-inertial period wave, which was present in the horizontal flow during the observation period.
Rodríguez-Lorenzo, Lois; Fernandez-del-Olmo, Miguel; Sanchez-Molina, José Andrés
2016-01-01
Abstract Kicking is one of the most important skills in soccer and the ability to achieve ma ximal kicking velocity with both legs leads to an advantage for the soccer player. This study examined the relationship be tween kicking ball velocity with both legs using anthropometric measurements and vertical jumps (a squat jump (SJ); a countermovement jump without (CMJ) and with the arm swing (CMJA) and a reactive jump (RJ)). Anthropome tric measurements did not correlate with kicking ball velocity. Vertical jumps correlated significantly with kicking ball velocity using the dominant leg only (r = .47, r = .58, r = .44, r = .51, for SJ, CMJ, CMJA and RJ, respectively) . Maximal kicking velocity with the dominant leg was significantly higher than with the non-dominant leg (t = 18.0 4, p < 0.001). Our results suggest that vertical jumps may be an optimal test to assess neuromuscular skills involved in kicking at maximal speed. Lack of the relationship between vertical jumps and kicking velocity with the non-dominant leg may reflect a difficulty to exhibit the neuromuscular skills during dominant leg kicking. PMID:28149419
Dynamically consistent hydrography and absolute velocity in the eastern North Atlantic Ocean
NASA Technical Reports Server (NTRS)
Wunsch, Carl
1994-01-01
The problem of mapping a dynamically consistent hydrographic field and associated absolute geostrophic flow in the eastern North Atlantic between 24 deg and 36 deg N is related directly to the solution of the so-called thermocline equations. A nonlinear optimization problem involving Needler's P equation is solved to find the hydrography and resulting flow that minimizes the vertical mixing above about 1500 m in the ocean and is simultaneously consistent with the observations. A sharp minimum (at least in some dimensions) is found, apparently corresponding to a solution nearly conserving potential vorticity and with vertical eddy coefficient less than about 10(exp -5) sq m/s. Estimates of `residual' quantities such as eddy coefficients are extremely sensitive to slight modifications to the observed fields. Boundary conditions, vertical velocities, etc., are a product of the optimization and produce estimates differing quantitatively from prior ones relying directly upon observed hydrography. The results are generally insensitive to particular elements of the solution methodology, but many questions remain concerning the extent to which different synoptic sections can be asserted to represent the same ocean. The method can be regarded as a practical generalization of the beta spiral and geostrophic balance inverses for the estimate of absolute geostrophic flows. Numerous improvements to the methodology used in this preliminary attempt are possible.
NASA Astrophysics Data System (ADS)
Piecuch, C. G.; Huybers, P. J.; Hay, C.; Mitrovica, J. X.; Little, C. M.; Ponte, R. M.; Tingley, M.
2017-12-01
Understanding observed spatial variations in centennial relative sea level trends on the United States east coast has important scientific and societal applications. Past studies based on models and proxies variously suggest roles for crustal displacement, ocean dynamics, and melting of the Greenland ice sheet. Here we perform joint Bayesian inference on regional relative sea level, vertical land motion, and absolute sea level fields based on tide gauge records and GPS data. Posterior solutions show that regional vertical land motion explains most (80% median estimate) of the spatial variance in the large-scale relative sea level trend field on the east coast over 1900-2016. The posterior estimate for coastal absolute sea level rise is remarkably spatially uniform compared to previous studies, with a spatial average of 1.4-2.3 mm/yr (95% credible interval). Results corroborate glacial isostatic adjustment models and reveal that meaningful long-period, large-scale vertical velocity signals can be extracted from short GPS records.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1996-01-01
1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For horizontal VOR, the amplitude of the steady-state slow-phase velocity during constant velocity rotation and the reduction of phase leads during sinusoidal oscillation were relatively independent of tilt angle (for angles larger than approximately 10 degrees). For vertical and torsional VOR, the amplitude of steady-state slow-phase eye velocity during constant velocity rotation increased, and the phase leads during sinusoidal oscillation decreased with increasing tilt angle. The largest steady-state response amplitudes and smallest phase leads were observed during vertical/torsional VOR about an earth-horizontal axis. 5. The dynamic range of otolith-borne head angular velocity information in the VOR was limited to velocities up to approximately 110 degrees/s. Higher head velocities resulted in saturation and a decrease in the amplitude of the steady-state response components during constant velocity rotation and in increased phase leads during sinusoidal oscillations. 6. The response characteristics of otolith-borne angular VORs were also studied in animals after selective semicircular canal inactivation. Otolith angular VORs exhibited clear low-pass filtered properties with a corner frequency of approximately 0.05-0.1 Hz. Vectorial summation of canal VOR alone (elicited during earth-vertical axis rotations) and otolith VOR alone (elicited during off-vertical axis oscillations after semicircular canal inactivation) could not predict VOR gain and phase during off-vertical axis rotations in intact animals. This suggests a more complex interaction of semicircular canal and otolith signals. 7. The results of this study show that the primate low-frequency enhancement of VOR dynamics during off-vertical axis rotation is independent of a simultaneous activation of the vertical and torsional "tilt" otolith-ocular reflexes that have been characterized in the preceding paper. (ABSTRACT TRUNCATED).
Geology of the Attaka oil field, East Kalimantan, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, C.M.; Laughbaum, G.H. Jr.; Samsu, B.S.
1973-11-01
The Attaka field is the first commercial offshore oil field to be discovered in Kalimantan, Indonesia. After its discovery in 1970 and the drilling of confirmation wells during 1970 and 1971, a development program involving 50 wells from 6 platforms was begun. The field is 12 miles off shore from the E. Kalimantan coast in 200 ft of water. Areal and vertical closures of the Attaka structure are 26 sq miles and 600 ft, respectively, and the areal extent of oil accumulation is some 9.8 sq miles. The Attaka structure is located in the Tertiary Kutei Basin which contains earlymore » Tertiary to Quaternary sediments, and the oil in the Attaka field is in numerous deltaic sands deposited during a late Miocene advance of the ancestral Mahakam River delta. Seismic velocity and well velocity survey data indicate the presence of a low velocity region more or less coincident with the limits of oil and gas accumulation on the crest of the Attaka structure. Gravity of the Attaka oil ranges from 35' to 43' API and its sulfur content is 0.1% by wt.« less
Characteristics of vertical air motion in isolated convective clouds
Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; ...
2016-08-11
The vertical velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (< 500 m in diameter) are frequently observed in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and profiles of the observed vertical velocity are provided. The PDFsmore » are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (> 20 m s −1) were sampled in COPE and ICE-T. The observed downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The observed maximum air mass flux in updrafts is of the order 10 4 kg m −1 s −1. The observed air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more observations are needed to better explore the vertical air motion in convective clouds.« less
Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2010-01-01
The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.
Moisture convergence from a combined mesoscale moisture analysis and wind field for 24 April 1975
NASA Technical Reports Server (NTRS)
Negri, A. J.; Hillger, D. W.; Vonder Haar, T. H.
1977-01-01
Precipitable water values inferred from the Vertical Temperature Profile Radiometer data of the polar orbiting NOAA-4 satellite are used in conjunction with wind-field analyses obtained from Synchronous Meteorological Satellite visible-channel data to study the moisture convergence in the boundary layer immediately preceding a storm. This combination of data simulates the information that will be available from the Visible and Infrared Spin-Scan Radiometer on board the GOES-D satellite, which is scheduled to begin operation in the 1980s. Serviceable representations of boundary layer flow are developed through analysis of the satellite infrared cumulus velocities, although the flow representations are not exactly located in the vertical.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Tripathi, Dharmendra; Khan, Zafar Hayat; Bég, O. Anwar
2016-09-01
In this paper, a mathematical study is conducted of steady incompressible flow of a temperature-dependent viscous nanofluid from a vertical stretching sheet under applied external magnetic field and gravitational body force effects. The Reynolds exponential viscosity model is deployed. Electrically-conducting nanofluids are considered which comprise a suspension of uniform dimension nanoparticles suspended in viscous base fluid. The nanofluid sheet is extended with a linear velocity in the axial direction. The Buonjiornio model is utilized which features Brownian motion and thermophoresis effects. The partial differential equations for mass, momentum, energy and species (nano-particle concentration) are formulated with magnetic body force term. Viscous and Joule dissipation effects are neglected. The emerging nonlinear, coupled, boundary value problem is solved numerically using the Runge-Kutta fourth order method along with a shooting technique. Graphical solutions for velocity, temperature, concentration field, skin friction and Nusselt number are presented. Furthermore stream function plots are also included. Validation with Nakamura's finite difference algorithm is included. Increasing nanofluid viscosity is observed to enhance temperatures and concentrations but to reduce velocity magnitudes. Nusselt number is enhanced with both thermal and species Grashof numbers whereas it is reduced with increasing thermophoresis parameter and Schmidt number. The model is applicable in nano-material manufacturing processes involving extruding sheets.
Efficient Low-Speed Flight in a Wind Field
NASA Technical Reports Server (NTRS)
Feldman, Michael A.
1996-01-01
A new software tool was needed for flight planning of a high altitude, low speed unmanned aerial vehicle which would be flying in winds close to the actual airspeed of the vehicle. An energy modeled NLP (non-linear programming) formulation was used to obtain results for a variety of missions and wind profiles. The energy constraint derived included terms due to the wind field and the performance index was a weighted combination of the amount of fuel used and the final time. With no emphasis on time and with no winds the vehicle was found to fly at maximum lift to drag velocity, V(sub md). When flying in tail winds the velocity was less than V(sub md), while flying in head winds the velocity was higher than V(sub md). A family of solutions was found with varying times of flight and varying fuel amounts consumed which will aid the operator in choosing a flight plan depending on a desired landing time. At certain parts of the flight, the turning terms in the energy constraint equation were found to be significant. An analysis of a simpler vertical plane cruise optimal control problem was used to explain some of the characteristics of the vertical plane NLP results.
Effects of free convection and friction on heat-pulse flowmeter measurement
NASA Astrophysics Data System (ADS)
Lee, Tsai-Ping; Chia, Yeeping; Chen, Jiun-Szu; Chen, Hongey; Liu, Chen-Wuing
2012-03-01
SummaryHeat-pulse flowmeter can be used to measure low flow velocities in a borehole; however, bias in the results due to measurement error is often encountered. A carefully designed water circulation system was established in the laboratory to evaluate the accuracy and precision of flow velocity measured by heat-pulse flowmeter in various conditions. Test results indicated that the coefficient of variation for repeated measurements, ranging from 0.4% to 5.8%, tends to increase with flow velocity. The measurement error increases from 4.6% to 94.4% as the average flow velocity decreases from 1.37 cm/s to 0.18 cm/s. We found that the error resulted primarily from free convection and frictional loss. Free convection plays an important role in heat transport at low flow velocities. Frictional effect varies with the position of measurement and geometric shape of the inlet and flow-through cell of the flowmeter. Based on the laboratory test data, a calibration equation for the measured flow velocity was derived by the least-squares regression analysis. When the flowmeter is used with a diverter, the range of measured flow velocity can be extended, but the measurement error and the coefficient of variation due to friction increase significantly. At higher velocities under turbulent flow conditions, the measurement error is greater than 100%. Our laboratory experimental results suggested that, to avoid a large error, the heat-pulse flowmeter measurement is better conducted in laminar flow and the effect of free convection should be eliminated at any flow velocities. Field measurement of the vertical flow velocity using the heat-pulse flowmeter was tested in a monitoring well. The calibration of measured velocities not only improved the contrast in hydraulic conductivity between permeable and less permeable layers, but also corrected the inconsistency between the pumping rate and the measured flow rate. We identified two highly permeable sections where the horizontal hydraulic conductivity is 3.7-6.4 times of the equivalent hydraulic conductivity obtained from the pumping test. The field test results indicated that, with a proper calibration, the flowmeter measurement is capable of characterizing the vertical distribution of preferential flow or hydraulic conductivity.
Keijsers, Joep G.S.; Maroulis, Jerry; Visser, Saskia M.
2014-01-01
Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984
Remote determination of the velocity index and mean streamwise velocity profiles
NASA Astrophysics Data System (ADS)
Johnson, E. D.; Cowen, E. A.
2017-09-01
When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Markarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc), but here we surmise its existence in the thin disk at z less than 200 pc. The most unexpected and unexplained term within the Ogorodnikov-Milne model is the first-degree magnetic harmonic, representing a rigid rotation of the stellar field about the axis -Y pointing opposite to the direction of rotation. This harmonic comes out with a statistically robust coefficient of 6.2 +/- 0.9 km s(exp -1) kpc(exp -1) and is also present in the velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Galactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the stationary Galactic warp model.
High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs
NASA Astrophysics Data System (ADS)
Hu, Feng; Wen, Jian; Chen, Xiaofei
2018-03-01
We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.
Application of Effective Medium Theory to the Three-Dimensional Heterogeneity of Mantle Anisotropy
NASA Astrophysics Data System (ADS)
Song, X.; Jordan, T. H.
2015-12-01
A self-consistent theory for the effective elastic parameters of stochastic media with small-scale 3D heterogeneities has been developed using a 2nd-order Born approximation to the scattered wavefield (T. H. Jordan, GJI, in press). Here we apply the theory to assess how small-scale variations in the local anisotropy of the upper mantle affect seismic wave propagation. We formulate a anisotropic model in which the local elastic properties are specified by a constant stiffness tensor with hexagonal symmetry of arbitrary orientation. This orientation is guided by a Gaussian random vector field with transversely isotropic (TI) statistics. If the outer scale of the statistical variability is small compared to a wavelength, then the effective seismic velocities are TI and depend on two parameters, a horizontal-to-vertical orientation ratio ξ and a horizontal-to-vertical aspect ratio, η. If ξ = 1, the symmetry axis is isotropically distributed; if ξ < 1, it is vertical biased (bipolar distribution), and if ξ > 1, it is horizontally biased (girdle distribution). If η = 1, the heterogeneity is geometrically isotropic; as η à∞, the medium becomes a horizontal stochastic laminate; as η à0, the medium becomes a vertical stochastic bundle. Using stiffness tensors constrained by laboratory measurements of mantle xenoliths, we explore the dependence of the effective P and S velocities on ξ and η. The effective velocities are strongly controlled by the orientation ratio ξ; e.g., if the hexagonal symmetry axis of the local anisotropy is the fast direction of propagation, then vPH > vPV and vSH > vSV for ξ > 1. A more surprising result is the 2nd-order insensitivity of the velocities to the heterogeneity aspect ratio η. Consequently, the geometrical anisotropy of upper-mantle heterogeneity significantly enhances seismic-wave anisotropy only through local variations in the Voigt-averaged velocities, which depend primarily on rock composition and not deformation history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassemi, S.A.
1988-04-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
NASA Technical Reports Server (NTRS)
Kassemi, Siavash A.
1988-01-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
NASA Technical Reports Server (NTRS)
Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.
1976-01-01
An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.
NASA Astrophysics Data System (ADS)
Moulas, E.; Brandon, M. T.; Podladchikov, Y.; Bennett, R. A.
2014-12-01
At present, our understanding of the locked zone at Cascadia subduction zone is based on thermal modeling and elastic modeling of horizontal GPS velocities. The thermal model by Hyndman and Wang (1995) provided a first-order assessment of where the subduction thrust might be cold enough for stick-slip behavior. The alternative approach by McCaffrey et al. (2007) is to use a Green's function that relates horizontal surface velocities, as recorded by GPS, to interseismic elastic deformation. The thermal modeling approach is limited by a lack of information about the amount of frictional heating occurring on the thrust (Molnar and England, 1990). The GPS approach is limited in that the horizontal velocity component is fairly insensitive to the structure of the locked zone. The vertical velocity component is much more useful for this purpose. We are fortunate in that vertical velocities can now be measured by GPS to a precision of about 0.2 mm/a. The dislocation model predicts that vertical velocities should range up to about 20 percent of the subduction velocity, which means maximum values of ~7 mm/a. The locked zone is generally entirely offshore at Cascadia, except for the Olympic Peninsula region, where the underlying Juan De Fuca plate has an anomalously low dip. Previous thermal and GPS modeling, as well as tide gauge data and episodic tremors indicate the locked zone there extends about 50 to 75 km onland. This situation provides an opportunity to directly study the locked zone. With that objective in mind, we have constructed a full 3D geodynamic model of the Cascadia subduction zone. At present, the model provides a full representation of the interseismic elastic deformation due to variations of slip on the subduction thrust. The model has been benchmarked against the Savage (2D) and Okada (3D) analytical solutions. This model has an important advantage over traditional dislocation modeling in that we include temperature-sensitive viscosity for the upper and lower plates, and also use realistic constitutive models to represent the locked zone. Another important advantage is that the 3D model provides a full representation of the interseismic deformation, which is important for interpreting GPS data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Piazza, Ivan; Buehler, Leo
2000-09-15
The buoyancy-driven magnetoconvection in the cross section of an infinitely long vertical square duct is investigated numerically using the CFX code package. The implementation of a magnetohydrodynamic (MHD) problem in CFX is discussed, with particular reference to the Lorentz forces and the electric potential boundary conditions for arbitrary electrical conductivity of the walls. The method proposed is general and applies to arbitrary geometries with an arbitrary orientation of the magnetic field. Results for fully developed flow under various thermal boundary conditions are compared with asymptotic analytical solutions. The comparison shows that the asymptotic analysis is confirmed for highly conducting wallsmore » as high velocity jets occur at the side walls. For weakly conducting walls, the side layers become more conducting than the side walls, and strong electric currents flow within these layers parallel to the magnetic field. As a consequence, the velocity jets are suppressed, and the core solution is only corrected by the viscous forces near the wall. The implementation of MHD in CFX is achieved.« less
Guiding out-migrating juvenile sea lamprey (Petromyzon marinus) with pulsed direct current
Johnson, Nicholas S.; Miehls, Scott M.
2014-01-01
Non-physical stimuli can deter or guide fish without affecting water flow or navigation and therefore have been investigated to improve fish passage at anthropogenic barriers and to control movement of invasive fish. Upstream fish migration can be blocked or guided without physical structure by electrifying the water, but directional downstream fish guidance with electricity has received little attention. We tested two non-uniform pulsed direct current electric systems, each having different electrode orientations (vertical versus horizontal), to determine their ability to guide out-migrating juvenile sea lamprey (Petromyzon marinus) and rainbow trout (Oncorhynchus mykiss). Both systems guided significantly more juvenile sea lamprey to a specific location in our experimental raceway when activated than when deactivated, but guidance efficiency decreased at the highest water velocities tested. At the electric field setting that effectively guided sea lamprey, rainbow trout were guided by the vertical electrode system, but most were blocked by the horizontal electrode system. Additional research should characterize the response of other species to non-uniform fields of pulsed DC and develop electrode configurations that guide fish over a range of water velocity.
Assimilation of Satellite to Improve Cloud Simulation in Wrf Model
NASA Astrophysics Data System (ADS)
Park, Y. H.; Pour Biazar, A.; McNider, R. T.
2012-12-01
A simple approach has been introduced to improve cloud simulation spatially and temporally in a meteorological model. The first step for this approach is to use Geostationary Operational Environmental Satellite (GOES) observations to identify clouds and estimate the clouds structure. Then by comparing GOES observations to model cloud field, we identify areas in which model has under-predicted or over-predicted clouds. Next, by introducing subsidence in areas with over-prediction and lifting in areas with under-prediction, erroneous clouds are removed and new clouds are formed. The technique estimates a vertical velocity needed for the cloud correction and then uses a one dimensional variation schemes (1D_Var) to calculate the horizontal divergence components and the consequent horizontal wind components needed to sustain such vertical velocity. Finally, the new horizontal winds are provided as a nudging field to the model. This nudging provides the dynamical support needed to create/clear clouds in a sustainable manner. The technique was implemented and tested in the Weather Research and Forecast (WRF) Model and resulted in substantial improvement in model simulated clouds. Some of the results are presented here.
NASA Astrophysics Data System (ADS)
Motz, L. H.; Kalakan, C.
2013-12-01
Three problems regarding saltwater intrusion, namely the Henry constant dispersion and velocity-dependent dispersion problems and a larger, field-scale velocity-dependent dispersion problem, have been investigated to determine quantitatively how saltwater intrusion and the recirculation of seawater at a coastal boundary are related to the freshwater inflow and the density-driven buoyancy flux. Based on dimensional analysis, saltwater intrusion and the recirculation of seawater are dependent functions of the independent ratio of freshwater advective flux relative to the density-driven vertical buoyancy flux, defined as az (or a for an isotropic aquifer), and the aspect ratio of horizontal and vertical dimensions of the cross-section. For the Henry constant dispersion problem, in which the aquifer is isotropic, saltwater intrusion and recirculation are related to an additional independent dimensionless parameter that is the ratio of the constant dispersion coefficient treated as a scalar quantity, the porosity, and the freshwater advective flux, defined as b. For the Henry velocity-dependent dispersion problem, the ratio b is zero, and saltwater intrusion and recirculation are related to an additional independent dimensionless parameter that is the ratio of the vertical and horizontal dispersivities, or rα = αz/αx. For an anisotropic aquifer, saltwater intrusion and recirculation are also dependent on the ratio of vertical and horizontal hydraulic conductivities, or rK = Kz/Kx. For the field-scale velocity-dependent dispersion problem, saltwater intrusion and recirculation are dependent on the same independent ratios as the Henry velocity-dependent dispersion problem. In the two-dimensional cross-section for all three problems, freshwater inflow occurs at an upgradient boundary, and recirculated seawater outflow occurs at a downgradient coastal boundary. The upgradient boundary is a specified-flux boundary with zero freshwater concentration, and the downgradient boundary is a specified-head boundary with a specified concentration equal to seawater. Equivalent freshwater heads are specified at the downstream boundary to account for density differences between freshwater and saltwater at the downstream boundary. The three problems were solved using the numerical groundwater flow and transport code SEAWAT for two conditions, i.e., first for the uncoupled condition in which the fluid density is constant and thus the flow and transport equations are uncoupled in a constant-density flowfield, and then for the coupled condition in which the fluid density is a function of the total dissolved solids concentration and thus the flow and transport equations are coupled in a variable-density flowfield. A wide range of results for the landward extent of saltwater intrusion and the amount of recirculation of seawater at the coastal boundary was obtained by varying the independent dimensionless ratio az (or a in problem one) in all three problems. The dimensionless dispersion ratio b was also varied in problem one, and the dispersivity ratio rα and the hydraulic conductivity ratio rK were also varied in problems two and three.
Nelson, Jonathan M.; Kinzel, Paul J.; Schmeeckle, Mark Walter; McDonald, Richard R.; Minear, Justin T.
2016-01-01
Noncontact methods for measuring water-surface elevation and velocity in laboratory flumes and rivers are presented with examples. Water-surface elevations are measured using an array of acoustic transducers in the laboratory and using laser scanning in field situations. Water-surface velocities are based on using particle image velocimetry or other machine vision techniques on infrared video of the water surface. Using spatial and temporal averaging, results from these methods provide information that can be used to develop estimates of discharge for flows over known bathymetry. Making such estimates requires relating water-surface velocities to vertically averaged velocities; the methods here use standard relations. To examine where these relations break down, laboratory data for flows over simple bumps of three amplitudes are evaluated. As anticipated, discharges determined from surface information can have large errors where nonhydrostatic effects are large. In addition to investigating and characterizing this potential error in estimating discharge, a simple method for correction of the issue is presented. With a simple correction based on bed gradient along the flow direction, remotely sensed estimates of discharge appear to be viable.
Electric currents in the subsolar region of the Venus lower ionosphere
NASA Technical Reports Server (NTRS)
Cole, K. D.; Hoegy, W. R.
1994-01-01
The ion and electron momentum equations, along with Ampere's law, are solved for the ion and electron drift velocities and the electric field in the subsolar Venus ionosphere, assuming a partially ionized gas and a single ion species having the ion mean mass. All collision terms among the ions, electrons and neutral particles are retained in the equations. A general expression for the evolution of the magnetic field is derived and compared with earlier expressions. Subsolar region data in the altitude range 150-300 km from the Pioneer Venus Orbiter are used to calculate altitude profiles of the components of the current due to the electric field, gradients of pressure, and gravity. Altitude profiles of the ion and electron velocities as well as the electric field, electrodynamic heating, and the energy density are determined. Only orbits having a complete set of measured plasma temperatures and densities, neutral densities, and magnetic field were considered for analysis; the results are shown only for orbit 202. The vertical velocity at altitudes above 220 km is upgoing for orbit 202. This result is consistent with observations of molecular ions at high altitudes and of plasma flow to the nightside, both of which require upward velocity of ions from the dayside ionosphere. Above about 230 km the momentum equations are extremely sensitive to the altitude profiles of density, temperature, and magnetic field.
Laser Doppler Velocimeter measurements in a 3-D impinging twin-jet fountain flow
NASA Technical Reports Server (NTRS)
Saripalli, K. R.
1987-01-01
Mean velocity and turbulence measurements were conducted on the three dimensional fountain flow field generated by the impingement of two axisymmetric jets on a ground plane with application to vertical takeoff and landing (VTOL) aircraft. The basic instantaneous velocity data were obtained using a two component laser Doppler velocimeter in a plane connecting the nozzle centerlines at different heights above the ground emphasizing the jet impingement region and the fountain upwash region formed by the collision of the wall jets. The distribution of mean velocity components and turbulence quantities, including the turbulence intensity and the Reynolds shear stress, were derived from the basic velocity data. Detailed studies of the characteristics of the fountain revealed self-similarity in the mean velocity and turbulence profiles across the fountain. The spread and mean velocity decay characteristics of the fountain were established. Turbulence intensities of the order of 50% were observed in the fountain.
NASA Astrophysics Data System (ADS)
Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.
1988-09-01
The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.
Magnetized stratified rotating shear waves.
Salhi, A; Lehner, T; Godeferd, F; Cambon, C
2012-02-01
We present a spectral linear analysis in terms of advected Fourier modes to describe the behavior of a fluid submitted to four constraints: shear (with rate S), rotation (with angular velocity Ω), stratification, and magnetic field within the linear spectral theory or the shearing box model in astrophysics. As a consequence of the fact that the base flow must be a solution of the Euler-Boussinesq equations, only radial and/or vertical density gradients can be taken into account. Ertel's theorem no longer is valid to show the conservation of potential vorticity, in the presence of the Lorentz force, but a similar theorem can be applied to a potential magnetic induction: The scalar product of the density gradient by the magnetic field is a Lagrangian invariant for an inviscid and nondiffusive fluid. The linear system with a minimal number of solenoidal components, two for both velocity and magnetic disturbance fields, is eventually expressed as a four-component inhomogeneous linear differential system in which the buoyancy scalar is a combination of solenoidal components (variables) and the (constant) potential magnetic induction. We study the stability of such a system for both an infinite streamwise wavelength (k(1) = 0, axisymmetric disturbances) and a finite one (k(1) ≠ 0, nonaxisymmetric disturbances). In the former case (k(1) = 0), we recover and extend previous results characterizing the magnetorotational instability (MRI) for combined effects of radial and vertical magnetic fields and combined effects of radial and vertical density gradients. We derive an expression for the MRI growth rate in terms of the stratification strength, which indicates that purely radial stratification can inhibit the MRI instability, while purely vertical stratification cannot completely suppress the MRI instability. In the case of nonaxisymmetric disturbances (k(1) ≠ 0), we only consider the effect of vertical stratification, and we use Levinson's theorem to demonstrate the stability of the solution at infinite vertical wavelength (k(3) = 0): There is an oscillatory behavior for τ > 1+|K(2)/k(1)|, where τ = St is a dimensionless time and K(2) is the radial component of the wave vector at τ = 0. The model is suitable to describe instabilities leading to turbulence by the bypass mechanism that can be relevant for the analysis of magnetized stratified Keplerian disks with a purely azimuthal field. For initial isotropic conditions, the time evolution of the spectral density of total energy (kinetic + magnetic + potential) is considered. At k(3) = 0, the vertical motion is purely oscillatory, and the sum of the vertical (kinetic + magnetic) energy plus the potential energy does not evolve with time and remains equal to its initial value. The horizontal motion can induce a rapid transient growth provided K(2)/k(1)>1. This rapid growth is due to the aperiodic velocity vortex mode that behaves like K(h)/k(h) where k(h)(τ)=[k(1)(2) + (K(2) - k(1)τ)(2)](1/2) and K(h) =k(h)(0). After the leading phase (τ > K(2)/k(1)>1), the horizontal magnetic energy and the horizontal kinetic energy exhibit a similar (oscillatory) behavior yielding a high level of total energy. The contribution to energies coming from the modes k(1) = 0 and k(3) = 0 is addressed by investigating the one-dimensional spectra for an initial Gaussian dense spectrum. For a magnetized Keplerian disk with a purely vertical field, it is found that an important contribution to magnetic and kinetic energies comes from the region near k(1) = 0. The limit at k(1) = 0 of the streamwise one-dimensional spectra of energies, or equivalently, the streamwise two-dimensional (2D) energy, is then computed. The comparison of the ratios of these 2D quantities with their three-dimensional counterparts provided by previous direct numerical simulations shows a quantitative agreement.
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Krause, Marita
2015-03-01
The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).
NASA Astrophysics Data System (ADS)
Li, Z.; Chao, Y.; Farrara, J.; McWilliams, J. C.
2012-12-01
A set of data assimilation experiments, known as Observing System Experiments (OSEs), are performed to assess the relative impacts of different types of observations acquired during the 2009 Prince William Sound Field Experiment. The observations assimilated consist primarily of three types: High Frequency (HF) radar surface velocities, vertical profiles of temperature/salinity (T/S) measured by ships, moorings, Autonomous Underwater Vehicles and gliders, and satellite sea surface temperatures (SSTs). The impact of all the observations, HF radar surface velocities, and T/S profiles is assessed. Without data assimilation, a frequently occurring cyclonic eddy in the central Sound is overly persistent and intense. The assimilation of the HF radar velocities effectively reduces these biases and improves the representation of the velocities as well as the T/S fields in the Sound. The assimilation of the T/S profiles improves the large scale representation of the temperature/salinity and also the velocity field in the central Sound. The combination of the HF radar surface velocities and sparse T/S profiles results in an observing system capable of representing the circulation in the Sound reliably and thus producing analyses and forecasts with useful skill. It is suggested that a potentially promising observing network could be based on satellite SSHs and SSTs along with sparse T/S profiles, and future satellite SSHs with wide swath coverage and higher resolution may offer excellent data that will be of great use for predicting the circulation in the Sound.
Pulsejet engine dynamics in vertical motion using momentum conservation
NASA Astrophysics Data System (ADS)
Cheche, Tiberius O.
2017-03-01
The momentum conservation law is applied to analyse the dynamics of a pulsejet engine in vertical motion in a uniform gravitational field in the absence of friction. The model predicts the existence of a terminal speed given the frequency of the short pulses. The conditions where the engine does not return to the starting position are identified. The number of short periodic pulses after which the engine returns to the starting position is found to be independent of the exhaust velocity and gravitational field intensity for a certain frequency of pulses. The pulsejet engine and turbojet engine aircraft models of dynamics are compared. Also the octopus dynamics is modelled. The paper is addressed to intermediate undergraduate students of classical mechanics and aerospace engineering.
Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones
NASA Astrophysics Data System (ADS)
Lee, J. L.; Lee, W. C.; MacDonald, A. E.
2006-01-01
The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.
Improving Representation of Tropical Cloud Overlap in GCMs Based on Cloud-Resolving Model Data
NASA Astrophysics Data System (ADS)
Jing, Xianwen; Zhang, Hua; Satoh, Masaki; Zhao, Shuyun
2018-04-01
The decorrelation length ( L cf) has been widely used to describe the behavior of vertical overlap of clouds in general circulation models (GCMs); however, it has been a challenge to associate L cf with the large-scale meteorological conditions during cloud evolution. This study explored the relationship between L cf and the strength of atmospheric convection in the tropics based on output from a global cloud-resolving model. L cf tends to increase with vertical velocity in the mid-troposphere ( w 500) at locations of ascent, but shows little or no dependency on w 500 at locations of descent. A representation of L cf as a function of vertical velocity is obtained, with a linear regression in ascending regions and a constant value in descending regions. This simple and dynamic-related representation of L cf leads to a significant improvement in simulation of both cloud cover and radiation fields compared with traditional overlap treatments. This work presents a physically justifiable approach to depicting cloud overlap in the tropics in GCMs.
A study of in-situ sediment flocculation in the turbidity maxima of the Yangtze Estuary
NASA Astrophysics Data System (ADS)
Guo, Chao; He, Qing; Guo, Leicheng; Winterwerp, Johan C.
2017-05-01
In order to improve our understandings of temporal and vertical variations of sediment flocculation dynamics within the turbidity maxima (TM) of the highly turbid Yangtze Estuary (YE), we deployed LISST-100C, a laser instrument for in-situ monitor of the sizes and concentrations of flocculated particles in a wet season. Field data in terms of vertical profiles of flow velocity, suspended sediment concentration (SSC), salinity, flocculated particle size distribution and volume concentration were obtained, based on field works conducted at consecutive spring, moderate, and neap tides. Data analyses show that the mean floc diameters (DM) were in the range of 14-95 μm, and flocculation exhibited strong temporal and vertical variations within a tidal cycle and between spring-neap cycles. Larger DM were observed during high and low slack waters, and the averaged floc size at neap tide was found 57% larger than at spring tide. Effective density of flocs decreased with the increase of floc size, and fractal dimension of flocs in the YE was mainly between 1.5 and 2.1. We also estimated the settling velocity of flocs by 0.04-0.6 mm s-1 and the largest settling velocity occurred also at slack waters. Moreover, it is found that turbulence plays a dominant role in the flocculation process. Floc size decreases significantly when the shear rate parameter G is > 2-3 s-1, suggesting the turbulence breaking force. Combined effects of fine sediment flocculation, enhanced settling process, and high sediment concentration resulted in a large settling flux around high water, which can in part explain the severe siltation in the TM of the YE, thus shedding lights on the navigation channel management.
NASA Technical Reports Server (NTRS)
Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaria-Gomez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.
2016-01-01
In the context of the 2014 realization of the International Terrestrial Reference Frame (ITRF2014), the International DORIS Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS Combination Center estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment (GIA) from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm/yr. For five of the sites (Arequipa, Dionysos/Gavdos, Manila, Santiago) with horizontal velocity differences wrt these models larger than 10 mm/yr, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle (ULR6) solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm/yr at 23 percent of the sites. At Thule the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.
NASA Astrophysics Data System (ADS)
Pinte, C.; Ménard, F.; Duchêne, G.; Hill, T.; Dent, W. R. F.; Woitke, P.; Maret, S.; van der Plas, G.; Hales, A.; Kamp, I.; Thi, W. F.; de Gregorio-Monsalvo, I.; Rab, C.; Quanz, S. P.; Avenhaus, H.; Carmona, A.; Casassus, S.
2018-01-01
Accurate measurements of the physical structure of protoplanetary discs are critical inputs for planet formation models. These constraints are traditionally established via complex modelling of continuum and line observations. Instead, we present an empirical framework to locate the CO isotopologue emitting surfaces from high spectral and spatial resolution ALMA observations. We apply this framework to the disc surrounding IM Lupi, where we report the first direct, i.e. model independent, measurements of the radial and vertical gradients of temperature and velocity in a protoplanetary disc. The measured disc structure is consistent with an irradiated self-similar disc structure, where the temperature increases and the velocity decreases towards the disc surface. We also directly map the vertical CO snow line, which is located at about one gas scale height at radii between 150 and 300 au, with a CO freeze-out temperature of 21 ± 2 K. In the outer disc (>300 au), where the gas surface density transitions from a power law to an exponential taper, the velocity rotation field becomes significantly sub-Keplerian, in agreement with the expected steeper pressure gradient. The sub-Keplerian velocities should result in a very efficient inward migration of large dust grains, explaining the lack of millimetre continuum emission outside of 300 au. The sub-Keplerian motions may also be the signature of the base of an externally irradiated photo-evaporative wind. In the same outer region, the measured CO temperature above the snow line decreases to ≈15 K because of the reduced gas density, which can result in a lower CO freeze-out temperature, photo-desorption, or deviations from local thermodynamic equilibrium.
Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence
NASA Astrophysics Data System (ADS)
Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine
2017-04-01
Horizontal and vertical motions associated with coherent mesoscale structures, including eddies and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous eddy field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale eddies with high spatial and temporal resolutions using an automated eddy tracker. We characterize the eddies across fourteen 5° × 5° subregions. Eddy-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous eddy instance. The QG-ω eddy composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum eddy values are found near fronts and sharp topographic gradients. In comparison with regional eddy composites, subregional composites provide refined information about mesoscale eddy heterogeneity.
Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.
Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng
2013-06-01
The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.
NASA Astrophysics Data System (ADS)
Yang, X. B.; Han, X. X.; Zhou, T. B.; Liu, E. L.
2017-04-01
Through the comparative analysis of the results of the triaxial compression experiments of sandstone and the numerical simulation results of particle flow code PFC2D under the same conditions, the typical simulation curve and the corresponding simulation process were selected to analyze the evolution characteristics of the surface deformation field, the evolution characteristics of the velocity field and displacement field of the deformation localization bands of sandstone under triaxial compression. Research results show that the changes of the velocities and displacements of deformation localization bands corresponds to the change of stress during compression; In the same deformation localization band, the dislocation velocities are always in the same direction, but in the direction vertical to the localization band, the localization band sometimes squeezes and sometimes stretches; At different positions of the same deformation localization band, the dislocation velocities and extrusion velocities are both different at the same time; In the post-peak stage of loading, along the same deformation localization band, the dislocation displacements close to both loaded ends are generally greater than the ones near to the middle position of the specimen, the stretching displacements close to both loaded ends are generally smaller than the ones near to the middle position of the specimen.
NASA Technical Reports Server (NTRS)
Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.
2002-01-01
The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components also produced variations in the temporal pattern of responses as a function of rotation direction. These findings are consistent with the hypothesis that a vestibulorecipient region of the PBN and KF integrates signals from the vestibular nuclei and relay information about changes in whole-body orientation to pathways that produce homeostatic and affective responses.
Khumsap, S; Clayton, H M; Lanovaz, J L
2001-06-01
To measure the effect of subject velocity on hind limb ground reaction force variables at the walk and to use the data to predict the force variables at different walking velocities in horses. 5 clinically normal horses. Kinematic and force data were collected simultaneously. Each horse was led over a force plate at a range of walking velocities. Stance duration and force data were recorded for the right hind limb. To avoid the effect of horse size on the outcome variables, the 8 force variables were standardized to body mass and height at the shoulders. Velocity was standardized to height at the shoulders and expressed as velocity in dimensionless units (VDU). Stance duration was also expressed in dimensionless units (SDU). Simple regression analysis was performed, using stance duration and force variables as dependent variables and VDU as the independent variable. Fifty-six trials were recorded with velocities ranging from 0.24 to 0.45 VDU (0.90 to 1.72 m/s). Simple regression models between measured variables and VDU were significant (R2 > 0.69) for SDU, first peak of vertical force, dip between the 2 vertical force peaks, vertical impulse, and timing of second peak of vertical force. Subject velocity affects vertical force components only. In the future, differences between the forces measured in lame horses and the expected forces calculated for the same velocity will be studied to determine whether the equations can be used as diagnostic criteria.
Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newsom, Rob K.
2011-04-14
Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds showmore » that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.« less
The role of unsteady buoyancy flux on transient eruption plume velocity structure and evolution
NASA Astrophysics Data System (ADS)
Chojnicki, K. N.; Clarke, A. B.; Phillips, J. C.
