Sample records for vertically aligned tubes

  1. Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.

    2010-01-01

    Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are structurally and chemically compatible with the high-temperature synthesis of the PECVD-grown tubes. The techniques offer a wafer-scale process solution for integrating single PECVD-grown nanotubes into novel architectures that should accelerate their integration in 3D electronics in general. NASA can directly benefit from this technology for its extreme-environment planetary missions. Current Si transistors are inherently more susceptible to high radiation, and do not tolerate extremes in temperature. These novel 3D nanoscale architectures can form the basis for NEMS switches that are inherently less susceptible to radiation or to thermal extremes.

  2. Alignment of x-ray tube focal spots for spectral measurement.

    PubMed

    Nishizawa, K; Maekoshi, H; Kamiya, Y; Kobayashi, Y; Ohara, K; Sakuma, S

    1982-01-01

    A general method to align a diagnostic x-ray machine for x-ray spectrum measurement purpose was theoretically and experimentally investigated by means of the optical alignment of focal pinhole images. Focal pinhole images were obtained by using a multi-pinholed lead plate. the vertical plane, including the central axis and tube axis, was decided upon by observing the symmetry of focal images. the central axis was designated as a line through the center of focus parallel to the target surface lying in the vertical plane. A method to determine the manipulation of the central axis in any direction is presented.

  3. Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.

    PubMed

    Chen, Bingan; Zhong, Guofang; Oppenheimer, Pola Goldberg; Zhang, Can; Tornatzky, Hans; Esconjauregui, Santiago; Hofmann, Stephan; Robertson, John

    2015-02-18

    We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.

  4. Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Choi, G. S.; Cho, Y. S.; Hong, S. Y.; Park, J. B.; Son, K. H.; Kim, D. J.

    2002-03-01

    A detailed systematic study on the growth morphology of carbon nanotubes (CNTs) on Si in atmospheric pressure thermal chemical vapor deposition was undertaken. The role of NH3 for vertical alignment of CNTs was investigated. The direct cause for the alignment was a dense distribution of the catalytic metal particles, but that the particles are maintained catalytically active under amorphous carbon deposits was established by NH3. It allows a dense nucleation of the CNTs, and consequently, assists vertical alignment through entanglement and mechanical leaning among the tubes. The CNTs grew in a base growth mode. Since Ni is consumed both by silicide reaction and by capture into the growing tube, the growth stops when Ni is totally depleted. It occurs earlier for smaller particles, and thus a long time of growth results in a thin bottom with poor adhesion.

  5. Carbon Nanotube Switches for Communication and Memory Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Epp, Larry; Wong, Eric W.; Kowalczyk, Robert

    2008-01-01

    Lateral CNT Switches: a) dc CNT switches were demonstrated to operate at low voltages, low powers and high speeds. b) RF simulations of switch in series configuration with metallized tube yielded good RF performance 1) Isolation simulated to be approx. 20 dB at 100 GHz. 2) Insertion loss simulated to be < 0.5 dB at 100 GHz. Vertical CNT Switches: a) Thermal CVD was used to mechanically constrain tubes in nanopockets; tubes not self-supporting. b) Demonstrated growth of vertically aligned arrays and single-few MWNTs using dc PECVD with Ni catalyst using optical lithography.

  6. Carbon nanotubes for thermal interface materials in microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Lin, Wei

    As the integration scale of transistors/devices in a chip/system keeps increasing, effective cooling has become more and more important in microelectronics. To address the thermal dissipation issue, one important solution is to develop thermal interface materials with higher performance. Carbon nanotubes, given their high intrinsic thermal and mechanical properties, and their high thermal and chemical stabilities, have received extensive attention from both academia and industry as a candidate for high-performance thermal interface materials. The thesis is devoted to addressing some challenges related to the potential application of carbon nanotubes as thermal interface materials in microelectronics. These challenges include: 1) controlled synthesis of vertically aligned carbon nanotubes on various bulk substrates via chemical vapor deposition and the fundamental understanding involved; 2) development of a scalable annealing process to improve the intrinsic properties of synthesized carbon nanotubes; 3) development of a state-of-art assembling process to effectively implement high-quality vertically aligned carbon nanotubes into a flip-chip assembly; 4) a reliable thermal measurement of intrinsic thermal transport property of vertically aligned carbon nanotube films; 5) improvement of interfacial thermal transport between carbon nanotubes and other materials. The major achievements are summarized. 1. Based on the fundamental understanding of catalytic chemical vapor deposition processes and the growth mechanism of carbon nanotube, fast synthesis of high-quality vertically aligned carbon nanotubes on various bulk substrates (e.g., copper, quartz, silicon, aluminum oxide, etc.) has been successfully achieved. The synthesis of vertically aligned carbon nanotubes on the bulk copper substrate by the thermal chemical vapor deposition process has set a world record. In order to functionalize the synthesized carbon nanotubes while maintaining their good vertical alignment, an in situ functionalization process has for the first time been demonstrated. The in situ functionalization renders the vertically aligned carbon nanotubes a proper chemical reactivity for forming chemical bonding with other substrate materials such as gold and silicon. 2. An ultrafast microwave annealing process has been developed to reduce the defect density in vertically aligned carbon nanotubes. Raman and thermogravimetric analyses have shown a distinct defect reduction in the CNTs annealed in microwave for 3 min. Fibers spun from the as-annealed CNTs, in comparison with those from the pristine CNTs, show increases of ˜35% and ˜65%, respectively, in tensile strength (˜0.8 GPa) and modulus (˜90 GPa) during tensile testing; an ˜20% improvement in electrical conductivity (˜80000 S m-1) was also reported. The mechanism of the microwave response of CNTs was discussed. Such a microwave annealing process has been extended to the preparation of reduced graphene oxide. 3. Based on the fundamental understanding of interfacial thermal transport and surface chemistry of metals and carbon nanotubes, two major transfer/assembling processes have been developed: molecular bonding and metal bonding. Effective improvement of the interfacial thermal transport has been achieved by the interfacial bonding. 4. The thermal diffusivity of vertically aligned carbon nanotube (VACNT, multi-walled) films was measured by a laser flash technique, and shown to be ˜30 mm2 s-1 along the tube-alignment direction. The calculated thermal conductivities of the VACNT film and the individual CNTs are ˜27 and ˜540 W m-1 K-1, respectively. The technique was verified to be reliable although a proper sampling procedure is critical. A systematic parametric study of the effects of defects, buckling, tip-to-tip contacts, packing density, and tube-tube interaction on the thermal diffusivity was carried out. Defects and buckling decreased the thermal diffusivity dramatically. An increased packing density was beneficial in increasing the collective thermal conductivity of the VACNT film; however, the increased tube-tube interaction in dense VACNT films decreased the thermal conductivity of the individual CNTs. The tip-to-tip contact resistance was shown to be ˜1x10-7 m2 K W -1. The study will shed light on the potential application of VACNTs as thermal interface materials in microelectronic packaging. 5. A combined process of in situ functionalization and microwave curing has been developed to effective enhance the interface between carbon nanotubes and the epoxy matrix. Effective medium theory has been used to analyze the interfacial thermal resistance between carbon nanotubes and polymer matrix, and that between graphite nanoplatlets and polymer matrix.

  7. Filtering apparatus

    DOEpatents

    Haldipur, G.B.; Dilmore, W.J.

    1992-09-01

    A vertical vessel is described having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas. 18 figs.

  8. Filtering apparatus

    DOEpatents

    Haldipur, Gaurang B.; Dilmore, William J.

    1992-01-01

    A vertical vessel having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas.

  9. Porosimetry and packing morphology of vertically-aligned carbon nanotube arrays via impedance spectroscopy.

    PubMed

    Mutha, Heena K; Lu, Yuan; Stein, Itai; Cho, H Jeremy; Suss, Matthew; Laoui, Tahar; Thompson, Carl; Wardle, Brian; Wang, Evelyn

    2016-12-13

    Vertically aligned one-dimensional nanostructure arrays are promising in many applications such as electrochemical systems, solar cells, and electronics, taking advantage of high surface area per unit volume, nanometer length scale packing, and alignment leading to high conductivity. However, many devices need to optimize arrays for device performance by selecting an appropriate morphology. Developing a simple, non-invasive tool for understanding the role of pore volume distribution and interspacing would aid in the optimization of nanostructure morphologies in electrodes. In this work, we combined electrochemical impedance spectroscopy (EIS) with capacitance measurements and porous electrode theory to conduct in situ porosimetry of vertically-aligned carbon nanotubes (VA-CNTs) non-destructively. We utilized the EIS measurements with a pore size distribution model to quantify the average and dispersion of inter-CNT spacing (Γ), stochastically, in carpets that were mechanically densified from 1.7 × 1010 tubes/cm2 to 4.5 × 1011 tubes/cm2. Our analysis predicts that the inter-CNT spacing ranges from over 100 ± 50 nm in sparse carpets to sub 10 ± 5 nm in packed carpets. Our results suggest that waviness of CNTs leads to variations in the inter-CNT spacing, which can be significant in sparse carpets. This methodology can be used to predict the performance of many nanostructured devices, including supercapacitors, batteries, solar cells, and semiconductor electronics. Copyright 2016 IOP Publishing Ltd.

  10. Non-chapped, vertically well aligned titanium dioxide nanotubes fabricated by electrochemical etching

    NASA Astrophysics Data System (ADS)

    Loan Nguyen, Thu; Dieu Thuy Ung, Thi; Liem Nguyen, Quang

    2014-06-01

    This paper reports on the fabrication of non-chapped, vertically well aligned titanium dioxide nanotubes (TONTs) by using electrochemical etching method and further heat treatment. Very highly ordered metallic titanium nanotubes (TNTs) were formed by directly anodizing titanium foil at room temperature in an electrolyte composed of ammonium fluoride (NH4F), ethylene glycol (EG), and water. The morphology of as-formed TNTs is greatly dependent on the applied voltage, NH4F content and etching time. Particularly, we have found two interesting points related to the formation of TNTs: (i) the smooth surface without chaps of the largely etched area was dependent on the crystalline orientation of the titanium foil; and (ii) by increasing the anodizing potential from 15 V to 20 V, the internal diameter of TNT was increased from about 50 nm to 60 nm and the tube density decreased from 403 tubes μm-2 down to 339 tubes μm-2, respectively. For the anodizing duration from 1 h to 5 h, the internal diameter of each TNT was increased from ˜30 nm to 60 nm and the tube density decreased from 496 tubes μm-2 down to 403 tubes μm-2. After annealing at 400 °C in open air for 1 h, the TNTs were transformed into TONTs in anatase structure; further annealing at 600 °C showed the structural transformation from anatase to rutile as determined by Raman scattering spectroscopy.

  11. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    PubMed

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  12. A facile method to align carbon nanotubes on polymeric membrane substrate

    PubMed Central

    Zhao, Haiyang; Zhou, Zhijun; Dong, Hang; Zhang, Lin; Chen, Huanlin; Hou, Lian

    2013-01-01

    The alignment of carbon nanotubes (CNT) is the fundamental requirement to ensure their excellent functions but seems to be desolated in recent years. A facile method, hot-press combined with peel-off (HPPO), is introduced here, through which CNT can be successfully vertically aligned on the polymeric membrane substrate. Shear force and mechanical stretch are proposed to be the main forces to align the tubes perpendicular to the substrate surface during the peel-off process. The alignment of CNT keeps its orientation in a thin hybrid membrane by dip-coating cellulose acetate dope solution. It is expected that the stable alignment of CNT by HPPO would contribute to the realization of its potential applications. PMID:24326297

  13. Controlled Growth and Modification of Vertically-Aligned Carbon Nanotubes for Multifunctional Applications

    DTIC Science & Technology

    2010-01-01

    mechanical properties, high electrical conductivity at the metallic state, and high thermal conductivity/stability [1–6]. These interesting properties make...the catalytic particle is lifted up with the growing nanotube, two growth mechanisms , namely ‘‘tip-growth’’ and ‘‘base-growth’’, have been proposed...diameters ranging from 10 to 15 nmwith a tube length of about 150 mmand a tube density of1010–1011 cm2 (Fig. 4B and C). A book of 1480 gwas held

  14. Effect of porosity variation on the electrochemical behavior of vertically aligned multi-walled carbon nanotubes.

    PubMed

    Raut, Akshay S; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2012-06-01

    Electrochemical charge storage characteristics of vertically aligned multi-walled carbon nanotubes (MWCNTs) as a function of varying diameter and spacing are reported. It was observed that the specific capacitance of the MWCNTs increased as both diameter and inter-tube spacing decreased. The MWCNT films with 229 nm inter-MWCNT spacing exhibited specific capacitance of 228 F/g versus 70 F/g for 506 nm spacing, when tested in a non-aqueous electrolyte. Further, a trend in specific capacitance versus pore size is proposed. Coupled with previously reported trends observed in the sub-10 nm pore size regime, this is expected to offer better understanding of electrochemical behavior of porous carbon materials over a wide range of pore sizes.

  15. Compositional-Spread Discovery of Catalysts for the Growth of Long-Length Dense Forests of Vertically Aligned Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Christen, Hans M.; Puretzky, Alex A.; Cui, Hongtao; Lowndes, Douglas H.; Belay, Kalayu; Geohegan, David B.

    2004-03-01

    The growth of dense forests of vertically aligned arrays of multi-walled carbon nanotubes (VAA-MWNTs) by chemical vapor deposition [CVD] from a single metallic catalyst layer typically self-terminates after only a few hundred microns of tube length. In order to obtain maximal growth to long lengths, a systematic simultaneous study of catalyst composition and thickness is needed performed here by a compositional-spread approach. Using Pulsed-Laser Deposition (PLD), metallic layers with a wedge-shaped thickness profile are deposited onto Al-coated silicon substrates. High temperature annealing of the metal catalyst films in flowing Ar/H2 gas followed by the one-hour growth of VA-MWNTs by CVD using acetylene gas yields VAA-MWNTs. Tube height (and thus the catalytic activity) is determined as function of position and can be analyzed as a function of catalyst thickness and composition. A dependence of tube height as function of catalyst composition (Mo/Fe ratio) demonstrates that a specific catalyst composition exhibits a local maximum in catalytic activity, permitting the extension of nanotube array growth up to 4 millimeters in height. Other combinations of catalysts and the growth of single-walled tubes will be discussed. This research was sponsored by the U.S. Department of Energy under contract DE-AC05-00OR22725 with the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, and the Laboratory-Directed Research and Development Program at ORNL.

  16. Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations.

    PubMed

    Bao, Hua; Ruan, Xiulin; Fisher, Timothy S

    2010-03-15

    A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.

  17. Method and apparatus for assembling solid oxide fuel cells

    DOEpatents

    Szreders, Bernard E.; Campanella, Nicholas

    1989-01-01

    A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. The vanes, which each include a plurality of spaced slots along the facing edges thereof, may be pivotally displaced from a generally vertical orientation, wherein each jet air tube is positioned within and engaged by the aligned slots of a plurality of paired upper and lower vanes to facilitate their insertion in respective aligned SOFC tubes arranged in a matrix array, to an inclined orientation, wherein the jet air tubes may be removed from the positioning/insertion assembly after being inserted in the SOFC tubes. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing.

  18. Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes.

    PubMed

    Trivedi, Samarth; Alameh, Kamal

    2016-01-01

    In this paper, vertically aligned carbon nanotube (VACNT) membranes of different densities are developed and their performances are investigated. VACNT arrays of densities 5 × 10(9), 10(10), 5 × 10(10) and 10(11) tubes cm(-2), are initially grown on 1 cm × 1 cm silicon substrates using chemical vapour deposition. A VACNT membrane is realised by attaching a 300 μm-thick 1 cm × 1 cm VACNT array on silicon to a 4″ glass substrate, applying polydimethylsiloxane (PDMS) through spin coating to fill the gaps between the VACNTs, and using a microtome to slice the VACNT-PDMS composite into 25-μm-thick membranes. Experimental results show that the permeability of the developed VACNT membranes increases with the density of the VACNTs, while the salt rejection is almost independent of the VACNT density. The best measured permeance is attained with a VACNT membrane having a CNT density of 10(11) tubes cm(-2) is 1203 LMH at 1 bar.

  19. CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms.

    PubMed

    Ibrahim, Imad; Bachmatiuk, Alicja; Warner, Jamie H; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H

    2012-07-09

    Single-walled carbon nanotubes (SWCNTs) have attractive electrical and physical properties, which make them very promising for use in various applications. For some applications however, in particular those involving electronics, SWCNTs need to be synthesized with a high degree of control with respect to yield, length, alignment, diameter, and chirality. With this in mind, a great deal of effort is being directed to the precision control of vertically and horizontally aligned nanotubes. In this review the focus is on the latter, horizontally aligned tubes grown by chemical vapor deposition (CVD). The reader is provided with an in-depth review of the established vapor deposition orientation techniques. Detailed discussions on the characterization routes, growth parameters, and growth mechanisms are also provided. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High-Throughput Top-Down and Bottom-Up Processes for Forming Single-Nanotube Based Architectures for 3D Electronics

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; von Allmen, Paul; Kowalczyk, Robert; Baron, Richard

    2009-01-01

    We have developed manufacturable approaches to form single, vertically aligned carbon nanotubes, where the tubes are centered precisely, and placed within a few hundred nm of 1-1.5 micron deep trenches. These wafer-scale approaches were enabled by chemically amplified resists and inductively coupled Cryo-etchers for forming the 3D nanoscale architectures. The tube growth was performed using dc plasma-enhanced chemical vapor deposition (PECVD), and the materials used for the pre-fabricated 3D architectures were chemically and structurally compatible with the high temperature (700 C) PECVD synthesis of our tubes, in an ammonia and acetylene ambient. Tube characteristics were also engineered to some extent, by adjusting growth parameters, such as Ni catalyst thickness, pressure and plasma power during growth. Such scalable, high throughput top-down fabrication techniques, combined with bottom-up tube synthesis, should accelerate the development of PECVD tubes for applications such as interconnects, nano-electromechanical (NEMS), sensors or 3D electronics in general.

  1. Nano Enabled Thermo-Mechanical Materials in Adhesive Joints: A New Paradigm to Materials Functionality (Preprint)

    DTIC Science & Technology

    2006-12-01

    interface as well as to minimize the interface contact resistance. There is an on- going effort by numerous researchers of dispersing conductive nano...constituents (single wall carbon nanotube (SWCNT), multi wall carbon nano tube ( MWCNT )) in polymers (adhesive) to enhance its thermal conductivity [1...propose to use vertically aligned MWCNT in joints to enhance through-thickness conductivity [10] because of its known high thermal conductivity

  2. High-Throughput Processes and Structural Characterization of Single-Nanotube Based Devices for 3D Electronics

    NASA Technical Reports Server (NTRS)

    Kaul, A. B.; Megerian, K. G.; Baron, R. L.; Jennings, A. T.; Jang, D.; Greer, J. R.

    2011-01-01

    We have developed manufacturable approaches to form single, vertically aligned carbon nanotubes, where the tubes are centered precisely, and placed within a few hundred nm of 1-1.5 micron deep trenches. These wafer-scale approaches were enabled by chemically amplified resists and inductively coupled Cryo-etchers to form the 3D nanoscale architectures. The tube growth was performed using dc plasmaenhanced chemical vapor deposition (PECVD), and the materials used for the pre-fabricated 3D architectures were chemically and structurally compatible with the high temperature (700 C) PECVD synthesis of our tubes, in an ammonia and acetylene ambient. The TEM analysis of our tubes revealed graphitic basal planes inclined to the central or fiber axis, with cone angles up to 30 deg. for the particular growth conditions used. In addition, bending tests performed using a custom nanoindentor, suggest that the tubes are well adhered to the Si substrate. Tube characteristics were also engineered to some extent, by adjusting growth parameters, such as Ni catalyst thickness, pressure and plasma power during growth.

  3. Synthesis of Ferroelectric Lead Titanate Nanohoneycomb Arrays via Lead Supplement Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bongsoo; Hong, Seungbum; Ahn, Gun

    In this paper, we demonstrate a novel process to convert TiO 2 nanotubes into ferroelectric nanohoneycombs, comprised of vertically aligned PbTiO 3 nanotubes. Tube bottom opening process enabled effective infiltration of lead acetate precursor into the nanotubes. Finally, nanohoneycombs, which were converted via additional lead supplement process, showed uniform conversion and well-defined ferroelectric properties with the effective piezoelectric coefficient of approximately 20 pm/V, which was measured by piezoresponse force microscopy.

  4. Synthesis of Ferroelectric Lead Titanate Nanohoneycomb Arrays via Lead Supplement Process

    DOE PAGES

    Kim, Bongsoo; Hong, Seungbum; Ahn, Gun; ...

    2016-05-14

    In this paper, we demonstrate a novel process to convert TiO 2 nanotubes into ferroelectric nanohoneycombs, comprised of vertically aligned PbTiO 3 nanotubes. Tube bottom opening process enabled effective infiltration of lead acetate precursor into the nanotubes. Finally, nanohoneycombs, which were converted via additional lead supplement process, showed uniform conversion and well-defined ferroelectric properties with the effective piezoelectric coefficient of approximately 20 pm/V, which was measured by piezoresponse force microscopy.

  5. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  6. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  7. NO2 sensing at room temperature using vertically aligned MoS2 flakes network

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Goel, Neeraj; Kumar, Mahesh

    2018-04-01

    To exploit the role of alignment of MoS2 flake in chemical sensing, here, we have synthesized the horizontally and vertically aligned MoS2 flake network using conventional chemical vapor deposition technique. The morphology and number of layers were confirmed by SEM and Raman spectroscopy, respectively. The sensing performance of horizontally aligned and vertically aligned flake network was investigated to NO2 at room temperature. Vertically aligned MoS2 based sensor showed higher sensitivity 51.54 % and 63.2 % compared to horizontally aligned MoS2 sensor' sensitivity of 35.32 % and 45.2 % to 50 ppm and 100 ppm NO2, respectively. This high sensitivity attributed to the high aspect ratio and high adsorption energy on the edge site of vertically aligned MoS2.

  8. Apparatus for rapid adjustment of the degree of alignment of NMR samples in aqueous media: verification with residual quadrupolar splittings in (23)Na and (133)Cs spectra.

    PubMed

    Kuchel, Philip W; Chapman, Bogdan E; Müller, Norbert; Bubb, William A; Philp, David J; Torres, Allan M

    2006-06-01

    NMR spectra of (23)Na(+) and (133)Cs(+) in gelatine in a silicone rubber tube that was stretched to various extents showed remarkably reproducible resonance multiplicity. The relative intensities of the components of the split peaks had ratios, 3:4:3, and 7:12:15:16:15:12:7, respectively, that conformed with those predicted using a Mathematica program. The silicone-rubber tube was sealed at its lower end by a small rubber stopper and placed inside a thick-walled glass tube. Gelatine was injected in solution into the silicone tube and 'set' by cooling below 30 degrees C. A plastic thumb-screw held the silicone tube at various degrees of extension, up to approximately 2-fold. After constituting the gel in buffers containing NaCl and CsCl, both (23)Na and (133)Cs NMR spectroscopy revealed that after stretching the initial single Lorentzian line was split into a well-resolved triplet and a heptet, respectively. This was interpreted as being due to coupling between the electric quadrupoles of the nuclei and the average electric field gradient tensor of the collagen molecules of gelatine; these molecules became progressively more aligned in the direction of the main magnetic field, B(0), of the vertical bore magnet, as the gel was stretched. This apparatus provides a simple way of demonstrating fundamental physical characteristics of quadrupolar cations, some characteristics of gelatine under stretching, and a way to invoke static distortion of red blood cells. It should be useful with these and other cell types, for studies of metabolic and membrane transport characteristics that may change when the cells are distorted, and possibly for structural studies of macromolecules.

  9. Apparatus for rapid adjustment of the degree of alignment of NMR samples in aqueous media: Verification with residual quadrupolar splittings in 23Na and 133Cs spectra

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Chapman, Bogdan E.; Müller, Norbert; Bubb, William A.; Philp, David J.; Torres, Allan M.

    2006-06-01

    NMR spectra of 23Na + and 133Cs + in gelatine in a silicone rubber tube that was stretched to various extents showed remarkably reproducible resonance multiplicity. The relative intensities of the components of the split peaks had ratios, 3:4:3, and 7:12:15:16:15:12:7, respectively, that conformed with those predicted using a Mathematica program. The silicone-rubber tube was sealed at its lower end by a small rubber stopper and placed inside a thick-walled glass tube. Gelatine was injected in solution into the silicone tube and 'set' by cooling below 30 °C. A plastic thumb-screw held the silicone tube at various degrees of extension, up to ˜2-fold. After constituting the gel in buffers containing NaCl and CsCl, both 23Na and 133Cs NMR spectroscopy revealed that after stretching the initial single Lorentzian line was split into a well-resolved triplet and a heptet, respectively. This was interpreted as being due to coupling between the electric quadrupoles of the nuclei and the average electric field gradient tensor of the collagen molecules of gelatine; these molecules became progressively more aligned in the direction of the main magnetic field, B0, of the vertical bore magnet, as the gel was stretched. This apparatus provides a simple way of demonstrating fundamental physical characteristics of quadrupolar cations, some characteristics of gelatine under stretching, and a way to invoke static distortion of red blood cells. It should be useful with these and other cell types, for studies of metabolic and membrane transport characteristics that may change when the cells are distorted, and possibly for structural studies of macromolecules.

  10. Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.

    PubMed

    Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae

    2015-09-22

    In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.

  11. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    DOEpatents

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  12. Study of Charge Transport in Vertically Aligned Nitride Nanowire Based Core Shell P-I-N Junctions

    DTIC Science & Technology

    2016-07-01

    Vertically- Aligned Nitride Nanowire Based Core Shell P-I-N Junctions Distribution Statement A. Approved for public release; distribution is...Study of Charge Transport in Vertically- Aligned Nitride Nanowire Based Core Shell P-I-N Junctions Grant Number: HDTRA1-14-1-0003 Principal...Investigator: Abhishek Motayed University of Maryland DISTRIBUTION A: Public Release Study of Charge Transport in Vertically-Aligned Nitride Nanowire

  13. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.

    PubMed

    Penza, M; Rossi, R; Alvisi, M; Serra, E

    2010-03-12

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 degrees C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO(2), CH(4), H(2), NH(3), CO and NO(2) has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO(2) presence in the multicomponent mixture LFG. The NO(2) gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO(2) concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO(2) gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 degrees C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 microm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by providing minimal sub-ppm level detection, e.g., download up to 100 ppb NO(2), at the sensor temperature of 150 degrees C. The gas sensitivity of the CNT sensor array depends on operating temperature, showing a lower optimal temperature of maximum sensitivity for the metal-decorated CNT sensors compared to unmodified CNT sensors. Results indicate that the recovery mechanisms in the CNT chemiresistors can be altered by a rapid heating pulse from room temperature to about 110 degrees C. A comparison of the NO(2) gas sensitivity for the chemiresistors based on disorderly networked CNTs and vertically aligned CNTs is also reported. Cross-sensitivity towards relative humidity of the CNT sensors array is investigated. Finally, the sensing properties of the metal-decorated and vertically aligned CNT sensor arrays are promising to monitor gas events in the LFG for practical applications with low power consumption and moderate sensor temperature.

  14. Core break-off mechanism

    NASA Technical Reports Server (NTRS)

    Myrick, Thomas M. (Inventor)

    2003-01-01

    A mechanism for breaking off and retaining a core sample of a drill drilled into a ground substrate has an outer drill tube and an inner core break-off tube sleeved inside the drill tube. The break-off tube breaks off and retains the core sample by a varying geometric relationship of inner and outer diameters with the drill tube. The inside diameter (ID) of the drill tube is offset by a given amount with respect to its outer diameter (OD). Similarly, the outside diameter (OD) of the break-off tube is offset by the same amount with respect to its inner diameter (ID). When the break-off tube and drill tube are in one rotational alignment, the two offsets cancel each other such that the drill can operate the two tubes together in alignment with the drill axis. When the tubes are rotated 180 degrees to another positional alignment, the two offsets add together causing the core sample in the break-off tube to be displaced from the drill axis and applying shear forces to break off the core sample.

  15. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage

    PubMed Central

    2014-01-01

    Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm-2 for open pore and approximately 180 mF.cm-2 for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles. PMID:25246867

  16. Vertically aligned carbon nanopillars with size and spacing control for a transparent field emission display.

    PubMed

    Lee, Seok Woo; Lee, Chang Hwa; Lee, Jung A; Lee, Seung S

    2013-01-18

    A top-down fabrication method is presented for vertically aligned carbon nanopillars (CNPs) using photolithography and pyrolysis. The modified backside exposure method of photolithography fabricates vertically aligned polymer (SU-8) nanopillars. The pyrolysis process, which transforms the polymer to amorphous carbon, reliably produces vertically aligned CNPs with widths ranging from 100 to 400 nm. The CNPs can be used as a transparent field emission cathode for a transparent display and light emission is observed.

  17. High yield growth of patterned vertically aligned carbon nanotubes using inkjet-printed catalyst.

    PubMed

    Beard, James D; Stringer, Jonathan; Ghita, Oana R; Smith, Patrick J

    2013-10-09

    This study reports on the fabrication of vertically aligned carbon nanotubes localized at specific sites on a growth substrate by deposition of a nanoparticle suspension using inkjet printing. Carbon nanotubes were grown with high yield as vertically aligned forests to a length of approximately 400 μm. The use of inkjet printing for catalyst fabrication considerably improves the production rate of vertically aligned patterned nanotube forests compared with conventional patterning techniques, for example, electron beam lithography or photolithography.

  18. New device for accurate measurement of the x-ray intensity distribution of x-ray tube focal spots.

    PubMed

    Doi, K; Fromes, B; Rossmann, K

    1975-01-01

    A new device has been developed with which the focal spot distribution can be measured accurately. The alignment and localization of the focal spot relative to the device are accomplished by adjustment of three micrometer screws in three orthogonal directions and by comparison of red reference light spots with green fluorescent pinhole images at five locations. The standard deviations for evaluating the reproducibility of the adjustments in the horizontal and vertical directions were 0.2 and 0.5 mm, respectively. Measurements were made of the pinhole images as well as of the line-spread functions (LSFs) and modulation transfer functions (MTFs) for an x-ray tube with focal spots of 1-mm and 50-mum nominal size. The standard deviations for the LSF and MTF of the 1-mm focal spot were 0.017 and 0.010, respectively.

  19. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    DOEpatents

    Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  20. Fast Response and Spontaneous Alignment in Liquid Crystals Doped with 12-Hydroxystearic Acid Gelators.

    PubMed

    Lin, Hui-Chi; Wang, Chih-Hung; Wang, Jyun-Kai; Tsai, Sheng-Feng

    2018-05-07

    The spontaneous vertical alignment of liquid crystals (LCs) in gelator (12-hydroxystearic acid)-doped LC cells was studied. Gelator-induced alignment can be used in both positive and negative LC cells. The electro-optical characteristics of the gelator-doped negative LC cell were similar to those of an LC cell that contained a vertically aligned (VA) host. The rise time of the gelator-doped LC cell was two orders of magnitude shorter than that of the VA host LC cell. The experimental results indicate that the gelator-induced vertical alignment of LC molecules occurred not only on the surface of the indium tin oxide (ITO) but also on the homogeneous alignment layer. Various LC alignments (planar, hybrid, multistable hybrid, and vertical alignments) were achieved by modulating the doped gelator concentrations. The multistable characteristic of LCs doped with the gelator is also presented. The alignment by doping with a gelator reduces the manufacturing costs and provides a means of fabricating fast-responding, flexible LC displays using a low-temperature process.

  1. Stress distribution in maxillary first molar periodontium using straight pull headgear with vertical and horizontal tubes: A finite element analysis.

    PubMed

    Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra

    2017-01-01

    One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced ( P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant ( P > 0/05). Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended.

  2. Differences in pediatric vertical ground reaction force between planovalgus and neutrally aligned feet.

    PubMed

    Pauk, Jolanta; Szymul, Joanna

    2014-01-01

    Ground reaction forces (GRF) reflect the force history of human body contact with the ground. The purpose of this study was to explore human gait abnormalities due to planovalgus by comparing vertical GRF data between individuals with planovalgus and those with neutrally aligned feet. Second we estimated associations between various measurements and vertical GRF parameters in a pediatric population. Boys and girls between the ages of 4 and 18 years (72 planovalgus feet and 74 neutrally aligned feet) took part in this study. Ground reaction forces were recorded by two Kistler platforms and normalized to body weight. Comparison of vertical GRF between planovalgus and neutrally aligned feet suggests that the first and the second peaks of vertical force (Fz1, Fz2) are most affected by planovalgus. The results also indicate that neutrally aligned feet display a different ground reaction force pattern than planovalgus, and that differences between boys and girls may be observed. The shape of the vertical GRF curve can help in clinical interpretation of abnormal gait.

