Radar - ANL Wind Profiler with RASS, Yakima - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Condon - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ANL Wind Profiler with RASS, Walla Walla - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Prineville - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Troutdale - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ANL Wind Profiler with RASS, Goldendale - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Wasco Airport - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.
Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng
2013-06-01
The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.
Surface Wind Field Analyses of Tropical Cyclones in the Western Pacific
2012-09-01
Averaged vertical profiles of actual wind speeds (m s-1) from all dropwindsondes in three ITOP storms . (b) Averaged vertical profiles of wind speeds...for the entire set of winds from the three ITOP 2010 typhoons. .............................1 Figure 27. a) Storm -relative motion flight track for...1 Figure 28. a) Storm -relative motion flight track for flight 0420 in TY Fanapi
Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...
2017-02-06
Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved withmore » good accuracy. Furthermore, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less
Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Newman, Jennifer
Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in windmore » profiling aimed at reducing uncertainty and increasing data availability are introduced.« less
Radar - ESRL Wind Profiler with RASS, Wasco Airport - Derived Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
Profiles of turbulence dissipation rate for 15-minute intervals, time-stamped at the beginning of the 15-minute period, during the final 30 minutes of each hour. During that time, the 915-MHz wind profiling radar was in an optimized configuration with a vertically pointing beam only for measuring accurate spectral widths of vertical velocity. A bias-corrected dissipation rate also was profiled (described in McCaffrey et al. 2017). Hourly files contain two 15-minute profiles.
Exploring the nearshore marine wind profile from field measurements and numerical hindcast
NASA Astrophysics Data System (ADS)
del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.
2012-12-01
Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind profile are evaluated and, based on this work, a particular parameterization of the wind profile is proposed.
A case study using kinematic quantities derived from a triangle of VHF Doppler wind profilers
NASA Technical Reports Server (NTRS)
Carlson, Catherine A.; Forbes, Gregory S.
1989-01-01
Horizontal divergence, relative vorticity, kinematic vertical velocity, and geostrophic and ageostrophic winds are computed from Colorado profiler network data to investigate an upslope snowstorm in northeastern Colorado. Horizontal divergence and relative vorticity are computed using the Gauss and Stokes theorems, respectively. Kinematic vertical velocities are obtained from the surface to 9 km by vertically integrating the continuity equation. The geostrophic and ageostrophic winds are computed by applying a finite differencing technique to evaluate the derivatives in the horizontal equations of motion. Comparison of the synoptic-scale data with the profiler network data reveals that the two datasets are generally consistent. Also, the profiler-derived quantities exhibit coherent vertical and temporal patterns consistent with conceptual and theoretical flow fields of various meteorological phenomena. It is suggested that the profiler-derived quantities are of potential use to weather forecasters in that they enable the dynamic and kinematic interpretation of weather system structure to be made and thus have nowcasting and short-term forecasting value.
An investigation of the environment surrounding supercell thunderstorms using wind profiler data
NASA Astrophysics Data System (ADS)
Thornhill, Kenneth Lee, II
1998-12-01
One of the cornerstones of severe thunderstorm research has been quantifying the relationship between the ambient vertical wind profile and the environment of a supercell thunderstorm. Continual refinement of that understanding will lead to the ability to distinguish between tornadic and non-tornadic supercells. Recently, studies have begun to show the importance of the mid-level winds (about 3-6 km), in addition to the normally analyzed 0-3 km inflow layer winds. The 32 wind profilers of the NOAA Profiler Network provide a new source of wind field data that is of higher temporal and spatial resolution that the normally used radiosonde soundings. Continuous raw wind field data (u, v, and w) is now available every 6 minutes, with a quality controlled hourly averaged wind field data set also available. In this work, a 6-minute quality control algorithm is presented and utilized. This 6-minute quality controlled wind data can be used to calculate predictive parameters such as storm relative environmental helicity, Bulk Richardson Number shear, and positive mean shear, indices that are normally calculated only for the inflow layer. In addition, the time series evolution of the mean midlevel winds and the mean vertical winds can also be examined. This present work concentrates on the 1994 and 1995 spring tornado seasons in the central plains of the United States. Combining the data from the NOAA Profiler Network with the data collected from the Verification of the Origins of Rotation in Tornadoes Experiment, the time series evolution of the several indices mentioned above are examined for the winds above the inflow layer in an attempt to add to the current understanding of the relationship between the vertical wind profile and the environment of tornadic and non-tornadic supercell thunderstorms.
Profiler Support for Operations at Space Launch Ranges
NASA Technical Reports Server (NTRS)
Merceret, Francis; Wilfong, Timothy; Lambert, Winifred; Short, David; Decker, Ryan; Ward, Jennifer
2006-01-01
Accurate vertical wind profiles are essential to successful launch or landing. Wind changes can make it impossible to fly a desired trajectory or avoid dangerous vehicle loads, possibly resulting in loss of mission. Balloons take an hour to generate a profile up to 20 km, but major wind changes can occur in 20 minutes. Wind profilers have the temporal response to detect such last minute hazards. They also measure the winds directly overhead while balloons blow downwind. At the Eastern Range (ER), altitudes from 2 to 20 km are sampled by a 50-MHz profiler every 4 minutes. The surface to 3 km is sampled by five 915-MHz profilers every 15 minutes. The Range Safety office assesses the risk of potential toxic chemical dispersion. They use observational data and model output to estimate the spatial extent and concentration of substances dispersed within the boundary layer. The ER uses 915-MHz profilers as both a real time observation system and as input to dispersion models. The WR has similar plans. Wind profilers support engineering analyses for the Space Shuttle. The 50-IVl11z profiler was used recently to analyze changes in the low frequency wind and low vertical wavenumber content of wind profiles in the 3 to 15 km region of the atmosphere. The 915-MHz profiler network was used to study temporal wind change within the boundary layer.
Radar - ARL Wind Profilerwith RASS, Boardman - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.
2012-12-01
Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010)
Coastal Wind Profiles In The Mediterranean Area From A Wind Lidar During A Two Year Period
NASA Astrophysics Data System (ADS)
Gullì, Daniel; Avolio, Elenio; Calidonna, Claudia Roberta; Lo Feudo, Teresa; Torcasio, Rosa Claudia; Sempreviva, Anna Maria
2017-04-01
Reliable measurements of vertical profiles of wind speed and direction are the basis for testing models and methodologies of use for wind energy assessment. Modelling coastal areas further introduce the challenge of the coastal discontinuity, which is often not accurately resolved in meso-scale numerical model. Here, we present the analysis of two year of 10-minute averaged wind speed and direction vertical profiles collected during a two-year period from a Wind- lidar ZEPHIR 300® at a coastal suburban area. The lidar is located at the SUPER SITE of CNR-ISAC section of Lamezia Terme, Italy and both dataset and site are unique in the Mediterranean area. The instrument monitors at 10 vertical levels, from 10 m up to 300 m. The analysis is classified according to season, and wind directions for offshore and offshore flow. For onshore flow, we note an atmospheric layer at around 100 m that likely represents the effect an internal boundary layer caused by the sharp coastal discontinuity of the surface characteristics. For offshore flows, the profiles show a layer ranging between 80m and 100m, which might be ascribed to the land night time boundary layer combined to the impact of the building around the mast.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.
2016-06-01
Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.
Low-latitude Temperatures, Pressures, and Winds on Saturn from Cassini Radio Occultations
NASA Astrophysics Data System (ADS)
Flasar, F. M.; Schinder, P. J.; Kliore, A. J.; French, R. G.; Marouf, E. A.; Nagy, A.; Rappaport, N. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; McGhee, C. A.
2005-12-01
We present results from 12 ingress and egress soundings done within 10 degrees of Saturn's equator. Above the 100-mbar level, near the tropopause, the vertical profiles of temperature are marked by undulatory structure that may be associated with vertically propagating waves. Below the 200-mbar level, in the upper troposphere, the vertical profiles are smoother, and the overall trend of temperatures is to increase away from the equator. This implies a decay of the zonal winds with altitude. The zonal winds can actually be inferred directly from the meridional gradient in pressure, without the need of a boundary condition on the winds. We summarize results of these calculations. This is of interest because recent cloud tracking studies have indicated lower equatorial winds than found earlier, but whether this indicates a real change in the winds at a given altitude or a change in the altitudes of the features tracked is controversial.
The Huygens Doppler Wind Experiment: Ten Years Ago
NASA Astrophysics Data System (ADS)
Bird, Michael; Dutta-Roy, Robin; Dzierma, Yvonne; Atkinson, David; Allison, Michael; Asmar, Sami; Folkner, William; Preston, Robert; Plettemeier, Dirk; Tyler, Len; Edenhofer, Peter
2015-04-01
The Huygens Doppler Wind Experiment (DWE) achieved its primary scientific goal: the derivation of Titan's vertical wind profile from the start of Probe descent to the surface. The carrier frequency of the ultra-stable Huygens radio signal at 2040 MHz was recorded using special narrow-band receivers at two large radio telescopes on Earth: the Green Bank Telescope in West Virginia and the Parkes Radio Telescope in Australia. Huygens drifted predominantly eastward during the parachute descent, providing the first in situ confirmation of Titan's prograde super-rotational zonal winds. A region of surprisingly weak wind with associated strong vertical shear reversal was discovered within the range of altitudes from 65 to 100 km. Below this level, the zonal wind subsided monotonically from 35 m/s to about 7 km, at which point it reversed direction. The vertical profile of the near-surface winds implies the existence of a planetary boundary layer. Recent results on Titan atmospheric circulation within the context of the DWE will be reviewed.
Modeling the CAPTEX Vertical Tracer Concentration Profiles.
NASA Astrophysics Data System (ADS)
Draxler, Roland R.; Stunder, Barbara J. B.
1988-05-01
Perfluorocarbon tracer concentration profiles measured by aircraft 600-900 km downwind of the release locations during CAPTEX are discussed and compared with some model results. In general, the concentrations decreased with height in the upper half of the boundary layer where the aircraft measurements were made. The results of a model sensitivity study suggested that the shape of the profile was primarily due to winds increasing with height and relative position of the sampling with respect to the upwind and downwind edge of the plume. Further modeling studies showed that relatively simple vertical mixing parameterizations could account for the complex vertical plume structure when the model had sufficient vertical resolution. In general, the model performed better with slower winds and corresponding longer transport times.
MiniSODAR(TradeMark) Evaluation
NASA Technical Reports Server (NTRS)
Short, David A.; Wheeler, Mark M.
2003-01-01
This report describes results of the AMU's Instrumentation and Measurement task for evaluation of the Doppler miniSODAR(TradeMark) System (DmSS). The DmSS is an acoustic wind profiler providing high resolution data to a height of approx. 410 ft. The Boeing Company installed a DmSS near Space Launch Complex 37 in mid-2002 as a substitute for a tall wind tower and plans to use DmSS data for the analysis and forecasting of winds during ground and launch operations. Peak wind speed data are of particular importance to Launch Weather Officers of the 45th Weather Squadron for evaluating user Launch Commit Criteria. The AMU performed a comparative analysis of wind data between the DmSS and nearby wind towers from August 2002 to July 2003. The DmSS vertical profile of average wind speed showed good agreement with the wind towers. However, the DMSS peak wind speeds were higher, on average, than the wind tower peak wind speeds by about 25%. A statistical model of an idealized Doppler profiler was developed and it predicted that average wind speeds would be well determined but peak wind speeds would be over-estimated due to an under-specification of vertical velocity variations in the atmosphere over the Profiler.
Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K.; Arlettaz, Raphaël
2018-01-01
Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50–150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi’s pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely. PMID:29561851
Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël
2018-01-01
Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.
NASA Astrophysics Data System (ADS)
Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid
2017-05-01
This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.
NASA Astrophysics Data System (ADS)
Muradyan, P.; Coulter, R.; Kotamarthi, V. R.; Wang, J.; Ghate, V. P.
2016-12-01
Large-scale mean vertical motion affects the atmospheric stability and is an important component in cloud formation. Thus, the analysis of temporal variations in the long-term averages of large-scale vertical motion would provide valuable insights into weather and climate patterns. 915-MHz radar wind profilers (RWP) provide virtually unattended and almost uninterrupted long-term wind speed measurements. We use five years of RWP wind data from the Atmospheric Boundary Layer Experiments (ABLE) located within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site from 1999 to 2004. Wind speed data from a triangular array of SGP A1, A2, and A5 ancillary sites are used to calculate the horizontal divergence field over the profiler network area using the line integral method. The distance between each vertex of this triangle is approximately 60km. Thus, the vertical motion profiles deduced from the divergence/convergence of horizontal winds over these spatial scales are of relevance to mesoscale dynamics. The wind data from RWPs are averaged over 1 hour time slice and divergence is calculated at each range gate from the lowest at 82 m to the highest at 2.3 km. An analysis of temporal variations in the long-term averages of the atmospheric divergence and vertical air motion for the months of August/September indicates an overall vertical velocity of -0.002 m/s with a standard deviation of 0.013 m/s, agreeing well with previous studies. Overall mean of the diurnal variation of vertical velocity for the study period from surface to 500 m height is 0.0018 m/s with a standard error of 0.00095 m/s. Seasonal mean daytime vertical winds suggest generally downward motion in Winter and upward motion in Summer. Validation of the derived divergence and vertical motion against a regional climate model (Weather Forecast and Research, WRF) at a spatial resolution of 12 km, as well as clear-sky vs. cloudy conditions comparisons will also be presented.
Vertical profiles of wind and temperature by remote acoustical sounding
NASA Technical Reports Server (NTRS)
Fox, H. L.
1969-01-01
An acoustical method was investigated for obtaining meteorological soundings based on the refraction due to the vertical variation of wind and temperature. The method has the potential of yielding horizontally averaged measurements of the vertical variation of wind and temperature up to heights of a few kilometers; the averaging takes place over a radius of 10 to 15 km. An outline of the basic concepts and some of the results obtained with the method are presented.
NASA Astrophysics Data System (ADS)
Boquet, M.; Cariou, J. P.; Lolli, S.; Sauvage, L.; Parmentier, R.
2009-09-01
To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity resolution (0.2m/s). Enhanced measurement range is now expected through new optical device.
The vertical profile of winds on Titan.
Bird, M K; Allison, M; Asmar, S W; Atkinson, D H; Avruch, I M; Dutta-Roy, R; Dzierma, Y; Edenhofer, P; Folkner, W M; Gurvits, L I; Johnston, D V; Plettemeier, D; Pogrebenko, S V; Preston, R A; Tyler, G L
2005-12-08
One of Titan's most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan's atmospheric pressure and temperature and evidence for the presence of strong zonal winds. It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment on the Huygens probe. Here we report a high resolution vertical profile of Titan's winds, with an estimated accuracy of better than 1 m s(-1). The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds (approximately 1 m s(-1)) were seen in the lowest 5 km of descent.
Wind measurements by electromagnetic probes
NASA Technical Reports Server (NTRS)
Susko, Michael
1989-01-01
The operation and performance characteristics of the Marshall Space Flight Center's Radar Wind Profiler, designed to provide measurement of the wind in the troposphere, are discussed. The Radar Wind Profiler uses a technology similar to that used in conventional Doppler radar systems, except the frequency is generally lower, antenna is larger, and dwell time is much longer. Its primary function is to monitor the vertical wind profile prior to launch of the Space Shuttle at more frequency intervals and nearer to launch time than is presently possible with the conventional balloon systems. A new wind profile will be obtained on the order of every 15 min based on an average of five wind profiles measured every 3 min at a height interval of 150 m to 20 km. The most significant features of the Radar Wind Profiler are the continuity in time and reliability.
Validation campaigns of a coherent Doppler Wind Lidar for PBL Continuous Profiling
NASA Astrophysics Data System (ADS)
Sauvage, Laurent; Cariou, Jean-Pierre; Boquet, Matthieu; Parmentier, Remy
2010-05-01
To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. In July 2009, the WLS70 took its definitive configuration with a new optical device installed on it allowing enhanced measurement range. New measurements were done at PNNL in Richland, Washington, and NASA Langley in Hampton, Virginia. These results are now processed and will bring a further proof on reliability and accuracy. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity accuracy.
NASA Technical Reports Server (NTRS)
Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.
2017-01-01
Launch vehicle programs require vertically complete atmospheric profiles. Many systems at the ER to make the necessary measurements, but all have different EVR, vertical coverage, and temporal coverage. MSFC Natural Environments Branch developed a tool to create a vertically complete profile from multiple inputs using Python. Forward work: Finish Formal Testing Acceptance Testing, End-to-End Testing. Formal Release
NASA Astrophysics Data System (ADS)
Finocchio, Peter M.
The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for shallow layers of upper-level shear. Many of the wind profiles tested in the idealized simulations have shear height or depth values on the tails of these distributions, suggesting that the environmental wind profiles around real TCs do not exhibit enough structural variability to have the clear statistical relationship to intensity change that we expected. In the final part of this dissertation, we use the reanalyzed TC environments to initialize ensembles of idealized simulations. Using a new modeling technique that allows for time-varying environments, these simulations examine the predictability implications of exposing a TC to different structures and magnitudes of vertical wind shear during its life cycle. We find that TCs in more deeply distributed vertical wind shear environments have a more uncertain intensity evolution than TCs exposed to shallower layers of upper-level shear. This higher uncertainty arises from a more marginal boundary layer environment that the deeply distributed shear establishes, which enhances the TC sensitivity to the magnitude of deep-layer shear. Simulated radar reflectivity also appears to evolve in a more uncertain fashion in environments with deeply distributed vertical shear. However, structural predictability timescales, computed as the time it takes for errors in the amplitude or phase of azimuthal asymmetries of reflectivity to saturate, are similar for wind profiles with shallow upper-level shear and deeply distributed shear. Both ensembles demonstrate predictability timescales of two to three days for the lowest azimuthal wavenumbers of amplitude and phase. As the magnitude of vertical wind shear increases to universally destructive levels, structural and intensity errors begin to decrease. Shallow upper-level shear primes the TC for a more pronounced recovery in the predictability of the wavenumber-one precipitation structure in stronger shear. The recovered low-wavenumber predictability of TC precipitation structure and the collapse in intensity spread in strong shear suggests that vertical wind shear is most effective at reducing TC predictability when its magnitude is near the threshold between favorable and unfavorable values and when it is deeply distributed through the troposphere. By isolating the effect of the environmental flow, the simulations and analyses in this dissertation offer a unique understanding of how vertical wind shear affects TCs. In particular, the results have important implications for designing and implementing future environmental observing strategies that will be critical for improving forecasts of these destructive storms.
NASA Technical Reports Server (NTRS)
Thomson, D. W.; Syrett, William J.; Fairall, C. W.
1991-01-01
In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.
Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; ...
2016-11-15
A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, andmore » mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.« less
Recommendations for a wind profiling network to support Space Shuttle launches
NASA Technical Reports Server (NTRS)
Zamora, R. J.
1992-01-01
The feasibility is examined of a network of clear air radar wind profilers to forecast wind conditions before Space Shuttle launches during winter. Currently, winds are measured only in the vicinity of the shuttle launch site and wind loads on the launch vehicle are estimated using these measurements. Wind conditions upstream of the Cape are not monitored. Since large changes in the wind shear profile can be associated with weather systems moving over the Cape, it may be possible to improve wind forecasts over the launch site if wind measurements are made upstream. A radar wind profiling system is in use at the Space Shuttle launch site. This system can monitor the wind profile continuously. The existing profiler could be combined with a number of radars located upstream of the launch site. Thus, continuous wind measurements would be available upstream and at the Cape. NASA-Marshall representatives have set the requirements for radar wind profiling network. The minimum vertical resolution of the network must be set so that the wind shears over the depths greater than or = 1 km will be detected. The network should allow scientists and engineers to predict the wind profile over the Cape 6 hours before a Space Shuttle launch.
Validation Campaigns of a new 1.5μm Doppler Wind Lidar for PBL Continuous Profiling
NASA Astrophysics Data System (ADS)
Sauvage, Laurent; Boquet, Matthieu; Cariou, Jean-Pierre; Lolli, Simone
2010-05-01
To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. In July 2009, the WLS70 took its definitive configuration with a new optical device installed on it allowing enhanced measurement range. New measurements were done at PNNL in Richland, Washington, and NASA Langley in Hampton, Virginia. These results are now processed and will bring a further proof on reliability and accuracy. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity accuracy (<0.2m/s).
Stochastic model of temporal changes of wind spectra in the free atmosphere
NASA Technical Reports Server (NTRS)
Huang, Y. H.
1974-01-01
Data for wind profile spectra changes with respect to time from Cape Kennedy, Florida for the time period from 28 November 1964 to 11 May 1967 have been analyzed. A universal statistical distribution of the spectral change which encompasses all vertical wave numbers, wind speed categories, and elapsed time has been developed for the standard deviation of the time changes of detailed wind profile spectra as a function of wave number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Michael P; Giangrande, Scott E; Bartholomew, Mary Jane
The Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) [http://www.arm.gov/campaigns/osc2013rwpcf] campaign was scheduled to take place from 15 July 2013 through 15 July 2015 (or until shipped for the next U.S. Department of Energy Atmospheric Radiation Measurement [ARM] Climate Research Facility first Mobile Facility [AMF1] deployment). The campaign involved the deployment of the AMF1 Scintec 915 MHz Radar Wind Profiler (RWP) at BNL, in conjunction with several other ARM, BNL and National Weather Service (NWS) instruments. The two main scientific foci of the campaign were: 1) To provide profiles of the horizontal wind to be used tomore » test and validate short-term cloud advection forecasts for solar-energy applications and 2) to provide vertical profiling capabilities for the study of dynamics (i.e., vertical velocity) and hydrometeors in winter storms. This campaign was a serendipitous opportunity that arose following the deployment of the RWP at the Two-Column Aerosol Project (TCAP) campaign in Cape Cod, Massachusetts and restriction from participation in the Green Ocean Amazon 2014/15 (GoAmazon 2014/15) campaign due to radio-frequency allocation restriction for international deployments. The RWP arrived at BNL in the fall of 2013, but deployment was delayed until fall of 2014 as work/safety planning and site preparation were completed. The RWP further encountered multiple electrical failures, which eventually required several shipments of instrument power supplies and the final amplifier to the vendor to complete repairs. Data collection began in late January 2015. The operational modes of the RWP were changed such that in addition to collecting traditional profiles of the horizontal wind, a vertically pointing mode was also included for the purpose of precipitation sensing and estimation of vertical velocities. The RWP operated well until the end of the campaign in July 2015 and collected observations for more than 20 precipitation events.« less
Vertical profile of tritium concentration in air during a chronic atmospheric HT release.
Noguchi, Hiroshi; Yokoyama, Sumi
2003-03-01
The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.
Potential errors in using one anemometer to characterize the wind power over an entire rotor disk
NASA Technical Reports Server (NTRS)
Simon, R. L.
1982-01-01
Wind data collected at four levels on a 90-m tower in a prospective wind farm area are used to evaluate how well the 10-m wind speed data with and without intermittent vertical profile measurements compare with the 90-m tower data. If a standard, or even predictable, wind speed profile existed, there would be no need for a large, expensive tower. This cost differential becomes even more significant if several towers are needed to study a prospective wind farm.
Validating Variance Similarity Functions in the Entrainment Zone
NASA Astrophysics Data System (ADS)
Osman, M.; Turner, D. D.; Heus, T.; Newsom, R. K.
2017-12-01
In previous work, the water vapor variance in the entrainment zone was proposed to be proportional to the convective velocity scale, gradient water vapor mixing ratio and the Brunt-Vaisala frequency in the interfacial layer, while the variance of the vertical wind at in the entrainment zone was defined in terms of the convective velocity scale. The variances in the entrainment zone have been hypothesized to depend on two distinct functions, which also depend on the Richardson number. To the best of our knowledge, these hypotheses have never been tested observationally. Simultaneous measurements of the Eddy correlation surface flux, wind shear profiles from wind profilers, and variance profile measurements of vertical motions and water vapor by Doppler and Raman lidars, respectively, provide a unique opportunity to thoroughly examine the functions used in defining the variances and validate them. These observations were made over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. We have identified about 30 cases from 2016 during which the convective boundary layer (CBL) is quasi-stationary and well mixed for at least 2 hours. The vertical profiles of turbulent fluctuations of the vertical wind and water vapor have been derived using an auto covariance technique to separate out the instrument random error to a set of 2-h period time series. The error analysis of the lidars observations demonstrates that the lidars are capable of resolving the vertical structure of turbulence around the entrainment zone. Therefore, utilizing this unique combination of observations, this study focuses on extensively testing the hypotheses that the second-order moments are indeed proportional to the functions which also depend on Richardson number. The coefficients that are used in defining the functions will also be determined observationally and compared against with the values suggested by Large eddy simulation (LES) studies.
Wind Characteristics of Coastal and Inland Surface Flows
NASA Astrophysics Data System (ADS)
Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya
2015-11-01
Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.
NASA Astrophysics Data System (ADS)
Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.
2013-09-01
Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.
Lidar for Wind and Optical Turbulence Profiling
NASA Astrophysics Data System (ADS)
Fastig, Shlomo; Porat, Omer; Englander, Abraham; Sprung, Detlev; Stein, Karin U.; Sucher, Erik
2018-04-01
A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.
One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy
NASA Astrophysics Data System (ADS)
Calidonna, Claudia Roberta; Avolio, Elenio; Federico, Stefano; Gullì, Daniel; Lo Feudo, Teresa; Sempreviva, Anna Maria
2015-04-01
In order to develop wind farms projects is challenging to site them on coastal areas both onshore and offshore as suitable sites. Developing projects need high quality databases under a wide range of atmospheric conditions or high resolution models that could resolve the effect of the coastal discontinuity in the surface properties. New parametrizations are important and high quality databases are also needed for formulating them. Ground-based remote sensing devices such as lidars have been shown to be functional for studying the evolution of the vertical wind structure coastal atmospheric boundary layer both on- and offshore. Here, we present results from a year of vertical wind profiles, wind speed and direction, monitoring programme at a site located in the Italian Calabria Region, Central Mediterranean, 600m from the Thyrrenian coastline, where a Lidar Doppler, ZephIr (ZephIr ltd) has been operative since July 2013. The lidar monitors wind speed and direction from 10m up to 300m at 10 vertical levels with an average of 10 minutes and it is supported by a metmast providing: Atmospheric Pressure, Solar Radiation, Precipitation, Relative Humidity, Temperature,Wind Speed and Direction at 10m. We present the characterization of wind profiles during one year period according to the time of the day to transition periods night/day/night classified relating the local scale, breeze scale, to the large scale conditions. The dataset is also functional for techniques for short-term prediction of wind for the renewable energy integration in the distribution grids. The site infrastructure is funded within the Project "Infrastructure of High Technology for Environmental and Climate Monitoring" (I-AMICA) (PONa3_00363) by the Italian National Operative Program (PON 2007-2013) and European Regional Development Fund. Real-time data are show on http://www.i-amica.it/i-amica/?page_id=1122.
KSC 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT) Report
NASA Technical Reports Server (NTRS)
Barbre, Robert E.
2015-01-01
This report documents analysis results of the Kennedy Space Center updated 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). This test was designed to demonstrate that the new DRWP operates in a similar manner to the previous DRWP for use as a situational awareness asset for mission operations at the Eastern Range to identify rapid changes in the wind environment that weather balloons cannot depict. Data examination and two analyses showed that the updated DRWP meets the specifications in the OAT test plan and performs at least as well as the previous DRWP. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 5,426 wind component reports from 49 concurrent DRWP and balloon profiles presented root mean square (RMS) wind component differences around 2.0 m/s. The DRWP's effective vertical resolution (EVR) was found to be 300 m for both the westerly and southerly wind component, which the best EVR possible given the DRWP's vertical sampling interval. A third analysis quantified the sensitivity to rejecting data that do not have adequate signal by assessing the number of first-guess propagations at each altitude. This report documents the data, quality control procedures, methodology, and results of each analysis. It also shows that analysis of the updated DRWP produced results that were at least as good as the previous DRWP with proper rationale. The report recommends acceptance of the updated DRWP for situational awareness usage as per the OAT's intent.
Generation of optimum vertical profiles for an advanced flight management system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Waters, M. H.
1981-01-01
Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.
NASA Astrophysics Data System (ADS)
Anber, Usama; Wang, Shuguang; Sobel, Adam
2017-03-01
The effect of coupling a slab ocean mixed layer to atmospheric convection is examined in cloud-resolving model (CRM) simulations in vertically sheared and unsheared environments without Coriolis force, with the large-scale circulation parameterized using the Weak Temperature Gradient (WTG) approximation. Surface fluxes of heat and moisture as well as radiative fluxes are fully interactive, and the vertical profile of domain-averaged horizontal wind is strongly relaxed toward specified profiles with vertical shear that varies from one simulation to the next. Vertical wind shear is found to play a critical role in the simulated behavior. There exists a threshold value of the shear strength above which the coupled system develops regular oscillations between deep convection and dry nonprecipitating states, similar to those found earlier in a much more idealized model which did not consider wind shear. The threshold value of the vertical shear found here varies with the depth of the ocean mixed layer. The time scale of the spontaneously generated oscillations also varies with mixed layer depth, from 10 days with a 1 m deep mixed layer to 50 days with a 10 m deep mixed layer. The results suggest the importance of the interplay between convection organized by vertical wind shear, radiative feedbacks, large-scale dynamics, and ocean mixed layer heat storage in real intraseasonal oscillations.
Winds in the meteor zone over Trivandrum
NASA Astrophysics Data System (ADS)
Reddi, C. R.; Rajeev, K.; Ramakumar, Geetha
1991-04-01
The height profiles of the zonal and meridional wind obtained from the meteor wind radar data recorded at Trivandrum (8 deg 36 min N, 77 deg E) are presented. Large wind shears were found to exist in the meteor zone over Trivandrum. The profiles showed quasi-sinusoidal variations with altitude and vertical wavelength of the oscillation in the range 15-25 km. Further, there was a large day-to-day variability in the profiles obtained for the same local time on consecutive days. The results are discussed in the light of the winds due to tides and equatorial waves in the low latitudes. The implications of the large wind shears with reference to the local wind effects on the equatorial electrojet are outlined.
Radial-vertical profiles of tropical cyclone derived from dropsondes
NASA Astrophysics Data System (ADS)
Ren, Yifang
The scopes of this thesis research are two folds: the first one is to the construct the intensity-based composite radial-vertical profiles of tropical cyclones (TC) using GPS-based dropsonde observations and the second one is to identify the major deficiencies of Mathur vortices against the dropsonde composites of TCs. The intensity-based dropsonde composites of TCs advances our understanding of the dynamic and thermal structure of TCs of different intensity along the radial direction in and above the boundary layer where lies the devastating high wind that causes property damages and storm surges. The identification of the major deficiencies of Mathur vortices in representing the radial-vertical profiles of TC of different intensity helps to improve numerical predictions of TCs since most operational TC forecast models need to utilize bogus vortices, such as Mathur vortices, to initialize TC forecasts and simulations. We first screen all available GPS dropsonde data within and round 35 named TCs over the tropical Atlantic basin from 1996 to 2010 and pair them with TC parameters derived from the best-track data provided by the National Hurricane Center (NHC) and select 1149 dropsondes that have continuous coverage in the lower troposphere. The composite radial-vertical profiles of tangential wind speed, temperature, mixing ratio and humidity are based for each TC category ranging from "Tropical Storm" (TS) to "Hurricane Category 1" (H1) through "Hurricane Category 5" (H5). The key findings of the dropsonde composites are: (i) all TCs have the maximum tangential wind within 1 km above the ground and a distance of 1-2 times of the radius of maximum wind (RMW) at the surface; (ii) all TCs have a cold ring surrounding the warm core near the boundary layer at a distance of 1-3 times of the RMW and the cold ring structure gradually diminishes at a higher elevation where the warm core structure prevails along the radial direction; (iii) the existence of such shallow cold ring outside the RMW explains why the maximum tangential wind is within 1 km above the ground and is outside the RMW, as required by the hydrostatic and gradient wind balance relations; (iv) one of the main differences among TCs of different intensity, besides the speed of the maximum tangential wind, is the vertical extent of near-saturated moisture air layer inside the core. A weaker TC tends to have a deep layer of the near-saturated moisture air layer whereas a stronger TC has a shallow one; (v) another main difference in the thermal structure among TCs of different intensity is the intensity and vertical extent of the warm core extending from the upper layer to the lower layer. In general, a stronger TC has a stronger warm core extending downward further into lower layer and vice versa. The features (iv) and (v) are consistent with the fact that a stronger TC tends to have stronger descending motion inside the core. The main deficiencies of Mathur vortices in representing the radial-vertical profiles of TC of different intensity are (i) Mathur vortices of all categories have the maximum wind at the surface; (ii) none of Mathur vortices have a cold ring outside the warm core near the boundary layer; (iii) Mathur vortices tend to overestimate warm core structure in reference to the horizontal mean temperature profile; (iv) Mathur vortices tend to overestimate the vertical depth of the near-saturated air layer near the boundary layer.
A stability analysis of AVE-4 severe weather soundings
NASA Technical Reports Server (NTRS)
Johnson, D. L.
1982-01-01
The stability and vertical structure of an average severe storm sounding, consisting of both thermodynamic and wind vertical profiles, were investigated to determine if they could be distinguished from an average lag sounding taken 3 to 6 hours prior to severe weather occurrence. The term average is defined here to indicate the arithmetic mean of a parameter, as a function of altitude, determined from a large number of available observations taken either close to severe weather occurrence, or else more than 3 hours before it occurs. The investigative computations were also done to help determine if a severe storm forecast or index could possibly be used or developed. These mean vertical profiles of thermodynamic and wind parameters as a function of severity of the weather, determined from manually digitized radar (MDR) categories are presented. Profile differences and stability index differences are presented along with the development of the Johnson Lag Index (JLI) which is determined entirely upon environmental vertical parameter differences between conditions 3 hours prior to severe weather, and severe weather itself.
NASA Technical Reports Server (NTRS)
Barbre', Robert E., Jr.; Decker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa
2016-01-01
This paper presents results of the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). The goal of the OAT was to verify the data quality of the new DRWP against the performance of the previous DRWP in order to use wind data derived by the new DRWP for space launch vehicle operations support at the Eastern Range. The previous DRWP was used as a situational awareness asset for mission operations to identify rapid changes in the wind environment that weather balloons cannot depict. The Marshall Space Flight Center's Natural Environments Branch assessed data from the new DRWP collected during Jan-Feb 2015 against a specified set of test criteria. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 49 concurrent DRWP and balloon profiles presented root mean square wind component differences around 2.0 m/s. Evaluation of the DRWP's coherence between five-minute wind pairs found the effective vertical resolution to be Nyquist-limited at 300 m for both wind components. In addition, the sensitivity to rejecting data that do not have adequate signal was quantified. This paper documents the data, quality control procedures, methodology, and results of each analysis.
NASA Technical Reports Server (NTRS)
Rao, P. Anil; Velden, Christopher S.; Braun, Scott A.; Einaudi, Franco (Technical Monitor)
2001-01-01
Errors in the height assignment of some satellite-derived winds exist because the satellites sense radiation emitted from a finite layer of the atmosphere rather than a specific level. Potential problems in data assimilation may arise because the motion of a measured layer is often represented by a single-level value. In this research, cloud and water vapor motion winds that are derived from the Geostationary Operational Environmental Satellites (GOES winds) are compared to collocated rawinsonde observations (RAOBs). An important aspect of this work is that in addition to comparisons at each assigned height, the GOES winds are compared to the entire profile of the collocated RAOB data to determine the vertical error characteristics of the GOES winds. The impact of these results on numerical weather prediction is then investigated. The comparisons at individual vector height assignments indicate that the error of the GOES winds range from approx. 3 to 10 m/s and generally increase with height. However, if taken as a percentage of the total wind speed, accuracy is better at upper levels. As expected, comparisons with the entire profile of the collocated RAOBs indicate that clear-air water vapor winds represent deeper layers than do either infrared or water vapor cloud-tracked winds. This is because in cloud-free regions the signal from water vapor features may result from emittance over a thicker layer. To further investigate characteristics of the clear-air water vapor winds, they are stratified into two categories that are dependent on the depth of the layer represented by the vector. It is found that if the vertical gradient of moisture is smooth and uniform from near the height assignment upwards, the clear-air water vapor wind tends to represent a relatively deep layer. The information from the comparisons is then used in numerical model simulations of two separate events to determine the forecast impacts. Four simulations are performed for each case: 1) A control simulation that assimilates no satellite wind data, 2) assimilation of all GOES winds according to their assigned single level height, 3) assimilation of all GOES winds spread over multiple levels, and 4) assimilation of all GOES winds spread over multiple levels, but with variations in the vertical influence of clear-air water vapor winds based on the moisture profile in the model. In the first case, a strong mid-latitude cyclone is present and the use of the satellite data results in improved storm tracks during the initial approx. 36 h forecast period. This is because the satellite data improves the analysis of the environment into which the storm progresses. Statistics for mean wind vector and height differences show that, with the exception of the height field at later times in the first case, the use of GOES winds improves the simulation with time. The simulation results suggest that it is beneficial to spread the GOES wind information over multiple levels, particularly when the moisture profile is used to define the vertical influence.
Analysis and characterization of the vertical wind profile in UAE
NASA Astrophysics Data System (ADS)
Lee, W.; Ghedira, H.; Ouarda, T.; Gherboudj, I.
2011-12-01
In this study, temporal and spatial analysis of the vertical wind profiles in the UAE has been performed to estimate wind resource potential. Due to the very limited number of wind masts (only two wind masts in the UAE, operational for less than three years), the wind potential analysis will be mainly derived from numerical-based models. Additional wind data will be derived from the UAE met stations network (at 10 m elevation) managed by the UAE National Center of Meteorology and Seismology. However, since wind turbines are generally installed at elevations higher than 80 m, it is vital to extrapolate wind speed correctly from low heights to wind turbine hub heights to predict potential wind energy properly. To do so, firstly two boundary layer based models, power law and logarithmic law, were tested to find the best fitting model. Power law is expressed as v/v0 =(H/H0)^α and logarithmic law is represented as v/v0 =[ln(H/Z0))/(ln(H0/Z0)], where V is the wind speed [m/s] at height H [m] and V0 is the known wind speed at a reference height H0. The exponent (α) coefficient is an empirically derived value depending on the atmospheric stability and z0 is the roughness coefficient length [m] that depends on topography, land roughness and spacing. After testing the two models, spatial and temporal analysis for wind profile was performed. Many studies about wind in different regions have shown that wind profile parameters have hourly, monthly and seasonal variations. Therefore, it can be examined whether UAE wind characteristics follow general wind characteristics observed in other regions or have specific wind features due to its regional condition. About 3 years data from August 2008 to February 2011 with 10-minutes resolution were used to derive monthly variation. The preliminary results(Fig.1) show that during that period, wind profile parameters like alpha from power law and roughness length from logarithmic law have monthly variation. Both alpha and roughness have low values during summer and high values during winter. This variation is mainly explained by the direct effect of air temperature on atmospheric stability. When the surface temperature becomes high, air is mixed well in atmospheric boundary layer. This phenomenon leads to vertically low wind speed change indicating low wind profile parameter. On the contrary, cold surface temperature prevents air from being mixed well in the boundary layer. This analysis is applied to different regions to see the spatial characteristics of wind in UAE. As a next step, a mesoscale model coupled with UAE roughness maps will be used to predict elevated wind speed. A micro-scale modeling approach will be also used to capture small-scale wind speed variability. This data will be combined with the NCMS data and tailored to the UAE by modeling the effects due to local changes in terrain elevation and local surface roughness changes and obstacles.
NASA Technical Reports Server (NTRS)
Barbre, Robert, Jr.
2015-01-01
Assessment of space vehicle loads and trajectories during design requires a large sample of wind profiles at the altitudes where winds affect the vehicle. Traditionally, this altitude region extends from near 8-14 km to address maximum dynamic pressure upon ascent into space, but some applications require knowledge of measured wind profiles at lower altitudes. Such applications include crew capsule pad abort and plume damage analyses. Two Doppler Radar Wind Profiler (DRWP) systems exist at the United States Air Force (USAF) Eastern Range and at the National Aeronautics and Space Administration's Kennedy Space Center. The 50-MHz DRWP provides wind profiles every 3-5 minutes from roughly 2.5-18.5 km, and five 915-MHz DRWPs provide wind profiles every 15 minutes from approximately 0.2-3.0 km. Archived wind profiles from all systems underwent rigorous quality control (QC) processes, and concurrent measurements from the QC'ed 50- and 915-MHz DRWP archives were spliced into individual profiles that extend from about 0.2-18.5 km. The archive contains combined profiles from April 2000 to December 2009, and thousands of profiles during each month are available for use by the launch vehicle community. This paper presents the details of the QC and splice methodology, as well as some attributes of the archive.
Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves
NASA Technical Reports Server (NTRS)
Eberstein, I. J.; Theon, J. S.
1975-01-01
Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.
On the Development of Models for Height Profiles of the Wind Speed in the Atmospheric Surface Layer
NASA Astrophysics Data System (ADS)
Nikolaev, V. G.; Ganaga, S. V.; Kudryashov, Yu. I.; Nikolaev, V. V.
2018-03-01
The reliability of the known models of a height profile of the wind speed V( h) in the atmospheric boundary layer (ABL) and near-surface layer (NSL) is analyzed using the data of long-term ABL measurements accumulated in Russia in the state network of meteorological and aerological stations and the data of multilevel measurements at mast wind-measuring complexes. A new multilayer semiempirical model of V( h) is proposed which is based on aerodynamic and physical representations of the ABL vertical structure and relies on the hypothesis that wind-speed profiles providing the minimum wind friction on the ground and satisfying the conditions of profile smoothness are feasible in the ABL. This model ensures the best agreement with the data of meteorological, aerological, and mast wind measurements.
Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique
NASA Technical Reports Server (NTRS)
Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin
2000-01-01
The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.
NASA Technical Reports Server (NTRS)
Burley, R. R.; Savino, J. M.; Wagner, L. H.; Diedrich, J. H.
1979-01-01
Wind speed profile measurements to measure the effect of a wind turbine tower on the wind velocity are presented. Measurements were made in the wake of scale models of the tower and in the wake of certain full scale components to determine the magnitude of the speed reduction (tower shadow). Shadow abatement techniques tested on the towers included the removal of diagonals, replacement of diagonals and horizontals with round cross section members, installation of elliptical shapes on horizontal members, installation of airfoils on vertical members, and application of surface roughness to vertical members.
NASA Astrophysics Data System (ADS)
Laughman, B.; Fritts, D. C.; Lund, T. S.
2017-05-01
Many characteristics of tsunami-driven gravity waves (TDGWs) enable them to easily propagate into the thermosphere and ionosphere with appreciable amplitudes capable of producing detectable perturbations in electron densities and total electron content. The impact of vertically varying background and tidal wind structures on TDGW propagation is investigated with a series of idealized background wind profiles to assess the relative importance of wave reflection, critical-level approach, and dissipation. These numerical simulations employ a 2-D nonlinear anelastic finite-volume neutral atmosphere model which accounts for effects accompanying vertical gravity wave (GW) propagation such as amplitude growth with altitude. The GWs are excited by an idealized tsunami forcing with a 50 cm sea surface displacement, a 400 km horizontal wavelength, and a phase speed of 200 ms-1 consistent with previous studies of the tsunami generated by the 26 December 2004 Sumatra earthquake. Results indicate that rather than partial reflection and trapping, the dominant process governing TDGW propagation to thermospheric altitudes is refraction to larger and smaller vertical scales, resulting in respectively larger and smaller vertical group velocities and respectively reduced and increased viscous dissipation. Under all considered background wind profiles, TDGWs were able to attain ionospheric altitudes with appreciable amplitudes. Finally, evidence of nonlinear effects is observed and the conditions leading to their formation is discussed.
Equatorial F region neutral winds and shears near sunset measured with chemical release techniques
NASA Astrophysics Data System (ADS)
Kiene, A.; Larsen, M. F.; Kudeki, E.
2015-10-01
The period near sunset is a dynamic and critical time for the daily development of the equatorial nighttime ionosphere and the instabilities that occur there. It is during these hours that the preconditions necessary for the later development of Equatorial Spread F (ESF) plasma instabilities occur. The neutral dynamics of the sunset ionosphere are also of critical importance to the generation of currents and electric fields; however, the behavior of the neutrals is experimentally understood primarily through very limited single-altitude measurements or measurements that provide weighted altitude means of the winds as a function of time. To date, there have been very few vertically resolved neutral wind measurements in the F region at sunset. We present two sets of sounding rocket chemical release measurements, one from a launch in the Marshall Islands on Kwajalein atoll and one from Alcantara, Brazil. Analysis of the release motions has yielded vertically resolved neutral wind profiles that show both the mean horizontal winds and the vertical shears in the winds. In both experiments, we observe significant vertical gradients in the zonal wind that are unexpected by classical assumptions about the behavior of the neutral wind at these altitudes at sunset near the geomagnetic equator.
Computer programs for generation and evaluation of near-optimum vertical flight profiles
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Waters, M. H.; Patmore, L. C.
1983-01-01
Two extensive computer programs were developed. The first, called OPTIM, generates a reference near-optimum vertical profile, and it contains control options so that the effects of various flight constraints on cost performance can be examined. The second, called TRAGEN, is used to simulate an aircraft flying along an optimum or any other vertical reference profile. TRAGEN is used to verify OPTIM's output, examine the effects of uncertainty in the values of parameters (such as prevailing wind) which govern the optimum profile, or compare the cost performance of profiles generated by different techniques. A general description of these programs, the efforts to add special features to them, and sample results of their usage are presented.
The structure of the stably stratified internal boundary layer in offshore flow over the sea
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Ryan, B. F.
1989-04-01
Observations obtained mainly from a research aircraft are presented of the mean and turbulent structure of the stably stratified internal boundary layer (IBL) over the sea formed by warm air advection from land to sea. The potential temperature and humidity fields reveal the vertical extent of the IBL, for fetches out to several hundred of kilometres, geostrophic winds of 20 25 m s-1, and potential temperature differences between undisturbed continental air and the sea surface of 7 to 17 K. The dependence of IBL depth on these external parameters is discussed in the context of the numerical results of Garratt (1987), and some discrepancies are noted. Wind observations show the development of a low-level wind maximum (wind component normal to the coast) and rotation of the wind to smaller cross-isobar flow angles. Potential temperature (θ) profiles within the IBL reveal quite a different structure to that found in the nocturnal boundary layer (NBL) over land. Over the sea, θ profiles have large positive curvature with vertical gradients increasing monotonically with height; this reflects the dominance of turbulent cooling within the layer. The behaviour is consistent with known behaviour in the NBL over land where curvature becomes negative (vertical gradients of θ decreasing with height) as radiative cooling becomes dominant. Turbulent properties are discussed in terms of non-dimensional quantities, normalised by the surface friction velocity, as functions of normalised height using the IBL depth. Vertical profiles of these and the normalised wavelength of the spectral maximum agree well with known results for the stable boundary layer over land (Caughey et al., 1979).
Research on the space-borne coherent wind lidar technique and the prototype experiment
NASA Astrophysics Data System (ADS)
Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao
2016-10-01
Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.
NASA Astrophysics Data System (ADS)
Ran, L.; Deng, Z.
2013-12-01
The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.
NASA Astrophysics Data System (ADS)
Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin
2018-05-01
The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. P. Jensen; Giangrande, S. E.; Bartholomew, M. J.
The Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) [http://www.arm.gov/campaigns/osc2013rwpcf] campaign was scheduled to take place from 15 July 2013 through 15 July 2015 (or until shipped for the next U.S. Department of Energy Atmospheric Radiation Measurement [ARM] Climate Research Facility first Mobile Facility [AMF1] deployment). The campaign involved the deployment of the AMF1 Scintec 915 MHz Radar Wind Profiler (RWP) at BNL, in conjunction with several other ARM, BNL and National Weather Service (NWS) instruments. The two main scientific foci of the campaign were: 1) To provide profiles of the horizontal wind to be used tomore » test and validate short-term cloud advection forecasts for solar-energy applications and 2) to provide vertical profiling capabilities for the study of dynamics (i.e., vertical velocity) and hydrometeors in winter storms. This campaign was a serendipitous opportunity that arose following the deployment of the RWP at the Two-Column Aerosol Project (TCAP) campaign in Cape Cod, Massachusetts and restriction from participation in the Green Ocean Amazon 2014/15 (GoAmazon 2014/15) campaign due to radio-frequency allocation restriction for international deployments. The RWP arrived at BNL in the fall of 2013, but deployment was delayed until fall of 2014 as work/safety planning and site preparation were completed. The RWP further encountered multiple electrical failures, which eventually required several shipments of instrument power supplies and the final amplifier to the vendor to complete repairs. Data collection began in late January 2015. The operational modes of the RWP were changed such that in addition to collecting traditional profiles of the horizontal wind, a vertically pointing mode was also included for the purpose of precipitation sensing and estimation of vertical velocities. The RWP operated well until the end of the campaign in July 2015 and collected observations for more than 20 precipitation events.« less
Yi, C.; Monson, Russell K.; Zhai, Z.; Anderson, D.E.; Lamb, B.; Allwine, G.; Turnipseed, A.A.; Burns, Sean P.
2005-01-01
The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Yi, Chuixiang; Monson, Russell K.; Zhai, Zhiqiang; Anderson, Dean E.; Lamb, Brian; Allwine, Gene; Turnipseed, Andrew A.; Burns, Sean P.
2005-11-01
The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain.
NASA Technical Reports Server (NTRS)
Danielson, E. F.; Hipskind, R. S.; Gaines, S. E.
1980-01-01
Results are presented from computer processing and digital filtering of radiosonde and radar tracking data obtained during the ITCZ experiment when coordinated measurements were taken daily over a 16 day period across the Panama Canal Zone. The temperature relative humidity and wind velocity profiles are discussed.
Vertical velocity variance in the mixed layer from radar wind profilers
Eng, K.; Coulter, R.L.; Brutsaert, W.
2003-01-01
Vertical velocity variance data were derived from remotely sensed mixed layer turbulence measurements at the Atmospheric Boundary Layer Experiments (ABLE) facility in Butler County, Kansas. These measurements and associated data were provided by a collection of instruments that included two 915 MHz wind profilers, two radio acoustic sounding systems, and two eddy correlation devices. The data from these devices were available through the Atmospheric Boundary Layer Experiment (ABLE) database operated by Argonne National Laboratory. A signal processing procedure outlined by Angevine et al. was adapted and further built upon to derive vertical velocity variance, w_pm???2, from 915 MHz wind profiler measurements in the mixed layer. The proposed procedure consisted of the application of a height-dependent signal-to-noise ratio (SNR) filter, removal of outliers plus and minus two standard deviations about the mean on the spectral width squared, and removal of the effects of beam broadening and vertical shearing of horizontal winds. The scatter associated with w_pm???2 was mainly affected by the choice of SNR filter cutoff values. Several different sets of cutoff values were considered, and the optimal one was selected which reduced the overall scatter on w_pm???2 and yet retained a sufficient number of data points to average. A similarity relationship of w_pm???2 versus height was established for the mixed layer on the basis of the available data. A strong link between the SNR and growth/decay phases of turbulence was identified. Thus, the mid to late afternoon hours, when strong surface heating occurred, were observed to produce the highest quality signals.
Vertical Profiling of Air Pollution at RAPCD
NASA Technical Reports Server (NTRS)
Newchurch, Michael J.; Fuller, Kirk A.; Bowdle, David A.; Johnson, Steven; Knupp, Kevin; Gillani, Noor; Biazar, Arastoo; Mcnider, Richard T.; Burris, John
2004-01-01
The interaction between local and regional pollution levels occurs at the interface of the Planetary Boundary Layer and the Free Troposphere. Measuring the vertical distribution of ozone, aerosols, and winds with high temporal and vertical resolution is essential to diagnose the nature of this interchange and ultimately for accurately forecasting ozone and aerosol pollution levels. The Regional Atmospheric Profiling Center for Discovery, RAPCD, was built and instrumented to address this critical issue. The ozone W DIAL lidar, Nd:YAG aerosol lidar, and 2.1 micron Doppler wind lidar, along with balloon- borne ECC ozonesondes form the core of the W C D instrumentation for addressing this problem. Instrumentation in the associated Mobile Integrated Profiling (MIPS) laboratory includes 91 5Mhz profiler, sodar, and ceilometer. The collocated Applied particle Optics and Radiometry (ApOR) laboratory hosts an FTIR along with MOUDI and optical particle counters. With MODELS-3 analysis by colleagues in the National Space Science and Technology Center on the UAH campus and the co- located National Weather Service Forecasting Office in Huntsville, AL we are developing a unique facility for advancing the state of the science of pollution forecasting.
NASA Astrophysics Data System (ADS)
Graf, A.; Ney, P.
2017-12-01
A continuously moving elevator-based system is described to measure vertical profiles of wind speed, temperature, CO2 and H2O within and above short plant canopies with a vertical resolution in the centimeter range. On sample days in 2015 to 2017, we measured profiles from the soil surface to 2 m a.g.l. in a crop rotation including wheat, barley, bare soil, winter catch crops and sugarbeet, with canopy heights of up to 1 m. Profiles over bare soil or very short canopies could be described well by fitting Monin-Obukhov-like profiles, and the derived fluxes of momentum and all three scalars matched well those of a nearby eddy-covariance station. In green canopies during the day, CO2 profiles clearly indicated the plant sink and soil source by a local minimum in the canopy and a maximum at the soil surface. H2O profiles, indicating sources both in the canopy and at the soil surface, did or did not show a local minimum between both, depending on canopy structure and turbulence. Temperature profiles showed various shapes including solar incident angle effects, and often the expected opposing signs of thermal stability between the subcanopy and the roughness sublayer. Finally, we test different existing parametrizations to estimate the vertical source / sink distribution from the measured profiles, compare the resulting vertically integrated fluxes to eddy-covariance based net fluxes, and discuss limitations and needed improvements to quantify subcanopy soil respiration and evaporation from such approaches.
Lundquist, J. K.; Churchfield, M. J.; Lee, S.; ...
2015-02-23
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s -1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s −1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 s -1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Furthermore, measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.« less
NASA Astrophysics Data System (ADS)
Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.
2015-02-01
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 m s-1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.
Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.
Ma, Zhiqiang; Zhang, Xiaoling; Xu, Jing; Zhao, Xiujuan; Meng, Wei
2011-01-01
In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.
Estimation of In-Canopy Ammonia Sources and Sinks in a Fertilized Zea mays Field
An analytical model was developed that describes the in-canopy vertical distribution of NH3 source and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy concentration and wind speed profiles.
NASA Technical Reports Server (NTRS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2016-01-01
MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.
2015-12-01
MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2016-09-01
MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2016-10-01
MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
Lidar measurements of boundary layers, aerosol scattering and clouds during project FIFE
NASA Technical Reports Server (NTRS)
Eloranta, Edwin W. (Principal Investigator)
1995-01-01
A detailed account of progress achieved under this grant funding is contained in five journal papers. The titles of these papers are: The calculation of area-averaged vertical profiles of the horizontal wind velocity using volume imaging lidar data; Volume imaging lidar observation of the convective structure surrounding the flight path of an instrumented aircraft; Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from Volume Imaging Lidar data; An accuracy analysis of the wind profiles calculated from Volume Imaging Lidar data; and Calculation of divergence and vertical motion from volume-imaging lidar data. Copies of these papers form the body of this report.
A measurement system for vertical seawater profiles close to the air-sea interface
NASA Astrophysics Data System (ADS)
Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.
2017-09-01
This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.
Application of a linear spectral model to the study of Amazonian squall lines during GTE/ABLE 2B
NASA Technical Reports Server (NTRS)
Silva Dias, Maria A. F.; Ferreira, Rosana N.
1992-01-01
A linear nonhydrostatic spectral model is run with the basic state, or large scale, vertical profiles of temperature and wind observed prior to convective development along the northern coast of South America during the GTE/ABLE 2B. The model produces unstable modes with mesoscale wavelength and propagation speed comparable to observed Amazonian squall lines. Several tests with different vertical profiles of low-level winds lead to the conclusion that a shallow and/or weak low-level jet either does not produce a scale selection or, if it does, the selected mode is stationary, indicating the absence of a propagating disturbance. A 700-mbar jet of 13 m/s, with a 600-mbar wind speed greater or equal to 10 m/s, is enough to produce unstable modes with propagating features resembling those of observed Amazonian squall lines. However, a deep layer of moderate winds (about 10 m/s) may produce similar results even in the absence of a low-level wind maximum. The implications in terms of short-term weather forecasting are discussed.