2010-12-01
Volcanic vent exit velocities, eruption column velocity profiles, and atmospheric entrainment are important parameters that control the evolution of explosive volcanic eruption plumes. New data sets tracking short-term variability in such parameters are becoming more abundant in volcanology and are being used to indirectly estimate eruption source conditions such vent flux, material properties of the plume, and source mechanisms. However, inadequate theory describing the relationships between time-varying source fluxes and evolution of unsteady turbulent flows such as eruption plumes, limits the interpretation potential of these data sets. In particular, the relative roles of gas-thrust and buoyancy in volcanic explosions is known to generate distinct differences in the ascent dynamics. Here we investigate the role of initial buoyancy in unsteady, short-duration eruption dynamics through scaled laboratory experiments and provide an empirical description of the relationship between unsteady source flux and plume evolution. The experiments involved source fluids of various densities (960-1000 kg/m3) injected, with a range of initial momentum and buoyancy, into a tank of fresh water through a range of vent diameters (3-15 mm). A scaled analysis was used to determine the fundamental parameters governing the evolution of the laboratory plumes as a function of unsteady source conditions. The subsequent model can be applied to predict flow front propagation speeds, and maximum flow height and width of transient volcanic eruption plumes which can not be adequately described by existing steady approximations. In addition, the model describes the relative roles of momentum or gas-thrust and buoyancy in plume motion which is suspected to be a key parameter in quantitatively defining explosive eruption style. The velocity structure of the resulting flows was measured using the Particle Image Velocimetry (PIV) technique in which velocity vector fields were generated from displacements in time-resolved video images of particles in the flow interior. Cross-sectional profiles of vertical velocity and entrainment of ambient fluid were characterized using the resulting velocity vector maps. These data elucidate the relationship between flow front velocity and internal velocity structure which may improve interpretations of field measurements of volcanic explosions. The velocity maps also demonstrate the role of buoyancy in enhancing ambient entrainment and converting vertical velocity to horizontal velocity, which may explain why buoyancy at the vent leads to faster deceleration of the flow.
Do humans show velocity-storage in the vertical rVOR?
Bertolini, G; Bockisch, C J; Straumann, D; Zee, D S; Ramat, S
2008-01-01
To investigate the contribution of the vestibular velocity-storage mechanism (VSM) to the vertical rotational vestibulo-ocular reflex (rVOR) we recorded eye movements evoked by off-vertical axis rotation (OVAR) using whole-body constant-velocity pitch rotations about an earth-horizontal, interaural axis in four healthy human subjects. Subjects were tumbled forward, and backward, at 60 deg/s for over 1 min using a 3D turntable. Slow-phase velocity (SPV) responses were similar to the horizontal responses elicited by OVAR along the body longitudinal axis, ('barbecue' rotation), with exponentially decaying amplitudes and a residual, otolith-driven sinusoidal response with a bias. The time constants of the vertical SPV ranged from 6 to 9 s. These values are closer to those that reflect the dynamic properties of vestibular afferents than the typical 20 s produced by the VSM in the horizontal plane, confirming the relatively smaller contribution of the VSM to these vertical responses. Our preliminary results also agree with the idea that the VSM velocity response aligns with the direction of gravity. The horizontal and torsional eye velocity traces were also sinusoidally modulated by the change in gravity, but showed no exponential decay.
Wang, Qi; Gao, Chunfeng; Zhou, Jian; Wei, Guo; Nie, Xiaoming; Long, Xingwu
2018-05-01
In the field of land navigation, a laser Doppler velocimeter (LDV) can be used to provide the velocity of a vehicle for an integrated navigation system with a strapdown inertial navigation system. In order to suppress the influence of vehicle jolts on a one-dimensional (1D) LDV, this paper designs a split-reuse two-dimensional (2D) LDV. The velocimeter is made up of two 1D velocimeter probes that are mirror-mounted. By the different effects of the vertical vibration on the two probes, the velocimeter can calculate the forward velocity and the vertical velocity of a vehicle. The results of the vehicle-integrated navigation experiments show that the 2D LDV not only can actually suppress the influence of vehicle jolts and greatly improve the navigation positioning accuracy, but also can give high-precision altitude information. The maximum horizontal position errors of the two experiments are 2.6 m and 3.2 m in 1.9 h, and the maximum altitude errors are 0.24 m and 0.22 m, respectively.
Spatial attenuation of different sound field components in a water layer and shallow-water sediments
NASA Astrophysics Data System (ADS)
Belov, A. I.; Kuznetsov, G. N.
2017-11-01
The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26-182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.
Coplanar Doppler Lidar Retrieval of Rotors from T-REX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Michael; Calhoun, Ron; Fernando, H. J. S.
2010-03-01
Two coherent Doppler lidars were deployed during the Terrain-induced Rotor EXperiment (T-REX). Coplanar Range Height Indicator (RHI) scans by the lidars (along the same azimuthal angle) allowed retrieval of two-dimensional velocity vectors on a vertical/cross-barrier plane using the least squares method. Vortices are shown to evolve and advect in the flow field, allowing analysis of their behavior in the mountain-wave-boundary layer system. The locations, magnitudes, and evolution of the vortices can be studied through calculated fields of velocity, vorticity, streamlines, and swirl. Two classes of vortical motions are identified: rotors and sub-rotors, which differ in scale and behavior. The levelmore » of coordination of the two lidars and the nature of the output (i.e., in range-gates) creates inherent restrictions on the spatial and temporal resolution of retrieved fields.« less
Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.
Iino, Yoichi
2018-04-01
The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.; Smith, S. A.; Tsuda, T.; Sato, T.; Fritts, D. C.
1990-01-01
Results are presented from a six-day campaign to observe velocity fluctuations in the lower atmosphere using the MU radar (Fukao et al., 1985) in Shigaraki, Japan in March, 1986. Consideration is given to the azimuthal anisotropy, the frequency spectra, the vertical profiles of energy density, and the momentum flux of the motion field. It is found that all of the observed azimuthal variations are probably caused by a gravity wave field whose parameters vary with time. The results show significant differences between the mean zonal and meridional frequency spectra and different profiles of mean energy density with height for different frequency bands and for zonal and meridional components.
NASA Astrophysics Data System (ADS)
Wang, Da-Yang; Jin, Ning-De; Zhuang, Lian-Xin; Zhai, Lu-Sheng; Ren, Ying-Yu
2018-07-01
Three types of rotating electric field conductance sensors (REFCSs) with four, six, and eight electrodes are designed and optimized in this paper to measure the water holdup of oil–gas–water three-phase flow in vertical upward 20 mm inner diameter pipe. The geometric parameters of the REFCSs are optimized using finite element method to access highly sensitive and homogeneous detection fields. The performance of the REFCSs in the water holdup measurement of three-phase flows is experimentally evaluated by generalizing the Maxwell equation. Based on the measured water holdup from the REFCSs, the slippage behaviors in oil–gas–water are uncovered and the superficial velocity of the water phase is determined. The results show that the REFCSs present a high resolution in the water holdup measurement. The REFCS with eight electrodes has better performance than those with four- and six-electrodes, which indicates that its configuration and geometric parameters are more suitable for vertical oil–gas–water three-phase flow measurement in 20 mm inner diameter pipe.
Three-Dimensional Ageostrophic Motion and Water Mass Subduction in the Southern Ocean
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, B.; Mulet, S.; Iudicone, D.
2018-02-01
Vertical velocities at the ocean mesoscale are several orders of magnitude smaller than corresponding horizontal flows, making their direct monitoring a still unsolved challenge. Vertical motion is generally retrieved indirectly by applying diagnostic equations to observation-based fields. The most common approach relies on the solution of an adiabatic version of the Omega equation, neglecting the ageostrophic secondary circulation driven by frictional effects and turbulent mixing in the boundary layers. Here we apply a diabatic semigeostrophic diagnostic model to two different 3-D reconstructions covering the Southern Ocean during the period 2010-2012. We incorporate the effect of vertical mixing through a modified K-profile parameterization and using ERA-interim data, and perform an indirect validation of the ageostrophic circulation with independent drifter observations. Even if horizontal gradients and associated vertical flow are likely underestimated at 1/4° × 1/4° resolution, the exercise provides an unprecedented relative quantification of the contribution of vertical mixing and adiabatic internal dynamics on the vertical exchanges along the Antarctic Circumpolar Current. Kinematic estimates of subduction rates show the destruction of poleward flowing waters lighter than 26.6 kg/m3 (14 ÷ 15 Sv) and two main positive bands associated with the Antarctic Intermediate Water (7 ÷ 11 Sv) and Sub-Antarctic Mode Waters (4 ÷ 7 Sv) formation, while Circumpolar Deep Water upwelling attains around 3 ÷ 6 Sv. Diabatic and adiabatic terms force distinct spatial responses and vertical velocity magnitudes along the water column and the restratifying effect of adiabatic internal dynamics due to mesoscale eddies is shown to at least partly compensate the contribution of wind-driven vertical exchanges to net subduction.
Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; ...
2016-11-15
A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, andmore » mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.« less
NASA Astrophysics Data System (ADS)
Klepikova, M.; Le Borgne, T.; Bour, O.; Lavenant, N.
2011-12-01
In fractured aquifers flow generally takes place in a few fractured zones. The identification of these main flow paths is critical as it controls the transfer of fluids in the subsurface. For realistic modeling of the flow the knowledge about the spatial variability of hydraulic properties is required. Inverse problems based on hydraulic head data are generally strongly underconstrained. A possible way of reducing the uncertainty is to combine different type of data, such as flow measurements, temperature profiles or tracer test data. Here, we focus on the use of temperature, which can be seen as a natural tracer of ground water flow. Previous studies used temperature anomalies to quantify vertical or horizontal regional groundwater flow velocities. Most of these studies assume that water in the borehole is stagnant, and, thus, the temperature profile in the well is representative of the temperature in the aquifer. In fractured media, differences in hydraulic head between flow paths connected to a borehole generally create ambient vertical flow within the borehole. These differences in hydraulic head are in general due to regional flow conditions. Estimation of borehole vertical flow is of interest as it can be used to derive large scale hydraulic connections. Under a single-borehole configuration, the estimation of vertical flow can be used to estimate the local transimissivities and the hydraulic head differences driving the flow through the borehole. Under a cross-borehole set up, it can be used to characterize hydraulic connections and estimate their hydraulic properties. Using a flow and heat transfer numerical model, we find that the slope of the temperature profile is related directly to vertical borehole flow velocity. Thus, we propose a method to invert temperature measurements to derive borehole flow velocities and subsequently the fracture zone hydraulic and connectivity properties. The advantage of temperature measurements compared to flowmeter measurements is that temperature can be measured easily and very accurately, continuously in space and time. To test the methodology, we have performed a field experiment at a crystalline rocks field site, located in Ploemeur, Brittany (France). The site is composed of three 100 meters deep boreholes, located at 6-10 m distances from each other. The experiment consisted in measuring the borehole temperature profiles under all possible pumping configurations. Hence, the pumping and monitoring wells were successively changed. The thermal response in observation well induced by changes in pumping conditions is related to changes in vertical flow velocities and thus to the inter-borehole fracture connectivity. Based on this dataset, we propose a methodology to include temperature profiles in inverse problem for characterizing the spatial distribution of fracture zone hydraulic properties.
Acoustic measurement method of the volume flux of a seafloor hydrothermal plume
NASA Astrophysics Data System (ADS)
Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.
2011-12-01
Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a similar methodology but a different sonar system) provide references to the consistency of the methodology. Second, the vertical flow rate measurement made in 2007 at an adjacent vent complex (Dante) using a different acoustic method (acoustic scintillation) can serve as a first order estimation of the plume vertical velocity. Third, another first order estimation can be obtained by combining the plume bending angle with the horizontal current measured by a current meter array deployed to the north of the vent field. Finally, statistical techniques are used to quantify the errors due to the ambient noises, inherent uncertainties of the methodology, and the fluctuation of the plume structure.
Evolution of the magnetorotational instability on initially tangled magnetic fields
NASA Astrophysics Data System (ADS)
Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.; Subramanian, Kandaswamy
2017-12-01
The initial magnetic field of previous magnetorotational instability (MRI) simulations has always included a significant system-scale component, even if stochastic. However, it is of conceptual and practical interest to assess whether the MRI can grow when the initial field is turbulent. The ubiquitous presence of turbulent or random flows in astrophysical plasmas generically leads to a small-scale dynamo (SSD), which would provide initial seed turbulent velocity and magnetic fields in the plasma that becomes an accretion disc. Can the MRI grow from these more realistic initial conditions? To address this, we supply a standard shearing box with isotropically forced SSD generated magnetic and velocity fields as initial conditions and remove the forcing. We find that if the initially supplied fields are too weak or too incoherent, they decay from the initial turbulent cascade faster than they can grow via the MRI. When the initially supplied fields are sufficient to allow MRI growth and sustenance, the saturated stresses, large-scale fields and power spectra match those of the standard zero net flux MRI simulation with an initial large-scale vertical field.
Estimations of ABL fluxes and other turbulence parameters from Doppler lidar data
NASA Technical Reports Server (NTRS)
Tzvi, Gal-Chen; Mei, XU; Eberhard, Wynn
1990-01-01
Techniques for extracting boundary layer parameters from measurements of a short pulse CO2 Doppler Lidar are described. The radial velocity measurements have a range resolution of 150 m. With a pulse repetition rate of 20 Hz, it is possible to perform scannings in two perpendicular vertical planes in approx. 72 s. By continuously operating the Lidar for about an hour, one can extract stable statistics of the radial velocities. Assuming that the turbulence is horizontally homogeneous, the mean wind, its standard deviations, and the momentum fluxes were estimated. From the vertically pointing beam, the first, second, and third moments of the vertical velocity were also estimated. Spectral analysis of the radial velocities is also performed from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation.
NASA Astrophysics Data System (ADS)
Queck, Ronald; Bernhofer, Christian; Bienert, Anne; Schlegel, Fabian
2016-09-01
Forest ecosystems play an important role in the interaction between the land surface and the atmosphere. Measurements and modelling efforts have revealed significant uncertainties in state-of-the-art flux assessments due to spatial inhomogeneities in the airflow and land surface. Here, a field experiment is used to describe the turbulent flow across a typical Central European forest clearing. A three-dimensional model of the inhomogeneous forest stand was developed using an innovative approach based on terrestrial laser-scanner technology. The comparison of the wind statistics of two measurement campaigns (5 and 12 months long) showed the spatial and temporal representativeness of the ultrasonic anemometer measurements within the canopy. An improved method for the correction of the vertical velocity enables the distinction between the instrumental offsets and the vertical winds due to the inclination of the instrument. Despite a 13 % fraction of deciduous plants within the otherwise evergreen canopy, the effects of phenological seasons on the velocity profiles were small. The data classified according to the wind speed revealed the intermittent nature of recirculating air in the clearing. Furthermore, the development of sub-canopy wind-speed maxima is explained by considering the velocity moments and the momentum equation (including measurements of the local pressure gradient). Clearings deflect the flow downward and feed the sub-canopy flow, i.e., advective fluxes, according to wind speed and, likely, clearing size, whereas local pressure gradients play an important role in the development of sub-canopy flow. The presented dataset is freely available at the project homepage.
NASA Astrophysics Data System (ADS)
Michioka, Takenobu; Sato, Ayumu; Sada, Koichi
2011-10-01
Large-scale turbulent motions enhancing horizontal gas spread in an atmospheric boundary layer are simulated in a wind-tunnel experiment. The large-scale turbulent motions can be generated using an active grid installed at the front of the test section in the wind tunnel, when appropriate parameters for the angular deflection and the rotation speed are chosen. The power spectra of vertical velocity fluctuations are unchanged with and without the active grid because they are strongly affected by the surface. The power spectra of both streamwise and lateral velocity fluctuations with the active grid increase in the low frequency region, and are closer to the empirical relations inferred from field observations. The large-scale turbulent motions do not affect the Reynolds shear stress, but change the balance of the processes involved. The relative contributions of ejections to sweeps are suppressed by large-scale turbulent motions, indicating that the motions behave as sweep events. The lateral gas spread is enhanced by the lateral large-scale turbulent motions generated by the active grid. The large-scale motions, however, do not affect the vertical velocity fluctuations near the surface, resulting in their having a minimal effect on the vertical gas spread. The peak concentration normalized using the root-mean-squared value of concentration fluctuation is remarkably constant over most regions of the plume irrespective of the operation of the active grid.
Spanwise measurements of vertical components of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Sleeper, Robert K.
1990-01-01
Correlation and spectrum magnitude estimates are computed for vertical gust velocity measurements at the nose and wing tips of a NASA B-57B aircraft for six level flight, low speed and low altitude runs and are compared with those of the von Karman atmospheric turbulence model extended for spanwise relationships. The distance between the wing tips was 62.6 ft. Airspeeds ranged from about 330 to 400 ft/sec, heights above the ground ranged from near ground level to about 5250 ft. and gust velocity standard deviations ranged from 4.10 to 8.86 ft/sec. Integral scale lengths, determined by matching measured autocorrelation estimates with those of the model, ranged from 410 to 2050 ft. Digital signals derived from piezoelectric sensors provided continuous pressure and airspeed measurements. Some directional acceleration sensitivity of the sensors was eliminated by sensor orientation, and their performance was spectrally verified for the higher frequencies with supplemental onboard piezoresistive sensors. The model appeared to satisfactorily predict the trends of the measured cross-correlations and cross-spectrum magnitudes, particularly between the nose and wing tips. However, the measured magnitude estimates of the cross-spectra between the wing tips exceeded the predicted levels at the higher frequencies. Causes for the additional power across the wing tips were investigated. Vertical gust velocity components evaluated along and lateral to the flight path implied that the frozen-turbulence-field assumption is a suitable approximation.
Global Ocean Vertical Velocity From a Dynamically Consistent Ocean State Estimate
NASA Astrophysics Data System (ADS)
Liang, Xinfeng; Spall, Michael; Wunsch, Carl
2017-10-01
Estimates of the global ocean vertical velocities (Eulerian, eddy-induced, and residual) from a dynamically consistent and data-constrained ocean state estimate are presented and analyzed. Conventional patterns of vertical velocity, Ekman pumping, appear in the upper ocean, with topographic dominance at depth. Intense and vertically coherent upwelling and downwelling occur in the Southern Ocean, which are likely due to the interaction of the Antarctic Circumpolar Current and large-scale topographic features and are generally canceled out in the conventional zonally averaged results. These "elevators" at high latitudes connect the upper to the deep and abyssal oceans and working together with isopycnal mixing are likely a mechanism, in addition to the formation of deep and abyssal waters, for fast responses of the deep and abyssal oceans to the changing climate. Also, Eulerian and parameterized eddy-induced components are of opposite signs in numerous regions around the global ocean, particularly in the ocean interior away from surface and bottom. Nevertheless, residual vertical velocity is primarily determined by the Eulerian component, and related to winds and large-scale topographic features. The current estimates of vertical velocities can serve as a useful reference for investigating the vertical exchange of ocean properties and tracers, and its complex spatial structure ultimately permits regional tests of basic oceanographic concepts such as Sverdrup balance and coastal upwelling/downwelling.
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Eckermann, Stephen D.; Newman, Paul A.; Lait, Leslie; Chan, K. R.; Loewenstein, Max; Proffitt, Michael H.; Gary, Bruce L.
1996-01-01
Horizontal wavenumber power spectra of vertical and horizontal wind velocities, potential temperatures, and ozone and N(2)O mixing ratios, as measured in the mid-stratosphere during 73 ER-2 flights (altitude approx. 20km) are presented. The velocity and potential temperature spectra in the 100 to 1-km wavelength range deviate significantly from the uniform -5/3 power law expected for the inverse energy-cascade regime of two-dimensional turbulence and also for inertial-range, three-dimensional turbulence. Instead, steeper spectra approximately consistent with a -3 power law are observed at horizontal scales smaller than 3 km for all velocity components as well as potential temperature. Shallower spectra are observed at scales longer than 6 km. For horizontal velocity and potential temperature the spectral indices at longer scales are between -1.5 and -2.0. For vertical velocity the spectrum at longer scales become flat. It is argued that the observed velocity and potential temperature spectra are consistent with gravity waves. At smaller scales, the shapes are also superficially consistent with a Lumley-Shur-Weinstock buoyant subrange of turbulence and/or nonlinear gravity waves. Contemporaneous spectra of ozone and N(sub 2)O mixing ratio in the 100 to 1-km wavelength range do conform to an approximately uniform -5/3 power law. It is argued that this may reflect interactions between gravity wave air-parcel displacements and laminar or filamentary structures in the trace gas mixing ratio field produced by enstropy-cascading two-dimensional turbulence.
NASA Astrophysics Data System (ADS)
Li, Shanshan; Freymueller, Jeffrey T.
2018-04-01
We resurveyed preexisting campaign Global Positioning System (GPS) sites and estimated a highly precise GPS velocity field for the Alaska Peninsula. We use the TDEFNODE software to model the slip deficit distribution using the new GPS velocities. We find systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution, so we use only the horizontal velocities in the study. Locations of three boundaries that mark significant along-strike change in the locking distribution are identified. The Kodiak segment is strongly locked, the Semidi segment is intermediate, the Shumagin segment is weakly locked, and the Sanak segment is dominantly creeping. We suggest that a change in preexisting plate fabric orientation on the downgoing plate has an important control on the along-strike variation in the megathrust locking distribution and subduction seismicity.
Umeyama, Motohiko
2012-04-13
This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.
Vorticity and Vertical Motions Diagnosed from Satellite Deep-Layer Temperatures. Revised
NASA Technical Reports Server (NTRS)
Spencer, Roy W.; Lapenta, William M.; Robertson, Franklin R.
1994-01-01
Spatial fields of satellite-measured deep-layer temperatures are examined in the context of quasigeostrophic theory. It is found that midtropospheric geostrophic vorticity and quasigeostrophic vertical motions can be diagnosed from microwave temperature measurements of only two deep layers. The lower- ( 1000-400 hPa) and upper- (400-50 hPa) layer temperatures are estimated from limb-corrected TIROS-N Microwave Sounding Units (MSU) channel 2 and 3 data, spatial fields of which can be used to estimate the midtropospheric thermal wind and geostrophic vorticity fields. Together with Trenberth's simplification of the quasigeostrophic omega equation, these two quantities can be then used to estimate the geostrophic vorticity advection by the thermal wind, which is related to the quasigeostrophic vertical velocity in the midtroposphere. Critical to the technique is the observation that geostrophic vorticity fields calculated from the channel 3 temperature features are very similar to those calculated from traditional, 'bottom-up' integrated height fields from radiosonde data. This suggests a lack of cyclone-scale height features near the top of the channel 3 weighting function, making the channel 3 cyclone-scale 'thickness' features approximately the same as height features near the bottom of the weighting function. Thus, the MSU data provide observational validation of the LID (level of insignificant dynamics) assumption of Hirshberg and Fritsch.
The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2003-01-01
Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three dimensional velocities and angles. These data are then used to constrain Maxwell's Z Model and follow the subsurface evolution of the excavation-stage flow-field center during oblique impacts.
Wilson, John T.; Mandell, Wayne A.; Paillet, Frederick L.; Bayless, E. Randall; Hanson, Randall T.; Kearl, Peter M.; Kerfoot, William B.; Newhouse, Mark W.; Pedler, William H.
2001-01-01
Three borehole flowmeters and hydrophysical logging were used to measure ground-water flow in carbonate bedrock at sites in southeastern Indiana and on the westcentral border of Kentucky and Tennessee. The three flowmeters make point measurements of the direction and magnitude of horizontal flow, and hydrophysical logging measures the magnitude of horizontal flowover an interval. The directional flowmeters evaluated include a horizontal heat-pulse flowmeter, an acoustic Doppler velocimeter, and a colloidal borescope flowmeter. Each method was used to measure flow in selected zones where previous geophysical logging had indicated water-producing beds, bedding planes, or other permeable features that made conditions favorable for horizontal-flow measurements. Background geophysical logging indicated that ground-water production from the Indiana test wells was characterized by inflow from a single, 20-foot-thick limestone bed. The Kentucky/Tennessee test wells produced water from one or more bedding planes where geophysical logs indicated the bedding planes had been enlarged by dissolution. Two of the three test wells at the latter site contained measurable vertical flow between two or more bedding planes under ambient hydraulic head conditions. Field measurements and data analyses for each flow-measurement technique were completed by a developer of the technology or by a contractor with extensive experience in the application of that specific technology. Comparison of the horizontal-flow measurements indicated that the three point-measurement techniques rarely measured the same velocities and flow directions at the same measurement stations. Repeat measurements at selected depth stations also failed to consistently reproduce either flow direction, flow magnitude, or both. At a few test stations, two of the techniques provided similar flow magnitude or direction but usually not both. Some of this variability may be attributed to naturally occurring changes in hydraulic conditions during the 1-month study period in August and September 1999. The actual velocities and flow directions are unknown; therefore, it is uncertain which technique provided the most accurate measurements of horizontal flow in the boreholes and which measurements were most representative of flow in the aquifers. The horizontal heat-pulse flowmeter consistently yielded flow magnitudes considerably less than those provided by the acoustic Doppler velocimeter and colloidal borescope. The design of the horizontal heat-pulse flowmeter compensates for the local acceleration of ground-water velocity in the open borehole. The magnitude of the velocities estimated from the hydrophysical logging were comparable to those of the horizontal heat-pulse flowmeter, presumably because the hydrophysical logging also effectively compensates for the effect of the borehole on the flow field and averages velocity over a length of borehole rather than at a point. The acoustic Doppler velocimeter and colloidal borescope have discrete sampling points that allow for measuring preferential flow velocities that can be substantially higher than the average velocity through a length of borehole. The acoustic Doppler velocimeter and colloidal borescope also measure flow at the center of the borehole where the acceleration of the flow field should be greatest. Of the three techniques capable of measuring direction and magnitude of horizontal flow, only the acoustic Doppler velocimeter measured vertical flow. The acoustic Doppler velocimeter consistently measured downward velocity in all test wells. This apparent downward flow was attributed, in part, to particles falling through the water column as a result of mechanical disturbance during logging. Hydrophysical logging yielded estimates of vertical flow in the Kentucky/Tennessee test wells. In two of the test wells, the hydrophysical logging involved deliberate isolation of water-producing bedding planes with a packer to ensure that small horizontal flow could be quantified without the presence of vertical flow. The presence of vertical flow in the Kentucky/Tennessee test wells may preclude the definitive measurement of horizontal flow without the use of effective packer devices. None of the point-measurement techniques used a packer, but each technique used baffle devices to help suppress the vertical flow. The effectiveness of these baffle devices is not known; therefore, the effect of vertical flow on the measurements cannot be quantified. The general lack of agreement among the point-measurement techniques in this study highlights the difficulty of using measurements at a single depth point in a borehole to characterize the average horizontal flow in a heterogeneous aquifer. The effective measurement of horizontal flow may depend on the precise depth at which measurements are made, and the measurements at a given depth may vary over time as hydraulic head conditions change. The various measurements also demonstrate that the magnitude and possibly the direction of horizontal flow are affected by the presence of the open borehole. Although there is a lack of agreement among the measurement techniques, these results could mean that effective characterization of horizontal flow in heterogeneous aquifers might be possible if data from many depth stations and from repeat measurements can be averaged over an extended time period. Complications related to vertical flow in the borehole highlights the importance of using background logging methods like vertical flowmeters or hydrophysical logging to characterize the borehole environment before horizontal-flow measurements are attempted. If vertical flow is present, a packer device may be needed to acquire definitive measurements of horizontal flow. Because hydrophysical logging provides a complete depth profile of the borehole, a strength of this technique is in identifying horizontal- and vertical-flow zones in a well. Hydrophysical logging may be most applicable as a screening method. Horizontal- flow zones identified with the hydrophysical logging then could be evaluated with one of the point-measurement techniques for quantifying preferential flow zones and flow directions. Additional research is needed to determine how measurements of flow in boreholes relate to flow in bedrock aquifers. The flowmeters may need to be evaluated under controlled laboratory conditions to determine which of the methods accurately measure ground-water velocities and flow directions. Additional research also is needed to investigate variations in flow direction with time, daily changes in velocity, velocity corrections for fractured bedrock aquifers and unconsolidated aquifers, and directional differences in individual wells for hydraulically separated flow zones.
Validation of the iPhone app using the force platform to estimate vertical jump height.
Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge
2018-03-01
Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate an iPhone app called My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4±1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the My Jump mobile application. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC=1.000, P<0.001). Correlation between APP and force platform using the vertical velocity at take-off was also very high (ICC=0.996, P<0.001), with an error margin of 0.78%. Therefore, these results showed that application, My Jump, is an appropriate method to evaluate the vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.
Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects
NASA Astrophysics Data System (ADS)
Sher Akbar, Noreen; Bintul Huda, A.; Tripathi, D.
2016-09-01
We investigate the velocity slip and thermal slip effects on peristaltically driven thermal transport of nanofluids through the vertical parallel plates under the influence of transverse magnetic field. The wall surface is propagating with sinusoidal wave velocity c. The flow characteristics are governed by the mass, momentum and energy conservation principle. Low Reynolds number and large wavelength approximations are taken into consideration to simplify the non-linear terms. Analytical solutions for axial velocity, temperature field, pressure gradient and stream function are obtained under certain physical boundary conditions. Two types of nanoparticles, SiO2 and Ag, are considered for analysis with water as base fluid. This is the first article in the literature that discusses the SiO2 and Ag nanoparticles for a peristaltic flow with variable viscosity. The effects of physical parameters on velocity, temperature, pressure and trapping are discussed. A comparative study of SiO2 nanofluid, Ag nanofluid and pure water is also presented. This model is applicable in biomedical engineering to make thermal peristaltic pumps and other pumping devices like syringe pumps, etc. It is observed that pressure for pure water is maximum and pressure for Ag nanofluid is minimum.
Vection: the contributions of absolute and relative visual motion.
Howard, I P; Howard, A
1994-01-01
Inspection of a visual scene rotating about the vertical body axis induces a compelling sense of self rotation, or circular vection. Circular vection is suppressed by stationary objects seen beyond the moving display but not by stationary objects in the foreground. We hypothesised that stationary objects in the foreground facilitate vection because they introduce a relative-motion signal into what would otherwise be an absolute-motion signal. Vection latency and magnitude were measured with a full-field moving display and with stationary objects of various sizes and at various positions in the visual field. The results confirmed the hypothesis. Vection latency was longer when there were no stationary objects in view than when stationary objects were in view. The effect of stationary objects was particularly evident at low stimulus velocities. At low velocities a small stationary point significantly increased vection magnitude in spite of the fact that, at higher stimulus velocities and with other stationary objects in view, fixation on a stationary point, if anything, reduced vection. Changing the position of the stationary objects in the field of view did not affect vection latencies or magnitudes.
Deflected jet experiments in a turbulent combustor flowfield. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Ferrell, G. B.; Lilley, D. G.
1985-01-01
Experiments were conducted to characterize the time-mean and turbulent flow field of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the tracjectory and spread pattern of the jet. A six-position single hot-wire technique was used to measure the velocities and turbulent stresses in nonswirling crossflow cases. In these cases, measurements confirmed that the deflected jet is symmetrical about the vertical plan passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity ratio infinite crossflow cases. In the swirling crossflow cases, the flow visualization techniques enabled gross flow field characterization to be obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow.
NASA Technical Reports Server (NTRS)
Chang, C. J.; Brown, R. A.
1983-01-01
The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki
2013-03-10
We present radial velocities and chemical abundance ratios of [Fe/H], [O/Fe], [Si/Fe], and [Ca/Fe] for 264 red giant branch stars in three Galactic bulge off-axis fields located near (l, b) = (-5.5, -7), (-4, -9), and (+8.5, +9). The results are based on equivalent width and spectrum synthesis analyses of moderate resolution (R Almost-Equal-To 18,000), high signal-to-noise ratio (S/N {approx} 75-300 pixel{sup -1}) spectra obtained with the Hydra spectrographs on the Blanco 4 m and WIYN 3.5 m telescopes. The targets were selected from the blue side of the giant branch to avoid cool stars that would be strongly affectedmore » by CN and TiO; however, a comparison of the color-metallicity distribution in literature samples suggests that our selection of bluer targets should not present a significant bias against metal-rich stars. We find a full range in metallicity that spans [Fe/H] Almost-Equal-To -1.5 to +0.5, and that, in accordance with the previously observed minor-axis vertical metallicity gradient, the median [Fe/H] also declines with increasing Galactic latitude in off-axis fields. The off-axis vertical [Fe/H] gradient in the southern bulge is estimated to be {approx}0.4 dex kpc{sup -1}; however, comparison with the minor-axis data suggests that a strong radial gradient does not exist. The (+8.5, +9) field exhibits a higher than expected metallicity, with a median [Fe/H] = -0.23, that might be related to a stronger presence of the X-shaped bulge structure along that line-of-sight. This could also be the cause of an anomalous increase in the median radial velocity for intermediate metallicity stars in the (+8.5, +9) field. However, the overall radial velocity and dispersion for each field are in good agreement with recent surveys and bulge models. All fields exhibit an identical, strong decrease in velocity dispersion with increasing metallicity that is consistent with observations in similar minor-axis outer bulge fields. Additionally, the [O/Fe], [Si/Fe], and [Ca/Fe] versus [Fe/H] trends are identical among our three fields, and are in good agreement with past bulge studies. We find that stars with [Fe/H] {approx}< -0.5 are {alpha}-enhanced, and that the [{alpha}/Fe] ratios decline at higher metallicity. At [Fe/H] {approx}< 0, the {alpha}-element trends are indistinguishable from the halo and thick disk, and the variations in the behavior of individual {alpha}-elements are consistent with production in massive stars and a rapid bulge formation timescale.« less
Climatology of Neutral vertical winds in the midlatitude thermosphere
NASA Astrophysics Data System (ADS)
Kerr, R.; Kapali, S.; Riccobono, J.; Migliozzi, M. A.; Noto, J.; Brum, C. G. M.; Garcia, R.
2017-12-01
More than one thousand measurements of neutral vertical winds, relative to an assumed average of 0 m/s during a nighttime period, have been made at Arecibo Observatory and the Millstone Hill Optical Facility since 2012, using imaging Fabry-Perot interferometers. These instruments, tuned to the 630 nm OI emission, are carefully calibrated for instrumental frequency drift using frequency stabilized lasers, allowing isolation of Doppler motion in the zenith with 1-2 m/s accuracy. As one example of the results, relative vertical winds at Arecibo during quiet geomagnetic conditions near winter solstice 2016, range ±70 m/s and have a one standard deviation statistical variability of ±34 m/s. This compares with a ±53 m/s deviation from the average meridional wind, and a ±56 m/s deviation from the average zonal wind measured during the same period. Vertical neutral wind velocities for all periods range from roughly 30% - 60% of the horizontal velocity domain at Arecibo. At Millstone Hill, the vertical velocities relative to horizontal velocities are similar, but slightly smaller. The midnight temperature maximum at Arecibo is usually correlated with a surge in the upward wind, and vertical wind excursions of more than 80 m/s are common during magnetic storms at both sites. Until this compilation of vertical wind climatology, vertical motions of the neutral atmosphere outside of the auroral zone have generally been assumed to be very small compared to horizontal transport. In fact, excursions from small vertical velocities in the mid-latitude thermosphere near the F2 ionospheric peak are common, and are not isolated events associated with unsettled geomagnetic conditions or other special dynamic conditions.
Ackers, D; Hejnowicz, Z; Sievers, A
1994-01-01
Velocities of cytoplasmic streaming were measured in internodal cells of Nitella flexilis L. and Chara corallina Klein ex Willd. by laser-Doppler-velocimetry to investigate the possibility of non-statolith-based perception of gravity. This was recently proposed, based on a report of gravity-dependent polarity of cytoplasmic streaming. Our measurements revealed large spatial and temporal variation in streaming velocity within a cell, independent of the position of the cell with respect to the direction of gravity. In 58% of the horizontally positioned cells the velocities of acropetal and basipetal streaming, measured at opposite locations in the cell, differed significantly. In 45% of these, basipetal streaming was faster than acropetal streaming. In 60% of the vertically positioned cells however the difference was significant, downward streaming was faster in only 61% of these. When cell positions were changed from vertical to horizontal and vice versa the cells reacted variably. A significant difference between velocities in one direction, before and after the change, was observed in approx. 70% of the measurements, but the velocity was faster in the downward direction, as the second position, in only 70% of the significantly different. The ratio of basipetal to acropetal streaming velocities at opposite locations of a cell was quite variable within groups of cells with a particular orientation (horizontal, normal vertical, inverted vertical). On average, however, the ratio was close to 1.00 in the horizontal position and approx. 1.03 in the normal vertical position (basipetal streaming directed downwards), which indicates a small direct effect of gravity on streaming velocity. Individual cells, however, showed an increased, as well as a decreased, ratio when moved from the horizontal to the vertical position. No discernible effect of media (either Ca(2+)-buffered medium or 1.2% agar in distilled water) on the streaming velocities was observed. The above mentioned phenomenon of graviperception is not supported by our data.
A Novel Approach to the Millikan Oil Drop Experiment
NASA Astrophysics Data System (ADS)
Gibbs, Spencer; Oyun, Nomin
2008-05-01
Robert Millikan was in part awarded the 1923 Nobel Prize in physics for the famous Millikan Oil Drop Experiment. We have successfully repeated the experiment using a novel approach designed by Brian Scott and Robert Hobbs of Bellevue Community College that is less tedious and more reliable than the classic experiment. In Millikan's experiment, the charged plates are oriented horizontally so that the electric and gravitational forces are parallel to each other. By observing the velocity of the droplets in the field free state, the mass of the droplet can be determined, and by observing the velocity in the electric field, the charge can be inferred. Bellevue College's new approach reorients the plates vertically so that the gravitational field is perpendicular to the electric field. We have also added video capture of the falling drop to replace the traditional repeated rise and fall timings from the original. This allows both the mass and charge of the droplet to be determined in one passage from the orthogonal components of velocity, dramatically improving the ease and success rate of the experiment. Using this method, it is well within the experimental abilities of first year physics students to successfully determine the mass and charge of the oil droplets.
An evaluation of the accuracy of some radar wind profiling techniques
NASA Technical Reports Server (NTRS)
Koscielny, A. J.; Doviak, R. J.
1983-01-01
Major advances in Doppler radar measurement in optically clear air have made it feasible to monitor radial velocities in the troposphere and lower stratosphere. For most applications the three dimensional wind vector is monitored rather than the radial velocity. Measurement of the wind vector with a single radar can be made assuming a spatially linear, time invariant wind field. The components and derivatives of the wind are estimated by the parameters of a linear regression of the radial velocities on functions of their spatial locations. The accuracy of the wind measurement thus depends on the locations of the radial velocities. The suitability is evaluated of some of the common retrieval techniques for simultaneous measurement of both the vertical and horizontal wind components. The techniques considered for study are fixed beam, azimuthal scanning (VAD) and elevation scanning (VED).
Quiescent Prominence Structure and Dynamics: a new View From the Hinode/SOT
NASA Astrophysics Data System (ADS)
Berger, T.; Okamoto, J.; Slater, G.; Magara, T.; Tarbell, T.; Tsuneta, S.; Hurlburt, N.
2008-05-01
To date the Hinode/Solar Optical Telescope (SOT) has produced over a dozen sub-arcsecond, multi-hour movies of quiescent solar prominences in both the Ca II 396.8~nm H-line and the H-alpha 656.3~nm line. These datasets have revealed new details of the structure and dynamics of quiescent prominences including a new form of mass transport in the form of buoyant plume upflows from the chromosphere. We review the SOT prominence datasets to show that quiescent prominences appear in two major morphological categories: "vertically" and "horizontally" structured. The vertically structured prominences all show ubiquitous downflows in 400--700~km wide "streams" with velocities of approximately 10~km~s-1. Most of the vertically structured prominences also show episodic upflows in the form of dark turbulent plumes with typical velocities of 20~km~s-1. Large-scale oscillations are frequently seen in vertical prominences with periods on the order of 10 min and upward propagation speeds of approximately 10~km~s-1. In addition, "bubble" events in which large voids 10--30~Mm across inflate and then burst are seen in some of the vertical prominences. In contrast, the horizontally structured quiescent prominences exhibit only limited flows along the horizontal filaments. We speculate on the origin of the distinction between the vertically and horizontally structured prominences, taking into account viewing angle and the underlying photospheric magnetic flux density. We also discuss the nature of the mysterious dark plumes and bubble expansions and their implications for prominence mass balance in light of recent models of prominence magnetic structure that find vertical flows along some field lines.