  3. Fast Response and Spontaneous Alignment in Liquid Crystals Doped with 12-Hydroxystearic Acid Gelators

    PubMed Central

    Lin, Hui-Chi; Wang, Chih-Hung; Wang, Jyun-Kai; Tsai, Sheng-Feng

    2018-01-01

    The spontaneous vertical alignment of liquid crystals (LCs) in gelator (12-hydroxystearic acid)-doped LC cells was studied. Gelator-induced alignment can be used in both positive and negative LC cells. The electro-optical characteristics of the gelator-doped negative LC cell were similar to those of an LC cell that contained a vertically aligned (VA) host. The rise time of the gelator-doped LC cell was two orders of magnitude shorter than that of the VA host LC cell. The experimental results indicate that the gelator-induced vertical alignment of LC molecules occurred not only on the surface of the indium tin oxide (ITO) but also on the homogeneous alignment layer. Various LC alignments (planar, hybrid, multistable hybrid, and vertical alignments) were achieved by modulating the doped gelator concentrations. The multistable characteristic of LCs doped with the gelator is also presented. The alignment by doping with a gelator reduces the manufacturing costs and provides a means of fabricating fast-responding, flexible LC displays using a low-temperature process. PMID:29735937

  4. Stress distribution in maxillary first molar periodontium using straight pull headgear with vertical and horizontal tubes: A finite element analysis

    PubMed Central

    Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra

    2017-01-01

    Background: One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Materials and Methods: Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Results: Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced (P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant (P > 0/05). Conclusion: Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended. PMID:28584535

  5. Controlled Synthesis and Functionalization of Vertically-Aligned Carbon Nanotubes for Multifunctional Applications

    DTIC Science & Technology

    2015-05-07

    6 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic...Cl, Br, or I) Prepared by Ball-Milling and Used as Anode Materials for Lithium - Ion Batteries ……………....................23 3.4 Well-Defined Two...9 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes

  6. The elevator illusion results from the combination of body orientation and egocentric perception.

    PubMed

    Paillard, A; Denise, P; Barraud, P-A; Roux, A; Cian, C

    2009-10-30

    Perception of body orientation and apparent location of objects are altered when humans are using assisted means of locomotion and the resultant of the imposed acceleration and gravity is no longer aligned with the gravitational vertical. As the otolithic system cannot discriminate the acceleration of gravity from sustained inertial accelerations, individuals would perceive the resultant acceleration vector (GiA) as the vertical. However, when subjects are aligned on the GiA, an increase in the magnitude of GiA induced a lowering of the apparent visual horizon (i.e. "elevator illusion"). The main aim of this study was to quantify the contribution of body and egocentric perception in the elevator illusion. While being exposed to 1G and 1.3G and aligned on the GiA acceleration, subjects (N=20) were asked (1) to set a luminous target to the subjective horizon, (2) to set a luminous target on "straight ahead" position (egocentric task) and (3) to rotate a tilting tube to their subjective perception of body orientation. Results showed that increasing GiA lowered horizon and egocentric settings and induces a backward body tilt perception. Moreover, the elevator illusion can be expressed as the additive combination of two processes: one that is dependent on body tilt perception, and the other that is dependent on egocentric perception. Both misperceptions in hypergravity may be considered to be a consequence of excessive shearing of the otolith organs. However large inter-individual differences in body tilt perception were observed. This last result was discussed in terms of the contribution of extravestibular graviceptors.

  7. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Stier, P.

    2010-06-01

    Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa, derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of dlnNe dlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of dlnre dlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4°×4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of dlnNe dlnτa and dlnre dlnτa . For regions on the scale of 60°×60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80%.

  8. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication.

    PubMed

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-03-19

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.

  9. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

    PubMed Central

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-01-01

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices. PMID:24642903

  10. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

    NASA Astrophysics Data System (ADS)

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-03-01

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.

  11. 21. View from the work area of the front face ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. View from the work area of the front face of the pile in the 105 building, in this case at the F Reactor in February 1945. The 2,004 pigtails and process tube nozzles are neatly aligned in rows and columns across the face of the pile. The cooling water risers stand at the left and right of the pile and the distribution crossheaders run across its face. The pipes running vertically at the bottom of the pile carry cooling water to the thermal shield. The low railing along the floor in front of the face prevented workers from accidentally falling into the charging elevator pit. D-8326 - B Reactor, Richland, Benton County, WA

  12. Fluid Mechanics and Heat Transfer Spirally Fluted Tubing,

    DTIC Science & Technology

    1981-08-01

    Condensation of Helically Fluted Tubes in a Vertical Configuration 7 2. EXPERIMENTAL PROGRAM 2.1 Water Flow Facility 13 2.2 Test Section Construction...transfer on the outside of the tube is achieved. In a vertical orientation with fluid condensing on the outside of the helically fluted tube, the...transfer performance on the inside of helically fluted tubes as indicated by the Nusselt modulus, Nu/Pr0 .4 . as a function of the Reynolds number is

  13. Film flow and heat transfer during condensation of steam on inclined and vertical nonround tubes

    NASA Astrophysics Data System (ADS)

    Nikitin, N. N.; Semenov, V. P.

    2008-03-01

    We describe a mathematical model for calculating heat transfer during film condensation of stagnant steam on inclined and vertical smooth tubes with cross sections of arbitrary shape that takes into account the action of surface tension forces. The heat-transfer coefficients are calculated, and the hydrodynamic pattern is presented in which a condensate film flows over the surface of nonround inclined and vertical tubes with cross-section of different shapes.

  14. Kinesthetic perceptions of earth- and body-fixed axes.

    PubMed

    Darling, W G; Hondzinski, J M

    1999-06-01

    The major purpose of this research was to determine whether kinesthetic/proprioceptive perceptions of the earth-fixed vertical axis are more accurate than perceptions of intrinsic axes. In one experiment, accuracy of alignment of the forearm to earth-fixed vertical and head- and trunk-longitudinal axes by seven blindfolded subjects was compared in four tasks: (1) Earth-Arm--arm (humerus) orientation was manipulated by the experimenter; subjects aligned the forearm parallel to the vertical axis, which was also aligned with the head and trunk longitudinal axis; (2) Head--head, trunk, and upper-limb orientations were manipulated by the experimenter, subjects aligned the forearm parallel to the longitudinal axis of the head using only elbow flexion/extension and shoulder internal/external rotation; (3) Trunk--same as (2), except that subjects aligned the forearm parallel to the trunk-longitudinal axis; (4) Earth--same as (2), except that subjects aligned the forearm parallel to the earth-fixed vertical. Head, trunk, and gravitational axes were never parallel in tasks 2, 3, and 4 so that subjects could not simultaneously match their forearm to all three axes. The results showed that the errors for alignment of the forearm with the earth-fixed vertical were lower than for the trunk- and head-longitudinal axes. Furthermore, errors in the Earth condition were less dependent on alterations of the head and trunk orientation than in the Head and Trunk conditions. These data strongly suggest that the earth-fixed vertical is used as one axis for the kinesthetic sensory coordinate system that specifies upper-limb orientation at the perceptual level. We also examined the effects of varying gravitational torques at the elbow and shoulder on the accuracy of forearm alignment to earth-fixed axes. Adding a 450 g load to the forearm to increase gravitational torques when the forearm is not vertical did not improve the accuracy of forearm alignment with the vertical. Furthermore, adding small, variably sized loads (between which the subjects could not distinguish at the perceptual level) to the forearm just proximal to the wrist produced similar errors in aligning the forearm with the vertical and horizontal. Forearm-positioning errors were not correlated with the size of the load, as would be expected if gravitational torques affected forearm-position sense. We conclude that gravitational torques exerted about the shoulder and elbow do not make significant contributions to sensing forearm-orientation relative to earth-fixed axes when the upper-limb segments are not constrained by external supports.

  15. Proposed technique for vertical alignment of a crane's cable

    NASA Technical Reports Server (NTRS)

    Gera, J., Jr.

    1969-01-01

    Proposed vertical alignment technique senses the attitude of a cranes cable and displays any deviation from the vertical. The system consists of a detector assembly fixed to the boom and a display scope located in the cabin. It has potential application with either fixed-boom cranes or gantries.

  16. Controllable growth of vertically aligned graphene on C-face SiC

    DOE PAGES

    Liu, Yu; Chen, Lianlian; Hilliard, Donovan; ...

    2016-10-06

    We investigated how to control the growth of vertically aligned graphene on C-face SiC by varying the processing conditions. It is found that, the growth rate scales with the annealing temperature and the graphene height is proportional to the annealing time. Temperature gradient and crystalline quality of the SiC substrates influence their vaporization. The partial vapor pressure is crucial as it can interfere with further vaporization. A growth mechanism is proposed in terms of physical vapor transport. The monolayer character of vertically aligned graphene is verified by Raman and X-ray absorption spectroscopy. With the processed samples, d 0 magnetism ismore » realized and negative magnetoresistance is observed after Cu implantation. We also prove that multiple carriers exist in vertically aligned graphene.« less

  17. Controllable growth of vertically aligned graphene on C-face SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Chen, Lianlian; Hilliard, Donovan

    We investigated how to control the growth of vertically aligned graphene on C-face SiC by varying the processing conditions. It is found that, the growth rate scales with the annealing temperature and the graphene height is proportional to the annealing time. Temperature gradient and crystalline quality of the SiC substrates influence their vaporization. The partial vapor pressure is crucial as it can interfere with further vaporization. A growth mechanism is proposed in terms of physical vapor transport. The monolayer character of vertically aligned graphene is verified by Raman and X-ray absorption spectroscopy. With the processed samples, d 0 magnetism ismore » realized and negative magnetoresistance is observed after Cu implantation. We also prove that multiple carriers exist in vertically aligned graphene.« less

  18. The effect of substrate distance to evaporation source on morphology of ZnO:In nanorods fabricated by means of a vapor transfer route and the study of their optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Ghafouri, Vahid; Shariati, Mohsen; Ebrahimzad, Akbar

    2014-03-01

    High-quality polycrystalline and single crystalline Indium-doped ZnO (ZnO:In) nanorods (NRs) have been synthesized on Si (100) substrates via a vapor transfer route in an oxygen-rich tube furnace. The morphology of the nanostructures and their distribution on the surface is highly related to distance between the substrate and evaporation sources. The morphology can be adjusted from micro-porous film to the vertically aligned hexagonal NRs by this distance. The diameter of the grown NRs varies between 50 and 200 nm, and their length mostly changes from 1 to 3 mm. EDS analysis indicated the presence of zinc, oxygen, and indium in the structures. FTIR measurements confirmed the existence of Zn-O and In-O bands in ZnO:In NRs. X-ray diffractions and SAED patterns showed that the vertically aligned hexagonal NRs have a preferential orientation along the (002) direction. Room-temperature photoluminescence (PL) spectra of NRs are dominated by a green band emission between 420 and 700 nm. The peak of the green emission has shifted in different samples, which is probably due to indium impurity. The results of the electrical transport measurement of the NRs showed that the amount of In impurity is effective in the increase of samples' conductivity.

  19. Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil

    NASA Astrophysics Data System (ADS)

    Afre, Rakesh A.; Soga, T.; Jimbo, T.; Kumar, Mukul; Ando, Y.; Sharon, M.

    2005-10-01

    Vertically aligned carbon nanotubes (VACNTs) were grown by spray pyrolysis of turpentine oil and ferrocene mixture at 700 °C. Using this simple method, we report the successful growth of vertically aligned nanotubes of 300 μm length and diameter in the range of 50-100 nm on Si(1 0 0) substrate. The ferrocene act as an in situ Fe catalyst precursor and forming the nanosize iron particles for formation of VACNTs on Si and quartz substrates. Morphological differences between aligned carbon nanotubes grown on different substrates are studied and discussed by SEM, TEM and Raman spectroscopy characterizations.

  20. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Stier, P.

    2010-12-01

    Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of dlnNedlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of dlnredlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of dlnNedlnτa and dlnredlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of 1° × 1°.

  1. A three-dimensional architecture of vertically aligned multilayer graphene facilitates heat dissipation across joint solid surfaces

    NASA Astrophysics Data System (ADS)

    Liang, Qizhen; Yao, Xuxia; Wang, Wei; Wong, C. P.

    2012-02-01

    Low operation temperature and efficient heat dissipation are important for device life and speed in current electronic and photonic technologies. Being ultra-high thermally conductive, graphene is a promising material candidate for heat dissipation improvement in devices. In the application, graphene is expected to be vertically stacked between contact solid surfaces in order to facilitate efficient heat dissipation and reduced interfacial thermal resistance across contact solid surfaces. However, as an ultra-thin membrane-like material, graphene is susceptible to Van der Waals forces and usually tends to be recumbent on substrates. Thereby, direct growth of vertically aligned free-standing graphene on solid substrates in large scale is difficult and rarely available in current studies, bringing significant barriers in graphene's application as thermal conductive media between joint solid surfaces. In this work, a three-dimensional vertically aligned multi-layer graphene architecture is constructed between contacted Silicon/Silicon surfaces with pure Indium as a metallic medium. Significantly higher equivalent thermal conductivity and lower contact thermal resistance of vertically aligned multilayer graphene are obtained, compared with those of their recumbent counterpart. This finding provides knowledge of vertically aligned graphene architectures, which may not only facilitate current demanding thermal management but also promote graphene's widespread applications such as electrodes for energy storage devices, polymeric anisotropic conductive adhesives, etc.

  2. Wire position system to consistently measure and record the location change of girders following ground changes

    NASA Astrophysics Data System (ADS)

    Choi, H. J.; Lee, S. B.; Lee, H. G.; Y Back, S.; Kim, S. H.; Kang, H. S.

    2017-07-01

    Several parts that comprise the large scientific device should be installed and operated at the accurate three-dimensional location coordinates (X, Y, and Z) where they should be subjected to survey and alignment. The location of the aligned parts should not be changed in order to ensure that the electron beam parameters (Energy 10 GeV, Charge 200 pC, and Bunch Length 60 fs, Emittance X/Y 0.481 μm/0.256 μm) of PAL-XFEL (X-ray Free Electron Laser of the Pohang Accelerator Laboratory) remain stable and can be operated without any problems. As time goes by, however, the ground goes through uplift and subsidence, which consequently deforms building floors. The deformation of the ground and buildings changes the location of several devices including magnets and RF accelerator tubes, which eventually leads to alignment errors (∆X, ∆Y, and ∆Z). Once alignment errors occur with regard to these parts, the electron beam deviates from its course and beam parameters change accordingly. PAL-XFEL has installed the Hydrostatic Leveling System (HLS) to measure and record the vertical change of buildings and ground consistently and systematically and the Wire Position System (WPS) to measure the two dimensional changes of girders. This paper is designed to introduce the operating principle and design concept of WPS and discuss the current situation regarding installation and operation.

  3. Radiographic localization of unerupted teeth: further findings about the vertical tube shift method and other localization techniques.

    PubMed

    Jacobs, S G

    2000-10-01

    The parallax method (image/tube shift method, Clark's rule, Richards' buccal object rule) is recommended to localize unerupted teeth. Richards' contribution to the development of the parallax method is discussed. The favored method for localization uses a rotational panoramic radiograph in combination with an occlusal radiograph involving a vertical shift of the x-ray tube. The use of this combination when localizing teeth and supernumeraries in the premolar region is illustrated. When taking an occlusal radiograph to localize an unerupted maxillary canine, clinical situations are presented where modification of the vertical angulation of the tube of 70 degrees to 75 degrees or of the horizontal position of the tube is warranted. The limitations of axial (true, cross-sectional, vertex) occlusal radiographs are also explored.

  4. Thermal Conductivity of Polymer Copoly(Ethylene Vinyl Acetate)/Nano-Filler Blends

    NASA Technical Reports Server (NTRS)

    Ghose, S.; Watson, K. A.; Working, D. C.; Connell, J. W.; Smith, J. G., Jr.; Lin, Y.; Sun, Y. P.

    2007-01-01

    The development of flexible, thermally conductive fabrics and plastic tubes for the Liquid Cooling and Ventilation Garment (LCVG) are needed to reduce weight and improve the mobility, comfort, and performance of future spacesuits. Such improvements would allow astronauts to operate more efficiently and safely for extended extravehicular activities. As a continuation of our work on the improvement of thermal conductivity (TC) of polymeric materials, nanocomposites were prepared from copoly(ethylene vinyl acetate), trade name Elvax 260 , metallized carbon nanofibers (CNFs), nickel (Ni) nanostrands, boron nitride both alone and as mixtures with aluminum powder. The nanocomposites were prepared by melt mixing at various loading levels and subsequently fabricated into several material forms (i.e., ribbons, tubes, and compression molded plaques) for analysis. Ribbons and tubes were extruded to form samples in which the nanoparticles were aligned in the direction of flow. The degree of dispersion and alignment of the nanoparticles were investigated using high-resolution scanning electron microscopy. Tensile properties of the aligned samples were determined at room temperature. TC measurements were performed using a laser flash (Nanoflash ) technique. The TC of the samples was measured in both the direction of alignment as well as transverse. Tubing of comparable dimensions to that used in the LCVG was extruded from select compositions and the thermal conductivities of the tubes measured.

  5. [Three-dimensional vertically aligned CNTs coated by Ag nanoparticles for surface-enhanced Raman scattering].

    PubMed

    Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong

    2014-09-01

    In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C.

  6. Controlled growth of well-aligned carbon nanotubes with large diameters

    NASA Astrophysics Data System (ADS)

    Wang, Xianbao; Liu, Yunqi; Zhu, Daoben

    2001-06-01

    Well-aligned carbon nanotubes (CNTs) with large diameters (25-200 nm) were synthesized by pyrolysis of iron(II) phthalocyanine. The outer diameter up to 218.5 nm and the length of the well-aligned CNTs can be systematically controlled by varying the growth time. A tube-in-tube nano-structure with large and small diameters of 176 and 16.7 nm, respectively, was found. The grain sizes of the iron catalyst play an important role in controlling the CNT diameters. These results are of great importance to design new aligned CNT-based electron field emitters in the potential application of panel displays.

  7. Multianode Photomultiplier Tube Alignment for the MINERvA Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Bruno, Jorge

    2006-10-01

    The MINERvA experiment (Main INjector ExpeRiment vA) at FNAL will study the neutrino-nucleon and neutrino-nucleus interaction. The light collection from the detector will be done via optic fibers using Hamamatsu H8804 64-channel photomultiplier tubes (PMT). Each PMT channel needs to be precisely aligned with the corresponding optic fiber. The MINERvA PMT optical boxes contain precision machined optic ``cookies'' which capture the 8x8 array of optic fibers. Each PMT-cookie pair needs to be aligned as precisely as possible. This contribution will describe the alignment setup and procedure implemented at James Madison University.

  8. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    DTIC Science & Technology

    2012-01-01

    scattering (SERS) applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography...plasmonic nanowires to investigate this SERS effect. Here we used two types of vertical NWs, ZnO NWs, and Si NWs, respectively, to investigate SERS...successfully grow vertically aligned ZnO nanowires by the well-known VLS process. In this way, the ZnO NWs can be arranged in a repeatable hexagonal pattern

  9. Highly efficient growth of vertically aligned carbon nanotubes on Fe-Ni based metal alloy foils for supercapacitors

    NASA Astrophysics Data System (ADS)

    Amalina Raja Seman, Raja Noor; Asyadi Azam, Mohd; Ambri Mohamed, Mohd

    2016-12-01

    Supercapacitors are highly promising energy devices with superior charge storage performance and a long lifecycle. Construction of the supercapacitor cell, especially electrode fabrication, is critical to ensure good performance in applications. This work demonstrates direct growth of vertically aligned carbon nanotubes (CNTs) on Fe-Ni based metal alloy foils, namely SUS 310S, Inconel 600 and YEF 50, and their use in symmetric vertically aligned CNT supercapacitor electrodes. Alumina and cobalt thin film catalysts were deposited onto the foils, and then CNT growth was performed using alcohol catalytic chemical vapour deposition. By this method, vertically aligned CNTs were successfully grown and used directly as a binder-free supercapacitor electrode to deliver excellent electrochemical performance. The device showed relatively good specific capacitance, a superior rate capability and excellent cycle stability, maintaining about 96% capacitance up to 1000 cycles.

  10. Purification process for vertically aligned carbon nanofibers

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Delziet, Lance; Matthews, Kristopher; Chen, Bin; Meyyappan, M.

    2003-01-01

    Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.

  11. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion.

    PubMed

    Zhou, Yixuan; E, Yiwen; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-14

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  12. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion

    NASA Astrophysics Data System (ADS)

    Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-01

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  13. Experimental Investigation of Free-Convection Heat Transfer in Vertical Tube at Large Grashof Numbers

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Diaguila, A J

    1955-01-01

    Report presents the results of an investigation conducted to study free-convection heat transfer in a stationary vertical tube closed at the bottom. The walls of the tube were heated, and heated air in the tube was continuously replaced by fresh cool air at the top. The tube was designed to provide a gravitational field with Grashof numbers of a magnitude comparable with those generated by the centrifugal field in rotating-blade coolant passages (10(8) to 10(13)). Local heat-transfer coefficients in the turbulent-flow range and the temperature field within the fluid were obtained.

  14. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    DOE PAGES

    Márquez, Francisco; López, Vicente; Morant, Carmen; ...

    2010-01-01

    Arrmore » ays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800 ° C . The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.« less

  15. Highly aligned vertical GaN nanowires using submonolayer metal catalysts

    DOEpatents

    Wang, George T [Albuquerque, NM; Li, Qiming [Albuquerque, NM; Creighton, J Randall [Albuquerque, NM

    2010-06-29

    A method for forming vertically oriented, crystallographically aligned nanowires (nanocolumns) using monolayer or submonolayer quantities of metal atoms to form uniformly sized metal islands that serve as catalysts for MOCVD growth of Group III nitride nanowires.

  16. Thermal Conductivity of Copoly(ethylene vinyl acetate)/Nano-Filler Blends

    NASA Technical Reports Server (NTRS)

    Ghose, S.; Watson, K. A.; Working, D. C.; Connell, J. W.; Smith, J. G.; Lin, Y.; Sun, Y. P.

    2007-01-01

    The development of flexible, thermally conductive fabrics and plastic tubes for the Liquid Cooling and Ventilation Garment (LCVG) are needed to reduce weight and improve the mobility, comfort, and performance of future spacesuits. Such improvements would allow astronauts to operate more efficiently and safely for extended extravehicular activities. As a continuation of our work on the improvement of thermal conductivity (TC) of polymeric materials, nanocomposites were prepared from copoly(ethylene vinyl acetate), trade name Elvax 260TradeMark), metallized carbon nanofibers (CNFs), nickel (Ni) nanostrands, boron nitride both alone and as mixtures with aluminum powder. The nanocomposites were prepared by melt mixing at various loading levels and subsequently fabricated into several material forms (i.e., ribbons, tubes, and compression molded plaques) for analysis. Ribbons and tubes were extruded to form samples in which the nanoparticles were aligned in the direction of flow. The degree of dispersion and alignment of the nanoparticles were investigated using high-resolution scanning electron microscopy. Tensile properties of the aligned samples were determined at room temperature. TC measurements were performed using a laser flash (Nanoflash(TradeMark) technique. The TC of the samples was measured in both the direction of alignment as well as transverse. Tubing of comparable dimensions to that used in the LCVG was extruded from select compositions and the thermal conductivities of the tubes measured.

  17. The effects of window shape and reticle presence on performance in a vertical alignment task

    NASA Technical Reports Server (NTRS)

    Rosenberg, Erika L.; Haines, Richard F.; Jordan, Kevin

    1989-01-01

    This study was conducted to evaluate the effect of selected interior work-station orientational cuing upon the ability to align a target image with local vertical in the frontal plane. Angular error from gravitational vertical in an alignment task was measured for 20 observers viewing through two window shapes (square, round), two initial orientations of a computer-generated space shuttle image, and the presence or absence of a stabilized optical alignment reticle. In terms of overall accuracy, it was found that observer error was significantly smaller for the square window and reticle-present conditions than for the round window and reticle-absent conditions. Response bias data reflected an overall tendency to undershoot and greater variability of response in the round window/no reticle condition. These results suggest that environmental cuing information, such as that provided by square window frames and alignment reticles, may aid in subjective orientation and increase accuracy of response in a Space Station proximity operations alignment task.

  18. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong Lin; Hu, Youfan; Zhang, Yan; Xu, Chen; Zhu, Guang

    2014-09-09

    A generator includes a substrate, a first electrode layer, a dense plurality of vertically-aligned piezoelectric elongated nanostructures, an insulating layer and a second electrode layer. The substrate has a top surface and the first electrode layer is disposed on the top surface of the substrate. The dense plurality of vertically-aligned piezoelectric elongated nanostructures extends from the first electrode layer. Each of the nanostructures has a top end. The insulating layer is disposed on the top ends of the nanostructures. The second electrode layer is disposed on the non-conductive layer and is spaced apart from the nanostructures.

  19. Apparatus and methods for aligning holes through wheels and spacers and stacking the wheels and spacers to form a turbine rotor

    DOEpatents

    Berry, Robert Randolph; Palmer, Gene David; Wilson, Ian David

    2000-01-01

    A gas turbine rotor stacking fixture includes upstanding bolts for reception in aligned bolt holes in superposed aft disk, wheels and spacers and upstanding alignment rods received in openings of the disk, wheels and spacers during the rotor stacking assembly. The axially registering openings enable insertion of thin-walled tubes circumferentially about the rim of the rotor, with tight tolerances to the openings to provide supply and return steam for cooling buckets. The alignment rods have radial dimensions substantially less than their dimensions in a circumferential direction to allow for radial opening misalignment due to thermal expansion, tolerance stack-up and wheel-to-spacer mismatch due to rabbet mechanical growth. The circumferential dimension of the alignment rods affords tightly toleranced alignment of the openings through which the cooling tubes are installed.

  20. Radiographic localization of unerupted maxillary anterior teeth using the vertical tube shift technique: the history and application of the method with some case reports.

    PubMed

    Jacobs, S G

    1999-10-01

    The preferred means of radiographic localization is the parallax method introduced by Clark in 1910. He used 2 periapical radiographs and shifted the tube in the horizontal plane. In 1952, Richards appreciated that a vertical tube shift could also be carried out. No major changes then occurred in the technique until Keur, in Australia, in 1986 replaced the periapical radiographs with occlusal radiographs. This modification enables a greater tube movement and therefore a greater shift of the image of the impacted tooth; it also ensures that the whole of the tooth is captured on the radiograph. For the vertical tube shift, Keur introduced the use of a rotational panoramic radiograph with an occlusal radiograph. In 1987, Southall and Gravely discussed this vertical tube shift combination in the English dental literature, and it is now the preferred combination of radiographs for localizing impacted maxillary anterior teeth. Jacobs introduced this method to the American literature in 1999, but it has yet to gain acceptance in the continental European literature. Jacobs recommended, when using this combination, to routinely increase the vertical angulation for the occlusal radiograph by 10 degrees to achieve a greater image shift. Four case reports are presented in this article. Three have photographs taken at surgical exposure to illustrate how the position of the impacted tooth can be accurately predicted by appropriate interpretation of the radiographs.

  1. Apparatus for connecting aligned abutted tubes

    DOEpatents

    Williams, R.E.

    1984-11-29

    An apparatus for connecting abutted tubes and for maintaining their rotary alignment during connection. The apparatus comprises first and second tubes, a rotation prevention element, a collar and a retainer. Each tube has inside and outside walls, and first and second ends, each end having an inside and outside edge. The first tube has portions defining a first plurality of cavities located at the outside edge of its first end. An external threaded portion is on the outside wall of the first tube and next to the first plurality of cavities. The second tube has portions defining a second plurality of cavities located at the outside edge of its first end. The first plurality has a different number than the second plurality. The first ends of the first and second tubes have substantially the same outside diameter and are abutted during connection so that an orifice is formed whenever first and second tube cavities substantially overlap. A rotation prevension element is placed in the orifice to prevent rotation of the first and second tubes. A collar with an internal threaded portion is slidably disposed about the second tube. The internal threaded portion engages the external threaded portion of the first tube to connect the tubes. A lip connected to the collar prevents separation of the collar from the second tube.

  2. Direction of balance and perception of the upright are perceptually dissociable

    PubMed Central

    Panic, Alexander Sacha; DiZio, Paul; Lackner, James R.

    2015-01-01

    We examined whether the direction of balance rather than an otolith reference determines the perceived upright. Participants seated in a device that rotated around the roll axis used a joystick to control its motion. The direction of balance of the device, the location where it would not be accelerated to either side, could be offset from the gravitational vertical, a technique introduced by Riccio, Martin, and Stoffregen (J Exp Psychol Hum Percept Perform 18: 624–644, 1992). Participants used the joystick to align themselves in different trials with the gravitational vertical, the direction of balance, the upright, or the direction that minimized oscillations. They pressed the joystick trigger whenever they thought they were at the instructed orientation. Achieved angles for the “align with gravity” and “align with the upright” conditions were not different from each other and were significantly displaced past the gravitational vertical opposite from the direction of balance. Mean indicated angles for align with gravity and align with the upright coincided with the gravitational vertical. Both mean achieved and indicated angles for the “minimize oscillations” and “align with the direction of balance” conditions were significantly deviated toward the gravitational vertical. Three control experiments requiring self-settings to instructed orientations only, perceptual judgments only, and perceptual judgments during passive exposure to dynamic roll profiles confirmed that perception of the upright is determined by gravity, not by the direction of balance. PMID:25761954

  3. Wind-Tunnel Investigation of the Effect of Vertical Position of the Wing on the Side Flow in the Region of the Vertical Tail

    DTIC Science & Technology

    1941-04-01

    measured with a bank of pitot -yaw tubes-connected to a direct-reading multiple-tube manometer. The- bank of pitot -yaw tubes was so mounted as- to...neutral and deflected 60°. These Surveys were made on a cross-tunnel line 2.26 inches above the fuselage center line, and the pitot -yaw tubes were...Langley Field-, 7a-., January 30, 1941. NACA Technical Note So. 804 17 REFERENCES 1. Pearson, Henry A., and Jones, Robert T. : Theoretical

  4. Natural vibration frequencies of horizontal tubes partially filled with liquid

    NASA Astrophysics Data System (ADS)

    Santisteban Hidalgo, Juan Andrés; Gama, Antonio Lopes; Moreira, Roger Matsumoto

    2017-11-01

    This work presents an experimental and numerical study on the flexural vibration of horizontal circular tubes partially filled with liquid. The tube is configured as a free-free beam with attention being directed to the case of small amplitudes of transverse oscillation whereas the axial movements of the tube and liquid are disregarded. At first vertical and horizontal polarizations of the flexural tube are investigated experimentally for different amounts of filling liquid. In contrast with the empty and fully-filled tubes, it is observed that natural frequencies of the vertical and horizontal polarizations are different due to asymmetry induced by the liquid layer, which acts like an added mass. Less mass of liquid is added to the tube when oscillating horizontally; as a consequence, eigenfrequencies for the horizontal polarization are found to be greater than the case of the vertically polarized tube. A simple method to calculate the natural vibration frequencies using coefficients of added mass of liquid is proposed. It is shown that the added mass coefficient increases with the liquid's level and viscosity. At last a numerical investigation of the interaction between the liquid and the tube is carried out by solving in two-dimensions the full Navier-Stokes equations via a finite volume method, with the free-surface flow being modeled with a homogeneous multiphase Eulerian-Eulerian fluid approach. Vertical and horizontal polarizations are imposed to the tube with pressure and shear stresses being determined numerically to assess the liquid's forcing onto the tube's wall. The coefficient of added mass of liquid is then estimated by the ratio between the resulting force and the acceleration imposed to the wall. A good agreement is found between experimental and numerical results, especially for the horizontally oscillating tube. It is also shown that viscosity can noticeably affect the added mass coefficients, particularly at low filling levels.

  5. Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Sreekanth, M.; Ghosh, S.; Srivastava, P.

    2018-01-01

    We report the growth of vertically aligned carbon nanotube bundles on Si substrate by thermal chemical vapor deposition technique. Vertical alignment was achieved without any carrier gas or lithography-assisted deposition. Growth has been carried out at 850 °C for different quantities of solution of xylene and ferrocene ranging from 2.25 to 3.00 ml in steps of 0.25 ml at a fixed concentration of 0.02 gm (ferrocene) per ml. To understand the growth mechanism, deposition was carried out for different concentrations of the solution by changing only the ferrocene quantity, ranging from 0.01 to 0.03 gm/ml. A tunable vertical alignment of multi-walled carbon nanotubes (CNTs) has been achieved by this process and examined by scanning and transmission electron microscopic techniques. Micro-crystalline structural analysis has been done using Raman spectroscopy. A systematic variation in field emission (FE) current density has been observed. The highest FE current density is seen for the film grown with 0.02 gm/ml concentration, which is attributed to the better alignment of CNTs, less structural disorder and less entanglement of CNTs on the surface. The alignment of CNTs has been qualitatively understood on the basis of self-assembled catalytic particles.

  6. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, Desikan

    1984-01-01

    A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  7. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, D.

    1984-01-01

    A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  8. Accuracy of the vertical tube shift method in identifying the relationship between the third molars and the mandibular canal.

    PubMed

    de-Azevedo-Vaz, Sergio Lins; Oenning, Anne Caroline Costa; Felizardo, Marcela Graciano; Haiter-Neto, Francisco; de Freitas, Deborah Queiroz

    2015-04-01

    The objective of this study is to assess the accuracy of the vertical tube shift method in identifying the relationship between the mandibular canal (MC) and third molars. Two examiners assessed image sets of 173 lower third molar roots (55 patients) using forced consensus. The image sets comprised two methods: PERI, two periapical radiographs (taken at 0° and -30°), and PAN, a panoramic radiograph (vertical angulation of -8°) and a periapical radiograph taken at a vertical angulation of -30°. Cone beam computed tomography (CBCT) was the reference standard in the study. The responses were recorded for position (buccal, in-line with apex and lingual) and contact (present or absent). The McNemar-Bowker and McNemar tests were used to determine if the PERI and PAN methods would disagree with the reference standard (α = 5 %). The PERI and PAN methods disagreed with the reference standard for both position and contact (p < 0.05). The vertical tube shift method was not accurate in determining the relationship between lower third molars and the MC. The vertical tube shift is not a reliable method for predicting the relationship between lower third molars and the MC.

  9. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration.

    PubMed

    Wang, Wei; Itoh, Soichiro; Konno, Katsumi; Kikkawa, Takeshi; Ichinose, Shizuko; Sakai, Katsuyoshi; Ohkuma, Tsuneo; Watabe, Kazuhiko

    2009-12-15

    We have constructed a chitosan nonwoven nanofiber mesh tube consisting of oriented fibers by the electrospinning method. The efficacy of oriented nanofibers on Schwann cell alignment and positive effect of this tube on peripheral nerve regeneration were confirmed. The physical properties of the chitosan nanofiber mesh sheets prepared by electrospinning with or without fiber orientation were characterized. Then, immortalized Schwann cells were cultured on these sheets. Furthermore, the chitosan nanofiber mesh tubes with or without orientation, and bilayered chitosan mesh tube with an inner layer of oriented nanofibers and an outer layer of randomized nanofibers were bridgegrafted into rat sciatic nerve defect. As a result of fiber orientation, the tensile strength along the axis of the sheet increased. Because Schwann cells aligned along the nanofibers, oriented fibrous sheets could exhibit a Schwann cell column. Functional recovery and electrophysiological recovery occurred in time in the oriented group as well as in the bilayered group, and approximately matched those in the isograft. Furthermore, histological analysis revealed that the sprouting of myelinated axons occurred vigorously followed by axonal maturation in the isograft, oriented, and bilayered group in the order. The oriented chitosan nanofiber mesh tube may be a promising substitute for autogenous nerve graft.