NASA Astrophysics Data System (ADS)
Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.
2016-03-01
A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the microstructure of rain both in stratiform and convective conditions.
NASA Astrophysics Data System (ADS)
Arabas, S.; Baehr, C.; Boquet, M.; Dufournet, Y.; Pawlowska, H.; Siebert, H.; Unal, C.
2009-04-01
The poster presents a comparison of selected methods for determination of the vertical wind in the boundary layer used during the EUCAARI IMPACT campaign that took place in May 2008 in The Netherlands. The campaign covered a monthlong intensified ground-based and airborne measurements in the vicinity of the CESAR observatory in Cabauw. Ground-based vertical wind remote sensing was carried out using the Leosphere WindCube WLS70 IR Doppler lidar, Vaisala LAP3000 radar wind-profiler and the TUDelft TARA S-band radar. In-situ airborne measurements were performed using an ultrasonic anemometer (on the ACTOS helicopter underhung platform) and a 5-hole pressure probe (on the SAFIRE ATR-42 airplane radome). Several in-situ anemometers were deployed on the 200-meter high tower of the CESAR observatory. A summary of the characteristics and principles of the considered techniques is presented. A comparison of the results obtained from different platforms depicts the capabilities of each technique and highlights the time, space and velocity resolutions.
Vertical structure of tropospheric winds on gas giants
NASA Astrophysics Data System (ADS)
Scott, R. K.; Dunkerton, T. J.
2017-04-01
Zonal mean zonal velocity profiles from cloud-tracking observations on Jupiter and Saturn are used to infer latitudinal variations of potential temperature consistent with a shear stable potential vorticity distribution. Immediately below the cloud tops, density stratification is weaker on the poleward and stronger on the equatorward flanks of midlatitude jets, while at greater depth the opposite relation holds. Thermal wind balance then yields the associated vertical shears of midlatitude jets in an altitude range bounded above by the cloud tops and bounded below by the level where the latitudinal gradient of static stability changes sign. The inferred vertical shear below the cloud tops is consistent with existing thermal profiling of the upper troposphere. The sense of the associated mean meridional circulation in the upper troposphere is discussed, and expected magnitudes are given based on existing estimates of the radiative timescale on each planet.
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2017-12-01
MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and imaging methods.
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.
2015-01-01
Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.
NASA Astrophysics Data System (ADS)
Luce, Hubert; Kantha, Lakshmi; Hashiguchi, Hiroyuki; Lawrence, Dale; Mixa, Tyler; Yabuki, Masanori; Tsuda, Toshitaka
2018-12-01
The ShUREX (Shigaraki UAV Radar Experiment) 2015 campaign carried out at the Shigaraki Middle and Upper atmosphere (MU) observatory (Japan) in June 2015 provided a unique opportunity to compare vertical profiles of atmospheric parameters estimated from unmanned aerial vehicle (UAV), balloon, and radar data in the lower troposphere. The present work is intended primarily as a demonstration of the potential offered by combination of these three instruments for studying the small-scale structure and dynamics in the lower troposphere. Here, we focus on data collected almost simultaneously by two instrumented UAVs and two meteorological balloons, near the MU radar operated continuously during the campaign. The UAVs flew along helical ascending and descending paths at a nearly constant horizontal distance from the radar ( 1.0 km), while the balloons launched from the MU radar site drifted up to 3-5 km in the altitude range of comparisons ( 0.5 to 4.0 km) due to wind advection. Vertical profiles of squared Brünt-Väisälä frequency N 2 and squared vertical gradient of generalized potential refractive index M 2 were estimated at a vertical resolution of 20 m from pressure, temperature, and humidity data collected by UAVs and radiosondes. Profiles of M 2 were also estimated from MU radar echo power at vertical incidence at a vertical sampling of 20 m and various time resolutions (1-4 min). The balloons and the MU radar provided vertical profiles of wind and wind shear S so that two independent estimates of the gradient Richardson number ( Ri = N 2/ S 2) could be obtained at a range resolution of 150 m. The two estimates of Ri profiles also showed remarkable agreement at all altitudes. We show that all three instruments detected the same prominent temperature and humidity gradients, down to decameter scales in stratified conditions. These gradients extended horizontally over a few kilometers at least and persisted for hours without significant changes, indicating that the turbulent diffusion was weak . Large discrepancies between N 2and M 2 profiles derived from the balloon, UAV, and radar data were found in a turbulent layer generated by a Kelvin-Helmholtz (KH) shear flow instability in the height range from 1.80 to 2.15 km. The cause of these discrepancies appears to depend on the stage of the KH billows.
Comparison of raindrop size distributions measured by radar wind profiler and by airplane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, R.R.; Ethier, S.A.; Baumgardner, D.
1993-04-01
Wind profilers are radars that operate in the VHF and UHF bands and are designed for detecting the weak echoes reflected by the optically clear atmosphere. An unexpected application of wind profilers has been the revival of an old method of estimating drop size distributions in rain from the Doppler spectrum of the received signal. Originally attempted with radars operating at microwave frequencies, the method showed early promise but was seriously limited in application because of the crucial sensitivity of the estimated drop sizes to the vertical air velocity, a quantity generally unknown and, at that time, unmeasurable. Profilers havemore » solved this problem through their ability to measure, under appropriate conditions, both air motions and drop motions. This paper compares the drop sizes measured by a UHF profiler at two altitudes in a shower with those measured simultaneously by an instrumented airplane. The agreement is satisfactory, lending support to this new application of wind profilers. 20 refs., 5 figs.« less
Role of mixed precipitating cloud systems on the typhoon rainfall
NASA Astrophysics Data System (ADS)
Pan, C. J.; Krishna Reddy, K.; Lai, H. C.; Yang, S. S.
2010-01-01
L-band wind profiler data are utilized to diagnose the vertical structure of the typhoon precipitating cloud systems in Taiwan. For several typhoons, a pronounced bright band (BB) around 5 km is commonly observed from the observation. Since strong convection within typhoon circulation may disturb and/or disrupt the melting layer, the BB shall not appear persistently. Hence, an understanding of the vertical structure of the BB region is important because it holds extensive hydrometeors information on the type of precipitation and its variability. Wind profiler observational results suggest that the mixture of convective and stratiform (embedded type) clouds are mostly associated with typhoons. In the case of one typhoon, BB is appeared around 5.5 km with embedded precipitation and also BB height of 1 km higher than ordinary showery precipitation. This is evident from the long-term observations of wind profiler and Tropical Rainfall Measuring Mission. The Doppler velocity profiles show hydrometers (ice/snow) at 6 km but liquid below 5 km for typhoons and 4 km for showery precipitation. In the BB region the melting particles accelerations of 5.8 ms-1 km-1 and 3.2 ms-1 km-1 are observed for typhoon and showery precipitation, respectively.
NASA Astrophysics Data System (ADS)
Deshpande, Sachin M.; Dhangar, N.; Das, S. K.; Kalapureddy, M. C. R.; Chakravarty, K.; Sonbawne, S.; Konwar, M.
2015-11-01
Single Doppler analysis techniques known as velocity azimuth display (VAD) and volume velocity processing (VVP) are used to analyze kinematics of mesoscale flow such as horizontal wind and divergence using X-band Doppler weather radar observations, for selected cases of convective, stratiform, and shallow cloud systems near tropical Indian sites Pune (18.58°N, 73.92°E, above sea level (asl) 560 m) and Mandhardev (18.51°N, 73.85°E, asl 1297 m). The vertical profiles of horizontal wind estimated from radar VVP/VAD methods agree well with GPS radiosonde profiles, with the low-level jet at about 1.5 km during monsoon season well depicted in both. The vertical structure and temporal variability of divergence and reflectivity profiles are indicative of the dynamical and microphysical characteristics of shallow convective, deep convective, and stratiform cloud systems. In shallow convective systems, vertical development of reflectivity profiles is limited below 5 km. In deep convective systems, reflectivity values as large as 55 dBZ were observed above freezing level. The stratiform system shows the presence of a reflectivity bright band (~35 dBZ) near the melting level. The diagnosed vertical profiles of divergence in convective and stratiform systems are distinct. In shallow convective conditions, convergence was seen below 4 km with divergence above. Low-level convergence and upper level divergence are observed in deep convective profiles, while stratiform precipitation has midlevel convergence present between lower level and upper level divergence. The divergence profiles in stratiform precipitation exhibit intense shallow layers of "melting convergence" at 0°C level, near 4.5 km altitude, with a steep gradient on the both sides of the peak. The level of nondivergence in stratiform situations is lower than that in convective situations. These observed vertical structures of divergence are largely indicative of latent heating profiles in the atmosphere, an important ingredient of monsoon dynamics.
EFFECTS OF WIND SHEAR ON POLLUTION DISPERSION. (R827929)
Using an accurate numerical method for simulating the advection and diffusion of pollution puffs, it is demonstrated that point releases of pollution grow into a shape reflecting the vertical wind shear profile experienced by the puff within a time scale less than 4 h. Fo...
Finnish Meteorological Institute Doppler Lidar
Ewan OConnor
2015-03-27
This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.
Estimation of in-canopy ammonia sources and sinks in a fertilized Zea mays field
An analytical model was developed that describes the in-canopy vertical distribution of NH3 source and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy concentration and wind speed profiles. This model was applied to quantify in-canopy air-s...
An efficient, self-orienting, vertical-array, sand trap
NASA Astrophysics Data System (ADS)
Hilton, Michael; Nickling, Bill; Wakes, Sarah; Sherman, Douglas; Konlechner, Teresa; Jermy, Mark; Geoghegan, Patrick
2017-04-01
There remains a need for an efficient, low-cost, portable, passive sand trap, which can provide estimates of vertical sand flux over topography and within vegetation and which self-orients into the wind. We present a design for a stacked vertical trap that has been modelled (computational fluid dynamics, CFD) and evaluated in the field and in the wind tunnel. The 'swinging' trap orients to within 10° of the flow in the wind tunnel at 8 m s-1, and more rapidly in the field, where natural variability in wind direction accelerates orientation. The CFD analysis indicates flow is steered into the trap during incident wind flow. The trap has a low profile and there is only a small decrease in mass flow rate for multiple traps, poles and rows of poles. The efficiency of the trap was evaluated against an isokinetic sampler and found to be greater than 95%. The centre pole is a key element of the design, minimally decreasing trap efficiency. Finally, field comparisons with the trap of Sherman et al. (2014) yielded comparable estimates of vertical sand flux. The trap described in this paper provides accurate estimates of sand transport in a wide range of field conditions.
Characteristics of nocturnal coastal boundary layer in Ahtopol based on averaged SODAR profiles
NASA Astrophysics Data System (ADS)
Barantiev, Damyan; Batchvarova, Ekaterina; Novitzky, Mikhail
2014-05-01
The ground-based remote sensing instruments allow studying the wind regime and the turbulent characteristics of the atmosphere with height, achieving new knowledge and solving practical problems, such as air quality assessments, mesoscale models evaluation with high resolution data, characterization of the exchange processes between the surface and the atmosphere, the climate comfort conditions and the risk for extreme events, etc. Very important parameter in such studies is the height of the atmospheric boundary layer. Acoustic remote sensing data of the coastal atmospheric boundary layer were explored based on over 4-years continuous measurements at the meteorological observatory of Ahtopol (Bulgarian Southern Black Sea Coast) under Bulgarian - Russian scientific agreement. Profiles of 12 parameters from a mid-range acoustic sounding instrument type SCINTEC MFAS are derived and averaged up to about 600 m according filtering based on wind direction (land or sea type of night fowls). From the whole investigated period of 1454 days with 10-minute resolution SODAR data 2296 profiles represented night marine air masses and 1975 profiles represented the night flow from land during the months May to September. Graphics of averaged profiles of 12 SODAR output parameters with different availability of data in height are analyzed for both cases. A marine boundary-layer height of about 300 m is identified in the profiles of standard deviation of vertical wind speed (σw), Turbulent Kinetic Energy (TKE) and eddy dissipation rate (EDR). A nocturnal boundary-layer height of about 420 m was identified from the profiles of the same parameters under flows from land condition. In addition, the Buoyancy Production (BP= σw3/z) profiles were calculated from the standard deviation of the vertical wind speed and the height z above ground.
Microphysical modeling of Titan's detached haze layer in a 3D GCM
NASA Astrophysics Data System (ADS)
Larson, Erik J. L.; Toon, Owen B.; West, Robert A.; Friedson, A. James
2015-07-01
We use a 3D GCM with coupled aerosol microphysics to investigate the formation and seasonal cycle of the detached haze layer in Titan's upper atmosphere. The base of the detached haze layer is defined by a local minimum in the vertical extinction profile. The detached haze is seen at all latitudes including the south pole as seen in Cassini images from 2005-2012. The layer merges into the winter polar haze at high latitudes where the Hadley circulation carries the particles downward. The hemisphere in which the haze merges with the polar haze varies with season. We find that the base of the detached haze layer occurs where there is a near balance between vertical winds and particle fall velocities. Generally the vertical variation of particle concentration in the detached haze region is simply controlled by sedimentation, so the concentration and the extinction vary roughly in proportion to air density. This variation explains why the upper part of the main haze layer, and the bulk of the detached haze layer follow exponential profiles. However, the shape of the profile is modified in regions where the vertical wind velocity is comparable to the particle fall velocity. Our simulations closely match the period when the base of the detached layer in the tropics is observed to begin its seasonal drop in altitude, and the total range of the altitude drop. However, the simulations have the base of the detached layer about 100 km lower than observed, and the time for the base to descend is slower in the simulations than observed. These differences may point to the model having somewhat lower vertical winds than occur on Titan, or somewhat too large of particle sizes, or some combination of both. Our model is consistent with a dynamical origin for the detached haze rather than a chemical or microphysical one. This balance between the vertical wind and particle fall velocities occurs throughout the summer hemisphere and tropics. The particle concentration gradients that are established in the summer hemisphere are transported to the winter hemisphere by meridional winds from the overturning Hadley cell. Our model is consistent with the disappearance of the detached haze layer in early 2014. Our simulations predict the detached haze and gap will reemerge at its original high altitude between mid 2014 and early 2015.
Microphysical Modeling of Titan's Detached Haze Layer in a 3D GCM
NASA Astrophysics Data System (ADS)
Larson, Erik J.; Toon, Owen B.; West, Robert A.; Friedson, A. James
2015-11-01
We investigate the formation and seasonal cycle of the detached haze layer in Titan’s upper atmosphere using a 3D GCM with coupled aerosol microphysics. The base of the detached haze layer is defined by a local minimum in the vertical extinction profile. The detached haze is seen at all latitudes including the south pole as seen in Cassini images from 2005-2012. The layer merges into the winter polar haze at high latitudes where the Hadley circulation carries the particles downward. The hemisphere in which the haze merges with the polar haze varies with season. We find that the base of the detached haze layer occurs where there is a near balance between vertical winds and particle fall velocities. Generally the vertical variation of particle concentration in the detached haze region is simply controlled by sedimentation, so the concentration and the extinction vary roughly in proportion to air density. This variation explains why the upper part of the main haze layer, and the bulk of the detached haze layer follow exponential profiles. However, the shape of the profile is modified in regions where the vertical wind velocity is comparable to the particle fall velocity. Our simulations closely match the period when the base of the detached layer in the tropics is observed to begin its seasonal drop in altitude, and the total range of the altitude drop. However, the simulations have the base of the detached layer about 100 km lower than observed, and the time for the base to descend is slower in the simulations than observed. These differences may point to the model having somewhat lower vertical winds than occur on Titan, or somewhat too large of particle sizes, or some combination of both. Our model is consistent with a dynamical origin for the detached haze rather than a chemical or microphysical one. This balance between the vertical wind and particle fall velocities occurs throughout the summer hemisphere and tropics. The particle concentration gradients that are established in the summer hemisphere are transported to the winter hemisphere by meridional winds from the overturning Hadley cell. Our model is consistent with the disappearance of the detached haze layer in early 2014.
NASA Technical Reports Server (NTRS)
Zak, J. Allen; Rodgers, William G., Jr.
2000-01-01
The quality of the Aircraft Vortex Spacing System (AVOSS) is critically dependent on representative wind profiles in the atmospheric boundary layer. These winds observed from a number of sensor systems around the Dallas-Fort Worth airport were combined into single vertical wind profiles by an algorithm developed and implemented by MIT Lincoln Laboratory. This process, called the AVOSS Winds Analysis System (AWAS), is used by AVOSS for wake corridor predictions. During times when AWAS solutions were available, the quality of the resultant wind profiles and variance was judged from a series of plots combining all sensor observations and AWAS profiles during the period 1200 to 0400 UTC daily. First, input data was evaluated for continuity and consistency from criteria established. Next, the degree of agreement among all wind sensor systems was noted and cases of disagreement identified. Finally, the resultant AWAS solution was compared to the quality-assessed input data. When profiles differed by a specified amount from valid sensor consensus winds, times and altitudes were flagged. Volume one documents the process and quality of input sensor data. Volume two documents the data processing/sorting process and provides the resultant flagged files.
Microstructure of Turbulence in the Stably Stratified Boundary Layer
NASA Astrophysics Data System (ADS)
Sorbjan, Zbigniew; Balsley, Ben B.
2008-11-01
The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Walker, John R.; Barbre, Robert E., Jr.; Leach, Richard D.
2015-01-01
Atmospheric wind data are required by space launch vehicles in order to assess flight vehicle loads and performance on day-of-launch. Space launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use within vehicle trajectory analyses. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output. First, balloons require approximately one hour to reach required altitudes. Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. These issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data over altitude ranges necessary for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. This paper will present details of the splicing software algorithms and will provide sample output.
NASA Astrophysics Data System (ADS)
Schminder, R.; Kurschner, D.
1984-05-01
When supplemented by absolute reflection height measurements, low frequency wind measurements in the 90-100 km height range become truly competitive in comparison with the more widely used radar meteor wind observations. For example, height profiles of the wind parameters in the so-called meteor zone can be obtained due to the considerable interdiurnal variability of the average nighttime reflection heights controlled by geomagnetic activity. The phase of the semidiurnal tidal wind is particularly height-dependent. The measured vertical gradient of 1/4 h/km in winter corresponds to a vertical wavelength of about 50 km. Wind measurements in the upper atmosphere, at heights between 90 and 100 km, were carried out at the Collm Geophysical Observatory of Karl Marx University Leipzig for a number of years. These measurements use the closely-spaced receiver method and three measuring paths, on 179, 227, and 272 kHz. They take place every day between sunset and sunrise, i.e., nightly. A night in this sense may last as long as 18 hours in winter. Both the measurements and their evaluation are completely automatic, and the prevailing winds and tides are separated.
NASA Technical Reports Server (NTRS)
Schminder, R.; Kurschner, D.
1984-01-01
When supplemented by absolute reflection height measurements, low frequency wind measurements in the 90-100 km height range become truly competitive in comparison with the more widely used radar meteor wind observations. For example, height profiles of the wind parameters in the so-called meteor zone can be obtained due to the considerable interdiurnal variability of the average nighttime reflection heights controlled by geomagnetic activity. The phase of the semidiurnal tidal wind is particularly height-dependent. The measured vertical gradient of 1/4 h/km in winter corresponds to a vertical wavelength of about 50 km. Wind measurements in the upper atmosphere, at heights between 90 and 100 km, were carried out at the Collm Geophysical Observatory of Karl Marx University Leipzig for a number of years. These measurements use the closely-spaced receiver method and three measuring paths, on 179, 227, and 272 kHz. They take place every day between sunset and sunrise, i.e., nightly. A night in this sense may last as long as 18 hours in winter. Both the measurements and their evaluation are completely automatic, and the prevailing winds and tides are separated.
NASA Technical Reports Server (NTRS)
Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.
2015-01-01
The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.
NASA Astrophysics Data System (ADS)
Durazo, Juan A.; Kostelich, Eric J.; Mahalov, Alex
2017-09-01
We propose a targeted observation strategy, based on the influence matrix diagnostic, that optimally selects where additional observations may be placed to improve ionospheric forecasts. This strategy is applied in data assimilation observing system experiments, where synthetic electron density vertical profiles, which represent those of Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa satellite 3, are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model using the local ensemble transform Kalman filter during the 26 September 2011 geomagnetic storm. During each analysis step, the observation vector is augmented with five synthetic vertical profiles optimally placed to target electron density errors, using our targeted observation strategy. Forecast improvement due to assimilation of augmented vertical profiles is measured with the root-mean-square error (RMSE) of analyzed electron density, averaged over 600 km regions centered around the augmented vertical profile locations. Assimilating vertical profiles with targeted locations yields about 60%-80% reduction in electron density RMSE, compared to a 15% average reduction when assimilating randomly placed vertical profiles. Assimilating vertical profiles whose locations target the zonal component of neutral winds (Un) yields on average a 25% RMSE reduction in Un estimates, compared to a 2% average improvement obtained with randomly placed vertical profiles. These results demonstrate that our targeted strategy can improve data assimilation efforts during extreme events by detecting regions where additional observations would provide the largest benefit to the forecast.
Liu, Zhao; Zheng, Chaorong; Wu, Yue
2017-09-01
Wind profilers have been widely adopted to observe the wind field information in the atmosphere for different purposes. But accuracy of its observation has limitations due to various noises or disturbances and hence need to be further improved. In this paper, the data measured under strong wind conditions, using a 1290-MHz boundary layer profiler (BLP), are quality controlled via a composite quality control (QC) procedure proposed by the authors. Then, through the comparison with the data measured by radiosonde flights (balloon observations), the critical thresholds in the composite QC procedure, including consensus average threshold T 1 and vertical shear threshold T 3 , are systematically discussed. And the performance of the BLP operated under precipitation is also evaluated. It is found that to ensure the high accuracy and high data collectable rate, the optimal range of subsets is determined to be 4 m/s. Although the number of data rejected by the combined algorithm of vertical shear examination and small median test is quite limited, it is proved that the algorithm is quite useful to recognize the outlier with a large discrepancy. And the optimal wind shear threshold T 3 can be recommended as 5 ms -1 /100m. During patchy precipitation, the quality of data measured by the four oblique beams (using the DBS measuring technique) can still be ensured. After the BLP data are quality controlled by the composite QC procedure, the output can show good agreement with the balloon observation.
NASA Technical Reports Server (NTRS)
Massman, William
1987-01-01
A semianalytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.
Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.
Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud
2017-07-01
Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.
Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Nathan E.
2012-03-12
Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressuremore » fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives was met successfully. The use of phase unwrapping applied to SODAR data was found to yield reasonable results for per-pulse measurements. A health monitoring system design analysis was able to demonstrate the ability to use a very small number of sensors to monitor blade health based on the blade's overall structural modes. Most notable was the development of a multi-objective optimization methodology that successfully yielded an aerodynamic blade design that produces greater power output with reduced aerodynamic loading noise. This optimization method could be significant for future design work.« less
Variability of Wind Speeds and Power over Europe
NASA Astrophysics Data System (ADS)
Tambke, J.; von Bremen, L.; de Decker, J.; Schmidt, M.; Steinfeld, G.; Wolff, J.-O.
2010-09-01
This study comprises two parts: First, we describe the vertical wind speed and turbulence profiles that result from our improved PBL scheme and compare it to observations and 1-dimensional approaches (Monin-Obukhov etc.). Second, we analyse the spatio-temporal correlations in our meso-scale simulations for the years 2004 to 2007 over entire Europe, with special focus on the Irish, North and Baltic Sea. 1.) Vertical Wind Speed Profiles The vertical wind profile above the sea has to be modelled with high accuracy for tip heights up to 160m in order to achieve precise wind resource assessments, to calculate loads and wakes of wind turbines as well as for reliable short-term wind power forecasts. We present an assessment of different models for wind profiles in unstable, neutral and stable thermal stratification. The meso-scale models comprise MM5, WRF and COSMO-EU (LME). Both COSMO-EU from the German Weather Service DWD and WRF use a turbulence closure of 2.5th order - and lead to similar results. Especially the limiting effect of low boundary layer heights on the wind shear in very stable stratification is well captured. In our new WRF-formulation for the mixing length in the Mellor-Yamada-Janjic (MYJ) parameterisation of the Planetary Boundary Layer (PBL-scheme), the master length scale itself depends on the Monin-Obukhov-Length as a parameter for the heat flux effects on the turbulent mixing. This new PBL-scheme shows a better performance for all weather conditions than the original MYJ-scheme. Apart from the low-boundary-layer-effect in very stable situations (which are seldom), standard Monin-Obukhov formulations in combination with the Charnock relation for the sea surface roughness show good agreement with the FINO1-data (German Bight). Interesting results were achieved with two more detailed micro-scale approaches: - the parameterization proposed by Pena, Gryning and Hasager [BLM 2008] that depends on the boundary layer height - our ICWP-model, were the flux of momentum through the air-sea interface is described by a common wave boundary layer with enhanced Charnock dynamics. 2.) Wind Field Variability Time series of wind speed and power from 400 potential offshore locations and 16,000 onshore sites in the 2020 and 2030 scenarios are part of the design basis of the EU-project www.OffshoreGrid.eu. This project investigates the grid integration of all planned offshore farms in Northern Europe and will serve as the basis for the "Blueprint for Offshore Grids" by the European Commission. The synchronous wind time series were calculated with the WRF-model. The simulation comprises four years and was validated with a number of wind measurements. We present detailed statistics of local, clustered and regional power production. The analysis quantifies spatial and temporal correlations, extreme events and ramps. Important results are the smoothing effects in a pan-European offshore grid. Key words: Offshore Wind Resource Assessment; Marine Meteorology; Wind Speed Profile; Marine Atmospheric Boundary Layer; Wind Variability, Spatio-temporal Correlation; Electricity Grid Integration
HRDI Observations of Inertia-Gravity Waves in the Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Lieberman, Ruth S.
1999-01-01
Vertical profiles of High-resolution Doppler imager (HRDI) mesospheric winds have small-scale structure (vertical wavelengths between 10 and 20 km) that is virtually always present. Fourier analysis of HRDI zonal and meridional wind profiles have been carried out, and the spectral characteristics are sorted by latitude, month and local time. Power spectral density (PSD) exhibits a universal exp(-km) structure in the 10-20km wavelength regime, with K lying between 2 and 3. The observed PSD for wavelengths between 10 and 20 km is a factor of 3 higher than a null spectrum constructed from HRDI reported error bars multiplied by randomly varying numbers between -1 and +1. Stokes parameters were consolidated by month into Northern and Southern hemisphere middle and high latitudes belts (40-72 degrees), tidal belts (32-16 degrees) and a tropical belt (8S-8N). Vertical waves between 10 and 15 km in wavelength are about 10-15% polarized everywhere. The inferred propagation direction in the middle and high latitude Southern hemisphere is predominantly meridional during solstice, and significantly more zonal during equinoxes. In the tropical belt, the wave orientations are nearly North-South during solstices, with a slightly higher east-west component during equinox. In the tidal belts where the background wind includes a strong meridional tidal wind, the preferred wave orientation has a significant zonal component during equinox. These findings are consistent with the interpretation of wave filtering by the background wind.
NASA Technical Reports Server (NTRS)
McCormack, J.; Hoppel, K.; Kuhl, D.; de Wit, R.; Stober, G.; Espy, P.; Baker, N.; Brown, P.; Fritts, D.; Jacobi, C.;
2016-01-01
We present a study of horizontal winds in the mesosphere and lower thermosphere (MLT) during the boreal winters of 2009-2010 and 2012-2013 produced with a new high-altitude numerical weather prediction (NWP) system. This system is based on a modified version of the Navy Global Environmental Model (NAVGEM) with an extended vertical domain up to approximately 116 km altitude coupled with a hybrid four-dimensional variational (4DVAR) data assimilation system that assimilates both standard operational meteorological observations in the troposphere and satellite-based observations of temperature, ozone and water vapor in the stratosphere and mesosphere. NAVGEM-based MLT analyzed winds are validated using independent meteor radar wind observations from nine different sites ranging from 69 deg N-67 deg S latitude. Time-averaged NAVGEM zonal and meridional wind profiles between 75 and 95 km altitude show good qualitative and quantitative agreement with corresponding meteor radar wind profiles. Wavelet analysis finds that the 3-hourly NAVGEM and 1-hourly radar winds both exhibit semi-diurnal, diurnal, and quasi-diurnal variations whose vertical profiles of amplitude and phase are also in good agreement. Wavelet analysis also reveals common time-frequency behavior in both NAVGEM and radar winds throughout the Northern extra tropics around the times of major stratospheric sudden warmings (SSWs) in January 2010 and January 2013, with a reduction in semi-diurnal amplitudes beginning around the time of a mesospheric wind reversal at 60 deg N that precedes the SSW, followed by an amplification of semi-diurnal amplitudes that peaks 10-14 days following the onset of the mesospheric wind reversal. The initial results presented in this study demonstrate that the wind analyses produced by the high altitude NAVGEM system accurately capture key features in the observed MLT winds during these two boreal winter periods.
Interaction of an Artificially Thickened Boundary Layer with a Vertically Mounted Pitching Airfoil
NASA Astrophysics Data System (ADS)
Hohman, Tristen; Smits, Alexander; Martinelli, Luigi
2011-11-01
Wind energy represents a large portion of the growing market in alternative energy technologies and the current landscape has been dominated by the more prevalent horizontal axis wind turbine. However, there are several advantages to the vertical axis wind turbine (VAWT) or Darrieus type design and yet there is much to be understood about how the atmospheric boundary layer (ABL) affects their performance. In this study the ABL was simulated in a wind tunnel through the use of elliptical shaped vortex generators, a castellated wall, and floor roughness elements as described in the method of Counihan (1967) and then verified its validity by hot wire measurement of the mean velocity profile as well as the turbulence intensity. The motion of an blade element around a vertical axis is approximated through the use of a pitching airfoil. The wake of the airfoil is investigated through hot wire anemometry in both uniform flow and in the simulated boundary layer both at Re = 1 . 37 ×105 based on the chord of the airfoil. Sponsored by Hopewell Wind Power (Hong Kong) Limited.
Doppler Feature Based Classification of Wind Profiler Data
NASA Astrophysics Data System (ADS)
Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary
2017-01-01
Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.
NASA Astrophysics Data System (ADS)
Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi; Song, Xiaoquan
2018-04-01
Shipborne wind observations by the Coherent Doppler Lidar (CDL) during the 2014 Yellow Sea campaign are presented to study the structure of the Marine Atmospheric Boundary Layer (MABL). This paper gives an analysis of the correction for horizontal and vertical wind measurement, demonstrating that the combination of the CDL with the attitude correction system enables the retrieval of wind profiles in the MABL during both anchored and cruising measurement with satisfied statistical uncertainties.
Atmospheric environment for Space Shuttle (STS-11) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Batts, G. W.
1984-01-01
Atmospheric conditions observed near Space Shuttle STS-11 launch time on February 3, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles are reported. Wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area are presented. Meteorological tapes, which consist of wind and thermodynamic parameters vesus altitude, for STS-11 vehicle ascent and SRB descent/impact were constructed.
NASA Astrophysics Data System (ADS)
Skinner, P. S.; Basu, S.
2009-12-01
Wind resources derived from the nocturnal low-level jet of the Great Plains of the United States are a driving factor in the proliferation of wind energy facilities across the region. Accurate diagnosis and forecasting of the low-level jet is important to not only assess the wind resource but to estimate the potential for shear-induced stress generation on turbine rotors. This study will examine the utility of Aircraft Communications Addressing and Reporting System (ACARS) observations in diagnosing low-level jet events across the Texas Panhandle. ACARS observations from Lubbock International Airport (KLBB) will be compared to observations from a 915 MHZ Doppler radar vertical boundary-layer profiler with 60m vertical resolution located at the field experiment site of Texas Tech University. The ability of ACARS data to adequately observe low-level jet events during the spring and summer of 2009 will be assessed and presented.
On the relationship between hurricane cost and the integrated wind profile
NASA Astrophysics Data System (ADS)
Wang, S.; Toumi, R.
2016-11-01
It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.
NASA Astrophysics Data System (ADS)
Gutierrez, B. T.; Voulgaris, G.; Work, P. A.; Seim, H.; Warner, J. C.
2004-12-01
Cross-shelf variations of near-bed currents and variations in vertical flow were investigated on the inner shelf of Long Bay, South Carolina during the spring and fall of 2001. Current meters sampled near-bed currents at six locations as well as vertical current profiles at three of the sites. The observations showed that the tides accounted for approximately 45-66% of the flow variability. The dominant tidal component, the semi-diurnal constituent M2, exhibited tidal ellipse orientations that are increasingly aligned with the coast closer to the shore. The largest M2 current magnitudes were identified closest to shore and over the top of a sand shoal located 5.5 km offshore of Myrtle Beach. The remaining flow variability was associated with sub-tidal flows which respond to the passage of low-pressure systems across the region. These weather systems were characterized by periods of southwesterly winds in advance of low-pressure centers followed by northeasterly winds as the systems passed over the study area. When strong southwesterly winds persisted, surface flow was oriented approximately in the direction of the wind. At the same time near-bottom flows were also directed to the northeast in the direction of the wind except during periods of stratification when vertical current profiles suggest near-bed onshore flow. The stratified flows were observed mainly during the spring deployment. For periods of strong northeasterly winds, currents were directed alongshore to the southwest and exhibited little variation throughout the water column. These observations are consistent with recent field and modeling studies for the inner-shelf. Comparison of the near-bed flow measurements during the fall deployment revealed a cross-shore gradient in alongshore flow during periods of strong northeasterly winds. During these episodes flows at the offshore measurement stations were oriented in the direction of the wind, while flows closest to shore occurred in the opposite direction. These observations reveal 1) conditions which contribute to cross-shore transport and 2) the presence of an alongshore flow gradient which may affect sediment transport patterns during certain meteorological conditions.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Frehlich, Rod G.
2007-01-01
The global measurement of vertical profiles of horizontal vector winds has been highly desired for many years by NASA, NOAA and the Integrated Program Office (IPO) implementing the National Polar-orbiting Operational Environmental Satellite Systems (NPOESS). Recently the global wind mission was one of 15 missions recommended to NASA by the first ever NRC Earth Sciences Decadal Survey. Since before 1978, the most promising method to make this space-based measurement has been pulsed Doppler lidar. The favored technology and technique has evolved over the years from obtaining line-of-sight (LOS) wind profiles from a single laser shot using pulsed CO2 gas laser technology to the current plans to use both a coherent-detection and direct-detection pulsed Doppler wind lidar systems with each lidar employing multiple shot accumulation to produce an LOS wind profile. The idea of using two lidars (hybrid concept) entails coherent detection using the NASA LaRC-developed pulsed 2-micron solid state laser technology, and direct detection using pulsed Nd:YAG laser technology tripled in frequency to 355 nm wavelength.
NASA Astrophysics Data System (ADS)
Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo
2017-12-01
Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.
Saturn's equatorial jet structure from Cassini/ISS
NASA Astrophysics Data System (ADS)
García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo
2010-05-01
Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.
Characterization of the Boundary Layer Wind and Turbulence in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Pichugina, Y. L.; Banta, R. M.; Choukulkar, A.; Brewer, A.; Hardesty, R. M.; McCarty, B.; Marchbanks, R.
2014-12-01
A dataset of ship-borne Doppler lidar measurements taken in the Gulf of Mexico was analyzed to provide insight into marine boundary-layer (BL) features and wind-flow characteristics, as needed for offshore wind energy development. This dataset was obtained as part of the intensive Texas Air Quality Study in summer of 2006 (TexAQS06). During the project, the ship, the R/V Ronald H. Brown, cruised in tracks in the Gulf of Mexico along the Texas coast, in Galveston Bay, and in the Houston Ship Channel obtaining air chemistry and meteorological data, including vertical profile measurements of wind and temperature. The primary observing system used in this paper is NOAA/ESRL's High Resolution Doppler Lidar (HRDL), which features high-precision and high-resolution wind measurements and a motion compensation system to provide accurate wind data despite ship and wave motions. The boundary layer in this warm-water region was found to be weakly unstable typically to a depth of 300 m above the sea surface. HRDL data were analyzed to provide 15-min averaged profiles of wind flow properties (wind speed, direction, and turbulence) from the water surface up to 2.5 km at a vertical resolution of 15 m. The paper will present statistics and distributions of these parameters over a wide range of heights and under various atmospheric conditions. Detailed analysis of the BL features including LLJs, wind and directional ramps, and wind shear through the rotor level heights, along with examples of hub-height and equivalent wind will be presented. The paper will discuss the diurnal fluctuations of all quantities critical to wind energy and their variability along the Texas coast.
Optimizing Aircraft Trajectories with Multiple Cruise Altitudes in the Presence of Winds
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Sridhar, Banavar; Grabbe, Shon
2014-01-01
This study develops a trajectory optimization algorithm for approximately minimizing aircraft travel time and fuel burn by combining a method for computing minimum-time routes in winds on multiple horizontal planes, and an aircraft fuel burn model for generating fuel-optimal vertical profiles. It is applied to assess the potential benefits of flying user-preferred routes for commercial cargo flights operating between Anchorage, Alaska and major airports in Asia and the contiguous United States. Flying wind optimal trajectories with a fuel-optimal vertical profile reduces average fuel burn of international flights cruising at a single altitude by 1-3 percent. The potential fuel savings of performing en-route step climbs are not significant for many shorter domestic cargo flights that have only one step climb. Wind-optimal trajectories reduce fuel burn and travel time relative to the flight plan route by up to 3 percent for the domestic cargo flights. However, for trans-oceanic traffic, the fuel burn savings could be as much as 10 percent. The actual savings in operations will vary from the simulation results due to differences in the aircraft models and user defined cost indices. In general, the savings are proportional to trip length, and depend on the en-route wind conditions and aircraft types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Larry K.; Newsom, Rob K.; Turner, David D.
One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. Themore » normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.« less
Atmospheric Boundary Layer Sensors for Application in a Wake Vortex Advisory System
NASA Technical Reports Server (NTRS)
Zak, J. Allen; Rutishauser, David (Technical Monitor)
2003-01-01
Remote sensing of the atmospheric boundary layer has advanced in recent years with the development of commercial off-the-shelf (COTS) radar, sodar, and lidar wind profiling technology. Radio acoustic sounding systems for vertical temperature profiles of high temporal scales (when compared to routine balloon soundings- (radiosondes) have also become increasingly available as COTS capabilities. Aircraft observations during landing and departures are another source of available boundary layer data. This report provides an updated assessment of available sensors, their performance specifications and rough order of magnitude costs for a potential future aircraft Wake Vortex Avoidance System (WakeVAS). Future capabilities are also discussed. Vertical profiles of wind, temperature, and turbulence are anticipated to be needed at airports in any dynamic wake avoidance system. Temporal and spatial resolution are dependent on the selection of approach and departure corridors to be protected. Recommendations are made for potential configurations of near-term sensor technologies and for testing some of the sensor systems in order to validate performance in field environments with adequate groundtruth.
Evaluating Mesoscale Simulations of the Coastal Flow Using Lidar Measurements
NASA Astrophysics Data System (ADS)
Floors, R.; Hahmann, A. N.; Peña, A.
2018-03-01
The atmospheric flow in the coastal zone is investigated using lidar and mast measurements and model simulations. Novel dual-Doppler scanning lidars were used to investigate the flow over a 7 km transect across the coast, and vertically profiling lidars were used to study the vertical wind profile at offshore and onshore positions. The Weather, Research and Forecasting model is set up in 12 different configurations using 2 planetary boundary layer schemes, 3 horizontal grid spacings and varied sources of land use, and initial and lower boundary conditions. All model simulations describe the observed mean wind profile well at different onshore and offshore locations from the surface up to 500 m. The simulated mean horizontal wind speed gradient across the shoreline is close to that observed, although all simulations show wind speeds that are slightly higher than those observed. Inland at the lowest observed height, the model has the largest deviations compared to the observations. Taylor diagrams show that using ERA-Interim data as boundary conditions improves the model skill scores. Simulations with 0.5 and 1 km horizontal grid spacing show poorer model performance compared to those with a 2 km spacing, partially because smaller resolved wave lengths degrade standard error metrics. Modeled and observed velocity spectra were compared and showed that simulations with the finest horizontal grid spacing resolved more high-frequency atmospheric motion.
High-resolution humidity profiles retrieved from wind profiler radar measurements
NASA Astrophysics Data System (ADS)
Saïd, Frédérique; Campistron, Bernard; Di Girolamo, Paolo
2018-03-01
The retrieval of humidity profiles from wind profiler radars has already been documented in the past 30 years and is known to be neither as straightforward and nor as robust as the retrieval of the wind velocity. The main constraint to retrieve the humidity profile is the necessity to combine measurements from the wind profiler and additional measurements (such as observations from radiosoundings at a coarser time resolution). Furthermore, the method relies on some assumptions and simplifications that restrict the scope of its application. The first objective of this paper is to identify the obstacles and limitations and solve them, or at least define the field of applicability. To improve the method, we propose using the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity. This forces the humidity profile from the free troposphere and from the boundary layer to coincide at this level, after an optimization of the calibration coefficients, and reduces the error. The resulting mean bias affecting the specific humidity profile never exceeds 0.25 g kg-1. The second objective is to explore the capability of the algorithm to retrieve the humidity vertical profiles for an operational purpose by comparing the results with observations from a Raman lidar.
High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance
Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969
High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.
Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.
NASA Technical Reports Server (NTRS)
Bauman, William H., III
2014-01-01
NASAs LSP customers and the future SLS program rely on observations of upper-level winds for steering, loads, and trajectory calculations for the launch vehicles flight. On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds and provide forecasts to the launch team via the AMU-developed LSP Upper Winds tool for launches at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station. This tool displays wind speed and direction profiles from rawinsondes released during launch operations, the 45th Space Wing 915-MHz Doppler Radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP, and output from numerical weather prediction models.The goal of this task was to splice the wind speed and direction profiles from the 45th Space Wing (45 SW) 915-MHz Doppler radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP at altitudes where the wind profiles overlap to create a smooth profile. In the first version of the LSP Upper Winds tool, the top of the 915-MHz DRWP wind profile and the bottom of the 50-MHz DRWP were not spliced, sometimes creating a discontinuity in the profile. The Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) created algorithms to splice the wind profiles from the two sensors to generate an archive of vertically complete wind profiles for the SLS program. The AMU worked with MSFC NE personnel to implement these algorithms in the LSP Upper Winds tool to provide a continuous spliced wind profile.The AMU transitioned the MSFC NE algorithms to interpolate and fill data gaps in the data, implement a Gaussian weighting function to produce 50-m altitude intervals in each sensor, and splice the data together from both DRWPs. They did so by porting the MSFC NE code written with MATLAB software into Microsoft Excel Visual Basic for Applications (VBA). After testing the new algorithms in stand-alone VBA modules, the AMU replaced the existing VBA code in the LSP Upper Winds tool with the new algorithms. They then tested the code in the LSP Upper Winds tool with archived data. The tool will be delivered to the 45 WS after the 50-MHz DRWP upgrade is complete and the tool is tested with real-time data. The 50-MHz DRWP upgrade is expected to be finished in October 2014.
Atmospheric environment for Space Shuttle (STS-3) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.; Batts, G. W.
1982-01-01
Selected atmospheric conditions observed near Space Shuttle STS-3 launch time on March 22, 1982, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prlaunch Jimsphere measured vertical wind profiles and the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-3 vehicle ascent and SRB descent were constructed. The STS-3 ascent meteorological data tape is constructed.
The impact of scatterometer wind data on global weather forecasting
NASA Technical Reports Server (NTRS)
Atlas, D.; Baker, W. E.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.
1984-01-01
The impact of SEASAT-A scatterometer (SASS) winds on coarse resolution atmospheric model forecasts was assessed. The scatterometer provides high resolution winds, but each wind can have up to four possible directions. One wind direction is correct; the remainder are ambiguous or "aliases'. In general, the effect of objectively dealiased-SASS data was found to be negligible in the Northern Hemisphere. In the Southern Hemisphere, the impact was larger and primarily beneficial when vertical temperature profile radiometer (VTPR) data was excluded. However, the inclusion of VTPR data eliminates the positive impact, indicating some redundancy between the two data sets.
Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Kaoru
1993-02-14
This paper describes small-scale wind disturbances associated with Typhoon Kelly (October 1987) that were observed by the MU radar, one of the MST (mesosphere, stratosphere, and troposphere) radars, for about 60 hours with fine time and height resolution. To elucidate the background of small-scale disturbances, synoptic-scale variation in atmospheric stability related to the typhoon structure during the observation is examined. When the typhoon passed near the MU radar site, the structure was no longer axisymmetric. There is deep convection only in north-northeast side of the typhoon while convection behind it is suppressed by a synoptic-scale cold air mass moving eastwardmore » to the west of the typhoon. A change in atmospheric stability over the radar site as indicated by echo power profiles is likely due to the passage of the sharp transition zone of convection. Strong small-scale wind disturbances were observed around the typhoon passage. The statistical characteristics are different before (BT) and after (AT) the typhoon passage, especially in frequency spectra of vertical wind fluctuations. The spectra for BT are unique compared with earlier studies of vertical winds observed by VHF radars. Another difference is dominance of a horizontal wind component with a vertical wavelength of about 3 km, observed only in AT. Further analyses are made of characteristics and vertical momentum fluxes for dominant disturbances. Some disturbances are generated to remove the momentum of cyclonic wind rotation of the typhoon. Deep convection, topographic effects in strong winds, and strong vertical shear of horizontal winds around an inversion layer are possible sources of the disturbances. Two monochromatic disturbances lasting for more than 10 h in the lower stratosphere observed in BT and AT are identified as inertio-gravity waves, by obtaining wave parameters consistent with all observed quantities. Both of the inertio-gravity waves propagate energy away from the typhoon.« less
NASA Astrophysics Data System (ADS)
Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph
2018-04-01
The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity < 10 m s-1). The distribution of spectral slopes is roughly symmetric with a maximum at -5/3 during active periods, whereas a very asymmetric distribution with a maximum at around -1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.
Radar - 449MHz - Forks, WA (FKS) - Raw Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - North Bend, OR (OTH) - Raw Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - North Bend, OR (OTH) - Reviewed Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - Forks, WA (FKS) - Reviewed Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - Astoria, OR (AST) - Reviewed Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - Astoria, OR (AST) - Raw Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Barbre, Robert E., Jr.; Brenton, James C.; Walker, James C.; Leach, Richard D.
2015-01-01
Space launch vehicles utilize atmospheric winds in design of the vehicle and during day-of-launch (DOL) operations to assess affects of wind loading on the vehicle and to optimize vehicle performance during ascent. The launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use for vehicle engineering assessments. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output on DOL. First, balloons need approximately one hour to reach required altitude. For vehicle assessments this occurs at 60 kft (18.3 km). Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. Figure 1 illustrates the spatial separation of balloon measurements from the surface up to approximately 55 kft (16.8 km) during the Space Shuttle launch on 10 December 2006. The balloon issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data up to 60 kft (18.3 km) for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. Details on how data from various wind measurement systems are combined and sample output will be presented in the following sections.
NASA Technical Reports Server (NTRS)
1983-01-01
A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.
Low altitude wind shear statistics derived from measured and FAA proposed standard wind profiles
NASA Technical Reports Server (NTRS)
Dunham, R. E., Jr.; Usry, J. W.
1984-01-01
Wind shear statistics were calculated for a simulated data set using wind profiles proposed as a standard and compared to statistics derived from measured wind profile data. Wind shear values were grouped in altitude bands of 100 ft between 100 and 1400 ft, and in wind shear increments of 0.025 kt/ft between + or - 0.600 kt/ft for the simulated data set and between + or - 0.200 kt/ft for the measured set. No values existed outside the + or - 0.200 kt/ft boundaries for the measured data. Frequency distributions, means, and standard deviations were derived for each altitude band for both data sets, and compared. Also, frequency distributions were derived for the total sample for both data sets and compared. Frequency of occurrence of a given wind shear was about the same for both data sets for wind shears, but less than + or 0.10 kt/ft, but the simulated data set had larger values outside these boundaries. Neglecting the vertical wind component did not significantly affect the statistics for these data sets. The frequency of occurrence of wind shears for the flight measured data was essentially the same for each altitude band and the total sample, but the simulated data distributions were different for each altitude band. The larger wind shears for the flight measured data were found to have short durations.
Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Barbre, Robert E., Jr.
2015-01-01
Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.
Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Barbre, Robert E., Jr.
2014-01-01
Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.
NASA Astrophysics Data System (ADS)
Fisher, A. W.; Sanford, L. P.; Scully, M. E.
2016-12-01
Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer transitions to a turbulent log layer. The influences of fetch-limited wind waves, density stratification, and surface buoyancy fluxes will also be discussed.
Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers
NASA Astrophysics Data System (ADS)
Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.
2004-11-01
The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are less pronounced and no longer have systematic subsident charateristics. In addition, those vertical motions are found to be much less developed during the nighttimes because of the stabilization of the nocturnal planetary boundary layer due to a ground cooling. The enhanced turbulent dissipation-rate values found at lower levels during the afternoons of weak Mistral cases are consistent with the installation of the summer convective boundary layer and show that, as expected in weaker Mistral events, the convection is the preponderant factor for the turbulence generation. On the other hand, for stronger cases, such a convective boundary layer installation is perturbed by the Mistral.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.; Amzajerdian, Farzin; Singh, Upendra N.; Emmitt, G. David
2007-01-01
Early concepts to globally measure vertical profiles of vector horizontal wind from space planned on an orbit height of 525 km, a single pulsed coherent Doppler lidar system to cover the full troposphere, and a continuously rotating telescope/scanner that mandated a vertical line of sight wind profile from each laser shot. Under these conditions system studies found that laser pulse energies of approximately 20 J at 10 Hz pulse repetition rate with a rotating telescope diameter of approximately 1.5 m was required. Further requirements to use solid state laser technology and an eyesafe wavelength led to the relatively new 2-micron solid state laser. With demonstrated pulse energies near 20 mJ at 5 Hz, and no demonstration of a rotating telescope maintaining diffraction limited performance in space, the technology gap between requirements and demonstration was formidable. Fortunately the involved scientists and engineers set out to reduce the gap, and through a combination of clever ideas and technology advances over the last 15 years, they have succeeded. This paper will detail the gap reducing factors and will present the current status.
Multi-Instrument Observations of Prolonged Stratified Wind Layers at Iqaluit, Nunavut
NASA Astrophysics Data System (ADS)
Mariani, Zen; Dehghan, Armin; Gascon, Gabrielle; Joe, Paul; Hudak, David; Strawbridge, Kevin; Corriveau, Julien
2018-02-01
Data collected between October 2015 and May 2016 at Environment and Climate Change Canada's Iqaluit research site (64°N, 69°W) have revealed a high frequency (40% of all days for which observations were available) of stratified wind layer events that occur from near the surface up to about 7.2 km above sea level. These stratified wind layers are clearly visible as wind shifts (90 to 180°) with height in range-height indicator scans from the Doppler lidar and Ka-band radar and in wind direction profiles from the Doppler lidar and radiosonde. During these events, the vertical structure of the flow appears to be a stack of 4 to 10 layers ranging in vertical width from 0.1 to 4.4 km. The stratification events that were observed occurred predominantly (81%) during light precipitation and lasted up to 27.5 h. The integrated measurement platforms at Iqaluit permitted continuous observations of the evolution of stratification events in different meteorological conditions.
Wave Forcing of Saturn's Equatorial Oscillation
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Schlinder, P. J.; Guerlet, S.; Fouchet, T.
2011-01-01
Ground-based measurements and Cassini data from CIRS thermal-infrared spectra and radio-occultation soundings have characterized the spatial structure and temporal behavior of a 15-year equatorial oscillation in Saturn's stratosphere. The equatorial region displays a vertical pattern of alternating warm and cold anomalies and, concomitantly, easterly and westerly winds relative to the cloud-top winds, with a peak-to-peak amplitude of 200 m/s. Comparison of the Cassini data over a four-year period has established that the pattern of mean zonal winds and temperatures descends at a rate of roughly I scale height over 4 years. This behavior is reminiscent of the equatorial oscillations in Earth's middle atmosphere. Here the zonal-mean spatial structure and descending pattern are driven by the absorption of vertically propagating waves. The maximum excursions in the pattern of easterly and westerly winds is determined by the limits of the zonal phase velocities of the waves. Here we report on the characterization of the waves seen in the temperature profiles retrieved from the Cassini radio-occultation soundings. The equatorial profiles exhibit a complex pattern of wavelike structure with dimensions one pressure scale height and smaller. We combine a spectral decomposition with a WKBJ analysis, where the vertical wavelength is assumed to vary slowly with the ambient static stability and doppler-shifted phase velocity of the wave. Use of the temperature and zonal wind maps from CIRS makes this approach viable. On Earth, the wave forcing associated with the equatorial oscillations generates secondary meridional circulations that affect the mean flow and planetary wave ducting well away from the equator. This may relate to the triggering of the recently reported mid-latitude storms on Saturn.
NASA Technical Reports Server (NTRS)
Mace, Gerald G.; Ackerman, Thomas P.
1996-01-01
A topic of current practical interest is the accurate characterization of the synoptic-scale atmospheric state from wind profiler and radiosonde network observations. We have examined several related and commonly applied objective analysis techniques for performing this characterization and considered their associated level of uncertainty both from a theoretical and a practical standpoint. A case study is presented where two wind profiler triangles with nearly identical centroids and no common vertices produced strikingly different results during a 43-h period. We conclude that the uncertainty in objectively analyzed quantities can easily be as large as the expected synoptic-scale signal. In order to quantify the statistical precision of the algorithms, we conducted a realistic observing system simulation experiment using output from a mesoscale model. A simple parameterization for estimating the uncertainty in horizontal gradient quantities in terms of known errors in the objectively analyzed wind components and temperature is developed from these results.
Potential of collocated radiometer and wind profiler observations for monsoon studies
NASA Astrophysics Data System (ADS)
Balaji, B.; Prabha, Thara V.; Jaya Rao, Y.; Kiran, T.; Dinesh, G.; Chakravarty, Kaustav; Sonbawne, S. M.; Rajeevan, M.
2017-09-01
Collocated observations from microwave radiometer and wind profiler are used in a pilot study during the monsoon period to derive information on the thermodynamics and winds and association with rainfall characteristics. These instruments were operated throughout the monsoon season of 2015. Continuous vertical profiles of winds, temperature and humidity show significant promise for understanding the low-level jet, its periodicity and its association with moisture transport, clouds and precipitation embedded within the monsoon large-scale convection. Observations showed mutually beneficial in explaining variability that are part of the low frequency oscillations and the diurnal variability during monsoon. These observations highlight the importance of locally driven convective systems, in the presence of weak moisture transport over the area. The episodic moisture convergence showed a periodicity of 9 days which matches with the subsequent convection and precipitation and thermodynamic regimes. Inferences from the diurnal cycle of moisture transport and the convective activity, relationship with the low-level jet characteristics and thermodynamics are also illustrated.
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca
2011-01-01
The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDA Web). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.
2016-01-01
Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.
NASA Astrophysics Data System (ADS)
Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.
2016-05-01
Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst < -100 nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial and/or temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100 km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.
NASA Astrophysics Data System (ADS)
Sun, Zhaobin; Zhang, Xiaoling; Zhao, Xiujuan; Xia, Xiangao; Miao, Shiguang; Li, Ziming; Cheng, Zhigang; Wen, Wei; Tang, Yixi
2018-04-01
We used simultaneous measurements of surface PM2.5 concentration and vertical profiles of aerosol concentration, temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM2.5 pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM2.5 pollution at the surface to the upper levels of the atmosphere. The amount of surface PM2.5 pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM2.5 pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern-central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM2.5 concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.
NASA Astrophysics Data System (ADS)
Rhodes, Michael E.; Lundquist, Julie K.
2013-07-01
We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind-tunnel observations, and for guiding assessments of the impacts of wakes on surface turbulent fluxes or surface temperatures downwind of turbines.
Similarity theory of the buoyantly interactive planetary boundary layer with entrainment
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Sud, Y. C.
1976-01-01
A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.