Five-minute Oscillation Power within Magnetic Elements in the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Jain, Rekha; Gascoyne, Andrew; Hindman, Bradley W.; Greer, Benjamin
2014-12-01
It has long been known that magnetic plage and sunspots are regions in which the power of acoustic waves is reduced within the photospheric layers. Recent observations now suggest that this suppression of power extends into the low chromosphere and is also present in small magnetic elements far from active regions. In this paper we investigate the observed power suppression in plage and magnetic elements, by modeling each as a collection of vertically aligned magnetic fibrils and presuming that the velocity within each fibril is the response to buffeting by incident p modes in the surrounding field-free atmosphere. We restrict our attention to modeling observations made near the solar disk center, where the line-of-sight velocity is nearly vertical and hence, only the longitudinal component of the motion within the fibril contributes. Therefore, we only consider the excitation of axisymmetric sausage waves and ignore kink oscillations as their motions are primarily horizontal. We compare the vertical motion within the fibril with the vertical motion of the incident p mode by constructing the ratio of their powers. In agreement with observational measurements we find that the total power is suppressed within strong magnetic elements for frequencies below the acoustic cut-off frequency. However, further physical effects need to be examined for understanding the observed power ratios for stronger magnetic field strengths and higher frequencies. We also find that the magnitude of the power deficit increases with the height above the photosphere at which the measurement is made. Furthermore, we argue that the area of the solar disk over which the power suppression extends increases as a function of height.
Radar - ARL Wind Profilerwith RASS, Boardman - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ANL Wind Profiler with RASS, Yakima - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Condon - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ANL Wind Profiler with RASS, Walla Walla - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Prineville - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Troutdale - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ANL Wind Profiler with RASS, Goldendale - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Wasco Airport - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Visuomotor adaptation to a visual rotation is gravity dependent.
Toma, Simone; Sciutti, Alessandra; Papaxanthis, Charalambos; Pozzo, Thierry
2015-03-15
Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure. Copyright © 2015 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Zacharias, G. L.; Young, L. R.
1981-01-01
Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation is modeled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A dual-input describing function analysis supports the complementary model; vestibular cues dominate sensation at higher frequencies. The describing function model is extended by the proposal of a nonlinear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.
Radar research on thunderstorms and lightning
NASA Technical Reports Server (NTRS)
Rust, W. D.; Doviak, R. J.
1982-01-01
Applications of Doppler radar to detection of storm hazards are reviewed. Normal radar sweeps reveal data on reflectivity fields of rain drops, ionized lightning paths, and irregularities in humidity and temperature. Doppler radar permits identification of the targets' speed toward or away from the transmitter through interpretation of the shifts in the microwave frequency. Wind velocity fields can be characterized in three dimensions by the use of two radar units, with a Nyquist limit on the highest wind speeds that may be recorded. Comparisons with models numerically derived from Doppler radar data show substantial agreement in storm formation predictions based on information gathered before the storm. Examples are provided of tornado observations with expanded Nyquist limits, gust fronts, turbulence, lightning and storm structures. Obtaining vertical velocities from reflectivity spectra is discussed.
Reducing gravity takes the bounce out of running.
Polet, Delyle T; Schroeder, Ryan T; Bertram, John E A
2018-02-13
In gravity below Earth-normal, a person should be able to take higher leaps in running. We asked 10 subjects to run on a treadmill in five levels of simulated reduced gravity and optically tracked centre-of-mass kinematics. Subjects consistently reduced ballistic height compared with running in normal gravity. We explain this trend by considering the vertical take-off velocity (defined as maximum vertical velocity). Energetically optimal gaits should balance the energetic costs of ground-contact collisions (favouring lower take-off velocity), and step frequency penalties such as leg swing work (favouring higher take-off velocity, but less so in reduced gravity). Measured vertical take-off velocity scaled with the square root of gravitational acceleration, following energetic optimality predictions and explaining why ballistic height decreases in lower gravity. The success of work-based costs in predicting this behaviour challenges the notion that gait adaptation in reduced gravity results from an unloading of the stance phase. Only the relationship between take-off velocity and swing cost changes in reduced gravity; the energetic cost of the down-to-up transition for a given vertical take-off velocity does not change with gravity. Because lower gravity allows an elongated swing phase for a given take-off velocity, the motor control system can relax the vertical momentum change in the stance phase, thus reducing ballistic height, without great energetic penalty to leg swing work. Although it may seem counterintuitive, using less 'bouncy' gaits in reduced gravity is a strategy to reduce energetic costs, to which humans seem extremely sensitive. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Mitkin, V.
Experimental investigations of fine and macroscopic structures of density and veloc- ity disturbances generated by a towing cylinder or a vertical strip in a linearly strati- fied liquid are carried out in a rectangular tank. A density gradient field is visualised by different Schlieren methods (direct shadow, 'slit-knife', 'slit-thread', 'natural rain- bow') characterised by a high spatial resolution. Profiles of fluid velocity are visu- alised by density markers U wakes past a vertically descending sugar crystal or an ascending gas bubble. In a fluid at rest the density marker acts as a vertical linear source of internal oscillations, which allows us to measure buoyancy frequency over all depth by the Schlieren instrument directly or by a conductivity probe in a particular point. Sensitive methods reveal a set of high gradient interfaces inside and outside the downstream wake besides well-known large-scale elements: upstream disturbances, attached internal waves and vortices. High gradient interfaces bound compact vor- tices. Vortices moving with respect to environment emit their own systems of internal waves randomising a regular pattern of attached antisymmetric internal waves. But after a rather long time a wave recurrence occurs and a regular but symmetric struc- ture of the longest waves (similar to the pattern of initial attached internal waves) is observed again. Results of studying of the influence of obstacles shape on phase struc- ture and amplitudes of attached internal waves field, vortex formation, their structure and characteristics are presented.
Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser
NASA Astrophysics Data System (ADS)
Havlík, Jan; Dlouhý, Tomáš
2018-06-01
This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.
Onset of thermal convection in a rectangular parallelepiped cavity of small aspect ratios
NASA Astrophysics Data System (ADS)
Funakoshi, Mitsuaki
2018-04-01
Onset of thermal convection of a fluid in a rectangular parallelepiped cavity of small aspect ratios is examined both numerically and analytically under the assumption that all walls are rigid and of perfect thermal conductance exposed to a vertically linear temperature field. Critical Rayleigh number R c and the steady velocity and temperature fields of most unstable modes are computed by a Galerkin spectral method of high accuracy for aspect ratios A x and A y either or both of which are small. We find that if A x is decreased to 0 with A y being kept constant, R c increases proportionally to {A}x-4, the convection rolls of most unstable mode whose axes are parallel to the shorter side walls become narrower, and their number increases proportionally to {A}x-\\tfrac{1{2}}. Moreover, as A x is decreased, we observe the changes of the symmetry of most unstable mode that occur more frequently for smaller A x . However, if {A}x={A}y=A is decreased to 0, although we again observe the increase in R c proportional to {A}-4, we obtain only one narrow convection roll as the velocity field of most unstable mode for all A. The expressions of R c and velocity fields in the limit of {A}x\\to 0 or A\\to 0 are obtained by an asymptotic analysis in which the dependences of R c and the magnitude and length scale of velocity fields of most unstable modes on A x and A y in the numerical computations are used. For example, R c is approximated by {π }4{A}x-4 and 25{π }4{A}-4 in the limits of {A}x\\to 0 and A\\to 0, respectively. Moreover, analytical expressions of some components of velocity fields in these limits are derived. Finally, we find that for small A x or A the agreement between the numerical and analytical results on R c and velocity field is quite good except for the velocity field in thin wall layers near the top and bottom walls.
NASA Astrophysics Data System (ADS)
Zlotnik, V. A.; Tartakovsky, D. M.
2017-12-01
The study is motivated by rapid proliferation of field methods for measurements of seepage velocity using heat tracing and is directed to broadening their potential for studies of groundwater-surface water interactions, and hyporheic zone in particular. In vast majority, existing methods assume vertical or horizontal, uniform, 1D seepage velocity. Often, 1D transport assumed as well, and analytical models of heat transport by Suzuki-Stallman are heavily used to infer seepage velocity. However, both of these assumptions (1D flow and 1D transport) are violated due to the flow geometry, media heterogeneity, and localized heat sources. Attempts to apply more realistic conceptual models still lack full 3D view, and known 2D examples are treated numerically, or by making additional simplifying assumptions about velocity orientation. Heat pulse instruments and sensors already offer an opportunity to collect data sufficient for 3D seepage velocity identification at appropriate scale, but interpretation tools for groundwater-surface water interactions in 3D have not been developed yet. We propose an approach that can substantially improve capabilities of already existing field instruments without additional measurements. Proposed closed-form analytical solutions are simple and well suited for using in inverse modeling. Field applications and ramifications for applications, including data analysis are discussed. The approach simplifies data collection, determines 3D seepage velocity, and facilitates interpretation of relations between heat transport parameters, fluid flow, and media properties. Results are obtained using tensor properties of transport parameters, Green's functions, and rotational coordinate transformations using the Euler angles
GPS coordinate time series measurements in Ontario and Quebec, Canada
NASA Astrophysics Data System (ADS)
Samadi Alinia, Hadis; Tiampo, Kristy F.; James, Thomas S.
2017-06-01
New precise network solutions for continuous GPS (cGPS) stations distributed in eastern Ontario and western Québec provide constraints on the regional three-dimensional crustal velocity field. Five years of continuous observations at fourteen cGPS sites were analyzed using Bernese GPS processing software. Several different sub-networks were chosen from these stations, and the data were processed and compared to in order to select the optimal configuration to accurately estimate the vertical and horizontal station velocities and minimize the associated errors. The coordinate time series were then compared to the crustal motions from global solutions and the optimized solution is presented here. A noise analysis model with power-law and white noise, which best describes the noise characteristics of all three components, was employed for the GPS time series analysis. The linear trend, associated uncertainties, and the spectral index of the power-law noise were calculated using a maximum likelihood estimation approach. The residual horizontal velocities, after removal of rigid plate motion, have a magnitude consistent with expected glacial isostatic adjustment (GIA). The vertical velocities increase from subsidence of almost 1.9 mm/year south of the Great Lakes to uplift near Hudson Bay, where the highest rate is approximately 10.9 mm/year. The residual horizontal velocities range from approximately 0.5 mm/year, oriented south-southeastward, at the Great Lakes to nearly 1.5 mm/year directed toward the interior of Hudson Bay at stations adjacent to its shoreline. Here, the velocity uncertainties are estimated at less than 0.6 mm/year for the horizontal component and 1.1 mm/year for the vertical component. A comparison between the observed velocities and GIA model predictions, for a limited range of Earth models, shows a better fit to the observations for the Earth model with the smallest upper mantle viscosity and the largest lower mantle viscosity. However, the pattern of horizontal deformation is not well explained in the north, along Hudson Bay, suggesting that revisions to the ice thickness history are needed to improve the fit to observations.
Vertical deformation at western part of Sumatra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Febriyani, Caroline, E-mail: caroline.fanuel@students.itb.ac.id; Prijatna, Kosasih, E-mail: prijatna@gd.itb.ac.id; Meilano, Irwan, E-mail: irwan.meilano@gd.itb.ac.id
2015-04-24
This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by themore » Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.« less
Radar - 449MHz - Forks, WA (FKS) - Raw Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - North Bend, OR (OTH) - Raw Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - North Bend, OR (OTH) - Reviewed Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - Forks, WA (FKS) - Reviewed Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - Astoria, OR (AST) - Reviewed Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - Astoria, OR (AST) - Raw Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen
2010-01-01
This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.
Field assessment of noncontact stream gauging using portable surface velocity radars (SVR)
NASA Astrophysics Data System (ADS)
Welber, Matilde; Le Coz, Jérôme; Laronne, Jonathan B.; Zolezzi, Guido; Zamler, Daniel; Dramais, Guillaume; Hauet, Alexandre; Salvaro, Martino
2016-02-01
The applicability of a portable, commercially available surface velocity radar (SVR) for noncontact stream gauging was evaluated through a series of field-scale experiments carried out in a variety of sites and deployment conditions. Comparisons with various concurrent techniques showed acceptable agreement with velocity profiles, with larger uncertainties close to the banks. In addition to discharge error sources shared with intrusive velocity-area techniques, SVR discharge estimates are affected by flood-induced changes in the bed profile and by the selection of a depth-averaged to surface velocity ratio, or velocity coefficient (α). Cross-sectional averaged velocity coefficients showed smaller fluctuations and closer agreement with theoretical values than those computed on individual verticals, especially in channels with high relative roughness. Our findings confirm that α = 0.85 is a valid default value, with a preferred site-specific calibration to avoid underestimation of discharge in very smooth channels (relative roughness ˜ 0.001) and overestimation in very rough channels (relative roughness > 0.05). Theoretically derived and site-calibrated values of α also give accurate SVR-based discharge estimates (within 10%) for low and intermediate roughness flows (relative roughness 0.001 to 0.05). Moreover, discharge uncertainty does not exceed 10% even for a limited number of SVR positions along the cross section (particularly advantageous to gauge unsteady flood flows and very large floods), thereby extending the range of validity of rating curves.
NASA Astrophysics Data System (ADS)
Tschache, Saskia; Wadas, Sonja; Polom, Ulrich; Krawczyk, Charlotte M.
2017-04-01
Sinkholes pose a serious geohazard for humans and infrastructure in populated areas. The Junior Research Group Subrosion within the Leibniz Institute for Applied Geophysics and the joint project SIMULTAN work on the multi-scale investigation of subrosion processes in the subsurface, which cause natural sinkholes. In two case studies in sinkhole areas of Thuringia in Germany, we applied 2D shear wave reflection seismics using SH-waves with the aim to detect suitable parameters for the characterisation of critical zones. This method has the potential to image near-surface collapse and faulting structures in improved resolution compared to P-wave surveys resulting from the shorter wavelength of shear waves. Additionally, the shear wave velocity field derived by NMO velocity analysis is a basis to calculate further physical parameters, as e.g. the dynamic shear modulus. In both investigation areas, vertical seismic profiles (VSP) were acquired by generating P- and SH-waves (6 component VSP) directly next to a borehole equipped with a 3C downhole sensor. They provide shear and compressional wave velocity profiles, which are used to improve the 2D shear wave velocity field from surface seismics, to perform a depth calibration of the seismic image and to calculate the Vp/Vs ratio. The signals in the VSP data are analysed with respect to changes in polarisation and attenuation with depth and/or azimuth. The VSP data reveal low shear wave velocities of 200-300 m/s in rock layers known to be heavily affected by subrosion and confirm the low velocities calculated from the surface seismic data. A discrepancy of the shear wave velocities is observed in other intervals probably due to unsymmetrical travel paths in the surface seismics. In some VSP data dominant conversion of the direct SH-wave to P-wave is observed that is assumed to be caused by an increased presence of cavities. A potential fault distorting the vertical travel paths was detected by abnormal P-wave first arrivals in the VSP dataset of a borehole located near the city of Bad Frankenhausen. In addition, a strong attenuation of the source signals may indicate areas influenced by subrosion.
Bridgman Growth of GeSi Alloys in a Static Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Szofran, F. R.; Vujisic, L.; Motakef, S.
1998-01-01
Ge(0.95)Si(0.050 alloy crystals have been grown by the vertical Bridgman technique, both with and without an axial 5 Tesla magnetic field. The crystals were processed in a constant axial thermal gradient and the effects of graphite, hot pressed boron nitride, and pyrolitic boron nitride ampoule materials on interface shapes and macrosegregation profiles were investigated. The sample grown in a graphite ampoule at 5 Tesla exhibited a macroscopic axial concentration profile close to that of complete mixing and strong striation patterns. In samples grown in boron nitride ampoules, both with and without a 5 Tesla magnetic field applied, measured macroscopic axial concentration profiles were intermediate between those expected for a completely mixed melt and diffusion-controlled growth, and striation patterns were also observed. Possible explanations for the apparent inability of the magnetic field to reduce the flow velocities to below the growth velocities are discussed, and results of growth experiments in pyrolitic boron nitride ampoules are also described.
Turbulent flow in a partially filled pipe
NASA Astrophysics Data System (ADS)
Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David
2017-11-01
Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.
Climatology of tropospheric vertical velocity spectra
NASA Technical Reports Server (NTRS)
Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.
1986-01-01
Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.
Field Intercomparison of Six Sifferent Three-dimensional Sonic Anemometers
NASA Astrophysics Data System (ADS)
Zeeman, M. J.; Mauder, M.
2016-12-01
Although sonic anemometers have been used extensively for several decades in micrometeorological and ecological research, there is still some scientific debate about the measurement uncertainty of these instruments. This is due to the fact that an absolute reference for the measurement of turbulent wind fluctuations in the free atmosphere does not exist. In view of this lack we have conducted a field intercomparison experiment of six commonly used sonic anemometers from four major manufacturers. The models included Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R.M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site De-Fen in southern Germany over a period of 16 days in June of 2016 in preparation of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by neighbouring structures as much as possible. Moreover, the data were filtered for potentially disturbed wind sectors, and the high-frequency data from all instruments were treated with the same post-processing algorithm. In this presentation, we compare the results for various turbulence statistics from all sensors. These include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity and the covariance between vertical wind velocity and sonic temperature. Quantitative measures of uncertainty, such as bias and comparability are derived from these results.
Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump.
Jiménez-Reyes, Pedro; Samozino, Pierre; Pareja-Blanco, Fernando; Conceição, Filipe; Cuadrado-Peñafiel, Víctor; González-Badillo, Juan José; Morin, Jean-Benoît
2017-01-01
To analyze the reliability and validity of a simple computation method to evaluate force (F), velocity (v), and power (P) output during a countermovement jump (CMJ) suitable for use in field conditions and to verify the validity of this computation method to compute the CMJ force-velocity (F-v) profile (including unloaded and loaded jumps) in trained athletes. Sixteen high-level male sprinters and jumpers performed maximal CMJs under 6 different load conditions (0-87 kg). A force plate sampling at 1000 Hz was used to record vertical ground-reaction force and derive vertical-displacement data during CMJ trials. For each condition, mean F, v, and P of the push-off phase were determined from both force-plate data (reference method) and simple computation measures based on body mass, jump height (from flight time), and push-off distance and used to establish the linear F-v relationship for each individual. Mean absolute bias values were 0.9% (± 1.6%), 4.7% (± 6.2%), 3.7% (± 4.8%), and 5% (± 6.8%) for F, v, P, and slope of the F-v relationship (S Fv ), respectively. Both methods showed high correlations for F-v-profile-related variables (r = .985-.991). Finally, all variables computed from the simple method showed high reliability, with ICC >.980 and CV <1.0%. These results suggest that the simple method presented here is valid and reliable for computing CMJ force, velocity, power, and F-v profiles in athletes and could be used in practice under field conditions when body mass, push-off distance, and jump height are known.
NASA Astrophysics Data System (ADS)
Blender, R.
2009-04-01
An approach for the reconstruction of atmospheric flow is presented which uses space- and time-dependent fields of density ?, potential vorticity Q and potential temperature Î& cedil;[J. Phys. A, 38, 6419 (2005)]. The method is based on the fundamental equations without approximation. The basic idea is to consider the time-dependent continuity equation as a condition for zero divergence of momentum in four dimensions (time and space, with unit velocity in time). This continuity equation is solved by an ansatz for the four-dimensional momentum using three conserved stream functions, the potential vorticity, potential temperature and a third field, denoted as ?-potential. In zonal flows, the ?-potential identifies the initial longitude of particles, whereas potential vorticity and potential temperature identify mainly meridional and vertical positions. Since the Lagrangian tracers Q, Î&,cedil; and ? determine the Eulerian velocity field, the reconstruction combines the Eulerian and the Lagrangian view of hydrodynamics. In stationary flows, the ?-potential is related to the Bernoulli function. The approach requires that the gradients of the potential vorticity and potential temperature do not vanish when the velocity remains finite. This behavior indicates a possible interrelation with stability conditions. Examples with analytical solutions are presented for a Rossby wave and zonal and rotational shear flows.
Is the Milky Way still breathing? RAVE-Gaia streaming motions
NASA Astrophysics Data System (ADS)
Carrillo, I.; Minchev, I.; Kordopatis, G.; Steinmetz, M.; Binney, J.; Anders, F.; Bienaymé, O.; Bland-Hawthorn, J.; Famaey, B.; Freeman, K. C.; Gilmore, G.; Gibson, B. K.; Grebel, E. K.; Helmi, A.; Just, A.; Kunder, A.; McMillan, P.; Monari, G.; Munari, U.; Navarro, J.; Parker, Q. A.; Reid, W.; Seabroke, G.; Sharma, S.; Siebert, A.; Watson, F.; Wojno, J.; Wyse, R. F. G.; Zwitter, T.
2018-04-01
We use data from the Radial Velocity Experiment (RAVE) and the Tycho-Gaia astrometric solution (TGAS) catalogue to compute the velocity fields yielded by the radial (VR), azimuthal (Vϕ),and vertical (Vz) components of associated Galactocentric velocity. We search in particular for variation in all three velocity components with distance above and below the disc mid-plane, as well as how each component of Vz (line-of-sight and tangential velocity projections) modifies the obtained vertical structure. To study the dependence of velocity on proper motion and distance, we use two main samples: a RAVE sample including proper motions from the Tycho-2, PPMXL, and UCAC4 catalogues, and a RAVE-TGAS sample with inferred distances and proper motions from the TGAS and UCAC5 catalogues. In both samples, we identify asymmetries in VR and Vz. Below the plane, we find the largest radial gradient to be ∂VR/∂R = -7.01 ± 0.61 km s-1 kpc-1, in agreement with recent studies. Above the plane, we find a similar gradient with ∂VR/∂R = -9.42 ± 1.77 km s-1 kpc-1. By comparing our results with previous studies, we find that the structure in Vz is strongly dependent on the adopted proper motions. Using the Galaxia Milky Way model, we demonstrate that distance uncertainties can create artificial wave-like patterns. In contrast to previous suggestions of a breathing mode seen in RAVE data, our results support a combination of bending and breathing modes, likely generated by a combination of external or internal and external mechanisms.
NASA Astrophysics Data System (ADS)
DeLuca, Anthony M.
Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of the wing. Th 60° angle stop wing achieved the largest total stroke angle and generated the most lift for the lowest power consumption of the wings tested. 2. Phase averaged stereo Particle Image Velocimetry (PIV) data was collected at eight phases through the flap cycle on the 30°, 45°, and 60° angle stop wings. Wings were mounted transverse and parallel to the interrogating laser sheet, and planar velocity intersections at the wing mid-span, one chord below the wing, were compared to one another to verify data fidelity. A Rankine-Froude actuator disk model was adapted to calculate the approximate vertical thrust generated from the total momentum flux through the flapping semi-disk using the velocity field measurements. Three component stereo u, v, and w-velocity contour measurements confirmed the presence of extensive vortical structures in the vicinity of the wing. The leading edge vortex was successfully tracked through the stroke cycle appearing at approximately 25% span, increasing in circulatory strength and translational velocity down the span toward the tip, and dissipating just after 75% span. Thrust calculations showed the vertically mounted wing more accurately represented the vertical forces when compared to its corresponding force balance measurement than the horizontally mounted wing. The mid-span showed the highest vertical velocity profile below the wing; and hence, was the location responsible for the majority of lift production along the span.
Coding of Velocity Storage in the Vestibular Nuclei.
Yakushin, Sergei B; Raphan, Theodore; Cohen, Bernard
2017-01-01
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.
Coding of Velocity Storage in the Vestibular Nuclei
Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard
2017-01-01
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons. PMID:28861030
Richard D. Woodsmith; Marwan A. Hassan
2005-01-01
Maintenance of pool morphology in a stream channel with a mobile bed requires hydraulic conditions at moderate to high flows that route bed load through the pool as it is delivered from upstream. Through field measurements of discharge, vertical velocity profiles, bed load transport, and streambed scour, fill, and grain-size distribution, we found that maintenance of a...
The Effect of Projectile Density and Disruption on the Crater Excavation Flow-Field
NASA Technical Reports Server (NTRS)
Anderson, Jennifer L. B.; Schultz, P. H.
2005-01-01
The ejection parameters of material excavated by a growing crater directly relate to the subsurface excavation flow-field. The ejection angles and speeds define the end of subsurface material streamlines at the target surface. Differences in the subsurface flow-fields can be inferred by comparing observed ejection parameters of various impacts obtained using three-dimensional particle image velocimetry (3D PIV). The work presented here investigates the observed ejection speeds and angles of material ejected during vertical (90 impact angle) experimental impacts for a range of different projectile types. The subsurface flow-fields produced during vertical impacts are simple when compared with that of oblique impacts, affected primarily by the depth of the energy and momentum deposition of the projectile. This depth is highly controlled by the projectile/target density ratio and the disruption of the projectile (brittle vs. ductile deformation). Previous studies indicated that cratering efficiency and the crater diameter/depth ratio were affected by projectile disruption, velocity, and the projectile/target density ratio. The effect of these projectile properties on the excavation flow-field are examined by comparing different projectile materials.
NASA Astrophysics Data System (ADS)
Dastagiri Babu, D.; Venkateswarlu, S.; Keshava Reddy, E.
2017-08-01
In this paper, we have considered the unsteady free convective two dimensional flow of a viscous incompressible electrically conducting second grade fluid over an infinite vertical porous plate under the influence of uniform transverse magnetic field with time dependent permeability, oscillatory suction. The governing equations of the flow field are solved by a regular perturbation method for small amplitude of the permeability. The closed form solutions for the velocity, temperature and concentration have been derived analytically and also its behavior is computationally discussed with reference to different flow parameters with the help of profiles. The skin fiction on the boundary, the heat flux in terms of the Nusselt number and rate of mass transfer in terms of Sherwood number are also obtained and their behavior computationally discussed.
NASA Technical Reports Server (NTRS)
Herrero, F. A.; Mayr, H. G.; Harris, I.; Varosi, F.; Meriwether, J. W., Jr.
1984-01-01
Theoretical predictions of thermospheric gravity wave oscillations are compared with observed neutral temperatures and velocities. The data were taken in February 1983 using a Fabry-Perot interferometer located on Greenland, close to impulse heat sources in the auroral oval. The phenomenon was modeled in terms of linearized equations of motion of the atmosphere on a slowly rotating sphere. Legendre polynomials were used as eigenfunctions and the transfer function amplitude surface was characterized by maxima in the wavenumber frequency plane. Good agreement for predicted and observed velocities and temperatures was attained in the 250-300 km altitude. The amplitude of the vertical velocity, however, was not accurately predicted, nor was the temperature variability. The vertical velocity did exhibit maxima and minima in response to corresponding temperature changes.
NASA Astrophysics Data System (ADS)
Herrero, F. A.; Mayr, H. G.; Harris, I.; Varosi, F.; Meriwether, J. W., Jr.
1984-09-01
Theoretical predictions of thermospheric gravity wave oscillations are compared with observed neutral temperatures and velocities. The data were taken in February 1983 using a Fabry-Perot interferometer located on Greenland, close to impulse heat sources in the auroral oval. The phenomenon was modeled in terms of linearized equations of motion of the atmosphere on a slowly rotating sphere. Legendre polynomials were used as eigenfunctions and the transfer function amplitude surface was characterized by maxima in the wavenumber frequency plane. Good agreement for predicted and observed velocities and temperatures was attained in the 250-300 km altitude. The amplitude of the vertical velocity, however, was not accurately predicted, nor was the temperature variability. The vertical velocity did exhibit maxima and minima in response to corresponding temperature changes.
Velocity of mist droplets and suspending gas imaged separately
NASA Astrophysics Data System (ADS)
Kuethe, Dean O.; McBride, Amber; Altobelli, Stephen A.
2012-03-01
Nuclear Magnetic Resonance Images (MRIs) of the velocity of water droplets and velocity of the suspending gas, hexafluoroethane, are presented for a vertical and horizontal mist pipe flow. In the vertical flow, the upward velocity of the droplets is clearly slower than the upward velocity of the gas. The average droplet size calculated from the average falling velocity in the upward flow is larger than the average droplet size of mist drawn from the top of the pipe measured with a multi-stage aerosol impactor. Vertical flow concentrates larger particles because they have a longer transit time through the pipe. In the horizontal flow there is a gravity-driven circulation with high-velocity mist in the lower portion of the pipe and low-velocity gas in the upper portion. MRI has the advantages that it can image both phases and that it is unperturbed by optical opacity. A drawback is that the droplet phase of mist is difficult to image because of low average spin density and because the signal from water coalesced on the pipe walls is high. To our knowledge these are the first NMR images of mist.
NASA Astrophysics Data System (ADS)
Su, S.-Y.; Liu, C. H.; Chao, C.-K.
2018-04-01
Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.
Design and application of a fish-shaped lateral line probe for flow measurement
NASA Astrophysics Data System (ADS)
Tuhtan, J. A.; Fuentes-Pérez, J. F.; Strokina, N.; Toming, G.; Musall, M.; Noack, M.; Kämäräinen, J. K.; Kruusmaa, M.
2016-04-01
We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone.
Experimental evaluation of a flat wake theory for predicting rotor inflow-wake velocities
NASA Technical Reports Server (NTRS)
Wilson, John C.
1992-01-01
The theory for predicting helicopter inflow-wake velocities called flat wake theory was correlated with several sets of experimental data. The theory was developed by V. E. Baskin of the USSR, and a computer code known as DOWN was developed at Princeton University to implement the theory. The theory treats the wake geometry as rigid without interaction between induced velocities and wake structure. The wake structure is assumed to be a flat sheet of vorticity composed of trailing elements whose strength depends on the azimuthal and radial distributions of circulation on a rotor blade. The code predicts the three orthogonal components of flow velocity in the field surrounding the rotor. The predictions can be utilized in rotor performance and helicopter real-time flight-path simulation. The predictive capability of the coded version of flat wake theory provides vertical inflow patterns similar to experimental patterns.
Is the residual vertical velocity a good proxy for stratosphere-troposphere exchange of ozone?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Juno; Prather, Michael J.
Stratosphere-troposphere exchange (STE) of ozone (O 3) is key in the budget of tropospheric O 3, in turn affecting climate forcing and global air quality. We compare three commonly used diagnostics meant to quantify cross-tropopause O 3 fluxes with a Chemistry-Transport Model driven by two distinct European Centre forecast fields. Here, our reference case calculates accurate, geographically resolved net transport across an isosurface in artificial tracer e90 representing the tropopause. Hemispheric fluxes derived from the ozone mass budget of the lowermost stratosphere yield similar results. Use of the Brewer-Dobson residual vertical velocity as a scaled proxy for ozone flux, however,more » fails to capture the interannual variability. Thus, the common notion that the strength of stratospheric overturning circulation is a good measure for global STE does not apply to O 3. Finally, climatic variability in the modeled O 3 flux needs to be diagnosed directly rather than indirectly through the overturning circulation.« less
Is the residual vertical velocity a good proxy for stratosphere-troposphere exchange of ozone?
Hsu, Juno; Prather, Michael J.
2014-12-20
Stratosphere-troposphere exchange (STE) of ozone (O 3) is key in the budget of tropospheric O 3, in turn affecting climate forcing and global air quality. We compare three commonly used diagnostics meant to quantify cross-tropopause O 3 fluxes with a Chemistry-Transport Model driven by two distinct European Centre forecast fields. Here, our reference case calculates accurate, geographically resolved net transport across an isosurface in artificial tracer e90 representing the tropopause. Hemispheric fluxes derived from the ozone mass budget of the lowermost stratosphere yield similar results. Use of the Brewer-Dobson residual vertical velocity as a scaled proxy for ozone flux, however,more » fails to capture the interannual variability. Thus, the common notion that the strength of stratospheric overturning circulation is a good measure for global STE does not apply to O 3. Finally, climatic variability in the modeled O 3 flux needs to be diagnosed directly rather than indirectly through the overturning circulation.« less
Toroidal current asymmetry and boundary conditions in disruptions
NASA Astrophysics Data System (ADS)
Strauss, Henry
2014-10-01
It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the plasma current. The toroidal current asymmetry ΔIϕ is proportional to the vertical current moment ΔMIZ , with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was claimed that this could only be explained by Hiro current. It is shown that instead it is essentially a kinematic effect produced by the VDE displacement of a 3D magnetic perturbation. This is verified by M3D simulations. The simulation results do not require penetration of plasma into the boundary, as in the Hiro current model. It is shown that the normal velocity perpendicular to the magnetic field vanishes at the wall, in the small Larmor radius limit of electromagnetic sheath boundary conditions. Plasma is absorbed into the wall only via the parallel velocity, which is small, penetrates only an infinitesimal distance into the wall, and does not affect forces exerted by the plasma on the wall. Supported by USDOE and ITER.
Lee, J.Y.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.
2010-01-01
The small-strain mechanical properties (e.g., seismic velocities) of hydrate-bearing sediments measured under laboratory conditions provide reference values for calibration of logging and seismic exploration results acquired in hydrate-bearing formations. Instrumented cells were designed for measuring the compressional (P) and shear (S) velocities of sand, silts, and clay with and without hydrate and subject to vertical effective stresses of 0.01 to 2 MPa. Tetrahydrofuran (THF), which is fully miscible in water, was used as the hydrate former to permit close control over the hydrate saturation Shyd and to produce hydrate from dissolved phase, as methane hydrate forms in most natural marine settings. The results demonstrate that laboratory hydrate formation technique controls the pattern of P and S velocity changes with increasing Shyd and that the small-strain properties of hydrate-bearing sediments are governed by effective stress, δ'v and sediment specific surface. The S velocity increases with hydrate saturation owing to an increase in skeletal shear stiffness, particularly when hydrate saturation exceeds Shyd≈ 0.4. At very high hydrate saturations, the small strain shear stiffness is determined by the presence of hydrates and becomes insensitive to changes in effective stress. The P velocity increases with hydrate saturation due to the increases in both the shear modulus of the skeleton and the bulk modulus of pore-filling phases during fluid-to-hydrate conversion. Small-strain Poisson's ratio varies from 0.5 in soft sediments lacking hydrates to 0.25 in stiff sediments (i.e., subject to high vertical effective stress or having high Shyd). At Shyd ≥ 0.5, hydrate hinders expansion and the loss of sediment stiffness during reduction of vertical effective stress, meaning that hydrate-rich natural sediments obtained through pressure coring should retain their in situ fabric for some time after core retrieval if the cores are maintained within the hydrate stability field.
The Limiting Velocity in Falling from a Great Height
NASA Technical Reports Server (NTRS)
Wilson, Edwin Bidwell
1919-01-01
The purpose of this report is to give a simple treatment of the problem of calculating the final or limiting velocity of an object falling in vertical motion under gravity in a resisting medium. The equations of motion are easily set up and integrated when the density of the medium is constant and the resistance varies as the square of the velocity. The results show that the fundamental characteristics of the vertical motion under gravity in a resisting medium is the approach to a terminal or limiting velocity, whether the initial downward velocity is less or greater than the limiting velocity. This method can be used to calculate the terminal velocity of a bomb trajectory.
Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir
We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that themore » necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.« less
Validation of buoyancy driven spectral tensor model using HATS data
NASA Astrophysics Data System (ADS)
Chougule, A.; Mann, J.; Kelly, M.; Larsen, G. C.
2016-09-01
We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper. The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model is described via five parameters: the dissipation rate (ɛ), length scale of energy-containing eddies (L), a turbulence anisotropy parameter (Γ), gradient Richardson number (Ri) representing the atmospheric stability and the rate of destruction of temperature variance (ηθ).
Sabatini, Angelo Maria; Genovese, Vincenzo
2014-07-24
A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04-0.24 m/s; height RMSE was in the range 5-68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions.
NASA Astrophysics Data System (ADS)
Mauder, M.; Huq, S.; De Roo, F.; Foken, T.; Manhart, M.; Schmid, H. P. E.
2017-12-01
The Campbell CSAT3 sonic anemometer is one of the most widely used instruments for eddy-covariance measurement. However, conflicting estimates for the probe-induced flow distortion error of this instrument have been reported recently, and those error estimates range between 3% and 14% for the measurement of vertical velocity fluctuations. This large discrepancy between the different studies can probably be attributed to the different experimental approaches applied. In order to overcome the limitations of both field intercomparison experiments and wind tunnel experiments, we propose a new approach that relies on virtual measurements in a large-eddy simulation (LES) environment. In our experimental set-up, we generate horizontal and vertical velocity fluctuations at frequencies that typically dominate the turbulence spectra of the surface layer. The probe-induced flow distortion error of a CSAT3 is then quantified by this numerical wind tunnel approach while the statistics of the prescribed inflow signal are taken as reference or etalon. The resulting relative error is found to range from 3% to 7% and from 1% to 3% for the standard deviation of the vertical and the horizontal velocity component, respectively, depending on the orientation of the CSAT3 in the flow field. We further demonstrate that these errors are independent of the frequency of fluctuations at the inflow of the simulation. The analytical corrections proposed by Kaimal et al. (Proc Dyn Flow Conf, 551-565, 1978) and Horst et al. (Boundary-Layer Meteorol, 155, 371-395, 2015) are compared against our simulated results, and we find that they indeed reduce the error by up to three percentage points. However, these corrections fail to reproduce the azimuth-dependence of the error that we observe. Moreover, we investigate the general Reynolds number dependence of the flow distortion error by more detailed idealized simulations.
Microtremor exploration for shallow S-wave velocity structure in Bandung Basin, Indonesia
NASA Astrophysics Data System (ADS)
Pramatadie, Andi Muhamad; Yamanaka, Hiroaki; Chimoto, Kosuke; Afnimar Collaboration; Koketsu, Kazuki; Sakaue, Minoru; Miyake, Hiroe; Sengara, I. Wayan; Sadisun, Imam A.
2017-05-01
We have conducted a microtremor survey for shallow S-wave velocity profiles to be used for seismic hazard evaluation in the Bandung Basin, Indonesia. In the survey, two arrays were deployed temporarily at each of 29 sites, by installing seven vertical sensors in triangular configurations with side lengths from 1 to 16 m. Records of vertical microtremors from each array were used to estimate Rayleigh wave phase velocity spectra using the spatial autocorrelation method, as well as the horizontal-to-vertical spectral ratio obtained at the centre of the arrays. Phase velocities at sites on the basin margin exhibit higher values than those obtained in the central part of the basin, in a frequency range of 7 to 30 Hz. The phase velocity data were used to deduce S-wave velocity profiles of shallow soil using a hybrid heuristic inversion method. We validated our inversion models by comparing observed horizontal-to-vertical spectral ratios with ellipticities of the fundamental mode of Rayleigh waves, calculated for the inversion models. The S-wave velocity profiles in the area can be characterised by two soft layers over a firm engineering basement that has an S-wave velocity of 500 m/s. The S-wave velocities of the two layers are 120 and 280 m/s on average. The distribution of the averaged S-wave velocity in the top 30 m clearly indicates low values in the eastern central part and high values in the edge of the basin. The amplification is large in the areas with low velocity layers. In addition, we have proposed an empirical relation between the amplification factor and the topographical slope in the area.