  10. Biological sample collector

    DOEpatents

    Murphy, Gloria A [French Camp, CA

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  11. Self-propelled in-tube shuttle and control system for automated measurements of magnetic field alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boroski, W.N.; Nicol, T.H.; Pidcoe, S.V.

    1990-03-01

    A magnetic field alignment gauge is used to measure the field angle as a function of axial position in each of the magnets for the Superconducting Super Collider (SSC). Present measurements are made by manually pushing the through the magnet bore tube and stopping at intervals to record field measurements. Gauge location is controlled through graduation marks and alignment pins on the push rods. Field measurements are recorded on a logging multimeter with tape output. Described is a computerized control system being developed to replace the manual procedure for field alignment measurements. The automated system employs a pneumatic walking devicemore » to move the measurement gauge through the bore tube. Movement of the device, called the Self-Propelled In-Tube Shuttle (SPITS), is accomplished through an integral, gas driven, double-acting cylinder. The motion of the SPITS is transferred to the bore tube by means of a pair of controlled, retractable support feet. Control of the SPITS is accomplished through an RS-422 interface from an IBM-compatible computer to a series of solenoid-actuated air valves. Direction of SPITS travel is determined by the air-valve sequence, and is managed through the control software. Precise axial position of the gauge within the magnet is returned to the control system through an optically-encoded digital position transducer attached to the shuttle. Discussed is the performance of the transport device and control system during preliminary testing of the first prototype shuttle. 1 ref., 7 figs.« less

  12. Vertically Aligned Carbon Nanotubes at Different Temperatures by Spray Pyrolysis Techniques

    NASA Astrophysics Data System (ADS)

    Afre, Rakesh A.; Soga, T.; Jimbo, T.; Kumar, Mukul; Ando, Y.; Sharon, M.

    Vertically aligned arrays of multi-walled carbon nanotubes (VACNTs) were grown by spray pyrolysis of turpentine oil and ferrocene mixture at temperatures higher than 700°C. Using this simple method, we report the successful growth of vertically aligned nanotubes of ~300μm length and diameter in the range of ?20-80nm on Si(100) substrate. The ferrocene acts as an in situ Fe catalyst precursor, forming the nano-sized metallic iron particles for formation of VACNTs on the Si substrate. The morphological characteristics of VACNTs are confirmed by SEM, TEM and Raman spectroscopy and growth mechanism is discussed in short.

  13. Segmented lasing tube for high temperature laser assembly

    DOEpatents

    Sawicki, Richard H.; Alger, Terry W.; Finucane, Raymond G.; Hall, Jerome P.

    1996-01-01

    A high temperature laser assembly capable of withstanding operating temperatures in excess of 1500.degree. C. is described comprising a segmented cylindrical ceramic lasing tube having a plurality of cylindrical ceramic lasing tube segments of the same inner and outer diameters non-rigidly joined together in axial alignment; insulation of uniform thickness surround the walls of the ceramic lasing tube; a ceramic casing, preferably of quartz, surrounding the insulation; and a fluid cooled metal jacket surrounds the ceramic casing. In a preferred embodiment, the inner surface of each of the ceramic lasing tube segments are provided with a pair of oppositely spaced grooves in the wall thereof parallel to the center axis of the segmented cylindrical ceramic lasing tube, and both of the grooves and the center axis of the segmented cylindrical ceramic lasing tube lie in a common plane, with the grooves in each ceramic lasing tube segment in circumferential alignment with the grooves in the adjoining ceramic lasing tube segments; and one or more ceramic plates, all lying in a common plane to one another and with the central axis of the segmented ceramic lasing tube, are received in the grooves to provide additional wall area in the segmented ceramic lasing tube for collision and return to ground state of metastable metal atoms within the segmented ceramic lasing tube.

  14. WET OXIDATION OF MUNICIPAL SLUDGE BY THE VERTICAL TUBE REACTOR

    EPA Science Inventory

    A study was undertaken to assess the feasibility of carrying out oxidation of dilute sewage sludge by means of the vertical tube reactor (VTR) system. A pilot scale facility along with a laboratory reactor were used for this study. Dilute sewage sludge was oxidized in the laborat...

  15. A Tube Seepage Meter for In Situ Measurement of Seepage Rate and Groundwater Sampling.

    PubMed

    Solder, John E; Gilmore, Troy E; Genereux, David P; Solomon, D Kip

    2016-07-01

    We designed and evaluated a "tube seepage meter" for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy-bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self-purging groundwater-sampling device. © 2015, National Ground Water Association.

  16. A tube seepage meter for in situ measurement of seepage rate and groundwater sampling

    USGS Publications Warehouse

    Solder, John; Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip

    2016-01-01

    We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy-bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self-purging groundwater-sampling device.

  17. Proton radiation effects on the optical properties of vertically aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kuhnhenn, J.; Khavrus, V.; Leonhardt, A.; Eversheim, D.; Noll, C.; Hinderlich, S.; Dahl, A.

    2017-11-01

    This paper discusses proton-induced radiation effects in vertically aligned carbon nanotubes (VA-CNT). VACNTs exhibit extremely low optical reflectivity which makes them interesting candidates for use in spacecraft stray light suppression. Investigating their behavior in space environment is a precondition for the implementation on a satellite.

  18. Vertically aligned carbon nanotubes as anode and air-cathode in single chamber microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Amade, R.; Moreno, H. A.; Hussain, S.; Vila-Costa, M.; Bertran, E.

    2016-10-01

    Electrode optimization in microbial fuel cells is a key issue to improve the power output and cell performance. Vertically aligned carbon nanotubes (VACNTs) grown on low cost stainless-steel mesh present an attractive approach to increase the cell performance while avoiding the use of expensive Pt-based materials. In comparison with non-aligned carbon nanotubes (NACNTs), VACNTs increase the oxygen reduction reaction taking place at the cathode by a factor of two. In addition, vertical alignment also increases the power density up to 2.5 times with respect to NACNTs. VACNTs grown at the anode can further improve the cell performance by increasing the electrode surface area and thus the electron transfer between bacteria and the electrode. The maximum power density obtained using VACNTs was 14 mW/m2 and 160 mV output voltage.

  19. Effect of Alignment on Transport Properties of Carbon Nanotube/Metallic Junctions

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min; Smits, Jan; Williams, Phillip; Harvey, Robert

    2003-01-01

    Ballistic and spin coherent transport in single walled carbon nanotubes (SWCNT) are predicted to enable high sensitivity single-nanotube devices for strain and magnetic field sensing. Based upon these phenomena, electron beam lithography procedures have been developed to study the transport properties of purified HiPCO single walled carbon nanotubes for development into sensory materials for nondestructive evaluation. Purified nanotubes are dispersed in solvent suspension and then deposited on the device substrate before metallic contacts are defined and deposited through electron beam lithography. This procedure produces randomly dispersed ropes, typically 2 - 20 nm in diameter, of single walled carbon nanotubes. Transport and scanning probe microscopy studies have shown a good correlation between the junction resistance and tube density, alignment, and contact quality. In order to improve transport properties of the junctions a technique has been developed to align and concentrate nanotubes at specific locations on the substrate surface. Lithographic techniques are used to define local areas where high frequency electric fields are to be concentrated. Application of the fields while the substrate is exposed to nanotube-containing solution results in nanotube arrays aligned with the electric field lines. A second electron beam lithography layer is then used to deposit metallic contacts across the aligned tubes. Experimental measurements are presented showing the increased tube alignment and improvement in the transport properties of the junctions.

  20. Effects of alignment layer thickness on the pretilt angle of liquid crystals

    NASA Astrophysics Data System (ADS)

    Son, Jong-Ho; Zin, Wang-Cheol

    2010-12-01

    Mixture solutions of vertical- and planar-aligning polyimide precursors were coated on bare glass. The concentrations of the solutions were varied to control the thicknesses of the films. The resulting blend films were baked to induce imidization and then rubbed. The thicknesses (t) of the blend film and of the pure vertical-alignment film affected their surface energies; the pretilt angle can be fully controlled in the range 5.5°≤Θ0≤87° by adjusting t. The surface energy of pure planar-alignment layers was independent of t.

  1. Improved high power/high frequency inductor

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1990-01-01

    A toroidal core is mounted on an alignment disc having uniformly distributed circumferential notches or holes therein. Wire is then wound about the toroidal core in a uniform pattern defined by the notches or holes. Prior to winding, the wire may be placed within shrink tubing. The shrink tubing is then wound about the alignment disc and core and then heat-shrunk to positively retain the wire in the uniform position on the toroidal core.

  2. In-bed tube bank for a fluidized-bed combustor

    DOEpatents

    Hemenway, Jr., Lloyd F.

    1990-01-01

    An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

  3. Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators.

    PubMed

    Chin, Stacey M; Synatschke, Christopher V; Liu, Shuangping; Nap, Rikkert J; Sather, Nicholas A; Wang, Qifeng; Álvarez, Zaida; Edelbrock, Alexandra N; Fyrner, Timmy; Palmer, Liam C; Szleifer, Igal; Olvera de la Cruz, Monica; Stupp, Samuel I

    2018-06-19

    Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks.

  4. Transient, Small-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer During Storm Time Substorms

    NASA Technical Reports Server (NTRS)

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; hide

    2016-01-01

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  5. Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms.

    PubMed

    Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y

    2016-05-28

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  6. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gascoyne, A.; Jain, R.; Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation ofmore » Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).« less

  7. Energy Loss of Solar p Modes due to the Excitation of Magnetic Sausage Tube Waves: Importance of Coupling the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-07-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).

  8. CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.

    2010-04-01

    Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.

  9. Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Jeong, Y. H.; Kim, H. Y.; Cho, H. M.; Lee, W. G.; Lee, S. H.

    2000-06-01

    We have fabricated a vertically aligned 4-domain nematic liquid crystal display cell with thin film transistor. Unlike the conventional method constructing 4-domain, i.e., protrusion and surrounding electrode which needs additional processes, in this study the pixel design forming 4-domain with interdigital electrodes is suggested. In the device, one pixel is divided into two parts. One part has a horizontal electric field in the vertical direction and the other part has a horizontal one in the horizontal direction. Such fields in the horizontal and vertical direction drive the liquid crystal director to tilt down in four directions. In this article, the electro-optic characteristics of cells with 2 and 4 domain have been studied. The device with 4 domain shows faster response time than normal twisted-nematic and in-plane switching cells, wide viewing angle with optical compensation film, and more stable color characteristics than 2-domain vertical alignment cell with similar structure.

  10. Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry

    ERIC Educational Resources Information Center

    Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris

    2014-01-01

    This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…

  11. Fast preparation of hydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube composites for bioactive application.

    PubMed

    Lobo, Anderson O; Corat, Marcus A F; Ramos, Sandra C; Matsushima, Jorge T; Granato, Alessandro E C; Pacheco-Soares, Cristina; Corat, Evaldo J

    2010-12-07

    A method for the electrodeposition of hydroxyapatite films on superhydrophilic vertically aligned multiwalled carbon nanotubes is presented. The formation of a thin homogeneous film with high crystallinity was observed without any thermal treatment and with bioactivity properties that accelerate the in vitro biomineralization process and osteoblast adhesion.

  12. Prediction of the rate of the rise of an air bubble in nanofluids in a vertical tube.

    PubMed

    Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T

    2018-04-19

    Our recent experiments have demonstrated that when a bubble rises through a nanofluid (a liquid containing dispersed nanoparticles) in a vertical tube, a nanofluidic film with several particle layers is formed between the gas bubble and the glass tube wall, which significantly changes the bubble velocity due to the nanoparticle layering phenomenon in the film. We calculated the structural nanofilm viscosity as a function of the number of particle layers confined in it and found that the film viscosity increases rather steeply when the film contains only one or two particle layers. The nanofilm viscosity was found to be several times higher than the bulk viscosity of the fluid. Consequently, the Bretherton equation cannot accurately predict the rate of the rise of a slow-moving long bubble in a vertical tube in a nanofluid because it is valid only for very thick films and uses the bulk viscosity of the fluid. However, in this brief note, we demonstrate that the Bretherton equation can indeed be used for predicting the rate of the rise of a long single bubble through a vertical tube filled with a nanofluid by simply replacing the bulk viscosity with the proper structural nanofilm viscosity of the fluid. Copyright © 2018. Published by Elsevier Inc.

  13. Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films

    NASA Astrophysics Data System (ADS)

    Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.

    2016-05-01

    We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (<10-3) in the frequency range considered due to a very small perpendicular conductivity. The microwave impedance of a vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.

  14. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.

    PubMed

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.

  15. Transition of vertically aligned liquid crystal driven by fan-shaped electric field

    NASA Astrophysics Data System (ADS)

    Tsung, J. W.; Ting, T. L.; Chen, C. Y.; Liang, W. L.; Lai, C. W.; Lin, T. H.; Hsu, W. H.

    2017-09-01

    Interdigital electrodes are implemented in many commercial and novel liquid crystal devices to align molecules. Although many empirical principles and patents apply to electrode design, only a few numerical simulations of alignment have been conducted. Why and how the molecules align in an ordered manner has never been adequately explained. Hence, this investigation addresses the Fréedericksz transition of vertically aligned liquid crystal that is driven by fishbone electrodes, and thereafter identifies the mechanism of liquid crystal alignment. Theoretical calculations suggest that the periodic deformation that is caused by the fan-shaped fringe field minimizes the free energy in the liquid crystal cell, and the optimal alignment can be obtained when the cell parameters satisfy the relation p /2 d =√{k11/k33 } , where p is the spatial period of the strips of the electrode; d denotes the cell gap; and k11 and k33 are the splay and bend elastic constants of the liquid crystal, respectively. Polymer-stabilized vertical alignment test cells with various p values and spacings between the electrodes were fabricated, and the process of liquid crystal alignment was observed under an optical microscope. The degree of alignment was evaluated by measuring the transmittance of the test cell. The experimental results were consistent with the theoretical predictions. The principle of design, p /2 d =√{k11/k33 } , greatly improves the uniformity and stability of the aligned liquid crystal. The methods that are presented here can be further applied to cholesteric liquid crystal and other self-assembled soft materials.

  16. Installation and assembly device and method of using

    DOEpatents

    Kolsun, George J.

    1997-01-01

    An installation and assembly device for aligning a first member such as a pump impeller with a second member such as an inlet nozzle of an impeller pump. The installation and assembly device includes a sleeve slideable within the inlet nozzle and a vertical positioning assembly which has a contact member that is extendable out away from the sleeve so as to vertically position the sleeve on a shoulder of the inlet nozzle and to present an upper contact surface spaced a certain distance from the shoulder to provide the desired vertical spacing with respect to the impeller contacting the upper contact surface. The vertical positioning assembly is retractable so as to allow for removal of the sleeve through the nozzle when installation and assembly are completed. The alignment device also includes a radial alignment assembly supported by the sleeve and adjustable to an expanded state for contacting and spacing the interior surface of the impeller a certain distance from the sleeve and hence a certain distance from the inlet nozzle. The radial alignment device being adjustable from a retracted removal state to an expanded state and also being adjustable to fine tune the spacing of the impeller from the sleeve. The radial alignment device also preferably includes members that can be used to releasably secure the sleeve to the impeller.

  17. Numerical simulation of water evaporation inside vertical circular tubes

    NASA Astrophysics Data System (ADS)

    Ocłoń, Paweł; Nowak, Marzena; Majewski, Karol

    2013-10-01

    In this paper the results of simplified numerical analysis of water evaporation in vertical circular tubes are presented. The heat transfer in fluid domain (water or wet steam) and solid domain (tube wall) is analyzed. For the fluid domain the temperature field is calculated solving energy equation using the Control Volume Method and for the solid domain using the Finite Element Method. The heat transfer between fluid and solid domains is conjugated using the value of heat transfer coefficient from evaporating liquid to the tube wall. It is determined using the analytical Steiner-Taborek correlation. The pressure changes in fluid are computed using Friedel model.

  18. Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC.

    PubMed

    Wu, Ren-Guei; Yang, Chung-Shi; Wang, Pen-Cheng; Tseng, Fan-Gang

    2009-06-01

    We present a micro-CEC chip carrying out a highly efficient separation of dsDNA fragments through vertically aligned multi-wall carbon nanotubes (MWCNTs) in a microchannel. The vertically aligned MWCNTs were grown directly in the microchannel to form straight nanopillar arrays as ordered and directional chromatographic supports. 1-Pyrenedodecanoic acid was employed for the surface modification of the MWCNTs' stationary phase to adsorb analytes by hydrophobic interactions. This device was used for separating dsDNA fragments of three different lengths (254, 360, and 572 bp), and fluorescence detection was employed to verify the electrokinetic transport in the MWCNT array. The micro-CEC separation of the three compounds was achieved in less than 300 s at a field strength of 66 V/cm due to superior laminar flow patterns and a lower flow resistance resulting from the vertically aligned MWCNTs being used as the stationary phase medium. In addition, a fivefold reduction of band broadening was obtained when the analyte was separated by the chromatographic MWCNT array channel instead of the CE channel. From all of the results, we suggest that an in situ grown and directional MWCNT array can potentially be useful for preparing more diversified forms of stationary phases for vertically efficient chip-based electrochromatography.

  19. Highly uniform and vertically aligned SnO2 nanochannel arrays for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Yup; Kang, Jin Soo; Shin, Junyoung; Kim, Jin; Han, Seung-Joo; Park, Jongwoo; Min, Yo-Sep; Ko, Min Jae; Sung, Yung-Eun

    2015-04-01

    Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process. In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 μm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process.Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process. In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 μm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00202h

  20. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    NASA Technical Reports Server (NTRS)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP) summer internship program and the budget goal was $1200. In this report, we will describe our motorization design and discuss the results of its implementation.

  1. Deformation behavior and mechanical analysis of vertically aligned carbon nanotube (VACNT) bundles

    NASA Astrophysics Data System (ADS)

    Hutchens, Shelby B.

    Vertically aligned carbon nanotubes (VACNTs) serve as integral components in a variety of applications including MEMS devices, energy absorbing materials, dry adhesives, light absorbing coatings, and electron emitters, all of which require structural robustness. It is only through an understanding of VACNT's structural mechanical response and local constitutive stress-strain relationship that future advancements through rational design may take place. Even for applications in which the structural response is not central to device performance, VACNTs must be sufficiently robust and therefore knowledge of their microstructure-property relationship is essential. This thesis first describes the results of in situ uniaxial compression experiments of 50 micron diameter cylindrical bundles of these complex, hierarchical materials as they undergo unusual deformation behavior. Most notably they deform via a series of localized folding events, originating near the bundle base, which propagate laterally and collapse sequentially from bottom to top. This deformation mechanism accompanies an overall foam-like stress-strain response having elastic, plateau, and densification regimes with the addition of undulations in the stress throughout the plateau regime that correspond to the sequential folding events. Microstructural observations indicate the presence of a strength gradient, due to a gradient in both tube density and alignment along the bundle height, which is found to play a key role in both the sequential deformation process and the overall stress-strain response. Using the complicated structural response as both motivation and confirmation, a finite element model based on a viscoplastic solid is proposed. This model is characterized by a flow stress relation that contains an initial peak followed by strong softening and successive hardening. Analysis of this constitutive relation results in capture of the sequential buckling phenomenon and a strength gradient effect. This combination of experimental and modeling approaches motivates discussion of the particular microstructural mechanisms and local material behavior that govern the non-trivial energy absorption via sequential, localized buckle formation in the VACNT bundles.

  2. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    USDA-ARS?s Scientific Manuscript database

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  3. A black body absorber from vertically aligned single-walled carbon nanotubes

    PubMed Central

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  4. Hierarchically ordered carbon tubes

    NASA Astrophysics Data System (ADS)

    Pan, Zheng-Wei; Zhu, Hao-Guo; Zhang, Zong-Tao; Im, Hee-Jung; Dai, Sheng; Beach, David B.; Lowndes, Douglas H.

    2003-04-01

    Micropatterns of hierarchically ordered carbon tubes (i.e., ordered carbon microtubes composed of aligned carbon nanotubes) were grown on a film-like iron/silica substrate consisting of ring-like catalyst patterns. The substrates were prepared by a combined technique, in which the sol-gel method was used to prepare catalyst film and transmission electron microscope grids were used as a shadow mask. In comparison with other techniques that involve sophisticated lithography, this approach represents a simple and low-cost way to the micropatterning of aligned carbon nanotubes.

  5. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    PubMed

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  6. Heat Transfer due to Film Condensation on Vertical Fluted Tubes.

    DTIC Science & Technology

    1984-07-01

    see also 1241 , p.492), •! I, fit " we present the equations for finding 6i, 6i and 6i for i = o, 1,..., n. These equations make use of the boundary...Tubes," Report ORNL -5488, Jan. 1979. 11. Combs, S. K., Mailen, G. S., and Murphy, R. W., "Condensation of Refrigerants on Vertical Fluted Tubes," Report... ORNL /TM-5848, Aug. 1978. 12. Edwards, D. K., Gier, K. D., Ayyaswamy, P. S., and Catton, I., "Evaporation and Condensation in Circumferential Grooves

  7. Bottom head assembly

    DOEpatents

    Fife, A.B.

    1998-09-01

    A bottom head dome assembly is described which includes, in one embodiment, a bottom head dome and a liner configured to be positioned proximate the bottom head dome. The bottom head dome has a plurality of openings extending there through. The liner also has a plurality of openings extending there through, and each liner opening aligns with a respective bottom head dome opening. A seal is formed, such as by welding, between the liner and the bottom head dome to resist entry of water between the liner and the bottom head dome at the edge of the liner. In the one embodiment, a plurality of stub tubes are secured to the liner. Each stub tube has a bore extending there through, and each stub tube bore is coaxially aligned with a respective liner opening. A seat portion is formed by each liner opening for receiving a portion of the respective stub tube. The assembly also includes a plurality of support shims positioned between the bottom head dome and the liner for supporting the liner. In one embodiment, each support shim includes a support stub having a bore there through, and each support stub bore aligns with a respective bottom head dome opening. 2 figs.

  8. Pneumatic transportation of dispersed medium through a vertical tube immersed into a fluidized bed

    NASA Astrophysics Data System (ADS)

    Krasnykh, V. Yu.; Korolev, V. N.; Ostrovskaya, A. V.; Nagornov, S. A.

    2013-11-01

    We discuss the technical problem of how to transport granular material in a vertical direction from the underlying section of a multistage apparatus containing a fluidized bed to an upper section through tubes immersed into the fluidized bed without additional expenditures of energy. The intensity with which the dispersed medium (a mixture of gas and fuel particles) moves through the tube and the mass flowrate of particles are determined by the ratio between the hydraulic resistances of dispersed medium inside the tube and of the fluidized bed outside of it. In turn, this ratio depends on the fluidization number W (W = w s/ w 0, where w s is the seepage velocity and w 0 is the fluidization commencement velocity) and on the tube immersing depth into the bed.

  9. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  10. Simulations of the Richtmyer-Meshkov Instability in a two-shock vertical shock tube

    NASA Astrophysics Data System (ADS)

    Ferguson, Kevin; Olson, Britton; Jacobs, Jeffrey

    2017-11-01

    Simulations of the Richtmyer-Meshkov Instability (RMI) in a new two-shock vertical shock tube configuration are presented. The simulations are performed using the ARES code at Lawrence-Livermore National Laboratory (LLNL). Two M=1.2 shock waves travel in opposing directions and impact an initially stationary interface formed by sulfur hexaflouride (SF6) and air. The delay between the two shocks is controlled to achieve a prescribed temporal separation in shock wave arrival time. Initial interface perturbations and diffusion profiles are generated in keeping with previously gathered experimental data. The effect of varying the inter-shock delay and initial perturbation structure on instability growth and mixing parameters is examined. Information on the design, construction, and testing of a new two-shock vertical shock tube are also presented.

  11. Motor mechanisms of vertical fusion in individuals with superior oblique paresis.

    PubMed

    Mudgil, Ananth V; Walker, Mark; Steffen, Heimo; Guyton, David L; Zee, David S

    2002-06-01

    We wanted to determine the mechanisms of motor vertical fusion in patients with superior oblique paresis and to correlate these mechanisms with surgical outcomes. Ten patients with superior oblique paresis underwent 3-axis, bilateral, scleral search coil eye movement recordings. Eye movements associated with fusion were analyzed. Six patients had decompensated congenital superior oblique paresis and 4 had acquired superior oblique paresis. All patients with acquired superior oblique paresis relied predominantly on the vertical rectus muscles for motor fusion. Patients with congenital superior oblique paresis were less uniform in their mechanisms for motor fusion: 2 patients used predominantly the oblique muscles, 2 patients used predominantly the vertical recti, and 2 patients used predominantly the superior oblique in the hyperdeviated eye and the superior rectus in the hypodeviated eye. The last 2 patients developed the largest changes in torsional eye alignment relative to changes in vertical eye alignment and were the only patients to develop symptomatic surgical overcorrections. There are 3 different mechanisms for vertical fusion in individuals with superior oblique paresis, with the predominant mechanism being the vertical recti. A subset of patients with superior oblique paresis uses predominantly the superior oblique muscle in the hyperdeviated paretic eye and the superior rectus muscle in the fellow eye for fusion. This results in intorsion of both eyes, causing a large change in torsional alignment. The consequent cyclodisparity, in addition to the existing vertical deviation, may make fusion difficult. The differing patterns of vertical fusional vergence may have implications for surgical treatment.

  12. Large-scale horizontally aligned ZnO microrod arrays with controlled orientation, periodic distribution as building blocks for chip-in piezo-phototronic LEDs.

    PubMed

    Guo, Zhen; Li, Haiwen; Zhou, Lianqun; Zhao, Dongxu; Wu, Yihui; Zhang, Zhiqiang; Zhang, Wei; Li, Chuanyu; Yao, Jia

    2015-01-27

    A novel method of fabricating large-scale horizontally aligned ZnO microrod arrays with controlled orientation and periodic distribution via combing technology is introduced. Horizontally aligned ZnO microrod arrays with uniform orientation and periodic distribution can be realized based on the conventional bottom-up method prepared vertically aligned ZnO microrod matrix via the combing method. When the combing parameters are changed, the orientation of horizontally aligned ZnO microrod arrays can be adjusted (θ = 90° or 45°) in a plane and a misalignment angle of the microrods (0.3° to 2.3°) with low-growth density can be obtained. To explore the potential applications based on the vertically and horizontally aligned ZnO microrods on p-GaN layer, piezo-phototronic devices such as heterojunction LEDs are built. Electroluminescence (EL) emission patterns can be adjusted for the vertically and horizontally aligned ZnO microrods/p-GaN heterojunction LEDs by applying forward bias. Moreover, the emission color from UV-blue to yellow-green can be tuned by investigating the piezoelectric properties of the materials. The EL emission mechanisms of the LEDs are discussed in terms of band diagrams of the heterojunctions and carrier recombination processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Self-assembled vertically aligned Au nanorod arrays for surface-enhanced Raman scattering (SERS) detection of Cannabinol

    NASA Astrophysics Data System (ADS)

    Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin

    2018-05-01

    Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0 nM and 50 mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids.

  14. Improvement in device performance from a mixture of a liquid crystal and photosensitive acrylic prepolymer with the photoinduced vertical alignment method

    PubMed Central

    Ho, Czung-Yu; Lin, Fa-Hsin; Tao, Yu-Tai; Lee, Jiunn-Yih

    2011-01-01

    In a multicomponent nematic liquid crystal (NLC) mixture of a liquid crystal (negative-type NLC) and a photosensitive acrylic prepolymer, photopolymerization upon UV irradiation induces the separation of the LC and photosensitive acrylic prepolymer layers, thereby leading to a vertical arrangement of LC molecules. In this study, we propose a simple vertical alignment method for LC molecules, by adding a chiral smectic A (SmA∗) liquid crystal having homeotropic texture characteristics to an NLC mixture solution. Measurements of electro-optical properties revealed that the addition of the SmA∗ LC not only strengthened the anchoring force of the copolymer alignment film surface, but also significantly enhanced the contrast ratio (∼73%), response time and grayscale switching performance of the device. PMID:27877462

  15. Effects of cloud condensate vertical alignment on radiative transfer calculations in deep convective regions

    NASA Astrophysics Data System (ADS)

    Wang, Xiaocong

    2017-04-01

    Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.

  16. Marine Surface Condenser Design Using Vertical Tubes Which Are Enhanced.

    DTIC Science & Technology

    1981-06-01

    hydraulic diameter. 2. Tube Wall. Heat transfer resistance through the tube wall is dependent upon tube material , wall thickness, and a scaling...B. Heat Transfer Coefficient for a Tube Wall For materials such as pure copper which have extremely high values for thermal conductivity, the...mandate the use of materials with relatively low thermal con- ductivities. The thermal resistance of the tube wall is the reciprocal of the heat

  17. Inductively coupled helium plasma torch

    DOEpatents

    Montaser, Akbar; Chan, Shi-Kit; Van Hoven, Raymond L.

    1989-01-01

    An inductively coupled plasma torch including a base member, a plasma tube and a threaded insert member within the plasma tube for directing the plasma gas in a tangential flow pattern. The design of the torch eliminates the need for a separate coolant gas tube. The torch can be readily assembled and disassembled with a high degree of alignment accuracy.

  18. Method and apparatus for making uniform pellets for fusion reactors

    DOEpatents

    Budrick, Ronald G.; King, Frank T.; Martin, Alfred J.; Nolen, Jr., Robert L.; Solomon, David E.

    1977-01-01

    A method and apparatus for making uniform pellets for laser driven fusion reactors which comprises selection of a quantity of glass frit which has been accurately classified as to size within a few micrometers and contains an occluded material, such as urea, which gasifies and expands when heated. The sized particles are introduced into an apparatus which includes a heated vertical tube with temperatures ranging from 800.degree. C to 1300.degree. C. The particles are heated during the drop through the tube to molten condition wherein the occluded material gasifies to form hollow microspheres which stabilize in shape and plunge into a collecting liquid at the bottom of the tube. The apparatus includes the vertical heat resistant tube, heaters for the various zones of the tube and means for introducing the frit and collecting the formed microspheres.

  19. Air-bridged Ohmic contact on vertically aligned si nanowire arrays: application to molecule sensors.

    PubMed

    Han, Hee; Kim, Jungkil; Shin, Ho Sun; Song, Jae Yong; Lee, Woo

    2012-05-02

    A simple, cost-effective, and highly reliable method for constructing an air-bridged electrical contact on large arrays of vertically aligned nanowires was developed. The present method may open up new opportunities for developing advanced nanowire-based devices for energy harvest and storage, power generation, and sensing applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Superior Thermal Interface via Vertically Aligned Carbon Nanotubes Grown on Graphite Foils

    DTIC Science & Technology

    2012-01-01

    accepted 12 November 2012) In an attempt to study the thermal transport at the interface between nanotubes and graphene, vertically aligned multiwalled...tually increases the thermal barrier in a significant manner. On the other hand, thermal transport properties of thermal tapes and thermally conductive...aforementioned study achieved superior thermal transport properties, the processing and scale-up of the developed process would be prohibitively

  1. Method of fabricating vertically aligned group III-V nanowires

    DOEpatents

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  2. Beyond Scissors and Glue: Staff Developers Guide Teachers in Piecing Together a Vertically Aligned Curriculum and in Creating a Method to Get This Job Done

    ERIC Educational Resources Information Center

    Phelps, Vickie

    2005-01-01

    Layers and layers of curricula stuffed into vinyl binders were the norm in this Texas district until teachers sat down with scissors and glue to create a vertically aligned curriculum. They then created standards-based lessons to support the curriculum and put them into a database readily accessible by all.

  3. Vein-style air pumping tube and tire system and method of assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, Robert Leon; Gobinath, Thulasiram; Lin, Cheng-Hsiung

    An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is thenmore » cured.« less

  4. Natural convection in a vertical heated tube attached to a thermally insulated chimney of a different diameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asako, Y.; Nakamura, H.; Faghri, M.

    1990-08-01

    Natural convection is often a convenient and inexpensive mode of heat transfer. It is commonly employed in the cooling of electronic equipment and many other applications. Since the initial work by Bodoia and Osterle (1962) on finite difference solutions of natural convection between vertical isothermal plates, many other researchers have studied natural convection in vertical channels. Specifically Davis and Perona (1971) studied natural convection in vertical heated tubes. A thermally insulated chimney attached to a vertical heated channel induces an increase in the natural convection in the channel and leads to a higher heat transfer rate. This is the well-knownmore » chimney effect discussed in the paper by Haaland and Sparrow (1983). If the chimney diameter is larger than the heated tube diameter, the friction loss in the chimney region decreases with increasing chimney diameter. This induces an increase in the mass flow rate and leads to a higher heat transfer rate than the case for a chimney of the same diameter. However, from a geometric consideration it is evident that the chimney effect diminishes in the limiting case of an extremely large chimney diameter compared with its height. Therefore, there exists an optimum diameter where the heat transfer is maximum. To investigate the chimney effect computations are carried out for a Rayleigh number of 12.5, based on the heated tube radius, and for a Prandtl number of 0.7. The numerical results are based on a control volume finite difference method. The average Nusselt number results are compared with the numerical results obtained for a chimney attached to a tube of the same diameter.« less

  5. SU-G-JeP3-02: Comparison of Magnitude and Frequency of Patient Positioning Errors in Breast Irradiation Using AlignRT 3D Optical Surface Imaging and Skin Mark Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, R; Chisela, W; Dorbu, G

    2016-06-15

    Purpose: To evaluate clinical usefulness of AlignRT (Vision RT Ltd., London, UK) in reducing patient positioning errors in breast irradiation. Methods: 60 patients undergoing whole breast irradiation were selected for this study. Patients were treated to the left or right breast lying on Qfix Access breast board (Qfix, Avondale, PA) in supine position for 28 fractions using tangential fields. 30 patients were aligned using AlignRT by aligning a breast surface region of interest (ROI) to the same area from a reference surface image extracted from planning CT. When the patient’s surface image deviated from the reference by more than 3mmmore » on one or more translational and rotational directions, a new reference was acquired using AlignRT in-room cameras. The other 30 patients were aligned to the skin marks with room lasers. On-Board MV portal images of medial field were taken daily and matched to the DRRs. The magnitude and frequency of positioning errors were determined from measured translational shifts. Kolmogorov-Smirnov test was used to evaluate statistical differences of positional accuracy and precision between AlignRT and non-AlignRT patients. Results: The percentage of port images with no shift required was 46.5% and 27.0% in vertical, 49.8% and 25.8% in longitudinal, 47.6% and 28.5% in lateral for AlignRT and non-AlignRT patients, respectively. The percentage of port images requiring more than 3mm shifts was 18.1% and 35.1% in vertical, 28.6% and 50.8% in longitudinal, 11.3% and 24.2% in lateral for AlignRT and non-AlignRT patients, respectively. Kolmogorov-Smirnov test showed that there were significant differences between the frequency distributions of AlignRT and non-AlignRT in vertical, longitudinal, and lateral shifts. Conclusion: As confirmed by port images, AlignRT-assisted patient positioning can significantly reduce the frequency and magnitude of patient setup errors in breast irradiation compared to the use of lasers and skin marks.« less

  6. Method and apparatus for determining vertical heat flux of geothermal field

    DOEpatents

    Poppendiek, Heinz F.