Flowfield measurements in the NASA Lewis Research Center 9- by 15-foot low-speed wind tunnel
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
1989-01-01
An experimental investigation was conducted in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel to determine the flow characteristics in the test section during wind tunnel operation. In the investigation, a 20-probe horizontally-mounted Pitot-static flow survey rake was used to obtain cross-sectional total and static pressure surveys at four axial locations in the test section. At each axial location, the cross-sectional flowfield surveys were made by repositioning the Pitot-static flow survey rake vertically. In addition, a calibration of the new wind tunnel rake instrumentation, used to determine the wind tunnel operating conditions, was performed. Boundary laser surveys were made at three axial locations in the test section. The investigation was conducted at tunnel Mach numbers 0.20, 0.15, 0.10, and 0.05. The test section profile results from the investigation indicate that fairly uniform total pressure profiles (outside the test section boundary layer) and fairly uniform static pressure and Mach number profiles (away from the test section walls and downstream of the test section entrance) exist throughout in the wind tunnel test section.
A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves
NASA Technical Reports Server (NTRS)
Alexander, M. J.; Holton, James R.
1997-01-01
A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.
Lidar Measurements of Wind and Cloud Around Venus from an Orbiting or Floating/flying Platform
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Limaye, Sanjay; Emmitt, George D.; Refaat, Tamer F.; Kavaya, Michael J.; Yu, Jirong; Petros, Mulugeta
2015-01-01
Given the presence of clouds and haze in the upper portion of the Venus atmosphere, it is reasonable to consider a Doppler wind lidar (DWL) for making remote measurements of the 3-dimensional winds within the tops of clouds and the overlying haze layer. Assuming an orbit altitude of 250 kilometers and cloud tops at 60 kilometers (within the upper cloud layer), an initial performance assessment of an orbiting DWL was made using a numerical instrument and atmospheres model developed for both Earth and Mars. It is reasonable to expect vertical profiles of the 3-dimensional wind speed with 1 kilometer vertical resolution and horizontal spacing of 25 kilometers to several 100 kilometers depending upon the desired integration times. These profiles would begin somewhere just below the tops of the highest clouds and extend into the overlying haze layer to some to-be-determined height. Getting multiple layers of cloud returns is also possible with no negative impact on velocity measurement accuracy. The knowledge and expertise for developing coherent Doppler wind lidar technologies and techniques, for Earth related mission at NASA Langley Research Center is being leveraged to develop an appropriate system suitable for wind measurement around Venus. We are considering a fiber-laser-based lidar system of high efficiency and smaller size and advancing the technology level to meet the requirements for DWL system for Venus from an orbiting or floating/flying platform. This presentation will describe the concept, simulation and technology development plan for wind and cloud measurements on Venus.
Estimating Mixing Heights Using Microwave Temperature Profiler
NASA Technical Reports Server (NTRS)
Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne
2008-01-01
A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.
Measurements of Dust Devil Lower Structure and Properties, El Dorado Valley, Nevada, June 2002
NASA Astrophysics Data System (ADS)
Towner, M. C.; Ringrose, T. J.; Balme, M.; Greeley, R.; Zarnecki, J. C.
2002-12-01
We report the results of a recent field campaign in Nevada, USA, carried out to investigate the lower structure (less than 2m) and dust lofting mechanisms of terrestrial dust devils. Over several days, an instrumented platform was repeatedly deployed from the back of a pickup truck into the path of oncoming dust devils. Around 40 events were recorded, including core penetrations of large and small dust devils, close misses and periods of ambient background conditions before and after dust devil events, and during periods of dust devil inactivity. The platform deployed consisted of a 2 by 1m base with a 2m mast and carried a total of 24 instruments. The instrument suite consisted of horizontal wind profiling down to 5mm above surface, vertical wind speed and direction, temperature and pressure profiling, airborne and saltating particle recorders, vertical electric field gradient measurements, and upward looking UV sensors. We present preliminary results of profiles for several events, together with details of ambient conditions required for dust devil formation.
NASA Astrophysics Data System (ADS)
Andrioli, V. F.; Batista, P. P.; Xu, Jiyao; Yang, Guotao; Chi, Wang; Zhengkuan, Liu
2017-04-01
Na lidar temperature measurements were taken successfully from 2007 to 2009 in the mesopause region over São José dos Campos (23.1°S, 45.9°W). Strong gradients on these vertical temperature profiles are often observed. A simple theoretical study has shown that temperature gradient of at least -8 K/km is required concurrently with the typical tidal wind shear in order to generate dynamical instability in the MLT region. We have studied vertical shear in horizontal wind related to atmospheric tides, inferred by meteor radar, with the aim of analyzing instability occurrence. These wind measurements were taken from an all-sky meteor radar at Cachoeira Paulista (22.7°S, 45°W). Two years of simultaneous data, wind and temperature, were used in this analysis which represent 79 days, totalizing 589 h of simultaneous observations. We realize that the condition for the local Richardson number (Ri) dropping below the critical value of instability (Ri < 0.25) is often reached in 98% of the analyzed cases. The mean probabilities for occurrence of convective and dynamical instabilities, in the altitude region between 82 and 98 km, were observed to be about 3% and 17.5%, respectively. Additionally, vertical distribution of these probabilities has revealed a weak occurrence of dynamical instability around 90 km, and this fact can be related to the double mesopause typically observed in this site.
NASA Astrophysics Data System (ADS)
Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos
2018-01-01
The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.
Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions.
Viguria, Maialen; Ro, Kyoung S; Stone, Kenneth C; Johnson, Melvin H
2015-04-01
Recently, the U.S. Environmental Protection Agency (EPA) posted a ground-based optical remote sensing method on its Web site called Other Test Method (OTM) 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to calculate fugitive gas emission mass rates based on measured wind speed profiles and path-integrated gas concentrations (PICs). This study evaluates the accuracy of the VRPM technique in measuring gas emission from animal waste treatment lagoons. A field trial was designed to evaluate the accuracy of the VRPM technique. Control releases of methane (CH4) were made from a 45 m×45 m floating perforated pipe network located on an irrigation pond that resembled typical treatment lagoon environments. The accuracy of the VRPM technique was expressed by the ratio of the calculated emission rates (QVRPM) to actual emission rates (Q). Under an ideal condition of having mean wind directions mostly normal to a downwind vertical plane, the average VRPM accuracy was 0.77±0.32. However, when mean wind direction was mostly not normal to the downwind vertical plane, the emission plume was not adequately captured resulting in lower accuracies. The accuracies of these nonideal wind conditions could be significantly improved if we relaxed the VRPM wind direction criteria and combined the emission rates determined from two adjacent downwind vertical planes surrounding the lagoon. With this modification, the VRPM accuracy improved to 0.97±0.44, whereas the number of valid data sets also increased from 113 to 186. The need for developing accurate and feasible measuring techniques for fugitive gas emission from animal waste lagoons is vital for livestock gas inventories and implementation of mitigation strategies. This field lagoon gas emission study demonstrated that the EPA's vertical radial plume mapping (VRPM) technique can be used to accurately measure lagoon gas emission with two downwind vertical concentration planes surrounding the lagoon.
Petculescu, Andi; Achi, Peter
2012-05-01
Measurements of thermodynamic quantities in Titan's atmosphere during the descent of Huygens in 2005 are used to predict the vertical profiles for the speed and intrinsic attenuation (or absorption) of sound. The calculations are done using one author's previous model modified to accommodate non-ideal equations of state. The vertical temperature profile places the tropopause about 40 km above the surface. In the model, a binary nitrogen-methane composition is assumed for Titan's atmosphere, quantified by the methane fraction measured by the gas chromatograph/mass spectrometer (GCMS) onboard Huygens. To more accurately constrain the acoustic wave number, the variation of thermophysical properties (specific heats, viscosity, and thermal conductivity) with altitude is included via data extracted from the NIST Chemistry WebBook [URL webbook.nist.gov, National Institute of Standards and Technology Chemistry WebBook (Last accessed 10/20/2011)]. The predicted speed of sound profile fits well inside the spread of the data recorded by Huygens' active acoustic sensor. In the N(2)-dominated atmosphere, the sound waves have negligible relaxational dispersion and mostly classical (thermo-viscous) absorption. The cold and dense environment of Titan can sustain acoustic waves over large distances with relatively small transmission losses, as evidenced by the small absorption. A ray-tracing program is used to assess the bounds imposed by the zonal wind-measured by the Doppler Wind Experiment on Huygens-on long-range propagation.
Linearized simulation of flow over wind farms and complex terrains.
Segalini, Antonio
2017-04-13
The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Linearized simulation of flow over wind farms and complex terrains
NASA Astrophysics Data System (ADS)
Segalini, Antonio
2017-03-01
The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results. This article is part of the themed issue 'Wind energy in complex terrains'.
Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements
NASA Astrophysics Data System (ADS)
Sand, S. C.; Pichugina, Y. L.; Brewer, A.
2016-12-01
Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.
Doppler Lidar Observations of an Atmospheric Thermal Providing Lift to Soaring Ospreys
NASA Technical Reports Server (NTRS)
Koch, Grady J.
2005-01-01
Vertical wind measurements are presented of an atmospheric thermal in which ospreys (Pandion haliaetus) were soaring. These observations were made with a Doppler lidar, allowing high spatial and high temporal resolution wind profiles in clear air. The thermal was generated at the onset of a cloud bank, producing a rolling eddy upon which ospreys were seen to be riding. A determination is made on the size and shape of the thermal, wind speeds involved, and the altitude to which the birds could have ridden the thermal.
NASA Astrophysics Data System (ADS)
Stern, Daniel P.
The vertical structure of the tangential wind field in tropical cyclones is investigated through observations, theory, and numerical simulations. First, a dataset of Doppler radar wind swaths obtained from NOAA/AOML/HRD is used to create azimuthal mean tangential wind fields for 7 storms on 17 different days. Three conventional wisdoms of vertical structure are reexamined: the outward slope of the Radius of Maximum Winds (RMW) decreases with increasing intensity, the slope increases with the size of the RMW, and the RMW is a surface of constant absolute angular momentum (M). The slopes of the RMW and of M surfaces are objectively determined. The slopes are found to increase linearly with the size of the low-level RMW, and to be independent of the intensity of the storm. While the RMW is approximately an M surface, M systematically decreases with height along the RMW. The steady-state analytical theory of Emanuel (1986) is shown to make specific predictions regarding the vertical structure of tropical cyclones. It is found that in this model, the slope of the RMW is a linear function of its size and is independent of intensity, and that the RMW is almost exactly an M surface. A simple time-dependent model which is governed by the same assumptions as the analytical theory yields the same results. Idealized hurricane simulations are conducted using the Weather Research and Forecasting (WRF) model. The assumptions of Emanuel's theory, slantwise moist neutrality and thermal wind balance, are both found to be violated. Nevertheless, the vertical structure of the wind field itself is generally well predicted by the theory. The percentage rate at which the winds decay with height is found to be nearly independent of both size and intensity, in agreement with observations and theory. Deviations from this decay profile are shown to be due to gradient wind imbalance. The slope of the RMW increases linearly with its size, but is systematically too large compared to observations. Also in contrast to observations, M generally increases with height along the RMW.
Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea
NASA Astrophysics Data System (ADS)
Cardona, Yuley; Bracco, Annalisa
The South China Sea is a marginal basin with a complex circulation influenced by the East Asian Monsoon, river discharge and intricate bathymetry. As a result, both the mesoscale eddy field and the near-inertial energy distribution display large spatial variability and they strongly influence the oceanic transport and mixing. With an ensemble of numerical integrations using a regional ocean model, this work investigates how the temporal resolution of the atmospheric forcing fields modifies the horizontal and vertical velocity patterns and impacts the transport properties in the basin. The response of the mesoscale circulation in the South China Sea is investigated under three different forcing conditions: monthly, daily and 6-hourly momentum and heat fluxes. While the horizontal circulation does not display significant differences, the representation of the vertical velocity field displays high sensitivity to the frequency of the wind forcing. If the wind field contains energy at the inertial frequency or higher (daily and 6-hourly cases), then submesoscale fronts, vortex Rossby waves and near inertial waves are excited as ageostrophic expression of the vigorous eddy field. Those quasi- and near-inertial waves dominate the vertical velocity field in the mixed layer (vortex Rossby waves) and below the first hundred meters (near inertial waves) and they are responsible for the differences in the vertical transport properties under the various forcing fields as quantified by frequency spectra, vertical velocity profiles and vertical dispersion of Lagrangian tracers.
Moisture convergence from a combined mesoscale moisture analysis and wind field for 24 April 1975
NASA Technical Reports Server (NTRS)
Negri, A. J.; Hillger, D. W.; Vonder Haar, T. H.
1977-01-01
Precipitable water values inferred from the Vertical Temperature Profile Radiometer data of the polar orbiting NOAA-4 satellite are used in conjunction with wind-field analyses obtained from Synchronous Meteorological Satellite visible-channel data to study the moisture convergence in the boundary layer immediately preceding a storm. This combination of data simulates the information that will be available from the Visible and Infrared Spin-Scan Radiometer on board the GOES-D satellite, which is scheduled to begin operation in the 1980s. Serviceable representations of boundary layer flow are developed through analysis of the satellite infrared cumulus velocities, although the flow representations are not exactly located in the vertical.
Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range
NASA Technical Reports Server (NTRS)
Decker, Ryan K.
2017-01-01
Space launch vehicles develop day-of-launch steering commands based upon the upper-level atmospheric environments in order to alleviate wind induced structural loading and optimize ascent trajectory. Historically, upper-level wind measurements to support launch operations at the National Aeronautics and Space Administration's (NASA's) Kennedy Space Center co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station use high-resolution rawinsondes. One inherent limitation with rawinsondes consists of taking approximately one hour to generate a vertically complete wind profile. Additionally, rawinsonde drift during ascent by the ambient wind environment can result in the balloon being hundreds of kilometers down range, which results in questioning whether the measured winds represent the wind environment the vehicle will experience during ascent. This paper will describe the use of balloon profile databases to statistically assess the drift distance away from the ER launch complexes during rawinsonde ascent as a function of season and discuss an alternative method to measure upper level wind environments in closer proximity to the vehicle trajectory launching from the ER.
Improving Tropical Cyclone Intensity Forecasting with Theoretically-Based Statistical
2013-01-03
solely by diabatic heating. The sense of the circulation is counterclockwise for the dashed lines and clockwise for the solid lines. The four panels...indicates the region of diabatic heating. Colored contours indicate , the vertical pressure velocity, which is related to w by = −gw, with...equation (GTE) and determine the associated tangential wind tendency for a variety of initial tangential wind profiles and annular rings of diabatic
A simple method for simulating wind profiles in the boundary layer of tropical cyclones
Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; ...
2016-11-01
A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method alsomore » requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Lastly, temporal spectra from LES produce an inertial subrange for frequencies ≳0.1 Hz, but only when the horizontal grid spacing ≲20 m.« less
A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones
NASA Astrophysics Data System (ADS)
Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.
2017-03-01
A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies ≳ 0.1 Hz, but only when the horizontal grid spacing ≲ 20 m.
NASA Technical Reports Server (NTRS)
Barbre, Robert E., Jr.
2015-01-01
This paper describes in detail the QC and splicing methodology for KSC's 50- and 915-MHz DRWP measurements that generates an extensive archive of vertically complete profiles from 0.20-18.45 km. The concurrent POR from each archive extends from April 2000 to December 2009. MSFC NE applies separate but similar QC processes to each of the 50- and 915-MHz DRWP archives. DRWP literature and data examination provide the basis for developing and applying the automated and manual QC processes on both archives. Depending on the month, the QC'ed 50- and 915-MHz DRWP archives retain 52-65% and 16-30% of the possible data, respectively. The 50- and 915-MHz DRWP QC archives retain 84-91% and 85-95%, respectively, of all the available data provided that data exist in the non- QC'ed archives. Next, MSFC NE applies an algorithm to splice concurrent measurements from both DRWP sources. Last, MSFC NE generates a composite profile from the (up to) five available spliced profiles to effectively characterize boundary layer winds and to utilize all possible 915-MHz DRWP measurements at each timestamp. During a given month, roughly 23,000-32,000 complete profiles exist from 0.25-18.45 km from the composite profiles' archive, and approximately 5,000- 27,000 complete profiles exist from an archive utilizing an individual 915-MHz DRWP. One can extract a variety of profile combinations (pairs, triplets, etc.) from this sample for a given application. The sample of vertically complete DRWP wind measurements not only gives launch vehicle customers greater confidence in loads and trajectory assessments versus using balloon output, but also provides flexibility to simulate different DOL situations across applicable altitudes. In addition to increasing sample size and providing more flexibility for DOL simulations in the vehicle design phase, the spliced DRWP database provides any upcoming launch vehicle program with the capability to utilize DRWP profiles on DOL to compute vehicle steering commands, provided the program applies the procedures that this report describes to new DRWP data on DOL. Decker et al. (2015) details how SLS is proposing to use DRWP data and splicing techniques on DOL. Although automation could enhance the current DOL 50-MHz DRWP QC process and could streamline any future DOL 915-MHz DRWP QC and splicing process, the DOL community would still require manual intervention to ensure that the vehicle only uses valid profiles. If a program desires to use high spatial resolution profiles, then the algorithm could randomly add high-frequency components to the DRWP profiles. The spliced DRWP database provides lots of flexibility in how one performs DOL simulations, and the algorithms that this report provides will assist the aerospace and atmospheric communities that are interested in utilizing the DRWP.
Moeinaddini, Mazaher; Esmaili Sari, Abbas; Riyahi bakhtiari, Alireza; Chan, Andrew Yiu-Chung; Taghavi, Seyed Mohammad; Hawker, Darryl; Connell, Des
2014-06-01
The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m(3), respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: 'diesel' (56.3% of total PAHs on average), 'gasoline' (15.5%), 'wood combustion, and incineration' (13%), 'industry' (9.2%), and 'road soil particle' (6.0%). The four n-alkane source factors identified were: 'petrogenic' (65% of total n-alkanes on average), 'mixture of petrogenic and biomass burning' (15%), 'mixture of biogenic and fossil fuel' (11.5%), and 'biogenic' (8.5%). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4% of total PAHs and 5.0% of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area of Tehran has been effective in reducing the PAHs concentration.
NASA Astrophysics Data System (ADS)
Lomakina, N. Ya.
2017-11-01
The work presents the results of the applied climatic division of the Siberian region into districts based on the methodology of objective classification of the atmospheric boundary layer climates by the "temperature-moisture-wind" complex realized with using the method of principal components and the special similarity criteria of average profiles and the eigen values of correlation matrices. On the territory of Siberia, it was identified 14 homogeneous regions for winter season and 10 regions were revealed for summer. The local statistical models were constructed for each region. These include vertical profiles of mean values, mean square deviations, and matrices of interlevel correlation of temperature, specific humidity, zonal and meridional wind velocity. The advantage of the obtained local statistical models over the regional models is shown.
Stable plume rise in a shear layer.
Overcamp, Thomas J
2007-03-01
Solutions are given for plume rise assuming a power-law wind speed profile in a stably stratified layer for point and finite sources with initial vertical momentum and buoyancy. For a constant wind speed, these solutions simplify to the conventional plume rise equations in a stable atmosphere. In a shear layer, the point of maximum rise occurs further downwind and is slightly lower compared with the plume rise with a constant wind speed equal to the wind speed at the top of the stack. If the predictions with shear are compared with predictions for an equivalent average wind speed over the depth of the plume, the plume rise with shear is higher than plume rise with an equivalent average wind speed.
Impact of Eclipse of 21 August 2017 ON the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Knupp, K.
2017-12-01
The (total) solar eclipse of 21 August 2017 presents a prodigious opportunity to improve our understanding of the physical response of decreases in turbulence within the ABL produced by a rapid reduction in solar radiation, since the transition in this eclipse case, close to local solar noon, is more rapid than at natural sunset. A mesoscale network of three UAH atmospheric profiling systems will be set up around Clarksville, TN, and Hopkinsville, KY, to document the details of the physical response of the ABL to the rapid decrease in solar radiation. The region offers a heterogeneous surface, including expansive agricultural and forested regions. Data from the following mobile systems will be examined: Mobile Integrated Profiling System (MIPS) with a 915 MHz Doppler wind profiler, X-band Profiling Radar (XPR), Microwave Profiling Radiometer (MPR), lidar ceilometer, and Doppler mini-sodar, Rapidly Deployable Atmospheric Profiling System (RaDAPS) with a 915 MHz Doppler wind profiler, MPR, lidar ceilometer, Doppler mini-sodar, Mobile Doppler Lidar and Sounding system (MoDLS) with a Doppler Wind Lidar and MPR. A tethered balloon will provide high temporal and vertical resolution in situ sampling of the surface layer temperature and humidity vertical profiles over the lowest 120 m AGL. Two of the profiling systems (MIPS and MoDLS) will include 20 Hz sonic anemometer measurements for documentation of velocity component (u, v, w) variance, buoyancy flux, and momentum flux. The Mobile Alabama X-band (MAX) dual polarization radar will be paired with the Ft. Campbell WSR-88D radar, located 29 km east of the MAX, to provide dual Doppler radar coverage of flow within the ABL over the profiler domain. The measurements during this eclipse will also provide information on the response of insects to rapidly changing lighting conditions. During the natural afternoon-to-evening transition, daytime insect concentrations decrease rapidly, and stronger-flying nighttime flyers emerge rapidly following sunset. We hypothesize that a similar transition will occur on a limited basis: nighttime flyers will emerge, but the daytime flyers will not rapidly disappear due to the short time scale of the darkness. This insect transition will be measured with the radar wind profilers and the MAX and WSR-88D dual polarization radars.
NASA Astrophysics Data System (ADS)
Sarazin, Marc S.; Osborn, James; Chacon-Oelckers, Arlette; Dérie, Frédéric J.; Le Louarn, Miska; Milli, Julien; Navarrete, Julio; Wilson, Richard R. W.
2017-09-01
The Stereo-SCIDAR (Scintillation Detection and Ranging) atmospheric turbulence profiler, built for ESO by Durham University, observes the scintillation patterns of binary elements with one of the four VLT-Interferometer 1.8m auxiliary telescopes at the ESO Paranal Observatory. The primary products are the vertical profiles of the index of refraction structure coefficient and of the wind velocity which allow to compute the wavefront coherence time and the isoplanatic angle with a vertical resolution of 250m. The several thousands of profiles collected during more than 30 nights of operation are grouped following criteria based on the altitude distribution or on principal component analysis. A set of reference profiles representative of the site is proposed as input for the various simulation models developed by the E-ELT (European Extremely Large Telescope) instruments Consortia.
Morpheus Lander Roll Control System and Wind Modeling
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth A.
2014-01-01
The Morpheus prototype lander is a testbed capable of vertical takeoff and landing developed by NASA Johnson Space Center to assess advanced space technologies. Morpheus completed a series of flight tests at Kennedy Space Center to demonstrate autonomous landing and hazard avoidance for future exploration missions. As a prototype vehicle being tested in Earth's atmosphere, Morpheus requires a robust roll control system to counteract aerodynamic forces. This paper describes the control algorithm designed that commands jet firing and delay times based on roll orientation. Design, analysis, and testing are supported using a high fidelity, 6 degree-of-freedom simulation of vehicle dynamics. This paper also details the wind profiles generated using historical wind data, which are necessary to validate the roll control system in the simulation environment. In preparation for Morpheus testing, the wind model was expanded to create day-of-flight wind profiles based on data delivered by Kennedy Space Center. After the test campaign, a comparison of flight and simulation performance was completed to provide additional model validation.
Cross-shore flow on the inner-shelf off southwest Portugal
NASA Astrophysics Data System (ADS)
Lamas, L.; Peliz, A.; Oliveira, P.; Dias, J.
2012-04-01
Velocity measurements from 4 bottom-mounted ADCP deployments (summers of 2006, 2007, 2008 and 2011) at a 12-m depth site off Sines, Portugal, complemented with time series of winds, waves and tides, are used to study the inner-shelf cross-shore flow dependence on wave, tidal and wind forcings. During these four summers, the dominating winds are from the north (upwelling-favorable), with strong diurnal sea breeze cycle throughout these periods. This quasi-steady wind circulation is sometimes interrupted by short event-like reversals. The observed records were split in different subsets according to tidal amplitude, wave height, cross- and along-shore wind magnitudes, and the vertical structure of the cross-shore flow was studied for each of these subsets. Despite different forcing conditions, the cross-shore velocity profiles usually show a vertical parabolic structure with maximum onshore flow at mid-depth, resembling the upwelling return flow for mid-shelf conditions, but atypical for the inner-shelf and in disagreement with other inner-shelf studies from other sites. We compare the observations with simplified 2D inner-shelf models and with results from other studies.
Atmospheric environment for Space Shuttle (STS-51D)
NASA Technical Reports Server (NTRS)
Jasper, G. L.; Johnson, D. L.; Hill, C. K.; Batts, G. W.
1985-01-01
A summary of selected atmospheric conditions observed near the space shuttle STS-51D launch time on April 12, 1985, at Kennedy Space Center Florida is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51D vehicle ascent is constructed. The STS-51D ascent atmospheric data tape is compiled by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post-flight performance assessments.
NASA Technical Reports Server (NTRS)
Guerlet, S.; Fouchet, T.; Bezard, B.; Flasar, F. M.; Simon-Miller, A. A.
2011-01-01
We present an analysis of thermal infrared spectra acquired in limb viewing geometry by Cassini/CIRS in February 2010. We retrieve vertical profiles of Saturn's stratospheric temperature from 20 hPa to 10 (exp -2) hPa, at 9 latitudes between 20 deg N and 20 deg S. Using the gradient thermal wind equation, we derive a map of the zonal wind field. Both the temperature and the zonal wind vertical profiles exhibit an oscillation in the equatorial region. These results are compared to the temperature and zonal wind maps obtained from 2005-2006 CIRS limb data, when this oscillation was first reported. In both epochs, strong temperature anomalies at the equator (up to 20K) are consistent with adiabatic heating (cooling) due to a sinking (rising) motion at a speed of 0.1 - 0.2 mm/s. Finally, we show that the altitude of the maximum eastward wind has moved downwards by 1.3 scale heights in 4.2 years, hence with a 'phase' speed of approximately 0.5 mm/s. This rate is consistent with the estimated period of 14.7 years for the equatorial oscillation, and requires a local zonal acceleration of 1.1 x 10(exp -6) m.s(exp -2) at the 2.5 hPa pressure level. This downward propagation of the oscillation is consistent with it being driven by absorption of upwardly propagating waves.
Radially Magnetized Protoplanetary Disk: Vertical Profile
NASA Astrophysics Data System (ADS)
Russo, Matthew; Thompson, Christopher
2015-11-01
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field Br ˜ (10-4-10-2)(r/ AU)-2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ˜1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10-8 M⊙ yr-1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.
NASA Astrophysics Data System (ADS)
Held, Gerhard; Cruz, Felipe
2014-05-01
Continuous Sodar observations from Bauru, located in the central State of São Paulo, are presented in this paper for a 4-year period (January 2010 - December 2013). The data were collected at the Meteorological Research Institute (IPMet) of the Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Campus Bauru, which is situated at the southeastern outskirts of the town, in a pristine environment with mostly indigenous vegetation. The medium-sized Sodar was programmed to record 60-minute averages of the vertical wind profiles (u, v, w) between 30 and 800 m above ground level (AGL, station height 624 m above mean sea level) at 30-minute intervals with a vertical resolution of 10 m. The data recovery was almost 100% in the first 160 m, subsequently diminishing gradually to 50% at 370 m, 20% at 500 m and then tailing off to only 1% at 800 m AGL. Since the Sodar is an acoustic sensor, the reception of the backscattered signals is strongly dependent on meteorological conditions. The maximum height of 800 m was maintained, despite the low recovery rate, because it is important for individual case studies. However, mean wind roses will only be presented up to 500 m AGL, to avoid a possible bias in sampling wind directions. In this paper wind roses at selected heights are presented to document the variation of the wind direction and speed with height, as well as their seasonal variation. Besides the standard primary data of the 3 wind components, the scalar hourly mean wind speed and the mean vector direction, the Sodar also generates their standard deviations. Furthermore, a variety of derived parameters, such as shear, shear direction, sigma speed, sigma Phi, sigma Theta, turbulence intensity, Pasquill-Gifford (PG) stability class, turbulent kinetic energy and eddy dissipation rate are generated as hourly means at each height level and recorded as sliding means every 30 min. The Software also offers the facility to generate a separate daily file with so called Non-Profile Variables, providing a single value for every vertical profile of the following variables: PG stability, surface heat flux, Monin Obukov Length and friction velocity. These are important input data for dispersion modeling, but only being calculated under convective conditions (mostly mid-day & early afternoon). Furthermore, the maximum range of the backscatter signal, as well as estimates of the lowest inversion height and the mixing height, if detected, are also being recorded for every profile. However, the last two variables mentioned are only estimated from the backscatter profile and thus not very reliable. Nevertheless, since there is no RASS attached to this Sodar, the statistics of all these parameters do provide a good record of the diurnal variation of the nocturnal stable Planetary Boundary Layer and daytime instability. Finally, the seasonal variation and characteristics of the nocturnal Low-Level-Jets (LLJs), developing on top of the surface radiation inversion, will be presented. These LLJs generally form during late evening at altitudes ranging from 200-500 m AGL, with maximum speeds of 12-25 m/s from east-south-east. They usually last until 08:00-09:00 LT (Local Time), when the inversion has been eroded by the solar radiation. LLJs could be identified on about 30-70 % of the days per month throughout the year. The practical importance of the LLJ lies in the rapid transport of moisture and pollutants in a narrow vertical band above the radiation inversion.
The vertical structure of the circulation and dynamics in Hudson Shelf Valley
Lentz, Steven J.; Butman, Bradford; Harris, Courtney K.
2014-01-01
Hudson Shelf Valley is a 20–30 m deep, 5–10 km wide v-shaped submarine valley that extends across the Middle Atlantic Bight continental shelf. The valley provides a conduit for cross-shelf exchange via along-valley currents of 0.5 m s−1 or more. Current profile, pressure, and density observations collected during the winter of 1999–2000 are used to examine the vertical structure and dynamics of the flow. Near-bottom along-valley currents having times scales of a few days are driven by cross-shelf pressure gradients setup by wind stresses, with eastward (westward) winds driving onshore (offshore) flow within the valley. The along-valley momentum balance in the bottom boundary layer is predominantly between the pressure gradient and bottom stress because the valley bathymetry limits current veering. Above the bottom boundary layer, the flow veers toward an along-shelf (cross-valley) orientation and a geostrophic balance with some contribution from the wind stress (surface Ekman layer). The vertical structure and strength of the along-valley current depends on the magnitude and direction of the wind stress. During offshore flows driven by westward winds, the near-bottom stratification within the valley increases resulting in a thinner bottom boundary layer and weaker offshore currents. Conversely, during onshore flows driven by eastward winds the near-bottom stratification decreases resulting in a thicker bottom boundary layer and stronger onshore currents. Consequently, for wind stress magnitudes exceeding 0.1 N m−2, onshore along-valley transport associated with eastward wind stress exceeds the offshore transport associated with westward wind stress of the same magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qian; Fan, Jiwen; Hagos, Samson M.
Understanding of critical processes that contribute to the organization of mesoscale convective systems is important for accurate weather forecast and climate prediction. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of cloud systems using the Weather Research & Forecasting (WRF) model with a spectral-bin microphysical scheme. The sensitivity experiments are performed by increasing wind shear at the lower (0-5 km), middle (5-10 km), upper (> 10 km) and the entire troposphere, respectively, based on a control run for a mesoscale convective system (MCS) with weak wind shear. We findmore » that increasing wind shear at the both lower and middle vertical levels reduces the domain-accumulated precipitation and the occurrence of heavy rain, while increasing wind shear at the upper levels changes little on precipitation. Although increasing wind shear at the lower-levels is favorable for a more organized quasi-line system which leads to enlarged updraft core area, and enhanced updraft velocities and vertical mass fluxes, the precipitation is still reduced by 18.6% compared with the control run due to stronger rain evaporation induced by the low-level wind shear. Strong wind shear in the middle levels only produces a strong super-cell over a narrow area, leading to 67.3% reduction of precipitation over the domain. By increasing wind shear at the upper levels only, the organization of the convection is not changed much, but the increased cloudiness at the upper-levels leads to stronger surface cooling and then stabilizes the atmosphere and weakens the convection. When strong wind shear exists over the entire vertical profile, a deep dry layer (2-9 km) is produced and convection is severely suppressed. There are fewer very-high (cloud top height (CTH) > 15 km) and very-deep (cloud thickness > 15 km) clouds, and the precipitation is only about 11.8% of the control run. The changes in cloud microphysical properties further explain the reduction of surface rain by strong wind shear especially at the lower- and middle-levels. The insights obtained from this study help us better understand the cloud system organization and provide foundation for better parameterizing organized MCS.« less
Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; ...
2015-08-27
In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σ u, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σ u , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less
Wind and flux measurements in a windfarm co-located with agricultural production (Invited)
NASA Astrophysics Data System (ADS)
Takle, E. S.; Prueger, J. H.; Rajewski, D. A.; Lundquist, J. K.; Aitken, M.; Rhodes, M. E.; Deppe, A. J.; Goodman, F. E.; Carter, K. C.; Mattison, L.; Rabideau, S. L.; Rosenberg, A. J.; Whitfield, C. L.; Hatfield, J.
2010-12-01
Co-locating wind farms in pre-existing agricultural fields represents multiple land uses for which there may be interactions. Agricultural producers have raised questions about the possible impact of changes in wind speed and turbulence on pollination, dew formation, and conditions favorable for diseases. During summer 2010 we measured wind speed and surface fluxes within a wind farm that was co-located with a landscape covered by corn and soybeans in central Iowa. We erected four 9.14 m towers in corn fields upwind and downwind of lines of 1.5 MW turbines. All towers were instrumented with sonic anemometers at 6.45 m above ground, three-cup anemometers at 9.06 m ,and two temperature and relative humidity probes at 5.30 and 9.06 m. In addition, LiCor 7500 CO2/H2O flux analyzers were mounted at 6.45 m on two towers. At the beginning of the field campaign (late June) the corn had a height of about 1.3 m and grew to about 2.2 m at maturity in late July. For a 2-week period beginning late June a vertically pointing lidar was located near a flux tower downwind of one of the turbines and collected horizontal winds from 40 m to 200 m above ground. Twenty-Hz data from the eddy covariance systems were recorded as were 5-min averaged values of wind speed, temperature, humidity, and fluxes of heat, momentum, moisture and CO2 day and night under a wide variety of weather conditions, including a two-week period when the turbines were shut down. Numerical simulations with the WRF (Weather Research and Forecast) model for select periods with no turbine influence provide opportunities for comparing modeled and measured values of surface conditions and vertical wind profiles. Results show clear evidence of changes in flow field conditions at the surface that influence fluxes. We will discuss diurnal changes in fluxes and influence of turbines. Lidar measurements of vertical profiles of wind speed compared against modeled undisturbed flow fields behind a turbine reveal significant momentum extraction and creation of regions of strong shear leading to mechanical generation of turbulence. Potential impacts on agricultural crops will be discussed.
The effect of wind mixing on the vertical distribution of buoyant plastic debris
NASA Astrophysics Data System (ADS)
Kukulka, T.; Proskurowski, G.; Morét-Ferguson, S.; Meyer, D. W.; Law, K. L.
2012-04-01
Micro-plastic marine debris is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant. The fate and transport of plastic marine debris is governed by poorly understood geophysical processes, such as ocean mixing within the surface boundary layer. Based on profile observations and a one-dimensional column model, we demonstrate that plastic debris is vertically distributed within the upper water column due to wind-driven mixing. These results suggest that total oceanic plastics concentrations are significantly underestimated by traditional surface measurements, requiring a reinterpretation of existing plastic marine debris data sets. A geophysical approach must be taken in order to properly quantify and manage this form of marine pollution.
CLIMATIC DATA ON ESTIMATED EFFECTIVE CHIMNEY HEIGHTS IN THE UNITED STATES
Plume rise calculations are based on the equations of Briggs (1975) for use with variable vertical profiles of temperature and wind speed. Results are presented for small and large chimneys, based on five years of twice-daily rawinsondes throughout the contiguous United States. I...
Dryline on 22 May 2002 During IHOP: Convective Scale Measurements at the Profiling Site
NASA Technical Reports Server (NTRS)
Demoz, Belay; Flamant, Cyrille; Miller, David; Evans, Keith; Fabry, Federic; DiGirolamo, Paolo; Whiteman, David; Geerts, Bart; Weckwerth, Tammy; Brown, William
2004-01-01
A unique set of measurements of wind, water vapor mixing ratio and boundary layer height variability was observed during the first MOP dryline mission of 22 May 2002. Water vapor mixing ratio from the Scanning Raman Lidar (SRL), high-resolution profiles of aerosol backscatter from the HARLIE and wind profiles from the GLOW are combined with the vertical velocity derived from the NCAR/ISS/MAPR and the high-resolution FMCW radar to reveal the convective variability of the cumulus cloud-topped boundary layer. A combined analysis of the in-situ and remote sensing data from aircraft, radiosonde, lidars, and radars reveals moisture variability within boundary layer updraft and downdraft regions as well as characterizes the boundary layer height variability in the dry and moist sides of the dryline. The profiler site measurements will be tied to aircraft data to reveal the relative intensity and location of these updrafts to the dry line. This study provides unprecedented high temporal and spatial resolution measurements of wind, moisture and backscatter within a dryline and the associated convective boundary layer.
NASA Astrophysics Data System (ADS)
Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.
2016-02-01
Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.
Sodars and their application for investigation of the turbulent structure of the lower atmosphere
NASA Astrophysics Data System (ADS)
Krasnenko, N. P.; Shamanaeva, L. G.
2016-11-01
Possibilities of sodar application for investigation of the spatiotemporal dynamics of three components of wind velocity vector, longitudinal and transverse structural functions of wind velocity field, structural characteristics of temperature and wind velocity, turbulent kinetic energy dissipation rate, and outer scales of temperature and dynamic turbulence in the atmospheric boundary layer are analyzed. The original closed iterative algorithm of sodar data processing taking into account the classical and molecular absorption and the turbulent sound attenuation on the propagation path is used that allows the vertical profiles of the characteristics of temperature and wind velocity field to be reconstructed simultaneously and their interrelations to be investigated. It is demonstrated how the structure of temperature and wind turbulence is visualised in real time.
Atmospheric environment for Space Shuttle (STS-41D) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.
1984-01-01
Selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact were constructed. The STS-41D ascent meteorological data tape was constructed by Marshall Space Flight Center's Atmospheric Science Division to provide an internally consistent data set for use in post flight performance assessments.
Estimation of Venus wind velocities from high-resolution infrared spectra. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Smith, M. A. H.
1978-01-01
Zonal velocity profiles in the Venus atmosphere above the clouds were estimated from measured asymmetries of HCl and HF infrared absorption lines in high-resolution Fourier interferometer spectra of the planet. These asymmetries are caused by both pressure-induced shifts in the positions of the hydrogen-halide lines perturbed by CO2 and Doppler shifts due to atmospheric motions. Particularly in the case of the HCl 2-0 band, the effects of the two types of line shifts can be easily isolated, making it possible to estimate a profile of average Venus equatorial zonal velocity as a function of pressure in the region roughly 60 to 70 km above the surface of the planet. The mean profiles obtained show strong vertical shear in the Venus zonal winds near the cloud-top level, and both the magnitude and direction of winds at all levels in this region appear to vary greatly with longitude relative to the sub-solar point.
DOE's 449 MHz Wind Profiling Radars on the U.S. West Coast: Annual Report for Fiscal Year 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaherty, Julia E.; Shaw, William J.; Wilczak, J. M.
The three coastal wind profilers and associated meteorological instruments located in Forks, WA, Astoria, OR, and North Bend, OR, provide important observations at high temporal and vertical spatial resolution to characterize the meteorological inflow to the western region of the United States. These instruments have been operating for a year or more, and furnish boundary conditions for the modeling efforts of the WFIP2 project. The data have been delivered to archives at both NOAA and the DOE A2e DAP at a data recovery rate in excess of 98%. Site maintenance activities have been relatively minor, with a few component replacementsmore » and repairs to RASS foam. Bird mortality surveys have found no bird nests or carcasses, and the U.S. Fish and Wildlife Service has regularly been provided survey reports. This project represents a successful collaboration between PNNL and NOAA to procure, test, deploy, maintain, and operate three 449 MHz radar wind profilers.« less
Efficient Low-Speed Flight in a Wind Field
NASA Technical Reports Server (NTRS)
Feldman, Michael A.
1996-01-01
A new software tool was needed for flight planning of a high altitude, low speed unmanned aerial vehicle which would be flying in winds close to the actual airspeed of the vehicle. An energy modeled NLP (non-linear programming) formulation was used to obtain results for a variety of missions and wind profiles. The energy constraint derived included terms due to the wind field and the performance index was a weighted combination of the amount of fuel used and the final time. With no emphasis on time and with no winds the vehicle was found to fly at maximum lift to drag velocity, V(sub md). When flying in tail winds the velocity was less than V(sub md), while flying in head winds the velocity was higher than V(sub md). A family of solutions was found with varying times of flight and varying fuel amounts consumed which will aid the operator in choosing a flight plan depending on a desired landing time. At certain parts of the flight, the turning terms in the energy constraint equation were found to be significant. An analysis of a simpler vertical plane cruise optimal control problem was used to explain some of the characteristics of the vertical plane NLP results.
Lidar-based Research and Innovation at DTU Wind Energy - a Review
NASA Astrophysics Data System (ADS)
Mikkelsen, T.
2014-06-01
As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars (short-range system), and another consisting of three synchronized pulsed wind lidar systems (long-range system). Today, wind lidar profilers and WindScanners are routinely deployed and operated during field tests and measurement campaigns. Lidars have been installed and operated from ground, on offshore platforms, and also as scanning lidars integrated in operating turbines. As a result, wind profiles and also detailed 3D scanning of wind and turbulence fields have been achieved: 1) of the free wind aloft, 2) over complex terrain, 3) at coastal ranges with land-sea interfaces, 4) offshore, 5) in turbine inflow induction zone, and 6) of the complex and turbulent flow fields in the wakes inside wind parks.
Liu, Jian; Wu, Dui; Fan, Shao-jia
2015-11-01
Based on the data of hourly PM2.5 concentration of 56 environmental monitoring stations and 9 cities over the Pearl River Delta (PRD) region, the distributions of PM2.5 pollution in PRD region were analyzed by systematic cluster analysis and correlational analysis. It was found that the regional pollution could be divided into 3 types. The first type was the pollution occurred in Dongguan, Guangzhou, Foshan and Jiangmen (I type), and the second type was the pollution occurred in Zhongshan, Zhuhai, Shenzhen and Huizhou (II type), while the last type was the pollution only occurred in Zhaoqing (III type). During the study period, they occurred 47, 7 and 128 days, respectively. During events of pollution type I, except Zhuhai, Shenzhen and Huizhou, the PM2.5 concentrations of other cities were generally high, while the PM2.5 concentration in whole PRD region was over 50.0 μg x m(-3) during events of pollution type II. The regions with higher PM2.5 concentration was mainly concentrated in Zhaoqing, Guangzhou and Foshan during events of pollution type III. The wind data from 4 wind profile radars located in PRD region was used to study the characteristics of vertical wind field of these 3 pollution types. It was found that the wind profiles of type I and III were similar that low layer and high layer were controlled by the southeast wind and the southwest wind, respectively. For type II, the low layer and high layer were influenced by northerly wind and westerly wind, respectively. Compared with other types, the wind speed and ventilation index of type II. were much higher, and the variation of wind direction at lower-middle-layer was much smaller. When PRD region was influenced by northerly winds, the PM2.5 concentration in the entire PRD region was higher. When PRD region was controlled by southeast wind, the PM2.5 concentrations of I and II areas were relatively lower, while the pollution in III area was relatively heavier.
NASA Astrophysics Data System (ADS)
Schilperoort, B.; Coenders, M.; Savenije, H. H. G.
2017-12-01
In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.
An evaluation of the accuracy of some radar wind profiling techniques
NASA Technical Reports Server (NTRS)
Koscielny, A. J.; Doviak, R. J.
1983-01-01
Major advances in Doppler radar measurement in optically clear air have made it feasible to monitor radial velocities in the troposphere and lower stratosphere. For most applications the three dimensional wind vector is monitored rather than the radial velocity. Measurement of the wind vector with a single radar can be made assuming a spatially linear, time invariant wind field. The components and derivatives of the wind are estimated by the parameters of a linear regression of the radial velocities on functions of their spatial locations. The accuracy of the wind measurement thus depends on the locations of the radial velocities. The suitability is evaluated of some of the common retrieval techniques for simultaneous measurement of both the vertical and horizontal wind components. The techniques considered for study are fixed beam, azimuthal scanning (VAD) and elevation scanning (VED).
The plume rise equations of Briggs (1975) for variable vertical profiles of temperature and wind speed are described and applied for hypothetical small and very large chimneys at five NWS rawinsonde stations across the United States. From other available data additional informati...
The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter
NASA Astrophysics Data System (ADS)
Atkinson, David H.; Pollack, James B.; Seiff, Alvin
1998-09-01
During its descent into the upper atmosphere of Jupiter, the Galileo probe transmitted data to the orbiter for 57.5 min. Accurate measurements of the probe radio frequency, driven by an ultrastable oscillator, allowed an accurate time history of the probe motions to be reconstructed. Removal from the probe radio frequency profile of known Doppler contributions, including the orbiter trajectory, the probe descent velocity, and the rotation of Jupiter, left a measurable frequency residual due to Jupiter's zonal winds, and microdynamical motion of the probe from spin, swing under the parachute, atmospheric turbulence, and aerodynamic buffeting. From the assumption of the dominance of the zonal horizontal winds, the frequency residuals were inverted and resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. A number of error sources with the capability of corrupting the frequency measurements or the interpretation of the frequency residuals were considered using reasonable assumptions and calibrations from prelaunch and in-flight testing. It is found that beneath the cloud tops (about 700 mbar) the winds are prograde and rise rapidly to 170 m/s at 4 bars. Beyond 4 bars to the depth at which the link with the probe was lost, nearly 21 bars, the winds remain constant and strong. Corrections for the high temperatures encountered by the probe have recently been completed and provide no evidence of diminishing or strengthening of the zonal wind profile in the deeper regions explored by the Galileo probe.
Temporal Variability of the Trade Wind Inversion: Measured with a Boundary Layer Vertical Profiler
1992-05-01
direction change . Consequently, the frequency of vertical observations is every 70 s and each measu t is a 30 s average. T. Riddle combined the raw data set... changes to superadiabatic. There is no change to the temperature at the inversion top. 25 Temperature ( and Dewpoint (-): 8 Aug. 1200 UTC 5000 4500 ! 4000...inversion base is the last level before the lapse rate changes to superadiaatc, (2) There is no change to temperature at the inversion top, and (3) A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.
We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s -1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less
Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...
2015-09-25
We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s -1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less
Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars
NASA Astrophysics Data System (ADS)
Mikkelsen, T.; Mann, J.; Courtney, M.; Sjöholm, M.
2008-05-01
At RISØ DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed.
NASA Astrophysics Data System (ADS)
Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine
2017-02-01
During winter, cold air outbreaks take place in the northwestern Mediterranean sea. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental air across a warmer sea. In such conditions, high values of surface sensible and latent heat flux are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the flux profile throughout the entire MABL is essential for the estimation of air-sea exchanges, a correction of eddy covariance turbulent fluxes was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface fluxes estimates, computed from the extrapolation of the stacked levels. A comparison between those surface fluxes and bulk fluxes computed at a moored buoy revealed considerable differences, mainly regarding the latent heat flux under strong wind conditions.
NASA Astrophysics Data System (ADS)
Scott, D. K.; Neilsen, T. L.; Weston, C.; Frazier, C.; Smith, T.; Shumway, A.
2015-12-01
Global measurements of vertically-resolved atmospheric wind profiles offer the potential for improved weather forecasts and superior predictions of atmospheric wind patterns. A small-satellite constellation that uses a Fourier Transform Spectrometer (FTS) instrument onboard 12U CubeSats can provide measurements of global tropospheric wind profiles from space at a very low cost. These small satellites are called FTS CubeSats. This presentation will describe a spacecraft concept that provides a stable, robust platform to host the FTS payload. Of importance to the payload are power, data, station keeping, thermal, and accommodations that enable high spectral measurements to be made from a LEO orbit. The spacecraft concept draws on Space Dynamics Laboratory (SDL) heritage and the recent success of the Dynamic Ionosphere Cubesat Experiment (DICE) and HyperAngular Rainbow Polarimeter (HARP) missions. Working with team members, SDL built a prototype observatory (spacecraft and payload) for testing and proof of concept.
Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow
NASA Astrophysics Data System (ADS)
Rolin, Vincent; Porté-Agel, Fernando
2015-04-01
Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.
Evaluation of the Space Shuttle Transatlantic Abort Landing Atmospheric Sounding System
NASA Technical Reports Server (NTRS)
Leahy, Frank B.
2003-01-01
A study was conducted to determine the quality of thermodynamic and wind data measured by or derived from the Transatlantic Abort Landing (TAL) Atmospheric Sounding System (TASS). The system has Global Positioning System (GPS) tracking capability and includes a helium-filled latex balloon that carries an instrument package (sonde) and various ground equipment that receives and processes the data from the sonde. TASS is used to provide vertical profiles of thermodynamic and low-resolution wind data in support of Shuttle abort landing operations at TAL sites. TASS uses GPS to determine height, wind speed, and wind direction. The TASS sonde has sensors that directly measure air temperature and relative humidity. These are then used to derive air pressure and density. Test flights were conducted where a TASS sonde and a reference sonde were attached to the same balloon and the two profiles were compared. The objective of the testing was to determine if TASS thermodynamic and wind data met Space Shuttle Program (SSP) accuracy requirements outlined in the Space Shuttle Launch and Landing Program Requirements Document (PRD).
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III
2018-05-01
For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.
Observations and a model of undertow over the inner continental shelf
Lentz, Steven J.; Fewings, Melanie; Howd, Peter; Fredericks, Janet; Hathaway, Kent
2008-01-01
Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth.During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.
NASA Astrophysics Data System (ADS)
Day, B. M.; Clements, C. B.; Rappenglueck, B.
2007-12-01
High-temporal resolution tethersonde profiles taken during the TexAQS II field campaign in Houston were used to study the overnight development and progression of the nocturnal boundary layer (NBL) and the evolution of the convective boundary layer after sunrise. The measurements were made at the University of Houston campus, located approximately 4 km southeast of the downtown Houston central business district, and consisted of vertical profiles of potential temperature, water vapor mixing ratio, wind speed, wind direction, and ozone concentration. Profile heights averaged 250 m AGL with a few reaching 400 m AGL. Profiles were taken at approximately 30 min intervals throughout 4 nights during Intensive Observational Periods (IOPs), including both the evening and morning transitional periods. Tethersonde experiments also were performed during several additional morning break-up periods during the campaign. Preliminary results from the overnight experiments of Sept 7-8 and Sept 14-15, 2006 showed different NBL evolutions. Sept 7-8 exhibited a stronger and deeper inversion compared with Sept 14-15 when the inversion was weak with a fairly constant height throughout the night. The Sept 7-8 profiles showed elevated bluff-like structures in the virtual potential temperature profiles between 0300-0400 CDT, indicating neutral stability within the 40-90 m AGL level. And, just before sunrise a neutral layer with constant potential temperature developed between the surface and 75 m AGL reflecting horizontal cold air advection. Further analyses will be presented for other vertical profiles taken during the campaign, including the additional overnight profiles as well as the profiles taken during the morning transition to the convective boundary layer.
Microburst vertical wind estimation from horizontal wind measurements
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.
1994-01-01
The vertical wind or downdraft component of a microburst-generated wind shear can significantly degrade airplane performance. Doppler radar and lidar are two sensor technologies being tested to provide flight crews with early warning of the presence of hazardous wind shear. An inherent limitation of Doppler-based sensors is the inability to measure velocities perpendicular to the line of sight, which results in an underestimate of the total wind shear hazard. One solution to the line-of-sight limitation is to use a vertical wind model to estimate the vertical component from the horizontal wind measurement. The objective of this study was to assess the ability of simple vertical wind models to improve the hazard prediction capability of an airborne Doppler sensor in a realistic microburst environment. Both simulation and flight test measurements were used to test the vertical wind models. The results indicate that in the altitude region of interest (at or below 300 m), the simple vertical wind models improved the hazard estimate. The radar simulation study showed that the magnitude of the performance improvement was altitude dependent. The altitude of maximum performance improvement occurred at about 300 m.
Enabling Characteristics Of Optical Autocovariance Lidar For Global Wind And Aerosol Profiling
NASA Astrophysics Data System (ADS)
Grund, C. J.; Stephens, M.; Lieber, M.; Weimer, C.
2008-12-01
Systematic global wind measurements with 70 km horizontal resolution and, depending on altitude from the PBL to stratosphere, 250m-2km vertical resolution and 0.5m/s - 2 m/s velocity precision are recognized as key to the understanding and monitoring of complex climate modulations, validation of models, and improved precision and range for weather forecasts. Optical Autocovariance Wind Lidar (OAWL) is a relatively new interferometric direct detection Doppler lidar approach that promises to meet the required wind profile resolution at substantial mass, cost, and power savings, and at reduced technical risk for a space-based system meeting the most demanding velocity precision and spatial and temporal resolution requirements. A proof of concept Optical Autocovariance Wind Lidar (OAWL) has been demonstrated, and a robust multi- wavelength, field-widened (more than 100 microR) lidar system suitable for high altitude (over 16km) aircraft demonstration is under construction. Other advantages of the OAWL technique include insensitivity to aerosol/molecular backscatter mixing ratio, freedom from complex receiver/transmitter optical frequency lock loops, prospects for practical continuous large-area coverage wind profiling from GEO, and the availability of simultaneous multiple wavelength High Spectral Resolution Lidar (OA-HSRL) for aerosol identification and optical property measurements. We will discuss theory, development and demonstration status, advantages, limitations, and space-based performance of OAWL and OA-HSRL, as well as the potential for combined mission synergies.
Effective solidity in vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Parker, Colin M.; Leftwich, Megan C.
2016-11-01
The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.
NASA Astrophysics Data System (ADS)
Garcia-Melendo, E.; Legarreta, J.; Sanchez-Lavega, A.
2012-12-01
Direct measurements of the structure of the zonal winds of Jupiter and Saturn below the upper cloud layer are very difficult to retrieve. Except from the vertical profile at a Jupiter hot spot obtained from the Galileo probe in 1995 and measurements from cloud tracking by Cassini instruments just below the upper cloud, no other data are available. We present here our inferences of the vertical structure of Jupiter and Saturn zonal wind across the upper troposphere (deep down to about 10 bar level) obtained from nonlinear simulations using the EPIC code of the stability and interactions of large-scale vortices and planetary-scale disturbances in both planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] García-Melendo E., Sánchez-Lavega A., Dowling T.., Icarus, 176, 272-282 (2005). [2] García-Melendo E., Sánchez-Lavega A., Hueso R., Icarus, 191, 665-677 (2007). [3] Sánchez-Lavega A., et al., Nature, 451, 437- 440 (2008). [4] Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011).
LiDAR error estimation with WAsP engineering
NASA Astrophysics Data System (ADS)
Bingöl, F.; Mann, J.; Foussekis, D.
2008-05-01
The LiDAR measurements, vertical wind profile in any height between 10 to 150m, are based on assumption that the measured wind is a product of a homogenous wind. In reality there are many factors affecting the wind on each measurement point which the terrain plays the main role. To model LiDAR measurements and predict possible error in different wind directions for a certain terrain we have analyzed two experiment data sets from Greece. In both sites LiDAR and met, mast data have been collected and the same conditions are simulated with RisØ/DTU software, WAsP Engineering 2.0. Finally measurement data is compared with the model results. The model results are acceptable and very close for one site while the more complex one is returning higher errors at higher positions and in some wind directions.
NASA Astrophysics Data System (ADS)
Finn, A.