NASA Astrophysics Data System (ADS)
Franca, Mário J.; Lemmin, Ulrich
2014-05-01
The occurrence of large scale flow structures (LSFS) coherently organized throughout the flow depth has been reported in field and laboratory experiments of flows over gravel beds, especially under low relative submergence conditions. In these, the instantaneous velocity is synchronized over the whole vertical profile oscillating at a low frequency above or below the time-averaged value. The detection of large scale coherently organized regions in the flow field is often difficult since it requires detailed simultaneous observations of the flow velocities at several levels. The present research avoids the detection problem by using an Acoustic Doppler Velocity Profiler (ADVP), which permits measuring three-dimensional velocities quasi-simultaneously over the full water column. Empirical mode decomposition (EMD) combined with the application of the Hilbert transform is then applied to the instantaneous velocity data to detect and isolate LSFS. The present research was carried out in a Swiss river with low relative submergence of 2.9, herein defined as h/D50, (where h is the mean flow depth and D50 the bed grain size diameter for which 50% of the grains have smaller diameters). 3D ADVP instantaneous velocity measurements were made on a 3x5 rectangular horizontal grid (x-y). Fifteen velocity profiles were equally spaced in the spanwise direction with a distance of 10 cm, and in the streamwise direction with a distance of 15 cm. The vertical resolution of the measurements is roughly 0.5 cm. A measuring grid covering a 3D control volume was defined. The instantaneous velocity profiles were measured for 3.5 min with a sampling frequency of 26 Hz. Oscillating LSFS are detected and isolated in the instantaneous velocity signal of the 15 measured profiles. Their 3D cycle geometry is reconstructed and investigated through phase averaging based on the identification of the instantaneous signal phase (related to the Hilbert transform) applied to the original raw signal. Results for all the profiles are consistent and indicate clearly the presence of LSFS throughout the flow depth with impact on the three components of the velocity profile and on the bed friction velocity. A high correlation of the movement is found throughout the flow depth, thus corroborating the hypothesis of large-scale coherent motion evolving over the whole water depth. These latter are characterized in terms of period, horizontal scale and geometry. The high spatial and temporal resolution of our ADVP was crucial for obtaining comprehensive results on coherent structures dynamics. EMD combined with the Hilbert transform have previously been successfully applied to geophysical flow studies. Here we show that this method can also be used for the analysis of river dynamics. In particular, we demonstrate that a clean, well-behaved intrinsic mode function can be obtained from a noisy velocity time series that allowed a precise determination of the vertical structure of the coherent structures. The phase unwrapping of the UMR and the identification of the phase related velocity components brings new insight into the flow dynamics Research supported by the Swiss National Science Foundation (2000-063818). KEY WORDS: large scale flow structures (LSFS); gravel-bed rivers; empirical mode decomposition; Hilbert transform
Ionospheric and magnetospheric plasmapauses'
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.; Hoffman, J. H.; Maynard, N. C.
1977-01-01
During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of about 5.2 R sub e traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2-5.4. The locations of the Explorer 45 plasmapause crossings during this month were compared to the latitudinal decreases of the H(+) density observed on ISIS 2 near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Vertical flows of the H(+) ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 kilometers/sec near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H(+) trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause.
The mean magnetic field of the sun: Observations at Stanford
NASA Technical Reports Server (NTRS)
Scherrer, P. H.; Wilcox, J. M.; Svalgaard, L.; Duvall, T. L., Jr.; Dittmer, P. H.; Gustafson, E. K.
1977-01-01
A solar telescope was built at Stanford University to study the organization and evolution of large-scale solar magnetic fields and velocities. The observations are made using a Babcock-type magnetograph which is connected to a 22.9 m vertical Littrow spectrograph. Sun-as-a-star integrated light measurements of the mean solar magnetic field were made daily since May 1975. The typical mean field magnitude is about 0.15 gauss with typical measurement error less than 0.05 gauss. The mean field polarity pattern is essentially identical to the interplanetary magnetic field sector structure (seen near the earth with a 4 day lag). The differences in the observed structures can be understood in terms of a warped current sheet model.
Thunderstorm vertical velocities and mass flux estimated from satellite data
NASA Technical Reports Server (NTRS)
Adler, R. F.; Fenn, D. D.
1979-01-01
Infrared geosynchronous satellite data with an interval of five minutes between images are used to estimate thunderstorm top ascent rates on two case study days. A mean vertical velocity of 3.5/ms for 19 clouds is calculated at a height of 8.7 km. This upward motion is representative of an area of approximately 10km on a side. Thunderstorm mass flux of approximately 2x10 to the 11th power/gs is calculated, which compares favorably with previous estimates. There is a significant difference in the mean calculated vertical velocity between elements associated with severe weather reports (w bar=4.6/ms) and those with no such reports (2.5/ms). Calculations were made using a velocity profile for an axially symmetric jet to estimate the peak updraft velocity. For the largest observed w value of 7.8/ms the calculation indicates a peak updraft of approximately 50/ms.
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-10-20
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Cloud/climate sensitivity experiments
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.; Remer, L.
1982-01-01
A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.
Development of a 5.5 m diameter vertical axis wind turbine, phase 3
NASA Astrophysics Data System (ADS)
Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.
1982-06-01
In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.
NASA Astrophysics Data System (ADS)
VeeraKrishna, M.; Subba Reddy, G.; Chamkha, A. J.
2018-02-01
The effects of radiation and Hall current on an unsteady magnetohydrodynamic free convective flow in a vertical channel filled with a porous medium have been studied. We consider an incompressible viscous and electrically conducting incompressible viscous second grade fluid bounded by a loosely packed porous medium. The fluid is driven by an oscillating pressure gradient parallel to the channel plates, and the entire flow field is subjected to a uniform inclined magnetic field of strength Ho inclined at an angle of inclination α with the normal to the boundaries in the transverse xy-plane. The temperature of one of the plates varies periodically, and the temperature difference of the plates is high enough to induce the radiative heat transfer. The effects of various parameters on the velocity profiles, the skin friction, temperature field, rate of heat transfer in terms of their amplitude, and phase angles are shown graphically.
UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers
NASA Technical Reports Server (NTRS)
Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor
2017-01-01
This paper documents a study that drove the development of a mathematical expression in the minimum operational performance standards (MOPS) of detect-and-avoid (DAA) systems for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance could be provided during recovery of well clear separation with a non-cooperative VFR aircraft in addition to horizontal maneuver guidance. Although suppressing vertical maneuver guidance in these situations increased the minimum horizontal separation from 500 to 800 feet, the maximum severity of loss of well clear increased in about 35 of the encounters compared to when a vertical maneuver was preferred and allowed. Additionally, analysis of individual cases led to the identification of a class of encounter where vertical rate error had a large effect on horizontal maneuvers due to the difficulty of making the correct left-right turn decision: crossing conflict with intruder changing altitude. These results supported allowing vertical maneuvers when UAS vertical performance exceeds the relative vertical position and velocity accuracy of the DAA tracker given the current velocity of the UAS and the relative vertical position and velocity estimated by the DAA tracker. Looking ahead, these results indicate a need to improve guidance algorithms by utilizing maneuver stability and near mid-air collision risk when determining maneuver guidance to regain well clear separation.
Optimizing velocities and transports for complex coastal regions and archipelagos
NASA Astrophysics Data System (ADS)
Haley, Patrick J.; Agarwal, Arpit; Lermusiaux, Pierre F. J.
2015-05-01
We derive and apply a methodology for the initialization of velocity and transport fields in complex multiply-connected regions with multiscale dynamics. The result is initial fields that are consistent with observations, complex geometry and dynamics, and that can simulate the evolution of ocean processes without large spurious initial transients. A class of constrained weighted least squares optimizations is defined to best fit first-guess velocities while satisfying the complex bathymetry, coastline and divergence strong constraints. A weak constraint towards the minimum inter-island transports that are in accord with the first-guess velocities provides important velocity corrections in complex archipelagos. In the optimization weights, the minimum distance and vertical area between pairs of coasts are computed using a Fast Marching Method. Additional information on velocity and transports are included as strong or weak constraints. We apply our methodology around the Hawaiian islands of Kauai/Niihau, in the Taiwan/Kuroshio region and in the Philippines Archipelago. Comparisons with other common initialization strategies, among hindcasts from these initial conditions (ICs), and with independent in situ observations show that our optimization corrects transports, satisfies boundary conditions and redirects currents. Differences between the hindcasts from these different ICs are found to grow for at least 2-3 weeks. When compared to independent in situ observations, simulations from our optimized ICs are shown to have the smallest errors.
NASA Astrophysics Data System (ADS)
FramiñAn, Mariana B.; Valle-Levinson, Arnoldo; Sepúlveda, HéCtor H.; Brown, Otis B.
2008-08-01
Intratidal variability of density and velocity fields is investigated at the turbidity front of the Río de la Plata Estuary, South America. Current velocity and temperature-salinity profiles collected in August 1999 along a repeated transect crossing the front are analyzed. Horizontal and vertical gradients, stability of the front, convergence zones, and transverse flow associated to the frontal boundary are described. Strong horizontal convergence of the across-front velocity and build up of along-front velocity shear were observed at the front. In the proximity of the front, enhanced transverse (or along-front) flow created jet-like structures at the surface and near the bottom flowing in opposite directions. These structures persisted throughout the tidal cycle and were advected upstream (downstream) by the flood (ebb) current through a distance of ˜10 km. During peak flood, the upper layer flow reversed from its predominant downstream direction and upstreamflow occupied the entire water column; outside the peak flood, two-layer estuarine circulation dominated. Changes in density field were observed in response to tidal straining, tidal advection, and wind-induced mixing, but stratification remained throughout the tidal cycle. This work demonstrates the large spatial variability of the velocity field at the turbidity front; it provides evidence of enhanced transverse circulation along the frontal boundary; and reveals the importance of advective and frictional intratidal processes in the dynamics of the central part of the estuary.
A field investigation and numerical simulation of coastal fog
NASA Technical Reports Server (NTRS)
Mack, E. J.; Eadie, W. J.; Rogers, C. W.; Kocmond, W. C.; Pilie, R. J.
1973-01-01
A field investigation of the microphysical and micrometeorological features of fogs occurring near Los Angeles and Vandenberg, California was conducted. Observations of wind speed and direction, temperature, dew point, vertical wind velocity, dew deposition, drop-size distribution, liquid water content, and haze and cloud nucleus concentration were obtained. These observations were initiated in late evening prior to fog formation and continued until the time of dissipation in both advection and radiation fogs. Data were also acquired in one valley fog and several dense haze situations. The behavior of these parameters prior to and during fog are discussed in detail. A two-dimensional numerical model was developed to investigate the formation and dissipation of advection fogs under the influence of horizontal variations in surface temperature. The model predicts the evolution of potential temperature, water vapor content, and liquid water content in a vertical plane as determined by vertical turbulent transfer and horizontal advection. Results are discussed from preliminary numerical experiments on the formation of warm-air advection fog and dissipation by natural and artificial heating from the surface.
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley
2015-11-01
Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.
Mathematical Model of Estuarial Sediment Transport.
1977-10-01
This experience showed the central importance of the vertical diffusion coefficient and of the settling velocities of suspended aggregates. 150...34Report of Radioactive Tracer Studies, Sumatra ," Report prepared for Government Offices of Sumatra , 1975. 28. Strang, Gilbert and Fix, G. J., An...of the overall system as it is located at a turning basin . * Krone, R. B., "A Field Study of Flocculation as a Factor in Estuarial Shoaling
Dispersion of a Passive Scalar Within and Above an Urban Street Network
NASA Astrophysics Data System (ADS)
Goulart, E. V.; Coceal, O.; Belcher, S. E.
2018-03-01
The transport of a passive scalar from a continuous point-source release in an urban street network is studied using direct numerical simulation (DNS). Dispersion through the network is characterized by evaluating horizontal fluxes of scalar within and above the urban canopy and vertical exchange fluxes through the canopy top. The relative magnitude and balance of these fluxes are used to distinguish three different regions relative to the source location: a near-field region, a transition region and a far-field region. The partitioning of each of these fluxes into mean and turbulent parts is computed. It is shown that within the canopy the horizontal turbulent flux in the street network is small, whereas above the canopy it comprises a significant fraction of the total flux. Vertical fluxes through the canopy top are predominantly turbulent. The mean and turbulent fluxes are respectively parametrized in terms of an advection velocity and a detrainment velocity and the parametrization incorporated into a simple box-network model. The model treats the coupled dispersion problem within and above the street network in a unified way and predictions of mean concentrations compare well with the DNS data. This demonstrates the usefulness of the box-network approach for process studies and interpretation of results from more detailed numerical simulations.
Vertical mass transfer in open channel flow
Jobson, Harvey E.
1968-01-01
The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.
Reconstruction of the static magnetic field of a magnetron
NASA Astrophysics Data System (ADS)
Krüger, Dennis; Köhn, Kevin; Gallian, Sara; Brinkmann, Ralf Peter
2018-06-01
The simulation of magnetron discharges requires a quantitatively correct mathematical model of the magnetic field structure. This study presents a method to construct such a model on the basis of a spatially restricted set of experimental data and a plausible a priori assumption on the magnetic field configuration. The example in focus is that of a planar circular magnetron. The experimental data are Hall probe measurements of the magnetic flux density in an accessible region above the magnetron plane [P. D. Machura et al., Plasma Sources Sci. Technol. 23, 065043 (2014)]. The a priori assumption reflects the actual design of the device, and it takes the magnetic field emerging from a center magnet of strength m C and vertical position d C and a ring magnet of strength m R , vertical position d R , and radius R. An analytical representation of the assumed field configuration can be formulated in terms of generalized hypergeometric functions. Fitting the ansatz to the experimental data with a least square method results in a fully specified analytical field model that agrees well with the data inside the accessible region and, moreover, is physically plausible in the regions outside of it. The outcome proves superior to the result of an alternative approach which starts from a multimode solution of the vacuum field problem formulated in terms of polar Bessel functions and vertical exponentials. As a first application of the obtained field model, typical electron and ion Larmor radii and the gradient and curvature drift velocities of the electron guiding center are calculated.
Influence of vorticity distribution on singularities in linearized supersonic flow
NASA Astrophysics Data System (ADS)
Gopal, Vijay; Maddalena, Luca
2018-05-01
The linearized steady three-dimensional supersonic flow can be analyzed using a vector potential approach which transforms the governing equation to a standard form of two-dimensional wave equation. Of particular interest are the canonical horseshoe line-vortex distribution and the resulting induced velocity field in supersonic flow. In this case, the singularities are present at the vortex line itself and also at the surface of the cone of influence originating from the vertices of the horseshoe structure. This is a characteristic of the hyperbolic nature of the flow which renders the study of supersonic vortex dynamics a challenging task. It is conjectured in this work that the presence of the singularity at the cone of influence is associated with the step-function nature of the vorticity distribution specified in the canonical case. At the phenomenological level, if one considers the three-dimensional steady supersonic flow, then a sudden appearance of a line-vortex will generate a ripple of singularities in the induced velocity field which convect downstream and laterally spread, at the most, to the surface of the cone of influence. Based on these findings, this work includes an exploration of potential candidates for vorticity distributions that eliminate the singularities at the cone of influence. The analysis of the resulting induced velocity field is then compared with the canonical case, and it is observed that the singularities were successfully eliminated. The manuscript includes an application of the proposed method to study the induced velocity field in a confined supersonic flow.
Samiulhaq; Ahmad, Sohail; Vieru, Dumitru; Khan, Ilyas; Shafie, Sharidan
2014-01-01
Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown.
Ghate, Virendra P.; Albrecht, Bruce A.; Miller, Mark A.; ...
2014-01-13
Observations made during a 24-h period as part of the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) are analyzed to study the radiation and turbulence associated with the stratocumulus-topped marine boundary layer (BL). The first 14 h exhibited a well-mixed (coupled) BL with an average cloud-top radiative flux divergence of ~130 W m 22; the BL was decoupled during the last 10 h with negligible radiative flux divergence. The averaged radiative cooling very close to the cloud top was -9.04 K h -1 in coupled conditions and -3.85 K h -1 in decoupled conditions. Thismore » is the first study that combined data from a vertically pointing Doppler cloud radar and a Doppler lidar to yield the vertical velocity structure of the entire BL. The averaged vertical velocity variance and updraft mass flux during coupled conditions were higher than those during decoupled conditions at all levels by a factor of 2 or more. The vertical velocity skewness was negative in the entire BL during coupled conditions, whereas it was weakly positive in the lower third of the BL and negative above during decoupled conditions. A formulation of velocity scale is proposed that includes the effect of cloud-top radiative cooling in addition to the surface buoyancy flux. When scaled by the velocity scale, the vertical velocity variance and coherent downdrafts had similar magnitude during the coupled and decoupled conditions. Finally, the coherent updrafts that exhibited a constant profile in the entire BL during both the coupled and decoupled conditions scaled well with the convective velocity scale to a value of ~0.5.« less
Aircraft landing control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)
1982-01-01
Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.
Comparison of ionospheric plasma drifts obtained by different techniques
NASA Astrophysics Data System (ADS)
Kouba, Daniel; Arikan, Feza; Arikan, Orhan; Toker, Cenk; Mosna, Zbysek; Gok, Gokhan; Rejfek, Lubos; Ari, Gizem
2016-07-01
Ionospheric observatory in Pruhonice (Czech Republic, 50N, 14.9E) provides regular ionospheric sounding using Digisonde DPS-4D. The paper is focused on F-region vertical drift data. Vertical component of the drift velocity vector can be estimated by several methods. Digisonde DPS-4D allows sounding in drift mode with direct output represented by drift velocity vector. The Digisonde located in Pruhonice provides direct drift measurement routinely once per 15 minutes. However, also other different techniques can be found in the literature, for example the indirect estimation based on the temporal evolution of measured ionospheric characteristics is often used for calculation of the vertical drift component. The vertical velocity is thus estimated according to the change of characteristics scaled from the classical quarter-hour ionograms. In present paper direct drift measurement is compared with technique based on measuring of the virtual height at fixed frequency from the F-layer trace on ionogram, technique based on variation of h`F and hmF. This comparison shows possibility of using different methods for calculating vertical drift velocity and their relationship to the direct measurement used by Digisonde. This study is supported by the Joint TUBITAK 114E092 and AS CR 14/001 projects.
Muscle activation history at different vertical jumps and its influence on vertical velocity.
Kopper, Bence; Csende, Zsolt; Sáfár, Sándor; Hortobágyi, Tibor; Tihanyi, József
2013-02-01
In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps (DJs) performed with small (40°) and large (80°) range of joint motion (SROM and LROM). The maximum vertical velocity (v4) was 23.4% (CMJ) and 7.8% (DJ) greater when the jumps were performed with LROM compared with SROM (p < 0.05). These differences are considerably less than it could be expected from the greater COM and knee angular displacement and duration of active state. This small difference can be attributed to the greater deceleration during eccentric phase (CMJ:32.1%, DJ:91.5%) in SROM than that in LROM. v4 was greater for SJ in LROM than for SJ in SROM indicating the significance of the longer active state and greater activation level (p < 0.001). The difference in v4 was greater between SJ and CMJ in SROM (38.6%) than in LROM (9.0%), suggesting that elastic energy storage and re-use can be a dominant factor in the enhancement of vertical velocity of CMJ and DJ compared with SJ performed with SROM. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sabatini, Angelo Maria; Genovese, Vincenzo
2014-01-01
A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04–0.24 m/s; height RMSE was in the range 5–68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions. PMID:25061835
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.; Kidder, Stanley Q.; Scott, Robert W.
1988-01-01
The variational multivariate assimilation method described in a companion paper by Achtemeier and Ochs is applied to conventional and conventional plus satellite data. Ground-based and space-based meteorological data are weighted according to the respective measurement errors and blended into a data set that is a solution of numerical forms of the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation for a dry atmosphere. The analyses serve first, to evaluate the accuracy of the model, and second to contrast the analyses with and without satellite data. Evaluation criteria measure the extent to which: (1) the assimilated fields satisfy the dynamical constraints, (2) the assimilated fields depart from the observations, and (3) the assimilated fields are judged to be realistic through pattern analysis. The last criterion requires that the signs, magnitudes, and patterns of the hypersensitive vertical velocity and local tendencies of the horizontal velocity components be physically consistent with respect to the larger scale weather systems.
MRI temperature and velocity measurements in a fluid layer with heat transfer
NASA Astrophysics Data System (ADS)
Leclerc, S.; Métivier, C.
2018-02-01
Magnetic resonance thermometry (MRT) is an innovative technique which can provide 2D and 3D temperature measurements using magnetic resonance imaging (MRI). Despite the powerful advantages of MRT, this technique is sparcely developed and used in the engineering sciences. In this paper, we investigate the possibility to measure temperatures with MRI in a fluid layer submitted to heat transfer. By imposing a vertical temperature gradient, we study the temperature fields in both conductive and convective regimes. The temperature fields are obtained by measuring the transverse relaxation time T_2 in glycerol, a Newtonian fluid. The MRT protocol is described in detail and the results are presented. We show that for a conductive regime, temperature measurements are in very good agreement with the theoretical profile. In the convective regime, when comparing the temperature and velocity fields obtained by MRI, we get an excellent agreement in terms of flow structure. Temperature uncertainties are found to be less than 1°C for all our results.
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.
Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.
NASA Astrophysics Data System (ADS)
Dupuy, Christine; Mallet, Clarisse; Guizien, Katell; Montanié, Hélène; Bréret, Martine; Mornet, Françoise; Fontaine, Camille; Nérot, Caroline; Orvain, Francis
2014-09-01
Resuspension thresholds in terms of friction velocity were experimentally quantified for the prokaryotes, protists and for the first time, viruses of intertidal mudflat biofilms. Differences in resuspension thresholds could be related to the type, behaviour and size of microorganisms and their association with particles. Free microorganisms (viruses, bacteria and some nanoflagellates) were resuspended by weak flow at friction velocities lower than 2 cm s- 1. Chlorophyll a, some nanoflagellates and attached bacteria were resuspended together with the bed's muddy sediment, which required friction velocities larger than 3 cm s- 1. Diatoms smaller than 60 μm were resuspended at velocities between 3 and 5 cm s- 1, while those larger than 60 μm were resuspended at higher friction velocities (5.5 to 6.5 cm s- 1). The thresholds of resuspension also depended on the micro-scale position of microorganisms in the sediment (horizontal and vertical distributions). In the field, the vertical distribution of chlorophyll a (a proxy of microphytobenthos) was skewed, with a maximum in the first 2 mm of sediment. Along the neap-spring tidal cycle, chlorophyll a revealed an increase in MPB biomass in the first 2 mm of the sediment, in relation to light increases with exposure durations. The horizontal distribution of chlorophyll a could be inferred from erosion experiments. During the initial phase of biofilm growth, the distribution of chlorophyll a seemed horizontally homogeneous, and was uniformly eroded at the beginning of the increase in chlorophyll a. From these results, we can make a hypothesis: in the subsequent phase of biofilm growth until the maximum of emersion duration, the eroded quantity of chlorophyll a was larger than expected based from chlorophyll a vertical distribution, suggesting that biofilm horizontal distribution became patchy and enriched chlorophyll a was preferentially eroded. When emersion duration and biofilm growth decreased, the trend was reversed, and eroded quantity of chlorophyll a was lower than expected from chlorophyll a vertical distribution, suggesting that areas with low chlorophyll a were preferentially eroded. Such erosion patterns when biofilm growth decreased probably resulted from the bulldozing activity of a surficial sediment bioturbator, the gastropod Peringia ulvae. Our study did not directly prove this horizontal distribution but it should be further discussed. This distribution needs to be studied to acquire real evidence of patchy distributions.
GPS vertical axis performance enhancement for helicopter precision landing approach
NASA Technical Reports Server (NTRS)
Denaro, Robert P.; Beser, Jacques
1986-01-01
Several areas were investigated for improving vertical accuracy for a rotorcraft using the differential Global Positioning System (GPS) during a landing approach. Continuous deltaranging was studied and the potential improvement achieved by estimating acceleration was studied by comparing the performance on a constant acceleration turn and a rough landing profile of several filters: a position-velocity (PV) filter, a position-velocity-constant acceleration (PVAC) filter, and a position-velocity-turning acceleration (PVAT) filter. In overall statistics, the PVAC filter was found to be most efficient with the more complex PVAT performing equally well. Vertical performance was not significantly different among the filters. Satellite selection algorithms based on vertical errors only (vertical dilution of precision or VDOP) and even-weighted cross-track and vertical errors (XVDOP) were tested. The inclusion of an altimeter was studied by modifying the PVAC filter to include a baro bias estimate. Improved vertical accuracy during degraded DOP conditions resulted. Flight test results for raw differential results excluding filter effects indicated that the differential performance significantly improved overall navigation accuracy. A landing glidepath steering algorithm was devised which exploits the flexibility of GPS in determining precise relative position. A method for propagating the steering command over the GPS update interval was implemented.
Upper-Ocean Variability in the Arctic’s Amundsen and Nansen Basins
2017-05-01
collect vertical profiles of ocean temperature, salinity and horizontal velocity at few- hour interval as well as sample for specified time periods...deployed for the MIZ program - specifically, vertical temperature, salinity and velocity profiles were collected every 3 hours in the upper 250m of the...the system), this ITP-V returned 5+ months of upper ocean temperature, salinity , velocity and turbulence data from the Makarov Basin, a region of
NASA Technical Reports Server (NTRS)
Fritts, David C.; Wang, Ding-Yi
1991-01-01
Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.
14 CFR 31.19 - Performance: Uncontrolled descent.
Code of Federal Regulations, 2010 CFR
2010-01-01
... single failure of the heater assembly, fuel cell system, gas value system, or maneuvering vent system, or from any single tear in the balloon envelope between tear stoppers: (1) The maximum vertical velocity attained. (2) The altitude loss from the point of failure to the point at which maximum vertical velocity...
NASA Astrophysics Data System (ADS)
Marrone, S.; Colagrossi, A.; Chiron, L.; De Leffe, M.; Le Touzé, D.
2018-02-01
The violent water entry of flat plates is investigated using a Riemann-arbitrary Eulerian-Lagrangian (ALE) smoothed particle hydrodynamics (SPH) model. The test conditions are of interest for problems related to aircraft and helicopter emergency landing in water. Three main parameters are considered: the horizontal velocity, the approach angle (i.e., vertical to horizontal velocity ratio) and the pitch angle, α. Regarding the latter, small angles are considered in this study. As described in the theoretical work by Zhao and Faltinsen (1993), for small α a very thin, high-speed jet of water is formed, and the time-spatial gradients of the pressure field are extremely high. These test conditions are very challenging for numerical solvers. In the present study an enhanced SPH model is firstly tested on a purely vertical impact with deadrise angle α = 4°. An in-depth validation against analytical solutions and experimental results is carried out, highlighting the several critical aspects of the numerical modelling of this kind of flow, especially when pressure peaks are to be captured. A discussion on the main difficulties when comparing to model scale experiments is also provided. Then, the more realistic case of a plate with both horizontal and vertical velocity components is discussed and compared to ditching experiments recently carried out at CNR-INSEAN. In the latter case both 2-D and 3-D simulations are considered and the importance of 3-D effects on the pressure peak is discussed for α = 4° and α = 10°.
NASA Astrophysics Data System (ADS)
Guha, Abhijit; Nayek, Subhajit
2017-10-01
A compulsory element of all textbooks on natural convection has been a detailed similarity analysis for laminar natural convection on a heated semi-infinite vertical plate and a routinely used boundary condition for such analysis is u = 0 at x = 0. The same boundary condition continues to be assumed in related theoretical analyses, even in recent publications. The present work examines the consequence of this long-held assumption, which appears to have never been questioned in the literature, on the fluid dynamics and heat transfer characteristics. The assessment has been made here by solving the Navier-Stokes equations numerically with two boundary conditions—one with constrained velocity at x = 0 to mimic the similarity analysis and the other with no such constraints simulating the case of a heated vertical plate in an infinite expanse of the quiescent fluid medium. It is found that the fluid flow field given by the similarity theory is drastically different from that given by the computational fluid dynamics (CFD) simulations with unconstrained velocity. This also reflects on the Nusselt number, the prediction of the CFD simulations with unconstrained velocity being quite close to the experimentally measured values at all Grashof and Prandtl numbers (this is the first time theoretically computed values of the average Nusselt number N u ¯ are found to be so close to the experimental values). The difference of the Nusselt number (Δ N u ¯ ) predicted by the similarity theory and that by the CFD simulations (as well as the measured values), both computed with a high degree of precision, can be very significant, particularly at low Grashof numbers and at Prandtl numbers far removed from unity. Computations show that within the range of investigations (104 ≤ GrL ≤ 108, 0.01 ≤ Pr ≤ 100), the maximum value of Δ N u ¯ may be of the order 50%. Thus, for quantitative predictions, the available theory (i.e., similarity analysis) can be rather inadequate. With the help of the CFD simulations, the details of the fluid dynamics, particularly the physics of fluid entrainment, are thoroughly studied. It is shown that the relative proportions of the fluid entrainment from the bottom, top, and side of the vertical plate depend on the size of the region of interest (ROI). As the size of the ROI is made large, most of the entrained fluid comes from the bottom, a little bit from the top and almost no fluid enters from the side; the nature of entrainment is opposite in the similarity analysis for which all the fluid enters from the side and no fluid enters either from the bottom or the top. The two sets of CFD simulations establish, in particular, the conclusion that it is the inappropriateness of the age-old boundary condition u = 0 at x = 0, and not the boundary layer approximation, that is the principal cause for the vulnerability of the standard similarity analyses (and integral theories) for natural convection. The CFD solutions further demonstrate the effects of finite length and finite thickness of the plate on the flow field and the shape of the buoyant jet. The different boundary conditions on the two sides of the vertical plate and the presence of its finite thickness make the buoyant jet bend over the top edge of the plate and make the evolution of entrainment from the two sides of the free buoyant jet different. The entrainment velocity from the two sides, however, equilibrates at a certain distance above the plate. The asymmetry in the velocity and temperature fields above the plate decreases more rapidly when Pr is smaller and GrL is greater. It is shown that sufficiently above the plate, the distributions of axial velocity and temperature in the buoyant jet tend to be symmetric with respect to an axis that seems to pass through the vertical mid-plane of the plate, i.e., the jet tends to lose its history of origination.
NASA Astrophysics Data System (ADS)
Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan
2016-09-01
The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.
Study of flow structure in a four-vortex furnace model
NASA Astrophysics Data System (ADS)
Anufriev, I. S.; Sharypov, O. V.; Dekterev, A. A.; Shadrin, E. Yu.; Papulov, A. P.
2017-11-01
The flow pattern was studied for a four-vortex furnace of a coal-dust boiler. The paper presents results of experimental study of inner aerodynamics performed on a lab-scale isothermal model of the furnace device. The PIV method was used to receive the flow velocity fields for several cross sections. The analysis was performed for the spatial structure of the flow comprising four stable closed vortices with vertical axes of flow swirling.
Velocity field calculation for non-orthogonal numerical grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.
2015-03-01
Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.« less
NASA Astrophysics Data System (ADS)
Muradyan, P.; Coulter, R.; Kotamarthi, V. R.; Wang, J.; Ghate, V. P.
2016-12-01
Large-scale mean vertical motion affects the atmospheric stability and is an important component in cloud formation. Thus, the analysis of temporal variations in the long-term averages of large-scale vertical motion would provide valuable insights into weather and climate patterns. 915-MHz radar wind profilers (RWP) provide virtually unattended and almost uninterrupted long-term wind speed measurements. We use five years of RWP wind data from the Atmospheric Boundary Layer Experiments (ABLE) located within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site from 1999 to 2004. Wind speed data from a triangular array of SGP A1, A2, and A5 ancillary sites are used to calculate the horizontal divergence field over the profiler network area using the line integral method. The distance between each vertex of this triangle is approximately 60km. Thus, the vertical motion profiles deduced from the divergence/convergence of horizontal winds over these spatial scales are of relevance to mesoscale dynamics. The wind data from RWPs are averaged over 1 hour time slice and divergence is calculated at each range gate from the lowest at 82 m to the highest at 2.3 km. An analysis of temporal variations in the long-term averages of the atmospheric divergence and vertical air motion for the months of August/September indicates an overall vertical velocity of -0.002 m/s with a standard deviation of 0.013 m/s, agreeing well with previous studies. Overall mean of the diurnal variation of vertical velocity for the study period from surface to 500 m height is 0.0018 m/s with a standard error of 0.00095 m/s. Seasonal mean daytime vertical winds suggest generally downward motion in Winter and upward motion in Summer. Validation of the derived divergence and vertical motion against a regional climate model (Weather Forecast and Research, WRF) at a spatial resolution of 12 km, as well as clear-sky vs. cloudy conditions comparisons will also be presented.
Velocity Profile measurements in two-phase flow using multi-wave sensors
NASA Astrophysics Data System (ADS)
Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.
2009-02-01
Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.
Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...
2017-02-06
Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved withmore » good accuracy. Furthermore, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less
Wood, Tamara M.; Gartner, Jeffrey W.
2010-01-01
Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.
The effects of vertical motion on the performance of current meters
Thibodeaux, K.G.; Futrell, J. C.
1987-01-01
A series of tests to determine the correction coefficients for Price type AA and Price type OAA current meters, when subjected to vertical motion in a towing tank, have been conducted. During these tests, the meters were subjected to vertical travel that ranged from 1.0 to 4.0 ft and vertical rates of travel that ranged from 0.33 to 1.20 ft/sec while being towed through the water at speeds ranging from 0 to 8 ft/sec. The tests show that type AA and type OAA current meters are affected adversely by the rate of vertical motion and the distance of vertical travel. In addition, the tests indicate that when current meters are moved vertically, correction coefficients must be applied to the observed meter velocities to correct for the registration errors that are induced by the vertical motion. The type OAA current meter under-registers and the type AA current meter over-registers in observed meter velocity. These coefficients for the type OAA current meter range from 0.99 to 1.49 and for the type AA current meter range from 0.33 to 1.07. When making current meter measurements from a boat or a cableway, errors in observed current meter velocity will occur when the bobbing of a boat or cableway places the current meter into vertical motion. These errors will be significant when flowing water is < 2 ft/sec and the rate of vertical motion is > 0.3 ft/sec. (Author 's abstract)
Predicting vertical jump height from bar velocity.
García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén
2015-06-01
The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.
Predicting Vertical Jump Height from Bar Velocity
García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén
2015-01-01
The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s-2). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r2 = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r2 = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key points Vertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer. The relationship between the point at which bar acceleration is less than -9.81 m·s-2 and the real take-off is affected by the velocity of movement. Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance. PMID:25983572
NASA Astrophysics Data System (ADS)
Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping
2018-03-01
We calculate the cross-correlation function < (Δ T/T)({v}\\cdot \\hat{n}/σ _v) > between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.
Methods of testing parameterizations: Vertical ocean mixing
NASA Technical Reports Server (NTRS)
Tziperman, Eli
1992-01-01
The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models.
Marti, Sarah; Straumann, Dominik; Glasauer, Stefan
2005-04-01
Various hypotheses on the origin of cerebellar downbeat nystagmus (DBN) have been presented; the exact pathomechanism, however, is still not known. Based on previous anatomical and electrophysiological studies, we propose that an asymmetry in the distribution of on-directions of vertical gaze-velocity Purkinje cells leads to spontaneous upward ocular drift in cerebellar disease, and therefore, to DBN. Our hypothesis is supported by a computational model for vertical eye movements.
NASA Astrophysics Data System (ADS)
Gassenmeier, M.; Sens-Schönfelder, C.; Eulenfeld, T.; Bartsch, M.; Victor, P.; Tilmann, F.; Korn, M.
2016-03-01
To investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing in Northern Chile, we analyse 8 yr of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC). By autocorrelating the ambient seismic noise field measured on the vertical components, approximations of the Green's functions are retrieved and velocity changes are measured with Coda Wave Interferometry. At station PATCX, we observe seasonal changes in seismic velocity caused by thermal stress as well as transient velocity reductions in the frequency range of 4-6 Hz. Sudden velocity drops occur at the time of mostly earthquake-induced ground shaking and recover over a variable period of time. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. The model assumes that not only the shaking of large earthquakes causes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by the integrated envelope of the ground acceleration over the discretization interval of the velocity measurements, which is one day. In our model, the amplitude of the velocity reduction as well as the recovery time are proportional to the size of the excitation. This model with two free scaling parameters fits the data of the shaking induced velocity variation in remarkable detail. Additionally, a linear trend is observed that might be related to a recovery process from one or more earthquakes before our measurement period. A clear relationship between ground shaking and induced velocity reductions is not visible at other stations. We attribute the outstanding sensitivity of PATCX to ground shaking and thermal stress to the special geological setting of the station, where the subsurface material consists of relatively loose conglomerate with high pore volume leading to a stronger nonlinearity compared to the other IPOC stations.
NASA Astrophysics Data System (ADS)
Pietri, A.; Capet, X.; d'Ovidio, F.; Le Sommer, J.; Molines, J. M.; Doglioli, A. M.
2016-02-01
Vertical velocities (w) associated with meso and submesoscale processes play an essential role in ocean dynamics and physical-biological coupling due to their impact on the upper ocean vertical exchanges. However, their small intensity (O 1 cm/s) compared to horizontal motions and their important variability in space and time makes them very difficult to measure. Estimations of these velocities are thus usually inferred using a generalized approach based on frontogenesis theories. These estimations are often obtained by solving the diagnostic omega equation. This equation can be expressed in different forms from a simple quasi geostrophic formulation to more complex ones that take into account the ageostrophic advection and the turbulent fluxes. The choice of the method used generally depends on the data available and on the dominant processes in the region of study. Here we aim to provide a statistically robust evaluation of the scales at which the vertical velocity can be resolved with confidence depending on the formulation of the equation and the dynamics of the flow. A high resolution simulation (dx=1-1.5 km) of the North Atlantic was used to compare the calculations of w based on the omega equation to the modelled vertical velocity. The simulation encompasses regions with different atmospheric forcings, mesoscale activity, seasonality and energetic flows, allowing us to explore several different dynamical contexts. In a few years the SWOT mission will provide bi-dimensional images of sea level elevation at a significantly higher resolution than available today. This work helps assess the possible contribution of the SWOT data to the understanding of the submesoscale circulation and the associated vertical fluxes in the upper ocean.
A new GNSS velocity field for Fennoscandia and comparison to GIA models (Invited)
NASA Astrophysics Data System (ADS)
Kierulf, H. P.; Simpson, M. J.; Steffen, H.; Lidberg, M.
2013-12-01
In Fennoscandia, the process of Glacial Isostatic Adjustment (GIA) causes ongoing crustal deformation. The vertical and horizontal movements of the Earth can be measured to a high degree of precision using Global Navigation Satellite System (GNSS). The GNSS network in Fennoscandia has gradually been established since the early 1990s and today contains a dense network well suited for geophysical studies and especially GIA. We will present new velocity estimates for the Fennoscandian and North-European GNSS network using the processing package GAMIT/GLOBK. GNSS measurements have proved to be a good tool to constrain and validate GIA models. However, reference frame uncertainties, plate tectonics as well as intra-plate deformations might decontaminate the results. Different ITRFs have had large discrepancies, especially in the TZ-component, which have made the geophysical interpretation of GNSS results difficult. In GIA areas the uncertainties in the TZ component almost directly affect the height component which makes constraining of GIA models less reliable. Plate tectonics introduces large horizontal velocities which are hard to distinguish from horizontal GIA-induced velocities. We will present a new approach where our GNSS velocity field is directly realized in a GIA frame. With this approach, the effect of systematic errors in the reference frames and 'biasing' signal from the plate tectonics will be reduced to a minimum for our GIA results. Moreover, we are able to provide consistent GIA-free plate velocities for the Eurasian plate.
Bottier, Mathieu; Peña Fernández, Marta; Pelle, Gabriel; Grotberg, James B.