    1982-01-01

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  7. OPTICAL TRANSCRIBING OSCILLOSCOPE

    DOEpatents

    Kerns, Q.A.

    1961-09-26

    A device is designed for producing accurate graphed waveforms of very fast electronic pulses. The fast pulse is slowly tracked on a cathode ray tube and a pair of photomultiplier tubes, exposed to the pulse trace, view separate vertical portions thereof at each side of a fixed horizontal reference. Each phototube produces an output signal indicative of vertical movement of the exposed trace, which simultaneous signals are compared in a difference amplifier. The amplifier produces a difference signal which, when applied to the cathode ray tube, maintains the trace on the reference. A graphic recorder receives the amplified difference signal at an x-axis input, while a y-axis input is synchronized with the tracking time of the cathode ray tube and therefore graphs the enlarged waveshape.

  8. Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment.

    PubMed

    Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy

    2017-04-01

    We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.

  9. Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy

    2017-04-01

    We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.

  10. Diameter modulation of vertically aligned single-walled carbon nanotubes.

    PubMed

    Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo

    2012-08-28

    We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.

  11. Self-assembled vertically aligned Au nanorod arrays for surface-enhanced Raman scattering (SERS) detection of Cannabinol.

    PubMed

    Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin

    2018-05-05

    Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0nM and 50mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids. Copyright © 2018. Published by Elsevier B.V.

  12. Nucleation, Growth Mechanism, and Controlled Coating of ZnO ALD onto Vertically Aligned N-Doped CNTs.

    PubMed

    Silva, R M; Ferro, M C; Araujo, J R; Achete, C A; Clavel, G; Silva, R F; Pinna, N

    2016-07-19

    Zinc oxide thin films were deposited on vertically aligned nitrogen-doped carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) from diethylzinc and water. The study demonstrates that doping CNTs with nitrogen is an effective approach for the "activation" of the CNTs surface for the ALD of metal oxides. Conformal ZnO coatings are already obtained after 50 ALD cycles, whereas at lower ALD cycles an island growth mode is observed. Moreover, the process allows for a uniform growth from the top to the bottom of the vertically aligned N-CNT arrays. X-ray photoelectron spectroscopy demonstrates that ZnO nucleation takes place at the N-containing species on the surface of the CNTs by the formation of the Zn-N bonds at the interface between the CNTs and the ZnO film.

  13. Cornering characteristics of the main-gear tire of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.; Robinson, Martha P.

    1988-01-01

    An experimental investigation was conducted at the NASA Langley Research Center to study the effects of various vertical load and yaw angle conditions on the cornering behavior of the Space Shuttle Orbiter main gear tire. Measured parameters included side and drag force, side and drag force coefficients, aligning torque, and overturning torque. Side force coefficient was found to increase as yaw angle was increased, but decreased as the vertical load was increased. Drag force was found to increase as vertical load was increased at constant yaw angles. Aligning torque measurements indicated that the tire is stable in yaw.

  14. Vertically-aligned carbon nanotubes on aluminum as a light-weight positive electrode for lithium-polysulfide batteries.

    PubMed

    Liatard, S; Benhamouda, K; Fournier, A; Ramos, R; Barchasz, C; Dijon, J

    2015-05-04

    A light-weight, high specific surface current collector made of vertically-aligned carbon nanotubes grown on an aluminum substrate was fabricated and studied as a positive electrode in a semi-liquid lithium/polysulfide battery. This simple system delivered stable capacities over 1000 mA h gS(-1) and 2 mA h cm(-2) with almost no capacity loss over 50 cycles.

  15. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    PubMed

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  16. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-01

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g-1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g-1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g-1) and high energy density (98.1 Wh kg-1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  17. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    NASA Astrophysics Data System (ADS)

    Gupta, Bipin Kumar; Kedawat, Garima; Gangwar, Amit Kumar; Nagpal, Kanika; Kashyap, Pradeep Kumar; Srivastava, Shubhda; Singh, Satbir; Kumar, Pawan; Suryawanshi, Sachin R.; Seo, Deok Min; Tripathi, Prashant; More, Mahendra A.; Srivastava, O. N.; Hahm, Myung Gwan; Late, Dattatray J.

    2018-01-01

    The vertical aligned carbon nanotubes (CNTs)-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si) wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness) as a barrier layer and iron (Fe, 1.5 nm thickness) as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM) images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2-30 walls with an inner diameter of 3-8 nm. Raman spectrum analysis shows G-band at 1580 cm-1 and D-band at 1340 cm-1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm), low turn-on field (0.6 V/μm) and field enhancement factor (6917) with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  18. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes.

    PubMed

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-08

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g -1 , which is 6 times higher than disordered CNTs in HClO 4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g -1 ), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g -1 ) and high energy density (98.1 Wh kg -1 ) in EMIBF 4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  19. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes

    PubMed Central

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-01-01

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g−1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g−1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g−1) and high energy density (98.1 Wh kg−1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation. PMID:28272474

  20. Origin of Granular Capillarity Revealed by Particle-Based Simulations

    NASA Astrophysics Data System (ADS)

    Fan, Fengxian; Parteli, Eric J. R.; Pöschel, Thorsten

    2017-05-01

    When a thin tube is dipped into water, the water will ascend to a certain height, against the action of gravity. While this effect, termed capillarity, is well known, recent experiments have shown that agitated granular matter reveals a similar behavior. Namely, when a vertical tube is inserted into a container filled with granular material and is then set into vertical vibration, the particles rise up along the tube. In the present Letter, we investigate the effect of granular capillarity by means of numerical simulations and show that the effect is caused by convection of the granular material in the container. Moreover, we identify two regimes of behavior for the capillary height Hc∞ depending on the tube-to-particle-diameter ratio, D /d . For large D /d , a scaling of Hc∞ with the inverse of the tube diameter, which is reminiscent of liquids, is observed. However, when D /d decreases down to values smaller than a few particle sizes, a uniquely granular behavior is observed where Hc∞ increases linearly with the tube diameter.

  1. Study of the motion and deposition of micro particles in a vertical tube containing uniform gas flow

    NASA Astrophysics Data System (ADS)

    Abolpour, Bahador; Afsahi, M. Mehdi; Soltani Goharrizi, Ataallah; Azizkarimi, Mehdi

    2017-12-01

    In this study, effects of a gaseous jet, formed in a vertical tube containing a uniform gas flow, on the injected micro particles have been investigated. A CFD model has been developed to simulate the particle motion in the tube. This simulation is very close to the experimental data. The results show that, increasing the flow rate of carrier gas or decreasing the flow rate of surrounding gas increases the effect of gaseous jet and also increases trapping rate of the particles by the tube wall. The minimum and maximum residence times of particles approach together with increasing the size of solid particles. Particles larger than 60 μm have a certain and fixed residence time at different flow rates of the carrier or surrounding gas. About 40 μm particle size has minimal trapping by the tube wall at various experimental conditions.

  2. Wall-ablative laser-driven in-tube accelerator

    NASA Astrophysics Data System (ADS)

    Sasoh, Akihiro; Suzuki, Shingo; Matsuda, Atsushi

    2008-05-01

    The laser-driven in-tube accelerator in which the propellant is supplied from laser-ablated gas from the tube wall was developed. Proof-of concept demonstrations of vertical launch were successfully done. The device had a 25mm X 25mm square cross-section; two opposing walls were made of polyacetal and acted as the propellant, the other two acrylic window with guide grooves to the projectile. The upper end of the launch tube was connected to a vacuum chamber of an inner volume of 0.8 m2, in which the initial pressure was set to lower than 20 Pa. With plugging the bottom end of the launch tube, a momentum coupling coefficient exceeding 2.5 mN/W was obtained. Even with the bottom end connected to the same vacuum chamber through a different duct, the projectile was vertical launched successfully, obtaining 0.14 mN/W.

  3. Vertical laryngeal position and oral pressure variations during resonance tube phonation in water and in air. A pilot study.

    PubMed

    Wistbacka, Greta; Sundberg, Johan; Simberg, Susanna

    2016-10-01

    Resonance tube phonation in water (RTPW) is commonly used in voice therapy, particularly in Finland and Sweden. The method is believed to induce a lowering of the vertical laryngeal position (VLP) in phonation as well as variations of the oral pressure, possibly inducing a massage effect. This pilot study presents an attempt to measure VLP and oral pressure in two subjects during RTPW and during phonation with the free tube end in air. VLP is recorded by means of a dual-channel electroglottograph. RTPW was found to lower VLP in the subjects, while it increased during phonation with the tube end in air. RTPW caused an oral pressure modulation with a bubble frequency of 14-22 Hz, depending mainly on the depth of the tube end under the water surface. The results indicate that RTPW lowers the VLP instantly and creates oral pressure variations.

  4. SODIUM-WATER HEAT EXCHANGER

    DOEpatents

    Simmons, W.R.; Koch, L.J.

    1962-04-17

    A heat exchanger comprising a tank for hot liquid and a plurality of concentric, double tubes for cool liquid extending vertically through the tank is described. These tubes are bonded throughout most of their length but have an unbonded portion at both ends. The inner tubes extend between headers located above and below the tanmk and the outer tubes are welded into tube sheets forming the top and bottom of the tank at locations in the unbonded portions of the tubes. (AEC)

  5. Telescoping tube assembly

    NASA Technical Reports Server (NTRS)

    Sturm, Albert J. (Inventor); Marrinan, Thomas E. (Inventor)

    1995-01-01

    An extensible and retractable telescoping tube positions test devices that inspect large stationary objects. The tube has three dimensional adjustment capabilities and is vertically suspended from a frame. The tube sections are independently supported with each section comprising U-shaped housing secured to a thicker support plate. Guide mechanisms preferably mounted only to the thicker plates guide each tube section parallel to a reference axis with improved accuracy so that the position of the remote end of the telescoping tube is precisely known.

  6. Dynamics of magnetic flux tubes in an advective flow around a black hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Giri, Kinsuk; Chakrabarti, Sandip K.

    2017-12-01

    Entangled magnetic fields entering into an accretion flow would very soon be stretched into a dominant toroidal component due to strong differentially rotating motion inside the accretion disc. This is particularly true for weakly viscous, low angular momentum transonic or advective discs. We study the trajectories of toroidal flux tubes inside a geometrically thick flow that undergoes a centrifugal force supported shock. We also study effects of these flux tubes on the dynamics of the inflow and the outflow. We use a finite difference method (total variation diminishing) for this purpose and specifically focused on whether these flux tubes significantly affect the properties of the outflows such as its collimation and the rate. It is seen that depending upon the cross-sectional radius of the flux tubes that control the drag force, these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surfaces) along the vertical direction. A comparison of results obtained with and without flux tubes show these flux tubes could play a pivotal role in collimation and acceleration of jets and outflows.

  7. Topographically induced homeotropic alignment of liquid crystals on self-assembled opal crystals.

    PubMed

    Kumar, Pankaj; Oh, Su Yeon; Baliyan, Vijay K; Kundu, Sudarshan; Lee, Seung Hee; Kang, Shin-Woong

    2018-04-02

    The surface of multilayered opal crystals resulted in homeotropic alignment of liquid crystal (LC), originated from the surface topography of opal crystals rather than a chemical nature of the nanoparticles. The polar anchoring energy (5.51 × 10 -5 J/m 2 ) of the crystal surface for nematic LC molecules was in a similar range to the conventional polyimide alignment layer (2.11 × 10 -5 J/m 2 ) used for commercial applications. The critical length scale for anchoring transition was approximately Lw = ~1 μm. If a diameter of particle d < 1 μm for opal crystals, LC molecules preferred to anchor vertically to the surface to minimize elastic free energy of bulk LCs. The LC favored a planar anchoring if d > 1 μm. The results provide crucial insights to understand the homeotropic alignment of LCs on solid surfaces and therefore offer opportunities to develop novel materials for a vertical alignment of LCs.

  8. CONCENTRIC TUBE FUEL ELEMENT SPRING ALIGNMENT SPACER DEVICE

    DOEpatents

    Weems, S.J.

    1963-09-24

    A rib construction for a nuclear-fuel element is described, in which one of three peripherally spaced ribs adjacent to each end of the fuel element is mounted on a radially yielding spring that embraces the fuel element. This spring enables the fuel element to have a good fit with a coolant tube and yet to be easily inserted in and withdrawn from the tube. (AEC)

  9. Vertically aligned carbon nanotubes black coatings from roll-to-roll deposition process

    NASA Astrophysics Data System (ADS)

    Goislard de Monsabert, Thomas; Papciak, L.; Sangar, A.; Descarpentries, J.; Vignal, T.; de Longiviere, Xavier; Porterat, D.; Mestre, Q.; Hauf, H.

    2017-09-01

    Vertically aligned carbon nanotubes (VACNTs) have recently attracted growing interest as a very efficient light absorbing material over a broad spectral range making them a superior coating in space optics applications such as radiometry, optical calibration, and stray light elimination. However, VACNT coatings available to-date most often result from batch-to-batch deposition processes thus potentially limiting the manufacturing repeatability, substrate size and cost efficiency of this material.

  10. Vertically aligned carbon nanotube emitter on metal foil for medical X-ray imaging.

    PubMed

    Ryu, Je Hwang; Kim, Wan Sun; Lee, Seung Ho; Eom, Young Ju; Park, Hun Kuk; Park, Kyu Chang

    2013-10-01

    A simple method is proposed for growing vertically aligned carbon nanotubes on metal foil using the triode direct current plasma-enhanced chemical vapor deposition (PECVD). The carbon nanotube (CNT) electron emitter was fabricated using fewer process steps with an acid treated metal substrate. The CNT emitter was used for X-ray generation, and the X-ray image of mouse's joint was obtained with an anode current of 0.5 mA at an anode bias of 60 kV. The simple fabrication of a well-aligned CNT with a protection layer on metal foil, and its X-ray application, were studied.

  11. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    PubMed

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  12. Thin Polymer Films with Continuous Vertically Aligned 1 nm Pores Fabricated by Soft Confinement

    DOE PAGES

    Feng, Xunda; Nejati, Siamak; Cowan, Matthew G.; ...

    2015-12-03

    Membrane separations are critically important in areas ranging from health care and analytical chemistry to bioprocessing and water purification. An ideal nanoporous membrane would consist of a thin film with physically continuous and vertically aligned nanopores and would display a narrow distribution of pore sizes. However, the current state of the art departs considerably from this ideal and is beset by intrinsic trade-offs between permeability and selectivity. We demonstrate an effective and scalable method to fabricate polymer films with ideal membrane morphologies consisting of submicron thickness films with physically continuous and vertically aligned 1 nm pores. The approach is basedmore » on soft confinement to control the orientation of a cross-linkable mesophase in which the pores are produced by self-assembly. The scalability, exceptional ease of fabrication, and potential to create a new class of nanofiltration membranes stand out as compelling aspects.« less

  13. Vibrations of double-nanotube systems with mislocation via a newly developed van der Waals model

    NASA Astrophysics Data System (ADS)

    Kiani, Keivan

    2015-06-01

    This study deals with transverse vibrations of two adjacent-parallel-mislocated single-walled carbon nanotubes (SWCNTs) under various end conditions. These tubes interact with each other and their surrounding medium through the intertube van der Waals (vdW) forces, and existing bonds between their atoms and those of the elastic medium. The elastic energy of such forces due to the deflections of nanotubes is appropriately modeled by defining a vdW force density function. In the previous works, vdW forces between two identical tubes were idealized by a uniform form of this function. The newly introduced function enables us to investigate the influences of both intertube free distance and longitudinal mislocation on the natural transverse frequencies of the nanosystem which consists of two dissimilar tubes. Such crucial issues have not been addressed yet, even for simply supported tubes. Using nonlocal Timoshenko and higher-order beam theories as well as Hamilton's principle, the strong form of the equations of motion is established. Seeking for an explicit solution to these integro-partial differential equations is a very problematic task. Thereby, an energy-based method in conjunction with an efficient meshfree method is proposed and the nonlocal frequencies of the elastically embedded nanosystem are determined. For simply supported nanosystems, the predicted first five frequencies of the proposed model are checked with those of assumed mode method, and a reasonably good agreement is achieved. Through various studies, the roles of the tube's length ratio, intertube free space, mislocation, small-scale effect, slenderness ratio, radius of SWCNTs, and elastic constants of the elastic matrix on the natural frequencies of the nanosystem with various end conditions are explained. The limitations of the nonlocal Timoshenko beam theory are also addressed. This work can be considered as a vital step towards better realizing of a more complex system that consists of vertically aligned SWCNTs of various lengths.

  14. Investigation of injection molding of orthogonal fluidic connector for microfluidic devices

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Cao, Dong; Zhao, Wei; Song, Man-cang; Liu, Jun-shan

    2017-02-01

    Orthogonal fluidic connections are essential for developing multilayered microfluidic devices. At present, most orthogonal connectors are realized by a horizontal channel and a vertical channel in different plates. Therefore, some extra alignment and adhesion processes for precise plate assembly are required. In this paper, the method of injection molding is proposed to make a one-body-type orthogonal connector in a single plastic plate. The connector was composed of a cantilevered tube and the other in the substrate. An injection mold was developed in which a side core-pulling mechanism and an ejection mechanism of push-pipes were combined to form the mold for an orthogonal connector. Both the type and the location of gate were optimized for the mold. The results showed that the fan gate in the middle position of the plate was the most suitable in term of both defect control and practicability. The effect of melt temperature was numerically investigated and then verified experimentally. With the optimized parameters, the relative length and the relative wall thickness of a cantilevered tube in the plastic part can reach 98.89% and 99.80%, respectively. Furthermore, using the plastic part as a cover plate, a three-layer plastic microfluidic device was conveniently fabricated for electrochemical detection.

  15. Segmented tubular cushion springs and spring assembly

    NASA Technical Reports Server (NTRS)

    Haslim, L. A. (Inventor)

    1985-01-01

    A spring which includes a tube with an elliptical cross section, with the greater axial dimension extending laterally and the lesser axial dimension extending vertically is disclosed. A plurality of cuts in the form of slots passing through most of a wall of the tube extend perpendiculary to a longitudinal axis extending along the tube. An uncut portion of the tube wall extends along the tube for bonding or fastening the tube to a suitable base, such as a bottom of a seat cushion.

  16. Vertically-aligned Mn(OH) 2 nanosheet films for flexible all-solid-state electrochemical supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei

    We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less

  17. Vertically-aligned Mn(OH) 2 nanosheet films for flexible all-solid-state electrochemical supercapacitors

    DOE PAGES

    Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei; ...

    2017-08-28

    We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less

  18. High voltage electrophoretic deposition for electrochemical energy storage and other applications

    NASA Astrophysics Data System (ADS)

    Santhanagopalan, Sunand

    High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to achieve superhydrophpbicity, indicating their potential in a broad range of applications. The versatile and generic nature of the HVEPD process has been demonstrated by achieving deposition on flexible and transparent substrates, as well as aligned forests of manganese dioxide (MnO2) nanorods. A continuous roll-printing HVEPD approach was then developed to obtain aligned MWCNT forest with low contact resistance on large, flexible substrates. Such large-scale electrodes showed no deterioration in electrochemical performance and paved the way for practical device fabrication. The effect of a holding layer on the contact resistance between aligned MWCNT forests and the substrate was studied to improve electrochemical performance of such electrodes. It was found that a suitable precursor salt like nickel chloride could be used to achieve a conductive holding layer which helped to significantly reduce the contact resistance. This in turn enhanced the electrochemical performance of the electrodes. High-power scalable redox capacitors were then prepared using HVEPD. Very high power/energy densities and excellent cyclability have been achieved by synergistically combining hydrothermally synthesized, highly crystalline α-MnO 2 nanorods, vertically aligned forests and reduced contact resistance. To further improve the performance, hybrid electrodes have been prepared in the form of vertically aligned forest of MWCNTs with branches of α-MnO 2 nanorods on them. Large- scale electrodes with such hybrid structures were manufactured using continuous HVEPD and characterized, showing further improved power and energy densities. The alignment quality and density of MWCNT forests were also improved by using an AC/DC pulsed deposition technique. In this case, AC voltage was first used to align the MWCNTs, followed by immediate DC voltage to deposit the aligned MWCNTs along with the conductive holding layer. Decoupling of alignment from deposition was proven to result in better alignment quality and higher electrochemical performance.

  19. Vertical decomposition with Genetic Algorithm for Multiple Sequence Alignment

    PubMed Central

    2011-01-01

    Background Many Bioinformatics studies begin with a multiple sequence alignment as the foundation for their research. This is because multiple sequence alignment can be a useful technique for studying molecular evolution and analyzing sequence structure relationships. Results In this paper, we have proposed a Vertical Decomposition with Genetic Algorithm (VDGA) for Multiple Sequence Alignment (MSA). In VDGA, we divide the sequences vertically into two or more subsequences, and then solve them individually using a guide tree approach. Finally, we combine all the subsequences to generate a new multiple sequence alignment. This technique is applied on the solutions of the initial generation and of each child generation within VDGA. We have used two mechanisms to generate an initial population in this research: the first mechanism is to generate guide trees with randomly selected sequences and the second is shuffling the sequences inside such trees. Two different genetic operators have been implemented with VDGA. To test the performance of our algorithm, we have compared it with existing well-known methods, namely PRRP, CLUSTALX, DIALIGN, HMMT, SB_PIMA, ML_PIMA, MULTALIGN, and PILEUP8, and also other methods, based on Genetic Algorithms (GA), such as SAGA, MSA-GA and RBT-GA, by solving a number of benchmark datasets from BAliBase 2.0. Conclusions The experimental results showed that the VDGA with three vertical divisions was the most successful variant for most of the test cases in comparison to other divisions considered with VDGA. The experimental results also confirmed that VDGA outperformed the other methods considered in this research. PMID:21867510

  20. Geometrical appearance and spatial arrangement of structural blocks of the Malan loess in NW China: implications for the formation of loess columns

    NASA Astrophysics Data System (ADS)

    Li, Yanrong; Zhang, Tao; Zhang, Yongbo; Xu, Qiang

    2018-06-01

    Loess, as one of the main Quaternary deposits, covers approximately 6% of the land surface of the Earth. Although loess is loose and fragile, loess columns are popular and they can stand stably for hundreds of years, thereby forming a spectacular landform. The formation of such special column-shaped soil structures is puzzling, and the underlying fundamentals remain unclear. The present study focuses on quantifying and examining the geometrical shape and spatial alignment of structural blocks of the Malan loess at different locations in the Loess Plateau of China. The structural blocks under investigation include clay- and silt-sized particles, aggregates, fragments, lumps, and columns, which vary in size from microns to tens of meters. Regardless of their size, the structural blocks of the Malan loess are found to be similar in shape, i.e., elongated with a length-to-width ratio of approximately 2.6. The aggregates, fragments, lumps, columns, and macropores between aggregates exhibit strong concentration in the vertical or subvertical alignment. These phenomena imply that the Malan loess is anisotropic and it is composed of a combination of vertically aligned strong units and vertically aligned weak segments. Based on this, "vertiloess" structure is proposed to denote this combination. The vertiloess structure prevents horizontal erosion, but favors spalling, peeling, toppling, falling and cracking-sliding of vertical loess pieces, thereby forming loess columns.

  1. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries.

    PubMed

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-08-11

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of "closed" pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  2. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-08-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  3. 30 CFR 250.517 - Tubing and wellhead equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... evaluated every 30 days and the results submitted to the District Manager. (c) When the tree is installed..., a surface tubing head, a surface tubing hanger, and a surface christmas tree. (d) Wellhead, tree... and one surface safety valve, installed above the master valve, in the vertical run of the tree. (e...

  4. Annealed Au-assisted epitaxial growth of si nanowires: control of alignment and density.

    PubMed

    Park, Yi-Seul; Jung, Da Hee; Kim, Hyun Ji; Lee, Jin Seok

    2015-04-14

    The epitaxial growth of 1D nanostructures is of particular interest for future nanoelectronic devices such as vertical field-effect transistors because it directly influences transistor densities and 3D logic or memory architectures. Silicon nanowires (SiNWs) are a particularly important 1D nanomaterial because they possess excellent electronic and optical properties. What is more, the scalable fabrication of vertically aligned SiNW arrays presents an opportunity for improved device applications if suitable properties can be achieved through controlling the alignment and density of SiNWs, yet this is something that has not been reported in the case of SiNWs synthesized from Au films. This work therefore explores the controllable synthesis of vertically aligned SiNWs through the introduction of an annealing process prior to growth via a Au-catalyzed vapor-liquid-solid mechanism. The epitaxial growth of SiNWs was demonstrated to be achievable using SiCl4 as the Si precursor in chemical vapor deposition, whereas the alignment and density of the SiNWs could be controlled by manipulating the annealing time during the formation of Au nanoparticles (AuNPs) from Au films. During the annealing process, gold silicide was observed to form on the interface of the liquid-phase AuNPs, depending on the size of the AuNPs and the annealing time. This work therefore makes a valuable contribution to improving nanowire-based engineering by controlling its alignment and density as well as providing greater insight into the epitaxial growth of 1D nanostructures.

  5. Hydrotropism in pea roots in a porous-tube water delivery system

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Brown, C. S.; Dreschel, T. W.; Scott, T. K.; Knott, W. M. (Principal Investigator)

    1992-01-01

    Orientation of root growth on earth and under microgravity conditions can possibly be controlled by hydrotropism--growth toward a moisture source in the absence of or reduced gravitropism. A porous-tube water delivery system being used for plant growth studies is appropriate for testing this hypothesis since roots can be grown aeroponically in this system. When the roots of the agravitropic mutant pea ageotropum (Pisum sativum L.) were placed vertically in air of 91% relative humidity and 2 to 3 mm from the water-saturated porous tube placed horizontally, the roots responded hydrotropically and grew in a continuous arch along the circular surface of the tube. By contrast, normal gravitropic roots of Alaska' pea initially showed a slight transient curvature toward the tube and then resumed vertical downward growth due to gravitropism. Thus, in microgravity, normal gravitropic roots could respond to a moisture gradient as strongly as the agravitropic roots used in this study. Hydrotropism should be considered a significant factor responsible for orientation of root growth in microgravity.

  6. Radiographic localization of unerupted mandibular anterior teeth.

    PubMed

    Jacobs, S G

    2000-10-01

    The parallax method and the use of 2 radiographs taken at right angles to each other are the 2 methods generally used to accurately localize teeth. For the parallax method, the combination of a rotational panoramic radiograph with an occlusal radiograph is recommended. This combination involves a vertical x-ray tube shift. Three case reports are presented that illustrate: (1) how this combination can accurately localize unerupted mandibular anterior teeth, (2) how a deceptive appearance of the labiolingual position of the unerupted tooth can be produced in an occlusal radiograph, (3) how increasing the vertical angle of the tube for the occlusal radiograph makes the tube shift easier to discern, (4) why occlusal radiographs are preferable to periapical radiographs for tube shifts, and (5) how localization can also be carried out with 2 radiographs at right angles to each other, one of which is an occlusal radiograph taken with the x-ray tube directed along the long axis of the reference tooth.

  7. Particles climbing along a vertically vibrating tube: numerical simulation using the Discrete Element Method (DEM)

    DOE PAGES

    Xu, Yupeng; Musser, Jordan; Li, Tingwen; ...

    2017-07-22

    It has been reported experimentally that granular particles can climb along a vertically vibrating tube partially inserted inside a granular silo. Here, we use the Discrete Element Method (DEM) available in the Multiphase Flow with Interphase eXchanges (MFIX) code to investigate this phenomenon. By tracking the movement of individual particles, the climbing mechanism was illustrated and analyzed. The numerical results show that a sufficiently high vibration strength is needed to form a low solids volume fraction region inside the lower end of the vibrating tube, a dense region in the middle of the tube, and to bring the particles outsidemore » from the top layers down to fill in the void. The results also show that particle compaction in the middle section of the tube is the main cause of the climbing. Consequently, varying parameters which influence the compacted region, such as the restitution coefficient, change the climbing height.« less

  8. Particles climbing along a vertically vibrating tube: numerical simulation using the Discrete Element Method (DEM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yupeng; Musser, Jordan; Li, Tingwen

    It has been reported experimentally that granular particles can climb along a vertically vibrating tube partially inserted inside a granular silo. Here, we use the Discrete Element Method (DEM) available in the Multiphase Flow with Interphase eXchanges (MFIX) code to investigate this phenomenon. By tracking the movement of individual particles, the climbing mechanism was illustrated and analyzed. The numerical results show that a sufficiently high vibration strength is needed to form a low solids volume fraction region inside the lower end of the vibrating tube, a dense region in the middle of the tube, and to bring the particles outsidemore » from the top layers down to fill in the void. The results also show that particle compaction in the middle section of the tube is the main cause of the climbing. Consequently, varying parameters which influence the compacted region, such as the restitution coefficient, change the climbing height.« less

  9. Segmented tubular cushion springs and spring assembly

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1988-01-01

    A spring (10) includes a tube (12) having an elliptical cross section, with the greater axial dimension (22) extending laterally and the lesser axial dimension (24) extending vertically. A plurality of cuts (20) in the form of slots passing through most of a wall of the tube (12) extend perpendicularly to a longitudinal axis (16) extending along the tube (12). An uncut portion (26) of the tube wall extends along the tube (12) for bonding or fastening the tube to a suitable base, such as a bottom (28) of a seat cushion (30).

  10. Levitating spherical particle in a slightly tapered tube at low Reynolds numbers: application to the low-flow rate rotameters.

    PubMed

    Champmartin, S; Ambari, A; Chhabra, R P

    2012-12-01

    In this study, a theoretical framework is developed to predict the equilibrium conditions of a non-neutrally buoyant sphere placed in a vertical conical tube as encountered in liquid rotameters. The analysis presented herein is applicable for a sphere heavier than the surrounding fluid, situated on the axis of a slightly tapered tube. The sphere is subject to the laminar flow conditions with the Reynolds numbers ranging between the Stokes type regimes up to values corresponding to slightly inertial regimes. In this work, we assume that the aperture angle of the tube is small and that the drag force is mainly due to the dissipation located in the gap between the tube and the sphere. Under these conditions, it is possible to consider the tube as locally cylindrical and we can use the results previously obtained for the correction factor of the Stokes force on a sphere subject to a Poiseuille flow in a tube of constant cross-section. We obtain an equation relating the flow rate to the vertical position of the sphere in the tube and the validity of this analysis is demonstrated by applying it to a commercially available rotameter. The present study provides a simple but sound theoretical method to calibrate such flowmeters.

  11. Levitating spherical particle in a slightly tapered tube at low Reynolds numbers: Application to the low-flow rate rotameters

    NASA Astrophysics Data System (ADS)

    Champmartin, S.; Ambari, A.; Chhabra, R. P.

    2012-12-01

    In this study, a theoretical framework is developed to predict the equilibrium conditions of a non-neutrally buoyant sphere placed in a vertical conical tube as encountered in liquid rotameters. The analysis presented herein is applicable for a sphere heavier than the surrounding fluid, situated on the axis of a slightly tapered tube. The sphere is subject to the laminar flow conditions with the Reynolds numbers ranging between the Stokes type regimes up to values corresponding to slightly inertial regimes. In this work, we assume that the aperture angle of the tube is small and that the drag force is mainly due to the dissipation located in the gap between the tube and the sphere. Under these conditions, it is possible to consider the tube as locally cylindrical and we can use the results previously obtained for the correction factor of the Stokes force on a sphere subject to a Poiseuille flow in a tube of constant cross-section. We obtain an equation relating the flow rate to the vertical position of the sphere in the tube and the validity of this analysis is demonstrated by applying it to a commercially available rotameter. The present study provides a simple but sound theoretical method to calibrate such flowmeters.

  12. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    DOEpatents

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  13. Initial growth of vertically aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Cui, Hongtao; Yang, Xiaojing; Simpson, Michael L.; Lowndes, Douglas H.; Varela, Maria

    2004-05-01

    Samples of vertically aligned carbon nanofibers (VACNFs) were viewed transverse to the growth direction and studied using both scanning and transmission electron microscopy. The VACNFs are composed of graphite layers nearly parallel to the substrate at their bottom end, gradually formed graphite "cups" in the main body, and a catalyst particle on the tip. The formation of such structure is due to the corresponding transformation of the shape of the catalyst particle during initial VACNF growth. A model for their initial growth is proposed.

  14. Four-probe charge transport measurements on individual vertically aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Austin, Derek; Merkulov, Vladimir I.; Meleshko, Anatoli V.; Klein, Kate L.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.

    2004-05-01

    We report four-probe I-V measurements on individual vertically aligned carbon nanofibers (VACNFs). These measurements were enabled by the fabrication of multiple Ti/Au ohmic contacts on individual fibers that exhibited resistance of only a few kilohms. These measurements demonstrate that VACNFs exhibit linear I-V behavior at room temperature, with a resistivity of approximately 4.2×10-3 Ω cm. Our measurements are consistent with a dominant transport mechanism of electrons traveling through intergraphitic planes in the VACNFs.

  15. Vertically aligned carbon nanofibers as sacrificial templates for nanofluidic structures

    NASA Astrophysics Data System (ADS)

    Melechko, A. V.; McKnight, T. E.; Guillorn, M. A.; Merkulov, V. I.; Ilic, B.; Doktycz, M. J.; Lowndes, D. H.; Simpson, M. L.

    2003-02-01

    We report a method to fabricate nanoscale pipes ("nanopipes") suitable for fluidic transport. Vertically aligned carbon nanofibers grown by plasma-enhanced chemical vapor deposition are used as sacrificial templates for nanopipes with internal diameters as small as 30 nm and lengths up to several micrometers that are oriented perpendicular to the substrate. This method provides a high level of control over the nanopipe location, number, length, and diameter, permitting them to be deterministically positioned on a substrate and arranged into arrays.