2017-12-01
The natural sound generated by an unmanned aerial vehicle is used in conjunction with tomography to remotely sense atmospheric temperature and wind profiles simultaneously. Sound fields recorded onboard the aircraft and by an array of microphones on the ground are compared and converted to sound speed estimates for the ray paths intersecting the intervening medium. Tomographic inversion is then used to transform these sound speed values into vertical cross-sections and 3D volumes of virtual temperature and wind vectors, which enables the atmosphere to be visualised and monitored over time up to altitudes of 1,200m and over baselines of up to 600m. This paper reports on results from two short campaigns during which 2D and 3D profiles of wind and temperature obtained in this way were compared to: measurements taken by co-located mid-range Doppler SODAR and LIDAR; and temperature measurements made by instruments carried by unmanned aircraft flying through the intervening atmosphere. Large eddy simulation of daytime atmospheric boundary layers were also used to examine the anticipated performance of the instruments and the nature of any errors. The observations obtained using all systems are shown to correspond closely.
Atmospheric environment for Space Shuttle (STS-5) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Batts, G. W.
1983-01-01
This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-5 launch time on November 11, 1982, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in he SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-5 vehicle ascent and SRB descent have been constructed. The STS-5 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.
Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU
2011-03-08
A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.
NASA Astrophysics Data System (ADS)
Marcello Falcieri, Francesco; Kantha, Lakshmi; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Malačič, Vlado; Sclavo, Mauro; Carniel, Sandro
2016-03-01
The oceanographic campaign CARPET2014 (Characterizing Adriatic Region Preconditionig EvenTs), (30 January-4 February 2014) collected the very first turbulence data in the Gulf of Trieste (northern Adriatic Sea) under moderate wind (average wind speed 10 m s-1) and heat flux (net negative heat flux ranging from 150 to 400 W m-2). Observations consisted of 38 CTD (Conductivity, Temperature, Depth) casts and 478 microstructure profiles (grouped into 145 ensembles) with three sets of yoyo casts, each lasting for about 12 consecutive hours. Averaging closely repeated casts, such as the ensembles, can lead to a smearing effect when in the presence of a vertical density structure with strong interfaces that can move up or down between subsequent casts under the influence of tides and internal waves. In order to minimize the smearing effect of such displacements on mean quantities, we developed an algorithm to realign successive microstructure profiles to produce sharper and more meaningful mean profiles of measured turbulence parameters. During the campaign, the water column in the gulf evolved from well-mixed to stratified conditions due to Adriatic waters intruding at the bottom along the gulf's south-eastern coast. We show that during the warm and relatively dry winter, the water column in the Gulf of Trieste, even under moderate wind forcing, was not completely mixed due to the influence of bottom waters intruding from the open sea. Inside the gulf, two types of water intrusions were found during yoyo casts: one coming from the northern coast of the Adriatic Sea (i.e. cooler, fresher and more turbid) and one coming from the open sea in front of the Po Delta (i.e. warmer, saltier and less turbid). The two intrusions had different impacts on turbulence kinetic energy dissipation rate profiles. The former, with high turbidity, acted as a barrier to wind-driven turbulence, while the latter, with low sediment concentrations and a smaller vertical density gradient, was not able to suppress downward penetration of turbulence from the surface.
Shifts of radiocesium vertical profiles in sediments and their modelling in Japanese lakes.
Fukushima, Takehiko; Komatsu, Eiji; Arai, Hiroyuki; Kamiya, Koichi; Onda, Yuichi
2018-02-15
Vertical profiles of radiocesium concentrations were measured in sediment cores collected at various times after the 2011 Fukushima nuclear accident in five Japanese lakes (Hinuma, Kasumigaura, Kitaura, Onogawa and Sohara) with different morphological and trophic characteristics in order to investigate the sedimentation-diffusion processes. In lakes where sediments had high porosities and experienced considerable wave action due to shallowness, we observed rapid penetration of radiocesium to a certain depth just after the accident, followed by downward movement of the peak depths. In contrast, gradual downward transfers of distinct peaks were found in other types of lakes. A one-dimensional differential sediment model with water-sediments interaction processes was constructed to describe the vertical shift of radiocesium profiles. Our proposed submodels relating to the length scales of the mixing using wind-induced stress and porosity of sediments were constructed based on one measurement of the vertical distribution of radiocesium in three lakes (Hinuma, Kasumigaura and Sohara). This model was then validated using samples from those lakes in different years, as well as from two other lakes. Good agreement was obtained. We discuss our findings, the limits of model application, and future research targets. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of Wind Profiler Data in Short-Range Forecasting
1994-01-15
predicted in this case. 40 WxP orolys~s foZ A AU)G 92 \\~~5 6-6 2 8 )Bo $6 76 ez 7 -’~ .’~ ~ 639 tit~ 7 0 61 2 12 66 6 6123 6 f AUG 09 , 1 1O1I 4 21 map...derived from the profiler network to the NGM fields. The software can animate a time series of the analyses, both for horizontal and vertical cross sections
Numerous urban canopy schemes have recently been developed for mesoscale models in order to approximate the drag and turbulent production effects of a city on the air flow. However, little data exists by which to evaluate the efficacy of the schemes since "area-averaged&quo...
BUFR TABLE B - WMO AND LOCAL (NCEP) DESCRIPTORS AS WELL AS THOSE AWAITING
09 Reserved 0 10 Non-coordinate location (vertical) Height, altitude, pressure and derivatives . calibration method, wind profiler mode, radiance channel combinations, hardware configurations, etc. 0 26 Non -coordinate location (time) Defines time and time derivatives that are not coordinates 0 27 Non-coordinate
Structure of the microclimate at a woodland/parking-lot interface
David R. Miller
1977-01-01
Radiation balances and vertical and horizontal profiles of air temperature, vapor pressure and wind speed were measured across the interface of a large asphalt parking lot and an 18-m-tall Quercus velutina forest. The partitioning of available energy over the adjacent areas shows steep gradients between the parking lot and forest microclimates....
North American Meso Model Forecast Meteograms
BUFR unpacking is also available. New RUC FORECAST METEOGRAMS are now available. Forecasts of surface variables and vertical profiles of cloud and wind are available for over 1300 stations within the North American Meso model domain. A complete list of the available stations can be found here . Select a region
Flow measurement behind a pair of vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Parker, Colin M.; Hummels, Raymond; Leftwich, Megan C.
2017-11-01
The wake from a pair of vertical-axis wind turbines (VAWTs) is measured using particle imaging velocimetry (PIV). The VAWT models are mounted in a low-speed wind tunnel and driven using a motor control system. The rotation of the turbines is synced using a proportional controller that allows the turbine's rotational position to be set relative to each other. The rotation of the turbines is also synced with the PIV system for taking phase averaged results. The VAWTs are tested for both co- and counter-rotating cases over a range of relative phase offsets. Time averaged and phase averaged results are measured at the horizontal mid-plane in the near wake. The time-averaged results compare the bulk wake profiles from the pair of turbines. Phase averaged results look at the vortex interactions in the near wake of the turbines. By changing the phase relation between the turbines we can see the impact of the structure interactions in both the phase and time averaged results.
NASA Technical Reports Server (NTRS)
Vaughan, W. W.
1977-01-01
The effectiveness of mesoscale models in explaining perturbations observed in vertical detailed wind profile measurements in the troposphere and lower stratosphere is assessed. The structure and persistence of the data were analyzed and interpreted in terms of several physical models with the goal of establishing explanations for the observed persistent features of the mesoscale flow patterns. The experimental data used in the investigation were obtained by a unique detailed wind profile measurement system. This system is capable of providing resolution of 50 to 100 m wavelengths for the altitude region from approximately 200 m to 18 km. The system consists of a high-resolution tracking radar and special super-pressure balloon configuration known as a Jimsphere.
NASA Astrophysics Data System (ADS)
Liu, Junkai; Gao, Zhiqiu; Wang, Linlin; Li, Yubin; Gao, Chloe Y.
2018-06-01
Urbanization has a significant influence on climate and meteorological conditions through altering surface aerodynamic characteristics. Based on observational data collected at 15 levels on a 325 m meteorological tower in Beijing during 1991-2011, changes in wind speed, vertical profile, aerodynamic roughness length (z0), and zero-plane displacement height (zd) were analyzed. Decreasing trends were observed predominantly during this period, especially for levels between 65 and 140 m where the largest decreasing rates often occur. The annual and seasonal (spring, summer, autumn, and winter) mean wind speeds at 15 levels all present decreasing trends with average rates of 0.029, 0.024, 0.023, 0.040, and 0.019 m s-1 a-1, respectively. The decreases in strong wind categories contribute most to the reduction of mean wind speed. Furthermore, in 2005-2011, the diurnal maximum wind speeds at lower levels tend to appear earlier as compared to those in 1991-1997, while the patterns of diurnal cycle between different levels become more similar in these periods. Besides, the phenomena of "kink" in wind profiles are visible in various atmospheric stabilities, and the average height of a kink has increased from about 40 m to nearly 80 m associated with urbanization during 1991-2011. In addition, the results of z0 and zd calculated using the wind profile method vary with wind directions due to surface heterogeneity and that larger values often occur along with southerly winds. Both z0 and zd show increasing trends in different sectors during 1991-2011, and the annual mean z0 and zd have increased from less than 1 m to greater than 2 m, and from less than 10 m to greater than 20 m, respectively.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul;
2010-01-01
This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1
SPICAM: studying the global structure and composition of the Martian atmosphere
NASA Astrophysics Data System (ADS)
Bertaux, J.-L.; Fonteyn, D.; Korablev, O.; Chassefre, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Lefèvre, F.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.
2004-08-01
The SPICAM (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument consists of two spectrometers. The UV spectrometer addresses key issues about ozone and its H2O coupling, aerosols, the atmospheric vertical temperature structure and the ionosphere. The IR spectrometer is aimed primarily at H2O and abundances and vertical profiling of H2O and aerosols. SPICAM's density/temperature profiles will aid the development of meteorological and dynamical atmospheric models from the surface up to 160 km altitude. UV observations of the upper atmosphere will study the ionosphere and its direct interaction with the solar wind. They will also allow a better understanding of escape mechanisms, crucial for insight into the long-term evolution of the atmosphere.
Measuring large-scale vertical motion in the atmosphere with dropsondes
NASA Astrophysics Data System (ADS)
Bony, Sandrine; Stevens, Bjorn
2017-04-01
Large-scale vertical velocity modulates important processes in the atmosphere, including the formation of clouds, and constitutes a key component of the large-scale forcing of Single-Column Model simulations and Large-Eddy Simulations. Its measurement has also been a long-standing challenge for observationalists. We will show that it is possible to measure the vertical profile of large-scale wind divergence and vertical velocity from aircraft by using dropsondes. This methodology was tested in August 2016 during the NARVAL2 campaign in the lower Atlantic trades. Results will be shown for several research flights, the robustness and the uncertainty of measurements will be assessed, ands observational estimates will be compared with data from high-resolution numerical forecasts.
NASA Astrophysics Data System (ADS)
Ixetl Garcia Gomez, Beatriz; Pallas Sanz, Enric; Candela Perez, Julio
2017-04-01
The near-inertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoscale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 23 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical and horizontal cross-sections of the KEi-composites show that the KEi is mainly located near to the surface of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. The mean vertical profiles show that the cyclonic eddies present a maximum of KEi near to the surface at 50, while the maximum of KEi in the anticyclonic eddies occurs between 900 and 1100 m. Inside anticyclonic eddies another two relative maximums are observed, one in the mixed layer and the second at 300 m. In contrast, the mean profile of KEi outside the mesoscale eddies has the maximum value at the surface ( 50 m), with high values of KEi in the first 200 m and negligible energy beneath that depth. A different mean distribution of the KEi is observed depending on the type of wind generator: tropical storms or unidirectional wind.
Evaluation of vertical profiles to design continuous descent approach procedure
NASA Astrophysics Data System (ADS)
Pradeep, Priyank
The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of uncertainties in external factors. Analysis from operational feasibility perspective suggests that two key features of the performance based Flight Management System (FMS) i.e. required time of arrival (RTA) and geometric descent path would help in reduction of unpredictability associated with arrival time and vertical profile of aircraft guided by the FMS coupled with auto-pilot (AP) and auto-throttle (AT). The statistical analysis of the vertical profiles of CDA also suggests that for procedure design window type, 'AT or above' and 'AT or below' altitude and FPA constraints are more realistic and useful compared to obsolete 'AT' type altitude constraint.
2013-01-11
Q. J. Roy. Meteor. Soc., in review, 2012. Srivastava , R . C.: A model of intense downdrafts driven by the melt- ing and evaporation of precipitation, J...formation and intensity of downdrafts ( Srivastava , 1987). 5A brief discussion of the potential consequences of the envi- ronmental wind profile can be found...the time series is shown. (b) As in (a) but for RMN68 (da k r d), 10RMN68 (light red), ICE68 (dark grey), and 10ICE68 (light grey). Note that the tilt
NASA Astrophysics Data System (ADS)
Kim, Y.; Lee, C.; Kim, J.; Jee, G.
2013-12-01
For the first time, vertical winds near the mesopause region were estimated from radial velocities of meteor echoes detected by a VHF meteor radar at King Sejong Station (KSS) in 2011 and 2012. Since the radar usually detects more than a hundred echoes every hour in an altitude bin of 88 - 92 km, much larger than other radars, we were able to fit measured radial velocities of these echoes with a 6 component model that consists of horizontal winds, spatial gradients of horizontal winds and vertical wind. The conventional method of deriving horizontal winds from meteor echoes utilizes a 2 component model, assuming that vertical winds and spatial gradients of horizontal winds are negligible. We analyzed the radar data obtained for 8400 hours in 2012 and 8100 hours in 2011. We found that daily mean values of vertical winds are mostly within +/- 1 m/s, whereas those of zonal winds are a few tens m/s mostly eastward. The daily mean vertical winds sometimes stay positive or negative for more than 20 days, implying that the atmosphere near the mesopause experiences episodically a large scale low and high pressure environments, respectively, like the tropospheric weather system. By conducting Lomb-normalized periodogram analysis, we also found that the vertical winds have diurnal, semidiurnal and terdiurnal tidal components with about equal significance, in contrast to horizontal winds that show a dominant semidiurnal one. We will discuss about uncertainties of the estimated vertical wind and possible reasons of its tidal and daily variations.
Tethered balloon-based measurements of meteorological variables and aerosols
NASA Technical Reports Server (NTRS)
Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.
1976-01-01
Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.
NASA Technical Reports Server (NTRS)
Shenk, W. E.; Adler, R. F.; Chesters, D.; Susskind, J.; Uccellini, L.
1984-01-01
The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments.
Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange
NASA Astrophysics Data System (ADS)
Poindexter, C.; Variano, E. A.
2010-12-01
Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the gas transfer coefficient, k, for both a vegetated condition and a control condition (no cylinders). The presence of cylinders in the tank substantially increased the rate of the gas transfer. For the highest wind speed, the gas transfer coefficient was several times higher when cylinders were present compared to when they were not. The gas transfer coefficient for the vegetated condition also proved sensitive to wind speed, increasing markedly with increasing mean wind speeds. Profiles of dissolved oxygen revealed well-mixed conditions in the bulk water column following prolonged air-flow above the water surface, suggesting application of the thin-film model is appropriate. The enhanced gas exchange observed might be explained by increased turbulent kinetic energy within the water column and the anisotropy of the cylinder array, which constrains horizontal motions more than vertical motions. Improved understanding of gas exchange in vegetated water columns may be of particularly use to investigations of carbon fluxes and soil accretion in wetlands. Reference: Nepf, H. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res., 35(2), 479-489.
NASA Astrophysics Data System (ADS)
K R, Sreenivas; Mohammad, Rafiuddin
2016-11-01
Predicting the fog-onset, its growth and dissipation helps in managing airports and other modes of transport. After sunset, occurrence of fog requires moist air, low wind and clear-sky conditions. Under these circumstances radiative heat transfer plays a vital role in the NBL. Locally, initiation of fog happens when the air temperature falls below the dew-point. Thus, to predict the onset of fog at a given location, one has to compute evolution of vertical temperature profile. Earlier,our group has shown that the presence of aerosols and vertical variation in their number density determines the radiative-cooling and hence development of vertical temperature profile. Aerosols, through radiation in the window-band, provides an efficient path for air layers to lose heat to the cold, upper atmosphere. This process creates cooler air layer between warmer ground and upper air layers and resulting temperature profile facilitate the initiation of fog. Our results clearly indicates that accounting for the presence of aerosols and their radiative-transfer is important in modeling micro-meteorological process of fog formation and its evolution. DST, Govt. INDIA.
Circulation and thermohaline structure of the Aral Sea in the last three years
NASA Astrophysics Data System (ADS)
Izhitskiy, A. S.; Zavialov, P. O.
2012-04-01
The results of the 3 latest expeditions (2009 - 2011) of the Shirshov Institute to the Aral Sea are reported. We analyze the interannual variability of the basin circulation together with the thermohaline structure in order to identify the underlying mechanisms. The study is based on the results of the field surveys of August, 2009, September, 2010, and November, 2011. The vertical profiles of temperature and salinity were obtained using a CTD profiler at 6 stations across the deepest part of the western basin in 2009 and 2010, and 3 stations in 2011. Additionally, during each of the surveys, mooring stations equipped with current meters and pressure gauges were deployed for 3-5 days in the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the wind stress and the principal meteorological parameters, was installed near the mooring sites. The vertical stratification exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and near the bottom, while the intermediate layer was characterized by a core of minimum salinity and temperature. Such a pattern persisted throughout the 3 years of observations. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity and surface level series versus the wind stress allowed to quantify the response of the system to the wind forcing as well as to formulate a conceptual scheme of the lake's response to wind forcing at synoptic temporal scales.
Offshore Wind Turbines Subjected to Hurricanes
NASA Astrophysics Data System (ADS)
Amirinia, Gholamreza
Hurricane Andrew (1992) caused one of the largest property losses in U.S. history, but limited availability of surface wind measurements hindered the advancement of wind engineering research. Many studies have been conducted on regular boundary layer winds (non-hurricane winds) and their effects on the structures. In this case, their results were used in the standards and codes; however, hurricane winds and their effects on the structures still need more studies and observations. Analysis of hurricane surface winds revealed that turbulence spectrum of hurricane winds differs from that of non-hurricane surface winds. Vertical profile of wind velocity and turbulence intensity are also important for determining the wind loads on high-rise structures. Vertical profile of hurricane winds is affected by different parameters such as terrain or surface roughness. Recent studies show that wind velocity profile and turbulence intensity of hurricane winds may be different from those used in the design codes. Most of the studies and available models for analyzing wind turbines subjected to high-winds neglect unsteady aerodynamic forces on a parked wind tower. Since the blade pitch angle in a parked wind turbine is usually about 90°, the drag coefficient on blade airfoils are very small therefore the along-wind aerodynamic forces on the blades are smaller than those on the tower. Hence, the tower in parked condition plays an important role in along-wind responses of the wind turbine. The objectives of this study are, first, to explore the nature of the hurricane surface winds. Next, to establish a time domain procedure for addressing structure-wind-wave-soil interactions. Third, investigating the behavior of wind turbines subjected to hurricane loads resulted form hurricane nature and, lastly, to investigate reconfiguration of turbine structure to reduce wind forces. In order to achieve these objective, first, recent observations on hurricane turbulence models were discussed. Then a new formulation for addressing unsteady wind forces on the tower was introduced and NREL-FAST package was modified with the new formulation. Interaction of wind-wave-soil-structure was also included in the modification. After customizing the package, the tower and blade buffeting responses, the low cycle fatigue during different hurricane categories, and extreme value of the short-term responses were analyzed. In the second part, piezoelectric materials were used to generate perturbations on the surface of a specimen in the wind tunnel. This perturbation was used to combine upward wall motion and surface curvature. For this purpose, a Macro Fiber Composite (MFC) material was mounted on the surface of a cylindrical specimen for generating perturbation in the wind tunnel. Four different perturbation frequencies (1 Hz, 2 Hz, 3 Hz, and 4Hz) as well as the baseline specimen were tested in a low-speed wind tunnel (Re= 2.8x104). Results showed that recently observed turbulence models resulted in larger structural responses and low-cycle fatigue damage than existing models. In addition, extreme value analysis of the short-term results showed that the IEC 61400-3 recommendation for wind turbine class I was sufficient for designing the tower for wind turbine class S subjected to hurricane; however, for designing the blade, IEC 61400-3 recommendations for class I underestimated the responses. In addition, wind tunnel testing results showed that the perturbation of the surface of the specimen increased the turbulence in the leeward in specific distance from the specimen. The surface perturbation technique had potential to reduce the drag by 4.8%.
Neutral winds and electric fields from model studies using reduced ionograms
NASA Technical Reports Server (NTRS)
Baran, D. E.
1974-01-01
A relationship between the vertical component of the ion velocity and electron density profiles derived from reduced ionograms is developed. Methods for determining the horizontal components of the neutral winds and electric fields by using this relationship and making use of the variations of the inclinations and declinations of the earth's magnetic field are presented. The effects that electric fields have on the neutral wind calculations are estimated to be small but not second order. Seasonal and latitudinal variations of the calculated neutral winds are presented. From the calculated neutral winds a new set of neutral pressure gradients is determined. The new pressure gradients are compared with those generated from several static neutral atmospheric models. Sensitivity factors relating the pressure gradients and neutral winds are calculated and these indicate that mode coupling and harmonic generation are important to studies which assume linearized theories.
RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, Matthew; Thompson, Christopher
2015-11-10
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiencesmore » the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.« less
NASA Astrophysics Data System (ADS)
Habib, A.; Chen, B.
2017-12-01
Balloon borne measurements were carried out during calm weather conditions in Taklamakan Desert, which is considered as one of the major source areas of Asian dust (KOSA) particles. Vertical distribution of aerosols number concentration, size distribution, mass concentration and horizontal mass flux due to westerly wind was investigated .Vertical distribution of aerosol number concentration and size distribution at Dunhuang (40 °00'N, 94°30'E) China were observed by optical particle counter (OPC) on August 17, 2001, October 17, 2011, January 11, 2002, April 30, 2002. Five channels (0.3, 0.5, 0.8, 1.2 and 3.6 µm) were used in OPC for particle sizing measurements. Aerosol number concentration in winter season (January 11, 2002) at 3-5 km was very high. Variation of free tropospheric aerosols in April 30, 2002 was noticeable. Many inversions of temperature and aerosol concentration change are found at these inversion points. Super micron range was noticeable in size distribution of all balloon borne measurements. High values of estimated mass concentration of aerosols were observed at the ground atmosphere (1-2 km), and interestingly relatively high concentrations were frequently detected above about 2 km. Wind pattern observed by ERA-interim data sets at 500 and 850 hPa, shows that westerly winds were dominated in Taklamakan Desert during balloon borne observation period. Average horizontal mass flux of background Asian dust due to westerly wind was about in the range of 1219-58.5 μg/m³ tons/km2/day. Most of the profiles showed active transport of aerosols in the westerly dominated region, while, fluxes were found to be very low on January 11, 2002, compared with the other seasons. Vertical profiles of aerosols number concentration showed that significant transport of aerosols was dominated in westerly region (4-7 km). Low horizontal mass flux of aerosols was found in winter season
NASA Astrophysics Data System (ADS)
Sheng, C.; De La Garza, J. L.; Deng, Y.; Makela, J. J.; Fisher, D. J.; Meriwether, J. W.; Mesquita, R.
2015-12-01
An accurate description of vertical neutral winds in the thermosphere is essential to understand how the upper atmosphere responds to the geomagnetic storms. However, vertical wind measurements are difficult to obtain and there are still limited data. Recent observation deployments now permit substantial progress on this issue. In this paper, neutral vertical wind data from Brazil FPI observations at around 240 km altitude during 2009 to 2015 are used for the study of the equatorial vertical wind and neutral temperature variation during geomagnetic activity times. First, the observations during several particular storm periods will be analyzed. Secondly, Epoch analysis will be used to bin all the observed events together to investigate the climatological features of vertical wind and temperature during storms. The results will give us an unprecedented view of the nighttime vertical wind and neutral temperature variations at low latitudes, which is critical to specify the dynamics of the upper atmosphere.
NASA Technical Reports Server (NTRS)
Korb, C. L.; Gentry, Bruce M.
1995-01-01
The goal of the Army Research Office (ARO) Geosciences Program is to measure the three dimensional wind field in the planetary boundary layer (PBL) over a measurement volume with a 50 meter spatial resolution and with measurement accuracies of the order of 20 cm/sec. The objective of this work is to develop and evaluate a high vertical resolution lidar experiment using the edge technique for high accuracy measurement of the atmospheric wind field to meet the ARO requirements. This experiment allows the powerful capabilities of the edge technique to be quantitatively evaluated. In the edge technique, a laser is located on the steep slope of a high resolution spectral filter. This produces large changes in measured signal for small Doppler shifts. A differential frequency technique renders the Doppler shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is also relatively insensitive to the laser spectral width for widths less than the width of the edge filter. Thus, the goal is to develop a system which will yield a substantial improvement in the state of the art of wind profile measurement in terms of both vertical resolution and accuracy and which will provide a unique capability for atmospheric wind studies.
Vickers, D.; Thomas, C.
2014-05-13
Observations of the scale-dependent turbulent fluxes and variances above, within and beneath a tall closed Douglas-Fir canopy in very weak winds are examined. The daytime subcanopy vertical velocity spectra exhibit a double-peak structure with peaks at time scales of 0.8 s and 51.2 s. A double-peak structure is also observed in the daytime subcanopy heat flux cospectra. The daytime momentum flux cospectra inside the canopy and in the subcanopy are characterized by a relatively large cross-wind component, likely due to the extremely light and variable winds, such that the definition of a mean wind direction, and subsequent partitioning of themore » momentum flux into along- and cross-wind components, has little physical meaning. Positive values of both momentum flux components in the subcanopy contribute to upward transfer of momentum, consistent with the observed mean wind speed profile. In the canopy at night at the smallest resolved scales, we find relatively large momentum fluxes (compared to at larger scales), and increasing vertical velocity variance with decreasing time scale, consistent with very small eddies likely generated by wake shedding from the canopy elements that transport momentum but not heat. We find unusually large values of the velocity aspect ratio within the canopy, consistent with enhanced suppression of the horizontal wind components compared to the vertical by the canopy. The flux-gradient approach for sensible heat flux is found to be valid for the subcanopy and above-canopy layers when considered separately; however, single source approaches that ignore the canopy fail because they make the heat flux appear to be counter-gradient when in fact it is aligned with the local temperature gradient in both the subcanopy and above-canopy layers. Modeled sensible heat fluxes above dark warm closed canopies are likely underestimated using typical values of the Stanton number.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vickers, D.; Thomas, C.
Observations of the scale-dependent turbulent fluxes and variances above, within and beneath a tall closed Douglas-Fir canopy in very weak winds are examined. The daytime subcanopy vertical velocity spectra exhibit a double-peak structure with peaks at time scales of 0.8 s and 51.2 s. A double-peak structure is also observed in the daytime subcanopy heat flux cospectra. The daytime momentum flux cospectra inside the canopy and in the subcanopy are characterized by a relatively large cross-wind component, likely due to the extremely light and variable winds, such that the definition of a mean wind direction, and subsequent partitioning of themore » momentum flux into along- and cross-wind components, has little physical meaning. Positive values of both momentum flux components in the subcanopy contribute to upward transfer of momentum, consistent with the observed mean wind speed profile. In the canopy at night at the smallest resolved scales, we find relatively large momentum fluxes (compared to at larger scales), and increasing vertical velocity variance with decreasing time scale, consistent with very small eddies likely generated by wake shedding from the canopy elements that transport momentum but not heat. We find unusually large values of the velocity aspect ratio within the canopy, consistent with enhanced suppression of the horizontal wind components compared to the vertical by the canopy. The flux-gradient approach for sensible heat flux is found to be valid for the subcanopy and above-canopy layers when considered separately; however, single source approaches that ignore the canopy fail because they make the heat flux appear to be counter-gradient when in fact it is aligned with the local temperature gradient in both the subcanopy and above-canopy layers. Modeled sensible heat fluxes above dark warm closed canopies are likely underestimated using typical values of the Stanton number.« less
NASA Astrophysics Data System (ADS)
Sahu, L. K.; Sheel, Varun; Kajino, M.; Deushi, M.; Gunthe, Sachin S.; Sinha, P. R.; Yadav, Ravi; Pal, Devendra; Nedelec, P.; Thouret, Valérie; Smit, Herman G.
2017-07-01
This study is based on the analysis of the measurement of ozone and water vapor by airbus in-service aircraft (MOZAIC) data of vertical ozone (O3) and carbon monoxide (CO) over Hyderabad during November 2005-March 2009. Measurements in the upper troposphere show highest values of O3 (53-75 ppbv) and CO (80-110 ppbv) during the pre-monsoon and post-monsoon seasons, respectively. The episodes of strong wind shears (>20 ms-1) were frequent during the monsoon/post-monsoon months, while weak shear conditions (<10 ms-1) were prevalent during the winter season. The profiles of both O3 and CO measured under southerly winds showed lower values than under northerly winds in each season. The strong and weak wind shears over the study region were associated with the El Niño and La Niña conditions, respectively. The outgoing long-wave radiation (OLR) and wind shear data indicate enhancement in the convective activity from monsoon to post-monsoon period. Higher levels of O3 were measured under the strong shear conditions, while CO and H2O show enhancements under weak shear conditions. The near surface observation and simulations show increase of O3 with increasing OLR, while insignificant relation in the upper region. In case of CO, the MOZAIC and CCM2 show weaker dependence while MOZART-4 shows rapid increase with OLR indicating large overestimation of convective transport. A modified Tiedtke convective scheme provides better representation compared to the Hack/Zhang-McFarlane schemes for both O3 and CO during the monsoon season. The difference between observation and simulations were particularly large during transition from El Niño to La Niña phases. The different convection scheme and horizontal resolution in the MOZART-4 and CCM2 seem to be the major causes of disagreement between these models. Vertical profiles of both O3 and CO during extreme events such a tropical cyclones (TCs) show strong influence of the convective-dynamics over Bay of Bengal (BOB).
Comparison of Vertical Soundings and Sidewall Air Temperature Measurements in a Small Alpine Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, Charles D.; Eisenbach, Stefan; Pospichal, Bernhard
2004-11-01
Tethered balloon soundings from two sites on the floor of a 1-km diameter limestone sinkhole in the Eastern Alps are compared with pseudo-vertical temperature ‘soundings’ from three lines of temperature data loggers on the basin’s northwest, southwest and southeast sidewalls. Under stable nighttime conditions with low background winds, the pseudo-vertical profiles from all three lines were good proxies for free air temperature soundings over the basin center, with a mean nighttime cold temperature bias of about 0.4°C and a standard deviation of 0.4°C. Cold biases were highest in the upper basin where relatively warm air subsides to replace air thatmore » spills out of the basin through the lowest altitude saddle. On a windy night, standard deviations increased to 1 - 2°C. After sunrise, the varying exposures of the data loggers to sunlight made the pseudo-vertical profiles less useful as proxies for free air soundings. The good correspondence between sidewall and free air temperatures during high static stability conditions suggests that sidewall soundings will prove useful in monitoring temperatures and vertical temperature gradients in the sinkhole. The sidewall soundings can produce more frequent profiles at less cost than tethersondes or rawinsondes, and provide valuable advantages for some types of meteorological analyses.« less
The turbulence structure of katabatic flows below and above wind-speed maximum
NASA Astrophysics Data System (ADS)
Grachev, Andrey; Leo, Laura; Di Sabatino, Silvana; Fernando, Harindra; Pardyjak, Eric; Fairall, Christopher
2015-04-01
Measurements of atmospheric small-scale turbulence made over the complex-terrain at the US Army Dugway Proving Grounds in Utah during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the turbulence structure of katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels (up to seven) on four towers deployed along East lower slope (2-4 degrees) of Granite Mountain. The multi-level, multi-tower observations obtained during a 30-day long MATERHORN-Fall field campaign in September-October 2102 allow studying temporal and spatial structure of nocturnal slope flows in detail. In this study, we focus on the various statistics (fluxes, variances, spectra, cospectra, etc.) of the small-scale turbulence of katabatic winds. Observed vertical profiles of velocity, turbulent fluxes, and other quantities show steep gradients near the surface but in the layer above the slope jet these variables vary with height more slowly than near the surface. It is found that vertical momentum flux and horizontal heat (buoyancy) flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study, therefore, suggests that a position of the jet speed maximum can be derived from linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) and determination of a height where a flux becomes zero. It is shown that the standard deviations of all wind speed components (and therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind speed maximum. We report several cases when the destructive effect of vertical heat (buoyancy) flux is completely cancelled by the generation of turbulence due to the horizontal heat (buoyancy) flux. Turbulence in the layer above the wind-speed maximum is decoupled from the surface and it is consistent with the classical local z-less predictions for stably stratified boundary layer.
Organised Motion in a Tall Spruce Canopy: Temporal Scales, Structure Spacing and Terrain Effects
NASA Astrophysics Data System (ADS)
Thomas, Christoph; Foken, Thomas
2007-01-01
This study investigates the organised motion near the canopy-atmosphere interface of a moderately dense spruce forest in heterogeneous, complex terrain. Wind direction is used to assess differences in topography and surface properties. Observations were obtained at several heights above and within the canopy using sonic anemometers and fast-response gas analysers over the course of several weeks. Analysed variables include the three-dimensional wind vector, the sonic temperature, and the concentration of carbon dioxide. Wavelet analysis was used to extract the organised motion from time series and to derive its temporal scales. Spectral Fourier analysis was deployed to compute power spectra and phase spectra. Profiles of temporal scales of ramp-like coherent structures in the vertical and longitudinal wind components showed a reversed variation with height and were of similar size within the canopy. Temporal scales of scalar fields were comparable to those of the longitudinal wind component suggesting that the lateral scalar transport dominates. The existence of a 1 power law in the longitudinal power spectra was confirmed for a few cases only, with a majority showing a clear 5/3 decay. The variation of effective scales of organised motion in the longitudinal velocity and temperature were found to vary with atmospheric stability, suggesting that both Kelvin-Helmholtz instabilities and attached eddies dominate the flow with increasing convectional forcing. The canopy mixing-layer analogy was observed to be applicable for ramp-like coherent structures in the vertical wind component for selected wind directions only. Departures from the prediction of m = Λ w L {/s -1} = 8 10 (where Λ w is the streamwise spacing of coherent structures in the vertical wind w and L s is a canopy shear length scale) were caused by smaller shear length scales associated with large-scale changes in the terrain as well as the vertical structure of the canopy. The occurrence of linear gravity waves was related to a rise in local topography and can therefore be referred to as mountain-type gravity waves. Temporal scales of wave motion and ramp-like coherent structures were observed to be comparable.
Satellite radio occultation investigations of internal gravity waves in the planetary atmospheres
NASA Astrophysics Data System (ADS)
Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander
Internal gravity waves (IGWs) modulate the structure and circulation of the Earth’s atmosphere, producing quasi-periodic variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. In this context, an original method for the determination of IGW parameters from a vertical temperature profile measurement in a planetary atmosphere has been developed [Gubenko et al., 2008, 2011, 2012]. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitudes of the wave field and on the linear IGW saturation theory in which these amplitudes are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability threshold, energy is assumed to be dissipated in such a way that the IGW amplitude is maintained at the instability threshold level as the wave propagates upwards. We have extended the developed technique [Gubenko et al., 2008] in order to reconstruct the complete set of wave characteristics including such important parameters as the wave kinetic and potential energy per unit mass and IGW fluxes of the energy and horizontal momentum [Gubenko et al., 2011]. We propose also an alternative method to estimate the relative amplitudes and to extract IGW parameters from an analysis of perturbations of the Brunt-Vaislala frequency squared [Gubenko et al., 2011]. An application of the developed method to the radio occultation (RO) temperature data has given the possibility to identify the IGWs in the Earth's, Martian and Venusian atmospheres and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal wind velocity perturbations, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy per unit mass, vertical fluxes of the wave energy and horizontal momentum. Vertical profiles of temperature retrieved from RO measurements of the CHAMP (Earth), Mars Global Surveyor (Mars), Magellan and Venus Express (Venus) missions are used and analyzed to identify discrete or “narrow spectral” wave events and to determine IGW characteristics in the Earth’s, Martian and Venusian atmospheres. This work was partially supported by the RFBR grant 13-02-00526-a and Program 22 of the RAS Presidium. References. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement // J. Geophys. Res. 2008. V. 113. No.D08109, doi:10.1029/2007JD008920. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere // Atmos. Meas. Tech. 2011. V. 4. No.10. P. 2153-2162, doi:10.5194/amt-4-2153-2011. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Andreev V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere // Cosmic Res. 2012. V. 50. No.1. P. 21-31, doi: 10.1134/S0010952512010029.
Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...
2016-07-28
Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.
Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less
Venus mesospheric winds and the carbon monoxide bulge
NASA Technical Reports Server (NTRS)
Gurwell, Mark A.; Muhleman, Duane O.; Shah, Kathryn Pierce
1992-01-01
Recently, our group mapped the CO absorption lines on the disk of Venus in 1988 using the synthetic aperture array at the Owens Valley Radio Observatory. Observations were make in the (0-1) rotational transition of CO at 115 GHz, or a wavelength of 2.6 mm. Systematic variations in the Doppler shifts of the lines (particularly near the limbs) enable the group to directly map the wind field at 100 plus or minus 10 km, the peak altitude for the experimental weighting functions used. These measurements show that the winds are indeed of the order of a 100 m/s at this altitude. Previously, many had assumed that the vertical wind profile would quickly fall to zero above the cloud tops, due to cyclostrophic breakdown. This work is reviewed.
NASA Astrophysics Data System (ADS)
Lee, W. K.; Kil, H.; Krall, J.
2016-12-01
Significant longitudinal and latitudinal modulations in plasma density were observed by satellites during the 17 March 2015 storm. Pronounced equatorial ionization anomaly (EIA) and ionization trough developed in the Indian sector (60°-90°E), whereas those features did not appear in the African sector (20°-40°E). Significant ionospheric uplift was observed in the Indian sector, but the uplift was ignorable in the African sector. The vertical ExB drift is an important factor for the longitudinal variation of the ionospheric morphology, but the observed latitudinal density profiles are not explained satisfactorily by the effect of the vertical ExB drift alone. In this study, we investigate the combined effect of vertical ExB drift and meridional winds by conducting SAMI2 (Sam2 is Another Model of the Ionosphere) model simulations. By comparing the model results with satellite observations, we will assess the ionospheric conditions in the Indian and African sectors. The observations of Defense Meteorological satellite Program, Swarm, and Communication/Navigation Outage Forecasting System satellites will be analyzed for this purpose.
NASA Technical Reports Server (NTRS)
Rees, D.
1986-01-01
Several sequences of observations of strong vertical winds in the upper thermosphere are discussed, in conjunction with models of the generation of such winds. In the auroral oval, the strongest upward winds are observed in or close to regions of intense auroral precipitation and strong ionospheric currents. The strongest winds, of the order of 100 to 200 m/sec are usually upward, and are both localized and of relatively short duration (10 to 20 min). In regions adjacent to those displaying strong upward winds, and following periods of upward winds, downward winds of rather lower magnitude (40 to about 80 m/sec) may be observed. Strong and rapid changes of horizontal winds are correlated with these rapid vertical wind variations. Considered from a large scale viewpoint, this class of strongly time dependent winds propagate globally, and may be considered to be gravity waves launched from an auroral source. During periods of very disturbed geomagnetic activity, there may be regions within and close to the auroral oval where systematic vertical winds of the order of 50 m/sec will occur for periods of several hours. Such persistent winds are part of a very strong large scale horizontal wind circulation set up in the polar regions during a major geomagnetic disturbance. This second class of strong horizontal and vertical winds corresponds more to a standing wave than to a gravity wave, and it is not as effective as the first class in generating large scale propagating gravity waves and correlated horizontal and vertical oscillations. A third class of significant (10 to 30 m/sec) vertical winds can be associated with systematic features of the average geomagnetic energy and momentum input to the polar thermosphere, and appear in statistical studies of the average vertical wind as a function of Universal Time at a given location.
Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Wencai; Wang, Jianwei; Gao, Xiaomeng; Khan, Hafiz Osama Sarwar; Pan, Baozhu; Acharya, Kumud
2018-01-01
Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4″, E 120° 9' 38.3″) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R 2 : 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R 2 : 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication process and algal blooms formation in shallow water environments. Wind field is the key control factor for thermal destratification and hypoxia reduction. 24.1C° is the critical/threshold temperature for hypoxia, Chlorophyll-a and NH 3 -N concentrations of the shallow freshwater lake. Copyright © 2017. Published by Elsevier Ltd.
The development and testing of a novel cross axis wind turbine
NASA Astrophysics Data System (ADS)
Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.
2016-06-01
A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).
NASA Astrophysics Data System (ADS)
Schiavon, Mario; Mazzola, Mauro; Lupi, Angelo; Drofa, Oxana; Tampieri, Francesco; Pelliccioni, Armando; Choi, Taejin; Vitale, Vito; Viola, Angelo P.
2017-04-01
At high latitudes, the Atmospheric Boundary Layer ( ABL) is often characterized by extremely stable vertical stratification since the surface radiative cooling determines inversions in temperature profiles especially during the polar night over land, ice and snow surfaces. Improvements are required in the theoretical understanding of the turbulent behavior of the high-latitude ABL. The parameterizations of surface-atmosphere exchanges employed in numerical weather prediction and climate models have also to be tested in the Arctic area. Moreover, the boundary layer structure and dynamics influence the vertical distribution of aerosol. The main issue is related to the height of PBL: the question is whether some decoupling occurs between the surface layer and the atmosphere aloft when the PBL is shallow or the mechanical mixing due to the synoptic circulation provides an overall vertical homogeneity of the concentration of the aerosol irrespective of the stability conditions. In this aim, the work investigates the features of the high-latitude ABL with particular attention to its vertical structure, the relationships among the main turbulent statistics (in a similarity approach) and their variation with the ABL state. The used data refer to measurements collected since 2012 to 2016 by slow and fast response sensors deployed at the 34 m high Amundsen-Nobile Climate Change Tower (CCT) installed at Ny-Ålesund, Svalbard. Data from four conventional Young anemometers and Väisäla thermo-hygrometers at 2, 4.8, 10.3 and 33.4 m a.g.l., alternated by three lined up sonic anemometers at 3.7, 7.5 and 21 m a.g.l., are used in the analysis. The presented results highlight that the performance of the commonly adopted ABL similarity schemes (e.g. flux-gradient relationships and parameterizations for the stable ABL height) depends upon the ABL state, determined mainly by the wind speed and the shape of the profiles of second order moments (the two being related) . For neutral or stable stratification, strong wind and second order moments monotonically decreasing with height (traditional stable ABL), classical similarity schemes perform well also in the Arctic ABL. Instead, critical conditions, for which the classical similarity approach is not satisfactory, occur for low wind and profiles of second order moments deviating from the traditional case: e.g. upside-down ABL. Numerical experiments with the atmospheric model Bolam have been performed, for the whole period April-August 2013 in hindcast mode, on a domain covering the area of the observations, in order to assess the capability of an atmospheric numerical model to reproduce the observed vertical profiles in the PBL under different synoptic situations.
This data set is associated with the results found in the journal article: Perry et al, 2016. Characterization of pollutant dispersion near elongated buildings based on wind tunnel simulations, Atmospheric Environment, 142, 286-295.The paper presents a wind tunnel study of the effects of elongated rectangular buildings on the dispersion of pollutants from nearby stacks. The study examines the influence of source location, building aspect ratio, and wind direction on pollutant dispersion with the goal of developing improved algorithms within dispersion models. The paper also examines the current AERMOD/PRIME modeling capabilities compared to wind tunnel observations. Differences in the amount of plume material entrained in the wake region downwind of a building for various source locations and source heights are illustrated with vertical and lateral concentration profiles. These profiles were parameterized using the Gaussian equation and show the influence of building/source configurations on those parameters. When the building is oriented at 4500b0 to the approach flow, for example, the effective plume height descends more rapidly than it does for a perpendicular building, enhancing the resulting surface concentrations in the wake region. Buildings at angles to the wind cause a cross-wind shift in the location of the plume resulting from a lateral mean flow established in the building wake. These and other effects that are not well represented in many dispersio
Characterization of pollutant dispersion near elongated buildings based on wind tunnel simulations
NASA Astrophysics Data System (ADS)
Perry, S. G.; Heist, D. K.; Brouwer, L. H.; Monbureau, E. M.; Brixey, L. A.
2016-10-01
This paper presents a wind tunnel study of the effects of elongated rectangular buildings on the dispersion of pollutants from nearby stacks. The study examines the influence of source location, building aspect ratio, and wind direction on pollutant dispersion with the goal of developing improved algorithms within dispersion models. The paper also examines the current AERMOD/PRIME modeling capabilities compared to wind tunnel observations. Differences in the amount of plume material entrained in the wake region downwind of a building for various source locations and source heights are illustrated with vertical and lateral concentration profiles. These profiles were parameterized using the Gaussian equation and show the influence of building/source configurations on those parameters. When the building is oriented at 45° to the approach flow, for example, the effective plume height descends more rapidly than it does for a perpendicular building, enhancing the resulting surface concentrations in the wake region. Buildings at angles to the wind cause a cross-wind shift in the location of the plume resulting from a lateral mean flow established in the building wake. These and other effects that are not well represented in many dispersion models are important considerations when developing improved algorithms to estimate the location and magnitude of concentrations downwind of elongated buildings.
Rapid response to coastal upwelling in a semienclosed bay
NASA Astrophysics Data System (ADS)
Gilcoto, Miguel; Largier, John L.; Barton, Eric D.; Piedracoba, Silvia; Torres, Ricardo; Graña, Rocío.; Alonso-Pérez, Fernando; Villacieros-Robineau, Nicolás.; de la Granda, Francisco
2017-03-01
Bays/estuaries forced by local wind show bidirectional exchange flow. When forced by remote wind, they exhibit unidirectional flow adjustment to coastal sea level. Acoustic Doppler Current Profiler observations over 1 year show that the Ria de Vigo (Iberian Upwelling) responds to coastal wind events with bidirectional exchange flow. The duration of the upwelling and downwelling events, estimated from the current variability, was 3.3 days and 2.6 days, respectively. Vectorial correlations reveal a rapid response to upwelling/downwelling, in which currents lag local wind by <6 h and remote wind by <14 h, less than the Ekman spinup (17.8 h). This rapidity arises from the ria's narrowness (nonrotational local response), equatorward orientation (additive remote and local wind responses), depth greater than the Ekman depth (penetration of shelf circulation into the interior), and vertical stratification (shear reinforcing shelf circulation). Similar rapid responses are expected in other narrow bays where local and remote winds act together and stratification enhances bidirectional flow.
NASA Astrophysics Data System (ADS)
Schmidt, Jerome Michael
This study addresses the production of sustained, straight-line, severe surface winds associated with mesoscale convective systems (MCSs) of extratropical origin otherwise known as derechos. The physical processes which govern the observed derecho characteristics are identified and their possible forcing mechanisms are determined. Detailed observations of two derechos are presented along with simulations using the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS). The observations revealed a derecho environment characterized by strong vertical wind shear through the depth of the troposphere and large values of convective available potential energy (CAPE). The thermodynamic environment of the troposphere in each case had a distinct three-layer structure consisting of: (i) a surface-based stable layer of 1-to-2 km in depth, (ii) an elevated well -mixed layer of 2-4 km in depth, and (iii) an upper tropospheric layer of intermediate stability that extended to the tropopause. Two primary sets of simulations were performed to assess the impact of the observed environmental profiles on the derecho structure, propagation, and longevity. The first set consisted of nested-grid regional-scale simulations initialized from the standard NMC analyses on a domain having relatively coarse horizontal resolution (75 km). The second set of simulations consisted of two and three-dimensional experiments initialized in a horizontally homogeneous environment having a relatively fine horizontal resolution (2 km) and explicit microphysics. The results from these experiments indicate the importance of convectively -induced gravity waves on the MCS structure, propagation, longevity, and severe surface wind development. The sensitivity of the simulated convection and gravity waves to variations in the vertical wind shear and moisture profiles are described. Detailed Doppler radar analyses and 3-D simulations of a severe, bow echo squall line are presented which reveal the unique 3-D circulation features which accompany these mesoscale convective systems. We illustrate how the mesoscale and convective-scale flow fields within the bow echo establish the severe surface wind maximum. (Abstract shortened with permission of author.).
Relating Convective System Durability with Vertical Wind Profile extracted from NCEP/NCAR Reanalysis
NASA Astrophysics Data System (ADS)
Bergès, Jean-Claude; Beltrando, Gérard; Cacault, Philippe
2014-05-01
Various theoretical models focus on the relationship between wind characteristic and convective system durability. Yet in 1988, Rotuno, Klemp and Weisman state that an optimal live length result from a balance between cold pool thickness and low level wind shear. However these models require a knowledge of local upper air environment and these data are scarcely available for climatological studies. Our presentation address the issue of relating the wind vertical profile extracted from reanalysis fields with a convective system type index. Whereas getting wind data from the NCEP/NCAR database is a straightforward task, assessing convective system extension from geostationary satellite data raise both methodological and practical issues. In a climatological view of convective systems, the initiating steps can be be neglected and a tropopause temperature threshold could be sufficient to delineate systems area. Thus the dynamic parameters between two consecutive would be obtained by a maximum recovery algorithm. But this simple method has to be enhanced to avoid two drawbacks: a rough system area overestimation due to the trailing cirrus and an over-segmentation of active systems. To mitigate the first bias a watershed image segmentation is carry out and the patches with a negative growing rate are eliminated. In order to properly join different parts of the same system, a 3D labeling algorithm has been implemented. Moreover, as motion retrieval methods are based on overlapping area, spatial and temporal resolution imports and full data processing require optimized computation procedures. Based on these methods, we have produced a base of convective systems trajectory based on MSG and Meteosat data. To avoid parallax effects only the central part of the acquisition disk has been considered. System extension and duration has been compared with wind shear in amplitude and direction. The preliminary results shows a global effect consistent with simulation models, but statistical data significance has yet to be investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collis, Scott; Protat, Alain; May, Peter T.
2013-08-01
Comparisons between direct measurements and modeled values of vertical air motions in precipitating systems are complicated by differences in temporal and spatial scales. On one hand, vertically profiling radars more directly measure the vertical air motion but do not adequately capture full storm dynamics. On the other hand, vertical air motions retrieved from two or more scanning Doppler radars capture the full storm dynamics but require model constraints that may not capture all updraft features because of inadequate sampling, resolution, numerical constraints, and the fact that the storm is evolving as it is scanned by the radars. To investigate themore » veracity of radar-based retrievals, which can be used to verify numerically modeled vertical air motions, this article presents several case studies from storm events around Darwin, Northern Territory, Australia, in which measurements from a dual-frequency radar profiler system and volumetric radar-based wind retrievals are compared. While a direct comparison was not possible because of instrumentation location, an indirect comparison shows promising results, with volume retrievals comparing well to those obtained from the profiling system. This prompted a statistical analysis of an extended period of an active monsoon period during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Results show less vigorous deep convective cores with maximum updraft velocities occurring at lower heights than some cloudresolving modeling studies suggest. 1. Introduction The regionalization of global climate models has been a driver of demand for more complex convective parameterization schemes. A key readjustment of the modeled atmosphere« less
Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum
NASA Astrophysics Data System (ADS)
Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman
2017-10-01
Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
The system design and performance test of hybrid vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Dwiyantoro, Bambang Arip; Suphandani, Vivien
2017-04-01
Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.
Surprises from the field: Novel aspects of aeolian saltation observed under natural turbulence
NASA Astrophysics Data System (ADS)
Martin, R. L.; Kok, J. F.; Chamecki, M.
2015-12-01
The mass flux of aeolian (wind-blown) sediment transport - critical for understanding earth and planetary geomorphology, dust generation, and soil stability - is difficult to predict. Recent work suggests that competing models for saltation (the characteristic hopping of aeolian sediment) fail because they do not adequately account for wind turbulence. To address this issue, we performed field deployments measuring high-frequency co-variations of aeolian saltation and near-surface winds at multiple sites under a range of conditions. Our observations yield several novel findings not currently captured by saltation models: (1) Saltation flux displays no significant lag relative to horizontal wind velocity; (2) Characteristic height of the saltation layer remains constant with changes in shear velocity; and (3) During saltation, the vertical profile of mean horizontal wind velocity is steeper than expected from the Reynolds stress. We examine how the interactions between saltation and turbulence in field settings could explain some of these surprising observations.
Scaling Laws in Canopy Flows: A Wind-Tunnel Analysis
NASA Astrophysics Data System (ADS)
Segalini, Antonio; Fransson, Jens H. M.; Alfredsson, P. Henrik
2013-08-01
An analysis of velocity statistics and spectra measured above a wind-tunnel forest model is reported. Several measurement stations downstream of the forest edge have been investigated and it is observed that, while the mean velocity profile adjusts quickly to the new canopy boundary condition, the turbulence lags behind and shows a continuous penetration towards the free stream along the canopy model. The statistical profiles illustrate this growth and do not collapse when plotted as a function of the vertical coordinate. However, when the statistics are plotted as function of the local mean velocity (normalized with a characteristic velocity scale), they do collapse, independently of the streamwise position and freestream velocity. A new scaling for the spectra of all three velocity components is proposed based on the velocity variance and integral time scale. This normalization improves the collapse of the spectra compared to existing scalings adopted in atmospheric measurements, and allows the determination of a universal function that provides the velocity spectrum. Furthermore, a comparison of the proposed scaling laws for two different canopy densities is shown, demonstrating that the vertical velocity variance is the most sensible statistical quantity to the characteristics of the canopy roughness.
Vertical Structure and Dynamics of the Beaufort Gyre Subsurface Layer from ADCP Obervations
NASA Astrophysics Data System (ADS)
Torres, D. J.; Krishfield, R. A.; Proshutinsky, A. Y.; Timmermans, M. L. E.
2014-12-01
As part of the Beaufort Gyre Observing System (BGOS), several Acoustic Doppler Current Profilers (ADCPs) have been maintained at moorings in different locations in the Canada Basin since 2005 to measure upper ocean velocities and sea ice motion. The ADCP data have been analyzed to better understand relationships among different components of forcing driving the sea ice and upper ocean layer including: winds, tides, and horizontal and vertical density gradients in the ocean. Specific attention is paid to data processing and analysis to separate inertial and tidal motions in these regions in the vicinity of the critical latitudes. In addition, we describe the dynamic characteristics of halocline eddies and estimate their kinetic energy and their role in the total energy balance in this region. Ice-Tethered Profiler (ITP) data are used in conjunction with the ADCP measurements to identify relationships between T-S and vertical velocity structures in the mixed layer and deeper. Seasonal and interannual variability in all parameters are also discussed and causes of observed changes are suggested.
NASA Astrophysics Data System (ADS)
Putri, R. J. A.; Setyawan, T.
2017-01-01
In the synoptic scale, one of the important meteorological parameter is the atmospheric boundary layer. Aside from being a supporter of the parameters in weather and climate models, knowing the thickness of the layer of the atmosphere can help identify aerosols and the strength of the vertical mixing of pollutants in it. The vertical wind profile data from C-band Doppler radar Mopah-Merauke which is operated by BMKG through Mopah-Merauke Meteorological Station can be used to identify the peak of Atmospheric Boundaryu Layer (ABL). ABL peak marked by increasing wind shear over the layer blending. Samples in January 2015 as a representative in the wet and in July 2015 as the representation of a dry month, shows that ABL heights using WRF models show that in July (sunny weather) ABL height values higher than in January (cloudy)
Highly buoyant bent-over plumes in a boundary layer
NASA Astrophysics Data System (ADS)
Tohidi, Ali; Kaye, Nigel B.
2016-04-01
Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.
Fadnavis, S; Beig, G; Buchunde, P; Ghude, Sachin D; Krishnamurti, T N
2011-02-01
Vertical profiles of carbon monoxide (CO) and ozone retrieved from Tropospheric Emission Spectrometer have been analyzed during two super cyclone systems Mala and Sidr. Super cyclones Mala and Sidr traversed the Bay of Bengal (BOB) region on April 24-29, 2006 and November 12-16, 2007 respectively. The CO and ozone plume is observed as a strong enhancement of these pollutants in the upper troposphere over the BOB, indicating deep convective transport. Longitude-height cross-section of these pollutants shows vertical transport to the upper troposphere. CO mixing ratio ~90 ppb is observed near the 146-mb level during the cyclone Mala and near 316 mb during the cyclone Sidr. Ozone mixing ratio ~60-100 ppb is observed near the 316-mb level during both the cyclones. Analysis of National Centers for Environmental Prediction (NCEP) reanalysis vertical winds (omega) confirms vertical transport in the BOB.