2017-01-01
Mucociliary clearance is one of the major lines of defense of the human respiratory system. The mucus layer coating the airways is constantly moved along and out of the lung by the activity of motile cilia, expelling at the same time particles trapped in it. The efficiency of the cilia motion can experimentally be assessed by measuring the velocity of micro-beads traveling through the fluid surrounding the cilia. Here we present a mathematical model of the fluid flow and of the micro-beads motion. The coordinated movement of the ciliated edge is represented as a continuous envelope imposing a periodic moving velocity boundary condition on the surrounding fluid. Vanishing velocity and vanishing shear stress boundary conditions are applied to the fluid at a finite distance above the ciliated edge. The flow field is expanded in powers of the amplitude of the individual cilium movement. It is found that the continuous component of the horizontal velocity at the ciliated edge generates a 2D fluid velocity field with a parabolic profile in the vertical direction, in agreement with the experimental measurements. Conversely, we show than this model can be used to extract microscopic properties of the cilia motion by extrapolating the micro-bead velocity measurement at the ciliated edge. Finally, we derive from these measurements a scalar index providing a direct assessment of the cilia beating efficiency. This index can easily be measured in patients without any modification of the current clinical procedures. PMID:28708866
Accuracy of flowmeters measuring horizontal groundwater flow in an unconsolidated aquifer simulator.
Bayless, E.R.; Mandell, Wayne A.; Ursic, James R.
2011-01-01
Borehole flowmeters that measure horizontal flow velocity and direction of groundwater flow are being increasingly applied to a wide variety of environmental problems. This study was carried out to evaluate the measurement accuracy of several types of flowmeters in an unconsolidated aquifer simulator. Flowmeter response to hydraulic gradient, aquifer properties, and well-screen construction was measured during 2003 and 2005 at the U.S. Geological Survey Hydrologic Instrumentation Facility in Bay St. Louis, Mississippi. The flowmeters tested included a commercially available heat-pulse flowmeter, an acoustic Doppler flowmeter, a scanning colloidal borescope flowmeter, and a fluid-conductivity logging system. Results of the study indicated that at least one flowmeter was capable of measuring borehole flow velocity and direction in most simulated conditions. The mean error in direction measurements ranged from 15.1 degrees to 23.5 degrees and the directional accuracy of all tested flowmeters improved with increasing hydraulic gradient. The range of Darcy velocities examined in this study ranged 4.3 to 155 ft/d. For many plots comparing the simulated and measured Darcy velocity, the squared correlation coefficient (r2) exceeded 0.92. The accuracy of velocity measurements varied with well construction and velocity magnitude. The use of horizontal flowmeters in environmental studies appears promising but applications may require more than one type of flowmeter to span the range of conditions encountered in the field. Interpreting flowmeter data from field settings may be complicated by geologic heterogeneity, preferential flow, vertical flow, constricted screen openings, and nonoptimal screen orientation.
NASA Astrophysics Data System (ADS)
Rahbani, M.
2012-04-01
A three dimensional numerical model of Delft3d-flow was developed to simulate the current velocity and sediment transport of Piep tidal channel system. This channel system is part of Dithmarschen Bight located in the German North Sea coast. It consists of two main channel namely Norderpiep, and Süderpiep. These two channels conjunct together to form Piep channel near the land on tidal flat. The source of the required field data for this study was those collected under "Prediction of Medium Term Coastal Morphodynamics", known as the PROMORPH project. It was executed during the period May 1999 to June 2002. Those measured data used for calibration and validation of the model were current velocity and suspended sediment concentration (SSC). Current velocities were collected using ADCP devise. Suspended sediment concentration data was prepared by converting the measured values of light transmission. These data was collected using transmissometer. On the basis of some in situ mechanical sampler data an equation was developed to convert light transmission to the SSC. Field data were carried out at several stations along the width of three cross sections from the surface to the bottom, taking into account the limitations. To verify the performance of the calibrated model, its results were compared with the field data. The comparison between the modeled and measured current velocity shows an accuracy of about 0.2 m/s. Factor of two of measured SSC were used to evaluate the performance of the model regarding these values. Some dissimilarity was found between the modeled SSC and those of the field data.To verify the cause of this dissimilarity, two comparing procedures were carried out. First the evolution of the vertical profile of the SSC from the model and those from the field were prepared and compared. In another procedure the snapshot of distribution of SSC at each cross section during different phases of a tidal cycle were prepared using the model results and compared with those derived from the field. It was found that the predicted SSC values are in good agreement with the field data during the periods of flood phase and low slack water. However, spatial dissimilarities are observed in the distribution of the SSC, during the periods of high slack water and the ebb phase. It was also found that the model could not simulate the peak SSC during the ebb current at Piep cross section which is located near the land. An insufficient supply of sediment from the tidal flat area in the model was considered to be responsible. several parameters and/or factors found to be responsible among them the usage of constant settling velocity and also constant erosion rate. The input of different values of the critical bed shear stress for erosion for the tidal flat areas and the tidal channel eastward of the cross section did improve the model results.
Vertical velocity in oceanic convection off tropical Australia
NASA Technical Reports Server (NTRS)
Lucas, Christopher; Zipser, Edward J.; Lemone, Margaret A.
1994-01-01
Time series of 1-Hz vertical velocity data collected during aircraft penetrations of oceanic cumulonimbus clouds over the western Pacific warm pool as part of the Equatorial Mesoscale Experiment (EMEX) are analyzed for updraft and downdraft events called cores. An updraft core is defined as occurring whenever the vertical velocity exceeds 1 m/sec for at least 500 m. A downdraft core is defined analogously. Over 19,000 km of straight and level flight legs are used in the analysis. Five hundred eleven updraft cores and 253 downdraft cores are included in the dataset. Core properties are summarized as distributions of average and maximum vertical velocity, diameter, and mass flux in four altitude intervals between 0.2 and 5.8 km. Distributions are approximately lognormal at all levels. Examination of the variation of the statistics with height suggests a maximum in vertical velocity between 2 and 3 km; slightly lower or equal vertical velocity is indicated at 5 km. Near the freezing level, virtual temperature deviations are found to be slightly positive for both updraft and downdraft cores. The excess in updraft cores is much smaller than that predicted by parcel theory. Comparisons with other studies that use the same analysis technique reveal that EMEX cores have approximately the same strength as cores of other oceanic areas, despite warmer sea surface temperatures. Diameter and mass flux are greater than those in the Global Atmospheric Research Program (GATE) but smaller than those in hurricane rainbands. Oceanic cores are much weaker and appear to be slightly smaller than those observed over land during the Thunderstorm Project. The markedly weaker oceanic vertical velocities below 5.8 km (compared to the continental cores) cannot be attributed to smaller total convective available potential energy or to very high water loading. Rather, it is suggested that water loading, although less than adiabatic, is more effective in reducing buoyancy of oceanic cores because of the smaller potential buoyancy below 5.8 km. Entrainment appears to be more effective in reducing buoyancy to well below adiabatic values in oceanic cores, a result consistent with the smaller oceanic core diameters in the lower cloud layer. It is speculated further that core diameters are related to boundary layer depth, which is clearly smaller over the oceans.
NASA Astrophysics Data System (ADS)
Ghasemnezhad, Maryam; Abbassi, Shahram
2017-08-01
We present the effects of ordered large-scale magnetic field on the structure of supercritical accretion flow in the presence of an outflow. In the cylindrical coordinates (r, φ, z), we write the 1.5-dimensional, steady-state (partial /partial t= 0) and axisymmetric (partial /partial \\varphi = 0) inflow-outflow equations by using self-similar solutions. Also, a model for radiation pressure supported accretion flow threaded by both toroidal and vertical components of magnetic field has been formulated. For studying the outflows, we adopt a radius-dependent mass accretion rate as \\dot{M}=\\dot{M}_{out}{(r/r_{out})^{s+1/2}} with s = 1/2. Also, by following the previous works, we have considered the interchange of mass, radial and angular momentum and the energy between inflow and outflow. We have found numerically that two components of magnetic field have the opposite effects on the thickness of the disc and similar effects on the radial and angular velocities of the flow. We have found that the existence of the toroidal component of magnetic field will lead to an increase in the radial and azimuthal velocities as well as the relative thickness of the disc. Moreover, in a magnetized flow, the thickness of the disc decreases with increase in the vertical component of magnetic field. The solutions indicated that the mass inflow rate and the specific energy of outflow strongly affect the advection parameter. We have shown that by increasing the two components of magnetic field, the temperature of the accretion flow decreases significantly. On the other hand, we have shown that the bolometric luminosity of the slim discs for high values of \\dot{m} (\\dot{m}>>1)\\dot{m} (\\dot{m}≫ 1) is not sensitive to mass accretion rate and is kept constant (L ≈ 10LE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varble, Adam; Zipser, Edward J.; Fridlind, Ann M.
2014-12-18
Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias.more » Making snow mass more realistically proportional to D2 rather than D3 eliminates unrealistically large snow reflectivities over 40 dBZ in some simulations. Graupel, unlike snow, produces high biased reflectivity in all simulations, which is partly a result of parameterized microphysics, but also partly a result of overly intense simulated updrafts. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of liquid condensate, often rain, lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. The strongest simulated updraft cores are nearly undiluted, with some of the strongest showing supercell characteristics during the multicellular (pre-squall) stage of the event. Decreasing horizontal grid spacing from 900 to 100 meters slightly weakens deep updraft vertical velocity and moderately decreases the amount of condensate aloft, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may additionally be a product of unrealistic interactions between convective dynamics, parameterized microphysics, and the large-scale model forcing that promote different convective strengths than observed.« less
NASA Astrophysics Data System (ADS)
Kawase, Hiroshi; Mori, Yuta; Nagashima, Fumiaki
2018-01-01
We have been discussing the validity of using the horizontal-to-vertical spectral ratios (HVRs) as a substitute for S-wave amplifications after Nakamura first proposed the idea in 1989. So far a formula for HVRs had not been derived that fully utilized their physical characteristics until a recent proposal based on the diffuse field concept. There is another source of confusion that comes from the mixed use of HVRs from earthquake and microtremors, although their wave fields are hardly the same. In this study, we compared HVRs from observed microtremors (MHVR) and those from observed earthquake motions (EHVR) at one hundred K-NET and KiK-net stations. We found that MHVR and EHVR share similarities, especially until their first peak frequency, but have significant differences in the higher frequency range. This is because microtremors mainly consist of surface waves so that peaks associated with higher modes would not be prominent, while seismic motions mainly consist of upwardly propagating plain body waves so that higher mode resonances can be seen in high frequency. We defined here the spectral amplitude ratio between them as EMR and calculated their average. We categorize all the sites into five bins by their fundamental peak frequencies in MHVR. Once we obtained EMRs for five categories, we back-calculated EHVRs from MHVRs, which we call pseudo-EHVRs (pEHVR). We found that pEHVR is much closer to EHVR than MHVR. Then we use our inversion code to invert the one-dimensional S-wave velocity structures from EHVRs based on the diffuse field concept. We also applied the same code to pEHVRs and MHVRs for comparison. We found that pEHVRs yield velocity structures much closer to those by EHVRs than those by MHVRs. This is natural since what we have done up to here is circular except for the average operation in EMRs. Finally, we showed independent examples of data not used in the EMR calculation, where better ground structures were successfully identified from pEHVRs again. Thus we proposed here a simple empirical method to estimate S-wave velocity structures using single-station microtremor records, which is the most cost-effective method to characterize the site effects.
LDV Surveys Over a Fighter Model at Moderate to High Angles of Attack
NASA Technical Reports Server (NTRS)
Sellers, William L., III; Meyers, James F.; Hepner, Timothy E.
2004-01-01
The vortex flowfield over an advanced twin-tailed fighter configuration was measured in a low-speed wind tunnel at two angles of attack. The primary test data consisted of 3-component velocity surveys obtained using a Laser Doppler Velocimeter. Laser light sheet and surface flow visualization were also obtained to provide insight into the flowfield structure. Time-averaged velocities and the root mean square of the velocity fluctuations were obtained at two cross-sections above the model. At 15 degrees angle of attack, the vortices generated by the wing leading edge extension (LEX) were unburst over the model and passed outboard of the vertical tail. At 25 degrees angle of attack, the vortices burst in the vicinity of the wing-LEX intersection and impact directly on the vertical tails. The RMS levels of the velocity fluctuations reach values of approximately 30% in the region of the vertical tails.
Propagating Waves Transverse to the Magnetic Field in a Solar Prominence
NASA Astrophysics Data System (ADS)
Kucera, Therese A.; Knizhnik, K.; Lopez Ariste, A.; Luna Bennasar, M.; Schmieder, B.; Toot, D.
2013-07-01
We have observed a quiescent prominence with the Hinode Solar Optical Telescope (SOT, in Ca II and H-alpha lines), Sacramento Peak Observatory (in H-alpha, H-beta and Sodium-D lines), and THEMIS/MTR (Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires/MulTi Raies, providing vector magnetograms), and SDO/AIA (Solar Dynamics Observatory Atmospheric Imaging Assembly, in EUV) over a 4 hour period on 2012 October 10. The small fields of view of SOT, Sac Peak and THEMIS are centered on a large pillar-like prominence footpoint extending towards the surface. This feature appears in the larger field of view of the 304 Å band, as a large, quasi-vertical column with material flowing horizontally on each side. The THEMIS/MTR data indicate that the magnetic field in the pillar is essentially horizontal and the observations in the optical wavelengths show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data show what appear to be moving wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along quasi-vertical columns. The pulses have a velocity of propagation of about 10 km/s, a period about 260 sec, and a wavelength around 2000 km. We interpret these waves in terms of fast magneto-sonic waves and discuss possible wave drivers.
Cesar, Guilherme M; Sigward, Susan M
2016-08-01
Reported differences between children and adults with respect to COM horizontal and vertical position to maintain dynamic stability during running deceleration suggest that this relationship may not be as important in children. This study challenged the current dynamic stability paradigm by determining the features of whole body posture that predicted forward velocity and momentum of running gait termination in adults and children. Sixteen adults and 15 children ran as fast as possible and stopped at pre-determined location. Separate regression analyses determined whether COM posterior and vertical positions and functional limb length (distance between COM and stance foot) predicted velocity and momentum for adults and children. COM posterior position was the strongest predictor of forward velocity and momentum in both groups supporting the previously established relationship during slower tasks. COM vertical position also predicted momentum in children, not adults. Higher COM position in children was related to greater momentum; consistent with previously reported differences between children and adults in COM position across running deceleration. COM vertical position was related to momentum but not velocity in children suggesting that strategies used to terminate running may be driven by demands imposed not just by velocity, but also the mass being decelerated. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Bobbitt, Percy J.
1959-01-01
Equations for the downwash and sidewash due to supersonic yawed and unswept horseshoe vortices have been utilized in formulating tables and charts to permit a rapid estimation of the flow velocities behind wings performing various steady motions. Tabulations are presented of the downwash and sidewash in the wing vertical plane of symmetry due to a unit-strength yawed horseshoe vortex located at 20 equally spaced spanwise positions along lifting lines of various sweeps. (The bound portion of the yawed vortex is coincident with the lifting line.) Charts are presented for the purpose of estimating the spanwise variations of the flow-field velocities and give longitudinal variations of the downwash and sidewash at a nuMber of vertical and spanwise locations due to a unit-strength unswept horseshoe vortex. Use of the tables and charts to calculate wing downwash or sidewash requires a knowledge of the wing spanwise distribution of circulation. Sample computations for the rolling sidewash and angle-of-attack downwash behind a typical swept wing are presented to demonstrate the use of the tables and charts.
Improving microphysics in a convective parameterization: possibilities and limitations
NASA Astrophysics Data System (ADS)
Labbouz, Laurent; Heikenfeld, Max; Stier, Philip; Morrison, Hugh; Milbrandt, Jason; Protat, Alain; Kipling, Zak
2017-04-01
The convective cloud field model (CCFM) is a convective parameterization implemented in the climate model ECHAM6.1-HAM2.2. It represents a population of clouds within each ECHAM-HAM model column, simulating up to 10 different convective cloud types with individual radius, vertical velocities and microphysical properties. Comparisons between CCFM and radar data at Darwin, Australia, show that in order to reproduce both the convective cloud top height distribution and the vertical velocity profile, the effect of aerodynamic drag on the rising parcel has to be considered, along with a reduced entrainment parameter. A new double-moment microphysics (the Predicted Particle Properties scheme, P3) has been implemented in the latest version of CCFM and is compared to the standard single-moment microphysics and the radar retrievals at Darwin. The microphysical process rates (autoconversion, accretion, deposition, freezing, …) and their response to changes in CDNC are investigated and compared to high resolution CRM WRF simulations over the Amazon region. The results shed light on the possibilities and limitations of microphysics improvements in the framework of CCFM and in convective parameterizations in general.
The New Dual-beam Spectropluviometer Concept
NASA Astrophysics Data System (ADS)
Delahaye, J. Y.; Barthes, L.; Golé, P.; Lavergnat, J.; Vinson, J. P.
A Dual Beam Spectropluviometer (DBS) measuring the equivalent diameter D, the vertical velocity V and the time T of arrival of particles is presented. Its main advan- tage over previous optical disdrometers is the extensive measurement range of atmo- spheric precipitations near ground. In particular, 0.15 mm diameter particles can be observed in quiet laboratory conditions and 0.2 mm is the smallest diameter observed in the outdoor turbulent air velocity field. The means for obtaining such results are (i) two uniform beams of rectangular cross-section 2 mm in height, 40 mm in width and 250 mm in length, with a 2 mm vertical gap, (ii) a dual 16-bit analog to digital converter, (iii) a dedicated program for extracting the 3 parameters in real time by computing the signal slopes and determining the correlation between both channels, (iii) various means for reducing splashing and vibration. Laboratory tests and typical rain measurements are shown. The DBS is particularly suited for extensive atmospheric and radio propagation research applications where the smallest drops were not correctly estimated in the distributions because of the lack of appropriate measurement devices.
NASA Astrophysics Data System (ADS)
Imran, M. A.; Riaz, M. B.; Shah, N. A.; Zafar, A. A.
2018-03-01
The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest's and Tzou's algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary) we found that viscous (fractional and ordinary) fluids are swiftest than Maxwell (fractional and ordinary) fluids.
Finite Element Aircraft Simulation of Turbulence
NASA Technical Reports Server (NTRS)
McFarland, R. E.
1997-01-01
A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.
Near Surface Seismic Hazard Characterization in the Presence of High Velocity Contrasts
NASA Astrophysics Data System (ADS)
Gribler, G.; Mikesell, D.; Liberty, L. M.
2017-12-01
We present new multicomponent surface wave processing techniques that provide accurate characterization of near-surface conditions in the presence of large lateral or vertical shear wave velocity boundaries. A common problem with vertical component Rayleigh wave analysis in the presence of high contrast subsurface conditions is Rayleigh wave propagation mode misidentification due to an overlap of frequency-phase velocity domain dispersion, leading to an overestimate of shear wave velocities. By using the vertical and horizontal inline component signals, we isolate retrograde and prograde particle motions to separate fundamental and higher mode signals, leading to more accurate and confident dispersion curve picks and shear wave velocity estimates. Shallow, high impedance scenarios, such as the case with shallow bedrock, are poorly constrained when using surface wave dispersion information alone. By using a joint inversion of dispersion and horizontal-to-vertical (H/V) curves within active source frequency ranges (down to 3 Hz), we can accurately estimate the depth to high impedance boundaries, a significant improvement compared to the estimates based on dispersion information alone. We compare our approach to body wave results that show comparable estimates of bedrock topography. For lateral velocity contrasts, we observe horizontal polarization of Rayleigh waves identified by an increase in amplitude and broadening of the horizontal spectra with little variation in the vertical component spectra. The horizontal spectra offer a means to identify and map near surface faults where there is no topographic or clear body wave expression. With these new multicomponent active source seismic data processing and inversion techniques, we better constrain a variety of near surface conditions critical to the estimation of local site response and seismic hazards.
Magnetic flux concentration and zonal flows in magnetorotational instability turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu
2014-11-20
Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few diskmore » scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.« less
Magnetic Field and Plasma Diagnostics from Coordinated Prominence Observations
NASA Astrophysics Data System (ADS)
Schmieder, B.; Levens, P.; Dalmasse, K.; Mein, N.; Mein, P.; Lopez-Ariste, A.; Labrosse, N.; Heinzel, P.
2016-04-01
We study the magnetic field in prominences from a statistical point of view, by using THEMIS in the MTR mode, performing spectropolarimetry of the He I D3 line. Combining these measurements with spectroscopic data from IRIS, Hinode/EIS as well as ground-based telescopes, such as the Meudon Solar Tower, we infer the temperature, density, and flow velocities of the plasma. There are a number of open questions that we aim to answer: - What is the general direction of the magnetic field in prominences? Is the model using a single orientation of magnetic field always valid for atypical prominences? %- Does this depend on the location of the filament on the disk (visible in Hα, in He II 304 Å) over an inversion line between weak or strong network ? - Are prominences in a weak environment field dominated by gas pressure? - Measuring the Doppler shifts in Mg II lines (with IRIS) and in Hα can tell us if there are substantial velocities to maintain vertical rotating structures, as has been suggested for tornado-like prominences. We present here some results obtained with different ground-based and space-based instruments in this framework.
NASA Astrophysics Data System (ADS)
Malherbe, J.-M.; Roudier, T.; Stein, R.; Frank, Z.
2018-01-01
We compare horizontal velocities, vertical magnetic fields, and the evolution of trees of fragmenting granules (TFG, also named families of granules) derived in the quiet Sun at disk center from observations at solar minimum and maximum of the Solar Optical Telescope (SOT on board Hinode) and results of a recent 3D numerical simulation of the magneto-convection. We used 24-hour sequences of a 2D field of view (FOV) with high spatial and temporal resolution recorded by the SOT Broad band Filter Imager (BFI) and Narrow band Filter Imager (NFI). TFG were evidenced by segmentation and labeling of continuum intensities. Horizontal velocities were obtained from local correlation tracking (LCT) of proper motions of granules. Stokes V provided a proxy of the line-of-sight magnetic field (BLOS). The MHD simulation (performed independently) produced granulation intensities, velocity, and magnetic field vectors. We discovered that TFG also form in the simulation and show that it is able to reproduce the main properties of solar TFG: lifetime and size, associated horizontal motions, corks, and diffusive index are close to observations. The largest (but not numerous) families are related in both cases to the strongest flows and could play a major role in supergranule and magnetic network formation. We found that observations do not reveal any significant variation in TFG between solar minimum and maximum.
IS MAGNETIC RECONNECTION THE CAUSE OF SUPERSONIC UPFLOWS IN GRANULAR CELLS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borrero, J. M.; Schmidt, W.; Martinez Pillet, V.
In a previous work, we reported on the discovery of supersonic magnetic upflows on granular cells in data from the SUNRISE/IMaX instrument. In the present work, we investigate the physical origin of these events employing data from the same instrument but with higher spectral sampling. By means of the inversion of Stokes profiles we are able to recover the physical parameters (temperature, magnetic field, line-of-sight velocity, etc.) present in the solar photosphere at the time of these events. The inversion is performed in a Monte-Carlo-like fashion, that is, repeating it many times with different initializations and retaining only the bestmore » result. We find that many of the events are characterized by a reversal in the polarity of the magnetic field along the vertical direction in the photosphere, accompanied by an enhancement in the temperature and by supersonic line-of-sight velocities. In about half of the studied events, large blueshifted and redshifted line-of-sight velocities coexist above/below each other. These features can be explained in terms of magnetic reconnection, where the energy stored in the magnetic field is released in the form of kinetic and thermal energy when magnetic field lines of opposite polarities coalesce. However, the agreement with magnetic reconnection is not perfect and, therefore, other possible physical mechanisms might also play a role.« less
NASA Astrophysics Data System (ADS)
Chashechkin, Yuli. D.; Mitkin, Vladimir V.
2001-10-01
Experimental investigations of fine and macroscopic structures of density and velocity disturbances generated by a towing cylinder or a vertical strip in a linearly stratified liquid are carried out in a rectangular tank. A density gradient field is visualised by different Schlieren methods (direct shadow, 'slit-knife', 'slit-thread', 'natural rainbow') characterised by a high spatial resolution. Profiles of fluid velocity are visualised by density markers — wakes past a vertically descending sugar crystal or an ascending gas bubble. In a fluid at rest, the density marker acts as a vertical linear source of internal oscillations which allows us to measure buoyancy frequency over all depth by the Schlieren instrument directly or by a conductivity probe in a particular point. Sensitive methods reveal a set of high gradient interfaces inside and outside the downstream wake besides well-known large scale elements: upstream disturbances, attached internal waves and vortices. Solitary interfaces located inside the attached internal waves field have no features on their leading and trailing edges. A thickness of interfaces is defined by an appropriate diffusion coefficient and a buoyancy frequency. High gradient interfaces bound compact vortices. Vortices moving with respect to environment emit their own systems of internal waves randomising a regular pattern of attached antisymmetric internal waves. But after a rather long time a wave recurrence occurs and a regular but symmetric structure of the longest waves (similar to the pattern of initial attached internal waves) is observed again. High gradient interfaces and lines of their intersections act as collectors of a dye coming from a compact source or from a coloured liquid volume inside the tank and separate coloured and clear areas.
NASA Astrophysics Data System (ADS)
Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing
2018-04-01
Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.
Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field
NASA Astrophysics Data System (ADS)
Jin, K.; Kumar, P.; Vanka, S. P.; Thomas, B. G.
2016-09-01
The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong ["Deformation and oscillations of a single gas bubble rising in a narrow vertical tube," Int. J. Therm. Sci. 47, 221-228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.
Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, K.; Kumar, P.; Vanka, S. P., E-mail: spvanka@illinois.edu
2016-09-15
The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong [“Deformation and oscillations of a single gasmore » bubble rising in a narrow vertical tube,” Int. J. Therm. Sci. 47, 221–228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.« less
Strain Partitioning and Present-Day Fault Kinematics in NW Tibet From Envisat SAR Interferometry
NASA Astrophysics Data System (ADS)
Daout, Simon; Doin, Marie-Pierre; Peltzer, Gilles; Lasserre, Cécile; Socquet, Anne; Volat, Matthieu; Sudhaus, Henriette
2018-03-01
An 8 year archive of Envisat synthetic aperture radar (SAR) data over a 300 × 500 km2 wide area in northwestern Tibet is analyzed to construct a line-of-sight map of the current surface velocity field. The resulting velocity map reveals (1) a velocity gradient across the Altyn Tagh fault, (2) a sharp velocity change along a structure following the base of the alluvial fans in southern Tarim, and (3) a broad velocity gradient, following the Jinsha suture. The interferometric synthetic aperture radar velocity field is combined with published GPS data to constrain the geometry and slip rates of a fault model consisting of a vertical fault plane under the Altyn Tagh fault and a shallow flat décollement ending in a steeper ramp on the Tarim side. The solutions converge toward 0.7 mm/yr of pure thrusting on the décollement-ramp system and 10.5 mm/yr of left-lateral strike-slip movement on the Altyn Tagh fault, below a 17 km locking depth. A simple elastic dislocation model across the Jinsha suture shows that data are consistent with 4-8 mm/yr of left-lateral shear across this structure. Interferometric synthetic aperture radar processing steps include implementing a stepwise unwrapping method starting with high-quality interferograms to assist in unwrapping noisier interferograms, iteratively estimating long-wavelength spatial ramps, and referencing all interferograms to bedrock pixels surrounding sedimentary basins. A specific focus on atmospheric delay estimation using the ERA-Interim model decreases the uncertainty on the velocity across the Tibet border by a factor of 2.
Ubiquitous and Continuous Propagating Disturbances in the Solar Corona
NASA Astrophysics Data System (ADS)
Morgan, Huw; Hutton, Joseph
2018-02-01
A new processing method applied to Atmospheric Imaging Assembly/Solar Dynamic Observatory observations reveals continuous propagating faint motions throughout the corona. The amplitudes are small, typically 2% of the background intensity. An hour’s data are processed from four AIA channels for a region near disk center, and the motions are characterized using an optical flow method. The motions trace the underlying large-scale magnetic field. The motion vector field describes large-scale coherent regions that tend to converge at narrow corridors. Large-scale vortices can also be seen. The hotter channels have larger-scale regions of coherent motion compared to the cooler channels, interpreted as the typical length of magnetic loops at different heights. Regions of low mean and high time variance in velocity are where the dominant motion component is along the line of sight as a result of a largely vertical magnetic field. The mean apparent magnitude of the optical velocities are a few tens of km s‑1, with different distributions in different channels. Over time, the velocities vary smoothly between a few km s‑1 to 100 km s‑1 or higher, varying on timescales of minutes. A clear bias of a few km s‑1 toward positive x-velocities is due to solar rotation and may be used as calibration in future work. All regions of the low corona thus experience a continuous stream of propagating disturbances at the limit of both spatial resolution and signal level. The method provides a powerful new diagnostic tool for tracing the magnetic field, and to probe motions at sub-pixel scales, with important implications for models of heating and of the magnetic field.
Vertical directivities of seismic arrays on the ground surface
NASA Astrophysics Data System (ADS)
Shiraishi, H.; Asanuma, H.
2012-12-01
Microtremor survey method (MSM) is a technique to estimate subsurface velocity structures by inverting phase velocities of the surface waves in the microtremors. We can explorer the S-wave velocity structures at significantly lower expenses by the MSM than the conventional geophysical techniques because of its passive nature. Coherent waves across an array are identified in the MSM, and, therefore, all the existing velocity inversion methods have been deduced under an implicit assumption of horizontal velocity structure. However, it is expected that the development of the 3D inversion theory would drastically enhance applicability and reliability of the MSM. We, hence, investigated the characteristics of vertical directivities of the arrays deployed on the ground surface as an initial step for deriving the 3D MSM. We have firstly examined the response of an elemental two sensor array to which plane waves propagates from the deep crust with a certain angle of incident, and then examined the characteristics of several types of arrays, including triangular and circular arrays to clarify the characteristics of practical arrays. Real part of the complex coherence function, which has been derived to evaluate coherence of the Rayleigh wave between sensors for plane waves (Shiraishi et al., 2006), has been applied for this investigation. Our results showed that the directivity varies according to a parameter kr ( k : wave number, r : separation of the sensors ). A vertical directivity of two sensor array at kr = π shows a rotationally-symmetrical shape (Figure (a)). In contrast, an equilateral triangle array has a conspicuous directivity toward the vertical direction (cf. Figure (b)). This divergence suggests that the shape of the vertical directivity significantly depend on the geometry, and a sharp directivity toward just beneath the array can be realized by designing the vertical directivity. We concluded from this study that 3D MSM is feasible and further study to investigate measurement and processing theories will be made by the authors. An example of the vertical directivity at kr=π. Red circles represent the sensors.
Using computational modeling of river flow with remotely sensed data to infer channel bathymetry
Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Shimizu, Y.
2012-01-01
As part of an ongoing investigation into the use of computational river flow and morphodynamic models for the purpose of correcting and extending remotely sensed river datasets, a simple method for inferring channel bathymetry is developed and discussed. The method is based on an inversion of the equations expressing conservation of mass and momentum to develop equations that can be solved for depth given known values of vertically-averaged velocity and water-surface elevation. The ultimate goal of this work is to combine imperfect remotely sensed data on river planform, water-surface elevation and water-surface velocity in order to estimate depth and other physical parameters of river channels. In this paper, the technique is examined using synthetic data sets that are developed directly from the application of forward two-and three-dimensional flow models. These data sets are constrained to satisfy conservation of mass and momentum, unlike typical remotely sensed field data sets. This provides a better understanding of the process and also allows assessment of how simple inaccuracies in remotely sensed estimates might propagate into depth estimates. The technique is applied to three simple cases: First, depth is extracted from a synthetic dataset of vertically averaged velocity and water-surface elevation; second, depth is extracted from the same data set but with a normally-distributed random error added to the water-surface elevation; third, depth is extracted from a synthetic data set for the same river reach using computed water-surface velocities (in place of depth-integrated values) and water-surface elevations. In each case, the extracted depths are compared to the actual measured depths used to construct the synthetic data sets (with two- and three-dimensional flow models). Errors in water-surface elevation and velocity that are very small degrade depth estimates and cannot be recovered. Errors in depth estimates associated with assuming water-surface velocities equal to depth-integrated velocities are substantial, but can be reduced with simple corrections.
Laser transit anemometer measurements on a slender cone in the Langley unitary plan wind tunnel
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Hunter, William W., Jr.; Covell, Peter F.; Nichols, Cecil E., Jr.
1990-01-01
A laser transit anemometer (LTA) system was used to probe the boundary layer on a slender (5 degree half angle) cone model in the Langley unitary plan wind tunnel. The anemometer system utilized a pair of laser beams with a diameter of 40 micrometers spaced 1230 micrometers apart to measure the transit times of ensembles of seeding particles using a cross-correlation technique. From these measurements, boundary layer profiles around the model were constructed and compared with CFD calculations. The measured boundary layer profiles representing the boundary layer velocity normalized to the edge velocity as a function of height above the model surface were collected with the model at zero angle of attack for four different flow conditions, and were collected in a vertical plane that bisected the model's longitudinal center line at a location 635 mm from the tip of the forebody cone. The results indicate an excellent ability of the LTA system to make velocity measurements deep into the boundary layer. However, because of disturbances in the flow field caused by onboard seeding, premature transition occurred implying that upstream seeding is mandatory if model flow field integrity is to be maintained. A description and results of the flow field surveys are presented.
Seismic Anisotropy from Surface Refraction Measurements
NASA Astrophysics Data System (ADS)
Vilhelm, J.; Hrdá, J.; Klíma, K.; Lokajícek, T.; Pros, Z.
2003-04-01
The contribution deals with the methods of determining P and S wave velocities in the shallow refraction seismics. The comparison of a P-wave anisotropy from samples and field surface measurement is performed. The laboratory measurement of the P-wave velocity is realized as omni directional ultrasound measurement on oriented spherical samples (diameter 5 cm) under a hydrostatic pressure up to 400 MPa. The field measurement is based on the processing of at least one pair of reversed time-distance curves of refracted waves. Different velocity calculation techniques are involved including tomographic approach from the surface. It is shown that field seismic measurement can reflect internal rock fabric (lineation, mineral anisotropy) as well as effects connected with the fracturing and weathering. The elastic constants derived from laboratory measurements exhibit transversal isotropy. For the estimation of anisotropy influence we perform ray-tracing by the software package ANRAY (Consortium Seismic Waves in Complex 3-D Structures). The use of P and S wave anisotropy measurement to determine hard rock hydro-geological collector (water resource) is presented. In a relatively homogeneous lutaceous sedimentary medium we identified a transversally isotropic layer which exhibits increased value of permeability (transmisivity). The seismic measurement is realized by three component geophones with both vertical and shear seismic sources. VLF and resistivity profiling accompany the filed survey.
NASA Astrophysics Data System (ADS)
Fairall, C. W.; Williams, C.; Grachev, A. A.; Brewer, A.; Choukulkar, A.
2013-12-01
The VAMOS (VOCALS) field program involved deployment of several measurement systems based on ships, land and aircraft over the SE Pacific Ocean. The NOAA Ship Ronald H. Brown was the primary platform for surface based measurements which included the High Resolution Doppler Lidar (HRDL) and the motion-stabilized 94-GHz cloud Doppler radar (W-band radar). In this paper, the data from the W-band radar will be used to study the turbulent and microphysical structure of the stratocumulus clouds prevalent in the region. The radar data consists of a 3 Hz time series of radar parameters (backscatter coefficient, mean Doppler shift, and Doppler width) at 175 range gates (25-m spacing). Several statistical methods to de-convolve the turbulent velocity and gravitational settling velocity are examined and an optimized algorithm is developed. 20 days of observations are processed to examine in-cloud profiles of mean turbulent statistics (vertical velocity variance, skewness, dissipation rate) in terms of surface fluxes and estimates of entrainment and cloudtop radiative cooling. The clean separation of turbulent and fall velocities will allow us to compute time-averaged drizzle-drop size spectra within and below the cloud that are significantly superior to previous attempts with surface-based marine cloud radar observations.
A Newly Reanalyzed Dataset of GPS-determined Antarctic Vertical Rates
NASA Astrophysics Data System (ADS)
Thomas, I.; King, M.; Clarke, P. J.; Penna, N. T.; Lavallee, D. A.; Whitehouse, P.
2010-12-01
Accurate and precise measurements of vertical crustal motion offer useful constraints on glacial isostatic adjustment (GIA) models. Here we present a newly reprocessed data set of GPS-determined vertical rates for Antarctica. We give details of the global reanalysis of 15-years of GPS data, the overarching aim of which is to achieve homogeneous station coordinate time series, and hence surface velocities, for GPS receivers that are in regions of GIA interest in Antarctica. The means by which the reference frame is realized is crucial to obtaining accurate rates. Considerable effort has been spent on achieving a good global distribution of GPS stations, using data from IGS and other permanently recording stations, as well as a number of episodic campaigns in Antarctica. Additionally, we have focused on minimizing the inevitable imbalance in the number of sites in the northern and southern hemispheres. We align our daily non-fiducial solutions to ITRF2005, i.e. a CM frame. We present the results of investigations into the reference frame realization, and also consider a GPS-derived realization of the frame, and its effect on the vertical velocities. Vertical velocities are obtained for approximately 40 Antarctic locations. We compare our GPS derived Antarctic vertical rates with those predicted by the Ivins and James and ICE-5G models, after converting to a CE frame. We also compare to previously published GPS rates. Our GPS velocities are being used to help tune, and bound errors of, a new GIA model also presented in this session.
Implications of the nonlinear equation of state for upwelling in the ocean interior
NASA Astrophysics Data System (ADS)
McDougall, Trevor J.; You, Yuzhu
1990-08-01
The nonlinear nature of the in situ density of seawater as a function of the potential temperature, pressure and salinity causes two vertical advection processes (thermobaricity and cabbeling) and also complicates the use of microstructure data to deduce upwelling velocities. Cabbeling and thermobaricity are evaluated and mapped on some neutral surfaces in each of the world's oceans by taking the lateral flux of scalars to be parameterized by a lateral diffusivity. In most of the ocean, these two processes are weak, but where there is a significant epineutral gradient of potential temperature, the downwelling due to cabbeling is quite large. In the Southern ocean, where there is a large slope of the neutral surfaces, thermobaricity causes a larger downwelling velocity than cabbeling, and the two processes together cause a dianeutral velocity of about -2×10-7 m s-1. The complementary roles of vertical mixing and vertical advection in achieving water-mass conversion are demonstrated, since maps of the dianeutral motion caused by vertical mixing are quite different to maps of water-mass conversion caused by the same process. This emphasizes the need to include both vertical advection and vertical mixing in ocean models. The method that is used to infer the upwelling velocity from microstructure dissipation measurements is also significantly affected by the nonlinear nature of the equation of state. The extra term that needs to be included in this method is a strong function of depth, changing sign at a depth of about 1500m.
Circulation in the eastern North Pacific: results from a current meter array along 152°W
NASA Astrophysics Data System (ADS)
Hall, Melinda M.; Niiler, Pearn P.; Schmitz, William J.
1997-07-01
Data from four, 2-3 year long current meter records, at 28°N, 35°N, 39°N and 42°N, along 152°W in the eastern North Pacific, are used to describe the variability found in mesoscale period (< 200 days) and long period ( > 200 days) motions. Energy in the mesoscale energy band of 40-200 day periodicity is found in the upper ocean at each location, generally decreasing to the north and with depth. The long period flow is not coherent among these locations. Record length mean velocities at 3-4 separate depths were used to provide estimates of reference level velocities for vertical profiles of geostrophic currents derived from historical hydrographic data. The vertical profile of measured east-west vertical shear agrees well with the geostrophically computed value; the north-south measured vertical shear is not in as good agreement. Assuming a vorticity balance of fwz= βv, and with w( z=0) as the Ekman pumping, the vertical velocity profiles were also calculated at 28°N and 42dgN. Using these three-dimensional referenced vertical profiles of mean currents, an examination of the mean advection of density in the thermocline revealed significant residuals in the net three-dimensional advection of density (or heat and salt) above 850 m at 28°N and above 240 m at 42°N. These results are relatively independent of the reference level velocities.