  16. Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts

    DTIC Science & Technology

    2012-01-01

    12] J. P. Liu, C. X. Guo, C. M. Li et al., “Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and...cited. Vertically aligned, high-density ZnO nanowires (NWs) were grown for the first time on c-plane sapphire using binary alloys of Ni/Au or Cu/Au as...deleterious to the ZnO NW array growth. Significant improvement of the Au adhesion on the substrate was noted, opening the potential for direct

  17. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  18. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed Central

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-01-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592

  19. Micro-miniature gas chromatograph column disposed in silicon wafers

    DOEpatents

    Yu, Conrad M.

    2000-01-01

    A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.

  20. MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES

    DOEpatents

    Josephson, V.

    1960-01-26

    A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.

  1. Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube

    NASA Technical Reports Server (NTRS)

    Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok

    2015-01-01

    This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.

  2. Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence

    NASA Technical Reports Server (NTRS)

    Kerr, R. A.

    1983-01-01

    In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.

  3. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  4. Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.

    PubMed

    Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J

    2010-02-02

    Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.

  5. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    PubMed

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  6. Vertically aligned N-doped CNTs growth using Taguchi experimental design

    NASA Astrophysics Data System (ADS)

    Silva, Ricardo M.; Fernandes, António J. S.; Ferro, Marta C.; Pinna, Nicola; Silva, Rui F.

    2015-07-01

    The Taguchi method with a parameter design L9 orthogonal array was implemented for optimizing the nitrogen incorporation in the structure of vertically aligned N-doped CNTs grown by thermal chemical deposition (TCVD). The maximization of the ID/IG ratio of the Raman spectra was selected as the target value. As a result, the optimal deposition configuration was NH3 = 90 sccm, growth temperature = 825 °C and catalyst pretreatment time of 2 min, the first parameter having the main effect on nitrogen incorporation. A confirmation experiment with these values was performed, ratifying the predicted ID/IG ratio of 1.42. Scanning electron microscopy (SEM) characterization revealed a uniform completely vertically aligned array of multiwalled CNTs which individually exhibit a bamboo-like structure, consisting of periodically curved graphitic layers, as depicted by high resolution transmission electron microscopy (HRTEM). The X-ray photoelectron spectroscopy (XPS) results indicated a 2.00 at.% of N incorporation in the CNTs in pyridine-like and graphite-like, as the predominant species.

  7. Functionalization of vertically aligned carbon nanotubes.

    PubMed

    Van Hooijdonk, Eloise; Bittencourt, Carla; Snyders, Rony; Colomer, Jean-François

    2013-01-01

    This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  8. Functionalization of vertically aligned carbon nanotubes

    PubMed Central

    Snyders, Rony; Colomer, Jean-François

    2013-01-01

    Summary This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs. PMID:23504581

  9. An Introduction to the Sources of Delivery Error for Direct-Fire Ballistic Projectiles

    DTIC Science & Technology

    2013-07-01

    Ballistic mismatch has also been used to quantify the difference in target impacts using different gun tubes ...the angle between the local “upwards” direction of the gun tube and the vertical direction as defined by gravity. Cant results from the gun tube ...Determining Optimal Tube Shape for Reduction of Jump Error for Tank Fleets Using Fleet Zero. Presented at the 20th International Symposium on Ballistics

  10. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Chen, Di; Wang, Xuemei

    2015-10-12

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNTmore » films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current.« less

  11. Active Metal Brazing and Characterization of Brazed Joints in Titanium to Carbon-Carbon Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G. N.; Asthana, R.

    2006-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSiI. The joint microstructures were examined using optical microscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading. A tube-on-plate tensile test was used to evaluate joint strength of Ti-tube/ C-C composite joints. The load-carrying ability was greatest for the Cu-ABA braze joint structures. This system appeared to have the best braze spreading which resulted in a larger braze/C-C composite bonded area compared to the other two braze materials. Also, joint loadcarrying ability was found to be higher for joint structures where the fiber tows in the outer ply of the C-C composite were aligned perpendicular to the tube axis when compared to the case where fiber tows were aligned parallel to the tube axis.

  12. Wavelet analysis of poorly-focused ultrasonic signal of pressure tube inspection in nuclear industry

    NASA Astrophysics Data System (ADS)

    Zhao, Huan; Gachagan, Anthony; Dobie, Gordon; Lardner, Timothy

    2018-04-01

    Pressure tube fabrication and installment challenges combined with natural sagging over time can produce issues with probe alignment for pressure tube inspection of the primary circuit of CANDU reactors. The ability to extract accurate defect depth information from poorly focused ultrasonic signals would reduce additional inspection procedures, which leads to a significant time and cost saving. Currently, the defect depth measurement protocol is to simply calculate the time difference between the peaks of the echo signals from the tube surface and the defect from a single element probe focused at the back-wall depth. When alignment issues are present, incorrect focusing results in interference within the returning echo signal. This paper proposes a novel wavelet analysis method that employs the Haar wavelet to decompose the original poorly focused A-scan signal and reconstruct detailed information based on a selected high frequency component range within the bandwidth of the transducer. Compared to the original signal, the wavelet analysis method provides additional characteristic defect information and an improved estimate of defect depth with errors less than 5%.

  13. Enhanced Alignment Techniques for the Thomson Scattering Diagnostic on the Lithium Tokamak eXperiment (LTX)

    NASA Astrophysics Data System (ADS)

    Merino, Enrique; Kozub, Tom; Boyle, Dennis; Lucia, Matthew; Majeski, Richard; Kaita, Robert; Schmitt, John C.; Leblanc, Benoit; Diallo, Ahmed; Jacobson, C. M.

    2014-10-01

    The Thomson Scattering (TS) System in LTX is used to measure electron temperature and density profiles of core and edge plasmas. In view of TS measurements showing low signal-to-noise and high stray light, numerous improvements were performed in recent months. These will allow for better measurements. Due to the nature of LTX's lithium coated walls, a particular challenge was presented by alignment procedures which required insertion and precise positioning of equipment in the vacuum vessel without breaking vacuum. To overcome these difficulties, the laser flight tubes were removed and an alignment probe setup placed along the beam line on a differentially pumped assembly. The probe was then driven into the vacuum vessel and back-illumination of the viewing optics on it allowed for alignment and spatial calibration. Other upgrades included better bracing of flight tubes and viewing optics as well as a redesigned beam dump. An overview of these improvements will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  14. The stretching of magnetic flux tubes in the convective overshoot region

    NASA Technical Reports Server (NTRS)

    Fisher, George H.; Mcclymont, Alexander N.; Chou, Dean-Yi

    1991-01-01

    The present study examines the fate of a magnetic flux tube initially lying at the bottom of the solar convective overshoot region. Stretching of the flux tube, e.g., by differential rotation, reduces its density, causing it to rise quasi-statically (a process referred to as vertical flux drift) until it reaches the top of the overshoot region and enters the buoyantly unstable convection region, from which a portion of it may ultimately protrude to form an active region on the surface. It is suggested that vertical flux drift and flux destabilization are inevitable consequences of field amplification, and it is surmised that these phenomena should be considered in self-consistent models of solar and stellar dynamos operating in the overshoot region.

  15. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    PubMed Central

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-01-01

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303

  16. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets.

    PubMed

    Lu, Xinglin; Feng, Xunda; Werber, Jay R; Chu, Chiheng; Zucker, Ines; Kim, Jae-Hong; Osuji, Chinedum O; Elimelech, Menachem

    2017-11-14

    The cytotoxicity of 2D graphene-based nanomaterials (GBNs) is highly important for engineered applications and environmental health. However, the isotropic orientation of GBNs, most notably graphene oxide (GO), in previous experimental studies obscured the interpretation of cytotoxic contributions of nanosheet edges. Here, we investigate the orientation-dependent interaction of GBNs with bacteria using GO composite films. To produce the films, GO nanosheets are aligned in a magnetic field, immobilized by cross-linking of the surrounding matrix, and exposed on the surface through oxidative etching. Characterization by small-angle X-ray scattering and atomic force microscopy confirms that GO nanosheets align progressively well with increasing magnetic field strength and that the alignment is effectively preserved by cross-linking. When contacted with the model bacterium Escherichia coli , GO nanosheets with vertical orientation exhibit enhanced antibacterial activity compared with random and horizontal orientations. Further characterization is performed to explain the enhanced antibacterial activity of the film with vertically aligned GO. Using phospholipid vesicles as a model system, we observe that GO nanosheets induce physical disruption of the lipid bilayer. Additionally, we find substantial GO-induced oxidation of glutathione, a model intracellular antioxidant, paired with limited generation of reactive oxygen species, suggesting that oxidation occurs through a direct electron-transfer mechanism. These physical and chemical mechanisms both require nanosheet penetration of the cell membrane, suggesting that the enhanced antibacterial activity of the film with vertically aligned GO stems from an increased density of edges with a preferential orientation for membrane disruption. The importance of nanosheet penetration for cytotoxicity has direct implications for the design of engineering surfaces using GBNs.

  17. A rapid quantification of binocular misalignment without recording eye movements: Vertical and torsional alignment nulling.

    PubMed

    Beaton, Kara H; Shelhamer, Mark J; Roberts, Dale C; Schubert, Michael C

    2017-05-01

    Small, innate asymmetries between the left and right otolith organs can cause ocular misalignment with symptoms that include double vision and motion sickness. Additionally, ocular misalignment affects nearly 5% of the US population. We have developed a portable, non-invasive technology that uses subjective perception of binocular visual signals to estimate relative binocular alignment. The Vertical Alignment Nulling (VAN) and Torsional Alignment Nulling (TAN) tests ask subjects to view one red and one blue line on a tablet computer while looking through color-matched red and blue filters so that each eye sees only one of the lines. Subjects align the red and blue lines, which are initially vertically offset from one another during VAN or rotated relative to one another during TAN, until they perceive a single continuous line. Ocular misalignments are inferred from actual offsets in the final line positions. During testing, all binocular visual cues are eliminated by employing active-matrix organic light-emitting diode (AMOLED) technology and testing in darkness. VAN and TAN can accurately account for visual offsets induced by prisms, and test-retest reliability is excellent, with resolution better than many current standard clinical tests. VAN and TAN tests are similar to the clinical Lancaster red-green test. However, VAN and TAN employ inexpensive, hand-held hardware that can be self-administered with results that are quickly quantifiable. VAN and TAN provide simple, sensitive, and quantitative measures of binocular positioning alignment that may be useful for detecting subtle abnormalities in ocular positioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. 49 CFR 572.43 - Lumbar spine and pelvis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vertical plane which is tangent to the back of the dummy's buttocks. (3) Align the test probe so that at... vertical planes perpendicular to the midsagittal plane passing through the designated impact point. (4) Adjust the dummy so that its midsagittal plane is vertical and the rear surfaces of the thorax and...

  19. Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Ma, Biao; Zhou, Xiao; Bao, Hua; Li, Xingwei; Wang, Gengchao

    2012-10-01

    Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods (sGNS/PANI) are successfully synthesized via interfacial polymerization of aniline monomers in the presence of sulfonated graphene nanosheets (sGNS). The FE-SEM images indicate that the morphologies of sGNS/PANI composites can be controlled by adjusting the concentration of aniline monomers. FTIR and Raman spectra reveal that aligned PANI nanorod arrays for sGNS/PANI exhibit higher degree of conjugation compared with pristine PANI nanorods. The hierarchical composite based on the two-electrode cell possesses higher specific capacitance (497 F g-1 at 0.2 A g-1), better rate capability and cycling stability (5.7% capacitance loss after 2000 cycles) than those of pristine PANI nanorods.

  20. LOADING MACHINE FOR REACTORS

    DOEpatents

    Simon, S.L.

    1959-07-01

    An apparatus is described for loading or charging slugs of fissionable material into a nuclear reactor. The apparatus of the invention is a "muzzle loading" type comprising a delivery tube or muzzle designed to be brought into alignment with any one of a plurality of fuel channels. The delivery tube is located within the pressure shell and it is also disposed within shielding barriers while the fuel cantridges or slugs are forced through the delivery tube by an externally driven flexible ram.

  1. High-intensity focused ultrasound ablation around the tubing

    PubMed Central

    Siu, Jun Yang; Liu, Chenhui

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17–339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10–30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography. PMID:29161293

  2. High-intensity focused ultrasound ablation around the tubing.

    PubMed

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  3. COR1 Engineering Test Unit Measurements at the NCAR/HAO Vacuum Tunnel Facility, October-November 2002

    NASA Technical Reports Server (NTRS)

    Thompson, William

    2002-01-01

    The Engineering Test Unit (ETU) of COR1 was made in two configurations. The first configuration, ETU-1, was for vibration testing, while the second, ETU-2, was for optical testing. This is a report on the optical testing performed on ETU-2 at the NCAR/HAO Vacuum Tunnel Facility during the months of October and November, 2002. This was the same facility used to test the two previous breadboard models. In both configurations, the first two tube sections were complete, with all optical elements aligned. The vibration model ETU-1 had the remaining tube sections attached, with mass models for the remaining optics, for the various mechanisms, and for the focal plane assembly. It was then converted into the optical model ETU-2 by removing tube sections 3 to 5, and mounting the remaining optics on commercial mounts. (The bandpass filter was also installed into tube 2, which had been replaced in ETU-1 by a mass model, so that pre- and post-vibration optical measurements could be made.) Doublet 2 was installed in a Newport LP-2 carrier, and aligned to the other optics in the first two tube sections. The LP-2 adjustment screws were then uralened so that the alignment could be maintained during shipping. Because neither the flight polarizer nor Hollow Core Motor were available, they were simulated by a commercial polarizer and rotational mount, both from Oriel corporation. The Oriel rotational stage was not designed for vacuum use, but it was determined after consultation with the company, and lab testing, that the stage could be used in the moderate vacuum conditions at the NCAR/HAO facility. The shutter and focal plane assembly were simulated with the same camera used for the previous two breadboard tests. The focal plane mask was simulated with a plane of BK7 glass with a mask glued on, using the same procedure as for the Lyot spot on Doublet 1, and mounted in an adjustable LP-2 carrier. Two masks were made, one made to the precise specifications of the optical design, the other slightly bigger to make alignment easier.

  4. Investigation on the heat transfer characteristics during flow boiling of liquefied natural gas in a vertical micro-fin tube

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Shi, Yumei; Chen, Dongsheng

    2014-03-01

    This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.

  5. Numerical prediction of wall temperatures for near-critical para-hydrogen in turbulent upflow inside vertical tubes

    NASA Technical Reports Server (NTRS)

    Bellmore, C. P.; Reid, R. L.

    1980-01-01

    Presented herein is a method of including density fluctuations in the equations of turbulent transport. Results of a numerical analysis indicate that the method may be used to predict heat transfer for the case of near-critical para-hydrogen in turbulent upflow inside vertical tubes. Wall temperatures, heat transfer coefficients, and velocities obtained by coupling the equations of turbulent momentum and heat transfer with a perturbed equation of state show good agreement with experiment for inlet reduced pressures of 1.28-5.83.

  6. Fuel nozzle assembly

    DOEpatents

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  7. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  8. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, A.W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  9. Tool post modification allows easy turret lathe cutting-tool alignment

    NASA Technical Reports Server (NTRS)

    Fouts, L.

    1966-01-01

    Modified tool holder and tool post permit alignment of turret lathe cutting tools on the center of the spindle. The tool is aligned with the spindle by the holder which is kept in position by a hydraulic lock in feature of the tool post. The tool post is used on horizontal and vertical turret lathes and other engine lathes.

  10. Handling apparatus

    DOEpatents

    Cody, John P.; Kane, James J.

    1976-01-01

    1. A device of the character described comprising the combination of a guide tube having a normally open end, a support frame having a port therethrough, linkage means pivotally connected with the tube and with the frame and rotatably supporting the tube for movement between a position in longitudinal alignment with said port and with its open end in registry with the port and an additional position in which the tube lies adjacent the port with a side portion of the tube extending generally transversely across said port, an elongated track carried by said frame disposed generally parallel to and adjacent the tube in its said additional position, means connected with and projecting laterally from said tube adjacent its open end engaging and movable along said elongated track for cooperating with the track to direct the tube during movement between said positions, and means carried by the tube for moving an article therethrough toward and away from said port.

  11. Stripe-like Clay Nanotubes Patterns in Glass Capillary Tubes for Capture of Tumor Cells.

    PubMed

    Liu, Mingxian; He, Rui; Yang, Jing; Zhao, Wei; Zhou, Changren

    2016-03-01

    Here, we used capillary tubes to evaporate an aqueous dispersion of halloysite nanotubes (HNTs) in a controlled manner to prepare a patterned surface with ordered alignment of the nanotubes . Sodium polystyrenesulfonate (PSS) was added to improve the surface charges of the tubes. An increased negative charge of HNTs is realized by PSS coating (from -26.1 mV to -52.2 mV). When the HNTs aqueous dispersion concentration is higher than 10%, liquid crystal phenomenon of the dispersion is found. A typical shear flow behavior and decreased viscosity upon shear is found when HNTs dispersions with concentrations higher than 10%. Upon drying the HNTs aqueous dispersion in capillary tubes, a regular pattern is formed in the wall of the tube. The width and spacing of the bands increase with HNTs dispersion concentration and decrease with the drying temperature for a given initial concentration. Morphology results show that an ordered alignment of HNTs is found especially for the sample of 10%. The patterned surface can be used as a model for preparing PDMS molding with regular micro-/nanostructure. Also, the HNTs rough surfaces can provide much higher tumor cell capture efficiency compared to blank glass surfaces. The HNTs ordered surfaces provide promising application for biomedical areas such as biosensors.

  12. Miniature thermoacoustic cryocooler driven by a vertical comb-drive

    NASA Astrophysics Data System (ADS)

    Hao, Zhili; Fowler, Mark; Hammer, Jay A.; Whitley, Michael R.; Brown, David

    2003-01-01

    In this paper, we propose a novel miniature MEMS based thermoacoustic cryo-cooler for thermal management of cryogenic electronic devices. The basic idea is to exploit a new way to realize a highly-reliable miniature cryo-cooler, which would allow integration of a cryogenic cooling system directly into a cryogenic electronic device. A vertical comb-drive is proposed as the means to provide an acoustic source through a driving plate to a resonant tube. By exciting a standing wave within the resonant tube, a temperature difference develops across the stack in the tube, thereby enabling heat exchange between two heat exchangers. The use of gray scale technology to fabricate tapered resonant tube provides a way to improve the efficiency of the cooling system, compared with a simple cylinder configuration. Furthermore, a tapered tube leads to extremely strong standing waves with relatively pure waveforms and reduces possible harmonics. The working principle of this device is described here. The fabrication of this device is considered, which is compatible with current MEMS fabrication technology. Finally, the theoretical analysis of key components of this cryo-cooler is presented.

  13. The Skylab barium plasma injection experiments. II - Evidence for a double layer

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Davis, T. N.; Peek, H. M.

    1976-01-01

    Television observations of a barium-plasma flux tube extending from near 4500 km to near 10,000 km during a magnetic substorm and dawn-sector auroral display indicated several interesting anomalous events. Beyond 5500 km, there was a rapid increase in brightness accompanied by flux-tube splitting and diffusion, leaving behind a truncated single flux tube. From the orientation of the flux tube compared with theoretical field models, the presence of a substantial field-aligned current sheet is deduced. A suggested explanation of these phenomena is given in terms of a plasma potential double layer.

  14. Towards the development of a triple SMA actuated vertical tube

    NASA Astrophysics Data System (ADS)

    Karimi, Saeed; Konh, Bardia; Seidi, Ebrahim

    2018-03-01

    In this work an active vertically hung tube has been designed, fabricated and tested. The active tube was made of three separate 3D printed parts assembled and glued together. Shape Memory Alloy (SMA) wires were embedded as actuators in the body of the tube to privilege from their robust actuation and high energy density. Three SMA wires were trained and installed evenly on the exterior peripheral side of the tubes to realize motion in multiple directions. A deadweight was hung to one end of the tube to exert a certain amount of pre-stress on actuators. This design offers a restricted actuation because the two wires on the opposite side always resist the intended deflection. Hence, for a proper actuation, each wire was stressed to a certain level to exhibit either expansion or contraction upon demand. This amount of stress was selected based on rigorous experimental data. Power supply units were integrated and linked to a python program to control the amount of power passed through each SMA wire. The active tube was tested, and its movement was captured via a camera and analyzed by ImageJ software for the two cases free of stress and with an applied external load. The electrical resistance of the each SMA wire was measured and used for controlling the tube's deflection in each direction. This work demonstrated the feasibility of using three evenly distributed SMA wires on a tube to create motion in 3D direction.

  15. Mathematical modelling of anisotropy of illite-rich shale

    USGS Publications Warehouse

    Chesnokov, E.M.; Tiwary, D.K.; Bayuk, I.O.; Sparkman, M.A.; Brown, R.L.

    2009-01-01

    The estimation of illite-rich shale anisotropy to account for the alignment of clays and gas- or brine-filled cracks is presented via mathematical modelling. Such estimation requires analysis to interpret the dominance of one effect over another. This knowledge can help to evaluate the permeability in the unconventional reservoir, stress orientation, and the seal capacity for the conventional reservoir. Effective media modelling is used to predict the elastic properties of the illite-rich shale and to identify the dominant contributions to the shale anisotropy. We consider two principal reasons of the shale anisotropy: orientation of clay platelets and orientation of fluid-filled cracks. In reality, both of these two factors affect the shale anisotropy. The goal of this study is, first, to separately analyse the effect of these two factors to reveal the specific features in P- and S-wave velocity behaviour typical of each of the factors, and, then, consider a combined effect of the factors when the cracks are horizontally or vertically aligned. To do this, we construct four models of shale. The behaviour of P- and S-wave velocities is analysed when gas- and water-filled cracks embedded in a host matrix are randomly oriented, or horizontally or vertically aligned. The host matrix can be either isotropic or anisotropic (of VTI symmetry). In such a modelling, we use published data on mineralogy and clay platelet alignment along with other micromechanical measurements. In the model, where the host matrix is isotropic, the presence of a singularity point (when the difference VS1 - VS2 changes its sign) in shear wave velocities is an indicator of brine-filled aligned cracks. In the model with the VTI host matrix and horizontally aligned cracks filled with gas, an increase in their volume concentration leads to that the azimuth at which the singularity is observed moves toward the symmetry axis. In this case, if the clay content is small (around 20 per cent), the singularity point may even vanish. The Thomsen parameters are helpful in fluid type indication in shale. An indicator of gas-filled aligned cracks is ?? > ??. If aligned cracks in illite-rich shale are brine-filled, ?? < ??. Negative value of ?? indicates brine-filled cracks in illite-rich shale. A shale with brine-filled cracks exhibits higher Vp/Vs ratio in the vertical direction as compared to the gas-filled shale. A disorientation of clay platelets and brine-filled cracks may lead to that the singularity point is absent for brine-saturated shale as well. In this case one can also observe ?? > ?? and decreased values of Vp/Vs in the vertical direction as in the case of gas-filled cracks. In the presence of vertically aligned cracks, shales exhibit distinctly revealed features of orthorhombic symmetry. The results have important applications where seismic measurements are applied to predict the maturity state of the shale. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  16. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints.

    PubMed

    Askari, Davood; Ghasemi-Nejhad, Mehrdad N

    2012-08-01

    The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength) using carbon nanotubes (CNTs) as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests.

  17. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints

    PubMed Central

    Askari, Davood; Ghasemi-Nejhad, Mehrdad N

    2012-01-01

    The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength) using carbon nanotubes (CNTs) as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests. PMID:27877502

  18. 49 CFR 581.7 - Test procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is vertical and the impact line is horizontal at the specified height. (3) For impacts at a height... Figure 1 so that Plane A is vertical and the impact line is horizontal at the specified height. (3) For... that Plane A is vertical and the impact line is horizontal at a height within the range. (4) Align the...

  19. Quick-connect threaded attachment joint

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.; Messick, W. R.; Vasquez, P.

    1979-01-01

    Joint is self-aligning and tightens with only sixty-five degrees of rotation for quick connects and disconnects. Made of injection-molded plastics or cast or machined aluminum, joint can carry wires, tubes, liquids, or gases. When two parts of joint are brought together, their shapes align them. Small projections on male section and slots on female section further aid alignment; slight rotation of male form engages projections in slots. At this point, threads engage and male section is rotated until joint is fully engaged.

  20. Deformation profiles of elastic cylindrical tubes filled with granular media under an overload

    NASA Astrophysics Data System (ADS)

    Álvarez Salazar, V. Salomón; Medina, Abraham; Klapp, Jaime

    2017-06-01

    The deformation of a thin-walled vertical tube, filled with a liquid or a cohesionless granular material is investigated theoretically and experimentally. Experiments with an overload and without it were made with latex tubes filled with water or spherical glass beads and the results were compared with the theoretical profile derived from the Janssen model. The results suggest that the soft elastic tubes could provide a simple and convenient means to investigate the forces that arise in different materials.

  1. Ocean Wave Energy Harvesting Devices

    DTIC Science & Technology

    2007-04-01

    the magnet stack and the tubular wall of the generator and completely prevent the magnet from making direct contact to the tube wall even when the...the 3.1 second device. If no ferrofluid is present, as a long magnetic stack moves inside a tube with a small gap between the magnet surface and the...inside wall of the tube , a very slight deviation from the vertical position can cause the edge of the end of the magnet stack to touch the tube (Fig. 3

  2. Antimicrobial Properties of 2D MnO2 and MoS2 Nanomaterials Vertically Aligned on Graphene Materials and Ti3C2 MXene.

    PubMed

    Alimohammadi, Farbod; Sharifian Gh, Mohammad; Attanayake, Nuwan H; Thenuwara, Akila C; Gogotsi, Yury; Anasori, Babak; Strongin, Daniel R

    2018-06-07

    Two-dimensional (2D) nanomaterials have attracted considerable attention in biomedical and environmental applications due to their antimicrobial activity. In the interest of investigating the primary antimicrobial mode-of-action of 2D nanomaterials, we studied the antimicrobial properties of MnO 2 and MoS 2 , toward Gram-positive and Gram-negative bacteria. Bacillus subtilis and Escherichia coli bacteria were treated individually with 100 μg/mL of randomly oriented and vertically aligned nanomaterials for ∼3 h in the dark. The vertically aligned 2D MnO 2 and MoS 2 were grown on 2D sheets of graphene oxide, reduced graphene oxide, and Ti 3 C 2 MXene. Measurements to determine the viability of bacteria in the presence of the 2D nanomaterials performed by using two complementary techniques, flow cytometry, and fluorescence imaging showed that, while MnO 2 and MoS 2 nanosheets show different antibacterial activities, in both cases, Gram-positive bacteria show a higher loss in membrane integrity. Scanning electron microscopy images suggest that the 2D nanomaterials, which have a detrimental effect on bacteria viability, compromise the cell wall, leading to significant morphological changes. We propose that the peptidoglycan mesh (PM) in the bacterial wall is likely the primary target of the 2D nanomaterials. Vertically aligned 2D MnO 2 nanosheets showed the highest antimicrobial activity, suggesting that the edges of the nanosheets were likely compromising the cell walls upon contact.

  3. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

    NASA Astrophysics Data System (ADS)

    Havlík, Jan; Dlouhý, Tomáš

    2018-06-01

    This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.

  4. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  5. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes.

    PubMed

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S; Oliver, C Ryan; Zhao, Yikun; Meshot, Eric R; Barclay, Michael; Fairbrother, D Howard; Hart, A John; Plata, Desiree L

    2017-04-20

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O 2 , and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2 , and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2 -free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2 O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.

  6. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE PAGES

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.; ...

    2017-04-11

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  7. Electric controlled air incinerator for radioactive wastes

    DOEpatents

    Warren, Jeffery H.; Hootman, Harry E.

    1981-01-01

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburner chamber for off-gases. The latter is formed by a plurality of vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary magazine feeds waste to a horizontal tube forming the primary combustion chamber.

  8. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    DOE PAGES

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-08-25

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less

  9. Alignment of nematic liquid crystals by inhomogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Ong, Hiap Liew; Hurd, Alan J.; Meyer, Robert B.

    1985-01-01

    Variable oblique alignment of nematic liquid crystals has been achieved on microscopically inhomogeneous surfaces. The surfaces consist of small patches favoring vertical (homeotropic) alignment surrounded by a matrix favoring a planar alignment. The construction of these surfaces employs randomly distributed microscopic metal islands formed by certain metals as vapor-deposited films. Larger scale periodic patterns were made as well to verify the techniques. The results are interpreted in terms of a continuum elasticity theory and azimuthal degeneracy is also discussed.

  10. The impact of bed temperature on heat transfer characteristic between fluidized bed and vertical rifled tubes

    NASA Astrophysics Data System (ADS)

    Blaszczuk, Artur; Nowak, Wojciech

    2016-10-01

    In the present work, the heat transfer study focuses on assessment of the impact of bed temperature on the local heat transfer characteristic between a fluidized bed and vertical rifled tubes (38mm-O.D.) in a commercial circulating fluidized bed (CFB) boiler. Heat transfer behavior in a 1296t/h supercritical CFB furnace has been analyzed for Geldart B particle with Sauter mean diameter of 0.219 and 0.246mm. The heat transfer experiments were conducted for the active heat transfer surface in the form of membrane tube with a longitudinal fin at the tube crest under the normal operating conditions of CFB boiler. A heat transfer analysis of CFB boiler with detailed consideration of the bed-to-wall heat transfer coefficient and the contribution of heat transfer mechanisms inside furnace chamber were investigated using mechanistic heat transfer model based on cluster renewal approach. The predicted values of heat transfer coefficient are compared with empirical correlation for CFB units in large-scale.

  11. Experimental study of forced convective heat transfer from a vertical tube conveying dilute Ag/DI water nanofluids in a cross flow of air

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin Keshavarz; Layeghi, Mohammad; Hemmati, Mansor

    2013-03-01

    Forced convective heat transfer from a vertical circular tube conveying deionized (DI) water or very dilute Ag-DI water nanofluids (less than 0.02% volume fraction) in a cross flow of air has been investigated experimentally. Some experiments have been performed in a wind tunnel and heat transfer characteristics such as thermal conductance, effectiveness, and external Nusselt number has been measured at different air speeds, liquid flow rates, and nanoparticle concentrations. The cross flow of air over the tube and the liquid flow in the tube were turbulent in all cases. The experimental results have been compared and it has been found that suspending Ag nanoparticles in the base fluid increases thermal conductance, external Nusselt number, and effectiveness. Furthermore, by increasing the external Reynolds number, the external Nusselt number, effectiveness, and thermal conductance increase. Also, by increasing internal Reynolds number, the thermal conductance and external Nusselt number enhance while the effectiveness decreases.

  12. Stable sonoluminescence within a water hammer tube.

    PubMed

    Chakravarty, Avik; Georghiou, Theo; Phillipson, Tacye E; Walton, Alan J

    2004-06-01

    The sonoluminescence (SL) from the collapse of a single gas bubble within a liquid can be produced repetitively using an acoustic resonator. An alternative technique using a water hammer tube, producing SL from bubbles of greater size, is described here. A sealed vertical tube partly filled with a liquid and a gas at low pressure is subjected to vertical vibrations. The oscillation of the pressure within the liquid column, due to inertial forces, excites cavitation bubbles to grow and collapse. Rotation is used to confine the bubbles to the axis of the tube. Bright SL emissions were observed in a number of liquids. Repetitive emission was produced from bubbles in condensed phosphoric acid. Bubbles of 0.4 mm ambient radius (containing 2x 10(14) xenon atoms) were excited by vibration at 35 Hz. Approximately 10(12) photons were emitted per collapse in the range 400-700 nm (over four orders of magnitude greater than the brightest SL reported previously), corresponding to a 1% efficiency of the conversion of mechanical energy into light.

  13. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  14. FRICTION-FREE BALANCE

    DOEpatents

    Carson, N.J. Jr.; Ostrander, H.W.; Munter, C.N.

    1964-03-01

    A weighing device having a load-supporting vertical shaft buoyed up by mutually repellant magnets is described. The shaft is aligned by an air bearing and has an air gage to sense vertical displacement caused by weights placed on the top end of the shaft. (AEC)

  15. New concept for in-line OLED manufacturing

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Landgraf, H.; Campo, M.; Keller, S.; Koening, M.

    2011-03-01

    A new concept of a vertical In-Line deposition machine for large area white OLED production has been developed. The concept targets manufacturing on large substrates (>= Gen 4, 750 x 920 mm2) using linear deposition source achieving a total material utilization of >= 50 % and tact time down to 80 seconds. The continuously improved linear evaporation sources for the organic material achieve thickness uniformity on Gen 4 substrate of better than +/- 3 % and stable deposition rates down to less than 0.1 nm m/min and up to more than 100 nm m/min. For Lithium-Fluoride but also for other high evaporation temperature materials like Magnesium or Silver a linear source with uniformity better than +/- 3 % has been developed. For Aluminum we integrated a vertical oriented point source using wire feed to achieve high (> 150 nm m/min) and stable deposition rates. The machine concept includes a new vertical vacuum handling and alignment system for Gen 4 shadow masks. A complete alignment cycle for the mask can be done in less than one minute achieving alignment accuracy in the range of several 10 μm.

  16. Continuous high-yield production of vertically aligned carbon nanotubes on 2D and 3D substrates.

    PubMed

    Guzmán de Villoria, Roberto; Hart, A John; Wardle, Brian L

    2011-06-28

    Vertically aligned carbon nanotubes (VACNTs) have certain advantages over bulk CNT powders and randomly oriented CNT mats for applications in flexible electronic devices, filtration membranes, biosensors and multifunctional aerospace materials. Here, a machine and a process to synthesize VACNTs in a continuous manner are presented showing uniform growth on 2D and 3D substrates, including alumina fibers, silicon wafer pieces, and stainless steel foils. Aligned multiwalled carbon nanotubes (MWNT) are synthesized at substrate feed rates of up to 6.8 cm/min, and the CNTs reach up to 60 μm in length depending on residence time in the reactor. In addition to the aligned morphology indicative of high yield growth, transmission electron microscopy and Raman spectroscopy reveal that the CNTs are of comparable quality to CNTs grown via a similar batch process. A significant reduction in time, reaction products, gases, and energy is demonstrated relative to batch processing, paving the way for industrial production of VACNTs.