An error reduction algorithm to improve lidar turbulence estimates for wind energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidarsmore » in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine-learning methods in L-TERRA was highly dependent on the input variables and training dataset used, suggesting that machine learning may not be the best technique for reducing lidar turbulence intensity (TI) error. Future work will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error and to determine how these errors can be reduced using information from a stand-alone lidar.« less
NASA Astrophysics Data System (ADS)
Kervalishvili, G.; Lühr, H.
2016-12-01
This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame for both signs of IMF By, but speeds are larger for positive By. FAC shows a systematic imbalance between downward (upward) and upward (downward) peaks equatorward and poleward of the reference point for positive (negative) IMF By. The influence of upflow events depends strongly on the amplitude of IMF By, to a lesser extend on Bz.
An error reduction algorithm to improve lidar turbulence estimates for wind energy
Newman, Jennifer F.; Clifton, Andrew
2017-02-10
Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidarsmore » in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine-learning methods in L-TERRA was highly dependent on the input variables and training dataset used, suggesting that machine learning may not be the best technique for reducing lidar turbulence intensity (TI) error. Future work will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error and to determine how these errors can be reduced using information from a stand-alone lidar.« less
Reducing representativeness and sampling errors in radio occultation-radiosonde comparisons
NASA Astrophysics Data System (ADS)
Gilpin, Shay; Rieckh, Therese; Anthes, Richard
2018-05-01
Radio occultation (RO) and radiosonde (RS) comparisons provide a means of analyzing errors associated with both observational systems. Since RO and RS observations are not taken at the exact same time or location, temporal and spatial sampling errors resulting from atmospheric variability can be significant and inhibit error analysis of the observational systems. In addition, the vertical resolutions of RO and RS profiles vary and vertical representativeness errors may also affect the comparison. In RO-RS comparisons, RO observations are co-located with RS profiles within a fixed time window and distance, i.e. within 3-6 h and circles of radii ranging between 100 and 500 km. In this study, we first show that vertical filtering of RO and RS profiles to a common vertical resolution reduces representativeness errors. We then test two methods of reducing horizontal sampling errors during RO-RS comparisons: restricting co-location pairs to within ellipses oriented along the direction of wind flow rather than circles and applying a spatial-temporal sampling correction based on model data. Using data from 2011 to 2014, we compare RO and RS differences at four GCOS Reference Upper-Air Network (GRUAN) RS stations in different climatic locations, in which co-location pairs were constrained to a large circle ( ˜ 666 km radius), small circle ( ˜ 300 km radius), and ellipse parallel to the wind direction ( ˜ 666 km semi-major axis, ˜ 133 km semi-minor axis). We also apply a spatial-temporal sampling correction using European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) gridded data. Restricting co-locations to within the ellipse reduces root mean square (RMS) refractivity, temperature, and water vapor pressure differences relative to RMS differences within the large circle and produces differences that are comparable to or less than the RMS differences within circles of similar area. Applying the sampling correction shows the most significant reduction in RMS differences, such that RMS differences are nearly identical to the sampling correction regardless of the geometric constraints. We conclude that implementing the spatial-temporal sampling correction using a reliable model will most effectively reduce sampling errors during RO-RS comparisons; however, if a reliable model is not available, restricting spatial comparisons to within an ellipse parallel to the wind flow will reduce sampling errors caused by horizontal atmospheric variability.
Statistics of atmospheric turbulence within a natural black spruce forest canopy
NASA Astrophysics Data System (ADS)
Amiro, B. D.; Davis, P. A.
1988-08-01
Turbulence statistics were measured in a natural black-spruce forest canopy in southeastern Manitoba, Canada. Sonic anemometers were used to measure time series of vertical wind velocity ( w), and cup anemometers to measure horizontal wind speed ( s), above the canopy and at seven different heights within the canopy. Vertical profiles were measured during 25 runs on eight different days when conditions above the canopy were near-neutral. Profiles of s and of the standard deviation (Σ w ) of w show relatively little scatter and suggest that, for this canopy and these stability conditions, profiles can be predicted from simple measurements made above the canopy. Within the canopy, a negative skewness and a high kurtosis of the w-frequency distributions indicate asymmetry and the persistence of large, high-velocity eddies. The Eulerian time scale is only a weak function of height within the canopy. Although w-power spectra above the canopy are similar to those in the free atmosphere, we did not observe an extensive inertial subrange in the spectra within the canopy. Also, a second peak is present that is especially prominent near the ground. The lack of the inertial subrange is likely caused by the presence of sources and sinks for turbulent kinetic energy within our canopy. The secondary spectral peak is probably generated by wake turbulence caused by form drag on the wide, horizontal spruce branches.
The 630 nm MIG and the vertical neutral wind in the low latitude nighttime thermosphere
NASA Technical Reports Server (NTRS)
Herrero, F. A.; Meriwether, J. W., Jr.
1994-01-01
It is shown that large negative divergences (gradients) in the horizontal neutral wind in the equatorial thermosphere can support downward neutral winds in excess of 20 m/s. With attention to the meridional and vertical winds only, the pressure tendency equation is used to derive the expression U(sub z0) approximately equals (Partial derivative U(sub y)/Partial derivative y)H for the vertical wind U(sub z0) at the reference altitude for the pressure tendency equation; H is the atmospheric density scale height, and (Partial derivative U(sub y)/Partial derivative y) is the meridional wind gradient. The velocity gradient associated with the Meridional Intensity Gradient (MIG) of the O((sup 1)D) emission (630 nm) at low latitudes is used to estimate the vertical neutral wind in the MIG region. Velocity gradients derived from MIG data are about 0.5 (m/s)/km) or more, indicating that the MIG region may contain downward neutral winds in excess of 20 m/s. Though direct measurements of the vertical wind are scarce, Fabry-Perot interferometer data of the equatorial F-region above Natal, Brazil, showed downward winds of 30 m/s occurring during a strong meridional wind convergence in 1982. In-situ measurements with the WATS instrument on the DE-2 satellite also show large vertical neutral winds in the equatorial region.
NASA Astrophysics Data System (ADS)
Roberts, Tjarda J.; Dütsch, Marina; Hole, Lars R.; Voss, Paul B.
2016-09-01
Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.
Interactions Between Convective Storms and Their Environment
NASA Technical Reports Server (NTRS)
Maddox, R. A.; Hoxit, L. R.; Chappell, C. F.
1979-01-01
The ways in which intense convective storms interact with their environment are considered for a number of specific severe storm situations. A physical model of subcloud wind fields and vertical wind profiles was developed to explain the often observed intensification of convective storms that move along or across thermal boundaries. A number of special, unusually dense, data sets were used to substantiate features of the model. GOES imagery was used in conjunction with objectively analyzed surface wind data to develop a nowcast technique that might be used to identify specific storm cells likely to become tornadic. It was shown that circulations associated with organized meso-alpha and meso-beta scale storm complexes may, on occasion, strongly modify tropospheric thermodynamic patterns and flow fields.
Arctic Strato-Mesospheric Temperature and Wind Variations
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Goldberg, R. A.
2004-01-01
Upper stratosphere and mesosphere rocket measurements are actively used to investigate interaction between the neutral, electrical, and chemical atmospheres and between lower and upper layers of these regions. Satellite temperature measurements from HALOE and from inflatable falling spheres complement each other and allow illustrations of the annual cycle to 85 km altitude. Falling sphere wind and temperature measurements reveal variability that differs as a function of altitude, location, and time. We discuss the state of the Arctic atmosphere during the summer 2002 (Andoya, Norway) and winter 2003 (ESRANGE, Sweden) campaigns of MaCWAVE. Balloon-borne profiles to 30 km altitude and sphere profiles between 50 and 90 km show unique small-scale structure. Nonetheless, there are practical implications that additional measurements are very much needed to complete the full vertical profile picture. Our discussion concentrates on the distribution of temperature and wind and their variability. However, reliable measurements from other high latitude NASA programs over a number of years are available to help properly calculate mean values and the distribution of the individual measurements. Since the available rocket data in the Arctic's upper atmosphere are sparse the results we present are basically a snapshot of atmospheric structure.
NASA Astrophysics Data System (ADS)
García-Yee, J. S.; Torres-Jardón, R.; Barrera-Huertas, H.; Castro, T.; Peralta, O.; García, M.; Gutiérrez, W.; Robles, M.; Torres-Jaramillo, J. A.; Ortínez-Álvarez, A.; Ruiz-Suárez, L. G.
2018-03-01
The role of the Tenango del Aire mountain pass, located southeast of the Mexico City Metropolitan Area (MCMA), in venting the city's air pollution has already been studied from a meteorological standpoint. To better understand the transport of gaseous air pollutants through the Tenango del Aire Pass (TAP), and its influence on the air quality of the MCMA, three mobile air quality monitoring units were deployed during a 31-day field campaign between February and March of 2011. Surface O3, NOx, and meteorological variables were continuously measured at the three sites. Vertical profiles of O3 and meteorological variables were also obtained at one of the sites using a tethered balloon. Days were classified as being under low pressure synoptic systems (LPS, 13 days), high pressure synoptic systems (HPS, 13 days), or as transition days (TR). The Mexican ozone standards at the Pass were not exceeded during LPS days, but were exceeded on almost all HPS days. A detailed analysis was performed using data from two typical days, one representative of LPS and the other of HPS. In both cases, morning vertical profiles of O3 showed a strong thermal inversion layer and near-surface O3 titration due to fresh NOx. In the LPS early morning, a single O3 layer of close to 45 ppb was observed from 150 to 700 magl. In the HPS early morning, 50 ppb was observed from 150 to 400 magl followed by a 400-m-thick layer with up to 80 ppb. These layers were the source of the morning increase of O3, with a simultaneous sharp decrease of NOx and CO as the mixing layer started to rise. During the LPS day, a southerly wind dominated throughout most of the daytime, with surface O3 lower than 60 ppb. The same was observed for the well-mixed midday and afternoon vertical profiles. Under HPS, northerly winds transported photochemically active air masses from the MCMA all morning, as observed by a smoother increase of Ox and O3, reaching 110 ppb of O3. Just after midday, the wind shifted back, carrying high-O3 (100-110 ppb) aged air masses until sunset. In addition, the midday and afternoon vertical profiles showed well-mixed high-O3 (100-110 ppb) mixing ratios. Analysis of Ox-NOx correlations was performed for these peri-urban and MCMA sites. A parallel analysis for the nearest urban air quality monitoring station in the MCMA was also done. A comparison allowed us to distinguish between photochemically active (VOC sensitive) or aged parcels (NOx sensitive) arriving at the TAP. Separating the correlations into time groups associated with wind direction changes allowed us to better distinguish between local, MCMA, or regional influence. The results are relevant to air quality management in the Mexico City megalopolis.
Rocket Observations of Kelvin Waves in the Upper Stratosphere over India.
NASA Astrophysics Data System (ADS)
Devarajan, M.; Reddy, C. A.; Ragrava Reddi, C.
1985-09-01
The upper atmospheric winds (20-40 km) at two Indian stations, Sriharikota Range (SHAR 13.7°N, 80.2°E) and Balasore (2 1.5°N, 86.93°E) during the years 1979-80 were analyzed for short scale vertical variations (6-16 km) of the zonal wind. The analysis involves high-pass filtering of the wind profiles to extract the short-scale wavelike perturbations and Fourier analysis of the wave disturbances.The results of the analysis are presented. The dominant vertical wavelengths are in the 6-12 km range in 67% of the observed cases, and the amplitudes are significantly larger during the easterly background wind. The amplitudes are systematically larger by about a factor of 2 at Sriharikota (13.7°N) than at 1Wasore (21.5°N). Corresponding wave perturbations are absent in the meridional wind in as much as 70% of the observations. These characteristics lead to the conclusion that the observed wavelike disturbances are the manifestation of Kelvin waves in the upper stratosphere. In some cases, the periods of the waves are inferred to be in the range of 4-8 days. The short vertical wavelengths, together with the shorter periods, indicate the possible dominance of zonal wavenumber 2 during many disturbance events.The observations of the wave activity in relation to the semiannual oscillation (SAO) and the annual oscillation (AO) show that 1) the more active periods correspond to the easterly phase of the SAO in the middle stratosphere and that 2) the wave activity persists for a longer duration when both the AO and SAO are in easterly phase.
Comparisons of Crosswind Velocity Profile Estimates Used in Fast-Time Wake Vortex Prediction Models
NASA Technical Reports Server (NTRS)
Pruis, Mathew J.; Delisi, Donald P.; Ahmad, Nashat N.
2011-01-01
Five methods for estimating crosswind profiles used in fast-time wake vortex prediction models are compared in this study. Previous investigations have shown that temporal and spatial variations in the crosswind vertical profile have a large impact on the transport and time evolution of the trailing vortex pair. The most important crosswind parameters are the magnitude of the crosswind and the gradient in the crosswind shear. It is known that pulsed and continuous wave lidar measurements can provide good estimates of the wind profile in the vicinity of airports. In this study comparisons are made between estimates of the crosswind profiles from a priori information on the trajectory of the vortex pair as well as crosswind profiles derived from different sensors and a regional numerical weather prediction model.
Wind Turbine Wake Experiment - Wieringermeer (WINTWEX-W)
NASA Astrophysics Data System (ADS)
Kumer, V. M.; Reuder, J.; Svardal, B.; Eecen, P.
2014-12-01
WINTWEX-W is a cooperative wake measurement campaign conducted by the Norwegian Centre of Offshore Wind Energy (Norcowe) and the Energy Research Centre of the Netherlands (ECN). A scanning, four static Windcubes as well as a downstream looking nacelle LiDAR were placed for half a year downstream of one of five research wind turbines in ECNs' wind turbine test farm Wieringermeer. In order to capture wake characteristics under different weather conditions we scanned a 60˚ sector at three different elevations and two vertical cross-sections every minute. Windcubes v1 measured wind profiles every second at 2, 5 and 12 rotor diameter downstream distances. Another static Windcube, a forward-looking nacelle LiDAR and three Sonics were placed upstream to measure the undisturbed approaching flow field. The aim of the campaign is a qualitative and quantitative description of single wind turbine wake propagation and persistency, as well as to improve CFD wake models by delivering a detailed data set of several real atmospheric conditions.
NASA Technical Reports Server (NTRS)
Iraci, Laura
2016-01-01
The Alpha Jet Atmospheric eXperiment (AJAX) is a research project based at Moffett Field, CA, which collects airborne measurements of ozone, carbon dioxide, methane, water vapor, and formaldehyde, as well as 3-D winds, temperature, pressure, and location. Since its first science flight in 2011, AJAX has developed a wide a variety of mission types, combining vertical profiles (from approx. 8 km to near surface),boundary layer legs, and plume sampling as needed. With an ongoing five-year data set, the team has sampled over 160 vertical profiles, a dozen wildfires, and numerous stratospheric ozone intrusions. This talk will present an overview of our flights flown to date, with particular focus on methane observations in the San Francisco Bay Area, Sacramento, and the delta region.
Intercomparison of state-of-the-art models for wind energy resources with mesoscale models:
NASA Astrophysics Data System (ADS)
Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria; Badger, Jake; Joergensen, Hans E.
2016-04-01
1. Introduction Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are functional for giving information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Several mesoscale models and families of models are being used, and each often contains thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. To remedy this problem and for evaluating the capabilities of mesoscale models to estimate site wind conditions, a tailored benchmarking study has been co-organized by the European Wind Energy Association (EWEA) and the European Energy Research Alliance Joint Programme Wind Energy (EERA JP WIND). EWEA hosted results and ensured that participants were anonymous. The blind evaluation was performed at the Wind Energy Department of the Technical University of Denmark (DTU) with the following objectives: (1) To highlight common issues on mesoscale modelling of wind conditions on sites with different characteristics, and (2) To identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. 2. Approach Three experimental sites were selected: FINO 3 (offshore, GE), Høvsore (coastal, DK), and Cabauw (land-based, NL), and three other sites without observations based on . The three mast sites were chosen because the availability of concurrent suitable time series of vertical profiles of winds speed and other surface parameters. The participants were asked to provide hourly time series of wind speed, wind direction, temperature, etc., at various vertical heights for a complete year. The methodology used to derive the time series was left to the choice of the participants, but they were asked for a brief description of their model and many other parameters (e.g., horizontal and vertical resolution, model parameterizations, surface roughness length) that could be used to group the various models and interpret the results of the intercomparison. 3. Main body abstract Twenty separate entries were received by the deadline of 31 March 2015. They included simulations done with various versions of the Weather Research and Forecast (WRF) model, but also of six other well-known mesoscale models. The various entries represent an excellent sample of the various models used in by the wind energy industry today. The analysis of the submitted time series included comparison to observations, summarized with well-known measures such as biases, RMSE, correlations, and of sector-wise statistics, e.g. frequency and Weibull A and k. The comparison also includes the observed and modeled temporal spectra. The various statistics were grouped as a function of the various models, their spatial resolution, forcing data, and the various integration methods. Many statistics have been computed and will be presented in addition to those shown in the Helsinki presentation. 4. Conclusions The analysis of the time series from twenty entries has shown to be an invaluable source of information about state of the art in wind modeling with mesoscale models. Biases between the simulated and observed wind speeds at hub heights (80-100 m AGL) from the various models are around ±1.0 m/s and fairly independent of the site and do not seem to be directly related to the model horizontal resolution used in the modeling. As probably expected, the wind speeds from the simulations using the various version of the WRF model cluster close to each other, especially in their description of the wind profile.
An experimental study of the dynamics of saltation within a three-dimensional framework
NASA Astrophysics Data System (ADS)
O'Brien, Patrick; McKenna Neuman, Cheryl
2018-04-01
Our understanding of aeolian sand transport via saltation lacks an experimental determination of the particle borne kinetic energy partitioned into 3 dimensions relative to the mean flow direction. This in turn creates a disconnect between global wind erosion estimates and particle scale processes. The present study seeks to address this deficiency through an extended analysis of data obtained from a series of particle tracking velocimetry experiments conducted in a boundary layer wind tunnel under transport limited conditions. Particle image diameter, as it appeared within each camera frame, was extensively calibrated against that obtained by sieving, and the ballistic trajectories detected were disassembled into discrete particle image pairs whose distribution and dynamics were then examined in vertical profile with sub-millimeter resolution. The vertical profile of the wind aligned particle transport rate was found to follow a power relation within 10 mm of the bed surface. The exponent of this power function changes with increasing spanwise angle (θ) to produce a family of curves representing particle diffusion in 3 dimensions. Particle mass was found to increase with θ, and the distribution of the total particle kinetic energy was found to be very similar to that for the particle concentration. The spanwise component of the kinetic energy of a saltating particle peaks at θ = 45°, with the stream-aligned component an order of magnitude higher in value. Low energy, splashed particles near the bed account for a majority of the kinetic energy distributed throughout the particle cloud, regardless of their orientation.
Baggott, Sarah; Cai, Xiaoming; McGregor, Glenn; Harrison, Roy M
2006-05-01
The Regional Atmospheric Modeling System (RAMS) and Urban Airshed Model (UAM IV) have been implemented for prediction of air pollutant concentrations within the West Midlands conurbation of the United Kingdom. The modelling results for wind speed, direction and temperature are in reasonable agreement with observations for two stations, one in a rural area and the other in an urban area. Predictions of surface temperature are generally good for both stations, but the results suggest that the quality of temperature prediction is sensitive to whether cloud cover is reproduced reliably by the model. Wind direction is captured very well by the model, while wind speed is generally overestimated. The air pollution climate of the UK West Midlands is very different to those for which the UAM model was primarily developed, and the methods used to overcome these limitations are described. The model shows a tendency towards under-prediction of primary pollutant (NOx and CO) concentrations, but with suitable attention to boundary conditions and vertical profiles gives fairly good predictions of ozone concentrations. Hourly updating of chemical concentration boundary conditions yields the best results, with input of vertical profiles desirable. The model seriously underpredicts NO2/NO ratios within the urban area and this appears to relate to inadequate production of peroxy radicals. Overall, the chemical reactivity predicted by the model appears to fall well below that occurring in the atmosphere.
On the stability treatment in WAsP
NASA Astrophysics Data System (ADS)
Giebel, G.; Gryning, S.-E.
2003-04-01
An assessment of the treatment of atmospheric stability in the standard package for wind resource estimation, WAsP (from Risø National Laboratory), is presented. Emphasis is on the vertical wind profiles in WAsP and the treatment of stability therein, under special consideration of the nightly situation. The study starts with an introduction to WAsP and the way it treats the vertical extrapolation, under special consideration of the stability. The two parameters available for changing the stability treatment in WAsP are identified as RMS heat flux and offset heat flux. Four years worth of data from the meteorological mast at Risø, plus data from Egypt and Bermuda, is used for the identification of the parameter settings for stable conditions. To this aim, the measured heat fluxes from the mast were used to extract three data sets with successively higher stability in four different heights. These data sets were then run through the Observed Wind Climate Wizard (part of the WAsP package), resulting in Weibull fits to the data. Using these observed wind climates, a prediction of the highest level wind climate using the lowest level wind climate under all different stable conditions is undertaken and compared with the measured data set. To expand on this study, a systematic variation of the two heat flux parameters in WAsP is done, finding the parameters yielding the lowest overall errors for the predictions. Parts of this study were financed by the Landesumweltamt Brandenburg.
Climatology of Neutral vertical winds in the midlatitude thermosphere
NASA Astrophysics Data System (ADS)
Kerr, R.; Kapali, S.; Riccobono, J.; Migliozzi, M. A.; Noto, J.; Brum, C. G. M.; Garcia, R.
2017-12-01
More than one thousand measurements of neutral vertical winds, relative to an assumed average of 0 m/s during a nighttime period, have been made at Arecibo Observatory and the Millstone Hill Optical Facility since 2012, using imaging Fabry-Perot interferometers. These instruments, tuned to the 630 nm OI emission, are carefully calibrated for instrumental frequency drift using frequency stabilized lasers, allowing isolation of Doppler motion in the zenith with 1-2 m/s accuracy. As one example of the results, relative vertical winds at Arecibo during quiet geomagnetic conditions near winter solstice 2016, range ±70 m/s and have a one standard deviation statistical variability of ±34 m/s. This compares with a ±53 m/s deviation from the average meridional wind, and a ±56 m/s deviation from the average zonal wind measured during the same period. Vertical neutral wind velocities for all periods range from roughly 30% - 60% of the horizontal velocity domain at Arecibo. At Millstone Hill, the vertical velocities relative to horizontal velocities are similar, but slightly smaller. The midnight temperature maximum at Arecibo is usually correlated with a surge in the upward wind, and vertical wind excursions of more than 80 m/s are common during magnetic storms at both sites. Until this compilation of vertical wind climatology, vertical motions of the neutral atmosphere outside of the auroral zone have generally been assumed to be very small compared to horizontal transport. In fact, excursions from small vertical velocities in the mid-latitude thermosphere near the F2 ionospheric peak are common, and are not isolated events associated with unsettled geomagnetic conditions or other special dynamic conditions.
Determination of surface layer parameters at the edge of a suburban area
NASA Astrophysics Data System (ADS)
Likso, T.; Pandžić, K.
2012-05-01
Vertical wind and air temperature profile related parameters in the surface layer at the edge of suburban area of Zagreb (Croatia) have been considered. For that purpose, adopted Monin-Obukhov similarity theory and a set of observations of wind and air temperature at 2 and 10 m above ground, recorded in 2005, have been used. The root mean square differences (errors) principle has been used as a tool to estimate the effective roughness length as well as standard deviations of wind speed and wind gusts. The results of estimation are effective roughness lengths dependent on eight wind direction sectors unknown before. Gratefully to that achievement, representativeness of wind data at standard 10-m height can be clarified more deeply for an area of at least about 1 km in upwind direction from the observation site. Extrapolation of wind data for lower or higher levels from standard 10-m height are thus properly representative for a wider inhomogeneous suburban area and can be used as such in numerical models, flux and wind energy estimation, civil engineering, air pollution and climatological applications.
First Results of the Land Atmosphere Feedback Experiment
NASA Astrophysics Data System (ADS)
Wulfmeyer, V.; Turner, D. D.
2017-12-01
The Land-Atmosphere Feedback Experiment (LAFE) deployed several state-of-the-art scanning lidar and remote sensing systems to the ARM SGP site during August 2017. A novel synergy of remote sensing systems was applied for simultaneous measurements of land-surface fluxes and horizontal and vertical transport processes in the atmospheric boundary layer (ABL). The impact of spatial inhomogeneities of the soil-vegetation continuum on LA feedback was studied using the scanning capability of the instrumentation as well as soil, vegetation, and surface flux measurements. The synergy of remote sensing and in-situ instruments consisted of three components: 1) The SGP water-vapor and temperature Raman lidar, the SGP Doppler lidar, the University of Hohenheim (UHOH) Doppler lidar, and the NCAR water-vapor DIAL to measure mean profiles and gradients of moisture, temperature, and horizontal wind. Due to their high vertical and temporal resolutions, also profiles of higher-order turbulent moments in the water vapor and wind fields as well as of profiles of the latent heat flux, the sensible heat flux, TKE, and momentum flux were observed. 2) A novel scanning lidar system synergy consisting of the NOAA High-Resolution Doppler lidar, the UHOH water-vapor differential absorption lidar, and the UHOH temperature rotational Raman lidar. These systems performed coordinated range-height indicator (RHI) scans from just above the canopy level to the lower troposphere including the interfacial layer at the ABL top. This component was augmented by three energy balance closure towers of NOAA and one EBC station of UHOH. 3) The University of Wisconsin SPARC and the University of Oklahoma CLAMPS systems operating two vertically pointing atmospheric emitted radiance interferometers and two Doppler lidar systems scanning cross track to the central RHI for determining the surface friction velocity and the horizontal variability of temperature, moisture, and wind. NOAA ARL also provided UAS and aircraft measurements (Navajo Piper) in accordance with the surface scans. Thus, both the variability of surface fluxes and CBL dynamics and thermodynamics over the SGP site was studied for the first time. This is essential for advanced observation and understanding of LA feedback. First results are presented at the conference.
The stably stratified internal boundary layer for steady and diurnally varying offshore flow
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1987-03-01
A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients ( K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land. A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and gδθ/θ, Δθ being the temperature difference between continental mixed-layer air and sea surface, θ is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014 x 1/2 U ( gδθ/θ)-1/2. In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale ≈ 500 km. The circulation is related to the advection, and subsequent decay, of daytime convective turbulence over the sea.
Characterization of pollutant dispersion near elongated ...
This paper presents a wind tunnel study of the effects of elongated rectangular buildings on the dispersion of pollutants from nearby stacks. The study examines the influence of source location, building aspect ratio, and wind direction on pollutant dispersion with the goal of developing improved algorithms within dispersion models. The paper also examines the current AERMOD/PRIME modeling capabilities compared to wind tunnel observations. Differences in the amount of plume material entrained in the wake region downwind of a building for various source locations and source heights are illustrated with vertical and lateral concentration profiles. These profiles were parameterized using the Gaussian equation and show the influence of building/source configurations on those parameters. When the building is oriented at 45° to the approach flow, for example, the effective plume height descends more rapidly than it does for a perpendicular building, enhancing the resulting surface concentrations in the wake region. Buildings at angles to the wind cause a cross-wind shift in the location of the plume resulting from a lateral mean flow established in the building wake. These and other effects that are not well represented in many dispersion models are important considerations when developing improved algorithms to estimate the location and magnitude of concentrations downwind of elongated buildings. The National Exposure Research Laboratory (NERL) Computational Exposur
Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar
NASA Technical Reports Server (NTRS)
Gentry, Bruce; McGill, Matthew; Machan, Roman; Reed, Daniel; Cargo, Ryan; Wilkens, David J.; Hart, William; Yorks, John; Scott, Stan; Wake, Shane;
2010-01-01
In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flights
Atmospheric Constraints on Landing Site Selection
NASA Astrophysics Data System (ADS)
Kass, David M.; Schofield, J. T.
2001-01-01
The Martian atmosphere is a significant part of the environment that the Mars Exploration Rovers (MER) will encounter. As such, it imposes important constraints on where the rovers can and cannot land. Unfortunately, as there are no meteorological instruments on the rovers, there is little atmospheric science that can be accomplished, and no scientific preference for landing sites. The atmosphere constrains landing site selection in two main areas, the entry descent and landing (EDL) process and the survivability of the rovers on the surface. EDL is influenced by the density profile and boundary layer winds (up to altitudes of 5 to 10 km). Surface survivability involves atmospheric dust, temperatures and winds. During EDL, the atmosphere is used to slow the lander down, both ballistically and on the parachute. This limits the maximum elevation of the landing site to -1.3 km below the MOLA reference aeroid. The landers need to encounter a sufficiently dense atmosphere to be able to stop, and the deeper the landing site, the more column integrated atmosphere the lander can pass through before reaching the surface. The current limit was determined both by a desire to be able to reach the hematite region and by a set of atmosphere models we developed for EDL simulations. These are based on Thermal Emission Spectrometer (TES) atmospheric profile measurements, Ames Mars General Circulation Model (MGCM) results, and the 1-D Ames GCM radiative/convective model by J. Murphy. The latter is used for the near surface diurnal cycle. The current version of our model encompasses representative latitude bands, but we intend to make specific models for the final candidate landing sites to insure that they fall within the general envelope. The second constraint imposed on potential landing sites through the EDL process is the near surface wind. The wind in the lower approximately 5 km determines the horizontal velocity that the landers have when they land. Due to the mechanics of the landing process, the total velocity (including both the horizontal and vertical components) determines whether or not the landers are successful. Unfortunately, the landing system has no easy way to nullify any horizontal velocity imparted by the wind, so the landing sites selected need to have as little wind as possible. In addition to the mean wind velocity, the landing system is sensitive to vertical wind shear in the lowest kilometer or so. Wind shear can deflect the retro rockets (RADs) from their nominal vertical orientation producing unwanted horizontal spacecraft velocities. Both mean velocity and wind shear are dominated by the the local topography and other surface properties (in particular albedo and thermal inertia which control the surface temperature). This is seen even in simplified 2-D mesoscale models. The effects in a fully 3-D model are expected to he even more topographically dependent. In particular there is potential for wind channeling in canyons and other terrain features. Boundary layer winds and wind shear are currently being modeled based on terrestrial data and boundary layer scaling laws modified for Martian conditions. We hope to supplement this with mesoscale model results (from several sources) once the number of landing sites is reduced to a manageable number.
High-frequency measurements of aeolian saltation flux: Field-based methodology and applications
NASA Astrophysics Data System (ADS)
Martin, Raleigh L.; Kok, Jasper F.; Hugenholtz, Chris H.; Barchyn, Thomas E.; Chamecki, Marcelo; Ellis, Jean T.
2018-02-01
Aeolian transport of sand and dust is driven by turbulent winds that fluctuate over a broad range of temporal and spatial scales. However, commonly used aeolian transport models do not explicitly account for such fluctuations, likely contributing to substantial discrepancies between models and measurements. Underlying this problem is the absence of accurate sand flux measurements at the short time scales at which wind speed fluctuates. Here, we draw on extensive field measurements of aeolian saltation to develop a methodology for generating high-frequency (up to 25 Hz) time series of total (vertically-integrated) saltation flux, namely by calibrating high-frequency (HF) particle counts to low-frequency (LF) flux measurements. The methodology follows four steps: (1) fit exponential curves to vertical profiles of saltation flux from LF saltation traps, (2) determine empirical calibration factors through comparison of LF exponential fits to HF number counts over concurrent time intervals, (3) apply these calibration factors to subsamples of the saltation count time series to obtain HF height-specific saltation fluxes, and (4) aggregate the calibrated HF height-specific saltation fluxes into estimates of total saltation fluxes. When coupled to high-frequency measurements of wind velocity, this methodology offers new opportunities for understanding how aeolian saltation dynamics respond to variability in driving winds over time scales from tens of milliseconds to days.
Effects of Environment Forcing on Marine Boundary Layer Cloud-Drizzle Processes
NASA Astrophysics Data System (ADS)
Dong, X.
2017-12-01
Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzle occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number (Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. By analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Peng; Dong, Xiquan; Xi, Baike
Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzlemore » occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number ( Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. As a result, by analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.« less
Wu, Peng; Dong, Xiquan; Xi, Baike; ...
2017-04-20
Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzlemore » occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number ( Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. As a result, by analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.« less
NASA Astrophysics Data System (ADS)
Burri, K.; Graf, F.
2009-04-01
World wide, wind erosion and desertification are most alarming processes of environmental degradation. Not only do they cause tremendous losses of fertile soil, but they also seriously affect human health. Pulmonary tuberculosis (silicosis) is one of the major diseases that have been linked to mineral fine dust (PM10) in the atmosphere. It is widely accepted that the re-establishment of an intact vegetation cover is the most effective measure against wind erosion. However, despite numerous investigations, the mechanisms responsible for the protective effect of vegetation are still not completely understood. Since the phenomenon involves highly variable interactions between soil, plants and atmosphere, it is particularly difficult to quantify the efficiency of vegetation in reducing wind erosion. As an alternative to field investigations, wind tunnel experiments offer the advantage to control specific parameters within this highly complex system. In this study, a series of wind tunnel experiments was performed including measurements of sediment transport and PM10 emission in differently dense grass canopies of Lolium perenne (91, 24, 5 and 0 plants per square meter). The novelty of the present wind tunnel study is the use of living plants instead of artificial imitations or dead plant parts. Although more and more sophisticated imitations of vegetation have been used in recent studies, the behaviour of living plants is likely to differ significantly. Coloured quartz sand was used for visualizing sand erosion and deposition patterns. The vertical profiles of aeolian sediment flux were analysed with a stackable sediment sampler composed of 60 collecting boxes, each with a height of 1 cm. The results of this study confirm that both sediment transport and PM10 emission strongly decrease with increasing plant cover. The protective effect of the plants was found to be linked to characteristic changes in the vertical profile of aeolian sediment flux and to specific spatial patterns of sediment deposition. Furthermore, observations indicate that the performance of plants in wind erosion control strongly depends on plant species specific characteristics, particularly growth form and stiffness, as well as on their physiological state. The use of living plants in wind tunnel experiments offers the possibility to study a wide range of more specific aspects of biological wind erosion control. As a next step it is planned to test the effect of mycorrhizal fungi on the wind erodibility of vegetated soil systems.
Vertical axis wind turbine airfoil
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich
2012-12-18
A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.
Wind Power Curve Modeling in Simple and Complex Terrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulaevskaya, V.; Wharton, S.; Irons, Z.
2015-02-09
Our previous work on wind power curve modeling using statistical models focused on a location with a moderately complex terrain in the Altamont Pass region in northern California (CA). The work described here is the follow-up to that work, but at a location with a simple terrain in northern Oklahoma (OK). The goal of the present analysis was to determine the gain in predictive ability afforded by adding information beyond the hub-height wind speed, such as wind speeds at other heights, as well as other atmospheric variables, to the power prediction model at this new location and compare the resultsmore » to those obtained at the CA site in the previous study. While we reach some of the same conclusions at both sites, many results reported for the CA site do not hold at the OK site. In particular, using the entire vertical profile of wind speeds improves the accuracy of wind power prediction relative to using the hub-height wind speed alone at both sites. However, in contrast to the CA site, the rotor equivalent wind speed (REWS) performs almost as well as the entire profile at the OK site. Another difference is that at the CA site, adding wind veer as a predictor significantly improved the power prediction accuracy. The same was true for that site when air density was added to the model separately instead of using the standard air density adjustment. At the OK site, these additional variables result in no significant benefit for the prediction accuracy.« less
Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones
NASA Astrophysics Data System (ADS)
Lee, J. L.; Lee, W. C.; MacDonald, A. E.
2006-01-01
The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.
A local-circulation model for Darrieus vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Masse, B.
1986-04-01
A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.
Sensitivities of Modeled Tropical Cyclones to Surface Friction and the Coriolis Parameter
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Tao, Wei-Kuo; Lau, William K. M. (Technical Monitor)
2002-01-01
In this investigation the sensitivities of a 2-D tropical cyclone (TC) model to surface frictional coefficient and the Coriolis parameter are studied and their implication is discussed. The model used is an axisymmetric version of the latest version of the Goddard cloud ensemble model. The model has stretched vertical grids with 33 levels varying from 30 m near the bottom to 1140 m near the top. The vertical domain is about 21 km. The horizontal domain covers a radius of 962 km (770 grids) with a grid size of 1.25 km. The time step is 10 seconds. An open lateral boundary condition is used. The sea surface temperature is specified at 29C. Unless specified otherwise, the Coriolis parameter is set at its value at 15 deg N. The Newtonian cooling is used with a time scale of 12 hours. The reference vertical temperature profile used in the Newtonian cooling is that of Jordan. The Newtonian cooling models not only the effect of radiative processes but also the effect of processes with scale larger than that of TC. Our experiments showed that if the Newtonian cooling is replaced by a radiation package, the simulated TC is much weaker. The initial condition has a temperature uniform in the radial direction and its vertical profile is that of Jordan. The initial winds are a weak Rankin vortex in the tangential winds superimposed on a resting atmosphere. The initial sea level pressure is set at 1015 hPa everywhere. Since there is no surface pressure perturbation, the initial condition is not in gradient balance. This initial condition is enough to lead to cyclogenesis, but the initial stage (say, the first 24 hrs) is not considered to resemble anything observed. The control experiment reaches quasi-equilibration after about 10 days with an eye wall extending from 15 to 25 km radius, reasonable comparing with the observations. The maximum surface wind of more than 70 m/s is located at about 18 km radius. The minimum sea level pressure on day 10 is about 886 hPa. Thus the overall simulation is considered successful and the model is considered adequate for our investigation.
Meteorological Simulations of Ozone Episode Case Days during the 1996 Paso del Norte Ozone Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, M.J.; Costigan, K.; Muller, C.
1999-02-01
Meteorological simulations centered around the border cities of El Paso and Ciudad Juarez have been performed during an ozone episode that occurred on Aug. 13,1996 during the 1996 Paso del Norte Ozone Study field campaign. Simulations were petiormed using the HOTMAC mesoscale meteorological model using a 1,2,4, and 8 km horizontal grid size nested mesh system. Investigation of the vertical structure and evolution of the atmospheric boundary layer for the Aug. 11-13 time period is emphasized in this paper. Comparison of model-produced wind speed profiles to rawirisonde and radar profiler measurements shows reasonable agreement. A persistent upper-level jet was capturedmore » in the model simulations through data assimilation. In the evening hours, the model was not able to produce the strong wind direction shear seen in the radar wind profiles. Based on virtual potential temperature profile comparisons, the model appears to correctly simulate the daytime growth of the convective mixed layer. However, the model underestimates the cooling of the surface layer at night. We found that the upper-level jet significantly impacted the turbulence structure of the boundary layer, leading to relatively high turbulent kinetic energy (tke) values aloft at night. The model indicates that these high tke values aloft enhance the mid-morning growth of the boundary layer. No upper-level turbulence measurements were available to verify this finding, however. Radar profiler-derived mixing heights do indicate relatively rapid morning growth of the mixed layer.« less
Compact and Rugged Transceiver for Coherent Doppler Wind Lidar Applications in Space
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Singh, Upendra N.; Trieu, Bo C.; Modlin, Ed A.; Petros, Mulugeta; Bai, Yingxin; Reithmaier, Karl;
2007-01-01
High-accuracy, vertical profiles of the horizontal vector wind in earth s atmosphere, with the global coverage of an orbiting sensor, are a highly desired measurement of NASA, NOAA, and many other agencies and countries. It is the consensus of NASA and NOAA that the most cost effective, lowest risk measurement method with the earliest achievable mission date is the hybrid Doppler lidar method which utilizes both coherent- and direct-detection Doppler lidars to obtain the desired profiles. NASA Langley Research Center (LaRC) has advanced the 2-micron pulsed solid-state laser greatly over the past 15 years and has recently demonstrated 1.2 J of pulse energy whereas the requirement for a 400-km hybrid Doppler lidar mission is only 0.25 J. The IIP project reported here is an effort to increase the ruggedness and to compactly package the LaRC state-of-the-art laser technology.
Evapotranspiration and turbulent transport in an irrigated desert orchard
NASA Astrophysics Data System (ADS)
Stoughton, Thomas E.; Miller, David R.; Huddleston, Ellis W.; Ross, James B.
2002-10-01
Micrometeorological measurements were recorded in an irrigated pecan orchard for 2 weeks in the summer of 1996 near Las Cruces, NM. A vertical array of five sonic anemometers recorded three-dimensional wind and temperature data within and above the orchard. The measured energy budget closure error was only 3.2% of net radiation, indicating freedom from local edge advection. The effects of regional (oasis) advection and unsteady winds on evapotranspiration (ET) were considered by comparing the observed latent heat flux values to estimates of ET using the Penman-Monteith and Advection-Aridity approaches. Penman-Monteith underestimated observed ET values by 82%. The Advection-Aridity modifications of potential evapotranspiration (PET) underestimated ET by 11%. Profiles of turbulence statistics demonstrated vertical heterogeneity of turbulence within the canopy. Directly above the canopy, momentum flux profiles showed little divergence. However, at a level of two times the tree heights, sensible heat flux profiles did show divergence, confirming the presence of "oasis" advection resulting from warm, dry air moving above the internal boundary layer. Upward convection from the hot soil surface between the trees diluted the oasis condition to the point where a weak upward sensible heat flux was observed during the midday periods when the soil was not shaded. Convection ratios, and exuberance ratios, generated from quadrant analyses of the heat and momentum flux events, showed that turbulent motions moved freely up and down within this canopy with little attenuation due to the open spaces between the trees.
NASA Astrophysics Data System (ADS)
Weigel, Andreas P.; Rotach, Mathias W.
2004-10-01
Aircraft measurements, radio soundings and sonic data--obtained during the MAP-Riviera field campaign in autumn 1999 in southern Switzerland--are used to investigate the flow structure, temperature profiles and turbulence characteristics of the atmosphere in a steep and narrow Alpine valley under convective conditions. On all predominantly sunny days of the intensive observation periods, a pronounced valley-wind system develops. In the southern half of the valley, the daily up-valley winds have a jet-like structure and are shifted towards the eastern slope. These up-valley winds advect potentially colder air, a process which appears to be balanced by vertical warm air advection from above. The profiles of potential temperature show that, with the onset of up-valley winds, the mixed layer consistently stops growing or--on days with very strong up-valley winds--even stabilizes almost throughout the entire valley atmosphere. This is probably due to a pronounced secondary circulation in the southern part of the valley, which induces advection of warm air from above. The secondary circulation appears to be a consequence of sharp curvature in the along-valley topography. Turbulence variables are calculated from flight legs in the along-valley direction. Turbulent kinetic energy (TKE) scales surprisingly well (i) if a TKE criterion (TKE > 0.5 m2s-2) is employed as a definition of the boundary layer height and (ii) if the 'surface fluxes'--which exhibit a substantial spatial variability--from the slope sites are used rather than those from directly beneath the profile considered. Significant site-to-site differences in incoming solar radiation seem to be the reason for this characteristic behaviour. Profiles of momentum flux--scaled with a surface friction velocity--reveal more scatter than the TKE profiles, but still show a consistent behaviour. A surprisingly strong shear in the cross-valley direction can be observed and is probably a result of the secondary circulation.
NASA Technical Reports Server (NTRS)
Sullivan, Don
2016-01-01
This paper will describe the information technologies developed by NASA and NOAA for the February 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) El Niño Southern Oscillation (ENSO) Campaign. The air vehicle is a NASA Global Hawk UAS, with a primary payload of four instruments, two developed by NASA, two developed by NOAA. The aircraft is based at the NASA Armstrong Flight Research Center, Edwards Air Force Base, California. The payload components are remotely operated by scientists at various facilities, and the data collected downloaded over satellite links in real time for analysis and collaboration. NOAA: Advanced Vertical Atmospheric Profiling System (AVAPS), developed by NCAR, which deploys dozens of dropsondes at altitudes up to 65,000 ft to collect high vertical resolution measurements of the temperature, pressure, relative humidity, and wind speed and direction. NASA: High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), a radar designed to examine the factors of storm intensity: formation, structure and intensification. NOAA: O3 Photometer (UAS-O3), designed specifically for autonomous, precise, and accurate O3 measurements in the upper troposphere and lower stratosphere (UT/LS). NASA JPL: High Altitude MMIC Sounding Radiometer (HAMSR), an atmospheric microwave temperature and humidity sounder instrument that looks at the microwave spectrum.
Comparison of WRF local and nonlocal boundary layer Physics in Greater Kuala Lumpur, Malaysia
NASA Astrophysics Data System (ADS)
Ooi, M. C. G.; Chan, A.; Kumarenthiran, S.; Morris, K. I.; Oozeer, M. Y.; Islam, M. A.; Salleh, S. A.
2018-02-01
The urban boundary layer (UBL) is the internal advection layer of atmosphere above urban region which determines the exchanges of momentum, water and other atmospheric constituents between the urban land surface and the free troposphere. This paper tested the performance of three planetary boundary layer (PBL) physics schemes of Weather Research and Forecast (WRF) software to ensure the appropriate representation of vertical structure of UBL in Greater Kuala Lumpur (GKL). Comparison was conducted on the performance of respective PBL schemes to generate vertical and near-surface weather profile and rainfall. Mellor-Yamada- Janjíc (MYJ) local PBL scheme coupled with Eta MM5 surface layer scheme was found to predict the near-surface temperature and wind profile and mixing height better than the nonlocal schemes during the intermonsoonal period with least influences of the synoptic background weather.
Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures
NASA Technical Reports Server (NTRS)
Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.
2004-01-01
In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .
Gillette, Dale A.; Fryrear, D.W.; Xiao, Jing Bing; Stockton, Paul; Ono, Duane; Helm, Paula J.; Gill, Thomas E; Ley, Trevor
1997-01-01
A field experiment at Owens (dry) Lake, California, tested whether and how the relative profiles of airborne horizontal mass fluxes for >50-μm wind-eroded particles changed with friction velocity. The horizontal mass flux at almost all measured heights increased proportionally to the cube of friction velocity above an apparent threshold friction velocity for all sediment tested and increased with height except at one coarse-sand site where the relative horizontal mass flux profile did not change with friction velocity. Size distributions for long-time-averaged horizontal mass flux samples showed a saltation layer from the surface to a height between 30 and 50 cm, above which suspended particles dominate. Measurements from a large dust source area on a line parallel to the wind showed that even though the saltation flux reached equilibrium ∼650 m downwind of the starting point of erosion, weakly suspended particles were still input into the atmosphere 1567 m downwind of the starting point; thus the saltating fraction of the total mass flux decreased after 650 m. The scale length difference and ratio of 70/30 suspended mass flux to saltation mass flux at the farthest down wind sampling site confirm that suspended particles are very important for mass budgets in large source areas and that saltation mass flux can be a variable fraction of total horizontal mass flux for soils with a substantial fraction of <100-μm particles.
NASA Astrophysics Data System (ADS)
Shin, H. H.; Zhao, M.; Ming, Y.; Chen, X.; Lin, S. J.
2017-12-01
Surface layer (SL) parameters in atmospheric models - such as 2-m air temperature (T2), 10-m wind speed (U10), and surface turbulent fluxes - are computed by applying the Monin-Obukhov Similarity Theory (MOST) to the lowest model level height (LMH) in the models. The underlying assumption is that LMH is within surface layer height (SLH), but most AGCMs hardly meet the condition in stable boundary layers (SBLs) over land. To assess the errors in modeled SL parameters caused by this, offline computations of the MOST are performed with different LMHs from 1 to 100 m, for an idealized SBL case with prescribed surface parameters (surface temperature, roughness length and Obukhov length), and vertical profiles of temperature and winds. The results show that when LMH is higher than SLH, T2 and U10 are underestimated by O(1 K) and O(1 m/s), respectively, and the biases increase as LMH increases. Based on this, the refined vertical resolution with an additional layer in the SL is applied to the GFDL AGCM, and it reduces the systematic cold biases in T2 and the systematic underestimation of U10.
NASA Astrophysics Data System (ADS)
Bonin, Timothy A.; Blumberg, William G.; Klein, Petra M.; Chilson, Phillip B.
2015-12-01
The nocturnal stable boundary layer (SBL) can generally be classified into the weakly stable boundary layer (wSBL) and very stable boundary layer (vSBL). Within the wSBL, turbulence is relatively continuous, whereas in the vSBL, turbulence is intermittent and not well characterized. Differentiating characteristics of each type of SBL are still unknown. Herein, thermodynamic and kinematic data collected by a suite of instruments in north central Oklahoma in autumn 2012 are analyzed to better understand both SBL regimes and their differentiating characteristics. Many low-level jets were observed during the experiment, as it took place near a climatological maximum. A threshold wind speed, above which bulk shear-generated turbulence develops, is found to exist up to 300 m. The threshold wind speed must also be exceeded at lower heights (down to the surface) in order for strong turbulence to develop. Composite profiles, which are normalized using low-level jet scaling, of potential temperature, wind speed, vertical velocity variance, and the third-order moment of vertical velocity (overline{w'^3}) are produced for weak and moderate/strong turbulence regimes, which exhibit features of the vSBL and wSBL, respectively. Within the wSBL, turbulence is generated at the surface and transported upward. In the vSBL, values of vertical velocity variance are small throughout the entire boundary layer, likely due to the fact that a strong surface inversion typically forms after sunset. The temperature profile tends to be approximately isothermal in the lowest portions of the wSBL, and it did not substantially change over the night. Within both types of SBL, stability in the residual layer tends to increase as the night progresses. It is thought that this stability increase is due to differential warm air advection, which frequently occurs in the southern Great Plains when southerly low-level jets and a typical north-south temperature gradient are present. Differential radiative flux divergence also contributes to this increase in stability.
Ionospheric vertical plasma drift perturbations due to the quasi 2 day wave
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Li, Tao; Dou, Xiankang
2015-05-01
The thermosphere-ionosphere-mesosphere-electrodynamics-general circulation model is utilized to study the vertical E × B drift perturbations due to the westward quasi 2 day wave with zonal wave numbers 2 and 3 (W2 and W3). The simulations show that both wind components contribute directly and significantly to the vertical drift, which is not merely confined to low latitudes. The vertical drifts at the equator induced by the total wind perturbations of W2 are comparable with that at middle latitudes, while the vertical drifts from W3 are much stronger at middle latitudes than at the equator. The ion drift perturbations induced by the zonal and meridional wind perturbations of W2 are nearly in-phase with each other, whereas the phase discrepancies of the ion drift induced by the individual wind component of W3 are much larger. This is because the wind perturbations of W2 and W3 have different latitudinal structures and phases, which result in different ionospheric responses through wind dynamo.
NASA Astrophysics Data System (ADS)
Miki, Kenji; Kawashima, Shigeto; Fujita, Toshio; Nakamura, Kimihito; Clot, Bernard
2017-06-01
Evaluating airborne pollen concentrations is important for the understanding of the spatiotemporal dispersion of pollen grains. Using two identical pollen monitors in parallel, we performed two experiments in order to study the influences of a) the physical characteristics (orientation) of the air inlet and b) the presence of obstacles in proximity to the monitors on airborne pollen concentration data. The first experiment consisted of an evaluation of airborne pollen concentrations using two different types of orifices; 1) a vertically oriented inlet and 2) a wind vane intake, both attached to the same type of automatic pollen sampler. The second experiment investigated the relationship between vertical wind speed and horizontal wind direction around an obstacle with the goal of studying the impact of micro-scale wind on pollen sampling efficiency. The results of the two experiments suggest that the wind path near an obstacle might be redirected in a vertical direction before or after the wind flows over the obstacle, which causes measurement errors of airborne pollen concentrations that are proportional to the vertical wind speed, especially when a vertically oriented inlet is used.
NASA Astrophysics Data System (ADS)
Queck, Ronald; Bernhofer, Christian; Bienert, Anne; Schlegel, Fabian
2016-09-01
Forest ecosystems play an important role in the interaction between the land surface and the atmosphere. Measurements and modelling efforts have revealed significant uncertainties in state-of-the-art flux assessments due to spatial inhomogeneities in the airflow and land surface. Here, a field experiment is used to describe the turbulent flow across a typical Central European forest clearing. A three-dimensional model of the inhomogeneous forest stand was developed using an innovative approach based on terrestrial laser-scanner technology. The comparison of the wind statistics of two measurement campaigns (5 and 12 months long) showed the spatial and temporal representativeness of the ultrasonic anemometer measurements within the canopy. An improved method for the correction of the vertical velocity enables the distinction between the instrumental offsets and the vertical winds due to the inclination of the instrument. Despite a 13 % fraction of deciduous plants within the otherwise evergreen canopy, the effects of phenological seasons on the velocity profiles were small. The data classified according to the wind speed revealed the intermittent nature of recirculating air in the clearing. Furthermore, the development of sub-canopy wind-speed maxima is explained by considering the velocity moments and the momentum equation (including measurements of the local pressure gradient). Clearings deflect the flow downward and feed the sub-canopy flow, i.e., advective fluxes, according to wind speed and, likely, clearing size, whereas local pressure gradients play an important role in the development of sub-canopy flow. The presented dataset is freely available at the project homepage.
A search for thermospheric composition perturbations due to vertical winds
NASA Astrophysics Data System (ADS)
Krynicki, Matthew P.
The thermosphere is generally in hydrostatic equilibrium, with winds blowing horizontally along stratified constant-pressure surfaces, driven by the dayside-to-nightside pressure gradient. A marked change in this paradigm resulted after Spencer et al. [1976] reported vertical wind measurements of 80 m·s-1 from analyses of AE-C satellite data. It is now established that the thermosphere routinely supports large-magnitude (˜30-150 m·s-1) vertical winds at auroral latitudes. These vertical winds represent significant departure from hydrostatic and diffusive equilibrium, altering locally---and potentially globally---the thermosphere's and ionosphere's composition, chemistry, thermodynamics and energy budget. Because of their localized nature, large-magnitude vertical wind effects are not entirely known. This thesis presents ground-based Fabry-Perot Spectrometer OI(630.0)-nm observations of upper-thermospheric vertical winds obtained at Inuvik, NT, Canada and Poker Flat, AK. The wind measurements are compared with vertical displacement estimates at ˜104 km2 horizontal spatial scales determined from a new modification to the electron transport code of Lummerzheim and Lilensten [1994] as applied to FUV-wavelength observations by POLAR spacecraft's Ultraviolet Imager [Torr et al. , 1995]. The modification, referred to as the column shift, simulates vertical wind effects such as neutral transport and disruption of diffusive equilibrium by vertically displacing the Hedin [1991] MSIS-90 [O2]/[N2] and [O]/([N2]+[O2]) mixing ratios and subsequently redistributing the O, O2, and N 2 densities used in the transport code. Column shift estimates are inferred from comparisons of UVI OI(135.6)-nm auroral observations to their corresponding modeled emission. The modeled OI(135.6)-nm brightness is determined from the modeled thermospheric response to electron precipitation and estimations of the energy flux and characteristic energy of the precipitation, which are inferred from UVI-observed Lyman-Birge-Hopfield N2 emissions in two wavelength ranges. Two-dimensional column shift maps identify the spatial morphology of thermospheric composition perturbations associated with auroral forms relative to the model thermosphere. Case-study examples and statistical analyses of the column shift data sets indicate that column shifts can be attributed to vertical winds. Unanticipated limitations associated with modeling of the OI(135.6)-nm auroral emission make absolute column shift estimates indeterminate. Insufficient knowledge of thermospheric air-parcel time histories hinders interpretations of point-to-point time series comparisons between column shifts and vertical winds.
NASA Technical Reports Server (NTRS)
Iraci, Laura T.