NASA Astrophysics Data System (ADS)
Nirmala, P. H.; Saila Kumari, A.; Raju, C. S. K.
2018-04-01
In the present article, we studied the magnetohydro dynamic flow induced heat transfer from vertical surface embedded in a saturated porous medium in the presence of viscous dissipation. Appropriate similarity transformations are used to transmute the non-linear governing partial differential equations to non-linear ODE. To solve these ordinary differential equations (ODE) we used the well-known integral method of Von Karman type. A comparison has been done and originates to be in suitable agreement with the previous published results. The tabulated and graphical results are given to consider the physical nature of the problem. From this results we found that the magnetic field parameter depreciate the velocity profiles and improves the heat transfer rate of the flow.
NASA Astrophysics Data System (ADS)
Florio, L. A.; Harnoy, A.
2011-06-01
In this study, a unique combination of a vibrating plate and a cross-flow passage is proposed as a means of enhancing natural convection cooling. The enhancement potential was estimated based on numerical studies involving a representative model which includes a short, transversely oscillating plate, placed over a transverse cross-flow opening in a uniformly heated vertical channel wall dividing two adjacent vertical channels. The resulting velocity and temperature fields are analyzed, with the focus on the local thermal effects near the opening. The simulation indicates up to a 50% enhancement in the local heat transfer coefficient for vibrating plate amplitudes of at least 30% of the mean clearance space and frequencies of over 82 rad/s.
Airship stresses due to vertical velocity gradients and atmospheric turbulence
NASA Technical Reports Server (NTRS)
Sheldon, D.
1975-01-01
Munk's potential flow method is used to calculate the resultant moment experienced by an ellipsoidal airship. This method is first used to calculate the moment arising from basic maneuvers considered by early designers, and then expended to calculate the moment arising from vertical velocity gradients and atmospheric turbulence. This resultant moment must be neutralized by the transverse force of the fins. The results show that vertical velocity gradients at a height of 6000 feet in thunderstorms produce a resultant moment approximately three to four times greater than the moment produced in still air by realistic values of pitch angle or steady turning. Realistic values of atmospheric turbulence produce a moment which is significantly less than the moment produced by maneuvers in still air.
Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.
2011-01-01
Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required to result in substantial decreases in this error. During standard two-way depth integration, a depth-integrating suspended-sediment sampler collects a sample of the water-sediment mixture during two transits at each vertical in a cross section: one transit while moving from the water surface to the bed, and another transit while moving from the bed to the water surface. As the number of transits is doubled at an individual vertical, this error is reduced by ~30 percent in each size class of suspended sediment. For a given size class of suspended sediment, the error arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration depends only on the number of verticals collected, whereas the error arising from inadequate time averaging depends on both the number of verticals collected and the number of transits collected at each vertical. Summing these two errors in quadrature yields a total uncertainty in an equal-discharge-increment (EDI) or equal-width-increment (EWI) measurement of the time-averaged velocity-weighted suspended-sediment concentration in a river cross section (exclusive of any laboratory-processing errors). By virtue of how the number of verticals and transits influences the two individual errors within this total uncertainty, the error arising from inadequate time averaging slightly dominates that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. Adding verticals to an EDI or EWI measurement is slightly more effective in reducing the total uncertainty than adding transits only at each vertical, because a new vertical contributes both temporal and spatial information. However, because collection of depth-integrated samples at more transits at each vertical is generally easier and faster than at more verticals, addition of a combination of verticals and transits is likely a more practical approach to reducing the total uncertainty in most field situatio
Present day vertical deformation of Pico and Faial islands revealed by merged INSAR and GPS data
NASA Astrophysics Data System (ADS)
Catalao, Joao; Nico, Giovanni; Catita, Cristina
2010-05-01
In this paper we investigate the problem of the integration of repeated GPS geodetic measurements and interferometric Synthetic Aperture Radar (SAR) observations for the determination of high resolution vertical deformation maps. The Faial and Pico islands in the Azores archipelago were chosen as study area. These islands are characterized by a intense volcanic and seismic activity. Both islands are covered by huge vegetation and have very unstable atmospheric conditions which negatively influence the interferometric processing. In this work, we apply the advanced interferometric SAR processing based on Persistent Scatterers. However, the small number of man made structures reduces the density of Persistent Scatterers. Furthermore, the different ascending and descending acquisition geometries give different sets of Persistent Scatterers, with complementary spatial coverage, and different line-of-sight velocities. The estimated velocities are relative to the master image (different from ascending and descending) and must be referred to an absolute velocity (in the sense of referred to a geodetic reference frame). The strategy used to overcome the aforementioned problems is based on the combination of sparse GPS 3D-velocities with two sets of Persistent Scatterers determined from ascending and descending passes. The input data are: a set of GPS - 3D velocities relative to ITRF05 (18 Stations) and two sets of Persistent Scatterers corresponding to the descending and ascending orbits. A dataset of 60 interferometric repeat-pass ASAR/ENVISAT images were acquired over the Faial and Pico islands, from 2006 to 2008, along ascending and descending passes. Each interferogram obtained by this dataset was corrected for atmospheric artefacts using a Weather Forecasting model. Initially, the horizontal velocity component (east and north) is assigned to each PS from interpolation of available GPS observations. Then, the vertical component of the velocity is determined from the SAR line-of-sight velocity and the GPS horizontal velocity component. Later, the vertical velocity offsets are numerically determined by comparison between GPS (ITRF velocities) and PS (the two ascending and descending sets) measurements. These values are then used to create the vertical deformation map of Faial and Pico islands with considerably better resolution and accuracy than using a single set of observations. The vertical deformation map has identified a large continuous area of subsidence on the west of Faial island, on the flank of Capelinhos eruption cone, with a maximum subsidence range of 10 mm/yr. It has also revealed the subsidence of the summit crater of Pico island (9 mm/yr) and a large area of subsidence on the west of the island, corresponding mostly to creep movement. Key words: SAR Interferometry, GPS-INSAR integration, Volcano, subsidence
The origin of SH-wave resonance frequencies in sedimentary layers
NASA Astrophysics Data System (ADS)
van der Baan, Mirko
2009-09-01
Resonance frequencies are often analysed in geo-engineering studies to evaluate seismic risk and microzonation in urban areas. The Nakamura technique constitutes a popular approach that computes the spectral ratio of horizontal-to-vertical ground motion in ambient noise recordings to reveal the existence of any site resonance frequencies. Its theoretical basis remains however unclear with some authors arguing that the method de-emphasizes any Rayleigh-wave contributions and that the resonance frequencies are solely caused by vertically incident SH waves. Other authors explain the same resonance frequencies by the ellipticity of the fundamental Rayleigh wave. Recent numerical simulations reveal that the magnitude of the peak frequency is proportional to the relative portion of Love waves present. This study demonstrates that Love waves alone can be responsible for any observed resonance frequencies in sedimentary layers. Yet sharp SH-wave resonance frequencies are only excited by a source in the bedrock. These resonance frequencies are caused by inhomogeneous waves excited by the bedrock source that tunnel through the high-velocity bedrock to emerge in the low-velocity sediments with a very reduced range of slownesses. The resulting SH waves are then free to interfere constructively thereby creating the observed resonance frequencies. This general trigger mechanism leads to resonances that are almost offset independent. The resulting resonance frequencies map onto points of maximum curvature in the Love-wave phase-velocity dispersion curves at or just beyond the critical horizontal slowness. They can be analysed with the quarter-wavelength law if a large velocity contrast exists between the unconsolidated sediments and the bedrock. A minor modification of the quarter-wavelength law provides more accurate predictions, also for smaller velocity contrasts. Multisource simulations show that site amplification factors as determined by horizontal-over-vertical (H/V) spectral ratios would not only depend on the relative portion of Love waves in the total wavefield but also on the depth distribution and the relative strength of the SH sources inside the bedrock compared with those in the sediments. An accurate interpretation of site amplification factors by means of H/V peak frequencies would thus require in-depth knowledge of the causes and origins of the local microseismic noise field.
Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmed I.
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688
NASA Astrophysics Data System (ADS)
Abdu, M. A.; de Paula, E. R.; Batista, I. S.; Reinisch, B. W.; Matsuoka, M. T.; Camargo, P. O.; Veliz, O.; Denardini, C. M.; Sobral, J. H. A.; Kherani, E. A.; de Siqueira, P. M.
2008-07-01
Equatorial F region vertical plasma drifts, spread F and anomaly responses, in the south American longitude sector during the superstorm of 30 October 2003, are analyzed using data from an array of instruments consisting of Digisondes, a VHF radar, GPS TEC and scintillation receivers in Brazil, and a Digisonde and a magnetometer in Jicamarca, Peru. Prompt penetrating eastward electric field of abnormally large intensity drove the F layer plasma up at a velocity ˜1200 ms-1 during post dusk hours in the eastern sector over Brazil. The equatorial anomaly was intensified and expanded poleward while the development of spread F/plasma bubble irregularities and GPS signal scintillations were weaker than their quiet time intensity. Significantly weaker F region response over Jicamarca presented a striking difference in the intensity of prompt penetration electric field between Peru and eastern longitudes of Brazil. The enhanced post dusk sector vertical drift over Brazil is attributed to electro-dynamics effects arising energetic particle precipitation in the South Atlantic Magnetic Anomaly (SAMA). These extraordinary results and their longitudinal differences are presented and discussed in this paper.
Numerical Investigation of PLIF Gas Seeding for Hypersonic Boundary Layer Flows
NASA Technical Reports Server (NTRS)
Johanson, Craig T.; Danehy, Paul M.
2012-01-01
Numerical simulations of gas-seeding strategies required for planar laser-induced fluorescence (PLIF) in a Mach 10 air flow were performed. The work was performed to understand and quantify adverse effects associated with gas seeding and to compare different flow rates and different types of seed gas. The gas was injected through a slot near the leading edge of a flat plate wedge model used in NASA Langley Research Center's 31- Inch Mach 10 Air Tunnel facility. Nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulation results showing the deflection of the velocity field for each of the cases are presented. Streamwise distributions of velocity and concentration boundary layer thicknesses as well as vertical distributions of velocity, temperature, and mass distributions are presented for each of the cases. Relative merits of the different seeding strategies are discussed.
NASA Astrophysics Data System (ADS)
Nigussie, M.; Damtie, B.; Moldwin, M.; Yizengaw, E.; Tesema, F.; Tebabal, A.
2017-12-01
Theoretical simulations have shown that gravity wave (GW) seeded perturbations amplified by Rayleigh-Taylor Instability (RTI) results in ESF (equatorial spread F); however, there have been limited observational studies using simultaneous observations of GW and ionospheric parameters. In this paper, for the fist time, simultaneous atmospheric temperature perturbation profiles that are due to GWs obtained from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board the TIMED satellite and equatorial in -situ ion density and vertical plasma drift velocity observations with and without ESF activity obtained from C/NOFS satellites are used to investigate the effect of GW on the generation of ESF. The horizontal and vertical wavelengths of ionospheric oscillations and GWs respectively have been estimated applying wavelet transforms. Cross wavelet analysis has also been applied between two closely observed profiles of temperature perturbations to estimate the horizontal wavelength of the GWs. Moreover, vertically propagating GWs that dissipate energy at the upper atmosphere have been investigated using spectral analysis compared with theoretical results. The analysis show that when the ion density shows strong post sunset irregularity between 20 and 24 LT, vertically upward drift velocities increase between 17 and 19 LT, but it becomes vertically downward when the ion density shows smooth variation. The horizontal wavelengths estimated from C/NOFS and SABER observations show excellent agreement when ion density observations show strong fluctuations; otherwise, they have poor agreement. It is also found that altitude profiles of potential energy of GW increases up to 90 km and then decreases significantly. It is found that the vertical wavelength of GW, corresponding to the dominant spectral power, ranges from about 7 km to 20 km regardless of the situation of the ionosphere; however, GWs with vertical wavelengths between 100 m to 1 km are found to be saturated between 90 and 110 km whether the ionosphere exhibits irregularity or not. The above results imply that ESF is due to the amplification of perturbations as a result of energy dissipation from GW with vertical wavelength 100 m to 1 km by the RTI that is mainly controlled by Pre-Reversal Enhancement of the zonal electric field.
Rouis, M; Coudrat, L; Jaafar, H; Filliard, J-R; Vandewalle, H; Barthelemy, Y; Driss, T
2015-12-01
To explore the isokinetic concentric strength of the knee muscle groups, and the relationship between the isokinetic knee extensors strength and the vertical jump performance in young elite female basketball players. Eighteen elite female basketball players performed a countermovement jump, and an isokinetic knee test using a Biodex dynamometer. The maximal isokinetic peak torque of the knee extensor and flexor muscles was recorded at four angular velocities (90°/s, 180°/s, 240°/s and 300°/s) for the dominant and non-dominant legs. The conventional hamstring/quadriceps ratio (H/Q) was assessed at each angular velocity for both legs. There was no significant difference between dominant and non-dominant leg whatever the angular velocity (all P>0.05). However, the H/Q ratio enhanced as the velocity increased from 180°/s to 300°/s (P<0.05). Furthermore, low to high significant positive correlations were detected between the isokinetic measures of the knee extensors and the vertical jump height. The highest one was found for the knee extensors peak torque at a velocity of 240°/s (r=0.88, P<0.001). The results accounted for an optimal velocity at which a strong relationship could be obtained between isokinetic knee extensors strength and vertical jump height. Interestingly, the H/Q ratio of the young elite female basketball players in the present study was unusual as it was close to that generally observed in regular sportsmen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, Kirk W.; Oue, Mariko; Kollias, Pavlos
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less
North, Kirk W.; Oue, Mariko; Kollias, Pavlos; ...
2017-08-04
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less
Radial Distribution of Stellar Motions in Gaia DR2
NASA Astrophysics Data System (ADS)
Kawata, Daisuke; Baba, Junichi; Ciucǎ, Ioana; Cropper, Mark; Grand, Robert J. J.; Hunt, Jason A. S.; Seabroke, George
2018-06-01
By taking advantage of the superb measurements of position and velocity for an unprecedented large number of stars provided in Gaia DR2, we have generated the first maps of the rotation velocity, Vrot, and vertical velocity, Vz, distributions as a function of the Galactocentric radius, Rgal, across a radial range of 5 < Rgal < 12 kpc. In the R - Vrot map, we have identified many diagonal ridge features, which are compared with the location of the spiral arms and the expected outer Lindblad resonance of the Galactic bar. We have detected also radial wave-like oscillations of the peak of the vertical velocity distribution.
NASA Astrophysics Data System (ADS)
Delon, C.; Druilhet, A.; Delmas, R.; Greenberg, J.
2000-08-01
The Relaxed Eddy Accumulation (REA) technique, implemented aboard aircraft, may be used to measure a wide variety of trace gas fluxes at a regional scale. Its principle is rather simple: air is sampled at a constant rate and the flux is calculated by multiplying a constant β (0.58 in field experiment and 0.62 in simulations) by the standard deviation of the vertical velocity and by the difference between the average concentrations of the scalar (trace gas) for updrafts and downdrafts. The storage of the chemical compound in reservoirs allows for trace gas analysis in laboratory, when in situ measurement with fast response and high sensitivity sensors are not available. The REA method was implemented on the Avion de Recherche Atmosphérique et de Télédétection aircraft during the Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO) campaign. The main requirement for accurate flux determination is the measurement of the vertical component of wind velocity in real time. A simulation technique was developed to evaluate the performance of an aircraft REA. The influence of the time lag between the vertical velocity (W) measurement and REA control was tested, as well as the offset of W, the threshold, and the filtering imposed on W. Correction factors, used in a deployment of aircraft REA, were deduced from this study. An additional simulation was performed to evaluate the influence of spatial or temporal drifts on the scalar. The simulation showed that the REA method is not more disturbed than the Eddy Correlation method by low frequencies of physical origin, such as topography. The REA method was used during EXPRESSO for the measurement of isoprene fluxes over the wet savanna and the evergreen rain forest.
Correlative velocity fluctuations over a gravel river bed
Dinehart, Randal L.
1999-01-01
Velocity fluctuations in a steep, coarse‐bedded river were measured in flow depths ranging from 0.8 to 2.2 m, with mean velocities at middepth from 1.1 to 3.1 m s−1. Analyses of synchronous velocity records for two and three points in the vertical showed a broad range of high coherence for wave periods from 10 to 100 s, centering around 10–30 s. Streamwise correlations over distances of 9 and 14 m showed convection velocities near mean velocity for the same wave periods. The range of coherent wave periods was a small multiple of predicted “boil” periods. Correlative fluctuations in synchronous velocity records in the vertical direction suggested the blending of short pulses into longer wave periods. The highest spectral densities were measured beyond the range of coherent wave periods and were probably induced by migration of low‐relief bed forms.
NASA Astrophysics Data System (ADS)
Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.
2017-01-01
To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.
An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skyllingstad, E.D.; Denbo, D.W.
Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less
Crosswind Shear Gradient Affect on Wake Vortices
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Ahmad, Nashat N.
2011-01-01
Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.
Effect of viewing distance on the generation of vertical eye movements during locomotion
NASA Technical Reports Server (NTRS)
Moore, S. T.; Hirasaki, E.; Cohen, B.; Raphan, T.
1999-01-01
Vertical head and eye coordination was studied as a function of viewing distance during locomotion. Vertical head translation and pitch movements were measured using a video motion analysis system (Optotrak 3020). Vertical eye movements were recorded using a video-based pupil tracker (Iscan). Subjects (five) walked on a linear treadmill at a speed of 1.67 m/s (6 km/h) while viewing a target screen placed at distances ranging from 0.25 to 2.0 m at 0. 25-m intervals. The predominant frequency of vertical head movement was 2 Hz. In accordance with previous studies, there was a small head pitch rotation, which was compensatory for vertical head translation. The magnitude of the vertical head movements and the phase relationship between head translation and pitch were little affected by viewing distance, and tended to orient the naso-occipital axis of the head at a point approximately 1 m in front of the subject (the head fixation distance or HFD). In contrast, eye velocity was significantly affected by viewing distance. When viewing a far (2-m) target, vertical eye velocity was 180 degrees out of phase with head pitch velocity, with a gain of 0. 8. This indicated that the angular vestibulo-ocular reflex (aVOR) was generating the eye movement response. The major finding was that, at a close viewing distance (0.25 m), eye velocity was in phase with head pitch and compensatory for vertical head translation, suggesting that activation of the linear vestibulo-ocular reflex (lVOR) was contributing to the eye movement response. There was also a threefold increase in the magnitude of eye velocity when viewing near targets, which was consistent with the goal of maintaining gaze on target. The required vertical lVOR sensitivity to cancel an unmodified aVOR response and generate the observed eye velocity magnitude for near targets was almost 3 times that previously measured. Supplementary experiments were performed utilizing body-fixed active head pitch rotations at 1 and 2 Hz while viewing a head-fixed target. Results indicated that the interaction of smooth pursuit and the aVOR during visual suppression could modify both the gain and phase characteristics of the aVOR at frequencies encountered during locomotion. When walking, targets located closer than the HFD (1.0 m) would appear to move in the same direction as the head pitch, resulting in suppression of the aVOR. The results of the head-fixed target experiment suggest that phase modification of the aVOR during visual suppression could play a role in generating eye movements consistent with the goal of maintaining gaze on targets closer than the HFD, which would augment the lVOR response.
Oceanic lithosphere and asthenosphere - Thermal and mechanical structure
NASA Technical Reports Server (NTRS)
Schubert, G.; Yuen, D. A.; Froidevaux, C.
1976-01-01
A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.
NASA Astrophysics Data System (ADS)
Takam Takougang, E. M.; Bouzidi, Y.
2016-12-01
Multi-offset Vertical Seismic Profile (walkaway VSP) data were collected in an oil field located in a shallow water environment dominated by carbonate rocks, offshore the United Arab Emirates. The purpose of the survey was to provide structural information of the reservoir, around and away from the borehole. Five parallel lines were collected using an air gun at 25 m shot interval and 4 m source depth. A typical recording tool with 20 receivers spaced every 15.1 m, and located in a deviated borehole with an angle varying between 0 and 24 degree from the vertical direction, was used to record the data. The recording tool was deployed at different depths for each line, from 521 m to 2742 m depth. Smaller offsets were used for shallow receivers and larger offsets for deeper receivers. The lines merged to form the input dataset for waveform tomography. The total length of the combined lines was 9 km, containing 1344 shots and 100 receivers in the borehole located half-way down. Acoustic full waveform inversion was applied in the frequency domain to derive a high resolution velocity model. The final velocity model derived after the inversion using the frequencies 5-40 Hz, showed good correlation with velocities estimated from vertical incidence VSP and sonic log, confirming the success of the inversion. The velocity model showed anomalous low values in areas that correlate with known location of hydrocarbon reservoir. Pre-stack depth Reverse time migration was then applied using the final velocity model from waveform inversion and the up-going wavefield from the input data. The final estimated source signature from waveform inversion was used as input source for reverse time migration. To save computational memory and time, every 3 shots were used during reverse time migration and the data were low-pass filtered to 30 Hz. Migration artifacts were attenuated using a second order derivative filter. The final migration image shows a good correlation with the waveform tomography velocity model, and highlights a complex network of faults in the reservoir, that could be useful in understanding fluid and hydrocarbon movements. This study shows that the combination of full waveform tomography and reverse time migration can provide high resolution images that can enhance interpretation and characterization of oil reservoirs.
Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach
NASA Astrophysics Data System (ADS)
Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.
2017-08-01
Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a realistic coastal region.
Khan, Arshad; Khan, Dolat; Khan, Ilyas; Ali, Farhad; Karim, Faizan Ul; Imran, Muhammad
2018-06-05
Casson nanofluid, unsteady flow over an isothermal vertical plate with Newtonian heating (NH) is investigated. Sodium alginate (base fluid)is taken as counter example of Casson fluid. MHD and porosity effects are considered. Effects of thermal radiation along with heat generation are examined. Sodium alginate with Silver, Titanium oxide, Copper and Aluminum oxide are added as nano particles. Initial value problem with physical boundary condition is solved by using Laplace transform method. Exact results are obtained for temperature and velocity fields. Skin-friction and Nusselt number are calculated. The obtained results are analyzed graphically for emerging flow parameters and discussed. It is bring into being that temperature and velocity profile are decreasing with increasing nano particles volume fraction.
Columbia Glacier, Alaska, photogrammetry data set, 1981-82 and 1984-85
Krimmel, R.M.
1987-01-01
Photogrammetric processing of 12 sets of vertical aerial photography of the Columbia Glacier, Alaska, has measured the altitude and velocity fields of the lowest 14,000 m of the glacier during the periods of September 1981 to October 1982 and October 1984 to September 1985. The data set consists of the location of 3,604 points on the glacier, 1,161 points along the glacier terminus, and 1,116 points along the top of the terminus ice cliff. During the 1981 to 1985 period the terminus of the glacier receded 1,350 m, the ice near the terminus thinned at a rate of 18 m/year, and ice velocity near the terminus tripled, reaching as much as 6,000 m/year. (Author 's abstract)
Physics of badminton shuttlecocks. Part 1 : aerodynamics
NASA Astrophysics Data System (ADS)
Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe
2011-11-01
We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.
John M. Frank; William J. Massman; Brent E. Ewers
2013-01-01
Sonic thermometry and anemometry are fundamental to all eddy-covariance studies of surface energy balance. Recent studies have suggested that sonic anemometers with non-orthogonal transducers can underestimate vertical wind velocity (w) and sensible heat flux (H) when compared to orthogonal designs. In this study we tested whether a non-orthogonal sonic anemometer (...
Brouwer, Anne-Marie; López-Moliner, Joan; Brenner, Eli; Smeets, Jeroen B J
2006-02-01
We propose and evaluate a source of information that ball catchers may use to determine whether a ball will land behind or in front of them. It combines estimates for the ball's horizontal and vertical speed. These estimates are based, respectively, on the rate of angular expansion and vertical velocity. Our variable could account for ball catchers' data of Oudejans et al. [The effects of baseball experience on movement initiation in catching fly balls. Journal of Sports Sciences, 15, 587-595], but those data could also be explained by the use of angular expansion alone. We therefore conducted additional experiments in which we asked subjects where simulated balls would land under conditions in which both angular expansion and vertical velocity must be combined for obtaining a correct response. Subjects made systematic errors. We found evidence for the use of angular velocity but hardly any indication for the use of angular expansion. Thus, if catchers use a strategy that involves combining vertical and horizontal estimates of the ball's speed, they do not obtain their estimates of the horizontal component from the rate of expansion alone.
Gravity Waves Near 300 km Over the Polar Caps
NASA Technical Reports Server (NTRS)
Johnson, F. S.; Hanson, W. B.; Hodges, R. R.; Coley, W. R.; Carignan, G. R.; Spencer, N. W.
1995-01-01
Distinctive wave forms in the distributions of vertical velocity and temperature of both neutral particles and ions are frequently observed from Dynamics Explorer 2 at altitudes above 250 km over the polar caps. These are interpreted as being due to internal gravity waves propagating in the neutral atmosphere. The disturbances characterized by vertical velocity perturbations of the order of 100 m/s and horizontal wave lengths along the satellite path of about 500 km. They often extend across the entire polar cap. The associated temperature perturbations indicate that the horizontal phase progression is from the nightside to the dayside. Vertical displacements are inferred to be of the order of 10 km and the periods to be of the order of 10(exp 3) s. The waves must propagate in the neutral atmosphere, but they usually are most clearly recognizable in the observations of ion vertical velocity and ion temperature. By combining the neutral pressure calculated from the observed neutral concentration and temperature with the vertical component of the neutral velocity, an upward energy flux of the order of 0.04 erg/sq cm-s at 250 km has been calculated, which is about equal to the maximum total solar ultraviolet heat input above that altitude. Upward energy fluxes calculated from observations on orbital passes at altitudes from 250 to 560 km indicate relatively little attenuation with altitude.
Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements
NASA Technical Reports Server (NTRS)
Angelaki, Dora E.; Dickman, J. David
2003-01-01
Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.
A Parameterization for the Triggering of Landscape Generated Moist Convection
NASA Technical Reports Server (NTRS)
Lynn, Barry H.; Tao, Wei-Kuo; Abramopoulos, Frank
1998-01-01
A set of relatively high resolution three-dimensional (3D) simulations were produced to investigate the triggering of moist convection by landscape generated mesoscale circulations. The local accumulated rainfall varied monotonically (linearly) with the size of individual landscape patches, demonstrating the need to develop a trigger function that is sensitive to the size of individual patches. A new triggering function that includes the effect of landscapes generated mesoscale circulations over patches of different sizes consists of a parcel's perturbation in vertical velocity (nu(sub 0)), temperature (theta(sub 0)), and moisture (q(sub 0)). Each variable in the triggering function was also sensitive to soil moisture gradients, atmospheric initial conditions, and moist processes. The parcel's vertical velocity, temperature, and moisture perturbation were partitioned into mesoscale and turbulent components. Budget equations were derived for theta(sub 0) and q(sub 0). Of the many terms in this set of budget equations, the turbulent, vertical flux of the mesoscale temperature and moisture contributed most to the triggering of moist convection through the impact of these fluxes on the parcel's temperature and moisture profile. These fluxes needed to be parameterized to obtain theta(sub 0) and q(sub 0). The mesoscale vertical velocity also affected the profile of nu(sub 0). We used similarity theory to parameterize these fluxes as well as the parcel's mesoscale vertical velocity.
Method of design for vertical oil shale retorting vessels and retorting therewith
Reeves, Adam A.
1978-01-03
A method of designing the gas flow parameters of a vertical shaft oil shale retorting vessel involves determining the proportion of gas introduced in the bottom of the vessel and into intermediate levels in the vessel to provide for lateral distribution of gas across the vessel cross section, providing mixing with the uprising gas, and determining the limiting velocity of the gas through each nozzle. The total quantity of gas necessary for oil shale treatment in the vessel may be determined and the proportion to be injected into each level is then determined based on the velocity relation of the orifice velocity and its feeder manifold gas velocity. A limitation is placed on the velocity of gas issuing from an orifice by the nature of the solid being treated, usually physical tests of gas velocity impinging the solid.
NASA Technical Reports Server (NTRS)
Colle, Brian A.; Molthan, Andrew; Yu, Ruyi; Nesbitt, Steven
2014-01-01
Snow prediction within models is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Cold-season Precipitation Experiment (GCPEx) experiment over southern Ontario, as well as a few years (12 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. The GCPex presentation will focus on verification using aircraft spirals through warm frontal snow band event on 18 February 2012. All the BMPs realistically simulated the structure of the band and the vertical distribution of snow/ice aloft, except the SBU-YLIN overpredicted slightly and Thompson (THOM) underpredicted somewhat. The Morrison (MORR) scheme produced the best slope size distribution for snow, while the Stony Brook (SBU) underpredicted and the THOM slightly overpredicted. Those schemes that have the slope intercept a function of temperature (SBU and WSM6) tended to perform better for that parameter than others, especially the fixed intercept in Goddard. Overall, the spread among BMPs was smaller than in other studies, likely because there was limited riming with the band. For the 15 cases at SBNY, which include moderate and heavy riming events, the non-spherical snow assumption (THOM and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM is approx. 0.25 m/s too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM, and MORR schemes were approx. 0.25 m/s too slow, while the SBU was 0.25 to 0.5 m/s too fast because of some excessive cloud water issues.
Moving base simulation evaluation of translational rate command systems for STOVL aircraft in hover
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.
1996-01-01
Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft has been conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to determine the influence of system bandwidth and phase delay on flying qualities for translational rate command and vertical velocity command systems. Assessments were made for precision hover control and for landings aboard an LPH type amphibious assault ship in the presence of winds and rough seas. Results obtained define the boundaries between satisfactory and adequate flying qualities for these design features for longitudinal and lateral translational rate command and for vertical velocity command.
Flight investigation of a vertical-velocity command system for VTOL aircraft
NASA Technical Reports Server (NTRS)
Kelly, J. R.; Niessen, F. R.; Yenni, K. R.; Person, L. H., Jr.
1977-01-01
A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system.
Propagating Waves Transverse to the Magnetic Field in a Solar Prominence
NASA Astrophysics Data System (ADS)
Schmieder, B.; Kucera, T. A.; Knizhnik, K.; Luna, M.; Lopez-Ariste, A.; Toot, D.
2013-11-01
We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Hα lines), Sac Peak (in Hα, Hβ, and Na-D lines), and THEMIS ("Télescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires") with the MTR (MulTi-Raies) spectropolarimeter (in He D3 line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km s-1, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.
ERRATUM: Propagating Waves Transverse to the Magnetic Field in a Solar Prominence
NASA Technical Reports Server (NTRS)
Schmieder, B.; Kucera, T. A.; Knizhnik, K.; Luna, M.; Lopez-Ariste, A.; Toot, D.
2014-01-01
We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Halpha lines), Sac Peak (in Ha, Hß, and Na-D lines), and THEMIS ("Télescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires") with the MTR (MulTi-Raies) spectropolarimeter (in He D3 line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km/s, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.
Sediment Vertical Flux in Unsteady Sheet Flows
NASA Astrophysics Data System (ADS)
Hsu, T.; Jenkins, J. T.; Liu, P. L.
2002-12-01
In models for sediment suspension, two different boundary conditions have been employed at the sediment bed. Either the sediment concentration is given or the vertical flux of sediment is specified. The specification of the latter is usually called the pick-up function. Recently, several developments towards a better understanding of the sediment bed boundary condition have been reported. Nielson et al (Coastal Engineering 2002, 45, p61-68) have indicated a better performance using the sediment vertical flux as the bed boundary condition in comparisons with experimental data. Also, Drake and Calantoni (Journal of Geophysical Research 2001, 106, C9, p19859-19868) have suggested that in the nearshore environment with its various unsteady flow conditions, the appropriate sediment boundary conditions of a large-scale morphology model must consider both the magnitude the free stream velocity and the acceleration of the flow. In this research, a small-scale sheet flow model based on the two-phase theory is implemented to further study these issues. Averaged two-phase continuum equations are presented for concentrated flows of sediment that are driven by strong, fully developed, unsteady turbulent shear flows over a mobile bed. The particle inter-granular stress is modeled using collisional granular flow theory and a two-equation closure for the fluid turbulence is adopted. In the context of the two-phase theory, sediment is transported through the sediment vertical velocity. Using the fully developed sediment phase continuity equation, it can be shown that the vertical velocity of the sediment must vanish when the flow reaches a steady state. In other words, in fully developed conditions, it is the unsteadiness of the flow that induces the vertical motion of the sediment and that changes the sediment concentration profile. Therefore, implementing a boundary condition based on sediment vertical flux is consistent with both the two-phase theory and with the observation that the flow acceleration is an important parameter. In this paper, the vertical flux of sediment is studied under various combinations of free stream velocity, acceleration, and sediment material properties using the two-phase sheet flow model. Some interesting features of sediment dynamics within the sheet, such as time history of sediment vertical velocity, collisional and turbulent suspension mechanisms are presented.
NASA Astrophysics Data System (ADS)
Czaja, Klaudia; Matula, Rafal
2014-05-01
The paper presents analysis of the possibilities of application geophysical methods to investigation groundwater conditions. In this paper groundwater is defined as liquid water flowing through shallow aquifers. Groundwater conditions are described through the distribution of permeable layers (like sand, gravel, fractured rock) and impermeable or low-permeable layers (like clay, till, solid rock) in the subsurface. GPR (Ground Penetrating Radar), ERT(Electrical Resistivity Tomography), VES (Vertical Electric Soundings) and seismic reflection, refraction and MASW (Multichannel Analysis of Surface Waves) belong to non - invasive, surface, geophysical methods. Due to differences in physical parameters like dielectric constant, resistivity, density and elastic properties for saturated and saturated zones it is possible to use geophysical techniques for groundwater investigations. Few programmes for GPR, ERT, VES and seismic modelling were applied in order to verify and compare results. Models differ in values of physical parameters such as dielectric constant, electrical conductivity, P and S-wave velocity and the density, layers thickness and the depth of occurrence of the groundwater level. Obtained results for computer modelling for GPR and seismic methods and interpretation of test field measurements are presented. In all of this methods vertical resolution is the most important issue in groundwater investigations. This require proper measurement methodology e.g. antennas with frequencies high enough, Wenner array in electrical surveys, proper geometry for seismic studies. Seismic velocities of unconsolidated rocks like sand and gravel are strongly influenced by porosity and water saturation. No influence of water saturation degree on seismic velocities is observed below a value of about 90% water saturation. A further saturation increase leads to a strong increase of P-wave velocity and a slight decrease of S-wave velocity. But in case of few models only the relationship between differences in density and P-wave and S-wave velocity were observed. This is probably due to the way the modelling program calculates the wave field. Trace by trace should be analyzed during GPR interpretation, especially changes in signal amplitude. High permittivity of water results in higher permittivity of material and high reflection coefficient of electromagnetic wave. In case of electrical studies groundwater mineralization has the highest influence. When the layer thickness is small VES gives much better results than ERT.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Lu, Gui-Min; Yu, Jian-Guo
2018-01-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347
NASA Astrophysics Data System (ADS)
Tian, Yu-Kun; Zhou, Hui; Chen, Han-Ming; Zou, Ya-Ming; Guan, Shou-Jun
2013-12-01
Seismic inversion is a highly ill-posed problem, due to many factors such as the limited seismic frequency bandwidth and inappropriate forward modeling. To obtain a unique solution, some smoothing constraints, e.g., the Tikhonov regularization are usually applied. The Tikhonov method can maintain a global smooth solution, but cause a fuzzy structure edge. In this paper we use Huber-Markov random-field edge protection method in the procedure of inverting three parameters, P-velocity, S-velocity and density. The method can avoid blurring the structure edge and resist noise. For the parameter to be inverted, the Huber-Markov random-field constructs a neighborhood system, which further acts as the vertical and lateral constraints. We use a quadratic Huber edge penalty function within the layer to suppress noise and a linear one on the edges to avoid a fuzzy result. The effectiveness of our method is proved by inverting the synthetic data without and with noises. The relationship between the adopted constraints and the inversion results is analyzed as well.
Estimations of ABL fluxes and other turbulence parameters from Doppler lidar data
NASA Technical Reports Server (NTRS)
Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn
1989-01-01
Techniques for extraction boundary layer parameters from measurements of a short-pulse CO2 Doppler lidar are described. The measurements are those collected during the First International Satellites Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). By continuously operating the lidar for about an hour, stable statistics of the radial velocities can be extracted. Assuming that the turbulence is horizontally homogeneous, the mean wind, its standard deviations, and the momentum fluxes were estimated. Spectral analysis of the radial velocities is also performed from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. Combining many measurements would normally reduce the error provided that, it is unbiased and uncorrelated. The nature of some of the algorithms however, is such that, biased and correlated errors may be generated even though the raw measurements are not. Data processing procedures were developed that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is shown to reduce the errors substantially. The principal features of the derived turbulence statistics for two case studied are presented.
NASA Astrophysics Data System (ADS)
Narsu, Sivakumar; Rushi Kumar, B.
2017-11-01
The main purpose of this work is to investigate the diffusion-thermo effects on unsteady combined convection magneto-hydromagnetic boundary layer flow of viscous electrically conducting and chemically reacting fluid over a vertical permeable radiated plate embedded in a highly porous medium. The slip flow regime is applied at the porous interface a uniform magnetic field is applied normal to the fluid flow direction which absorbs the fluid with suction that varies with time. The dimensionless governing equations are solved analytically using two terms harmonic and non-harmonic functions. The expressions for the fields of velocity, temperature and concentration are obtained. For engineering interest we also calculated the physical quantities the skin friction coefficient, Nusselt and Sherwood number are derived. The effects of various physical parameters on the flow quantities are studied through graphs and tables. For the validity, we have checked our results with previously published work and found good agreement with already existing studies.
3D Visualization of Global Ocean Circulation
NASA Astrophysics Data System (ADS)
Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.
2015-12-01
Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.
Combined free and forced convection heat transfer in magneto fluid mechanic pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, R.A.; Lo, Y.T.
1977-01-01
A study is made of fully developed, laminar, free-and-forced convection heat transfer in an electrically conducting fluid flowing in an electrically insulated, horizontal, circular pipe in a vertical transverse magnetic field. The normalized magnetofluidmechanic and energy equations are reduced to three coupled partial differential equations by the introduction of a stream function of the secondary flow. A perturbation solution is generated in inverse powers of the Lykoudis number, Ly = M/sup 2//..sqrt..Gr, which yields the influence of the magnetic field on the stream function of the secondary flow, axial velocity profiles, temperature profiles, and Nusselt number. 6 figures, 1 table.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1996-01-01
1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED).
Noise characteristics of upper surface blown configurations. Experimental program and results
NASA Technical Reports Server (NTRS)
Brown, W. H.; Searle, N.; Blakney, D. F.; Pennock, A. P.; Gibson, J. S.
1977-01-01
An experimental data base was developed from the model upper surface blowing (USB) propulsive lift system hardware. While the emphasis was on far field noise data, a considerable amount of relevant flow field data were also obtained. The data were derived from experiments in four different facilities resulting in: (1) small scale static flow field data; (2) small scale static noise data; (3) small scale simulated forward speed noise and load data; and (4) limited larger-scale static noise flow field and load data. All of the small scale tests used the same USB flap parts. Operational and geometrical variables covered in the test program included jet velocity, nozzle shape, nozzle area, nozzle impingement angle, nozzle vertical and horizontal location, flap length, flap deflection angle, and flap radius of curvature.
Intensive probing of clear air convective fields by radar and instrumented drone aircraft.
NASA Technical Reports Server (NTRS)
Rowland, J. R.