  17. Music Analysis Down the (You) Tube? Exploring the Potential of Cross-Media Listening for the Music Classroom

    ERIC Educational Resources Information Center

    Webb, Michael

    2007-01-01

    School students' immersion in a rich entertainment media environment has implications for classroom listening. Increasing interaction among media, design, games, communications and arts fields has led to a growing trend in the creative alignment of music and moving image. Video sharing sites such as YouTube are assisting in the proliferation and…

  18. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    Membrive, Olivier; Crevoisier, Cyril; Sweeney, Colm; Danis, François; Hertzog, Albert; Engel, Andreas; Bönisch, Harald; Picon, Laurence

    2017-06-01

    An original and innovative sampling system called AirCore was presented by NOAA in 2010 Karion et al.(2010). It consists of a long ( > 100 m) and narrow ( < 1 cm) stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i) better capture the vertical distribution of CO2 and CH4, (ii) provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution) AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm) tube and a 100 m of 0.25 in. (6.35 mm) tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h). The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada). High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles) and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a good agreement is found in terms of vertical structure, the comparison between the various AirCores yields a large and variable bias (up to almost 3 ppm in some parts of the profiles). The reasons of this bias, possibly related to the drying agent used to dry the air, are still being investigated. Finally, the uncertainties associated with the measurements are assessed, yielding an average uncertainty below 3 ppb for CH4 and 0.25 ppm for CO2 with the major source of uncertainty coming from the potential loss of air sample on the ground and the choice of the starting and ending point of the collected air sample inside the tube. In an ideal case where the sample would be fully retained, it would be possible to know precisely the pressure at which air was sampled last and thus to improve the overall uncertainty to about 0.1 ppm for CO2 and 2 ppb for CH4.

  19. A morphological study of vertical ionospheric flows in the high-latitude F region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loranc, M.; St.-Maurice, J.P.; Hanson, W.B.

    1991-03-01

    The authors have studied the vertical bulk ion drift data recorded by the DE 2 satellite between 200 and 1,000 km altitudes. For this data set, they have found that field-aligned ion flows between 100 m s{sup {minus}1} and 3 km s{sup {minus}1} are a common occurence in the high-latitude F region. The flows are predominantly upward near the cusp region and throughout the auroral zone. Strong downward flows of somewhat smaller magnitude are also recorded but mostly over the polar cap. These statements are true for all drift speeds in excess of 50 m s{sup {minus}1} and for allmore » altitudes and magnetic activity levels sampled. The morphology of low-altitude upward flowing ions agrees well with the morphology of outflowing ions, ion beams, and ion conics observed at much higher altitudes, but the low-altitude fluxes are often considerably greater. This suggests that a large fraction of the upflowing ions actually returns to the ionosphere, to be observed as large downward ion fluxes. They propose that upflowing ion events are generated by sudden large changes in the ion temperature below the neutral exobase, where ion frictional heating dominates the ion energy balance. The sudden changes in temperature occur when the horizontal velocity of a convecting field tube increases rapidly in regions like the cusp.« less

  20. Heat exchanger with auxiliary cooling system

    DOEpatents

    Coleman, John H.

    1980-01-01

    A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

  1. Modifications of ORNL's computer programs MSF-21 and VTE-21 for the evaluation and rapid optimization of multistage flash and vertical tube evaporators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glueckstern, P.; Wilson, J.V.; Reed, S.A.

    1976-06-01

    Design and cost modifications were made to ORNL's Computer Programs MSF-21 and VTE-21 originally developed for the rapid calculation and design optimization of multistage flash (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. The modifications include additional design options to make possible the evaluation of desalting plants based on current technology (the original programs were based on conceptual designs applying advanced and not yet proven technological developments and design features) and new materials and equipment costs updated to mid-1975.

  2. Fabrication of Low Temperature Carbon Nanotube Vertical Interconnects Compatible with Semiconductor Technology

    PubMed Central

    Vollebregt, Sten; Ishihara, Ryoichi

    2015-01-01

    We demonstrate a method for the low temperature growth (350 °C) of vertically-aligned carbon nanotubes (CNT) bundles on electrically conductive thin-films. Due to the low growth temperature, the process allows integration with modern low-κ dielectrics and some flexible substrates. The process is compatible with standard semiconductor fabrication, and a method for the fabrication of electrical 4-point probe test structures for vertical interconnect test structures is presented. Using scanning electron microscopy the morphology of the CNT bundles is investigated, which demonstrates vertical alignment of the CNT and can be used to tune the CNT growth time. With Raman spectroscopy the crystallinity of the CNT is investigated. It was found that the CNT have many defects, due to the low growth temperature. The electrical current-voltage measurements of the test vertical interconnects displays a linear response, indicating good ohmic contact was achieved between the CNT bundle and the top and bottom metal electrodes. The obtained resistivities of the CNT bundle are among the average values in the literature, while a record-low CNT growth temperature was used. PMID:26709530

  3. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  4. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  5. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dong; Pan, Jie; Zhu, Xiaojing

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure dropmore » in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)« less

  6. The geometry and volume of melt beneath Ethiopia

    NASA Astrophysics Data System (ADS)

    Kendall, J. M.; Hammond, J. O. S.

    2016-12-01

    A range of seismic measurements can be used to map melt distribution in the crust and uppermost mantle. These include seismic P- and S-wave velocities derived from surface- and body-wave tomography, Vp/Vs ratios obtained from receiver functions, and estimates of seismic anisotropy and attenuation. The most obvious melt parameter that seismic data might be sensitive to is volume fraction. However, such data are more sensitive to the aspect ratio of melt inclusions, which is controlled by the melt wetting angle or in other words the shape of the melt inclusion. To better understand this we perform numerical modelling, varying the shape and amount of melt, to show how various seismic phases are effected by melt. To consider the effects on seismic anisotropy we assume that the melt can be stored in pockets of melt that are either horizontally or vertically aligned (e.g., sills versus dykes). We then consider a range of seismic observations from the rifting environment of Ethiopia. Recent studies of P- and S-wave tomography, Rayleigh and Love waves, and Pn or wide angle P-wave refractions provide provide complimentary constraints on melt volume, orientation and inclusion aspect ratio. Furthermore, receiver functions and shear-wave splitting in body waves show strong anisotropy in this region and can be used to constrain the strike of vertically-aligned partial melt. We show that melt in the mantle beneath Ethiopia is likely stored in low aspect ratio disk-like inclusions, suggesting melt is not in textural equilibrium. We estimate that 2-7% vertically aligned melt is stored beneath the Main Ethiopian Rift, >6% horizontally and vertically aligned melt is stored beneath the Afar-region of the Red Sea Rift and 1-6% horizontally aligned melt is stored beneath the Danakil microplate. This supports ideas of strong shear-derived segregation of melt in narrow parts of the rift and large volumes of melt beneath Afar.

  7. Monolayer formation of human osteoblastic cells on vertically aligned multiwalled carbon nanotube scaffolds.

    PubMed

    Lobo, Anderson O; Antunes, Erica F; Palma, Mariana Bs; Pacheco-Soares, Cristina; Trava-Airoldi, Vladimir J; Corat, Evaldo J

    2010-03-12

    Monolayer formation of SaOS-2 (human osteoblast-like cells) was observed on VACNT (vertically aligned multiwalled carbon nanotubes) scaffolds without purification or functionalization. The VACNT were produced by a microwave plasma chemical vapour deposition on titanium surfaces with nickel or iron as catalyst. Cell viability and morphology studies were evaluated by LDH (lactate dehydrogenase) release assay and SEM (scanning electron microscopy), respectively. The non-toxicity and the flat spreading with monolayer formation of the SaOs-2 on VACNT scaffolds surface indicate that they can be used for biomedical applications.

  8. Modeling and experimental study of resistive switching in vertically aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Blinov, Yu F.; Ilina, M. V.; Ilin, O. I.; Smirnov, V. A.

    2016-08-01

    Model of the resistive switching in vertically aligned carbon nanotube (VA CNT) taking into account the processes of deformation, polarization and piezoelectric charge accumulation have been developed. Origin of hysteresis in VA CNT-based structure is described. Based on modeling results the VACNTs-based structure has been created. The ration resistance of high-resistance to low-resistance states of the VACNTs-based structure amounts 48. The correlation the modeling results with experimental studies is shown. The results can be used in the development nanoelectronics devices based on VA CNTs, including the nonvolatile resistive random-access memory.

  9. Dielectric properties of vertically aligned multi-walled carbon nanotubes in the terahertz and mid-infrared range

    NASA Astrophysics Data System (ADS)

    Thomson, Mark D.; Zouaghi, Wissem; Meng, Fanqi; Wiecha, Matthias M.; Rabia, Kaneez; Heinlein, Thorsten; Hussein, Laith; Babu, Deepu; Yadav, Sandeep; Engstler, Jörg; Schneider, Jörg J.; Nicoloso, Norbert; Rychetský, Ivan; Kužel, Petr; Roskos, Hartmut G.

    2018-01-01

    We investigate the broadband dielectric properties of vertically aligned, multi-wall carbon nanotubes (VACNT), over both the terahertz (THz) and mid-infrared spectral ranges. The nominally undoped, metallic VACNT samples are probed at normal incidence, i.e. the response is predominantly due to polarisation perpendicular to the CNT axis. A detailed comparison of various conductivity models and previously reported results is presented for the non-Drude behaviour we observe in the conventional THz range (up to 2.5 THz). Extension to the mid-infrared range reveals an absorption peak at \

  10. Growth rate of plasma-synthesized vertically aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Melechko, A. V.; Guillorn, M. A.; Lowndes, D. H.; Simpson, M. L.

    2002-08-01

    Vertically aligned carbon nanofibers (VACNFs) were synthesized by direct-current plasma enhanced chemical vapor deposition using acetylene and ammonia as the gas source. The mechanisms responsible for changing the nanofiber growth rate were studied and phenomenological models are proposed. The feedstock for VACNF growth is suggested to consist mainly of radicals formed in the plasma and not the unexcited acetylene gas molecules. The growth rate is shown to increase dramatically by changing the radical transport mechanism from diffusive to forced flow, which was accomplished by increasing the gas flow in the direction perpendicular to the substrate.

  11. Circular zig-zag scan video format

    DOEpatents

    Peterson, C. Glen; Simmons, Charles M.

    1992-01-01

    A circular, ziz-zag scan for use with vidicon tubes. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal.

  12. [Correction of refractive errors in patients with strabismus. Part I. Clinical problems associated with refraction, accommodation and convergence].

    PubMed

    Tokarz-Sawińska, Ewa

    2012-01-01

    In Part I the problems associated with refraction, accommodation and convergence and their role in proper eye position/visual alignment of the eyes as well as convergent, divergent and vertical alignment of the eyes have been described.

  13. Discrimination of Mirror-Image shapes by Young Children

    ERIC Educational Resources Information Center

    Thompson, G. Brian

    1975-01-01

    Conducted two experiments which employed discrimination learning methods to test predictions related to the difficulty of discrimination of lateral reversals and of inversions when shapes are presented: (1) successively, (2) simultaneously in lateral alignment, and (3) simultaneously in vertical alignment. Subjects were 6-year-old children. (SDH)

  14. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    NASA Astrophysics Data System (ADS)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  15. The presence of HBV mRNA in the fertilized in vitro embryo of HBV patients confirms vertical transmission of HBV via the ovum.

    PubMed

    Ye, F; Jin, Y; Kong, Y; Shi, J Z; Qiu, H T; Zhang, X; Zhang, S L; Lin, S M

    2013-05-01

    This study aimed to confirm that vertical transmission of hepatitis B virus (HBV) can occur via the infected ovum. Specimens studied were obtained from discarded test-tube embryos from mothers with chronic HBV infection who had received in vitro fertilization treatment. Single-cell reverse transcriptase-polymerase chain reaction was used to detect HBV mRNA in the embryos. HBV mRNA was detected in the cleavage embryos of patients with chronic HBV infection, with a detection rate of 13.2% (5/38). The level of serum HBV DNA was not related to the HBV mRNA positivity rates in embryos. In this study, HBV mRNA was detected in test-tube embryos from HBV-infected mothers who had received in vitro fertilization treatment. This confirms the theory of vertical transmission of HBV via the ovum, thereby providing an important theoretical basis for further study on the mechanism of HBV vertical transmission, influencing factors and blocking measures.

  16. Vertically aligned BCN nanotubes with high capacitance.

    PubMed

    Iyyamperumal, Eswaramoorthi; Wang, Shuangyin; Dai, Liming

    2012-06-26

    Using a chemical vapor deposition method, we have synthesized vertically aligned BCN nanotubes (VA-BCNs) on a Ni-Fe-coated SiO(2)/Si substrate from a melamine diborate precursor. The effects of pyrolysis conditions on the morphology and thermal property of grown nanotubes, as well as the nanostructure and composition of an individual BCN nanotube, were systematically studied. It was found that nitrogen atoms are bonded to carbons in both graphitic and pyridinic forms and that the resultant VA-BCNs grown at 1000 °C show the highest specific capacitance (321.0 F/g) with an excellent rate capability and high durability with respect to nonaligned BCN (167.3 F/g) and undoped multiwalled carbon nanotubes (117.3 F/g) due to synergetic effects arising from the combined co-doping of B and N in CNTs and the well-aligned nanotube structure.

  17. Vertically aligned single-walled carbon nanotubes by chemical assembly--methodology, properties, and applications.

    PubMed

    Diao, Peng; Liu, Zhongfan

    2010-04-06

    Single-walled carbon nanotubes (SWNTs), as one of the most promising one-dimension nanomaterials due to its unique structure, peculiar chemical, mechanical, thermal, and electronic properties, have long been considered as an important building block to construct ordered alignments. Vertically aligned SWNTs (v-SWNTs) have been successfully prepared by using direct growth and chemical assembly strategies. In this review, we focus explicitly on the v-SWNTs fabricated via chemical assembly strategy. We provide the readers with a full and systematic summary covering the advances in all aspects of this area, including various approaches for the preparation of v-SWNTs using chemical assembly techniques, characterization, assembly kinetics, and electrochemical properties of v-SWNTs. We also review the applications of v-SWNTs in electrochemical and bioelectrochemical sensors, photoelectric conversion, and scanning probe microscopy.

  18. Long Range In-Plane Order of Oriented Diblock Copolymer Thin Films by Graphoepitaxy

    NASA Astrophysics Data System (ADS)

    Fontana, Scott; Dadmun, Mark; Lowndes, Douglas

    2003-03-01

    Previous work by Russell and coworkers has demonstrated that controlling the interfacial energies and wetting behavior of an asymmetric diblock copolymer enables the control of the orientation of its microphases. In particular the cylindrical phase can be readily aligned perpendicular to a substrate when it is placed on a surface that is neutral to both components of the copolymer. The minor phase, PMMA may then be removed using UV radiation leaving a nanoporous template. In this work, we will report long range, in-plane ordering of the hexagonally packed nanopores that is achieved using graphoepitaxy. The long range ordered and vertically aligned diblock copolymer film can be used to produce arrays of catalytic nickel dots, which grow vertically aligned carbon nano-fibers (VACNF), resulting in a well ordered array of VACNFs.

  19. Multi-layer thermoelectric-temperature-mapping microbial incubator designed for geo-biochemistry applications.

    PubMed

    Wu, Jin-Gen; Liu, Man-Chi; Tsai, Ming-Fei; Yu, Wei-Shun; Chen, Jian-Zhang; Cheng, I-Chun; Lin, Pei-Chun

    2012-04-01

    We demonstrate a novel, vertical temperature-mapping incubator utilizing eight layers of thermoelectric (TE) modules mounted around a test tube. The temperature at each layer of the TE module is individually controlled to simulate the vertical temperature profile of geo-temperature variations with depth. Owing to the constraint of non-intrusion to the filled geo-samples, the temperature on the tube wall is adopted for measurement feedback. The design considerations for the incubator include spatial arrangement of the energy transfer mechanism, heating capacity of the TE modules, minimum required sample amount for follow-up instrumental or chemical analysis, and the constraint of non-intrusion to the geo-samples during incubation. The performance of the incubator is experimentally evaluated with two tube conditions and under four preset temperature profiles. Test tubes are either empty or filled with quartz sand, which has comparable thermal properties to the materials in the geo-environment. The applied temperature profiles include uniform, constant temperature gradient, monotonic-increasing parabolic, and parabolic. The temperature on the tube wall can be controlled between 20 °C and 90 °C with an averaged root mean squared error of 1 °C. © 2012 American Institute of Physics

  20. Comparative study during condensation of R152 a and R134 a with presence of non-condensable gas inside a vertical tube

    NASA Astrophysics Data System (ADS)

    Charef, Adil; Feddaoui, M'barek; Najim, Monssif; Meftah, Hicham

    2018-04-01

    A computational study of the liquid film condensation from vapour-gas mixtures of HFC refrigerants inside a vertical tube is performed. The external wall of the tube is subjected to constant temperature. The model uses an implicit finite difference method to solve the governing equations for the liquid film and gas flow together including the boundary and interfacial matching conditions. Parametric computations were realised to examine the effects of inlet Reynolds number, tube length, and inlet temperature of the gas mixtures on the condensation mechanism. A comparative study between the results obtained for studied R152 a and R134 a with presence of non-condensable gas is made. The predicted results indicate that the condensation of R152 a-air corresponds to a higher accumulated condensation m c d and local heat transfer coefficient h T when compared to R134 a-air in the same conditions. Increasing the inlet Reynolds number or the tube length improve the condensation. Additionally, lower non-condensable gas in R152 a - a i r substantially enhances the heat and mass exchanges.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, Mary J.; Peterson, Robert E.

    This report presents and discusses results of the fiscal year 2003 sampling event associated with aquifer tubes along the Columbia River in the northern Hanford Site. Aquifer tube data help define the extent of groundwater contamination near the river, determine vertical variations in contamination, monitor the performance of interim remedial actions near the river, and support impact studies.

  2. Bench vise adapter grips tubing securely and safely

    NASA Technical Reports Server (NTRS)

    Howland, B. T.; Jones, A. S., Jr.

    1966-01-01

    Plastic self-compressing adapter with grooves, attached to the jaws of a bench vise, secures thin-wall tubing vertically or horizontally during cutting and flaring operations without marring or damaging it. Magnets incorporated in both sections of the adapter prevent detachment from the jaws when the vise is opened.

  3. Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun

    2016-11-01

    In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.

  4. Enhanced solar photoelectrochemical conversion efficiency of the hydrothermally-deposited TiO2 nanorod arrays: Effects of the light trapping and optimum charge transfer

    NASA Astrophysics Data System (ADS)

    An, Gil Woo; Mahadik, Mahadeo A.; Chae, Weon-Sik; Kim, Hyun Gyu; Cho, Min; Jang, Jum Suk

    2018-05-01

    The vertically aligned TiO2 nanorod arrays (NRA) with manipulated aspect ratio were hydrothermally synthesized by changing the amount of the titanium (Ti) precursor in the initial growth solution. FE-SEM images show the optimum morphology, density and aspect ratio of the well-aligned TB-1.2 NRs on the surface of the FTO substrate. The UV-vis-absorption measurements revealed that a sample prepared at TB-1.2 can provide an increased light trapping effect. PEC analyses demonstrated that the TiO2 nanorods deposited at TB-1.2 of Titanium butoxide show a relatively high PEC conversion efficiency (3.5 times) compared with the TB-0.8 prepared TiO2 at a 1.0 V versus RHE. The higher PEC performance is believed to be the result of an enhancement of the optimum aspect ratio, light trapping, an efficient charge separation, and the high carrier transport in the vertically aligned TiO2 NRs. Further, the PEC based organic dye degradation experiments showed 77% and 94% removal of Orange II and methylene blue respectively. Additionally, 109 μmol h-1 cm-2 hydrogen generations were attributed using optimized vertically aligned TiO2 NRA's. Thus, the appropriate morphology manipulated the TiO2 NRAs are useful for solar conversion applications.

  5. Film Condensation of Steam on Externally Finned Horizontal Tubes.

    DTIC Science & Technology

    1985-03-01

    Thermal Conductivity of Tube/Fin Metal i" ir - Condensation Rate Nu - Nusselt Number PA’ PB’ PC - Pressure at Points A, B, and C in Figure 2.1 APAB’ PcB...single finned tubes. To predict the film coefficients, they started with the Nusselt equations for condensation on a horizontal tube and on a vertical... Nusselt equation was obtained. A " condensation efficiency" was then proposed to account for a variable fin temperature, and was defined as: C, F1 (2.18) 3

  6. Laser-fiber coupling by means of a silicon micro-optical bench and a self-aligned soldering process

    NASA Astrophysics Data System (ADS)

    Schmidt, Jan P.; Cordes, A.; Mueller, Joerg; Burkhardt, Hans

    1995-02-01

    The alignment of laser diodes to monomode fibers has to meet extremely close tolerances for a low coupling loss. Typically < 0.5 micrometers in lateral and vertical direction and less than two degrees in angle deviation are allowed for a coupling loss below 2 dB. Presently such close tolerances can only be met by gluing or soldering both components on separate base plates and combining them via piezoactivated alignment monitoring the output of the circuit and then gluing them using UV-hardening epoxies. Such a procedure is not very economical and not useful for mass applications. This paper presents the principle and realization of a silicon micro-optical bench for laser-fiber-coupling, which avoids the above mentioned disadvantages. The micro-optical bench is realized using well controlled plasma etching processes to transfer the guiding patterns for the laser and the fiber into the silicon substrate, keeping geometry tolerances below +/- 0.5 micrometers in lateral and vertical direction. Mounting the laser diode by means of a self-aligned soldering process, an additional contribution to the precise alignment of the laser is further improved.

  7. Circular zig-zag scan video format

    DOEpatents

    Peterson, C.G.; Simmons, C.M.

    1992-06-09

    A circular, ziz-zag scan for use with vidicon tubes is disclosed. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal. 10 figs.

  8. Self-aligned gated field emission devices using single carbon nanofiber cathodes

    NASA Astrophysics Data System (ADS)

    Guillorn, M. A.; Melechko, A. V.; Merkulov, V. I.; Hensley, D. K.; Simpson, M. L.; Lowndes, D. H.

    2002-11-01

    We report on the fabrication and operation of integrated gated field emission devices using single vertically aligned carbon nanofiber (VACNF) cathodes where the gate aperture has been formed using a self-aligned technique based on chemical mechanical polishing. We find that this method for producing gated cathode devices easily achieves structures with gate apertures on the order of 2 mum that show good concentric alignment to the VACNF emitter. The operation of these devices was explored and field emission characteristics that fit well to the Fowler-Nordheim model of emission was demonstrated.

  9. Liquid injection plasma deposition method and apparatus

    DOEpatents

    Kong, Peter C.; Watkins, Arthur D.

    1999-01-01

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  10. A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process

    NASA Astrophysics Data System (ADS)

    Ho, Tzuen-Wei; Hong, Franklin Chau-Nan

    2012-08-01

    We have grown silicon nanowires (SiNWs) on Si (1 1 1) substrates by gold-catalyzed vapor-liquid-solid (VLS) process using tetrachlorosilane (SiCl4) in a hot-wall chemical vapor deposition reactor. Even under the optimized conditions including H2 annealing to reduce the surface native oxide, epitaxial SiNWs of 150-200 nm in diameter often grew along all four <1 1 1> family directions with one direction vertical and three others inclined to the surface. Therefore, the growth of high degree ordered SiNW arrays along [1 1 1] only was attempted on Au-coated Si (1 1 1) by a ramp-cooling process utilizing the liquid phase epitaxy (LPE) mechanism. The Au-coated Si substrate was first annealed in H2 at 650 °C to form Au-Si alloy nanoparticles, and then ramp-cooled at a controlled rate to precipitate epitaxial Si seeds on the substrate based on LPE mechanism. The substrate was further heated in SiCl4/H2 to 850 °C for the VLS growths of SiNWs on the Si seeds. Thus, almost 100% vertically-aligned SiNWs along [1 1 1] only could be reproducibly grown on Si (1 1 1), without using a template or patterning the metal catalyst. The high-density vertically-aligned SiNWs have good potentials for solar cells and nano-devices.

  11. Taxel-addressable matrix of vertical nanowire piezotronic transistors

    DOEpatents

    Wang, Zhong Lin; Wu, Wenzhuo; Wen, Xiaonan

    2015-05-05

    A tactile sensing matrix includes a substrate, a first plurality of elongated electrode structures, a plurality of vertically aligned piezoelectric members, an insulating layer infused into the piezoelectric members and a second plurality of elongated electrode structures. The first plurality of elongated electrode structures is disposed on the substrate along a first orientation. The vertically aligned piezoelectric members is disposed on the first plurality of elongated electrode structures and form a matrix having columns of piezoelectric members disposed along the first orientation and rows of piezoelectric members disposed along a second orientation that is transverse to the first orientation. The second plurality of elongated electrode structures is disposed on the insulating layer along the second orientation. The elongated electrode structures form a Schottky contact with the piezoelectric members. When pressure is applied to the piezoelectric members, current flow therethrough is modulated.

  12. The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode.

    PubMed

    Chang, Wen-Chung; Su, Sheng-Chien; Wu, Chia-Ching

    2016-06-30

    Vertically aligned p-type silicon nanowire (SiNW) arrays were fabricated through metal-assisted chemical etching (MACE) of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW) heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and current-voltage (I-V) measurements. Nonlinear and rectifying I-V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions.

  13. Fiber optics welder having movable aligning mirror

    DOEpatents

    Higgins, Robert W.; Robichaud, Roger E.

    1981-01-01

    A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  14. Turbulent Compressible Convection with Rotation. Part 1; Flow Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri

    1996-01-01

    The effects of Coriolis forces on compressible convection are studied using three-dimensional numerical simulations carried out within a local modified f-plane model. The physics is simplified by considering a perfect gas occupying a rectilinear domain placed tangentially to a rotating sphere at various latitudes, through which a destabilizing heat flux is driven. The resulting convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers, evaluating conditions where the influence of rotation is both weak and strong. Given the computational demands of these high-resolution simulations, the parameter space is explored sparsely to ascertain the differences between laminar and turbulent rotating convection. The first paper in this series examines the effects of rotation on the flow structure within the convection, its evolution, and some consequences for mixing. Subsequent papers consider the large-scale mean shear flows that are generated by the convection, and the effects of rotation on the convective energetics and transport properties. It is found here that the structure of rotating turbulent convection is similar to earlier nonrotating studies, with a laminar, cellular surface network disguising a fully turbulent interior punctuated by vertically coherent structures. However, the temporal signature of the surface flows is modified by inertial motions to yield new cellular evolution patterns and an overall increase in the mobility of the network. The turbulent convection contains vortex tubes of many scales, including large-scale coherent structures spanning the full vertical extent of the domain involving multiple density scale heights. Remarkably, such structures align with the rotation vector via the influence of Coriolis forces on turbulent motions, in contrast with the zonal tilting of streamlines found in laminar flows. Such novel turbulent mechanisms alter the correlations which drive mean shearing flows and affect the convective transport properties. In contrast to this large-scale anisotropy, small-scale vortex tubes at greater depths are randomly orientated by the rotational mixing of momentum, leading to an increased degree of isotropy on the medium to small scales of motion there. Rotation also influences the thermodynamic mixing properties of the convection. In particular, interaction of the larger coherent vortices causes a loss of correlation between the vertical velocity and the temperature leaving a mean stratification which is not isentropic.

  15. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less

  16. Experimental study on flow boiling heat transfer of LNG in a vertical smooth tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-10-01

    An experimental apparatus is set up in this work to study the upward flow boiling heat transfer characteristics of LNG (liquefied natural gas) in vertical smooth tubes with inner diameters of 8 mm and 14 mm. The experiments were performed at various inlet pressures from 0.3 to 0.7 MPa. The results were obtained over the mass flux range from 16 to 200 kg m-2 s-1 and heat fluxes ranging from 8.0 to 32 kW m-2. The influences of quality, heat flux and mass flux, tube diameter on the heat transfer characteristic are examined and discussed. The comparisons of the experimental heat transfer coefficients with the predicted values from the existing correlations are analyzed. The correlation by Zou et al. [16] shows the best accuracy with the RMS deviation of 31.7% in comparison with the experimental data.

  17. Changing the Diameter of a Viewing Tube

    ERIC Educational Resources Information Center

    Obara, Samuel

    2009-01-01

    This article is about the students' investigation about the relationship between the diameter of the view tubes (x) of constant lengths and the viewable vertical distance (y) on the wall while keeping the perpendicular distance from the eyeball to the wall constant. The students collected data and used and represented it in tabular and graphical…

  18. Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, Dhirendra K.; Kumar, Lokendra, E-mail: lokendrakr@allduniv.ac.in

    2016-05-23

    Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.

  19. Polarization-dependent DANES study on vertically-aligned ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chengjun; Park, Chang-In; Jin, Zhenlan

    2016-05-01

    The local structural and local density of states of vertically-aligned ZnO nanorods were examined by using a polarization-dependent diffraction anomalous near edge structure (DANES) measurements from c-oriented ZnO nanorods at the Zn K edge with the incident x-ray electric field parallel and perpendicular to the x-ray momentum transfer direction. Orientation-dependent local structures determined by DANES were comparable with polarization-dependent EXAFS results. Unlike other techniques, polarization-dependent DANES can uniquely describe the orientation-dependent local structural properties and the local density of states of a selected element in selected-phased crystals of compounds or mixed-phased structures.

  20. Growth of vertically aligned single-walled carbon nanotubes with metallic chirality through faceted FePt-Au catalysts

    NASA Astrophysics Data System (ADS)

    Ohashi, Toshiyuki; Iwama, Hiroki; Shima, Toshiyuki

    2016-02-01

    Direct synthesis of vertically aligned metallic single-walled carbon nanotubes (m-SWCNT forests) is a difficult challenge. We have successfully synthesized m-SWCNT forests using faceted iron platinum-gold catalysts epitaxially grown on a single crystalline magnesium oxide substrate. The metallic content of the forests estimated by Raman spectroscopy reaches 90%. From the standpoint of growth rate of the forests, the growth mechanism is probably based on the catalyst of solid state. It is suggested that preferential growth of m-SWCNTs is achieved when both factors are satisfied, namely, {111} dominant octahedral facet and ideal size (fine particles) of FePt particles.

  1. Biomineralization of superhydrophilic vertically aligned carbon nanotubes.

    PubMed

    Marsi, Teresa Cristina O; Santos, Tiago G; Pacheco-Soares, Cristina; Corat, Evaldo J; Marciano, Fernanda R; Lobo, Anderson O

    2012-03-06

    Vertically aligned carbon nanotubes (VACNT) promise a great role for the study of tissue regeneration. In this paper, we introduce a new biomimetic mineralization routine employing superhydrophilic VACNT films as highly stable template materials. The biomineralization was obtained after VACNT soaking in simulated body fluid solution. Detailed structural analysis reveals that the polycrystalline biological apatites formed due to the -COOH terminations attached to VACNT tips after oxygen plasma etching. Our approach not only provides a novel route for nanostructured materials, but also suggests that COOH termination sites can play a significant role in biomimetic mineralization. These new nanocomposites are very promising as nanobiomaterials due to the excellent human osteoblast adhesion.

  2. Patterned forests of vertically-aligned multiwalled carbon nanotubes using metal salt catalyst solutions.

    PubMed

    Garrett, David J; Flavel, Benjamin S; Baronian, Keith H R; Downard, Alison J

    2013-01-01

    A simple method for producing patterned forests of multiwalled carbon nanotubes (MWCNTs) is described. An aqueous metal salt solution is spin-coated onto a substrate patterned with photoresist by standard methods. The photoresist is removed by acetone washing leaving the acetone-insoluble catalyst pattern on the substrate. Dense forests of vertically aligned (VA) MWCNTs are grown on the patterned catalyst layers by chemical vapour deposition. The procedures have been demonstrated by growing MWCNT forests on two substrates: silicon and conducting graphitic carbon films. The forests adhere strongly to the substrates and when grown directly on carbon film, offer a simple method of preparing MWCNT electrodes.

  3. Growth of multiwalled-carbon nanotubes using vertically aligned carbon nanofibers as templates/scaffolds and improved field-emission properties

    NASA Astrophysics Data System (ADS)

    Cui, H.; Yang, X.; Baylor, L. R.; Lowndes, D. H.

    2005-01-01

    Multiwalled-carbon nanotubes (MWCNTs) are grown on top of vertically aligned carbon nanofibers (VACNFs) via microwave plasma-enhanced chemical vapor deposition (MPECVD). The VACNFs are first grown in a direct-current plasma-enhanced chemical vapor deposition reactor using nickel catalyst. A layer of carbon-silicon materials is then deposited on the VACNFs and the nickel catalyst particle is broken down into smaller nanoparticles during an intermediate reactive-ion-plasma deposition step. These nickel nanoparticles nucleate and grow MWCNTs in the following MPECVD process. Movable-probe measurements show that the MWCNTs have greatly improved field-emission properties relative to the VACNFs.

  4. Microplasma illumination enhancement of vertically aligned conducting ultrananocrystalline diamond nanorods

    PubMed Central

    2012-01-01

    Vertically aligned conducting ultrananocrystalline diamond (UNCD) nanorods are fabricated using the reactive ion etching method incorporated with nanodiamond particles as mask. High electrical conductivity of 275 Ω·cm−1 is obtained for UNCD nanorods. The microplasma cavities using UNCD nanorods as cathode show enhanced plasma illumination characteristics of low threshold field of 0.21 V/μm with plasma current density of 7.06 mA/cm2 at an applied field of 0.35 V/μm. Such superior electrical properties of UNCD nanorods with high aspect ratio potentially make a significant impact on the diamond-based microplasma display technology. PMID:23009733

  5. Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties

    NASA Astrophysics Data System (ADS)

    Ramaneti, R.; Sankaran, K. J.; Korneychuk, S.; Yeh, C. J.; Degutis, G.; Leou, K. C.; Verbeeck, J.; Van Bael, M. K.; Lin, I. N.; Haenen, K.

    2017-06-01

    A "patterned-seeding technique" in combination with a "nanodiamond masked reactive ion etching process" is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of the DGH nanorods, which contain sp2-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices.