2016-01-01
The Alpha Jet Atmospheric eXperiment (AJAX) is a research project based at Moffett Field, CA, which collects airborne measurements of ozone, carbon dioxide, methane, water vapor, and formaldehyde, as well as 3-D winds, temperature, pressure, and location. Since its first science flight in 2011, AJAX has developed a wide a variety of mission types, combining vertical profiles (from approximately 8 km to near surface), boundary layer legs, and plume sampling as needed. With an ongoing five-year data set, the team has sampled over 160 vertical profiles, a dozen wildfires, and numerous stratospheric ozone intrusions. Our largest data collection includes 55 vertical profiles at Railroad Valley, NV, approximately 100 miles southwest of Great Basin National Park, and many of those flights include comparisons to surface monitors in the Nevada Rural Ozone Initiative network. We have also collected a smaller set of measurements northwest of Joshua Tree National Park, and are looking to develop partnerships that can put this data to use to assess or improve air quality in nearby Parks. AJAX also studies the plumes emitted by wildfires in California, as most emissions inventories are based on prescribed fires. We have sampled a dozen fires, and results will be presented from several, including the Rim (2013), Soberanes and Cedar (2016) Fires.
Physical Controls on Carbon Flux from a Temperate Lake During Autumn Cooling
NASA Astrophysics Data System (ADS)
Czikowsky, M. J.; Miller, S. D.; Tedford, E. W.; MacIntyre, S.
2011-12-01
Seasonally-stratified temperate lakes are a source of carbon dioxide to the atmosphere during autumn overturning as CO2 trapped below the thermocline becomes available to the surface for release to the atmosphere. We made continuous measurements of the vertical profile of pCO2 in a ~600 ha temperate lake (Lake Pleasant, maximum depth ~24 m) in southwestern Adirondack Park, New York from mid-September to mid-October 2010 from a moored pontoon boat. Continuous eddy covariance flux measurements of momentum, sensible and latent heat, and CO2 were made in situ, and the water column thermal structure was measured using thermistor chains. The spatial variability (horizontal and vertical) of pCO2 throughout the lake was characterized periodically using a roving profiling system. At the beginning of the study interval, pCO2 at the pontoon boat varied from 500 ppm at the surface to > 3000 ppm below the thermocline. The vertical profile of pCO2 changed markedly during the campaign due to the effects of wind forcing and evaporation (buoyancy), with nearly uniform, high pCO2 throughout the water column at the end of the campaign (Figure 1). The elevated surface water pCO2 increased CO2 emission to the atmosphere.
Propagation of gravity waves across the tropopause
NASA Astrophysics Data System (ADS)
Bense, Vera; Spichtinger, Peter
2015-04-01
The tropopause region is characterised by strong gradients in various atmospheric quantities that exhibit different properties in the troposphere compared to the stratosphere. The temperature lapse rate typically changes from negative to near-zero values resulting in a strong increase in stability. Accordingly, the buoyancy frequency often undergoes a jump at the tropopause. Analysis of radiosounding data also shows the existence of a strong inversion layer (tropopause inversion layer, TIL) characterised by a strong maximum in buoyancy frequency just above the tropopause, see e.g. Birner et al. (2002). Additionally, the magnitude of the vertical wind shear of the horizontal wind maximizes at the tropopause and the region also exhibits characteristical gradients of trace gases. Vertically propagating gravity waves can be excited in the troposphere by several mechanisms, e.g. by flow over topography (e.g. Durran, 1990), by jets and fronts (for a recent review: Plougonven and Zhang, 1990) or by convection (e.g. Clark et al., 1986). When these waves enter the tropopause region, their properties can be changed drastically by the changing stratification and strong wind shear. Within this work, the EULAG (Eulerian/semi-Lagrangian fluid solver, see e.g. Smolarkiewicz and Margolin, 1997) model is used to investigate the impact of the tropopause on vertically propagating gravity waves excited by flows over topography. The choice of topography (sine-shaped mountains, bell-shaped mountain) along with horizontal wind speed and tropospheric value of buoyancy frequency determine the spectrum of waves (horizontal and vertical wavelengths) that is excited in the tropsphere. In order to analyse how these spectra change for several topographies when a tropopause is present, we investigate different idealized cases in a two-dimensional domain. By varying the vertical profiles of buoyancy frequency (step-wise vs. continuos change, including TIL) and wind shear, the tropopause characteristics are changed and the impact on vertically propagating gravity waves, such as change in wavelength, partial reflection or wave trapping can be studied. References Birner, T., A. Doernbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142. Durran, D.R., 1990: Mountain Waves and Downslope Winds, Atmospheric Processes over Complex Terrain. Meteorological Monographs, Vol 23, No. 45 Plougonven, R. and F. Zhang, 2013: Gravity Waves From Atmospheric Jets and Fronts. Rev. Geophys. doi:10.1002/2012RG000419 Clark, T., T. Hauf, and J. Kuettner, 1986: Convectively forced internal gravity waves: results from two- dimensional numerical experiments, Q.J.R. Meteorol. Soc., 112, 899-925. Smolarkiewicz, P. and L. Margolin, 1997.: On forward-in-time differencing for fluids: an Eulerian/Semi- Lagrangian non-hydrostatic model for stratified flows, Atmos.-Ocean., 35, 127-152.
NASA Astrophysics Data System (ADS)
Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.
2017-12-01
The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.
Forecasting the Northern African Dust Outbreak Towards Europe in April 2011: A Model Intercomparison
NASA Technical Reports Server (NTRS)
Huneeus, N.; Basart, S.; Fiedler, S.; Morcrette, J.-J.; Benedetti, A.; Mulcahy, J.; Terradellas, E.; Pérez García-Pando, C.; Pejanovic, G.; Nickovic, S.
2016-01-01
In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 hours using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distribution was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. Our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.
NASA Astrophysics Data System (ADS)
Inclán, M. G.; Forkel, R.; Dlugi, R.; Stull, R. B.
1996-06-01
The new Forest-Land-Atmosphere ModEl called FLAME is presented. The first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993) is applied to study the interactions between a forested land-surface and the atmospheric boundary layer (ABL). The transilient scheme is used for unequal vertical grid spacing and includes the effects of drag, wake turbulence, and interference to vertical mixing by plant elements. Radiation transfer within the vegetation and the equations for the energy balance at the leaf surface have been taken from Norman (1979). Among others, the model predicts profiles of air temperature, humidity and wind velocity within the ABL, sensible and latent heat fluxes from the soil and the vegetation, the stomata and aerodynamic resistances, as well as profiles of temperature and water content in the soil. Preliminary studies carried out for a cloud free day and idealized initial conditions are presented. The canopy height is 30 m within a vertical domain of 3 km. The model is able to capture some of the effects usually observed within and above forested areas, including the relative wind speed maximum in the trunk space and the counter gradient-fluxes in the lower part of the plant stand. Of special interest is the determination of the location and magnitude of the turbulent mixing between model layers, which permits one to identify the effects of large eddies transporting momentum and scalar quantities into the canopy. A comparison between model simulations and field measurements will be presented in a future paper.
Planetary Wind Determination by Doppler Tracking of a Small Entry Probe Network
NASA Astrophysics Data System (ADS)
Atkinson, D. H.; Asmar, S.; Lazio, J.; Preston, R. A.
2017-12-01
To understand the origin and chemical/dynamical evolution of planetary atmospheres, measurements of atmospheric chemistries and processes including dynamics are needed. In situ measurements of planetary winds have been demonstrated on multiple occasions, including the Pioneer multiprobe and Venera missions to Venus, and the Galileo/Jupiter and Huygens/Titan probes. However, with the exception of Pioneer Venus, the retrieval of the zonal (east-west) wind profile has been limited to a single atmospheric slice. significantly improved understanding of the global dynamics requires sampling of multiple latitudes, times of day, and seasons. Simultaneous tracking of a small network of probes would enable measurements of spatially distributed winds providing a substantially improved characterization of a planet's global atmospheric circulation. Careful selection of descent locations would provide wind measurements at latitudes receiving different solar insolations, longitudes reflecting different times of day, and different seasons if both hemispheres are targeted. Doppler wind retrievals are limited by the stability of the probe and carrier spacecraft clocks, and must be equipped with an ultrastable oscillator, accelerometers for reconstructing the probe entry trajectory, and pressure / temperature sensors for determination of descent speed. A probe were equipped with both absolute and dynamic pressure sensors can measure planet center-relative and atmosphere-relative descent speeds, enabling the measurement of vertical winds from convection or atmospheric waves. Possible ambiguities arising from the assumption of no north-south winds could be removed if the probe were simultaneously tracked from the carrier spacecraft as well as from the Earth or a second spacecraft. The global circulation of an atmosphere comprising waves and flows that vary with location and depth is inherently tied to the thermal, chemical, and energy structure of the atmosphere. Wind measurements along a single vertical atmospheric slice cannot adequately represent the overall dynamical properties of the atmosphere. To more completely characterize the dynamical structure of a planetary atmosphere, it is proposed that future in situ planetary missions include a network of small probes dedicated to wind measurements.
NASA Astrophysics Data System (ADS)
Cavalié, T.; Billebaud, F.; Encrenaz, T.; Dobrijevic, M.; Brillet, J.; Forget, F.; Lellouch, E.
2008-10-01
Aims: We have recorded high spectral resolution spectra and derived precise atmospheric temperature profiles and wind velocities in the atmosphere of Mars. We have compared observations of the planetary mean thermal profile and mesospheric wind velocities on the disk, obtained with our millimetric observations of CO rotational lines, to predictions from the Laboratoire de Météorologie Dynamique (LMD) Mars General Circulation Model, as provided through the Mars Climate Database (MCD) numerical tool. Methods: We observed the atmosphere of Mars at CO(1-0) and CO(2-1) wavelengths with the IRAM 30-m antenna in June 2001 and November 2005. We retrieved the mean thermal profile of the planet from high and low spectral resolution data with an inversion method detailed here. High spectral resolution spectra were used to derive mesospheric wind velocities on the planetary disk. We also report here the use of 13CO(2-1) line core shifts to measure wind velocities at 40 km. Results: Neither the Mars Year 24 (MY24) nor the Dust Storm scenario from the Mars Climate Database (MCD) provides satisfactory fits to the 2001 and 2005 data when retrieving the thermal profiles. The Warm scenario only provides good fits for altitudes lower than 30 km. The atmosphere is warmer than predicted up to 60 km and then becomes colder. Dust loading could be the reason for this mismatch. The MCD MY24 scenario predicts a thermal inversion layer between 40 and 60 km, which is not retrieved from the high spectral resolution data. Our results are generally in agreement with other observations from 10 to 40 km in altitude, but our results obtained from the high spectral resolution spectra differ in the 40-70 km layer, where the instruments are the most sensitive. The wind velocities we retrieve from our 12CO observations confirm MCD predictions for 2001 and 2005. Velocities obtained from 13CO observations are consistent with MCD predictions in 2001, but are lower than predicted in 2005.
NASA Astrophysics Data System (ADS)
Li, P.; Turk, J.; Vu, Q.; Knosp, B.; Hristova-Veleva, S. M.; Lambrigtsen, B.; Poulsen, W. L.; Licata, S.
2009-12-01
NASA is planning a new field experiment, the Genesis and Rapid Intensification Processes (GRIP), in the summer of 2010 to better understand how tropical storms form and develop into major hurricanes. The DC-8 aircraft and the Global Hawk Unmanned Airborne System (UAS) will be deployed loaded with instruments for measurements including lightning, temperature, 3D wind, precipitation, liquid and ice water contents, aerosol and cloud profiles. During the field campaign, both the spaceborne and the airborne observations will be collected in real-time and integrated with the hurricane forecast models. This observation-model integration will help the campaign achieve its science goals by allowing team members to effectively plan the mission with current forecasts. To support the GRIP experiment, JPL developed a website for interactive visualization of all related remote-sensing observations in the GRIP’s geographical domain using the new Google Earth API. All the observations are collected in near real-time (NRT) with 2 to 5 hour latency. The observations include a 1KM blended Sea Surface Temperature (SST) map from GHRSST L2P products; 6-hour composite images of GOES IR; stability indices, temperature and vapor profiles from AIRS and AMSU-B; microwave brightness temperature and rain index maps from AMSR-E, SSMI and TRMM-TMI; ocean surface wind vectors, vorticity and divergence of the wind from QuikSCAT; the 3D precipitation structure from TRMM-PR and vertical profiles of cloud and precipitation from CloudSAT. All the NRT observations are collected from the data centers and science facilities at NASA and NOAA, subsetted, re-projected, and composited into hourly or daily data products depending on the frequency of the observation. The data products are then displayed on the 3D Google Earth plug-in at the JPL Tropical Cyclone Information System (TCIS) website. The data products offered by the TCIS in the Google Earth display include image overlays, wind vectors, clickable placemarks with vertical profiles for temperature and water vapors and curtain plots along the satellite tracks. Multiple products can be overlaid with individual adjustable opacity control. The time sequence visualization is supported by calendar and Google Earth time animation. The work described here was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Can small zooplankton enhance turbulence in a lake during vertical migration?
NASA Astrophysics Data System (ADS)
Wain, D.; Simoncelli, S.; Thackeray, S.
2016-02-01
Recent research in both oceanic and freshwater systems suggests that the Diel Vertical Migration (DVM), a predator-avoidance mechanism adopted by many zooplankton, may be an underrepresented source of turbulence and mixing. In particular, the migration can play a crucial role when organisms cross the thermocline; this could be particularly important in enhancing the mixing in lakes, where the pelagic zone is often quiescent, with a consequent impact on lake ecosystem functioning. A field experiment was performed to directly measure the temperature fluctuations and kinetic energy dissipation rate generated by DVM of Daphnia spp., a 1 mm crustacean zooplankton genus. Profiles of turbulence were acquired with a temperature microstructure profiler in Vobster Quay (UK), a small quarry with small wind fetch, steep sides, and with a maximum depth of approximately 25 m. Sixteen profiles were measured over the course of two hours during sunset on 16 July 2015, during which there was no wind. Backscatter strength from bottom-mounted ADCP was used as a proxy to assess DVM. Zooplankton vertical distribution was also quantified by sampling with a 100 μm mesh net before and after the turbulence profiling in 8 layers to verify the distribution of Daphnia spp. before and after the migration. Zooplankton tows show higher abundance (450 ind./L) of Daphnia at 9m and near the bottom before sunset (8PM). Samples after dusk (11.20PM) showed an increase in the surface layer, from 0 up to 250 ind./L. However, migration also appears to happen horizontally. Ensemble-averaged profiles show a great variation of the dissipation rates over the course of the time series with a peak of 10-7 W/kg between 6m and 12m where the DVM is happening and with respect to profiles before sunset. Given the uncertainty in measuring the length scales of turbulence associated with small zooplankton, further analysis is required to determine if the observed turbulence during the time of migration was due the migration or due to other causes, such as the onset of penetrative convection associated with night-time cooling. Three further datasets were collected during sunset in August and September 2015 and will be used to determine if turbulence is always present during the migrations.
WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite
NASA Technical Reports Server (NTRS)
Shepherd, G. G.; Thuillier, G.; Gault, W. A.; Solheim, B. H.; Hersom, C.; Alunni, J. M.; Brun, J.-F.; Brune, S.; Charlot, P.; Cogger, L. L.
1993-01-01
The WIND imaging interferometer (WINDII) was launched on the Upper Atmosphere Research Satellite (UARS) on September 12, 1991. This joint project, sponsored by the Canadian Space Agency and the French Centre National d'Etudes Spatiales, in collaboration with NASA, has the responsibility of measuring the global wind pattern at the top of the altitude range covered by UARS. WINDII measures wind, temperature, and emission rate over the altitude range 80 to 300 km by using the visible region airglow emission from these altitudes as a target and employing optical Doppler interferometry to measure the small wavelength shifts of the narrow atomic and molecular airglow emission lines induced by the bulk velocity of the atmosphere carrying the emitting species. The instrument used is an all-glass field-widened achromatically and thermally compensated phase-stepping Michelson interferometer, along with a bare CCD detector that images the airglow limb through the interferometer. A sequence of phase-stepped images is processed to derive the wind velocity for two orthogonal view directions, yielding the vector horizontal wind. The process of data analysis, including the inversion of apparent quantities to vertical profiles, is described.
BOREAS AFM-06 Mean Temperature Profile Data
NASA Technical Reports Server (NTRS)
Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Air Pollutant Distribution and Mesoscale Circulation Systems During Escompte
NASA Astrophysics Data System (ADS)
Kottmeier, Ch.; Kalthoff, N.; Corsmeier, U.; Robin, D.; Thürauf, J.; Hofherr, T.; Hasel, M.
The distribution of pollutants observed with an Dornier 128 instrumented aircraft and from AIRMARAIX ground stations during one day of the Escompte experiment (June 25, 2001) is analysed in relation to the mesoscale wind systems and vertical mixing from aircraft and radiosonde data. The ESCOMPTE-experiment (http://medias.obs- mip.fr/escompte) was carried out in June and July 2001 in the urban area of Marseille and its rural surroundings to investigate periods with photosmog conditions. The over- all aim is to produce an appropriate high quality 3-D data set which includes emission, meteorological, and chemical data. The data is used for the validation of mesoscale models and for chemical and meteorological process studies. The evolution of pho- tosmog episodes with high ozone concentrations depends on both chemical transfor- mation processes and meteorological conditions. As Marseille is situated between the Mediterranean Sea in the south and mountainous sites in the north, under weak large- scale flow the meteorological conditions are dominated by thermally driven circula- tion systems which strongly influence the horizontal transport of air pollutants. Ad- ditionally, vertically exchange processes like mountain venting and slope winds may contribute in the temporal evolution of the trace gas concentration of the city plume in the atmospheric boundary layer and are particularly studied by the Dornier flight measurements. Therefore the experiment was designed to measure both, the chemi- cal species and meteorological parameters with high resolution in space and time by surface stations, aircraft and vertical profiling systems like radiosondes, sodars and lidars. Results are shown (a) on the evolution of the wind field and the ozone concen- trations during June 25, when an ozone maximum develops about 60 km in the lee site of Marseille and (b) the vertical transport of air pollutants between the boundary layer and the free troposphere.
NASA Technical Reports Server (NTRS)
Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott
2006-01-01
Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical resolution and less than 2 meters per second velocity accuracy. The instrument design, technologies and predicted performance will be presented.
NASA Astrophysics Data System (ADS)
Son, Y. T.; Chang, K. I.; Nam, S.; Kang, D. J.
2016-02-01
Coastal monitoring buoy (called it as ESROB) has been continually operated to monitor meteorological (wind, air temperature, air pressure, PAR) and oceanic properties (temperature, salinity, current, chlorophyll fluorescence, DO, turbidity) using equipment such as CTD, fluorometer and WQM (Water Quality Monitor) in the eastern coastal region of Korea (the East/Japan Sea) since April 2011. The ESROB produced temporal evolution of physical and biogeochemical parameters of the water column with high resolution of 10 min interval. In order to understand horizontal influence of physical and biogeochemical parameters on variation of subsurface chlorophyll maximum layer (SCM), interdisciplinary in-situ surveys with small R/V in the study area for about week were conducted in June/October 2014 and in May 2015. A wirewalker, a wave-driven vertically profiling platform (Rainville and Pinkel 2001), was also deployed at two points (about 30 m and 80 m water depth) along cross-shore direction with the ESROB for about one or two weeks with in-situ survey durations. The wirewalker was equipped with CTD, turbidity and chlorophyll a fluorometer profiler, which was completed approximately every 3 10 minute depending on sea surface state. The SCM was observed in almost every deployment nearest coast, except for June in 2014, with variation of semi- and diurnal time periods. Temporal evolution of the wirewalker showed that disappearance and reoccurrence of the SCM within the water column in October 2014, which was associated with vertical mixing induced by strong wind stress. Low salinity plume in the surface layer and shoaling of bottom cold water were concurrently observed after homogeneous water column, affecting another condition to the vertical distribution of chlorophyll a in this coastal region. Moreover in-situ observation with densely points and temporal interval for 1 day revealed that distribution with high concentration of chlorophyll a on isopycnal was association with the horizontal local circulation that has influence on stability (vertical stratification and shear) of the water column. Optical and biogeochemical parameter analyzed from the water samples, affecting on the variation of chlorophyll a concentration within the water column, will be also discussed in the presentation of Ocean Science Meeting.
NASA Astrophysics Data System (ADS)
Wilms, H.; Rapp, M.; Kirsch, A.
2016-12-01
The comparison of microphysical simulations of polar mesospheric cloud properties with ground based and satellite borne observations suggests that vertical wind variance imposed by gravity waves is an important prerequisite to realistically model PMC properties. This paper reviews the available observational evidence of vertical wind measurements at the polar summer mesopause (including their frequency content). Corresponding results are compared to vertical wind variance from several global models and implications for the transport of trace constituents in this altitude region are discussed.
Wind Measurements from Arc Scans with Doppler Wind Lidar
Wang, H.; Barthelmie, R. J.; Clifton, Andy; ...
2015-11-25
When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less
NASA Astrophysics Data System (ADS)
Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.; Gonzalez, J.
2015-12-01
The atmospheric boundary remains one of the more difficult components of the climate system to classify. One of the most important characteristics is the boundary layer height, especially in urban settings. The current study examines the boundary layer height using the the New York City Meteorological Network or NYCMetNet. NYCMetNet is a network of weather stations, which report meteorological conditions in and around New York City, as part of the Optical Remote Sensing Laboratory of The City College of New York (ORSL). Of interest to this study is the data obtained from wind profiler station LSC01. The 915 MHz wind profiler is located 30m above the ground on the roof of the Liberty Science Center in Jersey City, NJ. It is a Vaisala Wind Profiler LAP 3000 with a wavelength of ~34cm, which means that the instrument responds primarily to Bragg backscattering. Can a seasonal urban boundary layer climatology be extrapolated from the data obtained from the wind profiler? What is the timing of boundary layer evolution and collapse over Jersey City? How effective is the profiler under cloudy skies and even in light rain or snow? This study examines the entire time period covered by the wind profile (2007 to present) and selects a series of clear days and a series of cloudy days. The top of the urban boundary layer is subjectively located from each half hour time stamp of signal to noise values. The urban boundary layer heights are recorded for clear and then cloudy days. Then the days are sorted seasonally (DJF, MAM, JJA, SON). A seasonal mean is calculated for every half hour time step. Finally a time series of seasonal urban boundary layer heights is constructed, and the timing of the urban boundary layer height maximum and time evolution and collapse of the boundary layer are generalized. A comparison is made against urban boundary layer heights obtained from Modern-Era Retrospective Analysis For Research And Applications (MERRA).
Minimum Altitude-Loss Soaring in a Specified Vertical Wind Distribution
NASA Technical Reports Server (NTRS)
Pierson, B. L.; Chen, I.
1979-01-01
Minimum altitude-loss flight of a sailplane through a given vertical wind distribution is discussed. The problem is posed as an optimal control problem, and several numerical solutions are obtained for a sinusoidal wind distribution.
NASA Technical Reports Server (NTRS)
Menzies, Robert T.; Cardell, Greg; Chiao, Meng; Esproles, Carlos; Forouhar, Siamak; Hemmati, Hamid; Tratt, David
1999-01-01
We have developed a compact Doppler lidar concept which utilizes recent developments in semiconductor diode laser technology in order to be considered suitable for wind and dust opacity profiling in the Mars lower atmosphere from a surface location. The current understanding of the Mars global climate and meteorology is very limited, with only sparse, near-surface data available from the Viking and Mars Pathfinder landers, supplemented by long-range remote sensing of the Martian atmosphere. The in situ measurements from a lander-based Doppler lidar would provide a unique dataset particularly for the boundary layer. The coupling of the radiative properties of the lower atmosphere with the dynamics involves the radiative absorption and scattering effects of the wind-driven dust. Variability in solar irradiance, on diurnal and seasonal time scales, drives vertical mixing and PBL (planetary boundary layer) thickness. The lidar data will also contribute to an understanding of the impact of wind-driven dust on lander and rover operations and lifetime through an improvement in our understanding of Mars climatology. In this paper we discuss the Mars lidar concept, and the development of a laboratory prototype for performance studies, using, local boundary layer and topographic target measurements.
NASA Technical Reports Server (NTRS)
Nastrom, G. D.; Belmont, A. D.
1975-01-01
The diurnal component in meridional wind was observed for each season at twelve rocket stations. Amplitudes and phases are presented as a function of height-latitude or as vertical profiles. Many of the gross features of the tide persist throughout the year, but as they migrate in height and latitude the amplitude or phase at a given location may undergo large changes with season. Longitudinal variations in the diurnal tide are found in the mid-stratosphere, and it is suggested they are coupled with longitudinal variations in the tropospheric temperature structure.
Wang, Zhangjun; Liu, Zhishen; Liu, Liping; Wu, Songhua; Liu, Bingyi; Li, Zhigang; Chu, Xinzhao
2010-12-20
An incoherent Doppler wind lidar based on iodine edge filters has been developed at the Ocean University of China for remote measurements of atmospheric wind fields. The lidar is compact enough to fit in a minivan for mobile deployment. With its sophisticated and user-friendly data acquisition and analysis system (DAAS), this lidar has made a variety of line-of-sight (LOS) wind measurements in different operational modes. Through carefully developed data retrieval procedures, various wind products are provided by the lidar, including wind profile, LOS wind velocities in plan position indicator (PPI) and range height indicator (RHI) modes, and sea surface wind. Data are processed and displayed in real time, and continuous wind measurements have been demonstrated for as many as 16 days. Full-azimuth-scanned wind measurements in PPI mode and full-elevation-scanned wind measurements in RHI mode have been achieved with this lidar. The detection range of LOS wind velocity PPI and RHI reaches 8-10 km at night and 6-8 km during daytime with range resolution of 10 m and temporal resolution of 3 min. In this paper, we introduce the DAAS architecture and describe the data retrieval methods for various operation modes. We present the measurement procedures and results of LOS wind velocities in PPI and RHI scans along with wind profiles obtained by Doppler beam swing. The sea surface wind measured for the sailing competition during the 2008 Beijing Olympics is also presented. The precision and accuracy of wind measurements are estimated through analysis of the random errors associated with photon noise and the systematic errors introduced by the assumptions made in data retrieval. The three assumptions of horizontal homogeneity of atmosphere, close-to-zero vertical wind, and uniform sensitivity are made in order to experimentally determine the zero wind ratio and the measurement sensitivity, which are important factors in LOS wind retrieval. Deviations may occur under certain meteorological conditions, leading to bias in these situations. Based on the error analyses and measurement results, we point out the application ranges of this Doppler lidar and propose several paths for future improvement.
Mesoscale Features and Cloud Organization on 10-12 December 1978 over the South China Sea.
NASA Astrophysics Data System (ADS)
Warner, Charles
1982-07-01
Aircraft data from Winter MONEX have been combined with other data to study mesoscale features, and organization of cumulus clouds, on 10-12 December 1978. A moderate cold surge in the northeasterly monsoon flow, toward cloudiness in an equatorial trough off Borneo, peaked on 11 December.Clouds in the northeasterly monsoon flow were similar to those in the trades, with variations in convective regime on length scales on the order of 100 km. Marked mid-tropospheric subsidence was accompanied by low-level divergence near 20°N. During 10 December, anvil clouds near Borneo expanded; cumulus congestus and cumulonimbus formed on the periphery of this area. The approach of the low-level northeasterlies to the area of anvils was marked by a diminution of subsidence, conditional instability, and a weak field of low-level convergence, with randomly organized cumulus of increasing height. A low-level easterly jet was found in this transition zone, downstream from cloudiness over the Philippines. South of Vietnam, a clear area was associated with low air temperatures, and not subsidence. Congestus and cumulonimbus clouds formed near the eastern coast of the Malay Peninsula.Cloud streets were seen from latitude 19°N to the Malaysian coast (with a break south of Vietnam). These clouds were confined below the level of an inflection point in the profile of winds normal to the street direction. Greatest spacings of streets occurred with greatest vertical shears of the cross-winds. Cloud number densities were more closely related to the instability of the vertical stratification than to any other parameter.Cross-wind organization of clouds occurred in circumstances of unstable, stratification and apparently of net ascent. Alignment of clouds was at an angle to the directions of both winds and vertical wind shears. It is inferred that when convergence was strong, deep clouds occurred along lines of convergence in the surface streamlines.
A Semi-Analytical Model for Dispersion Modelling Studies in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Gupta, A.; Sharan, M.
2017-12-01
The severe impact of harmful air pollutants has always been a cause of concern for a wide variety of air quality analysis. The analytical models based on the solution of the advection-diffusion equation have been the first and remain the convenient way for modeling air pollutant dispersion as it is easy to handle the dispersion parameters and related physics in it. A mathematical model describing the crosswind integrated concentration is presented. The analytical solution to the resulting advection-diffusion equation is limited to a constant and simple profiles of eddy diffusivity and wind speed. In practice, the wind speed depends on the vertical height above the ground and eddy diffusivity profiles on the downwind distance from the source as well as the vertical height. In the present model, a method of eigen-function expansion is used to solve the resulting partial differential equation with the appropriate boundary conditions. This leads to a system of first order ordinary differential equations with a coefficient matrix depending on the downwind distance. The solution of this system, in general, can be expressed in terms of Peano-baker series which is not easy to compute, particularly when the coefficient matrix becomes non-commutative (Martin et al., 1967). An approach based on Taylor's series expansion is introduced to find the numerical solution of first order system. The method is applied to various profiles of wind speed and eddy diffusivities. The solution computed from the proposed methodology is found to be efficient and accurate in comparison to those available in the literature. The performance of the model is evaluated with the diffusion datasets from Copenhagen (Gryning et al., 1987) and Hanford (Doran et al., 1985). In addition, the proposed method is used to deduce three dimensional concentrations by considering the Gaussian distribution in crosswind direction, which is also evaluated with diffusion data corresponding to a continuous point source.
Aerosol Backscatter Profiles at 10.59 and 9.25 Micrometers near Mauna Loa, Hawaii, 1988
NASA Astrophysics Data System (ADS)
Post, Madison J.
1989-12-01
The NOAA Doppler lidar trailer was transported from Boulder, Colorado, to the 3.231km level of Hawaii's Mauna Loa volcano (lat. 19.55°N, long. 155.56°W) in No-vember 1988 to participate in the NASA-sponsored Mauna Loa Backscatter Intercomparison Experiment (MABIE) for 1988. Our purpose was multifold. Among the aerosol studies our goals were to gather a statistically meaningful set of vertical backscatter pro-files at two wavelengths in the clean Pacific environment, to compare data from several microphysical sensors located at the GMCC observatory 3 km away, to assess the representativeness of the ground-based GMCC samplers with respect to the air mass over-head, and to understand the depth of the upslope and downslope flows that have historically affected the GMCC samplers. We were highly successful on all counts, having gathered 243 vertical profiles at 10.59 gm, 49 profiles at 9.25 vim, 278 GMCC intercom-parisons, and 404 wind profiles and cross sections. Our data-gathering period extended over 24 days through December 11. We calibrated the system on seven different days, usually at both wavelengths, to insure accuracy in our results. We also acquired data close in time to nearby SAGE 11. sampling, and twice took data simultaneously with GMCC's ruby lidar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Bonin, Timothy A.; Klein, Petra M.
Several factors cause lidars to measure different values of turbulence than an anemometer on a tower, including volume averaging, instrument noise, and the use of a scanning circle to estimate the wind field. One way to avoid the use of a scanning circle is to deploy multiple scanning lidars and point them toward the same volume in space to collect velocity measurements and extract high-resolution turbulence information. This paper explores the use of two multi-lidar scanning strategies, the tri-Doppler technique and the virtual tower technique, for measuring 3-D turbulence. In Summer 2013, a vertically profiling Leosphere WindCube lidar and threemore » Halo Photonics Streamline lidars were operated at the Southern Great Plains Atmospheric Radiation Measurement site to test these multi-lidar scanning strategies. During the first half of the field campaign, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every second. Next, all three scanning lidars were used to build a “virtual tower” above the WindCube lidar. Results indicate that the tri-Doppler technique measures higher values of horizontal turbulence than the WindCube lidar under stable atmospheric conditions, reduces variance contamination under unstable conditions, and can measure highresolution profiles of mean wind speed and direction. The virtual tower technique provides adequate turbulence information under stable conditions but cannot capture the full temporal variability of turbulence experienced under unstable conditions because of the time needed to readjust the scans.« less
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1990-01-01
Wind tunnel tests were conducted on monoplanar circular missile configurations with low-profile quadriform tail fins to provide an aerodynamic data base to study and evaluate air-launched missile candidates for efficient conformal carriage on supersonic-cruise-type aircraft. The tests were conducted at Mach numbers from 1.70 to 2.86 for a constant Reynolds number per foot of 2,000,000. Selected test results are presented to show the effects of tail-fin dihedral angle, wing longitudinal and vertical location, and nose-body strakes on the static longitudinal and lateral-directional aerodynamic stability and control characteristics.
NASA Astrophysics Data System (ADS)
Gupta, T.; Baidya Roy, S.; Miller, L.
2017-12-01
With rapid increase in the installed wind capacity around the globe, it is important and interesting to understand the processes involved in wind farm-atmospheric boundary layer interactions. A wind turbine extracts energy from the mean flow and converts it into electrical energy, thereby reducing the mean kinetic energy available. The corresponding reduction in momentum triggers vertical mixing that transports high-momentum air from aloft to the wind turbine layer thereby replenishing the lost momentum, at least partially. This study investigates the phenomenon of vertical replenishment and quantifies its contribution in the momentum recovery as a function of various factors including installed capacity (MW/km2), depth of the wind farm (km) and climatology of the area. Numerical experiments are conducted using the WRF mesoscale model to simulate wind turbine-boundary layer interactions in a hypothetical large off-shore wind farm located deep in the Arabian Sea off the western coast of India. WRF is equipped with a wind turbine parameterization and is capable of simulating both the momentum reduction and vertical replenishment phenomena. It is found that the downward turbulent flux is able to replenish about 66% of momentum lost because of wind turbines. Additionally, the feedback leads to an average increase of 1.5% in generated power capacity in the wind farm. These results indicate that when the momentum deficit occurs, the vertical replenishment in form of turbulent flux tries to dampen the momentum loss, hence, acting as a negative feedback in the wind farm.
Funk, Christopher C.; Michaelsen, Joel C.
2004-01-01
An extension of Sinclair's diagnostic model of orographic precipitation (“VDEL”) is developed for use in data-poor regions to enhance rainfall estimates. This extension (VDELB) combines a 2D linearized internal gravity wave calculation with the dot product of the terrain gradient and surface wind to approximate terrain-induced vertical velocity profiles. Slope, wind speed, and stability determine the velocity profile, with either sinusoidal or vertically decaying (evanescent) solutions possible. These velocity profiles replace the parameterized functions in the original VDEL, creating VDELB, a diagnostic accounting for buoyancy effects. A further extension (VDELB*) uses an on/off constraint derived from reanalysis precipitation fields. A validation study over 365 days in the Pacific Northwest suggests that VDELB* can best capture seasonal and geographic variations. A new statistical data-fusion technique is presented and is used to combine VDELB*, reanalysis, and satellite rainfall estimates in southern Africa. The technique, matched filter regression (MFR), sets the variance of the predictors equal to their squared correlation with observed gauge data and predicts rainfall based on the first principal component of the combined data. In the test presented here, mean absolute errors from the MFR technique were 35% lower than the satellite estimates alone. VDELB assumes a linear solution to the wave equations and a Boussinesq atmosphere, and it may give unrealistic responses under extreme conditions. Nonetheless, the results presented here suggest that diagnostic models, driven by reanalysis data, can be used to improve satellite rainfall estimates in data-sparse regions.
Into Turbulent Air: Hummingbird Aerodynamic Control in Unsteady Circumstances
2016-06-24
costs of flight. We have also completed studies of hummingbird hovering flight within a vertical wind tunnel to enable study of the vortex ring state...vertical wind tunnel to enable study of the vortex ring state, a well-known problem in helicopter descent. This work evaluated both ascending and...wakes. DISTRIBUTION A: Distribution approved for public release. Our work with hummingbirds hovering in a vertical wind tunnel has enabled
Tropospheric Wind Profile Measurements with a Direct Detection Doppler Lidar
NASA Technical Reports Server (NTRS)
Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Chen, Huailin; Mathur, Savyasachee
1998-01-01
Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. In this paper we describe a recently developed prototype wind lidar system using a direct detection Doppler technique for measuring wind profiles from the surface through the troposphere. This system uses a pulsed ND:YAG laser operating at 1064 nm as the transmitter. The laser pulse is directed to the atmosphere using a 40 cm diameter scan mirror. The portion of the laser energy backscattered from aerosols and molecules is collected by a 40 cm diameter telescope and coupled via fiber optics into the Doppler receiver. Single photon counting APD's are used to detect the atmospheric backscattered signal. The principle element of the receiver is a dual bandpass tunable Fabry Perot etalon which analyzes the Doppler shift of the incoming laser signal using the double edge technique. The double edge technique uses two high resolution optical filters having bandpasses offset relative to one another such that the 'edge' of the first filter's transmission function crosses that of the second at the half power point. The outgoing laser frequency is located approximately at the crossover point. Due to the opposite going slopes of the edges, a Doppler shift in the atmospheric backscattered laser frequency produces a positive change in signal for one filter and a negative change in the second filter. Taking the ratio of the two edge channel signals yields a result which is directly proportional to the component of the wind along the line-of-sight of the laser. Measuring the radial wind in several directions provides sufficient information to determine the true wind speed and direction. The lidar has operated from our laboratory at Goddard since June, 1997. Wind profiles have been obtained to altitudes of 12 km with a vertical resolution of 330 in. Vector wind data are obtained by rotating the scan mirror to measure line-of-sight wind profiles for at least two azimuth angles at an elevation angle of 45 degrees. The precision of the data as determined from the standard deviation of multiple independent lidar profiles is in the range of 1 to 3 m/sec up to 10 km. Good agreement is obtained when the lidar data are compared with the upper air rawinsonde soundings taken at Dulles airport. Examples of the wind lidar data will be presented along with a description of the instrument and future developments.
NASA Astrophysics Data System (ADS)
Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.
2016-04-01
The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night with weak wind. In the same night temperature gradients up to 30 K m-1 were determined above the meadow. The water was up to 13 K warmer than the air in this night resulting in a sharp and strong temperature decrease at the water surface and a moderate decrease with gradients up to -9 K m-1 in the air above. The plexiglass rings caused some obvious artefacts and affected data was removed and replaced by linear interpolation. According to the uncertainty estimation performed to date, conduction between fabric and fiber increased fiber temperatures by approximately 0.005 K at 2 m height on a sunny day with weak wind. This effect was deemed negligible as it reflected less than 1 % of the total heating compared to that in the air. The maximum absolute error was approximately 0.9 K at 2 m height on the same day. Ongoing work will demonstrate potential benefits of the enhanced-resolution profiles by quantitatively comparing measured and interpolated temperature profiles with varying resolution (as well as sensible heat fluxes computed according to flux-gradient-similarity).
NASA Astrophysics Data System (ADS)
Ney, Patrizia; Graf, Alexander
2018-03-01
We present a portable elevator-based facility for measuring CO2, water vapour, temperature and wind-speed profiles between the soil surface and the atmospheric surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile range (in our case, approximately 2 m) while concentrations are logged at a frequency of 20 s^{-1}. Using campaign measurements in winter wheat, winter barley and a catch crop mixture (spring 2015 to autumn 2016) during different stages of crop development and different times of the day, we demonstrate a simple approach to correct for time lags, and the resulting profiles of 30-min mean mole fractions of CO2 and H2O over height increments of 0.025 m. The profiles clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the diurnal cycle and during the growing season. Profiles of temperature and wind speed are based on a ventilated finewire thermocouple and a hot-wire anemometer, respectively. Measurements over bare soil and a short plant canopy were analyzed in the framework of Monin-Obukhov similarity theory to check the validity of the measurements and raw-data-processing approach. Derived fluxes of CO2, latent and sensible heat and momentum show good agreement with eddy-covariance measurements.
NASA Astrophysics Data System (ADS)
Hardesty, R. Michael; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann M.; Shepson, Paul B.; Cambaliza, Maria; Heimburger, Alexie; Davis, Kenneth J.; Lauvaux, Thomas; Miles, Natasha L.; Sarmiento, Daniel P.; Deng, A. J.; Gaudet, Brian; Karion, Anna; Sweeney, Colm; Whetstone, James
2016-06-01
A compact commercial Doppler lidar has been deployed in Indianapolis for two years to measure wind profiles and mixing layer properties as part of project to improve greenhouse measurements from large area sources. The lidar uses vertical velocity variance and aerosol structure to measure mixing layer depth. Comparisons with aircraft and the NOAA HRDL lidar generally indicate good performance, although sensitivity might be an issue under low aerosol conditions.
NASA Astrophysics Data System (ADS)
Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.
2006-07-01
The infrared spectrometry of Venus in the range 6-45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55-100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75-85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55-100 km and aerosol at altitudes 55-70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9-45 μm and a spectral resolution of 1.8 cm-1. It will allow one to sound the middle atmosphere (55-100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.
A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian
2016-09-01
Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.
Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer
NASA Astrophysics Data System (ADS)
Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles
2012-11-01
For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).
Wood, Tamara M.; Gartner, Jeffrey W.
2010-01-01
Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.
Cloudsat tropical cyclone database
NASA Astrophysics Data System (ADS)
Tourville, Natalie D.
CloudSat (CS), the first 94 GHz spaceborne cloud profiling radar (CPR), launched in 2006 to study the vertical distribution of clouds. Not only are CS observations revealing inner vertical cloud details of water and ice globally but CS overpasses of tropical cyclones (TC's) are providing a new and exciting opportunity to study the vertical structure of these storm systems. CS TC observations are providing first time vertical views of TC's and demonstrate a unique way to observe TC structure remotely from space. Since December 2009, CS has intersected every globally named TC (within 1000 km of storm center) for a total of 5,278 unique overpasses of tropical systems (disturbance, tropical depression, tropical storm and hurricane/typhoon/cyclone (HTC)). In conjunction with the Naval Research Laboratory (NRL), each CS TC overpass is processed into a data file containing observational data from the afternoon constellation of satellites (A-TRAIN), Navy's Operational Global Atmospheric Prediction System Model (NOGAPS), European Center for Medium range Weather Forecasting (ECMWF) model and best track storm data. This study will describe the components and statistics of the CS TC database, present case studies of CS TC overpasses with complementary A-TRAIN observations and compare average reflectivity stratifications of TC's across different atmospheric regimes (wind shear, SST, latitude, maximum wind speed and basin). Average reflectivity stratifications reveal that characteristics in each basin vary from year to year and are dependent upon eye overpasses of HTC strength storms and ENSO phase. West Pacific (WPAC) basin storms are generally larger in size (horizontally and vertically) and have greater values of reflectivity at a predefined height than all other basins. Storm structure at higher latitudes expands horizontally. Higher vertical wind shear (≥ 9.5 m/s) reduces cloud top height (CTH) and the intensity of precipitation cores, especially in HTC strength storms. Average zero and ten dBZ height thresholds confirm WPAC storms loft precipitation sized particles higher into the atmosphere than in other basins. Two CS eye overpasses (32 hours apart) of a weakening Typhoon Nida in 2009 reveal the collapse of precipitation cores, warm core anomaly and upper tropospheric ice water content (IWC) under steady moderate shear conditions.
NASA Astrophysics Data System (ADS)
Mahmud, A.; Di, P.; Mims, D.; Avise, J.; DaMassa, J.; Kaduwela, A. P.
2015-12-01
The California Air Resources Board (CARB) has been monitoring boundary layer ozone at the Walnut Grove Tower (WGT) since 1996 for investigating regional transport and vertical profile. Walnut Grove is located between Sacramento and Stockton, CA in the Sacramento - San Joaquin Delta. Sampling inlets are positioned at 30-ft, 400-ft, 800-ft, 1200-ft and 1600-ft levels of the 2000-ft tower, which is one of the tallest monitoring towers in the Western US. Ozone, ambient temperature, wind speed, and wind direction are simultaneously measured at each level, and reported as hourly averages. The current study included analyses of available ozone and corresponding meteorological data for the months of June - September from 1996 - 2014 with objectives to: 1) explore trends and inter-annual variability of ozone, 2) examine any correlations between ozone and meteorological parameters, 3) understand interactions of ozone measured at various levels, and 4) assess how well a regulatory state-of-the-science air quality model such as the Community Multi-scale Air Quality Model (CMAQ) captures observation. Daily 1-hr maximum ozone has been consistently decreasing during the 1996 - 2014 period at a rate of ~1 ppb per year. This indicates that CARB's measures to control ambient ozone have been effective over the past years. Evolution of the vertical profile throughout the day shows that ozone is fairly homogeneously mixed between 1 - 5 pm, when mixing height typically reaches the maximum. Ozone at 30-ft shows the greatest variability because of its proximity to the ground and emissions sources - rises faster during morning hours (7 - 10 am) and declines more rapidly during evening hours (7 - 10 pm) compared to other levels. Air masses reaching the tower are predominantly southwesterly (247 - 257 deg.) at the bottom, and southwesterly to slightly northwesterly (254 - 302 deg.) at top levels. Daily 1-hr maximum ozone was negatively correlated with wind speed (i.e. ozone was high under low wind condition) and positively correlated with ambient temperature (i.e. ozone was high under high temperature condition) during ~40% and ~50% of the time, respectively. A modeling exercise for Jun - Sep of 2012 shows that CMAQ captures the observed evolution and vertical mixing of ozone throughout the day quite well in the boundary layer.
Velocity Data in a Fully Developed Wind Turbine Array Boundary Layer
NASA Astrophysics Data System (ADS)
Turner, John; Wosnik, Martin
2016-11-01
Results are reported from an experimental study of an array of porous disks simulating offshore wind turbines. The disks mimic power extraction of similarly scaled wind turbines via drag matching, and the array consists of 19x5 disks of 0.25 m diameter. The study was conducted in the UNH Flow Physics Facility (FPF), which has test section dimensions of 6.0 m wide, 2.7 m high and 72.0 m long. The FPF can achieve a boundary layer height on the order of 1 m at the entrance of the wind turbine array which puts the model turbines in the bottom third of the boundary layer, which is typical of field application. Careful consideration was given to an expanded uncertainty analysis, to determine possible measurements in this type of flow. For a given configuration (spacing, initial conditions, etc.), the velocity levels out and the wind farm approaches fully developed behavior, even within the maintained growth of the simulated atmospheric boundary layer. Benchmark pitot tube data was acquired in vertical profiles progressing streamwise behind the centered column at every row in the array.
NASA Technical Reports Server (NTRS)
Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.
1983-01-01
A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.
NASA Astrophysics Data System (ADS)
Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di
2018-02-01
With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.
Multisensor Retrieval of Atmospheric Properties.
NASA Astrophysics Data System (ADS)
Boba Stankov, B.
1998-09-01
A new method, Multisensor Retrieval of Atmospheric Properties (MRAP), is presented for deriving vertical profiles of atmospheric parameters throughout the troposphere. MRAP integrates measurements from multiple, diverse, remote sensing, and in situ instruments, the combination of which provides better capabilities than any instrument alone. Since remote sensors can deliver measurements automatically and continuously with high time resolution, MRAP provides better coverage than traditional rawinsondes. MRAP's design is flexible, being capable of incorporating measurements from different instruments in order to take advantage of new or developing advanced sensor technology. Furthermore, new or alternative atmospheric parameters for a variety of applications may be easily added as products of MRAP.A combination of passive radiometric, active radar, and in situ observations provide the best temperature and humidity profile measurements. Therefore, MRAP starts with a traditional, radiometer-based, physical retrieval algorithm provided by the International TOVS (TIROS-N Operational Vertical Sounder) Processing Package (ITPP) that constrains the retrieved profiles to agree with brightness temperature measurements. The first-guess profiles required by the ITPP's iterative retrieval algorithm are obtained by using a statistical inversion technique and ground-based remote sensing measurements. Because the individual ground-based remote sensing measurements are usually of sufficiently high quality, the first-guess profiles by themselves provide a satisfactory solution to establish the atmospheric water vapor and temperature state, and the TOVS data are included to provide profiles with better accuracy at higher levels, MRAP provides a physically consistent mechanism for combining the ground- and space-based humidity and temperature profiles.Data that have been used successfully to retrieve humidity and temperature profiles with MRAP are the following: temperature profiles in the lower troposphere from the ground-based Radio Acoustic Sounding System (RASS); total water vapor measurements from the Global Positioning System; specific humidity gradient profiles from the wind-profiling radar/RASS system; surface meteorological observations from standard instruments; cloud-base heights from a lidar ceilometer; temperature from the Aeronautical Radio, Incorporated Communication, Addressing and Reporting System aboard commercial airlines; and brightness temperature observations from TOVS.Data from the experiment conducted in the late summer of 1995 at Point Loma, California, were used for comparisons of MRAP results and 20 nearby rawinsonde releases to assess the statistical error estimates of MRAP. The temperature profiles had a bias of -0.27°C and a standard deviation of 1.56°C for the entire troposphere. Dewpoint profile retrievals did not have an overall accuracy as high as that of the temperature profiles but they exhibited a markedly improved standard deviation and bias in the lower atmosphere when the wind profiler/RASS specific humidity gradient information was available as a further constraint on the process. The European Centre for Medium-Range Weather Forecasts (ECMWF) model profiles of humidity and temperature for the grid point nearest to the Point Loma site were also used for comparison with the rawinsonde soundings to establish the usefulness of MRAP profiles to the weather forecasting community. The comparison showed that the vertical resolution of the ECMWF model profiles within the planetary boundary layer is not capable of detecting sharp gradients.
Forecasting the northern African dust outbreak towards Europe in April 2011: A model intercomparison
Huneeus, N.; Basart, S.; Fiedler, S.; ...
2016-04-21
In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 h using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distributionmore » was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. In this paper, our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.« less
Computing factors of safety against wind-induced tree stem damage.
Niklas, K J
2000-04-01
The drag forces, bending moments and stresses acting on stems differing in size and location within the mechanical infrastructure of a large wild cherry (Prunus serotina Ehrh.) tree are estimated and used to calculate the factor of safety against wind-induced mechanical failure based on the mean breaking stress of intact stems and samples of wood drawn from this tree. The drag forces acting on stems are calculated based on stem projected areas and field measurements of wind speed taken within the canopy and along the length of the trunk. The bending moments and stresses resulting from these forces are shown to increase basipetally in a nearly log-log linear fashion toward the base of the tree. The factor of safety, however, varies in a sinusoidal manner such that the most distal stems have the highest factors of safety, whereas stems of intermediate location and portions of the trunk near ground level have equivalent and much lower factors of safety. This pattern of variation is interpreted to indicate that, as a course of normal growth and development, trees similar to the one examined in this study maintain a cadre of stems prone to wind-induced mechanical damage that can reduce the probability of catastrophic tree failure by reducing the drag forces acting on older portions of the tree. Comparisons among real and hypothetical stems with different taper experiencing different vertical wind speed profiles show that geometrically self-similar stems have larger factors of safety than stems tapering according to elastic or stress self-similarity, and that safety factors are less significantly influenced by the 'geometry' of the wind-profile.
NASA Astrophysics Data System (ADS)
Klaus, M.; MacIntyre, S.; Hotchkiss, E. R.; Bergström, A. K.; Karlsson, J.
2015-12-01
Lake metabolism models based on the diel oxygen technique often assume that oxygen dynamics are mainly controlled by metabolic processes, only accounting for wind-driven atmospheric gas exchange. However, oxygen dynamics can also be affected by abiotic mass fluxes across oxygen gradients within lakes and atmospheric gas exchange driven by convection. Here, we quantify how much vertical fluxes of oxygen modify epilimnetic metabolism estimates for three pairs of small Swedish boreal lakes, one of each fertilized with nitrate, with dissolved organic carbon (DOC) concentrations of 7 to 22 mg l-1. Oxygen concentrations were measured every 10 min at 50 cm depth and biweekly across depths profiles during one full open water period. Based on additional two weeks of ten-minute oxygen profiling we calculated vertical fluxes of oxygen using equations for atmospheric gas exchange caused by wind shear (F1) and convection (F2), and lake-internal gas exchange caused by diffusion and mixed layer deepening (F3). We ran three inverse Bayesian models to estimate daily metabolism: (M1) accounting for F1, (M2) accounting for F1 and F2, and (M3) accounting for F1 and F3. Initial results suggest that gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) ranged from 0.1 to 0.2, -0.3 to -0.5 and -0.2 to -0.4 g C m-2 d-1, respectively. GPP and R were higher in fertilized lakes and at the lower end of previous worldwide estimates. Accounting for convection-driven gas exchange increased ER estimates by 10-40% (M2 vs. M1). This bias increased with DOC concentration but was not affected by fertilization. Including lake-internal vertical oxygen fluxes changed GPP and ER estimates by up to ±40% (M3 vs. M1), with inconsistent trends along the DOC-gradient. We conclude that vertical fluxes of oxygen can significantly affect diel oxygen dynamics in oligotrophic humic systems and should therefore be included in metabolism models applied to small boreal lakes.
Longitudinal Variations in Jupiter's Winds
NASA Astrophysics Data System (ADS)
Simon-Miller, Amy A.; Gierasch, P. J.; Tierney, G.
2010-10-01
Long-term studies of Jupiter's zonal wind field revealed temporal variations on the order of 20 to 40 m/s at many latitudes, greater than the typical data uncertainties of 1 to 10 m/s. No definitive periodicities were evident, however, though some latitudinally-confined signals did appear at periods relevant to the Quasi-Quadrennial Oscillation (Simon-Miller & Gierasch, Icarus, in press). As the QQO appears, from vertical temperature profiles, to propagate downward, it is unclear why a signal is not more obvious, unless other processes dominate over possibly weaker forcing from the QQO. An additional complication is that zonal wind profiles represent an average over some particular set of longitudes for an image pair and most data sets do not offer global wind coverage. Even avoiding known features, such as the large anticyclonic vortices especially prevalent in the south, there can be distinct variations in longitude. We present results on the full wind field from Voyager and Cassini data, showing apparent longitudinal variations of up to 60 m/s or more. These are particularly obvious near disruptions such as the South Equatorial Disturbance, even when the feature itself is not clearly visible. These two dates represent very different states of the planet for comparison: Voyagers 1 & 2 flew by Jupiter shortly after a global upheaval, while many regions were in a disturbed state, while the Cassini view is typical of a more quiescent period present during much of the 1990s and early 2000s.
Longitudinal Variations in Jupiter's Winds
NASA Technical Reports Server (NTRS)
Simon-Miller, Amy A.; Gierasch, P. J.; Tierney, G.
2010-01-01
Long-term studies of Jupiter's zonal wind field revealed temporal variations on the order of 20 to 40 m/s at many latitudes, greater than the typical data uncertainties of 1 to 10 m/s. No definitive periodicities were evident, however, though some latitudinally-confined signals did appear at periods relevant to the Quasi- Quadrennial Oscillation (Simon-Miller & Gierasch, Icarus, in press). As the QQO appears, from vertical temperature profiles, to propagate downward, it is unclear why a signal is not more obvious, unless other processes dominate over possibly weaker forcing from the QQO. An additional complication is that zonal wind profiles represent an average over some particular set of longitudes for an image pair and most data sets do not offer global wind coverage. Lien avoiding known features, such as the large anticyclonic vortices especially prevalent in the south, there can be distinct variations in longitude. We present results on the full wind field from Voyager and Cassini data, showing apparent longitudinal variations of up to 60 m/s or more. These are particularly obvious near disruptions such as the South Equatorial Disturbance, even when the feature itself is not clearly visible. These two dates represent very different states of the planet for comparison: Voyagers 1 & 2 flew by Jupiter shortly after a global upheaval, while many regions were in a disturbed state, while the Cassini view is typical of a more quiescent period present during much of the 1990s and early 2000s.
NASA Astrophysics Data System (ADS)
Rajewski, D. A.