1972-01-01
Clear air convective fields were probed in three summer experiments (1969, 1970, and 1971) on an S-band monopulse tracking radar at Wallops Island, Virginia, and a drone aircraft with a takeoff weight of 5.2 kg, wingspan of 2.5 m, and cruising glide speed of 10.3 m/sec. The drone was flown 23.2 km north of the radar and carried temperature, pressure/altitude, humidity, and vertical and airspeed velocity sensors. Extensive time-space convective field data were obtained by taking a large number of RHI and PPI pictures at short intervals of time. The rapidly changing overall convective field data obtained from the radar could be related to the meteorological information telemetered from the drone at a reasonably low cost by this combined technique.
NASA Astrophysics Data System (ADS)
Hua, Yujin; Zhang, Shuangxi; Li, Mengkui; Wu, Tengfei; Qin, Weibing; Wang, Fang; Zhang, Bo
2018-05-01
The southeastern margin of the Tibetan Plateau (SETP) presents the highest level of seismicity in mainland China. To understand the seismicity in this region, a new seismic experiment is carried out based on the tomographic inversion of P- and S-wave arrival times from the regional earthquakes recorded by 49 seismic stations in Yunnan Province of Southwest China. In this study, we reduce the extreme disproportionality of the data distribution using an events-combination method, and we use arrival times to construct the reference velocity model. Checkerboard tests and odd/even data tests are carried out to assess the reliability of the inversion results. The reliable P-wave velocity model reveals two low-velocity anomaly zones (LVAZs) bounded by major strike-slip faults. Almost all the large earthquakes in this region occurred in the two LVAZs and the trend of the two LVAZs is consistent with a GPS velocity field based on the Eurasia-fixed reference frame. We propose that the two LVAZs are material migration passageways in the SETP. In the vertical direction, the mechanically weak crustal materials are sliding southward with the rigid block, while the underlying mantle materials continue to be compressed by the collision. This vertical model is broadly consistent with the seismic anisotropy in the crust and lithospheric mantle from shear-wave splitting. The new regional geodynamic model gives a reasonable interpretation of the seismicity of the SETP, and we suggest that the material migration in the passageway zones plays an important role in the tectonic evolution of the SETP.
Kwon, Sunku; Pfister, Robin; Hager, Ronald L.; Hunter, Iain; Seeley, Matthew K.
2017-01-01
Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s-1, 6.6 ± 2.2 m·s-1, and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact. Key points The study confirmed previous research that two key racquet kinematic variables, near impact, are significantly correlated to ball topspin angular velocity, during the forehand groundstroke: racquet head impact angle (i.e., open or closed racquet face) and racquet vertical velocity, before impact. The trajectory (direction of resultant velocity) and horizontal velocity of the racquet head before impact, and length of hitting zone were not significantly correlated to ball topspin angular velocity, or shot placement accuracy, during the tennis forehand groundstroke, for skilled male players. Hitting zone length was smaller than expected for skilled tennis players performing the forehand groundstroke. PMID:29238250
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Toghraie, Davood; Karimipour, Arash; Wongwises, Somchai
2017-05-01
Presets work aims to investigate the natural convection inside a cylindrical annulus mold containing molten gallium under a horizontal magnetic field in three-dimensional coordinates. The modeling system is a vertical cylindrical annulus which is made by two co-axial cylinders of internal and external radii. The internal and external walls are maintained isothermal but in different temperatures. The upper and lower sides of annulus are also considered adiabatic while it is filled by an electrical conducting fluid. Three dimensional cylindrical coordinates as (r , θ , z) are used to respond the velocity components as (u , v , w) . The governing equations are steady, laminar and Newtonian using the Boussinesq approximation. Equations are nonlinear and they must be corresponded by applying the finite volume approach; so that the hybrid-scheme is applied to discretize equations. The results imply that magnetic field existence leads to generate the Lorentz force in opposite direction of the buoyancy forces. Moreover the Lorentz force and its corresponded electric field are more significant in both Hartmann layer and Roberts layer, respectively. The strong magnetic field is required to achieve better quality products in the casting process of a liquid metal with a higher Prandtl number.
NASA Astrophysics Data System (ADS)
Zhao, Zhou; Junxing, Wang
2018-06-01
Limited by large unit discharge above the overflow weir and deep tail water inside the stilling basin, the incoming flow inside stilling basin is seriously short of enough energy dissipation and outgoing flow still carries much energy with large velocity, bound to result in secondary hydraulic jump outside stilling basin and scour downstream river bed. Based on the RNG k-ɛ turbulence model and the VOF method, this paper comparatively studies flow field between the conventional flat gate pier program and the incompletely flaring gate pier program to reveal energy dissipation mechanism of incomplete flaring gate pier. Results show that incompletely flaring gate pier can greatly promote the longitudinally stretched water jet to laterally diffuse and collide in the upstream region of stilling basin due to velocity gradients between adjacent inflow from each chamber through shrinking partial overflow flow chamber weir chamber, which would lead to large scale vertical axis vortex from the bottom to the surface and enhance mutual shear turbulence dissipation. This would significantly increase energy dissipation inside stilling basin to reduce outgoing velocity and totally solve the common hydraulic problems in large unit discharge and deep tail water projects.
NASA Astrophysics Data System (ADS)
Viens, L.; Denolle, M.; Hirata, N.
2017-12-01
Strong ground motion can induce dynamic strains large enough for the shallow subsurface to respond non-linearly and cause permanent velocity changes during earthquakes. We investigate the behavior of the near-surface in the Tokyo metropolitan area during the 2011 Mw 9.0 Tohoku-Oki earthquake using continuous records from 234 seismometers of the Metropolitan Seismic Observation network (MeSO-net). This network, which was deployed in shallow 20-m depth boreholes, recorded horizontal accelerations up to 236 cm/s2 during the mainshock. For each MeSO-net station, we compute the near-surface response using the single-station cross-correlation technique between vertical and horizontal components, every 6 hours for 2.5 months around the main event. Comparing each near-surface response against the pre-event reference, we find seismic velocity drops up to 10% in the near-surface of the Tokyo metropolitan area during the mainshock. The amplitude of the coseismic velocity drop increases with increasing ground shaking and decreasing VS30, which is the S-wave velocity the first 30-m of the ground. Furthermore, the waveforms experience a loss of coherence that recovers exponentially over a time. This recovery rate also increases with the acceleration levels. While most of the velocity changes and waveform coherence recover within a few days, we also find permanent changes at stations that experienced liquefaction and the strongest ground motions. The ambient seismic field captures the coseismic velocity changes in the shallow structure and the following healing process, and may be used to detect permanent damage.
Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing
ERIC Educational Resources Information Center
Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.
2004-01-01
To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…
Nonhyperbolic reflection moveout for horizontal transverse isotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Dajani, A.F.; Tsvankin, I.
1998-09-01
The transversely isotropic model with a horizontal axis of symmetry (HTI) has been used extensively in studies of shear-wave splitting to describe fractured formations with a single system of parallel vertical penny-shaped cracks. Here, the authors present an analytic description of long-spread reflection moveout in horizontally layered HTI media with arbitrary strength of anisotropy. To account for nonhyperbolic moveout, the authors have derived an exact expression for the azimuthally dependent quartic term of the Taylor series traveltime expansion valid for any pure mode in an HTI layer. The quartic moveout coefficient and the NMO velocity are then substituted into themore » nonhyperbolic moveout equation of Tsvankin and Thomsen, originally designed for vertical transverse isotropy (VTI). In multilayered HTI media, the NMO velocity and the quartic moveout coefficient reflect the influence of layering as well as azimuthal anisotropy. The authors show that the conventional Dix equation for NMO velocity remains entirely valid for any azimuth in HTI media if the group-velocity vectors (rays) for data in a common-midpoint (CMP) gather do not deviate from the vertical incidence plane. Although this condition is not exactly satisfied in the presence of azimuthal velocity variations, rms averaging of the interval NMO velocities represents a good approximation for models with moderate azimuthal anisotropy. Furthermore, the quartic moveout coefficient for multilayered HTI media can also be calculated with acceptable accuracy using the known averaging equations for vertical transverse isotropy. This allows one to extend the nonhyperbolic moveout equation to horizontally stratified media composed of any combination of isotropic, VTI, and HTI layers.« less
Hsi-Ping, Liu
1990-01-01
Impulse responses including near-field terms have been obtained in closed form for the zero-offset vertical seismic profiles generated by a horizontal point force acting on the surface of an elastic half-space. The method is based on the correspondence principle. Through transformation of variables, the Fourier transform of the elastic impulse response is put in a form such that the Fourier transform of the corresponding anelastic impulse response can be expressed as elementary functions and their definite integrals involving distance angular frequency, phase velocities, and attenuation factors. These results are used for accurate calculation of shear-wave arrival rise times of synthetic seismograms needed for data interpretation of anelastic-attenuation measurements in near-surface sediment. -Author
NASA Technical Reports Server (NTRS)
Wu, Jian; Blanc, Michel; Alcayde, Denis; Barakat, Abdullah R.; Fontanari, Jean; Blelly, Pierre-Louis; Kofman, Wlodek
1992-01-01
EISCAT VHF radar was used to investigate the vertical flows of H(+) and O(+) ions in the topside high-latitude ionosphere. The radar transmitted a single long pulse to probe the ionosphere from 300 to 1200 km altitude. A calculation scheme is developed to deduce the H(+) drift velocity from the coupled momentum equations of H(+), O(+), and the electrons, using the radar data and a neutral atmosphere model. The H(+) vertical drift velocity was expressed as a linear combination of the different forces acting on the plasma. Two nights, one very quiet, one with moderate magnetic activity, were used to test the technique and to provide a first study of the morphology and orders of magnitudes of ion outflow fluxes over Tromso. O(+) vertical flows were found to be downward or close to zero most of the time in the topside ionosphere; they appeared to be strongly correlated with magnetic activity during the disturbed night. H(+) topside ion fluxes were always directed upward, with velocity reaching 500-1000 m/s. A permanent outflow of H(+) ions is inferred.
Repeatability and oblique flow response characteristics of current meters
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,
1993-01-01
Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.
Evidence of unfrozen liquids and seismic anisotropy at the base of the polar ice sheets
NASA Astrophysics Data System (ADS)
Wittlinger, Gérard; Farra, Véronique
2015-03-01
We analyze seismic data from broadband stations located on the Antarctic and Greenland ice sheets to determine polar ice seismic velocities. P-to-S converted waves at the ice/rock interface and inside the ice sheets and their multiples (the P-receiver functions) are used to estimate in-situ P-wave velocity (Vp) and P-to-S velocity ratio (Vp/Vs) of polar ice. We find that the polar ice sheets have a two-layer structure; an upper layer of variable thickness (about 2/3 of the total thickness) with seismic velocities close to the standard ice values, and a lower layer of approximately constant thickness with standard Vp but ∼25% smaller Vs. The lower layer ceiling corresponds approximately to the -30 °C isotherm. Synthetic modeling of P-receiver functions shows that strong seismic anisotropy and low vertical S velocity are needed in the lower layer. The seismic anisotropy results from the preferred orientation of ice crystal c-axes toward the vertical. The low vertical S velocity may be due to the presence of unfrozen liquids resulting from premelting at grain joints and/or melting of chemical solutions buried in the ice. The strongly preferred ice crystal orientation fabric and the unfrozen fluids may facilitate polar ice sheet basal flow.
Manual control of yaw motion with combined visual and vestibular cues
NASA Technical Reports Server (NTRS)
Zacharias, G. L.; Young, L. R.
1977-01-01
Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation was modelled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A correction to the frequency responses is provided by a separate measurement of manual control performance in an analogous visual pursuit nulling task. The resulting dual-input describing function for motion perception dependence on combined cue presentation supports the complementary model, in which vestibular cues dominate sensation at frequencies above 0.05 Hz. The describing function model is extended by the proposal of a non-linear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.
Observations of apparent superslow wave propagation in solar prominences
NASA Astrophysics Data System (ADS)
Raes, J. O.; Van Doorsselaere, T.; Baes, M.; Wright, A. N.
2017-06-01
Context. Phase mixing of standing continuum Alfvén waves and/or continuum slow waves in atmospheric magnetic structures such as coronal arcades can create the apparent effect of a wave propagating across the magnetic field. Aims: We observe a prominence with SDO/AIA on 2015 March 15 and find the presence of oscillatory motion. We aim to demonstrate that interpreting this motion as a magneto hydrodynamic (MHD) wave is faulty. We also connect the decrease of the apparent velocity over time with the phase mixing process, which depends on the curvature of the magnetic field lines. Methods: By measuring the displacement of the prominence at different heights to calculate the apparent velocity, we show that the propagation slows down over time, in accordance with the theoretical work of Kaneko et al. We also show that this propagation speed drops below what is to be expected for even slow MHD waves for those circumstances. We use a modified Kippenhahn-Schlüter prominence model to calculate the curvature of the magnetic field and fit our observations accordingly. Results: Measuring three of the apparent waves, we get apparent velocities of 14, 8, and 4 km s-1. Fitting a simple model for the magnetic field configuration, we obtain that the filament is located 103 Mm below the magnetic centre. We also obtain that the scale of the magnetic field strength in the vertical direction plays no role in the concept of apparent superslow waves and that the moment of excitation of the waves happened roughly one oscillation period before the end of the eruption that excited the oscillation. Conclusions: Some of the observed phase velocities are lower than expected for slow modes for the circumstances, showing that they rather fit with the concept of apparent superslow propagation. A fit with our magnetic field model allows for inferring the magnetic geometry of the prominence. The movie attached to Fig. 1 is available at http://www.aanda.org
High-resolution imaging and near-infrared spectroscopy of penumbral decay
NASA Astrophysics Data System (ADS)
Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; Rezaei, R.; Sobotka, M.; Deng, N.; Wang, H.; Tritschler, A.; Collados, M.; Diercke, A.; González Manrique, S. J.
2018-06-01
Aims: Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us to scrutinize the velocity and magnetic fields of sunspots and their surroundings. Methods: Active region NOAA 12597 was observed on 2016 September 24 with the 1.5-meter GREGOR solar telescope using high-spatial-resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with local correlation tracking, whereas line-of-sight (LOS) velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the "Stokes Inversions based on Response functions" (SIR) code for the Si I and Ca I NIR lines. Results: At the time of the GREGOR observations, the leading sunspot had two light bridges indicating the onset of its decay. One of the light bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55° clockwise over 12 h. Conclusions: In the high-resolution observations of a decaying sunspot, the penumbral filaments facing the flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.
NASA Technical Reports Server (NTRS)
Lane, J. E.; Metzger, P. T.
2010-01-01
A simple trajectory model has been developed and is presented. The particle trajectory path is estimated by computing the vertical position as a function of the horizontal position using a constant horizontal velocity and a vertical acceleration approximated as a power law. The vertical particle position is then found by solving the differential equation of motion using a double integral of vertical acceleration divided by the square of the horizontal velocity, integrated over the horizontal position. The input parameters are: x(sub 0) and y(sub 0), the initial particle starting point; the derivative of the trajectory at x(sub 0) and y(sub 0), s(sub 0) = s(x(sub 0))= dx(y)/dy conditional expectation y = y((sub 0); and b where bx(sub 0)/y(sub 0) is the final trajectory angle before gravity pulls the particle down. The final parameter v(sub 0) is an approximation to a constant horizontal velocity. This model is time independent, providing vertical position x as a function of horizontal distance y: x(y) = (x(sub 0) + s(sub 0) (y-y(sub 0))) + bx(sub 0) -(s(sub 0)y(sub 0) ((y - y(sub 0)/y(sub 0) - ln((y/y(sub 0)))-((g(y-y(sub 0)(exp 2))/ 2((v(sub 0)(exp 2). The first term on the right in the above equation is due to simple ballistics and a spherically expanding gas so that the trajectory is a straight line intersecting (0,0), which is the point at the center of the gas impingement on the surface. The second term on the right is due to vertical acceleration, which may be positive or negative. The last term on the right is the gravity term, which for a particle with velocities less than escape velocity will eventually bring the particle back to the ground. The parameters b, s(sub 0), and in some cases v(sub 0), are taken from an interpolation of similar parameters determined from a CFD simulation matrix, coupled with complete particle trajectory simulations.
Forces on stationary particles in near-bed turbulent flows
NASA Astrophysics Data System (ADS)
Schmeeckle, Mark W.; Nelson, Jonathan M.; Shreve, Ronald L.
2007-06-01
In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance.
Forces on stationary particles in near-bed turbulent flows
Schmeeckle, M.W.; Nelson, J.M.; Shreve, R.L.
2007-01-01
In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Fitton, G. F.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.
2012-12-01
Under various physical conditions (mean temperature and velocity gradients, stratification and rotation) atmospheric turbulent flows remain intrinsically anisotropic. The immediate vicinity of physical boundaries rises to a greater complexity of the anisotropy effects. In this paper we address the issue of the scaling anisotropy of the wind velocity fields within the atmospheric boundary layer (ABL). Under the universal multifractal (UM) framework we compare the small time-scale (0.1 to 1,000 seconds) boundary-layer characteristics of the wind for two different case studies. The first case study consisted of a single mast located within a wind farm in Corsica, France. Three sonic anemometers were installed on the mast at 22, 23 and 43m, measuring three-dimensional wind velocity data at 10Hz. Wakes, complex terrain and buoyancy forces influenced the measurements. The second case study (GROWIAN experiment in Germany) consisted of an array of propeller anemometers measuring wind speed inflow data at 2.5Hz over flat terrain. The propeller anemometers were positioned vertically at 10, 50, 75, 100, 125 and 150m with four horizontal measurements taken at 75, 100 and 125m. The spatial distribution allowed us to calculate the horizontal and vertical shear structure functions of the horizontal wind. Both case studies are within a kilometre from the sea. For the first case study (10Hz measurements in a wind farm test site) the high temporal resolution of the data meant we observed Kolmogorov scaling from 0.2 seconds (with intermittency correction) right up to 1,000 seconds at which point a scaling break occurred. After the break we observed a scaling power law of approximately 2, which is in agreement with Bolgiano-Obukhov scaling theory with intermittency correction. However, for the second case study (2.5Hz on flat terrain) we only observed Kolmogorov scaling from 6.4 seconds (also with intermittency correction). The spectra of horizontal velocity components remain anisotropic over high frequencies, where u1 most scales as Bolgiano-Obukhov and u2 scales as Kolmogorov. The scaling law of the vertical shears of the horizontal wind in the array varied from Kolmogorov to Bolgiano-Obukhov with height depending on the condition of stability. We interpret the results with the UM anisotropic model that greatly enhances our understanding of the ABL structure. Comparing the two case studies we found in both cases the multifractality parameter of about 1.6, which remains close to the estimates obtained for the free atmosphere. From the UM parameters, the exponent of the power law of the distribution of the extremes can be predicted. Over small scales, this exponent is of about 7.5 for the wind velocity, which is a crucial result for applications within the field of wind energy.
Measuring large-scale vertical motion in the atmosphere with dropsondes
NASA Astrophysics Data System (ADS)
Bony, Sandrine; Stevens, Bjorn
2017-04-01
Large-scale vertical velocity modulates important processes in the atmosphere, including the formation of clouds, and constitutes a key component of the large-scale forcing of Single-Column Model simulations and Large-Eddy Simulations. Its measurement has also been a long-standing challenge for observationalists. We will show that it is possible to measure the vertical profile of large-scale wind divergence and vertical velocity from aircraft by using dropsondes. This methodology was tested in August 2016 during the NARVAL2 campaign in the lower Atlantic trades. Results will be shown for several research flights, the robustness and the uncertainty of measurements will be assessed, ands observational estimates will be compared with data from high-resolution numerical forecasts.
Predicting the vertical structure of tidal current and salinity in San Francisco Bay, California
Ford, Michael; Wang, Jia; Cheng, Ralph T.
1990-01-01
A two-dimensional laterally averaged numerical estuarine model is developed to study the vertical variations of tidal hydrodynamic properties in the central/north part of San Francisco Bay, California. Tidal stage data, current meter measurements, and conductivity, temperature, and depth profiling data in San Francisco Bay are used for comparison with model predictions. An extensive review of the literature is conducted to assess the success and failure of previous similar investigations and to establish a strategy for development of the present model. A σ plane transformation is used in the vertical dimension to alleviate problems associated with fixed grid model applications in the bay, where the tidal range can be as much as 20–25% of the total water depth. Model predictions of tidal stage and velocity compare favorably with the available field data, and prototype salinity stratification is qualitatively reproduced. Conclusions from this study as well as future model applications and research needs are discussed.
Determining Near-Bottom Fluxes of Passive Tracers in Aquatic Environments
NASA Astrophysics Data System (ADS)
Bluteau, Cynthia E.; Ivey, Gregory N.; Donis, Daphne; McGinnis, Daniel F.
2018-03-01
In aquatic systems, the eddy correlation method (ECM) provides vertical flux measurements near the sediment-water interface. The ECM independently measures the turbulent vertical velocities w' and the turbulent tracer concentration c' at a high sampling rate (> 1 Hz) to obtain the vertical flux w'c'¯ from their time-averaged covariance. This method requires identifying and resolving all the flow-dependent time (and length) scales contributing to w'c'¯. With increasingly energetic flows, we demonstrate that the ECM's current technology precludes resolving the smallest flux-contributing scales. To avoid these difficulties, we show that for passive tracers such as dissolved oxygen, w'c'¯ can be measured from estimates of two scalar quantities: the rate of turbulent kinetic energy dissipation ɛ and the rate of tracer variance dissipation χc. Applying this approach to both laboratory and field observations demonstrates that w'c'¯ is well resolved by the new method and can provide flux estimates in more energetic flows where the ECM cannot be used.
Low-latitude zonal and vertical ion drifts seen by DE 2
NASA Technical Reports Server (NTRS)
Coley, W. R.; Heelis, R. A.
1989-01-01
Horizontal and vertical ion drift data from the DE 2 spacecraft have been used to determine average zonal and vertical plasma flow (electric field) characteristics in the +/- 26-deg dip latitude region during a time of high solar activity. The 'average data' local time profile for an apex height bin centered at 400 km indicates westward plasma flow from 0600 to 1900 solar local time ((SLT) with a maximum westward velocity of 80 m/s in the early afternoon. There is a sharp change to eastward flow at approximately 1900 hours with an early evening peak of 170 m/s. A secondary nighttime maximum exists at 0430 SLT preceeding the reversal to westward flow. This profile is in good agreement with Jicamarca, Peru, radar measurements made under similar solar maximum conditions. Haramonic analysis indicates a net superrotation which is strongest at lower apex altitudes. The diurnal term is dominant, but higher order terms through the quatradiurnal are significant.
Kwon, Sunku; Pfister, Robin; Hager, Ronald L; Hunter, Iain; Seeley, Matthew K
2017-12-01
Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s -1 , 6.6 ± 2.2 m·s -1 , and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact.
NASA Astrophysics Data System (ADS)
Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph
2018-04-01
The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity < 10 m s-1). The distribution of spectral slopes is roughly symmetric with a maximum at -5/3 during active periods, whereas a very asymmetric distribution with a maximum at around -1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.
Analysis of mean velocity and turbulence measurements with ADCPs
NASA Astrophysics Data System (ADS)
De Serio, Francesca; Mossa, Michele
2015-07-01
The present study examines the vertical structure of the coastal current in the inner part of the Gulf of Taranto, located in the Ionian Sea (Southern Italy), including both the Mar Grande and Mar Piccolo basins. To this aim, different measuring stations investigated by both a Vessel Mounted Acoustic Doppler Current Profiler (VM-ADCP) and a bottom fixed ADCP were taken into consideration. Two surveys were carried out in the target area on 29.12.2006 and on 11.06.2007 by the research unit of the Technical University of Bari (DICATECh Department), using a VM-ADCP to acquire the three velocity components along the water column in selected stationing points. The measurements were taken in shallow waters, under non-breaking wave conditions, offshore the surf zone. Due to the recording frequency of the instrument time-averaged vertical velocity profiles could be evaluated in these measuring stations. Water temperature and salinity were also measured at the same time and locations by means of a CTD recorder. A rigidly mounted ADCP, located on the seabed in the North-Eastern area of the Mar Grande basin, provided current data relative to the period 10-20 February 2014. Set to acquire the three velocity components with higher frequency with respect to the VM-ADCP, it allowed us to estimate the turbulent quantities such as Reynolds stresses and turbulent kinetic energy by means of the variance method. Therefore, the present research is made up of two parts. The first part examines the current pattern measured by the VM-ADCP and verifies that, for each station, the classical log law reproduces well the vertical profile of the experimental streamwise velocities extending beyond its typical limit of validity up to the surface i.e. reaching great heights above the sea bed. This behavior is quite new and not always to be expected, being generally limited to boundary layers. It has been convincingly observed in only few limited experimental works. In the present study this occurred when two conditions were met: (i) the flow was mainly unidirectional along the vertical; (ii) the interested layer was non-stratified. The second part of the research studies the turbulent statistics derived from the beam signals of the fixed ADCP by means of the variance method. This technique had the advantage of being able to measure the time evolution of the turbulent mixing throughout the entire water column, thus making it possible to perform a detailed study on momentum transfer and turbulence. The deduced vertical profiles of the Reynolds stresses and of the turbulent kinetic energy TKE showed an increasing trend toward the surface, in agreement with previous results in literature. New data-sets of mean velocities and shear stresses, coming from field measurements, are always needed. In fact they represent the first step to derive reliable reference values of coefficients and parameters for the implementation and calibration of the used mathematical hydrodynamic models. Consequently, an effort was made to evaluate consistent bottom drag and wind drag coefficients, on the basis of the calculated bottom and surface shear stresses, respectively.
SGP and TWP (Manus) Ice Cloud Vertical Velocities
Kalesse, Heike
2013-06-27
Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.
NASA Technical Reports Server (NTRS)
Stickle, Joseph W.
1961-01-01
The National Aeronautics and Space Administration has recently completed a statistical investigation of landing-contact conditions for two large turbojet transports and a turboprop transport landing on a dry runway during routine daylight operations at the Los Angeles International Airport. Measurements were made to obtain vertical velocity, airspeed, rolling velocity, bank angle, and distance from the runway threshold, just prior to ground contact. The vertical velocities at touchdown for one of the turbojet airplanes measured in this investigation were essentially the same as those measured on the same type of airplane during a similar investigation (see NASA Technical Note D-527) conducted approximately 8 months earlier. Thus, it appeared that 8 months of additional pilot experience has had no noticeable tendency toward lowering the vertical velocities of this transport. Distributions of vertical velocities for the turbojet transports covered in this investigation were similar and considerably higher than'those for the turboprop transport. The data for the turboprop transport were in good agreement with the data for the piston-engine transports (see NACA Report 1214 and NASA Technical Note D-147) for all the measured parameters. For the turbojet transports, 1 landing in 100 would be expected to equal or exceed a vertical velocity of approximately 4.2 ft/sec; whereas, for the turboprop transport, 1 landing in 100 would be expected to equal or exceed 3.2 ft/sec. The mean airspeeds at touchdown for the three transports ranged from 22.5 percent to 26.6 percent above the stalling speed. Rolling velocities for the turbojet transports were considerably higher than those for the turboprop transport. Distributions of bank angles at contact for the three transports were similar. For each type of airplane, 1 landing in 100 would be expected to equal or exceed a bank angle at touchdown of approximately 3.0 deg. Distributions of touchdown distances for the three transports were also quite similar. Touchdown distances from the threshold for 1 landing in 100 ranged from 2,500 feet for the turboprop transport to 2,800 feet for one of the turbojet transports.
NASA Astrophysics Data System (ADS)
Xia, He; Chen, Jianguo; Wei, Pengbo; Xia, Chaoyi; de Roeck, G.; Degrande, G.
2009-03-01
In this paper, a field experiment was carried out to study train-induced environmental vibrations. During the field experiment, velocity responses were measured at different locations of a six-story masonry structure near the Beijing-Guangzhou Railway and along a small road adjacent to the building. The results show that the velocity response levels of the environmental ground and the building floors increase with train speed, and attenuate with the distance to the railway track. Heavier freight trains induce greater vibrations than lighter passenger trains. In the multi-story building, the lateral velocity levels increase monotonically with floor elevation, while the vertical ones increase with floor elevation in a fluctuating manner. The indoor floor vibrations are much lower than the outdoor ground vibrations. The lateral vibration of the building along the direction of weak structural stiffness is greater than along the direction with stronger stiffness. A larger room produces greater floor vibrations than the staircase at the same elevation, and the vibration at the center of a room is greater than at its corner. The vibrations of the building were compared with the Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations expressed in terms of rms velocity levels in decibels. The results show that the train-induced building vibrations are serious, and some exceed the allowance given in relevant criterion.
Jumping Mechanism of Self-Propelled Droplet
NASA Astrophysics Data System (ADS)
Lian, Yongsheng; Chen, Yan
2017-11-01
The self-propelled behavior of coalesced droplets can be utilized to enhance heat transfer performance of dropwise condensation. It has been recognized that the droplet self-propelling is the combined result of the conversion of surface energy to kinetic energy and the unsymmetrical boundary conditions imposed on the droplets. However, the roles of boundary conditions, which largely determine the conversion ratio of surface energy to the effective jumping kinetic energy, are not well understood. In this paper we use a numerical approach to investigate the boundary condition effect on the self-propelling behavior. A Navier-Stokes equation solver for multiphase flows is used to describe the flow field. The moment of fluid interface reconstruction technique is applied to resolute the interfaces. A direction splitting method is applied to advect the interface. And an approximate projection method is used to decouple the calculation of velocity and pressure. Comparisons are made with experimental results and show the simulation can accurately capture self-propelling behavior. Our simulation show the vertical flow velocity inside the coalesced droplet can increase the normalized jumping velocity but the contact area between droplets and substrate can decrease jumping velocity. High viscous dissipation is observed at the beginning of the coalescence which reduces jumping velocity.
Using smartphone pressure sensors to measure vertical velocities of elevators, stairways, and drones
NASA Astrophysics Data System (ADS)
Monteiro, Martín; Martí, Arturo C.
2017-01-01
We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are derived. The approximation considered is valid in the first hundred meters of the inner layers of the atmosphere. In addition to pressure, acceleration values were also recorded using the built-in accelerometer. Numerical integration was performed, obtaining both vertical velocity and altitude. We show that data obtained using the pressure sensor is significantly less noisy than that obtained using the accelerometer. Error accumulation is also evident in the numerical integration of the acceleration values. In the proposed experiments, the pressure sensor also outperforms GPS, because this sensor does not receive satellite signals indoors and, in general, the operating frequency is considerably lower than that of the pressure sensor. In the cases in which it is possible, comparison with reference values taken from the architectural plans of buildings validates the results obtained using the pressure sensor. This proposal is ideally performed as an external or outreach activity with students to gain insight about fundamental questions in mechanics, fluids, and thermodynamics.
Velocity and sediment surge: What do we see at times of very shallow water on intertidal mudflats?
NASA Astrophysics Data System (ADS)
Zhang, Qian; Gong, Zheng; Zhang, Changkuan; Townend, Ian; Jin, Chuang; Li, Huan
2016-02-01
A self-designed "bottom boundary layer hydrodynamic and suspended sediment concentration (SSC) measuring system" was built to observe the hydrodynamic and the SSC processes over the intertidal mudflats at the middle part of the Jiangsu coast during August 8-10, 2013. Velocity profiles within 10 cm of the mudflat surface were obtained with a vertical resolution as fine as 1 mm. An ADCP was used to extend the profile over the full water depth with a resolution of 10 cm and the vertical SSC profile was measured at intervals using Optical Backscatter Sensors (OBS). At the same time, water levels and wave conditions were measured with a Tide and Wave Recorder. Measured data suggested that the vertical structure of velocity profiles within 10 cm above the bed maintains a logarithmic distribution during the whole tidal cycle except the slack-water periods. Shallow flows during both the early-flood period and the later-ebb period are characterized by a relatively large vertical velocity gradient and a "surge" feature. We conclude that the very shallow water stages are transient and may not contribute much to the whole water and sediment transport, while they can play a significant role in the formation and evolution of micro-topographies on tidal flats.
Numerical study of the impact of a drop containing a bubble
NASA Astrophysics Data System (ADS)
Wei, Yu; Thoraval, Marie-Jean
2017-11-01
The impact of a drop has many applications from inkjet printing to the spreading of crops diseases. This fundamental phenomenon has therefore attracted a lot of interest from different fields. However, they have mostly focused on the simplest case of a drop containing a single fluid. In inkjet printing and in the deposition process of thermal barrier coatings, some bubbles can be present in the drop when it impacts on the solid surface. The presence of the bubble can produce some additional splashing, and affect the quality of the deposited material. Only a few studies have looked at this problem, and many questions still need to be investigated. Generally, there are three possibilities when a drop containing a bubble impacts onto a solid surface, namely the bubble stays in drop, the bubble bursts and a counter jet forms. We have performed axisymmetric numerical simulations with the open source code Gerris to study this vertical jet. We have systematically varied several parameters, including the impact velocity, the bubble size, the vertical position of the bubble, and the liquid properties. We were thus able to characterize under which condition the bubble leads to splashing and the velocity of the produced jet.
NASA Astrophysics Data System (ADS)
Stober, Gunter; Sommer, Svenja; Schult, Carsten; Latteck, Ralph; Chau, Jorge L.
2018-05-01
We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin-Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri < 0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40 km, vertical wavelengths between 5 and 10 km, and rather high intrinsic phase speeds between 45 and 85 m s-1 with intrinsic periods of 5-10 min.
NASA Astrophysics Data System (ADS)
Garcia Lopez, R. J.; Crivellari, L.; Beckman, J. E.; Rebolo, R.
1992-08-01
We have used high-resolution spectra of the Ca II H resonance line in late-type dwarfs, obtained with high S:N ratios, over a period of four years to widen our understanding of the dynamical behavior of the Ca II emission cores. All of the stars dealt with in this article, which are chromospherically active, show variability both in core emission flux and line width. They also show significant wavelength shifts with time of order hundreds of meters per second in the mean core wavelength, and with lower amplitude in the H3 self-absorption, compared to the photospheric rest wavelength of Ca II H. Comparing the emission core shifts with those observed in the H3 features, we find, for the first time, direct prima facie evidence for vertical chromospheric velocity fields, which show stability in sense over periods of years in a given star, with notable modulation in gradient, and which differ in gradient from star to star. We present evidence to show that the observed effects are almost certainly not due to projected rotational modulation, and offer new prospects, given spectral measurements closely sampled in time, for investigating the vertical velocity structures of chromospheres.
NASA Astrophysics Data System (ADS)
Voth, Greg A.; Kramel, Stefan; Menon, Udayshankar K.; Koch, Donald L.
2017-11-01
We experimentally measure the sedimentation of non-spherical particles in isotropic turbulence. We obtain time-resolved 3D orientations of the particles along with the fluid velocity field around them in a vertical water tunnel. An active jet array with 40 individually controllable jets enables us to adjust the turbulence intensity and observe the transition from strongly aligned to randomized particle orientations. We focus on the orientation statistics of ramified particles formed from several slender arms, including fibers and particles with three arms in planar symmetry (triads), which allows us to study alignment of both fibers and disk-like particles. We can predict the turbulent intensity at which the transition from aligned to randomized particle orientations occurs using a non-dimensional settling factor given by the ratio of rotation timescale of the turbulence at the scale of the particle to the rotation timescale of a particles in quiescent flow due to inertial torques. A model of ramified particle motion based on slender body theory provides accurate predictions of the vertical and horizontal particle velocities relative to the turbulent fluid. Supported by Army Research Office Grant W911NF1510205.
Global structure transitions in an experimental induction furnace
NASA Astrophysics Data System (ADS)
Tasaka, Yuji; Galindo, Vladimir; Vogt, Tobias; Eckert, Sven
2017-11-01
Flows induced by alternating magnetic field (AMF) in a cylindrical vessel filled with liquid metal, alloy of GaInSn, were examined experimentally using ultrasonic Doppler velocimetry (UDV). Measurement lines of UDV arranged vertically set at different radial and azimuthal positions extracted flow structures and their time variations as spatio-temporal velocity maps in the opaque liquid metal layer. At low frequency of AMF, corresponding to shielding parameter S =μm σωR2 = O(1) (μm and σ are magnetic permeability and electric conductivity of the test fluid, ω angular frequency of AMF, and R the radius of cylindrical vessel), two toroidal vortices exist in the fluid layer as the large scale flow structure and have interactions each other. With increasing of S the structure has transition from toroidal vortex pair to four large scale circulations (S >= 100) via transient state, where strong interactions of two vortices are observed (30 < S < 100). Faster vertical stream is observed near the cylinder wall because of ski effect caused by AMF, and the time-averaged velocity of the stream takes maximum around S = 20 , which is little smaller value of S for the onset of the transient state. JSPS KAKENHI No. 15KK0219.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aves, H.S.; Tappmeyer, D.M.
This study uses geologic and synthetic sonic sections to evaluate the hydrocarbon potential of the Lower and middle Cretaceous Thamama Group carbonates of the Mishrif, Nahr, Umr, Shuaiba, and Kharaib Formations in the North Field, Qatar. The North field area, a regional high throughout Lower and middle Cretaceous time, is document by depositional thinning and by higher energy carbonate facies development. Oil and gas accumulations are found on the crestal portions of this paleohigh in structural/stratigraphic traps. Three factors affect the interval velocities on both a regional and local basis. These are (1) variation of carbonate facies-higher energy wackestone/packstone andmore » possibly grainstones flanked by predominantly mudstones, (2) secondary porosity developed near the top of unconformity surfaces, and (3) the existence of hydrocarbons in the reservoir. Many local lateral and vertical variations in interval velocities were noted on the synthetic sonic sections that would have otherwise been undetected, such as areas of tight or porous reservoir development, permeability barriers, and subtle faulting. In these studied formations, there are many examples of low interval velocity zones that are known to contain hydrocarbons whereas equivalent higher interval velocity zones on the seismic sections at other well site locations do not contain hydrocarbons. In many places, these variations are of sufficient magnitude to be mapped as intraformational permeability barriers. These variations were useful in explaining the occurrence of different oil-water and gas-water contacts within the same formation that could not be explained solely on structural criteria.« less
NASA Astrophysics Data System (ADS)
Golenko, Mariya; Golenko, Nikolay
2014-05-01
Numerical modeling of the currents' spatial structure in some regions of the Baltic Sea is performed on the base of POM (Princeton Ocean Model). The calculations were performed under the westerly (most frequent in the Baltic) and north-easterly wind forcings. In the regions adjacent to the Kaliningrad Region's, Polish and Lithuanian coasts these winds generate oppositely directed geostrophic, drift and others types of currents. On the whole these processes can be considered as downwelling and upwelling. Apart from the regions mentioned above the Slupsk Furrow region, which determines the mass and momentum exchange between the Western and Central Baltic, is also considered. During the analysis of currents not only the whole model velocity but also components directed along and across the barotropic geostrophic current velocity are considered. The along geostrophic component for one's turn is separated into the geostrophic current itself and an ageostrophic part. The across geostrophic component is totally ageostrophic. The velocity components directed along and across the geostrophic current approximately describe the velocity components directed along the coast (along isobathes) and from the coast towards the open sea. The suggested approach allowed to present the currents' spatial structures typical for different wind forcings as two maps with the components directed along and across the barotropic geostrophic current velocity. On these maps the areas of the intensive alongshore currents are clearly depicted (for ex. near the base of the Hel Spit, in the region of the Slupsk Sill). The combined analysis of the vectors of the whole and geostrophic velocities allows to reveal the areas where the geostrophic component is significantly strengthened or weakened by the ageostrophic component. Under the westerly wind such currents' features are clearly observed near the end of the Hel Spit and at the southern boarder of the Slupsk Sill, under the north-easterly wind - near the base of the Hel Spit, at the southern boarder of the Slupsk Furrow, near the Curonian Spit (where the relief is bent). On the maps presenting the spatial distributions of the across shore velocities the areas where the mass and momentum transport from the shore to the open sea in the surface layer and vice versa takes place are discriminated. There are also revealed the areas where sharp changes of different velocity components under the wind changes are expected as well as the areas where such changes are expected to be minimal. The model is validated using the field surveys of current velocities by ADCP in the area adjacent to the Kaliningrad region. The comparison of current velocities has shown a close correspondence. In rather wide area the directions and amplitudes of the model and ADCP surface velocities are close, that is additionally confirmed by the comparison of the local vorticity distributions. On the vertical transects of the ADCP current velocity directed across the shoreline the geostrophic jet is clearly pronounced. Its horizontal and vertical scales are in close correspondence with ones of the model jet. At that the more detail calculations which are allowed during the modeling have shown that the geostrophic currents amount to 40-60% (in average) of the whole velocity; two components of the ageostrophic velocity directed along and across the geostrophic velocity are highly variable (from 10 to 60% of the whole velocity). The ageostrophic component directed along the geostrophic current generally strengthens it (up to 20-40% in average and up to 60-70% near the end of the Hel Spit). But in some regions, for example, in the Slupsk Furrow the ageostrophic component slows down the geostrophic current (to 30-40%). In some narrow local areas immediately adjacent to the coast currents directed oppositely to the general quasi geostrophic jet were registered on both field and model data. Before the comparison with the field data these local jets revealed on the model data were considered as improbable. As a result, the comparative analysis of the field and model data led to more detail understanding of dynamic processes in some coastal parts of the Baltic Sea.