  6. Vertically-aligned Co(OH)2 Nanosheet Films for Flexible All-solid-state Electrochemical Supercapacitor

    NASA Astrophysics Data System (ADS)

    Tian, Yazhou; Gong, Jiangfeng; Zhu, Weihua

    2017-11-01

    Vertically-aligned Co(OH)2 nanosheets were cathodically electrodeposited on a piece of gold coated polyethylene terephthalate (Au-PET) as an electrode material for supercapacitor. The Co(OH)2 electrode showed a high capacitance of 2695 F g-1 at 8 A g-1 in 1 M KOH aqueous electrolyte. Besides, the films were employed to assemble symmetric all-solid-state supercapacitors with PVA/LiCl gel served as solid electrolyte. The device exhibits an areal capacitance of 50.5 μF cm-2 at the current density of 2 μA cm-2 accompanied by excellent cycle stability.

  7. Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function.

    PubMed

    Yu, Zhe; McKnight, Timothy E; Ericson, M Nance; Melechko, Anatoli V; Simpson, Michael L; Morrison, Barclay

    2012-05-01

    Neural chips, which are capable of simultaneous multisite neural recording and stimulation, have been used to detect and modulate neural activity for almost thirty years. As neural interfaces, neural chips provide dynamic functional information for neural decoding and neural control. By improving sensitivity and spatial resolution, nano-scale electrodes may revolutionize neural detection and modulation at cellular and molecular levels as nano-neuron interfaces. We developed a carbon-nanofiber neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes and demonstrated its capability of both stimulating and monitoring electrophysiological signals from brain tissues in vitro and monitoring dynamic information of neuroplasticity. This novel nano-neuron interface may potentially serve as a precise, informative, biocompatible, and dual-mode neural interface for monitoring of both neuroelectrical and neurochemical activity at the single-cell level and even inside the cell. The authors demonstrate the utility of a neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes. The new device can be used to stimulate and/or monitor signals from brain tissue in vitro and for monitoring dynamic information of neuroplasticity both intracellularly and at the single cell level including neuroelectrical and neurochemical activities. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. WC Nanocrystals Grown on Vertically Aligned Carbon Nanotubes: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction.

    PubMed

    Fan, Xiujun; Zhou, Haiqing; Guo, Xia

    2015-05-26

    Single nanocrystalline tungsten carbide (WC) was first synthesized on the tips of vertically aligned carbon nanotubes (VA-CNTs) with a hot filament chemical vapor deposition (HF-CVD) method through the directly reaction of tungsten metal with carbon source. The VA-CNTs with preservation of vertical structure integrity and alignment play an important role to support the nanocrystalline WC growth. With the high crystallinity, small size, and uniform distribution of WC particles on the carbon support, the formed WC-CNTs material exhibited an excellent catalytic activity for hydrogen evolution reaction (HER), giving a η10 (the overpotential for driving a current of 10 mA cm(-2)) of 145 mV, onset potential of 15 mV, exchange current density@ 300 mV of 117.6 mV and Tafel slope values of 72 mV dec(-1) in acid solution, and η10 of 137 mV, onset potential of 16 mV, exchange current density@ 300 mV of 33.1 mV and Tafel slope values of 106 mV dec(-1) in alkaline media, respectively. Electrochemical stability test further confirms the long-term operation of the catalyst in both acidic and alkaline media.

  9. Functionalized vertically aligned ZnO nanorods for application in electrolyte-insulator-semiconductor based pH sensors and label-free immuno-sensors

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Senapati, Sujata; Kumar, Satyendra; Kumar, Jitendra; Panda, Siddhartha

    2016-04-01

    Vertically aligned ZnO nanorods were grown on a SiO2/Si surface by optimization of the temperature and atmosphere for annealing of the seed. The seed layer annealed at 500 °C in vacuum provided well separated and uniform seeds which also provided the best condition to get densely packed, uniformly distributed, and vertically aligned nanorods. These nanorods grown on the substrates were used to fabricate electrolyte-insulator-semiconductor (EIS) devices for pH sensing. Etching of ZnO at acidic pH prevents the direct use of nanorods for pH sensing. Therefore, the nanorods functionalised with 3-aminopropyltriethoxysilane (APTES) were utilized for pH sensing and showed the pH sensitivity of 50.1 mV/pH. APTES is also known to be used as a linker to immobilize biomolecules (such as antibodies). The EIS device with APTES functionalized nanorods was used for the label free detection of prostate-specific antigen (PSA). Finally, voltage shifts of 23 mV and 35 mV were observed with PSA concentrations of 1 ng/ml and 100 ng/ml, respectively.

  10. Vertically-aligned BCN Nanotube Arrays with Superior Performance in Electrochemical capacitors

    PubMed Central

    Zhou, Junshuang; Li, Na; Gao, Faming; Zhao, Yufeng; Hou, Li; Xu, Ziming

    2014-01-01

    Electrochemical capacitors (EC) have received tremendous interest due to their high potential to satisfy the urgent demand in many advanced applications. The development of new electrode materials is considered to be the most promising approach to enhance the EC performance substantially. Herein, we present a high-capacity capacitor material based on vertically-aligned BC2N nanotube arrays (VA-BC2NNTAs) synthesized by low temperature solvothermal route. The obtained VA-BC2NNTAs display the good aligned nonbuckled tubular structure, which could indeed advantageously enhance capacitor performance. VA-BC2NNTAs exhibit an extremely high specific capacitance, 547 Fg−1, which is about 2–6 times larger than that of the presently available carbon-based materials. Meanwhile, VA-BC2NNTAs maintain an excellent rate capability and high durability. All these characteristics endow VA-BC2NNTAs an alternative promising candidate for an efficient electrode material for electrochemical capacitors (EC). PMID:25124300

  11. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ˜75 F g-1, ˜987 kW kg-1 and ˜27 W h kg-1, respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (˜158 F g-1) and energy density (˜53 W h kg-1). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.

  12. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes.

    PubMed

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-07

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  13. Transferring vertically aligned carbon nanotubes onto a polymeric substrate using a hot embossing technique for microfluidic applications.

    PubMed

    Mathur, A; Roy, S S; McLaughlin, J A

    2010-07-06

    We explored the hot embossing method for transferring vertically aligned carbon nanotubes (CNTs) into microfluidic channels, fabricated on poly-methyl-methacrylate (PMMA). Patterned and unpatterned CNTs were synthesized by microwave plasma-enhanced chemical vapour deposition on silicon to work as a stamp. For hot embossing, 115 degrees C and 1 kN force for 2 min were found to be the most suitable parameters for the complete transfer of aligned CNTs on the PMMA microchannel. Raman and SEM studies were used to analyse the microstructure of CNTs before and after hot embossing. The PMMA microparticles with dimensions (approx. 10 microm in diameter) similar to red blood cells were successfully filtered using laminar flow through these microfluidic channels. Finally, a microfluidic-based point-of-care device for blood filtration and detection of bio-molecules is drawn schematically.

  14. Transferring vertically aligned carbon nanotubes onto a polymeric substrate using a hot embossing technique for microfluidic applications

    PubMed Central

    Mathur, A.; Roy, S. S.; McLaughlin, J. A.

    2010-01-01

    We explored the hot embossing method for transferring vertically aligned carbon nanotubes (CNTs) into microfluidic channels, fabricated on poly-methyl-methacrylate (PMMA). Patterned and unpatterned CNTs were synthesized by microwave plasma-enhanced chemical vapour deposition on silicon to work as a stamp. For hot embossing, 115°C and 1 kN force for 2 min were found to be the most suitable parameters for the complete transfer of aligned CNTs on the PMMA microchannel. Raman and SEM studies were used to analyse the microstructure of CNTs before and after hot embossing. The PMMA microparticles with dimensions (approx. 10 µm in diameter) similar to red blood cells were successfully filtered using laminar flow through these microfluidic channels. Finally, a microfluidic-based point-of-care device for blood filtration and detection of bio-molecules is drawn schematically. PMID:20147316

  15. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes

    NASA Astrophysics Data System (ADS)

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-01

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  16. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

    PubMed

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-20

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. © 2012 IOP Publishing Ltd

  17. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    PubMed

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  18. Transfer of vertically aligned carbon nanofibers to polydimethylsiloxane (PDMS) while maintaining their alignment and impalefection functionality.

    PubMed

    Pearce, Ryan C; Railsback, Justin G; Anderson, Bryan D; Sarac, Mehmet F; McKnight, Timothy E; Tracy, Joseph B; Melechko, Anatoli V

    2013-02-01

    Vertically aligned carbon nanofibers (VACNFs) are synthesized on Al 3003 alloy substrates by direct current plasma-enhanced chemical vapor deposition. Chemically synthesized Ni nanoparticles were used as the catalyst for growth. The Si-containing coating (SiN(x)) typically created when VACNFs are grown on silicon was produced by adding Si microparticles prior to growth. The fiber arrays were transferred to PDMS by spin coating a layer on the grown substrates, curing the PDMS, and etching away the Al in KOH. The fiber arrays contain many fibers over 15 μm (long enough to protrude from the PDMS film and penetrate cell membranes) and SiN(x) coatings as observed by SEM, EDX, and fluorescence microscopy. The free-standing array in PDMS was loaded with pVENUS-C1 plasmid and human brain microcapillary endothelial (HBMEC) cells and was successfully impalefected.

  19. Novel Design for Centrifugal Countercurrent Chromatography: II. Studies on Novel Geometries of Zigzag Toroidal Tubing

    PubMed Central

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    The toroidal column using a zigzag pattern has been improved in both retention of the stationary phase and peak resolution. To further improve the retention of stationary phase and peak resolution, a series of novel geometric designs of tubing (plain, mid-clamping, flattened and flat-twisted tubing) was evaluated their performance in CCC. The results showed that the tubing which was flattened vertically against centrifugal force (vert-flattened tubing) produced the best peak resolution among them. Using vert-flattened tubing a series of experiments was performed to study the effects of column capacity and sample size. The results indicated that a 0.25 ml capacity column is ideal for analysis of small amount samples. PMID:20454530

  20. Nuclear reactor alignment plate configuration

    DOEpatents

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  1. On the Alignment of Strain, Vorticity and Scalar Gradient in Turbulent, Buoyant, Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Boratav, O. N.; Elghobashi, S. E.; Zhong, R.

    1999-01-01

    The alignment of vorticity and scalar gradient with the eigendirections of the rate of strain tensor is investigated in turbulent buoyant nonpremixed horizontal and vertical flames. The uniqueness of a buoyant nonpremixed flame is that it contains regions with distinct alignment characteristics. The strain-enstrophy angle Psi is used to identify these regions. Examination of the vorticity field and the vorticity production in these different regions indicates that Psi and consequently the alignment properties near the flame surface identified by the mixture fraction band F approximately equals F(sub st) differ from those in the fuel region, F > F(sub st) and the oxidizer region, F < F(sub st). The F approximately equals F(sub st) band shows strain-dominance resulting in vorticity/alpha alignment while F > F(sub st) (and F < F(sub st) for the vertical flame) band(s) show(s) vorticity/beta alignment. The implication of this result is that the scalar dissipation, epsilon(sub F), attains its maximum value always near F approximately equals F(sub st). These results are also discussed within the framework of recent dynamical results [Galanti et al., Nonlinearity 10, 1675 (1997)] suggesting that the Navier-Stokes equations evolved towards an attracting solution. It is shown that the properties of such an attracting solution are also consistent with our results of buoyant turbulent nonpremixed flames.

  2. Design criterion for the heat-transfer coefficient in opposing flow, mixed convention heat transfer in a vertical tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joye, D.D.

    1996-07-01

    Mixed convection heat transfer in a vertical tube with opposing flow (downflow heating) was studied experimentally for Reynolds numbers ranging from about 1,000 to 30,000 at constant Grashof numbers ranging about 1{1/2} orders of magnitude under constant wall temperature (CWT) conditions. Three correlations developed for opposing mixed convection flows in vertical conduits predicted the data reasonably well, except near and into the asymptote region for which these equations were not designed. A critical Reynolds number is developed here, above which these equations can be used for design purposes regardless of the boundary condition. Below Re{sub crit}, the correlations, the asymptotemore » equation should be used for the CWT boundary condition, which is more prevalent in process situations than the uniform heat flux (UHF) boundary condition.« less

  3. Liquid injection plasma deposition method and apparatus

    DOEpatents

    Kong, P.C.; Watkins, A.D.

    1999-05-25

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  4. Correction coil cable

    DOEpatents

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  5. Role of the wetting layer in the enhanced responsivity of InAs/GaAsSb quantum dot infrared photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzmán, Álvaro, E-mail: guzman@die.upm.es; Yamamoto, Kenji; Ulloa, J. M.

    2015-07-06

    InAs/GaAs{sub 1−x}Sb{sub x} Quantum Dot (QD) infrared photodetectors are analyzed by photocurrent spectroscopy. We observe that the integrated responsivity of the devices is improved with the increasing Sb mole fraction in the capping layer, up to 4.2 times for x = 17%. Since the QD layers are not vertically aligned, the vertical transport of the carriers photogenerated within the QDs takes place mainly through the bulk material and the wetting layer of the additional QD regions. The lower thickness of the wetting layer for high Sb contents results in a reduced capture probability of the photocarriers, thus increasing the photoconductive gain andmore » hence, the responsivity of the device. The growth of not vertically aligned consecutive QD layers with a thinner wetting layer opens a possibility to improve the performance of quantum dot infrared photodetectors.« less

  6. The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode

    PubMed Central

    Chang, Wen-Chung; Su, Sheng-Chien; Wu, Chia-Ching

    2016-01-01

    Vertically aligned p-type silicon nanowire (SiNW) arrays were fabricated through metal-assisted chemical etching (MACE) of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW) heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and current−voltage (I−V) measurements. Nonlinear and rectifying I−V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions. PMID:28773656

  7. Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Minh, Vu Anh; Tuan, Le Anh; Huy, Tran Quang; Hung, Vu Ngoc; Quy, Nguyen Van

    2013-01-01

    Vertically aligned ZnO nanorods were directly synthesised on a gold electrode of quartz crystal microbalance (QCM) by a simple low-temperature hydrothermal method for a NH3 gas sensing application. The length of vertically aligned ZnO nanorods was increased to purpose enhancement in the gas sensing response of the sensor. The length of ZnO nanorods increased with an increase in growth time. The growth time of ZnO nanorods was systematically varied in the range of 1-4 h to examine the effect of the length of the ZnO nanorods on the gas sensing properties of the fabricated sensors. The gas sensing properties of sensors with different ZnO nanorods lengths was examined at room temperature for various concentrations of NH3 (50-800 ppm) in synthetic air. Enhancement in gas sensing response by increasing the length of ZnO nanorods was observed.

  8. Reordering transitions during annealing of block copolymer cylinder phases

    DOE PAGES

    Majewski, Pawel W.; Yager, Kevin G.

    2015-10-06

    While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene- block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the finalmore » horizontal state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.« less

  9. High latitude field aligned light ion flows in the topside ionosphere deduced from ion composition and plasma temperatures

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.

    1993-01-01

    Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.

  10. Electrostatic Switching in Vertically Oriented Nanotubes for Nonvolatile Memory Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Khan, Paul; Jennings, Andrew T.; Greer, Julia R.; Megerian, Krikor G.; Allmen, Paul von

    2009-01-01

    We have demonstrated electrostatic switching in vertically oriented nanotubes or nanofibers, where a nanoprobe was used as the actuating electrode inside an SEM. When the nanoprobe was manipulated to be in close proximity to a single tube, switching voltages between 10 V - 40 V were observed, depending on the geometrical parameters. The turn-on transitions appeared to be much sharper than the turn-off transitions which were limited by the tube-to-probe contact resistances. In many cases, stiction forces at these dimensions were dominant, since the tube appeared stuck to the probe even after the voltage returned to 0 V, suggesting that such structures are promising for nonvolatile memory applications. The stiction effects, to some extent, can be adjusted by engineering the switch geometry appropriately. Nanoscale mechanical measurements were also conducted on the tubes using a custom-built anoindentor inside an SEM, from which preliminary material parameters, such as the elastic modulus, were extracted. The mechanical measurements also revealed that the tubes appear to be well adhered to the substrate. The material parameters gathered from the mechanical measurements were then used in developing an electrostatic model of the switch using a commercially available finite-element simulator. The calculated pull-in voltages appeared to be in agreement to the experimentally obtained switching voltages to first order.

  11. Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition

    DOEpatents

    Han, Jung; Su, Jie

    2008-08-05

    Highly ordered and aligned epitaxy of III-Nitride nanowires is demonstrated in this work. <1010> M-axis is identified as a preferential nanowire growth direction through a detailed study of GaN/AlN trunk/branch nanostructures by transmission electron microscopy. Crystallographic selectivity can be used to achieve spatial and orientational control of nanowire growth. Vertically aligned (Al)GaN nanowires are prepared on M-plane AlN substrates. Horizontally ordered nanowires, extending from the M-plane sidewalls of GaN hexagonal mesas or islands demonstrate new opportunities for self-aligned nanowire devices, interconnects, and networks.

  12. Viscous-sludge sample collector

    DOEpatents

    Not Available

    1979-01-01

    A vertical core sample collection system for viscous sludge is disclosed. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  13. Viscous sludge sample collector

    DOEpatents

    Beitel, George A [Richland, WA

    1983-01-01

    A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  14. 14 CFR 29.501 - Ground loading conditions: landing gear with skids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions... along the bottom of both skids, the vertical reactions must be applied as prescribed in paragraph (a) of this section. (c) Drag reactions in the level landing attitude. In the level attitude, and with the...

  15. 14 CFR 29.501 - Ground loading conditions: landing gear with skids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions... along the bottom of both skids, the vertical reactions must be applied as prescribed in paragraph (a) of this section. (c) Drag reactions in the level landing attitude. In the level attitude, and with the...

  16. 14 CFR 27.501 - Ground loading conditions: landing gear with skids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions... along the bottom of both skids, the vertical reactions must be applied as prescribed in paragraph (a) of this section. (c) Drag reactions in the level landing attitude. In the level attitude, and with the...

  17. 14 CFR 27.501 - Ground loading conditions: landing gear with skids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions... along the bottom of both skids, the vertical reactions must be applied as prescribed in paragraph (a) of this section. (c) Drag reactions in the level landing attitude. In the level attitude, and with the...

  18. Using Nonlinearity and Contact Lines to Control Fluid Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Perlin, M.; Schultz, W. W.; Bian, X.; Agarwal, M.

    2002-01-01

    Slug flows in a tube are affected by surface tension and contact lines, especially under microgravity. Numerical analyses and experiments are conducted of slug flows in small-diameter tubes with horizontal, inclined and vertical orientations. A PID-controlled, meter-long platform capable of following specified motions is used. An improved understanding of the contact line boundary condition for steady and unsteady contact-line motion is expected. Lastly, a direct fluid-handling method using nonlinear oscillatory motion of a tube is presented.

  19. The Effect of Condensate Inundation on Steam Condensation Heat Transfer in a Tube Bundle.

    DTIC Science & Technology

    1985-06-01

    predicted by Nusselt [Ref. 10] were measured. This increase was attributed to the effect of surface tension drawing the condensate to the wire and acting...analysis of film condensation on a horizontal tube was set forth by Nusselt in 1916. His analy- sis was, however, for laminar film condensation on a single...temperature. Jakob [Ref. 17] extended the Nusselt analysis to film condensation on a vertical in-line column of horizontal tubes by assuming that all

  20. NEUTRONIC REACTOR CONSTRUCTION

    DOEpatents

    Vernon, H.C.; Goett, J.J.

    1958-09-01

    A cover device is described for the fuel element receiving tube of a neutronic reactor of the heterogeneous, water cooled type wherein said tubes are arranged in a moderator with their longitudinal axes vertical. The cover is provided with means to support a rod-type fuel element from the bottom thereof and means to lock the cover in place, the latter being adapted for remote operation. This cover device is easily removable and seals the opening in the upper end of the fuel tube against leakage of coolant.

  1. Stackable In-Line Surface Missile Launch System for a Modular Payload Bay

    DTIC Science & Technology

    2004-11-08

    stacked modules 14 are connected 8 and sealed to form a single long continuous missile tube . 9 Flexible seals may be used at the base of each missile...vehicles, such as missiles, 22 both through vertical launch via specialized launch tubes on the 23 submarine, and horizontal launch via the submarine’s...torpedo 24 tubes . In some cases, the missiles are quite large, such as the 1 1 Tomahawk missile, which requires sufficient support for the 2 large

  2. Aspect sensitive E- and F-region SPEAR-enhanced incoherent backscatter observed by the EISCAT Svalbard radar

    NASA Astrophysics Data System (ADS)

    Dhillon, R. S.; Robinson, T. R.; Yeoman, T. K.

    2009-01-01

    Previous studies of the aspect sensitivity of heater-enhanced incoherent radar backscatter in the high-latitude ionosphere have demonstrated the directional dependence of incoherent scatter signatures corresponding to artificially excited electrostatic waves, together with consistent field-aligned signatures that may be related to the presence of artificial field-aligned irregularities. These earlier high-latitude results have provided motivation for repeating the investigation in the different geophysical conditions that obtain in the polar cap ionosphere. The Space Plasma Exploration by Active Radar (SPEAR) facility is located within the polar cap and has provided observations of RF-enhanced ion and plasma line spectra recorded by the EISCAT Svalbard UHF incoherent scatter radar system (ESR), which is collocated with SPEAR. In this paper, we present observations of aspect sensitive E- and F-region SPEAR-induced ion and plasma line enhancements that indicate excitation of both the purely growing mode and the parametric decay instability, together with sporadic E-layer results that may indicate the presence of cavitons. We note consistent enhancements from field-aligned, vertical and also from 5° south of field-aligned. We attribute the prevalence of vertical scatter to the importance of the Spitze region, and of that from field-aligned to possible wave/irregularity coupling.

  3. What You See Is What You Get: Investigations with a View Tube

    ERIC Educational Resources Information Center

    Obara, Samuel

    2009-01-01

    This paper presents an investigation by pre-service secondary school teachers in a geometry class of the relationship between the perpendicular distance from the eyeball to the wall (x) and the viewable vertical distance on the wall (y) using a view tube of constant length and diameter. In undertaking the investigation, students used tabular and…

  4. 49 CFR 572.154 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... R5 of this subpart, with the lower limbs extended forward, parallel to the midsagittal plane and the arms 0 to 5 degrees forward of vertical. The dummy's midsagittal plane is vertical within ±/1 degree... alignment). (4) Establish the impact point at the chest midsagittal plane so that the impact point of the...

  5. The perception of verticality in lunar and Martian gravity conditions.

    PubMed

    de Winkel, Ksander N; Clément, Gilles; Groen, Eric L; Werkhoven, Peter J

    2012-10-31

    Although the mechanisms of neural adaptation to weightlessness and re-adaptation to Earth-gravity have received a lot of attention since the first human space flight, there is as yet little knowledge about how spatial orientation is affected by partial gravity, such as lunar gravity of 0.16 g or Martian gravity of 0.38 g. Up to now twelve astronauts have spent a cumulated time of approximately 80 h on the lunar surface, but no psychophysical experiments were conducted to investigate their perception of verticality. We investigated how the subjective vertical (SV) was affected by reduced gravity levels during the first European Parabolic Flight Campaign of Partial Gravity. In normal and hypergravity, subjects accurately aligned their SV with the gravitational vertical. However, when gravity was below a certain threshold, subjects aligned their SV with their body longitudinal axis. The value of the threshold varied considerably between subjects, ranging from 0.03 to 0.57 g. Despite the small number of subjects, there was a significant positive correlation of the threshold with subject age, which calls for further investigation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Siphon flows in isolated magnetic flux tubes. III - The equilibrium path of the flux-tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinos, Benjamin

    1990-01-01

    It is shown how to calculate the equilibrium path of a thin magnetic flux tube in a stratified, nonmagnetic atmosphere when the flux tube contains a steady siphon flow. The equilbrium path of a static thin flux tube in an infinite stratified atmosphere generally takes the form of a symmetric arch of finite width, with the flux tube becoming vertical at either end of the arch. A siphon flow within the flux tube increases the curvature of the arched equilibrium path in order that the net magnetic tension force can balance the inertial force of the flow, which tries to straighten the flux tube. Thus, a siphon flow reduces the width of the arched equilibrium path, with faster flows producing narrower arches. The effect of the siphon flow on the equilibrium path is generally greater for flux tubes of weaker magnetic field strength. Examples of the equilibrium are shown for both isothemal and adiabatic siphon flows in thin flux tubes in an isothermal external atmosphere.

  7. Gel spinning of silk tubes for tissue engineering

    PubMed Central

    Lovett, Michael; Cannizzaro, Christopher; Vunjak-Novakovic, Gordana; Kaplan, David L.

    2011-01-01

    Tubular vessels for tissue engineering are typically fabricated using a molding, dipping, or electrospinning technique. While these techniques provide some control over inner and outer diameters of the tube, they lack the ability to align the polymers or fibers of interest throughout the tube. This is an important aspect of biomaterial composite structure and function for mechanical and biological impact of tissue outcomes. We present a novel aqueous process system to spin tubes from biopolymers and proteins such as silk fibroin. Using silk as an example, this method of winding an aqueous solution around a reciprocating rotating mandrel offers substantial improvement in the control of the tube properties, specifically with regard to winding pattern, tube porosity, and composite features. Silk tube properties are further controlled via different post-spinning processing mechanisms such as methanol-treatment, air-drying, and lyophilization. This approach to tubular scaffold manufacture offers numerous tissue engineering applications such as complex composite biomaterial matrices, blood vessel grafts and nerve guides, among others. PMID:18801570

  8. Methods for batch fabrication of cold cathode vacuum switch tubes

    DOEpatents

    Walker, Charles A [Albuquerque, NM; Trowbridge, Frank R [Albuquerque, NM

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  9. A new sliding joint to accommodate recoil of a free-piston-driven expansion tube facility

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Morgan, R. G.

    2016-11-01

    This paper describes a new device to decouple free-piston driver recoil and its associated mechanical vibration from the acceleration tube and test section of The University of Queensland's X3 expansion tube. A sliding joint is introduced to the acceleration tube which axially decouples the facility at this station. When the facility is fired, the upstream section of the facility, which includes the free-piston driver, can recoil upstream freely. The downstream acceleration tube remains stationary. This arrangement provides two important benefits. Firstly, it eliminates nozzle movement relative to the test section before and during the experiment. This has benefits in terms of experimental setup and alignment. Secondly, it prevents transmission of mechanical disturbances from the free-piston driver to the acceleration tube, thereby eliminating mechanically-induced transducer noise in the sensitive pressure transducers installed in this low-pressure tube. This paper details the new design, and presents experimental confirmation of its performance.

  10. Vertical Alignment of Single-Walled Carbon Nanotubes on Nanostructure Fabricated by Atomic Force Microscope

    DTIC Science & Technology

    2007-02-16

    SWNT films by Langmuir - Blodgett methods,8 and chemical assembly of SWNTs on a large substrate.9 Al- though these methods provide a good way to control... Langmuir - Blodgett to Self-Assembly. Academic: New York, (1991). [10] Moon, J.H., Shin, J.W., Kim, S.Y., Park, J.W. Langmuir , 12, 4621, (1996...aligning CNTs in solu- tion by applying an electric field5 or a magnetic field,6 align- ing SWNTs by blending them with liquid crystal,7 assem- bling

  11. Cost-Effective Systems for Atomic Layer Deposition

    ERIC Educational Resources Information Center

    Lubitz, Michael; Medina, Phillip A., IV; Antic, Aleks; Rosin, Joseph T.; Fahlman, Bradley D.

    2014-01-01

    Herein, we describe the design and testing of two different home-built atomic layer deposition (ALD) systems for the growth of thin films with sub-monolayer control over film thickness. The first reactor is a horizontally aligned hot-walled reactor with a vacuum purging system. The second reactor is a vertically aligned cold-walled reactor with a…

  12. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors.

    PubMed

    Kocabas, Coskun; Hur, Seung-Hyun; Gaur, Anshu; Meitl, Matthew A; Shim, Moonsub; Rogers, John A

    2005-11-01

    A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the morphology of the quartz. Electrodes and dielectrics patterned on top of these arrays yield thin-film transistors that use the SWNTs as effective thin-film semiconductors. The ability to build high-performance devices of this type suggests significant promise for large-scale aligned arrays of SWNTs in electronics, sensors, and other applications.

  13. Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes.

    PubMed

    Dawson, P; Duenas, J A; Boyle, M G; Doherty, M D; Bell, S E J; Kern, A M; Martin, O J F; Teh, A-S; Teo, K B K; Milne, W I

    2011-02-09

    The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multiwalled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.

  14. Stable Fe nanomagnets encapsulated inside vertically-aligned carbon nanotubes.

    PubMed

    Bondino, Federica; Magnano, Elena; Ciancio, Regina; Castellarin Cudia, Carla; Barla, Alessandro; Carlino, Elvio; Yakhou-Harris, Flora; Rupesinghe, Nalin; Cepek, Cinzia

    2017-12-06

    Well-defined sized (5-10 nm) metallic iron nanoparticles (NPs) with body-centered cubic structure encapsulated inside the tip of millimeter-long vertically aligned carbon nanotubes (VACNTs) of uniform length have been investigated with high-resolution transmission electron microscopy and soft X-ray spectroscopy techniques. Surface-sensitive and chemically-selective measurements have been used to evaluate the magnetic properties of the encapsulated NPs. The encapsulated Fe NPs display magnetic remanence up to room temperature, low coercivity, high chemical stability and no significant anisotropy. Our surface-sensitive measurements combined with the specific morphology of the studied VACNTs allow us to pinpoint the contribution of the surface oxidized or hydroxidized iron catalysts present at the VACNT-substrate interface.

  15. Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing.

    PubMed

    Yilmazoglu, O; Popp, A; Pavlidis, D; Schneider, J J; Garth, D; Schüttler, F; Battenberg, G

    2012-03-02

    We report a simple method for the micro-nano integration of flexible, vertically aligned multiwalled CNT arrays sandwiched between a top and bottom carbon layer via a porous alumina (Al(2)O(3)) template approach. The electromechanical properties of the flexible CNT arrays have been investigated under mechanical stress conditions. First experiments show highly sensitive piezoresistive sensors with a resistance decrease of up to ∼35% and a spatial resolution of <1 mm. The results indicate that these CNT structures can be utilized for tactile sensing components. They also confirm the feasibility of accessing and utilizing nanoscopic CNT bundles via lithographic processing. The method involves room-temperature processing steps and standard microfabrication techniques.

  16. Controlled transport of latex beads through vertically aligned carbon nanofiber membranes

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Melechko, A. V.; Merkulov, V. I.; Guillorn, M. A.; Simpson, M. L.; Lowndes, D. H.; Doktycz, M. J.

    2002-07-01

    Stripes of vertically aligned carbon nanofibers (VACNFs) have been used to form membranes for size selectively controlling the transport of latex beads. Fluidic structures were created in poly(dimethylsiloxane) (PDMS) and interfaced to the VACNF structures for characterization of the membrane pore size. Solutions of fluorescently labeled latex beads were introduced into the PDMS channels and characterized by fluorescence and scanning electron microscopy. Results show that the beads size selectively pass through the nanofiber barriers and the size restriction limit correlates with the interfiber spacing. The results suggest that altering VACNF array density can alter fractionation properties of the membrane. Such membranes may be useful for molecular sorting and for mimicking the properties of natural membranes.

  17. Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide.

    PubMed

    Yang, Kaikun; Xu, Congkang; Huang, Liwei; Zou, Lianfeng; Wang, Howard

    2011-10-07

    Using reduced graphene oxide (rGO) films as the transparent conductive coating, inorganic/organic hybrid nanostructure heterojunction photovoltaic devices have been fabricated through hydrothermal synthesis of vertically aligned ZnO nanorods (ZnO-NRs) and nanotubes (ZnO-NTs) on rGO films followed by the spin casting of a poly(3-hexylthiophene) (P3HT) film. The data show that larger interfacial area in ZnO-NT/P3HT composites improves the exciton dissociation and the higher electrode conductance of rGO films helps the power output. This study offers an alternative to manufacturing nanostructure heterojunction solar cells at low temperatures using potentially low cost materials.

  18. Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization.

    PubMed

    Struzzi, Claudia; Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla

    2017-01-01

    The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF 4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions.

  19. Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

    PubMed Central

    Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla

    2017-01-01

    The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions. PMID:28904833

  20. Field emission from in situ-grown vertically aligned SnO2 nanowire arrays

    PubMed Central

    2012-01-01

    Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800

  1. Multiport well design for sampling of ground water at closely spaced vertical intervals

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    1996-01-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples from the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Tracer experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorcarbon concentrations.

  2. A systematic review of the angular values obtained by computerized photogrammetry in sagittal plane: a proposal for reference values.

    PubMed

    Krawczky, Bruna; Pacheco, Antonio G; Mainenti, Míriam R M

    2014-05-01

    Reference values for postural alignment in the coronal plane, as measured by computerized photogrammetry, have been established but not for the sagittal plane. The objective of this study is to propose reference values for angular measurements used for postural analysis in the sagittal plane for healthy adults. Electronic databases (PubMed, BVS, Cochrane, Scielo, and Science Direct) were searched using the following key words: evaluation, posture, photogrammetry, and software. Articles published between 2006 and 2012 that used the PAS/SAPO (postural assessment software) were selected. Another inclusion criterion was the presentation of, at least, one of the following measurements: head horizontal alignment, pelvic horizontal alignment, hip angle, vertical alignment of the body, thoracic kyphosis, and lumbar lordosis. Angle samples of the selected articles were grouped 2 by 2 in relation to an overall average, which made possible total average, variance, and SD calculations. Six articles were included, and the following average angular values were found: 51.42° ± 4.87° (head horizontal alignment), -12.26° ± 5.81° (pelvic horizontal alignment), -6.40° ± 3.86° (hip angle), and 1.73° ± 0.94° (vertical alignment of the body). None of the articles contained the measurements for thoracic kyphosis and lumbar lordosis. The reference values can be adopted as reference for postural assessment in future researches if the same anatomical points are considered. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  3. Simulation of exposure and alignment for nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Deng, Yunfei; Neureuther, Andrew R.