2015-12-01
Wind farms are an important resource for electrical generation in the Central U.S., however with each installation there are many poorly documented interactions with the local and surrounding environment. The impact of wind farms on surface microclimate is largely understood conceptually using numerical or wind tunnel models or ex situ satellite-detected changes. Measurements suitable for calibration of numerical simulations are few and of limited applicability but are urgently needed to improve parameterization of wind farm aerodynamics influenced by the diurnal evolution of the boundary layer. Among large eddy simulations of wind farm wakes in thermally stable stratification, there are discrepancies on the influence of turbine-induced mixing on the surface heat flux. We provide measurements from seven surface flux stations, vertical profiling LiDARs located upwind and downwind of turbines, and SCADA measurements from turbines during the 2013 Crop Wind Energy Experiment (CWEX-13) as the best evidence for the variability of turbine induced heat flux within a large wind farm. Examination of ambient conditions (wind direction, wind veer, and thermal stratification) and on turbine operation factors (hub-height wind speed, normalized power) reveal conditions that lead to the largest modification of heat flux. Our results demonstrate the highest flux change from the reference station to be where the leading few lines of turbines influence the surface. Under stably stratified conditions turbine-scale turbulence is highly efficient at bringing warmer air aloft to the surface, leading to an increase in downward heat flux. Conversely we see that the combination of wakes from several lines of turbines reduces the flux contrast from the reference station. In this regime of deep wind-farm flow, wake turbulence is similar in scale and intensity to the reference conditions. These analysis tools can be extended to other turbine SCADA and microclimate variables (e.g. temperature) to improve basic understanding of turbine-turbine and total wind farm wake interactions. Forthcoming tall-tower measurements will provide additional opportunities for comparison of simulated wind and thermal profiles in non-wake, and waked flow conditions.
Suprathermal electron energy distribution within the dayside Venus ionosphere
NASA Technical Reports Server (NTRS)
Knudsen, W. C.; Miller, K. L.; Spenner, K.; Novak, V.; Michelson, P. F.; Whitten, R. C.
1980-01-01
The suprathermal electron energy distribution for the dayside ionosphere has been derived from data returned by the Pioneer-Venus orbiter retarding potential analyzer. The shape and magnitude of the spectrum are consistent with the assumption that solar EUV radiation is the only significant source. The magnitude of the spectrum and its variation with altitude suggest that significant vertical transport occurs, with the electrons being lost through the ionopause. In turn, significant vertical transport suggests that the effective vertical electron heat conductivity may be comparable to the field-free value. The heat input to the thermal electron gas from the measured suprathermal electron flux is too small by a factor of at least five to maintain the observed electron temperature profile if the electron thermal conductivity is assumed to be close to the field-free value. It is thus inferred that most of the heat is supplied by the solar wind.
NASA Technical Reports Server (NTRS)
Peslen, C. A.; Koch, S. E.; Uccellini, L. W.
1985-01-01
The impact of satellite-derived cloud motion vectors on SESAME rawinsonde wind fields was studied in two separate cases. The effect of wind and moisture gradients on the arbitrary assignment of the satellite data is assessed to coordinate surfaces in a severe storm environment marked by strong vertical wind shear. Objective analyses of SESAME rawinsonde winds and combined winds are produced and differences between these two analyzed fields are used to make an assessment of coordinate level choice. It is shown that the standard method of arbitrarily assigning wind vectors to a low level coordinate surface yields systematic differences between the rawinsonde and combined wind analyses. Arbitrary assignment of cloud motions to the 0.9 sigma surface produces smaller differences than assignment to the 825 mb pressure surface. Systematic differences occur near moisture discontinuities and in regions of horizontal and vertical wind shears. The differences between the combined and SESAME wind fields are made smallest by vertically interpolating cloud motions to either a pressure or sigma surface.
NASA Astrophysics Data System (ADS)
Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim; Ermoshkin, Alexey
2016-04-01
The effect of foam presence on the transfer processes and the parameters of the surface roughness within the laboratory simulation of wind-wave interaction was carried out on the Thermostratified Wind-Wave Tank (TSWiWaT) IAP, using a specially designed foam generator. The parameters of air flow profiles and waves elevation were measured with scanning Pitot gauge and wire wave gauges respectively in the range of equivalent wind speed U10 from 12 to 38 m/s (covering strong winds) on the clean water and with foam. It was shown that the foam reduces the amplitudes and slopes of the waves in comparison with the clean water in the hole range of wind speeds investigated, and the peak frequency and wave numbers remain almost constant. The drag coefficient calculating by profiling method demonstrated similar behavior (almost independent on U10) for case of foam and increased compared with clear water, particularly noticeable for low wind speeds. Simultaneously the investigations of influence of the foam on the peculiarity of the microwave radio back scattering of X-diapason was investigated. These measurements were carried for different sensing angles (30, 40 i 50 degrees from vertical) and for four polarizations: co-polarized HH and VV, and de-polarized HV and VH. It was shown that foam leads to decrease of specific radar cross section of the wavy surface in comparison with clean water. The work was supported by the Russian Foundation for Basic Research (grants No. 15-35-20953, 14-05-00367, 16-55-52022) and project ASIST of FP7. The experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), radilocation measurments are partially supported by Russian Science Foundation (Agreement No. 14-17-00667).
The Potential of Indigenous Energy Resources for Remote Military Bases
1976-03-01
temperature collector schematic for steam production, ~ 350oF 3. Vertical-axis wind turbine 4. Proposed onshore siting for wind generator 5...inflmii ’amwiiMii "iHiHiiiiiiiiiir Üftiiiin- _ _ _. _ ;v’,. ^ L -^l . ’._...;’ :..; -23- turbine concept first designed by G.J.M. Darrieus of...adjusting fo’- the overall efficiency Airfoil section Vertical-axis windmil Fig. 3—Vertical-axis wind turbine L tiJBltlWittMMWiliMi^^ 1 0
NASA Technical Reports Server (NTRS)
Cliff, W. C.; Huffaker, R. M.; Dahm, W. K.; Thomson, J. A. L.; Lawrence, T. R.; Krause, M. C.; Wilson, D. J. (Inventor)
1976-01-01
A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed.
The Quasi-biennial Oscillation and Annual Variations in Tropical Ozone from SHADOZ and HALOE
NASA Technical Reports Server (NTRS)
Witte, J. C.; Schoeberl, M. R.; Douglass, A. R.; Thompson, A. M.
2008-01-01
We examine the tropical ozone mixing ratio perturbation fields generated from a monthly ozone climatology using 1998 to 2006 ozonesonde data from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network and the 13-year satellite record from 1993 to 2005 obtained from the Halogen Occultation Experiment (HALOE). The long time series and high vertical resolution of the ozone and temperature profiles from the SHADOZ sondes coupled with good tropical coverage north and south of the equator gives a detailed picture of the ozone structure in the lowermost stratosphere down through the tropopause where the picture obtained from HALOE measurements is blurred by coarse vertical resolution. Ozone perturbations respond to annual variations in the Brewer-Dobson Circulation (BDC) in the region just above the cold-point tropopause to around 20 km. Annual cycles in ozone and temperature are well correlated. Above 20 km, ozone and temperature perturbations are dominated by the Quasi-biennial Oscillation (QBO). Both satellite and sonde records show good agreement between positive and negative ozone mixing ratio anomalies and alternating QBO westerly and easterly wind shears from the Singapore rawinsondes with a mean periodicity of 26 months for SHADOZ and 25 months for HALOE. There is a temporal offset of one to three months with the QBO wind shear ahead of the ozone anomaly field. The meridional length scales for the annual cycle and the QBO, obtained using the temperature anomalies and wind shears in the thermal wind equation, compare well with theoretical calculations.
Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli
2018-01-23
Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.
Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli
2018-01-01
Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793
Oceanic response to Typhoon Nari (2007) in the East China Sea
NASA Astrophysics Data System (ADS)
Oh, Kyung-Hee; Lee, Seok; Kang, Sok-Kuh; Song, Kyu-Min
2017-06-01
The oceanic response to a typhoon in the East China Sea (ECS) was examined using thermal and current structures obtained from ocean surface drifters and a bottom-moored current profiler installed on the right side of the typhoon's track. Typhoon Nari (2007) had strong winds as it passed the central region of the ECS. The thermal structure in the ECS responded to Typhoon Nari (2007) very quickly: the seasonal thermocline abruptly collapsed and the sea surface temperature dropped immediately by about 4°C after the typhoon passed. The strong vertical mixing and surface cooling caused by the typhoon resulted in a change in the thermal structure. Strong near-inertial oscillation occurred immediately after the typhoon passed and lasted for at least 4-5 days, during which a strong vertical current existed in the lower layer. Characteristics of the near-inertial internal oscillation were observed in the middle layer. The clockwise component of the inertial frequency was enhanced in the surface layer and at 63 m depth after the typhoon passed, with these layers almost perfectly out of phase. The vertical shear current was intensified by the interaction of the wind-driven current in the upper layer and the background semi-diurnal tidal current during the arrival of the typhoon, and also by the near-inertial internal oscillation after the typhoon passage. The strong near-inertial internal oscillation persisted without significant interfacial structure after the mixing of the thermocline, which could enhance the vertical mixing over several days.
First artificial periodic inhomogeneity experiments at HAARP
NASA Astrophysics Data System (ADS)
Hysell, D. L.; McCarrick, M. J.; Fallen, C. T.; Vierinen, J.
2015-03-01
Experiments involving the generation and detection of artificial periodic inhomogeneities have been performed at the High Frequency Active Auroral Research Program (HAARP) facility. Irregularities were created using powerful X-mode HF emissions and then probed using short (10 μs) X- and O-mode pulses. Reception was performed using a portable software-defined receiver together with the crossed rhombic antenna from the local ionosonde. Echoes were observed reliably between about 85 and 140 km altitude with signal-to-noise ratios as high as about 30 dB. The Doppler shift of the echoes can be associated with the vertical neutral wind in this altitude range. Small but persistent Doppler shifts were observed. The decay time constant of the echoes is meanwhile indicative of the ambipolar diffusion coefficient which depends on the plasma temperature, composition, and neutral gas density. The measured time constants appear to be consistent with theoretical expectations and imply a methodology for measuring neutral density profiles. The significance of thermospheric vertical neutral wind and density measurements which are difficult to obtain using ground-based instruments by other means is discussed.
A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow
NASA Technical Reports Server (NTRS)
Oseguera, Rosa M.; Bowles, Roland L.
1988-01-01
A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations.
Wind flow modulation due to variations of the water surface roughness
NASA Astrophysics Data System (ADS)
Shomina, Olga; Ermakov, Stanislav; Kapustin, Ivan; Lazareva, Tatiana
2016-04-01
Air-ocean interaction is a classical problem in atmosphere and ocean physics, which has important geophysical applications related to calculation of vertical and horizontal humidity, aerosol and gas fluxes, development of global climate models and weather forecasts. The structure of wind flow over fixed underlying surfaces, such as forestry, buildings, mountains, is well described, while the interaction between a rough water surface and turbulent wind is far more complicated because of the presence of wind waves with different wavelength and amplitudes and propagating with different velocities and directions. The aim of this study was to investigate experimentally the variability of the wind profile structure due to variations of wave characteristics. The surface roughness variations were produced using a) surfactant films (oleic acid) spread on the water surface and b) mechanically generated waves superimposed on wind waves. The first case is related to oil slicks on sea surface, the second one - to the sea swell, which propagates into zones with lower wind velocities and interacts with wind flow. Laboratory experiments were conducted in the Oval Wind Wave Tank (OWWT) at the Institute of Applied Physics, cross-section of the wind channel is 30 cm x30 cm. Wave amplitude and the spectrum of surface waves were measured by a wire wave gauge, the wind speed was measured using a hot-wire anemometer DISA and a Pitot tube. In the experiments with surfactants, two frequencies of dripping of the oleic acid were studied, so that low concentration films with the elasticity parameters of about 19 mN/m and the high concentration ("thick") films with the elasticity of 34 mN/m were formed. In the experiments with mechanically generated waves (MGW) different regimes were studied with MGW amplitude of 3.4 mm and of 4.4 mm, and with MGW frequencies of 3.3 Hz and 3.7 Hz. It was shown, that: a) the mean velocity of the wind flow in the presence of surfactant and MGW can be described by a logarithmic profile; b) in the presence of a surfactant film an increase of wind speed was revealed; the more elastic films was deployed on the surface - the stronger wind acceleration was detected; c) MGW result in deceleration of wind flow, the larger MGW amplitude the stronger wind flow reduction is; d) the wind deceleration effect is more pronounced for MGW with higher frequency, i.e. for slower propagating MGW. e) experimental dependencies of the logarithmic wind profile characteristics as functions of the rout mean square (RMS) wave height were obtained demonstrating the growth of the wind friction velocity and the roughness coefficient with RMS. The work has been supported by the Russian Foundation of Basic Research (Projects № 14-05-31535, 14-05-00876, 15-35-20992).
Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements.
Liu, Zhi-Shen; Bi, De-Cang; Song, Xiao-Quan; Xia, Jin-Bao; Li, Rong-Zhong; Wang, Zhang-Jun; She, Chiao-Yao
2009-09-15
This paper presents a method for measuring atmosphere temperature profile using a single iodine filter as frequency discriminator. This high spectral resolution lidar (HSRL) is a system reconfigured with the transmitter of a mobile Doppler wind lidar and with a receiving subsystem redesigned to pass the backscattering optical signal through the iodine cell twice to filter out the aerosol scattering signal and to allow analysis of the molecular scattering spectrum, thus measuring temperatures. We report what are believed to be the first results of vertical temperature profiling from the ground to 16 km altitude by this lidar system (power-aperture product=0.35 Wm(2)). Concurrent observations of an L band radiosonde were carried out on June 14 and August 3, 2008, in good agreement with HSRL temperature profiles.
Explicit wave action conservation for water waves on vertically sheared flows
NASA Astrophysics Data System (ADS)
Quinn, Brenda; Toledo, Yaron; Shrira, Victor
2016-04-01
Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal, might lead to significant errors in wave amplitude and the predicted wave ray paths. An extension of the work toward the more complex case of turbulent currents will also be discussed.
An Investigation of Marine Fog Forecast Concepts.
1981-01-01
8217ANTA ANA C FORECASTING WEST COAST MARINE FOG or which the forecast is to be made .) SENT (TYPICALLY IN LATE I S M~IDDLE OR HIGH CLOUD PRESENT’ THERE...following discussions. Much mention will be made in the ensuing discussion of downslope motion and its role in lowering the inversion. Along a large portion...layer below 850 mb. In those cases, reference will be made to the time sequence of vertical profiles of wind at radiosonde stations. 25 Long Wave
2008-12-01
pod at increasing angles of attack. An overall vertical acceleration maximum of 7.5 g RMS occurred while in a transonic wind-up turn at 15,000 ft and...landings, level accelerations, and specific maneuver blocks of varying sideslip, load factor, and angle of attack (AOA). The flight conditions...0g 10s maximum Angle of Attack (deg) ±1 ±1 16 Table A1: Data Bands and Tolerances for the Vibroacoustic Tests Table A2 summarizes the conditions
NASA Astrophysics Data System (ADS)
Aristizábal, María. F.; Fewings, Melanie R.; Washburn, Libe
2017-10-01
In the Santa Barbara Channel, California, and around the Northern Channel Islands, water temperature fluctuations in the diurnal and semidiurnal frequency bands are intermittent, with amplitudes that vary on time scales of days to weeks. The cause of this intermittency is not well understood. We studied the effects of the barotropic tide, vertical stratification, propagation of coastal-trapped waves, regional wind relaxations, and diurnal-band winds on the intermittency of the temperature fluctuations during 1992-2015. We used temperature data from 43 moorings in 10-200 m water depth and wind data from two buoys and one land station. Subtidal-frequency changes in vertical stratification explain 20-40% of the intermittency in diurnal and semidiurnal temperature fluctuations at time scales of days to weeks. Along the mainland north of Point Conception and at the Northern Channel Islands, the relaxation of upwelling-favorable winds substantially increases vertical stratification, accounting for up to 55% of the subtidal-frequency variability in stratification. As a result of the enhanced stratification, wind relaxations enhance the diurnal and semidiurnal temperature fluctuations at those sites, even though the diurnal-band wind forcing decreases during wind relaxation. A linear model where the background stratification is advected vertically explains a substantial fraction of the temperature fluctuations at most sites. The increase of vertical stratification and subsequent increase in diurnal and semidiurnal temperature fluctuations during wind relaxation is a mechanism that can supply nutrients to the euphotic zone and kelp forests in the Channel in summer when upwelling is weak.
X-Band Radar for Studies of Tropical Storms from High Altitude UAV Platform
NASA Technical Reports Server (NTRS)
Rodriquez, Shannon; Heymsfield, Gerald; Li, Lihua; Bradley, Damon
2007-01-01
The increased role of unmanned aerial vehicles (UAV) in NASA's suborbital program has created a strong interest in the development of instruments with new capabilities, more compact sizes and reduced weights than the instruments currently operated on manned aircrafts. There is a strong demand and tremendous potential for using high altitude UAV (HUAV) to carry weather radars for measurements of reflectivity and wind fields from tropical storms. Tropical storm genesis frequently occurs in ocean regions that are inaccessible to piloted aircraft due to the long off shore range and the required periods of time to gather significant data. Important factors of interest for the study of hurricane genesis include surface winds, profiled winds, sea surface temperatures, precipitation, and boundary layer conditions. Current satellite precipitation and surface wind sensors have resolutions that are too large and revisit times that are too infrequent to study this problem. Furthermore, none of the spaceborne sensors measure winds within the storm itself. A dual beam X-band Doppler radar, UAV Radar (URAD), is under development at the NASA Goddard Space Flight Center for the study of tropical storms from HUAV platforms, such as a Global Hawk. X-band is the most desirable frequency for airborne weather radars since these can be built in a relatively compact size using off-the-shelf components which cost significantly less than other higher frequency radars. Furthermore, X-band radars provide good sensitivity with tolerable attenuation in storms. The low-cost and light-weight URAD will provide new capabilities for studying hurricane genesis by analyzing the vertical structure of tropical cyclones as well as 3D reflectivity and wind fields in clouds. It will enable us to measure both the 3D precipitation structure and surface winds by using two antenna beams: fixed nadir and conical scanning each produced by its associated subsystem. The nadir subsystem is a magnetron based radar modified from a marine radar transceiver. It is capable of measuring vertical reflectivity and velocity profile while being a lower-cost, smaller size, and lighter weight version of the NASA ER-2 Doppler Radar (EDOP), which has flown during many NASA field campaigns and has provided valuable scientific information on hurricanes and weather phenomena. Unfortunately, EDOP is too large and heavy for most UAV platforms, but the experience gained with this instrument provided us with the heritage to build a new low-cost, light-weight, smaller system that will be capable of flying on UAVs. The scanning subsystem uses a TWT transmitter and provides measurements of 3D reflectivity/wind fields in-clouds. Conical scanning of the radar beam at a 35 deg. incidence angle will also provide information of surface wind speed and direction derived from the surface return over a single 360 deg. sweep. URAD data system will be Linux based with the capability of autonomous operation. It will utilize cutting edge digital receiver and FPGA technologies to carry out the data acquisition and processing tasks. High speed navigation data from the aircraft will also be captured and saved along with radar data for 3D measurement field reconstruction and aircraft motion correction. There is a tremendous potential for UAVs to carry down-looking weather radars for measurements of reflectivity, horizontal and vertical winds from tropical storms. With operation from HUAV platforms, the dual beam X-band radar under development promises to provide greatly needed information for tropical storm research.
NASA Technical Reports Server (NTRS)
Wilson, R. E.
1981-01-01
Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianco, Laura; Friedrich, Katja; Wilczak, James M.
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature ( T) andmore » relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature ( T v) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5?km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m -3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. Furthermore, an encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.« less
Bianco, Laura; Friedrich, Katja; Wilczak, James M.; ...
2017-05-09
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature ( T) andmore » relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature ( T v) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5?km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m -3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. Furthermore, an encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.« less
NASA Astrophysics Data System (ADS)
Bianco, Laura; Friedrich, Katja; Wilczak, James M.; Hazen, Duane; Wolfe, Daniel; Delgado, Ruben; Oncley, Steven P.; Lundquist, Julie K.
2017-05-01
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature (T) and relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature (Tv) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5 km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m-3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. An encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.
Observed spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous terrain
NASA Astrophysics Data System (ADS)
Maurer, V.; Kalthoff, N.; Wieser, A.; Kohler, M.; Mauder, M.; Gantner, L.
2016-02-01
In the spring of 2013, extensive measurements with multiple Doppler lidar systems were performed. The instruments were arranged in a triangle with edge lengths of about 3 km in a moderately flat, agriculturally used terrain in northwestern Germany. For 6 mostly cloud-free convective days, vertical velocity variance profiles were calculated. Weighted-averaged surface fluxes proved to be more appropriate than data from individual sites for scaling the variance profiles; but even then, the scatter of profiles was mostly larger than the statistical error. The scatter could not be explained by mean wind speed or stability, whereas time periods with significantly increased variance contained broader thermals. Periods with an elevated maximum of the variance profiles could also be related to broad thermals. Moreover, statistically significant spatial differences of variance were found. They were not influenced by the existing surface heterogeneity. Instead, thermals were preserved between two sites when the travel time was shorter than the large-eddy turnover time. At the same time, no thermals passed for more than 2 h at a third site that was located perpendicular to the mean wind direction in relation to the first two sites. Organized structures of turbulence with subsidence prevailing in the surroundings of thermals can thus partly explain significant spatial variance differences existing for several hours. Therefore, the representativeness of individual variance profiles derived from measurements at a single site cannot be assumed.
NASA Astrophysics Data System (ADS)
Ney, Patrizia; Schmidt, Marius; Klosterhalfen, Anne; Graf, Alexander
2017-04-01
We present a portable elevator-based setup for measuring CO2, water vapor, temperature and wind profiles from the soil surface to the surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile height (currently 2 m), while concentrations are logged at a frequency of 20 Hz. Temperature and wind speed are measured at the same frequency by a ventilated finewire thermocouple and a hotwire, respectively, and all measurements are duplicated as a continuous fixed-height measurement at the top of the profile. Test measurements were carried out at the TERENO research site of Selhausen (50°52'09"N, 06°27'01"E, 104.5 m MSL, Germany, ICOS site DE-RuS) in winter wheat, winter barley and a catch crop mixture during different stages of crop development and different times of the day (spring 2015 to autumn 2016). We demonstrate a simple approach to correct for time lags, and the resulting half-hourly mean profiles of CO2 and H2O over height increments of 2.5 cm. These results clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the daily cycle and during the growing season. Post-harvest measurements over bare soil and short intercrop canopy (<20 cm) were analyzed in the framework of Monin-Obukhov similarity theory to check the validity of the measurement and raw data processing approach. Derived CO2 and latent heat fluxes show a good agreement to eddy-covariance measurements. In a next step, we applied a dispersion matrix inversion (modified after Warland and Thurtell 2000, Santos et al. 2011) to the concentration profiles to estimate the vertical source and sink distribution of CO2 and H2O. First results showed reasonable values for evaporation, transpiration and aboveground net primary production, but a likely overestimation of soil respiration. We discuss possible causes associated with exchange processes near the soil surface below a dense canopy, and the potential use of the wind and temperature profiles in efforts to improve the dispersion parametrization in this region. Santos, E.A., Wagner-Riddle, C., Warland, J.S. and Brown, S. (2011): Applying a Lagrangian dispersion analysis to infer carbon dioxide and latent heat fluxes in a corn canopy. Agricultural and Forest Meteorology 151: 620-632. Warland, J.S. and Thurtell, G.W. (2000): A Lagrangian solution to the relationship between a distributed source and concentration profile. Boundary-Layer Meteorology 96: 453-471.
A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections
NASA Astrophysics Data System (ADS)
Ho, Yat-Kiu; Liu, Chun-Ho
2017-10-01
Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.
NASA Astrophysics Data System (ADS)
Mihaly, S. F.
2016-02-01
We analyse two six month sets of data collected from a vertical profiler on Ocean Networks Canada's NEPTUNE observatory over the summer and early fall of 2012 and 2014. The profiler is in 400 m of water on the upper slope of the continental shelf. The site is away from direct influence of canyons, but is in a region of strong internal tide generation. Both seasonally varying semidiurnal internal tidal currents and diurnal shelf waves are observed. The near surface mean flow is weak and seasonally alternates between the California and Alaskan Currents. Mid-depth waters are influenced by the poleward flowing Californian undercurrent and the deep waters by seasonally varying wind-driven Ekman transport. The profiling package consists of a CTD, an oxygen optode, a pCO2 sensor, Chlorophyll fluorometer/turbidity, CDOM and is co-located with an upward-looking bottom-mounted 75kHz ADCP that measures currents to 30 m below sea surface. With these first deep-sea profiled time series measurements of pCO2, we endeavor to model how the local physical dynamics exert control over the variability of water properties over the slope and shelf and what the variability of the non-conservative tracers of pCO2 and O2 can tell us about the biogeochemistry of the region.
Bio-mixing due to Diel Vertical Migration of Daphnia spp. in a Small Lake
NASA Astrophysics Data System (ADS)
Simoncelli, Stefano; Wain, Danielle; Thackeray, Stephen
2016-04-01
Bio-turbulence or bio-mixing refers to the contribution of living organisms towards the mixing of waters in oceans and lakes. Experimental measurements in an unstratified tank by Wilhelmus & Dabiri (2014) show that zooplankton can trigger fluid instabilities through collective motions and that energy is imparted to scales bigger than organism's size of few mm. Length scales analysis, for low-Reynolds-number organisms in stratified water by Leshansky & Pismen (2010) and Kunze (2011), estimate eddy diffusivity up two orders of magnitude larger than the molecular thermal diffusivity. Very recently, Wand & Ardekani (2015) showed a maximum diffusivity of 10-5 m2/s for millimetre-sized organisms from numerical simulations in the intermediate Reynolds number regime. Here we focus our attention on turbulence generated by the vertical migration of zooplankton in a small lake, mostly populated by Daphnia spp. This very common species, belonging to Cladocera order, is engaged in a vertical migration (DVM) at sunset, with many organisms crossing the thermocline despite the density stratification. During the ascension they may create hydrodynamic disturbances in the lake interior where the stratification usually suppresses the vertical diffusion. We have conducted five turbulence experiments in Vobster Quay, a small (area ˜ 59,000 m2), deep (40m) man-made basin with small wind fetch and steep sides, located in the South West UK. Turbulence was measured with a temperature microstructure profiler. To asses the zooplankton vertical concentration we used a 100 μm mesh net, by collecting and analyzing samples in 8 layers of the lake. A bottom-mounted acoustic Doppler current profiler was also employed to track their concentration and migration with the measured backscatter strength. Measured dissipation rates ɛ during the day showed low turbulence level (<= 10-8 W/Kg) in the thermocline and in the zooplankton layer. Turbulence, during the DVM in two different days, is highest on the surface, likely due to surface processes. Peaks of 10-6.5 W/kg were measured within the migrating zooplankton layer with respect to profiles before sunset and estimated eddy diffusivity was as much as 10-5 m2/s. Before and after the time series there was no wind and penetrative convection associated with night-time cooling wasn't active during the experiments. Given the uncertainty in measuring the length scales of turbulence associated with small zooplankton and the presence of turbulence patches outside the migrating layer, further datasets are needed for definitive conclusions.
Spatiotemporal structure of wind farm-atmospheric boundary layer interactions
NASA Astrophysics Data System (ADS)
Cervarich, Matthew; Baidya Roy, Somnath; Zhou, Liming
2013-04-01
Wind power is currently one of the fastest growing energy sources in the world. Most of the growth is in the utility sector consisting of large wind farms with numerous industrial-scale wind turbines. Wind turbines act as a sink of mean kinetic energy and a source of turbulent kinetic energy in the atmospheric boundary layer (ABL). In doing so, they modify the ABL profiles and land-atmosphere exchanges of energy, momentum, mass and moisture. This project explores theses interactions using remote sensing data and numerical model simulations. The domain is central Texas where 4 of the world's largest wind farms are located. A companion study of seasonally-averaged Land Surface Temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on TERRA and AQUA satellites shows a warming signal at night and a mixed cooling/warming signal during the daytime within the wind farms. In the present study, wind farm-ABL interactions are simulated with the Weather Research and Forecasting (WRF) model. The simulations show that the model is capable of replicating the observed signal in land surface temperature. Moreover, similar warming/cooling effect, up to 1C, was observed in seasonal mean 2m air temperature as well. Further analysis show that enhanced turbulent mixing in the rotor wakes is responsible for the impacts on 2m and surface air temperatures. The mixing is due to 2 reasons: (i) turbulent momentum transport to compensate the momentum deficit in the wakes of the turbines and (ii) turbulence generated due to motion of turbine rotors. Turbulent mixing also alters vertical profiles of moisture. Changes in land-atmosphere temperature and moisture gradient and increase in turbulent mixing leads to more than 10% change in seasonal mean surface sensible and latent heat flux. Given the current installed capacity and the projected installation across the world, wind farms are likely becoming a major driver of anthropogenic land use change on Earth. Hence, understanding WF-ABL interactions and its effects is of significant scientific and societal importance.
The GalileoJupiter Probe Doppler Wind Experiment
NASA Astrophysics Data System (ADS)
Atkinson, D. H.
2001-09-01
The GalileoJupiter atmospheric entry probe was launched along with the Galileoorbiter spacecraft from Cape Canaveral in Florida, USA, on October 18, 1989. Following a cruise of greater than six years, the probe arrived at Jupiter on December 7, 1995. During its 57-minute descent, instruments on the probe studied the atmospheric composition and structure, the clouds, lightning, and energy structure of the upper Jovian atmosphere. One of the two radio channels over which the experiment data was transmitted to the orbiter was driven by an ultrastable oscillator. All motions of the probe and orbiter, including the speed of probe descent, Jupiter's rotation, and the atmospheric winds, contributed to a Doppler shift of the probe radio frequency. By accurately measuring the frequency of the probe radio signal, an accurate time history of the probe-orbiter relative motions could be reconstructed. Knowledge of the nominal probe and orbiter trajectories allowed the nominal Doppler shift to be removed from the probe radio frequency leaving a measurable frequency residual arising primarily from the zonal winds in Jupiter's atmosphere, and micromotions of the probe arising from probe spin, swing under the parachute, atmospheric turbulence, and aerodynamic effects. Assuming that the zonal horizontal winds dominate the residual probe motion, a profile of frequency residuals was generated. Inversion of the frequency residuals resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. It is found that beneath 700 mb, the winds are strong and prograde, rising rapidly to 170 m/s between 1 and 4 bars. Beneath 4 bars to 21 bars, the depth at which the link with the probe was lost, the winds remain constant and strong. When corrections for the high temperatures encountered by the probe are considered, there is no evidence of diminishing or strengthening of the zonal winds in the deepest regions explored by the Galileoprobe. Following the wind recovery, the frequency residuals offer tantalizing clues to microstructure in the atmospheric dynamics, including turbulence and wave motion.
Response of Ocean Circulation to Different Wind Forcing in Puerto Rico and US Virgin Islands
NASA Astrophysics Data System (ADS)
Solano, Miguel; Garcia, Edgardo; Leonardi, Stafano; Canals, Miguel; Capella, Jorge
2013-11-01
The response of the ocean circulation to various wind forcing products has been studied using the Regional Ocean Modeling System. The computational domain includes the main islands of Puerto Rico, Saint John and Saint Thomas, located on the continental shelf dividing the Caribbean Sea and the Atlantic Ocean. Data for wind forcing is provided by an anemometer located in a moored buoy, the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) model and the National Digital Forecast Database (NDFD). Hindcast simulations have been validated using hydrographic data at different locations in the area of study. Three cases are compared to quantify the impact of high resolution wind forcing on the ocean circulation and the vertical structure of salinity, temperature and velocity. In the first case a constant wind velocity field is used to force the model as measured by an anemometer on top of a buoy. In the second case, a forcing field provided by the Navy's COAMPS model is used and in the third case, winds are taken from NDFD in collaboration with the National Centers for Environmental Prediction. Validated results of ocean currents against data from Acoustic Doppler Current Profilers at different locations show better agreement using high resolution wind data as expected. Thanks to CariCOOS and NOAA.
Analysis of airborne particulate matter (PM2.5) over Hong Kong using remote sensing and GIS.
Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling
2012-01-01
Airborne fine particulates (PM(2.5); particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM(2.5) and its correlation with meteorological parameters in Hong Kong, during 2007-2008. Significant diurnal variations of PM(2.5) concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM(2.5) concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM(2.5) were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM(2.5) emissions. To understand the spatial pattern of PM(2.5) concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM(2.5) vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM(2.5) vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM(2.5) concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies.
Analysis of Airborne Particulate Matter (PM2.5) over Hong Kong Using Remote Sensing and GIS
Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling
2012-01-01
Airborne fine particulates (PM2.5; particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM2.5 and its correlation with meteorological parameters in Hong Kong, during 2007–2008. Significant diurnal variations of PM2.5 concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM2.5 concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM2.5 were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM2.5 emissions. To understand the spatial pattern of PM2.5 concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM2.5 vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM2.5 vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM2.5 concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies. PMID:22969323
Kim, Jae H; Lee, H J; Lee, S H
2006-07-01
This paper presents the first analysis of vertical ozone sounding measurements over Pohang, Korea. The main focus is to analyze the seasonal variation of vertical ozone profiles and determine the mechanisms controlling ozone seasonality. The maxima ozone at the surface and in the free troposphere are observed in May and June, respectively. In comparison with the ozone seasonality at Oki (near sea level) and Happo (altitude of 1840 m) in Japan, which are located at the same latitude as of Pohang, we have found that the time of the ozone maximum at the Japanese sites is always a month earlier than at Pohang. Analysis of the wind flow at the surface shows that the wind shifts from westerly to southerly in May over Japan, but in June over Pohang. However, this wind shift above boundary layer occurs a month later. This wind shift results in significantly smaller amounts of ozone because the southerly wind brings clean wet tropical air. It has been suggested that the spring ozone maximum in the lower troposphere is due to polluted air transported from China. However, an enhanced ozone amount over the free troposphere in June appears to have a different origin. A tongue-like structure in the time-height cross-section of ozone concentrations, which starts from the stratosphere and extends to the middle troposphere, suggests that the ozone enhancement occurs due to a gradual migration of ozone from the stratosphere. The high frequency of dry air with elevated ozone concentrations in the upper troposphere in June suggests that the air is transported from the stratosphere. HYSPLIT trajectory analysis supports the hypothesis that enhanced ozone in the free troposphere is not likely due to transport from sources of anthropogenic activity.
Wind Characterization for the Assessment of Collision Risk During Flight Level Changes
NASA Technical Reports Server (NTRS)
Carreno, Victor; Chartrand, Ryan
2009-01-01
A model of vertical wind gradient is presented based on National Oceanic and Atmospheric Administration (NOAA) wind data. The objective is to have an accurate representation of wind to be used in Collision Risk Models (CRM) of aircraft procedures. Depending on how an aircraft procedure is defined, wind and the different characteristics of the wind will have a more severe or less severe impact on distances between aircraft. For the In-Trail Procedure, the non-linearity of the vertical wind gradient has the greatest impact on longitudinal distance. The analysis in this paper extracts standard deviation, mean, maximum, and linearity characteristics from the NOAA data.
Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Ahmadi-Baloutaki, Mojtaba
Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays configurations. Under controlled flow conditions in a wind tunnel, the counter-rotating configuration resulted in a slight improvement in the aerodynamic performance of each turbine compared to the isolated installation. Moreover, the counter-rotating pair improved the power generation of a turbine located downstream of the pair substantially.
NASA Astrophysics Data System (ADS)
Wunderle, K.; Rascher, U.; Pieruschka, R.; Schurr, U.; Ebert, V.
2015-01-01
A new spatially scanning TDLAS in situ hygrometer based on a 2.7-µm DFB diode laser was constructed and used to analyse the water vapour concentration boundary layer structure at the surface of a single plant leaf. Using an absorption length of only 5.4 cm, the TDLAS hygrometer permits a H2O vapour concentration resolution of 31 ppmv. This corresponds to a normalized precision of 1.7 ppm m. In order to preserve and control the H2O boundary layer on an individual leaf and to study the boundary layer dependence on the wind speed to which the leaf might be exposed in nature, we also constructed a new, application specific, small-scale, wind tunnel for individual plant leaves. The rectangular, closed-loop tunnel has overall dimensions of 1.2 × 0.6 m and a measurement chamber dimension of 40 × 54 mm (H × W). It allows to generate a laminar flow with a precisely controlled wind speed at the plant leaf surface. Combining honeycombs and a miniaturized compression orifice, we could generate and control stable wind speeds from 0.1 to 0.9 m/s, and a highly laminar and homogeneous flow with an excellent relative spatial homogeneity of 0.969 ± 0.03. Combining the spectrometer and the wind tunnel, we analysed (for the first time) non-invasively the wind speed-dependent vertical structure of the H2O vapour distribution within the boundary layer of a single plant leaf. Using our time-lag-free data acquisition procedure for phase locked signal averaging, we achieved a temporal resolution of 0.2 s for an individual spatial point, while a complete vertical spatial scan at a spatial resolution of 0.18 mm took 77 s. The boundary layer thickness was found to decrease from 6.7 to 3.6 mm at increasing wind speeds of 0.1-0.9 m/s. According to our knowledge, this is the first experimental quantification of wind speed-dependent H2O vapour boundary layer concentration profiles of single plant leaves.
Tropospheric ozone variability over Singapore from August 1996 to December 1999
NASA Astrophysics Data System (ADS)
Yonemura, S.; Tsuruta, H.; Maeda, T.; Kawashima, S.; Sudo, S.; Hayashi, M.
Vertical ozone profiles over Singapore (lat 1°20'N, long 103°53'E) have been monitored by ozonesondes twice a month since August 1996. We report the vertical ozone profiles over Singapore from August 1996 to the end of 1999. During this time, large ozone enhancements occurred during three periods: March-June 1997, September-November 1997, and February-May 1998. These ozone enhancements were larger over Singapore than over Malaysia. Backward trajectory analyses revealed that the enhancements during September-November 1997, and February-May 1998 were associated with biomass burning in Indonesia and Southeast Asia. Outside the three periods, ozone concentrations over Singapore differed from those over Malaysia by not more than 2.5% at altitudes of between 2.6 and 7.6 km and by not more than 12% at altitudes of between 1 and 13.5 km. The minimum ozone concentrations in the middle and the upper troposphere were about 20 ppbv and were observed when the wind was easterly from the Pacific Ocean. Ozone concentrations at the bottom of the troposphere were near zero when the wind was southerly to westerly (from the larger, more urbanized and industrialized part of Singapore and the Strait of Malacca), implying that ozone-destroying reactions were occurring with high concentrations of urban pollutants. We conclude that the ozone enhancements observed in the free troposphere resulted from the effects of extensive biomass burning combined with the modified circulation (suppressed convection of maritime air masses) that occurs during El Niño events.
Idealized Cloud-System Resolving Modeling for Tropical Convection Studies
NASA Astrophysics Data System (ADS)
Anber, Usama M.
A three-dimensional limited-domain Cloud-Resolving Model (CRM) is used in idealized settings to study the interaction between tropical convection and the large scale dynamics. The model domain is doubly periodic and the large-scale circulation is parameterized using the Weak Temperature Gradient (WTG) Approximation and Damped Gravity Wave (DGW) methods. The model simulations fall into two main categories: simulations with a prescribed radiative cooling profile, and others in which radiative cooling profile interacts with clouds and water vapor. For experiments with a prescribed radiative cooling profile, radiative heating is taken constant in the vertical in the troposphere. First, the effect of turbulent surface fluxes and radiative cooling on tropical deep convection is studied. In the precipitating equilibria, an increment in surface fluxes produces a greater increase in precipitation than an equal increment in column-integrated radiative heating. The gross moist stability remains close to constant over a wide range of forcings. With dry initial conditions, the system exhibits hysteresis, and maintains a dry state with for a wide range of net energy inputs to the atmospheric column under WTG. However, for the same forcings the system admits a rainy state when initialized with moist conditions, and thus multiple equilibria exist under WTG. When the net forcing is increased enough that simulations, which begin dry, eventually develop precipitation. DGW, on the other hand, does not have the tendency to develop multiple equilibria under the same conditions. The effect of vertical wind shear on tropical deep convection is also studied. The strength and depth of the shear layer are varied as control parameters. Surface fluxes are prescribed. For weak wind shear, time-averaged rainfall decreases with shear and convection remains disorganized. For larger wind shear, rainfall increases with shear, as convection becomes organized into linear mesoscale systems. This non-monotonic dependence of rainfall on shear is observed when the imposed surface fluxes are moderate. For larger surface fluxes, convection in the unsheared basic state is already strongly organized, but increasing wind shear still leads to increasing rainfall. In addition to surface rainfall, the impacts of shear on the parameterized large-scale vertical velocity, convective mass fluxes, cloud fraction, and momentum transport are also discussed. For experiments with interactive radiative cooling profile, the effect of cloud-radiation interaction on cumulus ensemble is examined in sheared and unsheared environments with both fixed and interactive sea surface temperature (SST). For fixed SST, interactive radiation, when compared to simulations in which radiative profile has the same magnitude and vertical shape but does not interact with clouds or water vapor, is found to suppress mean precipitation by inducing strong descent in the lower troposphere, increasing the gross moist stability. For interactive SST, using a slab ocean mixed layer, there exists a shear strength above which the system becomes unstable and develops oscillatory behavior. Oscillations have periods of wet precipitating states followed by periods of dry non-precipitating states. The frequencies of oscillations are intraseasonal to subseasonal, depending on the mixed layer depth. Finally, the model is coupled to a land surface model with fully interactive radiation and surface fluxes to study the diurnal and seasonal radiation and water cycles in the Amazon basin. The model successfully captures the afternoon precipitation and cloud cover peak and the greater latent heat flux in the dry season for the first time; two major biases in GCMs with implications for correct estimates of evaporation and gross primary production in the Amazon. One of the key findings is that the fog layer near the surface in the west season is crucial for determining the surface energy budget and precipitation. This suggests that features on the diurnal time scale can significantly impact climate on the seasonal time scale.
Maintenance of Coastal Surface Blooms by Surface Temperature Stratification and Wind Drift
Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O.
2013-01-01
Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters. PMID:23593127
NASA Astrophysics Data System (ADS)
Nigro, M. A.; Cassano, J. J.; Wille, J.; Bromwich, D. H.; Lazzara, M. A.
2015-12-01
An accurate representation of the atmospheric boundary layer in numerical weather prediction models is important for predicting turbulence and energy exchange in the atmosphere. This study uses two years of observations from a 30-m automatic weather station (AWS) installed on the Ross Ice Shelf, Antarctica to evaluate forecasts from the Antarctic Mesoscale Prediction System (AMPS), a numerical weather prediction system based on the polar version of the Weather Research and Forecasting (Polar WRF) model that uses the MYJ planetary boundary layer scheme and that primarily supports the extensive aircraft operations of the U.S. Antarctic Program. The 30-m AWS has six levels of instrumentation, providing vertical profiles of temperature, wind speed, and wind direction. The observations show the atmospheric boundary layer over the Ross Ice Shelf is stable approximately 80% of the time, indicating the influence of the permanent ice surface in this region. The observations from the AWS are further analyzed using the method of self-organizing maps (SOM) to identify the range of potential temperature profiles that occur over the Ross Ice Shelf. The SOM analysis identified 30 patterns, which range from strong inversions to slightly unstable profiles. The corresponding AMPS forecasts were evaluated for each of the 30 patterns to understand the accuracy of the AMPS near surface layer under different atmospheric conditions. The results indicate that under stable conditions AMPS with MYJ under predicts the inversion strength by as much as 7.4 K over the 30-m depth of the tower and over predicts the near surface wind speed by as much as 3.8 m s-1. Conversely, under slightly unstable conditions, AMPS predicts both the inversion strength and near surface wind speeds with reasonable accuracy.
Maintenance of coastal surface blooms by surface temperature stratification and wind drift.
Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O
2013-01-01
Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters.
Upwelling Response to Hurricane Isaac in Geostrophic Oceanic Vortices
NASA Astrophysics Data System (ADS)
Jaimes, B.; Shay, L. K.; Brewster, J. K.; Schuster, R.
2013-05-01
As a tropical cyclone (TC) moves over the ocean, the cyclonic curl of the wind stress produces a region of upwelling waters under the TC center that is compensated by downwelling waters at regions outside the center. Direct measurements conducted during hurricane Rita and recent numerical studies indicate that this is not necessarily the case when TCs move over geostrophic oceanic features, where its background relative vorticity impacts wind-driven horizontal current divergence and the upwelling velocity. Modulation of the upwelling response in these energetic oceanic regimes impacts vertical mixing across the oceanic mixed layer base, air-sea fluxes into the atmosphere, and ultimately storm intensity. As part of NOAA Intensity Forecasting Experiment, an experiment was conducted during the passage of TC Isaac over the energetic geostrophic eddy field in the Gulf of Mexico in August 2012. Expendable bathythermographs, current profilers, and conductivity-temperature-depth probes were deployed in Isaac from NOAA WP-3D aircraft during four in-storm flights to measure oceanic variability and its impact on TC-driven upwelling and surface fluxes of heat and momentum. During intensification to hurricane, the cyclonic curl of the wind stress of Isaac extended over a region of more than 300 km in diameter (4 to 5 times the radius of maximum winds). Isaac's center moved over a cold cyclonic feature, while its right and left sides moved over warm anticyclones. Contrasting upwelling and downwelling regimes developed inside the region of cyclonic curl of the wind stress. Both positive (upwelling) and negative (downwelling) vertical displacements of 40 and 60 m, respectively, were measured inside the region of cyclonic curl of the wind stress, which are between 3 to 4 times larger than predicted vertical displacements for a quiescent ocean based on scaling arguments. Oceanic mixed layer (OML) currents of 0.2 to 0.7 m s-1 were measured, which are about 50% smaller than the expected velocity response under quiescent oceanic conditions. Although OML currents were measured inside the core of cyclonic curl of the wind stress, their orientation is not consistent with horizontally divergent flows typically found in upwelling regimes under TC centers. Theoretical predictions that consider background relative vorticity effects on the upwelling response mimic the contrasting upwelling/downwelling regimes inside the region of cyclonic curl of the wind stress. These results point to an important modulation of the OML current and upwelling response by background oceanic flows, where the upwelling velocity is a function of the curl of wind-intensified pre-storm geostrophic currents, rather than just a function of the curl of the wind stress. Thus, properly initializing temperature and salinity fields in numerical models is needed to accurately represent these oceanic processes in coupled forecast models.
NASA Technical Reports Server (NTRS)
Claud, Chantal; Mognard, Nelly M.; Katsaros, Kristina B.; Chedin, Alain; Scott, Noelle A.
1993-01-01
Many polar lows are generated at the boundary between sea ice and the ocean, in regions of large temperature gradients, where in situ observations are rare or nonexistent. Since satellite observations are frequent in high-latitude regions, they can be used to detect polar lows and track their propagation and evolution. The Special Sensor Microwave/Imager (SSM/I) providing estimates of surface wind speed, integrated cloud liquid water content, water vapor content, and precipitation size ice-scattering signal over the ocean; the Geosat radar altimeter measuring surface wind speed and significant wave height; and the TIROS-N Operational Vertical Sounder (TOVS) allowing the determination of temperature and humidity profiles in the atmosphere have been used in synergy for a specific case which occurred in the Norwegian Sea on January, 23-24 1988. All three instruments show sharp atmospheric gradients associated with the propagation of this low across the ocean, which permit the detection of the polar low at a very early stage and tracking it during its development, propagation, and decay. The wind speed gradients are measured with good qualitative agreement between the altimeter and SSM/I. TOVS retrieved fields prior to the formation of the low confirm the presence of an upper level trough, while during the mature phase baroclinicity can be observed in the 1000-500 hPa geopotential thicknesses.
Yang, Ben; Qian, Yun; Berg, Larry K.; ...
2016-07-21
We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ben; Qian, Yun; Berg, Larry K.
We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less
NASA Astrophysics Data System (ADS)
Zatsepin, A. G.; Silvestrova, K. P.; Kuklev, S. B.; Piotoukh, V. B.; Podymov, O. I.
2016-03-01
The paper presents the results of joint analysis of the response of vertical temperature and current velocity profile distributions in the coastal zone of the Gelendzhik region of the Black Sea to strong wind forcing in the third ten-day period of September 2013. This forcing was caused by the propagation of an atmospheric cyclone, which first initiated coastal upwelling that was later replaced by downwelling. We formulate a criterion for the development of full coastal upwelling and demonstrate its efficiency. We assume that frequent events of incomplete coastal upwelling and downwelling are associated with changes in the water dynamics (variations in the intensity and direction of the alongshore current) generally not related to local wind forcing.
Comparing model-based predictions of a wind turbine wake to LiDAR measurements in complex terrain
NASA Astrophysics Data System (ADS)
Kay, Andrew; Jones, Paddy; Boyce, Dean; Bowman, Neil
2013-04-01
The application of remote sensing techniques to the measurement of wind characteristics offers great potential to accurately predict the atmospheric boundary layer flow (ABL) and its interactions with wind turbines. An understanding of these interactions is important for optimizing turbine siting in wind farms and improving the power performance and lifetime of individual machines. In particular, Doppler wind Light Detection and Ranging (LiDAR) can be used to remotely measure the wind characteristics (speed, direction and turbulence intensity) approaching a rotor. This information can be utilised to improve turbine lifetime (advanced detection of incoming wind shear, wind veer and extreme wind conditions, such as gusts) and optimise power production (improved yaw, pitch and speed control). LiDAR can also make detailed measurements of the disturbed wind profile in the wake, which can damage surrounding turbines and reduce efficiency. These observational techniques can help engineers better understand and model wakes to optimize turbine spacing in large wind farms, improving efficiency and reducing the cost of energy. NEL is currently undertaking research to measure the disturbed wind profile in the wake of a 950 kW wind turbine using a ZephIR Dual Mode LiDAR at its Myres Hill wind turbine test site located near Glasgow, Scotland. Myres Hill is moderately complex terrain comprising deep peat, low lying grass and heathers, localised slopes and nearby forest, approximately 2 km away. Measurements have been obtained by vertically scanning at 10 recorded heights across and above the rotor plane to determine the wind speed, wind direction and turbulence intensity profiles. Measurement stations located at various rotor diameters downstream of the turbine were selected in an attempt to capture the development of the wake and its recovery towards free stream conditions. Results of the measurement campaign will also highlight how the wake behaves as a result of sudden gusts or rapid changes in wind direction. NEL has carried out simulations to model the wake of the turbine using Computational Fluid Dynamics (CFD) software provided by ANSYS Inc. The model incorporates a simple actuator disk concept to model the turbine and its wake, typical of that used in many commercial wind farm optimization tools. The surrounding terrain, including the forestry is modelled allowing an investigation of the wake-terrain interactions occurring across the site. The overall aim is to compare the LiDAR measurements with simulated data to assess the quality of the model and its sensitivity to variables such as mesh size and turbulence/forestry modelling techniques. Knowledge acquired from the study will help to define techniques for combining LiDAR measurements with CFD modelling to improve predictions of wake losses in large wind farms and hence, energy production. In addition, the impact of transient wind conditions on the results of predictions based on idealised, steady state models has been examined.
Airflows and turbulent flux measurements in mountainous terrain: Part 1. Canopy and local effects
Turnipseed, Andrew A.; Anderson, Dean E.; Blanken, Peter D.; Baugh, William M.; Monson, Russell K.
2003-01-01
We have studied the effects of local topography and canopy structure on turbulent flux measurements at a site located in mountainous terrain within a subalpine, coniferous forest. Our primary aim was to determine whether the complex terrain of the site affects the accuracy of eddy flux measurements from a practical perspective. We observed displacement heights, roughness lengths, spectral peaks, turbulent length scales, and profiles of turbulent intensities that were comparable in magnitude and pattern to those reported for forest canopies in simpler terrain. We conclude that in many of these statistical measures, the local canopy exerts considerably more influence than does topographical complexity. Lack of vertical flux divergence and modeling suggests that the flux footprints for the site are within the standards acceptable for the application of flux statistics. We investigated three different methods of coordinate rotation: double rotation (DR), triple rotation (TR), and planar-fit rotation (PF). Significant variability in rotation angles at low wind speeds was encountered with the commonly used DR and TR methods, as opposed to the PF method, causing some overestimation of the fluxes. However, these differences in fluxes were small when applied to large datasets involving sensible heat and CO2 fluxes. We observed evidence of frequent drainage flows near the ground during stable, stratified conditions at night. Concurrent with the appearance of these flows, we observed a positive bias in the mean vertical wind speed, presumably due to subtle topographic variations inducing a flow convergence below the measurement sensors. In the presence of such drainage flows, advection of scalars and non-zero bias in the mean vertical wind speed can complicate closure of the mass conservation budget at the site.
DIAL Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL
NASA Technical Reports Server (NTRS)
Kuang, Shi; Burris, John; Newchurch, Michael J.; Johnson, Steve
2007-01-01
A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by NASA and the University of Alabama at Huntsville (UAH), measures free-tropospheric ozone profiles between 4-10 km. Located at 192 meters altitude in the Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) on the UAH campus in Huntsville, AL, USA, this tropospheric ozone lidar operates under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from better than 8% at 4km to 40%-60% at 10 kin with 750-m vertical resolution and 30-minute integration. With anticipated improvements to allow retrievals at both higher and lower altitudes, this ozone lidar, along with co-located aerosol and Doppler Wind Lidars, will provide a unique 18 dataset for investigations of PBL and free-tropospheric chemical and dynamic processes.
Improving lidar turbulence estimates for wind energy
NASA Astrophysics Data System (ADS)
Newman, J. F.; Clifton, A.; Churchfield, M. J.; Klein, P.
2016-09-01
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.
Improving Lidar Turbulence Estimates for Wind Energy: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer; Clifton, Andrew; Churchfield, Matthew
2016-10-01
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less
NASA Astrophysics Data System (ADS)
Krasnenko, N. P.; Kapegesheva, O. F.; Shamanaeva, L. G.
2017-11-01
Spatiotemporal dynamics of the standard deviations of three wind velocity components measured with a mini-sodar in the atmospheric boundary layer is analyzed. During the day on September 16 and at night on September 12 values of the standard deviation changed for the x- and y-components from 0.5 to 4 m/s, and for the z-component from 0.2 to 1.2 m/s. An analysis of the vertical profiles of the standard deviations of three wind velocity components for a 6-day measurement period has shown that the increase of σx and σy with altitude is well described by a power law dependence with exponent changing from 0.22 to 1.3 depending on the time of day, and σz depends linearly on the altitude. The approximation constants have been found and their errors have been estimated. The established physical regularities and the approximation constants allow the spatiotemporal dynamics of the standard deviation of three wind velocity components in the atmospheric boundary layer to be described and can be recommended for application in ABL models.
Improving Lidar Turbulence Estimates for Wind Energy
Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; ...
2016-10-03
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less
Vertical cross-spectral phases in atmospheric flow
NASA Astrophysics Data System (ADS)
Chougule, A.; Mann, J.; Kelly, M.
2014-11-01
The cross-spectral phases between velocity components at two heights are analyzed from observations at the Høvsøre test site under diabatic conditions. These phases represent the degree to which turbulence sensed at one height leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases increase with stream-wise wavenumber and vertical separation distance, but there is no significant change in the phase angle of vertical velocity. The phase angles for all atmospheric stabilities show similar order in phasing. The phase angles from the Høvsøre observations under neutral condition are compared with a rapid distortion theory model which show similar order in phase shift.
Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution
NASA Astrophysics Data System (ADS)
Stein, Victor P.; Kaltenbach, Hans-Jakob
2016-09-01
Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.
Depth dependence of wind-driven, broadband ambient noise in the Philippine Sea.
Barclay, David R; Buckingham, Michael J
2013-01-01
In 2009, as part of PhilSea09, the instrument platform known as Deep Sound was deployed in the Philippine Sea, descending under gravity to a depth of 6000 m, where it released a drop weight, allowing buoyancy to return it to the surface. On the descent and ascent, at a speed of 0.6 m/s, Deep Sound continuously recorded broadband ambient noise on two vertically aligned hydrophones separated by 0.5 m. For frequencies between 1 and 10 kHz, essentially all the noise was found to be downward traveling, exhibiting a depth-independent directional density function having the simple form cos θ, where θ ≤ 90° is the polar angle measured from the zenith. The spatial coherence and cross-spectral density of the noise show no change in character in the vicinity of the critical depth, consistent with a local, wind-driven surface-source distribution. The coherence function accurately matches that predicted by a simple model of deep-water, wind-generated noise, provided that the theoretical coherence is evaluated using the local sound speed. A straightforward inversion procedure is introduced for recovering the sound speed profile from the cross-correlation function of the noise, returning sound speeds with a root-mean-square error relative to an independently measured profile of 8.2 m/s.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady;
2010-01-01
Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.