NASA Astrophysics Data System (ADS)
Tsuji, T.; Hino, R.; Sanada, Y.; Park, J.; No, T.; Araki, E.; Kinoshita, M.; Bangs, N. L.; von Huene, R.; Moore, G. F.
2010-12-01
We estimated seismic anisotropy from the walk-around Vertical Seismic Profiling (VSP) data in Site C0009A obtained during Integrated Ocean Drilling Program (IODP) Expedition 319. It is generally agreed that seismic anisotropy within sediments is related to the cracks. For vertical cracks (Horizontal Transverse Isotropy; HTI), the fast velocity direction coincides with the direction of crack alignment, while the degree of velocity difference provides information about crack density (Crampin, 1985). If cracks are produced by a regional tectonic stress field, seismic anisotropy can be used to estimate stress orientation and magnitude. In unconsolidated sequence, furthermore, the stress-induced anisotropy can be observed due to increasing contact between grains (Johnson et al., 1998). In this case (increasing grain-contact), the fast velocity direction from walk-around VSP experiment is also consistent with the principal horizontal stress direction. Site C0009A is located in the Kumano basin where ~1350m unconsolidated Kumano basin sediment overlies the accretionary prism. During VSP operations, we obtained walk-away, walk-around, and zero-offset VSP data (Saffer et al., 2009). We used mainly walk-around VSP data to study seismic anisotropy. In the walk-around VSP experiments, R/V Kairei deployed 4 air-gun strings (128 L total volume) and generated 275 shots. The shooting interval was 30s and the distance from the borehole was a constant 3.5 km. We deployed the Vertical Seismic Imager (VSI) wireline tool into the borehole between 2989 and 3218m below the sea surface (935-1164m below seafloor). This interval corresponds to the bottom of the Kumano basin sediment section. From the walk-around VSP data, we obtained the following anisotropic parameters: (1) P-wave velocity anisotropy derived from azimuthal velocity analysis (Grechka and Tsvankin, 1998), (2) P-wave amplitude variation with azimuth (AVAZ), and (3) S-wave amplitude variation with azimuth associated with S-wave splitting (Haacke et al., 2009). We observed the S-wave splitting both from the upgoing and downgoing converted S-waves. These analyses demonstrate that the P-wave velocity anisotropy within the Kumano basin sediment (above the VSI tool) is ~5 %. The fast velocity direction and strong amplitude direction are aligned with the convergence vector of the Philippine Sea plate. The fast velocity as well as strong amplitude is clearly observed for at 180 degree from the convergence vector. Therefore the dip of the Kumano basin sequence (Tilted Transverse Isotropy; TTI) should have only a subtle effect on our results. These results indicate that the maximum horizontal stress orientation is the subduction direction at Site C0009C. This observation is consistent with the principal stress orientation estimated from borehole breakout at same borehole (Kinoshita et al., 2008).
Hydrodynamics and inundation of a tidal saltmarsh in Kent County, Delaware
NASA Astrophysics Data System (ADS)
Pieterse, A.; Puleo, J. A.; McKenna, T. E.
2013-12-01
A 2-week field experiment was conducted in March and April 2013 in a tidal wetland in Kent County, Delaware. The study area was a tidal flat fed by a secondary channel of a small tributary of Delaware Bay. The goal of the field study was to investigate spatio-temporal variability in the hydrodynamics of the saltmarsh and tidal flat, over the period of one spring-neap tidal cycle. The experiment combined remotely-sensed imagery with high-frequency in-situ measurements. A tower with imagers (RGB, NIR, TIR) was deployed to quantify the spatial variations of inundation of the channels, flat and marsh. In-situ sensors that measured flow velocity, sediment concentration and water depth were deployed on the tidal flat and in the channels. At three locations, a Nortek Vectrino II - profiling velocimeter was deployed that measured a 30 mm velocity profile at 1 mm vertical increments at 100 Hz. These velocity profiles are used to compute turbulent kinetic energy, energy dissipation and stress profiles close to the bed. Preliminary results of the experiment show that peak velocities occur at the beginning of the rising and end of ebbing tide, when the water levels are low. At these instances, peaks in turbulence and bed stress also occur, which coincides with the largest sediment concentrations that were observed. During both rising and falling tide, flow velocities up to 0.4 m/s were observed in the main channel leading to the tidal flat. After these initial large flow velocities, the flat inundated very quickly, and flow velocities decreased. Furthermore, due to the large flow velocities, bed erosion often took place in the channel at the beginning of each high tide, while deposition occurred during ebbing tide, resulting in small net changes over the tidal cycle. The velocities in the channel relative to those on the adjacent flat were investigated. Furthermore, the relationship between near-bed turbulence and suspended sediment concentration and an analysis of the near-bed turbulence budget will be discussed.
Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P
2017-01-01
To examine mechanical alterations during interval-training treadmill runs in high-level team-sport players. Within-participants repeated measures. Twenty high-level male field-hockey players performed six 30-s runs at 5.53±0.19ms -1 corresponding to 115% of their velocity associated with maximal oxygen uptake (vVO 2max ) with 30-s passive recovery on an instrumented treadmill. Continuous measurement of running kinetics/kinematics and spring-mass characteristics were performed and values were subsequently averaged over 20s (8th-28ths) for comparison. Contact time (+1.1±4.3%; p=0.044), aerial time (+4.1±5.3%; p=0.001), step length (+2.4±2.2%; p<0.001) along with mean loading rates (+7.1±10.6%; p=0.026) increased from the first to the last interval, whereas step frequency (-2.3±2.1%; p<0.001) decreased. Both centre of mass vertical displacement (+3.0±6.0%; p<0.001) and leg compression (+2.8±9.7%; p=0.036), but not peak vertical forces (0.0±4.1%; p=0.761), increased with fatigue. Vertical stiffness decreased (-2.8±6.9%; p=0.012), whereas leg stiffness did not change across intervals (p=0.149). During interval-training treadmill runs, high-level team-sport players modified their mechanical behaviour towards lower vertical stiffness while preserving a constant leg stiffness. Maintenance of running velocity induced longer step lengths and decreased step frequencies that were also accompanied by increased impact loading rates. These mechanical alterations occurred early during the set. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
A model for thin layer formation by delayed particle settling at sharp density gradients
NASA Astrophysics Data System (ADS)
Prairie, Jennifer C.; White, Brian L.
2017-02-01
Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.
Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Wencai; Wang, Jianwei; Gao, Xiaomeng; Khan, Hafiz Osama Sarwar; Pan, Baozhu; Acharya, Kumud
2018-01-01
Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4″, E 120° 9' 38.3″) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R 2 : 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R 2 : 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication process and algal blooms formation in shallow water environments. Wind field is the key control factor for thermal destratification and hypoxia reduction. 24.1C° is the critical/threshold temperature for hypoxia, Chlorophyll-a and NH 3 -N concentrations of the shallow freshwater lake. Copyright © 2017. Published by Elsevier Ltd.
Models for extracting vertical crustal movements from leveling data
NASA Technical Reports Server (NTRS)
Holdahl, S. H.
1978-01-01
Various adjustment strategies are being used in North America to obtain vertical crustal movements from repeated leveling. The more successful models utilize polynomials or multiquadric analysis to describe elevation change with a velocity surface. Other features permit determination of nonlinear motions, motions associated with earthquakes or episodes, and vertical motions of blocks where boundaries are prespecified. The preferred models for estimating crustal motions permit the use of detached segments of releveling to govern the shape of a velocity surface and allow for input from nonleveling sources such as tide gages and paired lake gages. Some models for extracting vertical crustal movements from releveling data are also excellent for adjusting leveling networks, and permit mixing old and new data in areas exhibiting vertical motion. The new adjustment techniques are more general than older static models and will undoubtedly be used routinely in the future as the constitution of level networks becomes mainly relevelings.
Influence of gravity on cat vertical vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Tomko, D. L.; Wall, C., III; Robinson, F. R.; Staab, J. P.
1988-01-01
The vertical vestibulo-ocular reflex (VOR) was recorded in cats using electro-oculography during sinusoidal angular pitch. Peak stimulus velocity was 50 deg/s over a frequency range from 0.01 to 4.0 Hz. To test the effect of gravity on the vertical VOR, the animal was pitched while sitting upright or lying on its side. Upright pitch changed the cat's orientation relative to gravity, while on-side pitch did not. The cumulative slow component position of the eye during on-side pitch was less symmetric than during upright pitch. Over the mid-frequency range (0.1 to 1.0 Hz), the average gain of the vertical VOR was 14.5 percent higher during upright pitch than during on-side pitch. At low frequencies (less than 0.05 Hz) changing head position relative to gravity raised the vertical VOR gain and kept the reflex in phase with stimulus velocity. These results indicate that gravity-sensitive mechanisms make the vertical VOR more compensatory.
Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training.
Morin, Jean-Benoît; Samozino, Pierre
2016-03-01
Recent studies have brought new insights into the evaluation of power-force-velocity profiles in both ballistic push-offs (eg, jumps) and sprint movements. These are major physical components of performance in many sports, and the methods the authors developed and validated are based on data that are now rather simple to obtain in field conditions (eg, body mass, jump height, sprint times, or velocity). The promising aspect of these approaches is that they allow for more individualized and accurate evaluation, monitoring, and training practices, the success of which is highly dependent on the correct collection, generation, and interpretation of athletes' mechanical outputs. The authors therefore wanted to provide a practical vade mecum to sports practitioners interested in implementing these power-force-velocity-profiling approaches. After providing a summary of theoretical and practical definitions for the main variables, the authors first detail how vertical profiling can be used to manage ballistic push-off performance, with emphasis on the concept of optimal force-velocity profile and the associated force-velocity imbalance. Furthermore, they discuss these same concepts with regard to horizontal profiling in the management of sprinting performance. These sections are illustrated by typical examples from the authors' practice. Finally, they provide a practical and operational synthesis and outline future challenges that will help further develop these approaches.
NASA Technical Reports Server (NTRS)
Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.
2015-01-01
The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.
A Numerical Study of Non-hydrostatic Shallow Flows in Open Channels
NASA Astrophysics Data System (ADS)
Zerihun, Yebegaeshet T.
2017-06-01
The flow field of many practical open channel flow problems, e.g. flow over natural bed forms or hydraulic structures, is characterised by curved streamlines that result in a non-hydrostatic pressure distribution. The essential vertical details of such a flow field need to be accounted for, so as to be able to treat the complex transition between hydrostatic and non-hydrostatic flow regimes. Apparently, the shallow-water equations, which assume a mild longitudinal slope and negligible vertical acceleration, are inappropriate to analyse these types of problems. Besides, most of the current Boussinesq-type models do not consider the effects of turbulence. A novel approach, stemming from the vertical integration of the Reynolds-averaged Navier-Stokes equations, is applied herein to develop a non-hydrostatic model which includes terms accounting for the effective stresses arising from the turbulent characteristics of the flow. The feasibility of the proposed model is examined by simulating flow situations that involve non-hydrostatic pressure and/or nonuniform velocity distributions. The computational results for free-surface and bed pressure profiles exhibit good correlations with experimental data, demonstrating that the present model is capable of simulating the salient features of free-surface flows over sharply-curved overflow structures and rigid-bed dunes.
Lightning location relative to storm structure in a supercell storm and a multicell storm
NASA Technical Reports Server (NTRS)
Ray, Peter S.; Macgorman, Donald R.; Rust, W. David; Taylor, William L.; Rasmussen, Lisa Walters
1987-01-01
Relationships between lightning location and storm structure are examined for one radar volume scan in each of two mature, severe storms. One of these storms had characteristics of a supercell storm, and the other was a multicell storm. Data were analyzed from dual-Doppler radar and dual-VHF lightning-mapping systems. The distributions of VHF impulse sources were compared with radar reflectivity, vertical air velocity, and their respective gradients. In the supercell storm, lightning tended to occur along streamlines above and down-shear of the updraft and reflectivity cores; VHF impulse sources were most concentrated in reflectivities between 30 and 40 dBZ and were distributed uniformly with respect to updraft speed. In the multicell storm, on the other hand, lightning tended to coincide with the vertical reflectivity and updraft core and with the diverging streamlines near the top of the storm. The results suggest that the location of lightning in these severe storms were most directly associated with the wind field structure relative to updraft and reflectivity cores. Since the magnitude and vertical shear of the environmental wind are fundamental in determining the reflectivity and wind field structure of a storm, it is suggested that these environmental parameters are also fundamental in determining lightning location.
NASA Technical Reports Server (NTRS)
Dickman, J. D.; Angelaki, D. E.
1999-01-01
During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.
NASA Astrophysics Data System (ADS)
Clark, Matthew; Parker, Douglas
2014-05-01
Narrow cold frontal rainbands (NCFRs) occur frequently in the UK and other parts of northwest Europe. At the surface, the passage of an NCFR is often marked by a sharp wind veer, abrupt pressure increase and a rapid temperature decrease. Tornadoes and other instances of localised wind damage sometimes occur in association with meso-gamma-scale vortices (sometimes called misocyclones) that form along the zone of abrupt horizontal wind veer (and associated vertical vorticity) at the leading edge of the NCFR. Using one-minute-resolution data from a mesoscale network of automatic weather stations, surface pressure, wind and temperature fields in the vicinity of 12 NCFRs (five of which were tornadic) have been investigated. High-resolution surface analyses were obtained by mapping temporal variations in the observed parameters to equivalent spatial variations, using a system velocity determined by analysis of the radar-observed movement of NCFR precipitation segments. Substantial differences were found in the structure of surface wind and pressure fields close to tornadic and non-tornadic NCFRs. Tornadic NCFRs exhibited a large wind veer (near 90°) and strong pre- and post-frontal winds. These attributes were associated with large vertical vorticity and horizontal convergence across the front. Tornadoes typically occurred where vertical vorticity and horizontal convergence were increasing. Here, we present surface analyses from selected cases, and draw comparisons between the tornadic and non-tornadic NCFRs. Some Doppler radar observations will be presented, illustrating the development of misocyclones along parts of the NCFR that exhibit strong, and increasing, vertical vorticity stretching. The influence of the stability of the pre-frontal air on the likelihood of tornadoes will also be discussed.
PROPAGATING WAVES TRANSVERSE TO THE MAGNETIC FIELD IN A SOLAR PROMINENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmieder, B.; Kucera, T. A.; Knizhnik, K.
2013-11-10
We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Hα lines), Sac Peak (in Hα, Hβ, and Na-D lines), and THEMIS ({sup T}élescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires{sup )} with themore » MTR (MulTi-Raies) spectropolarimeter (in He D{sub 3} line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km s{sup –1}, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.« less
3D numerical modelling of a willow vegetated river/floodplain system
NASA Astrophysics Data System (ADS)
Wilson, C. A. M. E.; Yagci, O.; Rauch, H.-P.; Olsen, N. R. B.
2006-07-01
SummaryUsing a three-dimensional finite volume code with standard k- ɛ turbulence closure the hydraulic impact of willow stands ( Salix alba and Salix fragilis) on the velocity distribution was modelled. The additional hydraulic resistance of the willow stands was modelled separately to the bed resistance using a drag force term that was introduced into the Navier-Stokes equations. Two flood events of varying magnitude and stages of plant development were simulated using this approach. The river comprises an asymmetric compound channel with vegetated floodplain of reach length 170 m. The willow development has been monitored annually and this information was used to define the density of the willow stands (average number per m 2) and its variation as a function of stand height. During both flood events the willow stands were submerged and in pronation. The willow stands were modelled in bending as well as in their undisturbed vertical state. Modelling the willow stands as vertical or in bending was found to have a major impact on the computed velocity profiles. The impact of using a drag-force approach based on a non-uniform projected area distribution was found to be greater when the plants are modelled vertically than when the plants are modelled in high degrees of bending. In field studies involving flexible plants without leaves, the determination of the drag coefficient is of less importance compared to the need to quantify the degree by which plants are in pronation.
NASA Astrophysics Data System (ADS)
Santos, Ângela M.; Abdu, Mangalathayil A.; Souza, Jonas R.; Batista, Inez S.; Sobral, José H. A.
2017-11-01
The influence of the recent deep and prolonged solar minimum on the daytime zonal and vertical plasma drift velocities during quiet time is investigated in this work. Analyzing the data obtained from incoherent scatter radar from Jicamarca (11.95° S, 76.87° W) we observe an anomalous behavior of the zonal plasma drift during June 2008 characterized by lower than usual daytime westward drift and its early afternoon reversal to eastward. As a case study the zonal drift observed on 24 June 2008 is modeled using a realistic low-latitude ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE (SUPIM-INPE). The results show that an anomalously low zonal wind was mainly responsible for the observed anomalous behavior in the zonal drift. A comparative study of the vertical plasma drifts obtained from magnetometer data for some periods of maximum (2000-2002) and minimum solar activity (1998, 2008, 2010) phases reveal a considerable decrease on the E-region conductivity and the dynamo electric field during 2008. However, we believe that the contribution of these characteristics to the unusual behavior of the zonal plasma drift is significantly smaller than that arising from the anomalously low zonal wind. The SUPIM-INPE result of the critical frequency of the F layer (foF2) over Jicamarca suggested a lower radiation flux than that predicted by solar irradiance model (SOLAR2000) for June 2008.
Thurtell, M J; Black, R A; Halmagyi, G M; Curthoys, I S; Aw, S T
1999-05-01
Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the VOR does not become apparent until 47 ms after the onset of the stimulus. In contrast, the response to active high acceleration stimuli shows eye position-dependence from within 5 ms of the onset of the stimulus. A model using a VOR-Listing's law compromise strategy did not accurately predict the patterns observed in the data, raising questions about how the eye position-dependence of the VOR is generated. We suggest, in view of recent findings, that the phenomenon could arise due to the effects of fibromuscular pulleys on the functional pulling directions of the rectus muscles.
Analysis of vortical structures in turbulent natural convection
NASA Astrophysics Data System (ADS)
Park, Sangro; Lee, Changhoon
2014-11-01
Natural convection of fluid within two parallel walls, Rayleigh-Bénard convection, is studied by direct numerical simulation using a spectral method. The flow is in soft turbulence regime with Rayleigh number 106, 107, 108, Prandtl number 0 . 7 and aspect ratio 4. We investigate the relations between thermal plumes and vortical structures through manipulating the evolution equations of vorticity and velocity gradient tensor. According to simulation results, horizontal vorticity occurs near the wall and changes into vertical vorticity by vertical stretching of fluid element which is caused by vertical movement of the thermal plume. Additionally, eigenvalues, eigenvectors and invariants of velocity gradient tensor show the topologies of vortical structures, including how vortical structures are tilted or stretched. Difference of velocity gradient tensor between inside thermal plumes and background region is also investigated, and the result indicates that thermal plumes play an important role in changing the distribution of vortical structures. The results of this study are consistent with other researches which suggest that vertical vorticity is stronger in high Rayleigh number flows. Details will be presented in the meeting.
A Unified Theory for Plants and Plant Structure
NASA Astrophysics Data System (ADS)
Wagner, Orvin E.
1998-04-01
The wave theory provides for quantization of plant structure. If one measures many spacings between plant structures it becomes apparent that certain spacings repeat from plant to plant. These spacings are associated with certain discrete frequencies associated with plant operation. When a branch grows it extend by one or more of discrete half wavelengths associated with permitted frequencies. If conditions are optimum it grows by the larger permitted half wavelengths. The angle that the branch makes with the vertical also determines the length because vertical wave velocities are in general larger than horizontal wave velocities as mentioned in the previous abstract. It also appears that cell dimensions are determined by permitted wavelengths. In conifer fiber cells it appears that there is an exact ratio between the average reciprocals of vertical lengths and horizontal reciprocal averages with a value of 1.50 in the data taken so far. Similar ratios for external structure spacings include 1.50, 1.25, 1.33, 1.66, 3.0, These ratios appear to represent ratios of vertical to horizontal velocities (Wagner 1996). See the Wagner web page.
NASA Astrophysics Data System (ADS)
Abdu, Mangalathayil; Sobral, José; alam Kherani, Esfhan; Batista, Inez S.; Souza, Jonas
2016-07-01
The characteristics of large-scale wave structure in the equatorial bottomside F region that are present during daytime as precursor to post sunset development of the spread F/plasma bubble irregularities are investigated in this paper. Digisonde data from three equatorial sites in Brazil (Fortaleza, Sao Luis and Cachimbo) for a period of few months at low to medium/high solar activity phases are analyzed. Small amplitude oscillations in the F layer true heights, representing wave structure in polarization electric field, are identified as upward propagating gravity waves having zonal scale of a few hundred kilometers. Their amplitudes undergo amplification towards sunset, and depending on the amplitude of the prereversal vertical drift (PRE) they may lead to post sunset generation of ESF/plasma bubble irregularities. On days of their larger amplitudes they appear to occur in phase coherence on all days, and correspondingly the PRE vertical drift velocities are larger than on days of the smaller amplitudes of the wave structure that appear at random phase on the different days. The sustenance of these precursor waves structures is supported by the relatively large ratio (approaching unity) of the F region-to- total field line integrated Pedersen conductivities as calculated using the SUPIM simulation of the low latitude ionosphere. This study examines the role of the wave structure relative to that of the prereversal vertical drift in the post sunset spread F irregularity development.
The Large-scale Magnetic Fields of Thin Accretion Disks
NASA Astrophysics Data System (ADS)
Cao, Xinwu; Spruit, Hendrik C.
2013-03-01
Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P m is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, β ~ 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.
Spring-mass behavior during exhaustive run at constant velocity in elite triathletes.
Rabita, Giuseppe; Slawinski, Jean; Girard, Olivier; Bignet, Frank; Hausswirth, Christophe
2011-04-01
The aims of this study were i) to evaluate changes in leg-spring behavior during an exhaustive run in elite triathletes and ii) to determine whether these modifications were related to an increase in the energy cost of running (Cr). Nine elite triathletes ran to exhaustion on an indoor track at a constant velocity corresponding to 95% of the velocity associated with the maximal oxygen uptake (mean ± SD = 5.1 ± 0.3 m·s(-1), time to exhaustion = 10.7 ± 2.6 min). Vertical and horizontal ground reaction forces were measured every lap (200 m) by a 5-m-long force platform system. Cr was measured from pulmonary gas exchange using a breath-by-breath portable gas analyzer. Leg stiffness (-13.1%, P < 0.05) and peak vertical (-9.2%, P < 0.05) and propulsive (-7.5%, P < 0.001) forces decreased significantly with fatigue, whereas vertical stiffness did not change significantly. Leg and vertical stiffness changes were positively related with modifications of aerial time (R(2) = 0.66, P < 0.01 and R(2) = 0.72, P < 0.01, respectively) and negatively with contact time (R(2) = 0.71, P < 0.01 and R(2) = 0.74, P < 0.01, respectively). Alterations of vertical forces were related with the decrease of the angle of velocity vector at toe off (R(2) = 0.73, P < 0.01). When considering mean values of oxygen uptake, no change was observed from 33% to 100% of the time to exhaustion. However, between one-third and two-thirds of the fatiguing run, negative correlations were observed between oxygen consumption and leg stiffness (R(2) = 0.83, P < 0.001) or vertical stiffness (R(2) = 0.50, P < 0.03). During a constant run to exhaustion, the fatigue induces a stiffness adaptation that modifies the stride mechanical parameters and especially decreases the maximal vertical force. This response to fatigue involves greater energy consumption.
Pilot-in-the-Loop CFD Method Development
2015-02-01
expensive alternatives [1]. ALM represents the blades as a set of segments along with each blade axis and the ADM represents the entire rotor as...fine grid, Δx = 1.00 m Figure 4 – Time-averaged vertical velocity distributions on downwash and rotor disk plane for hybrid and loose coupling...cases with fine and coarse grid refinement levels. Figure 4 shows the time-averaged distributions of vertical velocities on both downwash and rotor disk
Pilot Preferences on Displayed Aircraft Control Variables
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.
2013-01-01
The experiments described here explored how pilots want available maneuver authority information transmitted and how this information affects pilots before and after an aircraft failure. The aircraft dynamic variables relative to flight performance were narrowed to energy management variables. A survey was conducted to determine what these variables should be. Survey results indicated that bank angle, vertical velocity, and airspeed were the preferred variables. Based on this, two displays were designed to inform the pilot of available maneuver envelope expressed as bank angle, vertical velocity, and airspeed. These displays were used in an experiment involving control surface failures. Results indicate the displayed limitations in bank angle, vertical velocity, and airspeed were helpful to the pilots during aircraft surface failures. However, the additional information did lead to a slight increase in workload, a small decrease in perceived aircraft flying qualities, and no effect on aircraft situation awareness.
NASA Technical Reports Server (NTRS)
Blelly, Pierre-Louis; Barakat, Abdullah R.; Fontanari, Jean; Alcayde, Denis; Blanc, Michel; Wu, Jian; Lathuillere, C.
1992-01-01
A method presented by Wu et al. (1992) for computing the H(+) vertical velocity from the main ionospheric parameters measured by the EISCAT VHF radar is tested in a fully controlled sequence which consists of generating an ideal ionospheric model by solving the coupled continuity and momentum equations for a two-ion plasma (O(+) and H(+)). Synthetic autocorrelation functions are generated from this model with the radar characteristics and used as actual measurements to compute the H(+) vertical velocities. Results of these simulations are shown and discussed for three cases of typical and low SNR and for low and increased mixing ratios. In most cases general agreement is found between computed H(+) velocities and generic ones with the altitude range considered, i.e., 200-1000 km. The method is shown to be reliable.
Optimal landing of a helicopter in autorotation
NASA Technical Reports Server (NTRS)
Lee, A. Y. N.
1985-01-01
Gliding descent in autorotation is a maneuver used by helicopter pilots in case of engine failure. The landing of a helicopter in autorotation is formulated as a nonlinear optimal control problem. The OH-58A helicopter was used. Helicopter vertical and horizontal velocities, vertical and horizontal displacement, and the rotor angle speed were modeled. An empirical approximation for the induced veloctiy in the vortex-ring state were provided. The cost function of the optimal control problem is a weighted sum of the squared horizontal and vertical components of the helicopter velocity at touchdown. Optimal trajectories are calculated for entry conditions well within the horizontal-vertical restriction curve, with the helicopter initially in hover or forwared flight. The resultant two-point boundary value problem with path equality constraints was successfully solved using the Sequential Gradient Restoration Technique.
Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films
NASA Astrophysics Data System (ADS)
Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco
2018-06-01
We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.
Lees, A; Fowler, N; Derby, D
1993-08-01
This study was concerned with the measurement of a selection of performance variables from competitors in the women's long jump final of the World Student Games held in Sheffield, UK in July 1991. Several performances of each of six finalists were recorded on cine-film at 100 Hz. Resulting planar kinematic data were obtained for the last stride, touch-down and take-off. For the analysis, the point of maximum knee flexion was established and this was used to represent the point at which the compression phase had ended. A variety of variables describing the position, velocity and angular changes are presented as descriptive data. In addition, these were used to compute energies on the basis of a whole body model. The data were interpreted on the basis of a technique model of long jumping established from the literature. It was confirmed that take-off velocity was a function of touch-down velocity, and that there was an increase in vertical velocity at the expense of a reduction of horizontal velocity. An attempt was made to identify the mechanisms acting during the touch-down to take-off phase which were responsible for generating vertical velocity. It was concluded that there was evidence for mechanical, biomechanical and muscular mechanisms. The former relates to the generation of vertical velocity by the body riding over the base of support; the second is the elastic re-utilization of energy; and the third is the contribution by concentric muscular contraction.
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.
2005-01-01
Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.
NASA Astrophysics Data System (ADS)
Niiler, Pearn P.; Maximenko, Nikolai A.; McWilliams, James C.
2003-11-01
The 1992-2002 time-mean absolute sea level distribution of the global ocean is computed for the first time from observations of near-surface velocity. For this computation, we use the near-surface horizontal momentum balance. The velocity observed by drifters is used to compute the Coriolis force and the force due to acceleration of water parcels. The anomaly of horizontal pressure gradient is derived from satellite altimetry and corrects the temporal bias in drifter data distribution. NCEP reanalysis winds are used to compute the force due to Ekman currents. The mean sea level gradient force, which closes the momentum balance, is integrated for mean sea level. We find that our computation agrees, within uncertainties, with the sea level computed from the geostrophic, hydrostatic momentum balance using historical mean density, except in the Antarctic Circumpolar Current. A consistent horizontally and vertically dynamically balanced, near-surface, global pressure field has now been derived from observations.
The role of anisotropic thermal conduction in a collisionless magnetized hot accretion flow
NASA Astrophysics Data System (ADS)
Ghasemnezhad, Maryam
2018-06-01
We study the importance and the effects of anisotropic thermal conduction in a collisionless magnetized advection dominated accretion flow in the presence of discontinuity of mass, angular momentum and energy between inflow and outflow. In this paper, we have considered that the thermal conduction is a heating mechanism like viscosity and leads to an increase in the temperature of the gas. A set of self similar solutions are used for steady state and axisymmetric structure of such hot accretion disc to solve the MHD equations in our model. Based on these solutions, we have found that increasing the level of two parts of anisotropic thermal conduction (parallel & transverse) results in increasing the mass accretion rate or radial velocity but decreasing the rotational velocity. Also both radial and rotational velocities are sub-Keplerian. Also we have shown that the anisotropic thermal conduction can be effective in the parameter space of specific energy of outflow, toroidal and vertical components of magnetic field according to a physical constraint tinfall ≥ t⊥, conduction.
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.
1990-01-01
A 9.2 percent scale Short Takeoff and Vertical Landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the Lewis Research Center 9 x 15 foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issure for advanced short takeoff and vertical landing aircraft. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The model support system had four degrees of freedom - pitch, roll, yaw, and vertical height variation. The model support system also provided heated high-pressure air for nozzle flow and a suction system exhaust for inlet flow. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Test and data analysis results from Phase 2 and flow visualization from both Phase 1 and 2 are documented. A description of the model and facility modifications is also provided. Headwind velocity was varied from 10 to 23 kn. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R. These results will contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.
Truncation planes from a dilute pyroclastic density current: field data and analogue experiments.
NASA Astrophysics Data System (ADS)
Douillet, Guilhem Amin; Gegg, Lukas; Mato, Celia; Kueppers, Ulrich; Dingwell, Donald B.
2016-04-01
Pyroclastic density currents (PDCs) are a catastrophic transport mode of ground hugging gas-particle mixtures associated with explosive volcanic eruptions. The extremely high sedimentation rates and turbulence levels of these particulate density currents can freeze and preserve dynamic phenomena that happen but are not recorded in other sedimentary environments. Several intriguing and unanticipated features have been identified in outcrops and reproduced via analogue experiments, with the potential to change our views on morphodynamics and particle motion. Three types of small-scale (ca. 10 cm) erosion structures were observed on the stoss side of dune bedforms in the field: 1) vertical erosion planes covered with stoss-aggrading, vertical lamination, 2) overturned laminations at the preserved limit of erosion planes and 3) loss of stratification at erosion planes. These features are interpreted to indicate rapidly evolving velocities, undeveloped boundary layers, and a diffuse zone rather than a sharp border defining the flow-bed interface. Most experimental work on particle motion and erosion from the literature has been accomplished under constant conditions and with planar particle beds. Here, in order to reproduce the field observations, short-lived air-jets generated with a compressor-gun were shot into stratified beds of coarse particles (300 μm) of low density (1000 kg/m3). These "eroding jets" were filmed with a high speed camera and the deposits were sectioned after the experiments. The three natural types of erosion characteristics were experimentally generated. Vertical erosion planes are produced by small-scale, relatively sustained jets. Overturned laminations are due to a fluidization-like behavior at the erosion front of short-lived, strong jets, demonstrating that the fluid's velocity profile penetrates into the deposit. Loss of lamination seems related to the nature of erosion onset in packages. Rather than providing simple answers, the dataset raises questions and the need for further work on the sedimentation of pyroclastic density currents and turbulence in general. Our threshold-based concepts to explain the formation and initiation of bedforms may be inadequate in many highly depositional settings. This presentation will hopefully trigger discussions and exchange of ideas between sedimentologists, geomorphologists and physicists from all backgrounds.
Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao
2003-01-01
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.
NASA Astrophysics Data System (ADS)
Kurosawa, Kosuke; Okamoto, Takaya; Genda, Hidenori
2018-02-01
Hypervelocity ejection of material by impact spallation is considered a plausible mechanism for material exchange between two planetary bodies. We have modeled the spallation process during vertical impacts over a range of impact velocities from 6 to 21 km/s using both grid- and particle-based hydrocode models. The Tillotson equations of state, which are able to treat the nonlinear dependence of density on pressure and thermal pressure in strongly shocked matter, were used to study the hydrodynamic-thermodynamic response after impacts. The effects of material strength and gravitational acceleration were not considered. A two-dimensional time-dependent pressure field within a 1.5-fold projectile radius from the impact point was investigated in cylindrical coordinates to address the generation of spalled material. A resolution test was also performed to reject ejected materials with peak pressures that were too low due to artificial viscosity. The relationship between ejection velocity veject and peak pressure Ppeak was also derived. Our approach shows that "late-stage acceleration" in an ejecta curtain occurs due to the compressible nature of the ejecta, resulting in an ejection velocity that can be higher than the ideal maximum of the resultant particle velocity after passage of a shock wave. We also calculate the ejecta mass that can escape from a planet like Mars (i.e., veject > 5 km/s) that matches the petrographic constraints from Martian meteorites, and which occurs when Ppeak = 30-50 GPa. Although the mass of such ejecta is limited to 0.1-1 wt% of the projectile mass in vertical impacts, this is sufficient for spallation to have been a plausible mechanism for the ejection of Martian meteorites. Finally, we propose that impact spallation is a plausible mechanism for the generation of tektites.
A boussinesq model of natural convection in the human eye and the formation of Krukenberg's spindle.
Heys, Jeffrey J; Barocas, Victor H
2002-03-01
The cornea of the human eye is cooled by the surrounding air and by evaporation of the tear film. The temperature difference between the cornea and the iris (at core body temperature) causes circulation of the aqueous humor in the anterior chamber of the eye. Others have suggested that the circulation pattern governs the shape of the Krukenberg spindle, a distinctive vertical band of pigment on the posterior cornea surface in some pathologies. We modeled aqueous humor flow the human eye, treating the humor as a Boussinesq fluid and setting the corneal temperature based on infrared surface temperature measurements. The model predicts convection currents in the anterior chamber with velocities comparable to those resulting from forced flow through the gap between the iris and lens. When paths of pigment particles are calculated based on the predicted flow field, the particles circulate throughout the anterior chamber but tend to be near the vertical centerline of the eye for a greatest period of time. Further, the particles are usually in close proximity to the cornea only when they are near the vertical centerline. We conclude that the convective flow pattern of aqueous humor is consistent with a vertical pigment spindle.
NASA Astrophysics Data System (ADS)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-03-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^'), and velocity-impedance-II (α″, β″ and I_S^'). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-03-06
We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less
NASA Astrophysics Data System (ADS)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-06-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density profile can be overestimated, underestimated or spatially distorted. Among the six cases, only the velocity-density parametrization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.
Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George H.; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.; Williams, Ben R.
1990-01-01
A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown.
Gaussian vs non-Gaussian turbulence: impact on wind turbine loads
NASA Astrophysics Data System (ADS)
Berg, J.; Mann, J.; Natarajan, A.; Patton, E. G.
2014-12-01
In wind energy applications the turbulent velocity field of the Atmospheric Boundary Layer (ABL) is often characterised by Gaussian probability density functions. When estimating the dynamical loads on wind turbines this has been the rule more than anything else. From numerous studies in the laboratory, in Direct Numerical Simulations, and from in-situ measurements of the ABL we know, however, that turbulence is not purely Gaussian: the smallest and fastest scales often exhibit extreme behaviour characterised by strong non-Gaussian statistics. In this contribution we want to investigate whether these non-Gaussian effects are important when determining wind turbine loads, and hence of utmost importance to the design criteria and lifetime of a wind turbine. We devise a method based on Principal Orthogonal Decomposition where non-Gaussian velocity fields generated by high-resolution pseudo-spectral Large-Eddy Simulation (LES) of the ABL are transformed so that they maintain the exact same second-order statistics including variations of the statistics with height, but are otherwise Gaussian. In that way we can investigate in isolation the question whether it is important for wind turbine loads to include non-Gaussian properties of atmospheric turbulence. As an illustration the Figure show both a non-Gaussian velocity field (left) from our LES, and its transformed Gaussian Counterpart (right). Whereas the horizontal velocity components (top) look close to identical, the vertical components (bottom) are not: the non-Gaussian case is much more fluid-like (like in a sketch by Michelangelo). The question is then: Does the wind turbine see this? Using the load simulation software HAWC2 with both the non-Gaussian and newly constructed Gaussian fields, respectively, we show that the Fatigue loads and most of the Extreme loads are unaltered when using non-Gaussian velocity fields. The turbine thus acts like a low-pass filter which average out the non-Gaussian behaviour on time scales close to and faster than the revolution time of the turbine. For a few of the Extreme load estimations there is, on the other hand, a tendency that non-Gaussian effects increase the overall dynamical load, and hence can be of importance in wind energy load estimations.
PHYSICAL MODELING OF CONTRACTED FLOW.
Lee, Jonathan K.
1987-01-01
Experiments on steady flow over uniform grass roughness through centered single-opening contractions were conducted in the Flood Plain Simulation Facility at the U. S. Geological Survey's Gulf Coast Hydroscience Center near Bay St. Louis, Miss. The experimental series was designed to provide data for calibrating and verifying two-dimensional, vertically averaged surface-water flow models used to simulate flow through openings in highway embankments across inundated flood plains. Water-surface elevations, point velocities, and vertical velocity profiles were obtained at selected locations for design discharges ranging from 50 to 210 cfs. Examples of observed water-surface elevations and velocity magnitudes at basin cross-sections are presented.
NASA Astrophysics Data System (ADS)
Jiang, Z. H.; Liang, Z. J.; Wu, A. C.; Zheng, R. H.
2018-03-01
Experiments have been performed to study the chaotic dynamics of a ball bouncing on a vertically vibrating plate. The velocity dependence of collision duration and coefficient of restitution is determined, and phase portraits of chaotic structures for the flight time and the relative collision velocities are obtained. Numerical calculations are carried out to examine the effects of velocity-dependent collision duration on the ball dynamics. It is revealed that when the collision is instantaneous, sticking solutions are always observed, whereas when the collision duration is taken into account, sticking solutions are destroyed and thereby chaos behaviors are induced.