2011-01-01
Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, G.E.; Darkow, G.L.
1982-05-01
The uniqueness of the thermodynamic and dynamic structure of the atmosphere in the area of imminent tornado bearing storm development is analyzed by comparing 115 tornado proximity soundings with upper air soundings made at the same location 6 and 12 hours earlier (precedent soundings) and with soundings made simultaneously at neighboring upper air stations. The comparisons suggest that both the proximity station and the neighboring station upstream with respect to the mean flow in the low level moist air display very similar degrees of hydrostatic and potential-convective instability by late afternoon. The principal difference is in the wind profiles atmore » the two locations. The tornado proximity station displays significantly stronger wind speeds above 1 km with the most striking difference being in the vertical shear of the wind in the layer from 1 to 3 km above ground level. In this layer the winds at the proximity station show an average increase of about 3 m sec/sup -1/ while the upstream, non-tornadic, station shows a slight decrease of wind speed with height.« less
Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System
NASA Technical Reports Server (NTRS)
Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott
2006-01-01
In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls velocity accuracy.
NASA Astrophysics Data System (ADS)
Lv, Lihui; Liu, Wenqing; Zhang, Tianshu; Chen, Zhenyi; Dong, Yunsheng; Fan, Guangqiang; Xiang, Yan; Yao, Yawei; Yang, Nan; Chu, Baolin; Teng, Man; Shu, Xiaowen
2017-09-01
Fine particle with diameter <2.5 μm (PM2.5) have important direct and indirect effects on human life and activities. However, the studies of fine particle were limited by the lack of monitoring data obtained with multiple fixed site sampling strategies. Mobile monitoring has provided a means for broad measurement of fine particles. In this research, the potential use of mobile lidar to map the distribution and transport of fine particles was discussed. The spatial and temporal distributions of particle extinction, PM2.5 mass concentration and regional transport flux of fine particle in the planetary boundary layer were investigated with the use of vehicle-based mobile lidar and wind field data from north China. Case studies under different pollution levels in Beijing were presented to evaluate the contribution of regional transport. A vehicle-based mobile lidar system was used to obtain the spatial and temporal distributions of particle extinction in the measurement route. Fixed point lidar and a particulate matter sampler were operated next to each other at the University of Chinese Academy of Science (UCAS) in Beijing to determine the relationship between the particle extinction coefficient and PM2.5 mass concentration. The correlation coefficient (R2) between the particle extinction coefficient and PM2.5 mass concentration was found to be over 0.8 when relative humidity (RH) was less than 90%. A mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, was used to obtain profiles of the horizontal wind speed, wind direction and relative humidity. A vehicle-based mobile lidar technique was applied to estimate transport flux based on the PM2.5 profile and vertical profile of wind data. This method was applicable when hygroscopic growth can be neglected (relatively humidity<90%). Southwest was found to be the main pathway of Beijing during the experiments.
Cloudiness over the Amazon rainforest: Meteorology and thermodynamics
NASA Astrophysics Data System (ADS)
Collow, Allison B. Marquardt; Miller, Mark A.; Trabachino, Lynne C.
2016-07-01
Comprehensive meteorological observations collected during GOAmazon2014/15 using the Atmospheric Radiation Measurement Mobile Facility no. 1 and assimilated observations from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 are used to document the seasonal cycle of cloudiness, thermodynamics, and precipitation above the Amazon rainforest. The reversal of synoptic-scale vertical motions modulates the transition between the wet and dry seasons. Ascending moist air during the wet season originates near the surface of the Atlantic Ocean and is advected into the Amazon rainforest, where it experiences convergence and, ultimately, precipitates. The dry season is characterized by weaker winds and synoptic-scale subsidence with little or no moisture convergence accompanying moisture advection. This combination results in the drying of the midtroposphere during June through October as indicated by a decrease in liquid water path, integrated water, and the vertical profile of water vapor mixing ratio. The vertical profile of cloud fraction exhibits a relatively consistent decline in cloud fraction from the lifting condensation level (LCL) to the freezing level where a minimum is observed, unlike many other tropical regions. Coefficients of determination between the LCL and cloud fractional coverage suggest a relatively robust relationship between the LCL and cloudiness beneath 5 km during the dry season (R2 = 0.42) but a weak relationship during the wet season (0.12).
Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; ...
2015-07-14
Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. Our paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated bymore » the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical, and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. But, there still is considerable need for reducing observational uncertainties and providing better observations especially for relative humidity and for the size distribution and chemical composition of aerosols in the upper troposphere.« less
Design analysis of vertical wind turbine with airfoil variation
NASA Astrophysics Data System (ADS)
Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad
2016-03-01
With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.
NASA Astrophysics Data System (ADS)
Walker, Ian J.; Hesp, Patrick A.; Davidson-Arnott, Robin G. D.; Bauer, Bernard O.; Namikas, Steven L.; Ollerhead, Jeff
2009-04-01
This study reports the responses of three-dimensional near-surface airflow over a vegetated foredune to variations in the conditions of incident flow during an 8-h experiment. Two parallel measurement transects were established on morphologically different dune profiles: i) a taller, concave-convex West foredune transect with 0.5-m high, densely vegetated (45%), seaward incipient foredune, and ii) a shorter, concave-straight East foredune transect with lower, sparsely vegetated (14%) seaward incipient foredune. Five stations on each transect from the incipient dune to the crest were equipped with ultrasonic anemometers at 0.6 and 1.65 m height and logged at 1 Hz. Incident conditions were recorded from a 4-m tower over a flat beach. Winds increased from 6 m s - 1 to > 20 m s - 1 and were generally obliquely onshore (ENE, 73°). Three sub-events and the population of 10-minute averages of key properties of flow ( U, W, S, CV U) from all sample locations on the East transect ( n = 235) are examined to identify location- and profile-specific responses over 52° of the incident direction of flow (from 11 to 63° onshore). Topographic steering and forcing cause major deviations in the properties and vectors of near-surface flow from the regional wind. Topographic forcing on the concave-straight dune profile increases wind speed and steadiness toward the crest, with speed-up values to 65% in the backshore. Wind speed and steadiness of flow are least responsive to changes in incident angle in the backshore because of stagnation of flow and are most responsive at the lower stoss under pronounced streamline compression. On the steeper concave-convex profile, speed and steadiness decrease toward the crest because of stagnation of flow at the toe and flow expansion at the slope inflection point on the lower stoss. Net downward vertical velocity occurs over both profiles, increases toward the crest, and reflects enhanced turbulent momentum conveyance toward the surface. All of these flow responses are enhanced with faster speeds of incident flow and/or more onshore winds. Significant onshore steering of near-surface vectors of flow (to 37°) occurs and is greatest closer to the surface and during highly oblique winds (~ 15° onshore). Therefore, even subtle effects of streamline compression and amplification of flow under alongshore conditions effectively steer flow and sand transport toward the dune. As topographic forcing and steering cause significant, three-dimensional deviations in near-surface properties of flow, most regional-scale and/or two-dimensional models of dune process-response dynamics are insufficient for characterizing coastal and desert dune sediment budgets and morphodynamics. In particular, deflection of sand transport vectors with greater fetch distances than those derived from regional winds may occur. Coincident flow, transport and morphological response data are required to better quantitatively model these processes.
NASA Astrophysics Data System (ADS)
Lowry, David; Brownlow, Rebecca; Fisher, Rebecca; Nisbet, Euan; Lanoisellé, Mathias; France, James; Thomas, Rick; Mackenzie, Rob; Richardson, Tom; Greatwood, Colin; Freer, Jim; Cain, Michelle; Warwick, Nicola; Pyle, John
2015-04-01
Methane mixing ratios have been rising rapidly worldwide since 2007. At Ascension Island (8oS in the equatorial Atlantic), a sustained rise has occurred. Prior to 2010, growth was comparable to other regions, but in 2010-11, during a strong la Nina event, the increase was 10ppb year-on-year. Reduced growth followed in 2011-12, but in 2012-13 strong growth resumed and continues. This rise has been accompanied by a shift to lighter δ13CCH4 values in 2010-11 in the equatorial tropics. The most likely cause of this shift is emissions from isotopically 'light' biological sources in the equatorial and savanna tropics. Ascension Island is in the Trade Wind belt of the tropical Atlantic, perfectly located to measure the South Atlantic marine boundary layer. The SE Trade Winds are almost invariant, derived from the deep South Atlantic and with little contact with Africa. However, above the Trade Wind Inversion (TWI) at about 1200-2000m asl, the air masses are very different, coming dominantly from tropical Africa and occasionally S. America. Depending on season, air above the TWI is sourced from the African southern savanna grasslands or the equatorial wetlands of Congo and Uganda, with inputs of air also from southern tropical S. America (Brazil, Paraguay, Bolivia). African methane sources are a major contributor to the global methane budget, but although local campaign studies have been made, African emissions are not well studied in bulk. In September 2014, an octocopter was used to retrieve air samples from heights up to 2700m asl on Ascension (see Thomas, R. et al, this volume). This allowed sampling through the marine boundary layer, across the TWI cloud layer, and into the mid-troposphere. Samples were collected in part-filled 5L Tedlar bags, which were analysed for CH4 concentration using Royal Holloway's Picarro 1301 CRDS system at the Met Office, Ascension. This has high precision and accuracy, with a 6-gas calibration suite. Bags were then analysed in the UK for δ13CCH4. The marine boundary layer at the surface has CH4 mixing ratios below 1800ppb. In the mixing layer of the TWI, values increase, and above 2000m, methane is above 1820ppb. Back trajectory analysis shows that these inputs are from African savanna and wetland emissions. After vertical mixing events the difference across the TWI reduces to less than 10ppb. The experiment has demonstrated the feasibility of UAV work to observe methane at Ascension. In effect, Ascension becomes a 'virtual mountain observatory' - measurements here can both use the Trade Winds to monitor the wide South Atlantic and Southern Ocean, and also the air above the TWI to assess inputs from tropical Africa and S. America. Comparison of continuous ground measurements, vertical UAV profiles and data from the Ascension TCCON site, potentially allows observation of a complete atmospheric profile. Acknowledgement This work is supported by the Natural Environment Research Council Grant NE/K005979/1
Device for passive flow control around vertical axis marine turbine
NASA Astrophysics Data System (ADS)
Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.
2012-11-01
The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.
NASA Astrophysics Data System (ADS)
Li, Juan; Fu, Qingyan; Huo, Juntao; Wang, Dongfang; Yang, Wen; Bian, Qinggen; Duan, Yusen; Zhang, Yihua; Pan, Jun; Lin, Yanfen; Huang, Kan; Bai, Zhipeng; Wang, Sheng-Hsiang; Fu, Joshua S.; Louie, Peter K. K.
2015-12-01
A Tethered balloon-based field campaign was launched for the vertical observation of air pollutants within the lower troposphere of 1000 m for the first time over a Chinese megacity, Shanghai in December of 2013. A custom-designed instrumentation platform for tethered balloon observation and ground-based observation synchronously operated for the measurement of same meteorological parameters and typical air pollutants. One episodic event (December 13) was selected with specific focus on particulate black carbon, a short-lived climate forcer with strong warming effect. Diurnal variation of the mixing layer height showed very shallow boundary of less than 300 m in early morning and night due to nocturnal inversion while extended boundary of more than 1000 m from noon to afternoon. Wind profiles showed relatively stagnant synoptic condition in the morning, frequent shifts between upward and downward motion at noon and in the afternoon, and dominant downward motion with sea breeze in the evening. Characteristics of black carbon vertical profiles during four different periods of a day were analyzed and compared. In the morning, surface BC concentration averaged as high as 20 μg/m3 due to intense traffic emissions from the morning rush hours and unfavorable meteorological conditions. A strong gradient of BC concentrations with altitude was observed from the ground to the top of boundary layer at around 250-370 m. BC gradients turned much smaller above the boundary layer. BC profiles measured during noon and afternoon were the least dependent on heights. The largely extended boundary layer with strong vertical convection was responsible for a well mixing of BC particles in the whole measured column. BC profiles were similar between the early-evening and late-evening phases. The lower troposphere was divided into two stratified air layers with contrasted BC vertical distributions. Profiles at night showed strong gradients from the relatively high surface concentrations to low concentrations near the top of the boundary layer around 200 m. Above the boundary layer, BC increased with altitudes and reached a maximum at the top of 1000 m. Prevailing sea breeze within the boundary layer was mainly responsible for the quick cleanup of BC in the lower altitudes. In contrast, continental outflow via regional transport was the major cause of the enhanced BC aloft. This study provides a first insight of the black carbon vertical profiles over Eastern China, which will have significant implications for narrowing the gaps between the source emissions and observations as well as improving estimations of BC radiative forcing and regional climate.
NASA Astrophysics Data System (ADS)
Yamaguchi, R.; Suga, T.
2016-12-01
Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.
Basic principles and recent observations of rotationally sampled wind
NASA Technical Reports Server (NTRS)
Connell, James R.
1995-01-01
The concept of rotationally sampled wind speed is described. The unusual wind characteristics that result from rotationally sampling the wind are shown first for early measurements made using an 8-point ring of anemometers on a vertical plane array of meteorological towers. Quantitative characterization of the rotationally sampled wind is made in terms of the power spectral density function of the wind speed. Verification of the importance of the new concept is demonstrated with spectral analyses of the response of the MOD-OA blade flapwise root bending moment and the corresponding rotational analysis of the wind measured immediately upwind of the MOD-OA using a 12-point ring of anemometers on a 7-tower vertical plane array. The Pacific Northwest Laboratory (PNL) theory of the rotationally sampled wind speed power spectral density function is tested successfully against the wind spectrum measured at the MOD-OA vertical plane array. A single-tower empirical model of the rotationally sampled wind speed is also successfully tested against the measurements from the full vertical plane array. Rotational measurements of the wind velocity with hotfilm anemometers attached to rotating blades are shown to be accurate and practical for research on winds at the blades of wind turbines. Some measurements at the rotor blade of a MOD-2 turbine using the hotfilm technique in a pilot research program are shown. They are compared and contrasted to the expectations based upon application of the PNL theory of rotationally sampled wind to the MOD-2 size and rotation rate but without teeter, blade bending, or rotor induction accounted for. Finally, the importance of temperature layering and of wind modifications due to flow over complex terrain is demonstrated by the use of hotfilm anemometer data, and meteorological tower and acoustic doppler sounder data from the MOD-2 site at Goodnoe Hills, Washington.
Analysis of Rapidly Developing Low Cloud Ceilings in a Stable Environment
NASA Technical Reports Server (NTRS)
Wheeler, Mark M.; Case, Jonathan L.
2005-01-01
This report describes the work done by the Applied Meteorology Unit (AMU) in developing a database of days that experienced rapid (< 90 minutes) low cloud formation in a stable atmosphere, resulting in ceilings at the Shuttle Landing Facility (TTS) that violated Space Shuttle Flight Rules (FR). The meteorological conditions favoring the rapid formation of low ceilings include the presence of any inversion below 8000 ft, high relative humidity beneath the inversion, and a clockwise turning of the winds from the surface to the middle troposphere (approx. 15000 ft). The AMU compared and contrasted the atmospheric and thermodynamic conditions between days with rapid low ceiling formation and days with low ceiling resulting from other mechanism. The AMU found that the vertical wind profile is the probable discerning factor between the rapidly-forming ceiling days and other low ceiling days at TTS. Most rapidly-developing low ceiling days had a clockwise turning of the winds with height, whereas other low ceiling days typically had a counter-clockwise turning of the winds with height or negligible vertical wind shear. Forecasters at the Space Meteorology Group (SMG) issue 30 to 90 minute forecasts for low cloud ceilings at TTS to support Space Shuttle landings. Mission verification statistics have shown ceilings to be the number one forecast challenge. More specifically, forecasters at SMG are concerned with any rapidly developing clouds ceilings below 8000 ft in a stable, capped thermodynamic environment, Therefore, the AMU was tasked to examine archived events of rapid stable cloud formation resulting in ceilings below 8000 ft, and document the atmospheric regimes favoring this type of cloud development. The AMU examined the cool season months of November to March during the years of 1993-2003 for days that had low-level inversions and rapid, stable low cloud formation that resulted in ceilings violating the Space Shuttle FR. The AMU wrote and modified existing code to identify inversions from the morning Cape Canaveral, FL rawinsonde (XMR) during the cool season and output pertinent sounding information. They parsed all days with cloud ceilings below 8000 ft at TTS, forming a database of possible rapidly-developing low ceiling events. Days with precipitation or noticeable fog bum-off situations were excluded from the database. Only the daytime hours were examined for possible ceiling development events since low clouds are easier to diagnose with visible satellite imagery. Follow-on work would expand the database to include nighttime cases, using a special enhancement of the infrared imagery for identifying areas of low clouds. The report presents two sample cases of rapidly-developing low cloud ceilings. These cases depict the representative meteorological and thermodynamic characteristics of such events. The cases also illustrate how quickly the cloud decks can develop, sometimes forming in 30 minutes or less. The report also summarizes the composite meteorological conditions for 20 event days with rapid low cloud ceiling formation and 48 non-events days consisting of advection or widespread low cloud ceilings. The meteorological conditions were quite similar for both the event and non-event days, since both types of days experienced low cloud ceilings. Both types of days had a relatively moist environment beneath the inversion based below 8000 ft. In the 20 events identified, de onset of low ceilings occurred between 1200-1800 UTC in every instance. The distinguishing factor between the event and non-event days appears to be the vertical wind profile in the XMR sounding. Eighty-five percent of the event days had a clockwise turning of the winds with height in the lower to middle troposphere whereas 83% of the non-events had a counter-clockwise turning of the winds with height or negligible vertical wind shear. A clockwise turning of the winds with height indicates a warm advection regime, which supports large-scale rising motn and possible cloud formation. Meanwhile, a counter-clockwise turning of the winds with height indicates cold advection or sinking motion in a post-cold frontal environment.
Electric power from vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Touryan, K. J.; Strickland, J. H.; Berg, D. E.
1987-12-01
Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.
1993-08-12
Shop for their expert assistance during thze design ard development ur the wind tunnel and experimental apparatus; Drs. Alan L. Kistler, Seth Lichter...vertical wind tunnel was designed and built for this research. I With the test section in a vertical orientation, gravity effects leading to cylinder sag...were eliminated. The overall design and layout of the wind tunnel, as well as specific design features incorporated into the wind tunnel to satisfy
NASA Technical Reports Server (NTRS)
Manson, A. H.; Meek, C. E.
1989-01-01
The continuing series of horizontal wind measurements by the spaced-antenna real time winds (RTW) method was supplemented by a phase coherent system for two years. Vertical motions are inferred from the complex autocorrelation functions, and an RTW system provides 5 min samples from 60 to 110 km. Comparisons with full interferometric 3-D velocity measurements confirm the validity of this approach. Following comparisons and corrections with the horizontal winds, mean summer and winter (24 h) days of vertical motions are shown. Tidal fluctuations are evident. In summer the motions are downward, consistent with data from Poker Flat, and the suggestion of Coy et al. (1986) that these represent Eulerian motions. The expected upward Lagrangian motion then results from adding up upward Stokes' drift. The winter motions are more complex, and are discussed in the context of gravity wave fluxes and possible meridional cells. The divergence of the vertical flux of zonal momentum is also calculated and found to be similar to the coriolis torque due to the meridional winds.
Model for wind resource analysis and for wind farm planning
NASA Astrophysics Data System (ADS)
Rozsavolgyi, K.
2008-12-01
Due to the ever increasing anthropogenic environmental pollution and the worldwide energy demand, the research and exploitation of environment-friendly renewable energy sources like wind, solar, geothermal, biomass become more and more important. During the last decade wind energy utilization has developed dynamically with big steps. Over just the past seven years, annual worldwide growth in installed wind capacity is near 30 %. Over 94 000 MW installed currently all over the world. Besides important economic incentives, the most extensive and most accurate scientific results are required in order to provide beneficial help for regional planning of wind farms to find appropriate sites for optimal exploitation of this renewable energy source. This research is on the spatial allocation of possible wind energy usage for wind farms. In order to carry this out a new model (CMPAM = Complex Multifactoral Polygenetic Adaptive Model) is being developed, which basically is a wind climate-oriented system, but other kind of factors are also considered. With this model those areas and terrains can be located where construction of large wind farms would be reasonable under the given conditions. This model consist of different sub- modules such as wind field modeling sub module (CMPAM/W) that is in high focus in this model development procedure. The wind field modeling core of CMPAM is mainly based on sGs (sequential Gaussian simulation) hence geostatistics, but atmospheric physics and GIS are used as well. For the application developed for the test area (Hungary) WAsP visualization results were used from 10 m height as input data. This data was geocorrected (GIS geometric correction) before it was used for further calculations. Using optimized variography and sequential Gaussian simulation, results were applied for the test area (Hungary) at different heights. Simulation results were produced and summarized for different heights. Furthermore an exponential regressive function describing the vertical wind profile was also established. The following altitudes were examined: 10 m, 30 m, 60 m, 80 m, 100 m, 120 m and 140 m. By the help of the complex analyses of CMPAM, where not just mere wind climatic and meteorological factors are considered, detailed results have been produced to 100 m height. Results at this altitude were analyzed and explained in a more detailed way because this altitude proved to be the first height that can ensure adequate wind speed for larger wind farms for wind energy exploitation in the test area. Keywords: wind site assessment, wind field modeling, complex modeling for planning of wind farm, sequential Gaussian simulation, GIS, wind profile
NASA Astrophysics Data System (ADS)
Gunn, A.; Jerolmack, D. J.; Edmonds, D. A.; Ewing, R. C.; Wanker, M.; David, S. R.
2017-12-01
Aolian sand dunes grow to 100s or 1000s of meters in wavelength by sand saltation, which also produces dust plumes that feed cloud formation and may spread around the world. The relations among sediment transport, landscape dynamics and wind are typically observed at the limiting ends of the relevant range: highly resolved and localized ground observations of turbulence and relevant fluxes; or regional and synoptic-scale meteorology and satellite imagery. Between the geostrophic winds aloft and shearing stress on the Earth's surface is the boundary layer, whose stability and structure determines how momentum is transferred and ultimately entrains sediment. Although the literature on atmospheric boundary layer flows is mature, this understanding is rarely applied to aeolian landscape dynamics. Moreover, there are few vertically and time-resolved datasets of atmospheric boundary layer flows in desert sand seas, where buoyancy effects are most pronounced. Here we employ a ground-based upward-looking doppler lidar to examine atmospheric boundary layer flow at the upwind margin of the White Sands (New Mexico) dune field, providing continuous 3D wind velocity data from the surface to 300-m aloft over 70 days of the characteristically windy spring season. Data show highly resolved daily cyles of convective instabilty due to daytime heating and stable stratification due to nightime cooling which act to enhance or depress, respectively, the surface wind stresses for a given free-stream velocity. Our data implicate convective instability in driving strong saltation and dust emission, because enhanced mixing flattens the vertical velocity profile (raising surface wind speed) while upward advection helps to deliver dust to the high atmosphere. We also find evidence for Ekman spiralling, with a magnitude that depends on atmospheric stability. This spiralling gives rise to a deflection in the direction between geostrophic and surface winds, that is significant for the orientation of dunes.
Infrared experiments for spaceborne planetary atmospheres research. Full report
NASA Technical Reports Server (NTRS)
1981-01-01
The role of infrared sensing in atmospheric science is discussed and existing infrared measurement techniques are reviewed. Proposed techniques for measuring planetary atmospheres are criticized and recommended instrument developments for spaceborne investigations are summarized for the following phenomena: global and local radiative budget; radiative flux profiles; winds; temperature; pressure; transient and marginal atmospheres; planetary rotation and global atmospheric activity; abundances of stable constituents; vertical, lateral, and temporal distribution of abundances; composition of clouds and aerosols; radiative properties of clouds and aerosols; cloud microstructure; cloud macrostructure; and non-LTE phenomena.
Broad perspectives in radar for ocean measurements
NASA Technical Reports Server (NTRS)
Jain, A.
1978-01-01
The various active radar implementation options available for the measurement functions of interest for the SEASAT follow-on missions were evaluated. These functions include surface feature imaging, surface pressure and vertical profile, atmospheric sounding, surface backscatter and wind speed determination, surface current location, wavelength spectra, sea surface topography, and ice/snow thickness. Some concepts for the Synthetic Aperture Imaging Radar were examined that may be useful in the design and selection of the implementation options for these missions. The applicability of these instruments for the VOIR mission was also kept under consideration.
NASA Technical Reports Server (NTRS)
Blanco, J.; Thomas, A.; Strub, T.; Carr, M.
2000-01-01
The evolution of oceanographic conditions in the upwelling region off northern Chile (18(sup o) - 24(sup o)S) betweeen 1996 and 1998 (including 1997-1998 El Nino) is presented using hydrographic measurements acquired on quarterly cruises of the Chilean Fisheries Institute, sea-surface temperature (SST), sea level, and wind speeds from Arica (18.5(sup o)S), Iquique (20.5(sup o)S), and Antofagasta (23.5(sup o)S), and a time series of vertical temperature profiles off Iquique.
Merged and corrected 915 MHz Radar Wind Profiler moments
Jonathan Helmus,Virendra Ghate, Frederic Tridon
2014-06-25
The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.
Low-profile heliostat design for solar central receiver systems
NASA Technical Reports Server (NTRS)
Fourakis, E.; Severson, A. M.
1977-01-01
Heliostat designs intended to reduce costs and the effect of adverse wind loads on the devices were developed. Included was the low-profile heliostat consisting of a stiff frame with sectional focusing reflectors coupled together to turn as a unit. The entire frame is arranged to turn angularly about a center point. The ability of the heliostat to rotate about both the vertical and horizontal axes permits a central computer control system to continuously aim the sun's reflection onto a selected target. An engineering model of the basic device was built and is being tested. Control and mirror parameters, such as roughness and need for fine aiming, are being studied. The fabrication of these prototypes is in process. The model was also designed to test mirror focusing techniques, heliostat geometry, mechanical functioning, and tracking control. The model can be easily relocated to test mirror imaging on a tower from various directions. In addition to steering and aiming studies, the tests include the effects of temperature changes, wind gusting and weathering. The results of economic studies on this heliostat are also presented.
Structure of the middle atmosphere of Venus and future observation with PFS on Venus Express.
NASA Astrophysics Data System (ADS)
Zasova, L. V.; Formisano, V.; Moroz, V. I.; Ignatiev, N. I.; Khatountsev, I. A.
Investigation of the middle atmosphere of Venus (55 -- 100 km) will allow to advance our knowledge about the most puzzling phenomena of the Venus dynamics -- its superrotation. More than 70% of all absorbed by Venus Solar energy is deposited there, results in the thermal tides generation and giving energy to support the superrotation. The importance of the tides in the middle atmosphere is manifested by the tidal character of the local time variation of the structure of the thermal field, zonal wind field (especially, behavior of the wind speed in the mid latitude jet), upper clouds, with amplitudes depending on the altitude and latitude. Investigation of the middle atmosphere is a scientific goal of the long wavelength channel of PFS on Venus Express, as well as of its short wavelength channel (the latter on the day side). The 3D temperature, aerosol, thermal wind and SO2 abundance fields, spatial distribution of abundance of H2O (possibly vertical profile), CO, HCl, HF will be obtained.
A tidal explanation for the sunrise/sunset anomaly in HALOE low-latitude nitric oxide observations
NASA Astrophysics Data System (ADS)
Marsh, Daniel R.; Russell, James M., III
2000-10-01
The difference in sunrise and sunset low-latitude nitric oxide (NO) mixing ratios in the mesosphere and lower thermosphere (MLT) is shown to be consistent with a perturbation induced by the migrating diurnal tide. The vertical wind of the tide can induce factor of 2 changes over 12 hours at the equator. The vertical, latitudinal and temporal structure of NO perturbations closely matches the structure of vertical winds from a tidal model. In addition, previous observations of the seasonal and interannual variation in the tidal wind appear to correlate with NO variations.
Latest Data on Thermohaline Structure and Circulation of the Dying Aral Sea
NASA Astrophysics Data System (ADS)
Izhitsky, Alexander; Zavialov, Peter
2010-05-01
The results of the latest expedition of the Shirshov Institute to the Aral Sea are reported. The survey encompassed 15 field days in August, 2009. An interdisciplinary oceanographic study in the western basin of the sea was conducted during the expedition. Vertical profiles of temperature, salinity and fluorescence were obtained using a CTD profiler at 8 stations across the western basin. Two mooring stations equipped with current meters, one at the surface and one in the bottom layer at each station, as well as pressure gauges at the bottom, were deployed for 5 days in the deepest portion of the western basin. One of the stations was installed at the western slope of the basin, while the other one was positioned at the eastern slope. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. The vertical structure of the themohaline fields exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and at the bottom. The intermediate layer was characterized by a core of minimum salinity and temperature, also accompanied by maximum fluorescence. Such a pattern indicates that the signature of the denser, saltier water originating from the eastern basin is still evident, even though the eastern basin itself dried up almost completely during the summer of 2009. The surface salinity was around 136 ppt, which constituted a notable increase for about 20 ppt since the summer of 2008. Over the same period, sea level decreased by 164 cm since the summer of 2008. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing.
NASA Astrophysics Data System (ADS)
Han, Suqin; Liu, Jingle; Hao, Tianyi; Zhang, Yufen; Li, Peiyan; Yang, Jianbo; Wang, Qinliang; Cai, Ziying; Yao, Qing; Zhang, Min; Wang, Xiujun
2018-04-01
The vertical distribution of PM2.5 and meteorological parameters from ground to upper levels were observed simultaneously using meteorological tower, tethered balloons and aerosol laser radar in Dec of 2016 in the urban area of Tianjin and its southern district, Jinghai. The influence of the vertical structure of boundary layer on a typical haze-fog episode was analyzed. There existed long distance transport of PM in the high layers before the haze formed in Tianjin and the downward airflows brought the PM from the high layer to the ground. In the early stages of this episode, periodic temperature inversions occurred, leading to conspicuous diurnal variations in the vertical profile of the PM2.5. In the middle and late stages of this episode, strong inversion and thick humidity layer were sustained below 400 m, and there were no big daily changes in the vertical profiles of the PM2.5. During the rapid formation period of the fog, the inversion layer was damaged and turbulence was strengthened. During the stationary phase of the fog process, wind and turbulence in the boundary layer became weak again. Rime was the main weather-related, wet cleaning mechanism that lowered pollutants concentration during this fog episode. High concentrations of water soluble ions in the rime samples and the concentrations of those ions in ambient PM2.5 appeared significant decrease during the rime period, which illustrated the scavenging effect of rime.
Local wind forcing of the Monterey Bay area inner shelf
Drake, P.T.; McManus, M.A.; Storlazzi, C.D.
2005-01-01
Wind forcing and the seasonal cycles of temperature and currents were investigated on the inner shelf of the Monterey Bay area of the California coast for 460 days, from June 2001 to September 2002. Temperature measurements spanned an approximate 100 km stretch of coastline from a bluff just north of Monterey Bay south to Point Sur. Inner shelf currents were measured at two sites near the bay's northern shore. Seasonal temperature variations were consistent with previous observations from the central California shelf. During the spring, summer and fall, a seasonal mean alongshore current was observed flowing northwestward in the northern bay, in direct opposition to a southeastward wind stress. A barotropic alongshore pressure gradient, potentially driving the northwestward flow, was needed to balance the alongshore momentum equation. With the exception of the winter season, vertical profiles of mean cross-shore currents were consistent with two-dimensional upwelling and existing observations from upwelling regions with poleward subsurface flow. At periods of 15-60 days, temperature fluctuations were coherent both throughout the domain and with the regional wind field. Remote wind forcing was minimal. During the spring upwelling season, alongshore currents and temperatures in the northern bay were most coherent with winds measured at a nearby land meteorological station. This wind site showed relatively low correlations to offshore buoy wind stations, indicating localized wind effects are important to the circulation along this stretch of Monterey Bay's inner shelf. ?? 2004 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Garate-Lopez, Itziar; Lebonnois, Sébastien
2017-04-01
A new simulation of Venus atmospheric circulation obtained with the LMD Venus GCM is described and the impact of cloud's latitudinal structure on the general circulation is analyzed. The model used here is based on that presented in Lebonnois et al. (2016). However, in the present simulation we consider the latitudinal variation of the cloud structure (Haus et al., 2014) both for the solar heating and to compute the infrared net-exchange rate matrix used in the radiative transfer module. The new cloud treatment affects mainly the balance in the angular momentum and the zonal wind distribution. Consequently, the agreement between the vertical profile of the modeled mean zonal wind and the profiles measured by different probes, is clearly improved from previous simulations in which zonal winds below the clouds were weak (roughly half the observed values). Moreover, the equatorial jet obtained at the base of the cloud deck is now more consistent with the observations. In Lebonnois et al. (2016) it was too strong compared to mid-latitudes, but in the present simulation the equatorial jet is less intense than the mid-latitude jets, in concordance with cloud-tracking measurements (Hueso et al., 2015). Since the atmospheric waves play a crucial role in the angular momentum budget of the Venus's atmospheric circulation, we analyze the wave activity by means of the Fast Fourier Transform technique studying the frequency spectrum of temperature, zonal and meridional wind fields. Modifications in the activity of the different types of waves present in the Venusian atmosphere compared to Lebonnois et al. (2016) are discussed, in terms of horizontal and vertical transport of the angular momentum by diurnal and semi-diurnal tides, barotropic and baroclinic waves, and Rossby and Kelvin type waves. Haus R., Kappel D. and Arnold G., 2014. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus 232, 232-248. Hueso R., Peralta J., Garate-Lopez I., et al., 2015. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus express. Planet. Space Sci. 113-114, 78-99. Lebonnois S., Sugimoto N., and Gilli G., 2016. Wave analysis in the atmosphere of Venus below 100km altitude, simulated by the LMD Venus GCM. Icarus 278, 38-51.
The tropical tropopause inversion layer: variability and modulation by equatorial waves
NASA Astrophysics Data System (ADS)
Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl
2016-09-01
The tropical tropopause layer (TTL) acts as a transition layer between the troposphere and the stratosphere over several kilometers, where air has both tropospheric and stratospheric properties. Within this region, a fine-scale feature is located: the tropopause inversion layer (TIL), which consists of a sharp temperature inversion at the tropopause and the corresponding high static stability values right above, which theoretically affect the dispersion relations of atmospheric waves like Rossby or inertia-gravity waves and hamper stratosphere-troposphere exchange (STE). Therefore, the TIL receives increasing attention from the scientific community, mainly in the extratropics so far. Our goal is to give a detailed picture of the properties, variability and forcings of the tropical TIL, with special emphasis on small-scale equatorial waves and the quasi-biennial oscillation (QBO).We use high-resolution temperature profiles from the COSMIC satellite mission, i.e., ˜ 2000 measurements per day globally, between 2007 and 2013, to derive TIL properties and to study the fine-scale structures of static stability in the tropics. The situation at near tropopause level is described by the 100 hPa horizontal wind divergence fields, and the vertical structure of the QBO is provided by the equatorial winds at all levels, both from the ERA-Interim reanalysis.We describe a new feature of the equatorial static stability profile: a secondary stability maximum below the zero wind line within the easterly QBO wind regime at about 20-25 km altitude, which is forced by the descending westerly QBO phase and gives a double-TIL-like structure. In the lowermost stratosphere, the TIL is stronger with westerly winds. We provide the first evidence of a relationship between the tropical TIL strength and near-tropopause divergence, with stronger (weaker) TIL with near-tropopause divergent (convergent) flow, a relationship analogous to that of TIL strength with relative vorticity in the extratropics.To elucidate possible enhancing mechanisms of the tropical TIL, we quantify the signature of the different equatorial waves on the vertical structure of static stability in the tropics. All waves show, on average, maximum cold anomalies at the thermal tropopause, warm anomalies above and a net TIL enhancement close to the tropopause. The main drivers are Kelvin, inertia-gravity and Rossby waves. We suggest that a similar wave modulation will exist at mid- and polar latitudes from the extratropical wave modes.
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Rabenhorst, S. D.; Delgado, R.; Dreessen, J.; Sumnicht, G. K.; Twigg, L.
2016-12-01
A unique multi-day air quality event occurred throughout the Mid-Atlantic region from June 9-12, 2015. The June event was coupled to the advection of widespread smoke and debris from western Canada throughout the region. Observations indicated that the aged smoke impacted the Planetary Boundary Layer (PBL) and greatly enhanced ozone concentrations at the surface. Many ground sites in the region, particularly in Maryland, recorded 8-hr ozone concentrations that were in exceedance of the 75 ppb EPA National Ambient Air Quality Standard (NAAQS). After the high O3 episode occurred, a nocturnal low-level jet developed throughout the Mid-Atlantic region, which was spatially correlated with next day high O3 at several sites within the New England region. During this event, nearly continuous vertical profiles of ozone are presented at Beltsville, MD from the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL), which has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Lidar observations reveal a well-mixed polluted PBL, nocturnal residual layer, and subsequent mixing down of the residual layer in the morning. Additional measurements of surface ozone, aerosol lidar profiles, wind profiles, and balloon borne profiles are also presented. Model output and trajectory analyses are also presented to illustrate the complex flow regimes that occurred during the daytime and nighttime to help redistribute the polluted air mass.
Understanding the dimensional and mechanical properties of coastal Langmuir Circulations
NASA Astrophysics Data System (ADS)
Shrestha, Kalyan; Kuehl, Joseph; Anderson, William
2017-11-01
Non-linear interaction of surface waves and wind-driven shear instability in the upper ocean mixed layer form counter-rotating vortical structures called Langmuir Circulations. This oceanic microscale turbulence is one of the key contributors of mixing and vertical transport in the upper ocean mixed layer. Langmuir turbulence in the open (deep) ocean has already been the topic of a large research effort. However, coastal Langmuir cells are distinctly different from Langmuir cells in open-ocean regions, where additional bottom-boundary layer shear alters the kinematic properties of Langmuir cells. For this study, we have conducted a wide-ranging numerical study (solving the grid-filtered Craik-Leibovich equations) of coastal Langmuir turbulence, assessing which parameters affect Langmuir cells and defining the parametric hierarchy. The Stokes profile (aggregate velocity due to orbital wave motion) is functionally dependent on Stokes drift velocity and wavenumber of the surface waves. We explain that these parameters, which correspond to the environmental forcing variables, control the horizontal and vertical length scales of Langmuir cell respectively. This result is important in understanding the transport and dispersion of materials in the upper mixed layer of coastal ocean. We argue that wind stress is a parameter governing the strength of Langmuir cells.
On the Effect of Offshore Wind Parks on Ocean Dynamics
NASA Astrophysics Data System (ADS)
Ludewig, E.; Pohlmann, T.
2012-12-01
Nowadays renewable energy resources play a key role in the energy supply discussion and especially an increasingly interest in wind energy induces intensified installations of wind parks. At this offshore wind energy gains in popularity in the course of higher and more consistent energy availability than over land. For example Germany's government adopted a national interurban offshore wind energy program comprising the construction of hundreds of wind turbines within Germany's Exclusive Economic Zone to ensure up to 50% of Germany's renewable energy supply. The large number of installation in coastal regions asks for analyzing the impact of offshore wind parks (OWPs) on the atmosphere and the ocean. As known from literature such wind parks excite also-called wake-effect and such an influence on the wind field in turn affects ocean circulation. To cover OWP's impact on ocean dynamics we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). All simulations were driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines. Wind forcing data were generated in collaboration with and by courtesy of the Meteorological Institute of the University of Hamburg, Department Technical Meteorology, Numeric Modeling-METRAS. To evaluate dynamical changes forced by the OWP's wind wake-effect we did a sensitivity study with a theoretical setup of a virtual ocean of 60m depth with a flat bottom and a temperature and salinity stratification according to common North Sea's conditions. Here our results show that already a small OWP of 12 wind turbines, placed in an area of 4 km^2, lead to a complex change in ocean dynamics. Due to the wake-effect zones of upwelling and downwelling are formed within a minute after turning-on wind turbines. The evolving vertical cells have a size of around 15x15 kilometers with a vertical velocity in order of 10^-2 mm/sec influencing the dynamic of an area being hundred times bigger than the wind park itself. The emerged vertical structure is generated due to a newly created geostrophic balance resulting in a redistribution of the ocean mass field. A number of additional upwelling and downwelling cells around the wind park support an intensified vertical dispersion through all layers and incline the thermocline which also influences the lower levels. The disturbances of mass show a dipole structure across the main wind direction with a maximum change in thermocline depth of some meters close to the OWP. Diffusion, mostly driven by direct wind induced surface shear is also modified by the wind turbines and supports a further modification of the vertical patterns. Considering that wind turbines operate only in a special window of wind speed, i.e. wind turbines will stop in case of too weak or too strong wind speeds as well as in case of technical issues, the averaged dimension and intensity of occurring vertical cells depend on the number of rotors and expected wind speeds. Finally we will focus on scenario runs for the North Sea under fully realistic conditions to estimate possible changes in ocean dynamics due to OWPs in future and these results will be further used for process analyzes of the ecosystem. If we assume a continuous operation of North Sea's OWPs in future we expect a fundamental constant change in ocean dynamics and moreover in the ecosystem in its vicinity.
Sensitivity analysis of the space shuttle to ascent wind profiles
NASA Technical Reports Server (NTRS)
Smith, O. E.; Austin, L. D., Jr.
1982-01-01
A parametric sensitivity analysis of the space shuttle ascent flight to the wind profile is presented. Engineering systems parameters are obtained by flight simulations using wind profile models and samples of detailed (Jimsphere) wind profile measurements. The wind models used are the synthetic vector wind model, with and without the design gust, and a model of the vector wind change with respect to time. From these comparison analyses an insight is gained on the contribution of winds to ascent subsystems flight parameters.
Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion
NASA Astrophysics Data System (ADS)
Yang, Haijun; Wang, Kun; Dai, Haijin; Wang, Yuxing; Li, Qing
2016-06-01
Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated using a fully coupled climate model. The AMOC can change significantly when perturbed by either wind stress or freshwater flux in the North Atlantic. This study focuses on wind stress effect. Our model results show that the wind forcing is crucial in maintaining the AMOC. Reducing wind forcing over the ocean can cause immediately weakening of the vertical salinity diffusion and convection in the mid-high latitudes Atlantic, resulting in an enhancement of vertical salinity stratification that restrains the deep water formation there, triggering a slowdown of the thermohaline circulation. As the thermohaline circulation weakens, the sea ice expands southward and melts, providing the upper ocean with fresh water that weakens the thermohaline circulation further. The wind perturbation experiments suggest a positive feedback between sea-ice and thermohaline circulation strength, which can eventually result in a complete shutdown of the AMOC. This study also suggests that sea-ice variability may be also important to the natural AMOC variability on decadal and longer timescales.
Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade
NASA Astrophysics Data System (ADS)
Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.
2016-08-01
To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.
Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler
NASA Technical Reports Server (NTRS)
Vacek, Austin
2016-01-01
Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.
Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler
NASA Technical Reports Server (NTRS)
Vacek, Austin
2015-01-01
Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ben; Qian, Yun; Berg, Larry K.
We evaluate the sensitivity of simulated turbine-height winds to 26 parameters applied in a planetary boundary layer (PBL) scheme and a surface layer scheme of the Weather Research and Forecasting (WRF) model over an area of complex terrain during the Columbia Basin Wind Energy Study. An efficient sampling algorithm and a generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of modeled turbine-height winds. The results indicate that most of the variability in the ensemble simulations is contributed by parameters related to the dissipation of the turbulence kinetic energy (TKE), Prandtl number, turbulencemore » length scales, surface roughness, and the von Kármán constant. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability. The parameter associated with the TKE dissipation rate is found to be the most important one, and a larger dissipation rate can produce larger hub-height winds. A larger Prandtl number results in weaker nighttime winds. Increasing surface roughness reduces the frequencies of both extremely weak and strong winds, implying a reduction in the variability of the wind speed. All of the above parameters can significantly affect the vertical profiles of wind speed, the altitude of the low-level jet and the magnitude of the wind shear strength. The wind direction is found to be modulated by the same subset of influential parameters. Remainder of abstract is in attachment.« less
Observations and modelling of the boundary layer using remotely piloted aircraft
NASA Astrophysics Data System (ADS)
Cayez, Gregoire; Dralet, Jean-Philippe; Seity, Yann; Momboisse, Geraud; Hattenberger, Gautier; Bronz, Murat; Roberts, Greg
2014-05-01
Over the past decade, the scientific community considers the RPAS (remotely piloted aircraft system) as a tool which can help to improve their knowledge of climate and atmospheric phenomena. RPAS equipped with instruments can now conduct measurements in areas that are too hazardous or remote for a manned plane. RPAS are especially adapted system for observing the atmospheric boundary layer processes at high vertical and temporal resolution. The main objectives of VOLTIGE (Vecteur d'Observation de La Troposphère pour l'Investigation et la Gestion de l'Environnement) are to study the life cycle of fog with micro-RPAS, encourage direct participation of the students on the advancement and development of novel observing systems, and assess the feasibility of deploying RPAS in Météo-France's operational network. The instrumented RPAS flights successfully observed the evolution of small-scale meteorological events. Before the arrival of the warm pseudo-front, profiles show a temperature inversion of a hundred meters, which overlaps a cold and wet atmospheric layer. Subsequent profiles show the combination of the arrival of a marine air mass as well as the arrival of a higher level warm pseudo-front. A third case study characterizes the warm sector of the disturbance. Two distinct air masses are visible on the vertical profiles, and show a dry air above an air almost saturated and slightly colder. The temperature and the relative humidity profiles show < 1 meter vertical resolution with a difference between ascent and descent profiles within ± 0.5°C and ± 6 % RH. These results comply with the Météo-France standard limits of quality control. The RPAS profiles were compared with those of the Arome forecast model (an operational model at Météo France). The temperature and wind in the Arome model profiles generally agree with those of the RPAS (less for relative humidity profiles). The Arome model also suggests transitions between air masses occurred at a higher level than those measured by RPAS. These results suggest that forecast models may be improved using high resolution and frequent in-situ measurements.
NASA Astrophysics Data System (ADS)
Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.
1988-09-01
The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.
NARSTO SOS99NASH WIND PROFILER DATA
Atmospheric Science Data Center
2018-04-16
NARSTO SOS99NASH WIND PROFILER DATA Project Title: NARSTO ... Platform: Ground Station Instrument: Wind Profiler Location: Nashville, Tennessee Spatial ... Data Guide Documents: SOS99Nash Wind Profiler Guide Related Data: Southern Oxidants ...
NASA Astrophysics Data System (ADS)
Knievel, Jason Clark
The author examines a mesoscale convective system (MCS) and the mesoscale convective vortex (MCV) it generated. The MCS, which comprised a leading convective line and trailing stratiform region, traversed Kansas and Oklahoma on 1 August 1996, passing through the NOAA Wind Profiler Network, as well as four sites from which soundings were being taken every three hours during a field project. The unusually rich data set permitted study of the MCS and MCV over nine hours on scales between those of operational rawinsondes and Doppler radars. The author used a spatial bandpass filter to divide observed wind into synoptic and mesoscale components. The environment-relative, mesoscale wind contained an up- and downdraft and divergent outflows in the lower and upper troposphere. The mesoscale wind was asymmetric about the MCS, consistent with studies of gravity waves generated by heating typical of that in many MCSs. According to a scale-discriminating vorticity budget, both the synoptic and mesoscale winds contributed to the prominent resolved sources of vorticity in the MCV: tilting and convergence. Unresolved sources were also large. The author speculates that an abrupt change in the main source of vorticity in an MCV may appear as an abrupt change in its altitude of maximum vorticity. Distributions of temperature and humidity in the MCS were consistent with its mesoscale circulations. In the terminus of the mesoscale downdraft, advection of drier, potentially warmer air exceeded humidifying and cooling from rain, so profiles of temperature and dew point exhibit onion and double-onion patterns. The mesoscale updraft was approximately saturated with a moist adiabatic lapse rate. Mesoscale drafts and convective drafts vertically mixed the troposphere, partially homogenizing equivalent potential temperature. The MCV contained a column of high potential vorticity in the middle troposphere, with a cold core below the freezing level and a warm core above---a pattern characteristic of profiles of heating by stratiform regions. The cold core was 2 km too shallow to be in pure gradient balance with wind in the MCV. On-going forcing during the observed lifetime of the MCV may have prevented it from achieving balance, even if that was its tendency.
NASA Astrophysics Data System (ADS)
Kirchengast, G.; Schweitzer, S.
2008-12-01
The ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) mission was conceived at the Wegener Center in late 2004 and subsequently proposed in 2005 by an international team of more than 20 scientific partners from more than 12 countries to an ESA selection process for next Earth Explorer Missions. While the mission was not selected for formal pre-phase A study, it received very positive evaluation and was recommended for further development and demonstration. ACCURATE employs the occultation measurement principle, known for its unique combination of high vertical resolution, accuracy and long-term stability, in a novel way. It systematically combines use of highly stable signals in the MW 17-23/178-196 GHz bands (LEO-LEO MW crosslink occultation) with laser signals in the SWIR 2-2.5 μm band (LEO-LEO IR laser crosslink occultation) for exploring and monitoring climate and chemistry in the atmosphere with focus on the UTLS region (upper troposphere/lower stratosphere, 5-35 km). The MW occultation is an advanced and at the same time compact version of the LEO-LEO MW occultation concept, studied in 2002-2004 for the ACE+ mission project of ESA for frequencies including the 17-23 GHz band, complemented by U.S. study heritage for frequencies including the 178-196 GHz bands (R. Kursinski et al., Univ. of Arizona, Tucson). The core of ACCURATE is tight synergy of the IR laser crosslinks with the MW crosslinks. The observed parameters, obtained simultaneously and in a self-calibrated manner based on Doppler shift and differential log-transmission profiles, comprise the fundamental thermodynamic variables of the atmosphere (temperature, pressure/geopotential height, humidity) retrieved from the MW bands, complemented by line-of-sight wind, six greenhouse gases (GHGs) and key species of UTLS chemistry (H2O, CO2, CH4, N2O, O3, CO) and four CO2 and H2O isotopes (HDO, H218O, 13CO2, C18OO) from the SWIR band. Furthermore, profiles of aerosol extinction, cloud layering, and turbulence are obtained. All profiles come with accurate height knowledge (< 10 m uncertainty), since measuring height as a function of time is intrinsic to the MW occultation part of ACCURATE. The presentation will introduce ACCURATE along the lines above, with emphasis on the climate science value and the new IR laser occultation capability. The focus will then be on retrieval performance analysis results obtained so far, in particular regarding the profiles of GHGs, isotopes, and wind. The results provide evidence that the GHG and isotope profiles can generally be retrieved within 5-35 km outside clouds with < 1% to 5% rms accuracy at 1-2 km vertical resolution, and wind with < 2 m/s accuracy. Monthly mean climatological profiles, assuming ~40 profiles per climatologic grid box per month, are found unbiased (free of time-varying biases) and at < 0.2% to 0.5% rms accuracy. These encouraging results are discussed in light of the potential of the ACCURATE technique to provide benchmark data for future monitoring of climate, GHGs, and chemistry variability and change. European science and demonstration activities are outlined, including international participation opportunities.
Control system for a vertical axis windmill
Brulle, Robert V.
1983-10-18
A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.
Control system for a vertical-axis windmill
Brulle, R.V.
1981-09-03
A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.
Improved observations of turbulence dissipation rates from wind profiling radars
McCaffrey, Katherine; Bianco, Laura; Wilczak, James M.
2017-07-20
Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs) to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiplemore » post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. Furthermore, the optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well ( R 2 = 0.54 and 0.41) with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.« less
NASA Astrophysics Data System (ADS)
Triantafyllou, A. G.; Kalogiros, J.; Krestou, A.; Leivaditou, E.; Zoumakis, N.; Bouris, D.; Garas, S.; Konstantinidis, E.; Wang, Q.
2018-03-01
This paper provides the performance evaluation of the meteorological component of The Air Pollution Model (TAPM), a nestable prognostic model, in predicting meteorological variables in urban areas, for both its surface layer and atmospheric boundary layer (ABL) turbulence parameterizations. The model was modified by incorporating four urban land surface types, replacing the existing single urban surface. Control runs were carried out over the wider area of Kozani, an urban area in NW Greece. The model was evaluated for both surface and ABL meteorological variables by using measurements of near-surface and vertical profiles of wind and temperature. The data were collected by using monitoring surface stations in selected sites as well as an acoustic sounder (SOnic Detection And Ranging (SODAR), up to 300 m above ground) and a radiometer profiler (up to 600 m above ground). The results showed the model demonstrated good performance in predicting the near-surface meteorology in the Kozani region for both a winter and a summer month. In the ABL, the comparison showed that the model's forecasts generally performed well with respect to the thermal structure (temperature profiles and ABL height) but overestimated wind speed at the heights of comparison (mostly below 200 m) up to 3-4 ms-1.
Improved observations of turbulence dissipation rates from wind profiling radars
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine; Bianco, Laura; Wilczak, James M.
Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs) to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiplemore » post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. Furthermore, the optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well ( R 2 = 0.54 and 0.41) with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.« less
A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction
NASA Astrophysics Data System (ADS)
Belu, Radian
2010-11-01
In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.
Influence of wind and river discharge on the vertical exchange process in the Pearl River Estuary
NASA Astrophysics Data System (ADS)
Hong, B.; Peng, S.
2016-02-01
Vertical exchange process is controlled by the buoyancy input from river discharge and the momentum input by wind forcing. This study investigates the vertical exchange process in the Pearl River Estuary by using a 3-D numerical model. The vertical exchange time (VET) is used to quantify the magnitude of vertical exchange process in response to changing local wind and river discharge. During the dry season, it only takes about 2 days for the surface layer water mass being transported to the bottom layer. During the wet season, such transport will take more than 20 days in a large portion of the main channel. The water in the slope area can be well ventilated. Linear regression of VET indicates that water column stratification can be used to estimate the VET and up to 71% of the variance can be accounted. The estimation by using river runoff can only account for about 49% of the variance. The effects of wind speed and direction are investigated separately. Neither river runoff nor the stratification can properly predict the VET during the typical wet season. Further investigations are needed to reveal the dynamics of vertical exchange process and find out other factors that influence the VET during the wet season.
Upper Ocean Momentum Response to Hurricane Forcing
NASA Astrophysics Data System (ADS)
Shay, L. K.; Jaimes de la Cruz, B.; Uhlhorn, E.
2016-02-01
The oceanic velocity response of the Loop Current (LC) and its complex warm and cold eddy field to hurricanes is critical to evaluate coupled operational forecast models. Direct velocity measurements of ocean current (including temperature and salinity) fields during hurricanes are needed to understand these complex interaction processes. As part of NOAA Intensity Forecasting Experiments, airborne expendable bathythermographs (AXBT), Conductivity-Temperature-Depth (AXCTD), and Current Profilers (AXCP) probes have been deployed in several major hurricanes from the NOAA research aircraft over the Gulf. Over the last decade, profilers were deployed in Isidore and Lili, Katrina and Rita, Gustav and Ike and Isaac-all of which interacted with the LC and warm eddy field. Central to these interactions under hurricane forcing is the level of sea surface cooling (typically about 1oC) induced by the wind-forced current response in the LC complex. Vertical current shear and instability (e.g., Richardson number) at the base of the oceanic mixed layer is often arrested by the strong upper ocean currents associated with the LC of 1 to 1.5 m s-1. By contrast, the SST cooling response often exceeds 3.5 to 4oC away from the LC complex in the Gulf Common Water. A second aspect of the interaction between the surface wind field and the LC is that the vorticity of the background flows (based on altimetry) enhances upwelling and downwelling processes by projecting onto the wind stress. This process modulates vertical mixing process at depth by keeping the Richardson numbers above criticality. Thus, the ocean cooling is less in the LC complex allowing for a higher and more sustained enthalpy flux as determined from global positioning system sondes deployed in these storms. This level of cooling (or lack thereof) in the LC complex significant impacts hurricane intensity that often reaches severe status which affects offshore structures and coastal communities at landfall in the northern Gulf of Mexico.