    2002-07-01

    Rigorous electromagnetic simulation with TEMPEST is used to examine the exposure and alignment processes for nano-imprint lithography with attenuating thin-film molds. Parameters in the design of topographical features of the nano-imprint system and material choices of the components are analyzed. The small feature size limits light transmission through the feature. While little can be done with auxiliary structures to attract light into small holes, the use of an absorbing material with a low real part of the refractive index such as silver helps mitigates the problem. Results on complementary alignment marks shows that the small transmission through the metal layer and the vertical separation of two alignment marks create the leakage equivalent to 1 nm misalignment but satisfactory alignment can be obtained by measuring alignment signals over a +/- 30 nm range.

  4. Effects of heat exchanger tubes on hydrodynamics and CO 2 capture of a sorbent-based fluidized bed reactor

    DOE PAGES

    Lai, Canhai; Xu, Zhijie; Li, Tingwen; ...

    2017-08-05

    In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber's performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered sub-grid models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable accuracymore » and manageable computational effort. Previously developed filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical tubes) on the adsorber's hydrodynamics and CO 2 capture performance are then examined. A one-dimensional three-region process model is briefly introduced for comparison purpose. The CFD model matches reasonably well with the process model while provides additional information about the flow field that is not available with the process model.« less

  5. Demonstration of a shape memory alloy torque tube-based morphing radiator

    NASA Astrophysics Data System (ADS)

    Chong, Jorge B.; Walgren, Patrick; Hartl, Darren J.

    2018-03-01

    Long-distance crewed space exploration will require advanced thermal control systems (TCS) with the ability to handle a wide range of thermal loads. The ability of a TCS to adapt to the thermal environment is described by the turndown ratio. Developing radiators with high turndown ratios is critical for improving TCS technology. This paper describes a novel morphing radiator designed to achieve a high turndown ratio by varying its own radiative view factor and effective emissivity through the use of shape memory alloys (SMAs). This radiator features two SMA torque tubes cantilevered to a rigid fixture. The working fluid is transported within the SMA tubes through an annular flow system. In a cold environment, radiator panels fixed to the free ends of the tubes are oriented vertically in a parallel-plate fashion, where the high-emissivity interior faces have restricted views to the environment and heat rejection is minimized. When the system heats up, the tubes actuate by twisting in opposing directions, bringing the panels to a horizontal position with the interior faces exposed to maximize heat rejection. When the system cools down, the tubes twist in reverse, restoring the panels to the vertical orientation where heat rejection is again minimized. This variable heat rejection system has the potential for achieving higher turndown ratios than those of current state-of-the-art systems. A benchtop prototype has been designed and tested to demonstrate actuation and to explore internal heat transfer effects. Prototype design, testing, and results are herein described.

  6. Liquid level detector

    DOEpatents

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  7. Liquid level detector

    DOEpatents

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  8. High-Performance Flexible All-Solid-State Asymmetric Supercapacitors Based on Vertically Aligned CuSe@Co(OH) 2 Nanosheet Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jiangfeng; Tian, Yazhou; Yang, Ziyuan

    The developments of electrode active materials provide the opportunities for next-generation energy storage devices. The arrangement of electrode materials on the substrate has recently emerged as a promising strategy for preparing high-performance supercapacitors. In this paper, we demonstrate a novel vertically aligned CuSe@Co(OH) 2 nanosheet arrays electrode for supercapacitor application. The materials are thoroughly characterized by structural and spectroscopic techniques. Electrochemical performance of CuSe@Co(OH) 2 nanosheet arrays are investigated in detail, which exhibit a specific capacitance as much as 1180 F g -1 at a current density of 1 A g -1. A flexible asymmetric all-solid-state supercapacitor is fabricated usingmore » CuSe@Co(OH) 2 nanosheet arrays as the positive electrode and activated carbon as the negative electrode. The device delivers a volumetric capacitance of 441.4 mF cm -3 with maximum energy density and maximum power density is 0.17 and 62.1 mW cm -3, as well as robust cycling stability (~80.4% capacitance retention after 10 000 cycles), excellent flexibility, and mechanical stability. Finally, the excellent electrochemical performance can be attributed to its unique vertically aligned configuration.« less

  9. High-Performance Flexible All-Solid-State Asymmetric Supercapacitors Based on Vertically Aligned CuSe@Co(OH) 2 Nanosheet Arrays

    DOE PAGES

    Gong, Jiangfeng; Tian, Yazhou; Yang, Ziyuan; ...

    2018-01-04

    The developments of electrode active materials provide the opportunities for next-generation energy storage devices. The arrangement of electrode materials on the substrate has recently emerged as a promising strategy for preparing high-performance supercapacitors. In this paper, we demonstrate a novel vertically aligned CuSe@Co(OH) 2 nanosheet arrays electrode for supercapacitor application. The materials are thoroughly characterized by structural and spectroscopic techniques. Electrochemical performance of CuSe@Co(OH) 2 nanosheet arrays are investigated in detail, which exhibit a specific capacitance as much as 1180 F g -1 at a current density of 1 A g -1. A flexible asymmetric all-solid-state supercapacitor is fabricated usingmore » CuSe@Co(OH) 2 nanosheet arrays as the positive electrode and activated carbon as the negative electrode. The device delivers a volumetric capacitance of 441.4 mF cm -3 with maximum energy density and maximum power density is 0.17 and 62.1 mW cm -3, as well as robust cycling stability (~80.4% capacitance retention after 10 000 cycles), excellent flexibility, and mechanical stability. Finally, the excellent electrochemical performance can be attributed to its unique vertically aligned configuration.« less

  10. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    PubMed

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.

  11. The Surface Interface Characteristics of Vertically Aligned Carbon Nanotube and Graphitic Carbon Fiber Arrays Grown by Thermal and Plasma Enhanced Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.

    2002-01-01

    The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.

  12. Transport Loss Estimation of Fine Particulate Matter in Sampling Tube Based on Numerical Computation

    NASA Astrophysics Data System (ADS)

    Luo, L.; Cheng, Z.

    2016-12-01

    In-situ measurement of PM2.5 physical and chemical properties is one substantial approach for the mechanism investigation of PM2.5 pollution. Minimizing PM2.5 transport loss in sampling tube is essential for ensuring the accuracy of the measurement result. In order to estimate the integrated PM2.5 transport efficiency in sampling tube and optimize tube designs, the effects of different tube factors (length, bore size and bend number) on the PM2.5 transport were analyzed based on the numerical computation. The results shows that PM2.5 mass concentration transport efficiency of vertical tube with flowrate at 20.0 L·min-1, bore size at 4 mm, length at 1.0 m was 89.6%. However, the transport efficiency will increase to 98.3% when the bore size is increased to 14 mm. PM2.5 mass concentration transport efficiency of horizontal tube with flowrate at 1.0 L·min-1, bore size at 4mm, length at 10.0 m is 86.7%, increased to 99.2% with length at 0.5 m. Low transport efficiency of 85.2% for PM2.5 mass concentration is estimated in bend with flowrate at 20.0 L·min-1, bore size at 4mm, curvature angle at 90o. Laminar flow of air in tube through keeping the ratio of flowrate (L·min-1) and bore size (mm) less than 1.4 is beneficial to decrease the PM2.5 transport loss. For the target of PM2.5 transport efficiency higher than 97%, it is advised to use vertical sampling tubes with length less than 6.0 m for the flowrates of 2.5, 5.0, 10.0 L·min-1 and bore size larger than 12 mm for the flowrates of 16.7 or 20.0 L·min-1. For horizontal sampling tubes, tube length is decided by the ratio of flowrate and bore size. Meanwhile, it is suggested to decrease the amount of the bends in tube of turbulent flow.

  13. A new method for mapping variability in vertical seepage flux in streambeds

    NASA Astrophysics Data System (ADS)

    Chen, Xunhong; Song, Jinxi; Cheng, Cheng; Wang, Deming; Lackey, Susan O.

    2009-05-01

    A two-step approach was used to measure the flux across the water-sediment interface in river channels. A hollow tube was pressed into the streambed and an in situ sediment column of the streambed was created inside the tube. The hydraulic gradient between the two ends of the sediment column was measured. The vertical hydraulic conductivity of the sediment column was determined using a falling-head permeameter test in the river. Given the availability of the hydraulic gradient and vertical hydraulic conductivity of the streambed, Darcy’s law was used to calculate the specific discharge. This approach was applied to the Elkhorn River and one tributary in northeastern Nebraska, USA. The results suggest that the magnitude of the vertical flux varied greatly within a short distance. Furthermore, the flux can change direction from downward to upward between two locations only several meters apart. This spatial pattern of variation probably represents the inflow and outflow within the hyporheic zone, not the regional ambient flow systems. In this study, a thermal infrared camera was also used to detect the discharge locations of groundwater in the streambed. After the hydraulic gradient and the vertical hydraulic conductivity were estimated from the groundwater spring, the discharge rate was calculated.

  14. Falling film evaporator

    DOEpatents

    Bruns, Lester E.

    1976-01-01

    A falling film evaporator including a vertically oriented pipe heated exteriorly by a steam jacket and interiorly by a finned steam tube, all heating surfaces of the pipe and steam tube being formed of a material wet by water such as stainless steel, and packing within the pipe consisting of Raschig rings formed of a material that is not wet by water such as polyvinylidene fluoride.

  15. Numerical investigation of PCM in vertical triplex tube thermal energy storage system for CSP applications

    NASA Astrophysics Data System (ADS)

    Almsater, Saleh; Saman, Wasim; Bruno, Frank

    2017-06-01

    Numerical study for phase change material (PCM) in high temperature vertical triplex tube thermal energy storage system (TTTESS) were performed, using ANSYS FLUENT 15. For validation purposes, numerical modelling of a low temperature PCM was initially conducted and the predicted results were compared with the numerical and experimental data from the literature. The average temperature for freezing and melting agree well with the results from the literature. The validated model for the low temperature PCM was extended to high temperature TTTESS; the supercritical CO2 as the heat transfer fluid (HTF) flows in the inside and outside tubes during the charging and discharging processes, whereas the Lithium and Potassium carbonate (Li2CO3-K2CO3) (35%-65%) as the PCM is enclosed between them. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. This study also provides results demonstrating the effect of adding more fins relative to the case of no fins on the freezing and melting fraction of the PCM. Compared to 2 tank system, the TTTESS with eight fins can provide significant performance with less size.

  16. Structure and characteristics of heterogeneous detonation

    NASA Astrophysics Data System (ADS)

    Nicholls, J. A.; Sichel, M.; Kauffman, C. W.

    1983-09-01

    The emphasis of this research program centered around the structure of heterogeneous detonation waves, inasmuch as this had been found to be very important to the detonation characteristics of heterogeneous mixtures. On the experimental side, a vertical detonation tube was used wherein liquid fuel drops, all of one size, were generated at the top of the tube and allowed to fall vertically into the desired gaseous mixture. A strong blast wave was transmitted into the mixture through use of an auxiliary shock tube. The propagation of the resultant wave was monitored by pressure switches, pressure transducers, and photography. The low vapor pressure liquid fuel, decane (400 micrometer drop size) was used for most of the experiments. Attention was given to wave structure, wave velocity, and initiation energy. Three atmospheres (100% O2; 40% O2/60% N2; and air) and a number of equivalence ratios were investigated. Holographic pictures and streak photography were employed to study the drop shattering process and the structure of the front. Other experiments investigated the addition of the sensitizer, normal propyl nitrate (NPN), to the decane. The important aspect of vapor pressure was studied by heating the entire tube to various elevated temperatures and then noting the effect on detonability.

  17. Enhancement of Condensation Heat Transfer by Counter-Corrent Wavy Flow in a Vertical Tube

    NASA Astrophysics Data System (ADS)

    Teranishi, Tsunenobu; Ozawa, Takanori; Takimoto, Akira

    As a basic research for the development of a high-performance and environment-friendly thermal energy recovery system, detailed experiments have been conducted to investigate the mechanism of the enhancement of condensation heat transfer by the counter-current moist air flow in a vertical tube. From the results of visual observation of the phenomena by using a high-speed video recorder and the measurement of condensate rate respectively from an upper and a bottom end of a cooled tube, in which various humidity vapor of air and water flowed upward or downward, the dynamic behavior of liquid film condensed on cooled surface and moist air flow was classified into four distinctive patterns in quality and quantity. Further, the effect of the scale and the operating condition such as the diameter and the length of tube, the vapor concentration and the moist air temperature, on the condensation rate of counter-current wavy flow was clarified in relation to the pattern and condition of occurrence of the wavy flow of liquid film and flooding due to the shear forces between the interface of liquid and moist air flow.

  18. Experiments on the Richtmyer–Meshkov instability with an imposed, random initial perturbation

    DOE PAGES

    Jacobs, J. W.; Krivets, V. V.; Tsiklashvili, V.; ...

    2013-03-16

    A vertical shock tube is used to perform experiments on the Richtmyer–Meshkov instability with a three-dimensional random initial perturbation. A membraneless flat interface is formed by opposed gas flows in which the light and heavy gases enter the shock tube from the top and from the bottom of the shock tube driven section. An air/SF6 gas combination is used and a Mach number M = 1.2 incident shock wave impulsively accelerates the interface. Initial perturbations on the interface are created by vertically oscillating the gas column within the shock tube to produce Faraday waves on the interface resulting in amore » short wavelength, three-dimensional perturbation. Planar Mie scattering is used to visualize the flow in which light from a laser sheet is scattered by smoke seeded in the air, and image sequences are captured using three high-speed video cameras. Measurements of the integral penetration depth prior to reshock show two growth behaviors, both having power law growth with growth exponents in the range found in previous experiments and simulations. Following reshock, all experiments showvery consistent linear growth with a growth rate in good agreement with those found in previous studies.« less

  19. Dynamic wetting of a liquid film in a vertical hydrophobic tube

    NASA Astrophysics Data System (ADS)

    Pigeonneau, Franck; Hayoun, Pascaline; Barthel, Etienne; Lequeux, Francois; Verneuil, Emilie; Letailleur, Alban; Teisseire, Jeremie; Saint-Gobain Recherche Collaboration; Espci-Physico-Chimie Des Polymeres Et Milieux Disperses Collaboration; Surface Du Verre Et Interfaces Collaboration

    2016-11-01

    The drop of a liquid plug through a tube occurs for instance in vending machine. In such a system, the fouling is linked to the creation of the liquid film at the rear of the liquid plug. Consequently, the conditions leading to the film creation are important to know. We study numerically the dynamic wetting transition of a liquid plug undergoing gravity on hydrophobic surface in a vertical tube. Using a lubrication theory, the liquid film thickness obeys the mass conservation equation with a volume flow rate depending on the relative motion of the tube, capillary and gravity forces. An ad hoc friction at the triple line is used to take into account the wetting dynamics. The lubrication equation is solved using a finite difference technique in space and a time integrator for stiff system with an adaptive time step. The numerical results are compared to experimental data. The complex film morphology due to the transients and the critical slowing down at the dynamic transition are reproduced. However, several experimental features are not predicted numerically especially the width of the transition. Our preliminary calculations suggest that the dispersion relation of the liquid film mode can explain the discrepancy.

  20. Analysis of the light-water flooding of the HFBR thimble tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carew, J.F.; Aronson, A.L.; Cokinos, D.M.

    The fuel elements surrounding the central vertical thimble tubes in the Brookhaven National Laboratory High-Flux Beam Reactor (HFBR) are highly undermoderated, and light-water flooding of these irradiation thimbles results in a positive core reactivity insertion. The light-water contamination of the D{sub 2}O thimble tube coolant is the result of a postulated double-ended guillotine break of a U tube in the experimental facilities heat exchanger during the HFBR light-water flooding (LWF) event. While this event has a low probability (1.3 x 10{sup {minus}4}/yr), the HFBR protection system must ensure adequate thermal margin during the power transient. This paper summarizes the analysismore » of the HFBR thimble-tube LWF event.« less

  1. Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk

    2016-07-01

    Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.

  2. Performance of blasting caps

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Schimmel, Morry L. (Inventor); Perry, Ronnie B. (Inventor)

    1993-01-01

    Common blasting caps are made from an aluminum shell in the form of a tube which is closed at both ends. One end, which is called the output end, terminates in a principal side or face, and contains a detonating agent which communicates with a means for igniting the detonating agent. The improvement of the present invention is a flat, steel foil bonded to the face in a position which is aligned perpendicularly to the longitudinal axis of the tube.

  3. Alternative method for predicting optimal insertion depth of the laryngeal tube in children.

    PubMed

    Kim, J T; Jeon, S Y; Kim, C S; Kim, S D; Kim, H S

    2007-11-01

    Little information is available about the accuracy of the teeth mark on the laryngeal tube (LT) as a guide to correct placement in children. The aim of this crossover study was to evaluate three methods for optimal insertion depth of the size (#) 2 tube in children weighing 12-25 kg. In 24 children, the LT #2 was consecutively inserted by three different methods: (A) until the thick teeth mark on the tube was aligned with the upper incisors, (B) until resistance was felt, and (C) by inserting to a depth, previously measured, of the curved distance between the cricoid cartilage and the upper incisor. In each case, the depth of insertion, the degree of effective ventilation, the presence of leakage, and the fibreoptic view were assessed. Insertion based on the teeth mark led to a shorter insertion depth and a greater incidence of inadequate ventilation compared with the other two methods. There was no difference in the adequacy of ventilation between methods B and C. The vocal cords were more easily identified with methods B (62.5%) and C (75%) than with method A (12.5%). Insertion of the LT #2 aligned with the teeth mark can result in a shallow insertion depth and inadequate ventilation. The measured distance from the cricoid cartilage to the upper incisor offers alternative guidance for correct LT insertion.

  4. Boattail Plates With Non-Rectangular Geometries For Reducing Aerodynamic Base Drag Of A Bluff Body In Ground Effect

    DOEpatents

    Ortega, Jason M.; Sabari, Kambiz

    2006-03-07

    An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.

  5. Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging

    NASA Astrophysics Data System (ADS)

    Perlovich, Yuriy; Isaenkova, Margarita; Fesenko, Vladimir; Krymskaya, Olga; Zavodchikov, Alexander

    2011-05-01

    Features of the deformation process by cold radial forging of tube billets from Zr-1%Nb alloy were reconstructed on the basis of X-ray data concerning their structure and texture. The cold radial forging intensifies grain fragmentation in the bulk of billet and increases significantly the latent hardening of potentially active slip systems, so that operation only of the single slip system becomes possible. As a result, in radially-forged billets unusual deformation and recrystallization textures arise. These textures differ from usual textures of α-Zr by the mutual inversion of crystallographic axes, aligned along the axis of tube.

  6. An automatic alignment system for measuring optical path of transmissometer based on light beam scanning

    NASA Astrophysics Data System (ADS)

    Zhou, Shudao; Ma, Zhongliang; Wang, Min; Peng, Shuling

    2018-05-01

    This paper proposes a novel alignment system based on the measurement of optical path using a light beam scanning mode in a transmissometer. The system controls both the probe beam and the receiving field of view while scanning in two vertical directions. The system then calculates the azimuth angle of the transmitter and the receiver to determine the precise alignment of the optical path. Experiments show that this method can determine the alignment angles in less than 10 min with errors smaller than 66 μrad in the azimuth. This system also features high collimation precision, process automation and simple installation.

  7. Density controlled carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  8. Fabrication of aligned magnetic nanoparticles using tobamoviruses.

    PubMed

    Kobayashi, Mime; Seki, Munetoshi; Tabata, Hitoshi; Watanabe, Yuichiro; Yamashita, Ichiro

    2010-03-10

    We used genetically modified tube-shaped tobamoviruses to produce 3 nm aligned magnetic nanoparticles. Amino acid residues facing the central channel of the virus were modified to increase the number of nucleation sites. Energy dispersive X-ray spectroscopy and superconducting quantum interference device analysis suggest that the particles consisted of Co-Pt alloy. The use of tobamovirus mutants is a promising approach to making a variety of components that can be applied to fabricate nanometer-scaled electronic devices.

  9. Can hook-bending be let off the hook? Bending/unbending of pliant tools by cockatoos.

    PubMed

    Laumer, I B; Bugnyar, T; Reber, S A; Auersperg, A M I

    2017-09-13

    The spontaneous crafting of hook-tools from bendable material to lift a basket out of a vertical tube in corvids has widely been used as one of the prime examples of animal tool innovation. However, it was recently suggested that the animals' solution was hardly innovative but strongly influenced by predispositions from habitual tool use and nest building. We tested Goffin's cockatoo, which is neither a specialized tool user nor a nest builder, on a similar task set-up. Three birds individually learned to bend hook tools from straight wire to retrieve food from vertical tubes and four subjects unbent wire to retrieve food from horizontal tubes. Pre-experience with ready-made hooks had some effect but was not necessary for success. Our results indicate that the ability to represent and manufacture tools according to a current need does not require genetically hardwired behavioural routines, but can indeed arise innovatively from domain general cognitive processing. © 2017 The Authors.

  10. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    NASA Astrophysics Data System (ADS)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  11. Vertically aligned carbon nanotube electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Welna, Daniel T.; Qu, Liangti; Taylor, Barney E.; Dai, Liming; Durstock, Michael F.

    As portable electronics become more advanced and alternative energy demands become more prevalent, the development of advanced energy storage technologies is becoming ever more critical in today's society. In order to develop higher power and energy density batteries, innovative electrode materials that provide increased storage capacity, greater rate capabilities, and good cyclability must be developed. Nanostructured materials are gaining increased attention because of their potential to mitigate current electrode limitations. Here we report on the use of vertically aligned multi-walled carbon nanotubes (VA-MWNTs) as the active electrode material in lithium-ion batteries. At low specific currents, these VA-MWNTs have shown high reversible specific capacities (up to 782 mAh g -1 at 57 mA g -1). This value is twice that of the theoretical maximum for graphite and ten times more than their non-aligned equivalent. Interestingly, at very high discharge rates, the VA-MWNT electrodes retain a moderate specific capacity due to their aligned nature (166 mAh g -1 at 26 A g -1). These results suggest that VA-MWNTs are good candidates for lithium-ion battery electrodes which require high rate capability and capacity.

  12. In-flight angular alignment of inertial navigation systems by means of radio aids

    NASA Technical Reports Server (NTRS)

    Tanner, W.

    1972-01-01

    The principles involved in the angular alignment of the inertial reference by nondirectional data from radio aids are developed and compared with conventional methods of alignment such as gyro-compassing and pendulous vertical determination. The specific problem is considered of the space shuttle reentry and a proposed technique for the alignment of the inertial reference system some time before landing. A description is given of the digital simulation of a transponder interrogation system and of its interaction with the inertial navigation system. Data from reentry simulations are used to demonstrate the effectiveness of in-flight inertial system alignment. Concluding remarks refer to other potential applications such as space shuttle orbit insertion and air navigation of conventional aircraft.

  13. Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow

    NASA Astrophysics Data System (ADS)

    Schäfer, Stefan

    2017-04-01

    The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the turbulence scales of the flow. In case of heterogeneous distributions of vertical velocity components in the ADCP beams, the resulting errors significantly biased the mean velocities and could not be recognized by sole ADCP measurements. For the straightened flow scenario, the results showed good agreement of ADCP and ADV data for mean velocities, whereas the ADCP data consistently overestimated turbulence intensities by a factor of 2. Reynolds stresses were in good agreement as well as were turbulent kinetic energies, apart from one measurement with outliers of up to 30%. For the tailrace flow scenario, the mean velocities from the ADCP data underestimated the ADV data by 23%. Turbulence intensities from the ADCP data were fluctuant, overestimated the ADV data by factors of up to 2.8 and showed spatial discrepancies over the depth. Reynolds stresses were only partly in good agreement and turbulent kinetic energies were over- and underestimated in a range of [-50; +30] %.

  14. The Role of Texture, Cracks, and Fractures in Highly Anisotropic Shales

    NASA Astrophysics Data System (ADS)

    Baird, Alan F.; Kendall, J. Michael; Fisher, Quentin J.; Budge, Jessica

    2017-12-01

    Organic shales generally have low permeability unless fractures are present. However, how gas, oil, and water flows into these fractures remains enigmatic. The alignment of clay minerals and the alignment of fractures and cracks are effective means to produce seismic anisotropy. Thus, the detection and characterization of this anisotropy can be used to infer details about lithology, rock fabric, and fracture and crack properties within the subsurface. We present a study characterizing anisotropy using S wave splitting from microseismic sources in a highly anisotropic shale. We observe very strong anisotropy (up to 30%) with predominantly VTI (vertical transverse isotropy) symmetry, but with evidence of an HTI (horizontal transverse isotropy) overprint due to a NE striking vertical fracture set parallel to the maximum horizontal compressive stress. We observe clear evidence of a shear wave triplication due to anisotropy, which to our knowledge is one of only a very few observations of such triplications in field-scale data. We use modal proportions of minerals derived from X-ray fluorescence data combined with realistic textures to estimate the contribution of intrinsic anisotropy as well as possible contributions of horizontally aligned cracks. We find that aligned clays can explain much of the observed anisotropy and that any cracks contributing to the vertical transverse isotropy (VTI) must have a low ratio of normal to tangential compliance (ZN/ZT), typical of isolated cracks with low hydraulic connectivity. Subhorizontal cracks have also been observed in the reservoir, and we propose that their reactivation during hydraulic fracturing may be an important mechanism to facilitate gas flow.

  15. Growth mechanism and optical properties of aligned hexagonal ZnO nanoprisms synthesized by noncatalytic thermal evaporation.

    PubMed

    Umar, Ahmad; Karunagaran, B; Kim, S H; Suh, E-K; Hahn, Y B

    2008-05-19

    Vertically aligned perfectly hexagonal-shaped ZnO nanoprisms have been grown on a Si(100) substrate via a noncatalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen gas. The as-grown nanoprisms consist of ultra smooth Zn-terminated (0001) facets bounded with the {0110} surfaces. The as-synthesized products are single-crystalline with the wurtzite hexagonal phase and grown along the [0001] direction, as confirmed from the detailed structural investigations. The presence of a sharp and strong nonpolar optical phonon high-E2 mode at 437 cm(-1) in the Raman scattering spectrum further confirms good crystallinity and wurtzite hexagonal phase for the as-grown products. The as-grown nanoprisms exhibit a strong near-band-edge emission with a very weak deep-level emission in the room-temperature and low-temperature photoluminescence measurements, confirming good optical properties for the deposited products. Moreover, systematic time-dependent experiments were also performed to determine the growth process of the grown vertically aligned nanoprisms.

  16. Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblast-like cells.

    PubMed

    Giannona, Suna; Firkowska, Izabela; Rojas-Chapana, José; Giersig, Michael

    2007-01-01

    In this study, we describe the spatial organization of CAL-72 osteoblast-like cells on arrays of vertically aligned multi-walled carbon nanotubes (VACNTs). It was observed that, unlike cell growth on non-patterned surfaces, the cell attachment and spreading process on VACNTs was significantly enhanced. Additionally, since carbon nanotubes are known to possess resilient mechanical properties and are chemically stable, the effect of periodic arrays of VACNTs on CAL-72 osteoblast-like cells was also studied. The periodicity and alignment of VACNTs considerably influenced growth, shape and orientation of the cells by steering toward the nanopattern. This situation is of great interest for the potential application of VACNTs in bone bioenginnering. This data provides evidence that CAL-72 osteoblast-like cells can sense physical features at the nanoscale. These results give a fascinating insight into the ways in which cell growth can be influenced by man-made nanostructures and could provide a framework for achieving controlled cell guidance with controlled organization and special physical properties.

  17. Multilevel, multicomponent microarchitectures of vertically-aligned carbon nanotubes for diverse applications.

    PubMed

    Qu, Liangti; Vaia, Rich A; Dai, Liming

    2011-02-22

    A simple multiple contact transfer technique has been developed for controllable fabrication of multilevel, multicomponent microarchitectures of vertically aligned carbon nanotubes (VA-CNTs). Three dimensional (3-D) multicomponent micropatterns of aligned single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) have been fabricated, which can be used to develop a newly designed touch sensor with reversible electrical responses for potential applications in electronic devices, as demonstrated in this study. The demonstrated dependence of light diffraction on structural transfiguration of the resultant CNT micropattern also indicates their potential for optical devices. Further introduction of various components with specific properties (e.g., ZnO nanorods) into the CNT micropatterns enabled us to tailor such surface characteristics as wettability and light response. Owing to the highly generic nature of the multiple contact transfer strategy, the methodology developed here could provide a general approach for interposing a large variety of multicomponent elements (e.g., nanotubes, nanorods/wires, photonic crystals, etc.) onto a single chip for multifunctional device applications.

  18. Method for utilizing decay heat from radioactive nuclear wastes

    DOEpatents

    Busey, H.M.

    1974-10-14

    Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.

  19. Connector For Embedded Optical Fiber

    NASA Technical Reports Server (NTRS)

    Wilkerson, Charles; Hiles, Steven; Houghton, J. Richard; Holland, Brent W.

    1994-01-01

    Partly embedded fixture is simpler and sturdier than other types of outlets for optical fibers embedded in solid structures. No need to align coupling prism and lenses. Fixture includes base, tube bent at 45 degree angle, and ceramic ferrule.

  20. Fibre Optic Connections And Method For Using Same

    DOEpatents

    Chan, Benson; Cohen, Mitchell S.; Fortier, Paul F.; Freitag, Ladd W.; Hall, Richard R.; Johnson, Glen W.; Lin, How Tzu; Sherman, John H.

    2004-03-30

    A package is described that couples a twelve channel wide fiber optic cable to a twelve channel Vertical Cavity Surface Emitting Laser (VCSEL) transmitter and a multiple channel Perpendicularly Aligned Integrated Die (PAID) receiver. The package allows for reduction in the height of the assembly package by vertically orienting certain dies parallel to the fiber optic cable and horizontally orienting certain other dies. The assembly allows the vertically oriented optoelectronic dies to be perpendicularly attached to the horizontally oriented laminate via a flexible circuit.

  1. Maintenance of Surface Current Balance by Field-Aligned Thermoelectric Currents at Astronomical Bodies: Cassini at Rhea

    NASA Astrophysics Data System (ADS)

    Teolis, B. D.

    2014-12-01

    Cassini spacecraft magnetic field data at Saturn's moon Rhea reveal a field-aligned electric current system in the flux tube, which forms to satisfy the requirement to balance ion and electron currents on the moon's sharp surface. Unlike induction currents at bodies surrounded by significant atmospheres, Rhea's flux tube current system is not driven by motion through the plasma, but rather thermoelectrically, by heat flow into the object. In addition to Rhea, the requirements for the current system are easily satisfied at many plasma absorbing bodies: (1) a difference of average ion and electron gyroradii radii, and (2) a "sharp" body of any size, i.e., without a significant thick atmosphere. This type of current system is therefore expected to occur generally, e.g. at other airless planetary satellites, asteroids, and even spacecraft; and accordingly, represents a fundamental aspect of the physics of the interaction of astrophysical objects with space plasmas.

  2. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  3. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  4. Turbulent mixing induced by Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Krivets, V. V.; Ferguson, K. J.; Jacobs, J. W.

    2017-01-01

    Richtmyer-Meshkov instability is studied in shock tube experiments with an Atwood number of 0.7. The interface is formed in a vertical shock tube using opposed gas flows, and three-dimensional random initial interface perturbations are generated by the vertical oscillation of gas column producing Faraday waves. Planar Laser Mie scattering is used for flow visualization and for measurements of the mixing process. Experimental image sequences are recorded at 6 kHz frequency and processed to obtain the time dependent variation of the integral mixing layer width. Measurements of the mixing layer width are compared with Mikaelian's [1] model in order to extract the growth exponent θ where a fairly wide range of values is found varying from θ ≈ 0.2 to 0.6.

  5. Bound states of dipolar bosons in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Volosniev, A. G.; Armstrong, J. R.; Fedorov, D. V.; Jensen, A. S.; Valiente, M.; Zinner, N. T.

    2013-04-01

    We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few-body structures in this geometry are determined as a function of polarization angles and dipole strength by using both essentially exact stochastic variational methods and the harmonic approximation. The main focus is on the three-, four- and five-body problems in two or more tubes. Our results indicate that in the weakly coupled limit the intertube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom. This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, J. A.; Verth, G.; Fedun, V.

    We investigate the long-term evolution of an initially buoyant magnetic flux tube emerging into a gravitationally stratified coronal hole environment and report on the resulting oscillations and outflows. We perform 2.5-dimensional nonlinear numerical simulations, generalizing the models of McLaughlin et al. and Murray et al. We find that the physical mechanism of oscillatory reconnection naturally generates quasi-periodic vertical outflows, with a transverse/swaying aspect. The vertical outflows consist of both a periodic aspect and evidence of a positively directed flow. The speed of the vertical outflow (20-60 km s{sup -1}) is comparable to those reported in the observational literature. We alsomore » perform a parametric study varying the magnetic strength of the buoyant flux tube and find a range of associated periodicities: 1.75-3.5 minutes. Thus, the mechanism of oscillatory reconnection may provide a physical explanation to some of the high-speed, quasi-periodic, transverse outflows/jets recently reported by a multitude of authors and instruments.« less

  7. Guided flows in coronal magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Petralia, A.; Reale, F.; Testa, P.

    2018-01-01

    Context. There is evidence that coronal plasma flows break down into fragments and become laminar. Aims: We investigate this effect by modelling flows confined along magnetic channels. Methods: We consider a full magnetohydrodynamic (MHD) model of a solar atmosphere box with a dipole magnetic field. We compare the propagation of a cylindrical flow perfectly aligned with the field to that of another flow with a slight misalignment. We assume a flow speed of 200 km s-1 and an ambient magnetic field of 30 G. Results: We find that although the aligned flow maintains its cylindrical symmetry while it travels along the magnetic tube, the misaligned one is rapidly squashed on one side, becoming laminar and eventually fragmented because of the interaction and back-reaction of the magnetic field. This model could explain an observation made by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory of erupted fragments that fall back onto the solar surface as thin and elongated strands and end up in a hedge-like configuration. Conclusions: The initial alignment of plasma flow plays an important role in determining the possible laminar structure and fragmentation of flows while they travel along magnetic channels. Movies are available in electronic form at http://www.aanda.org

  8. Comparison of Friction Characteristics on TN and VA Mode Alignment Films with Friction Force Microscopy

    NASA Astrophysics Data System (ADS)

    Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul

    Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.

  9. Gas sensing with gold-decorated vertically aligned carbon nanotubes

    PubMed Central

    Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Colomer, Jean-François

    2014-01-01

    Summary Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length. PMID:24991529

  10. Gas sensing with gold-decorated vertically aligned carbon nanotubes.

    PubMed

    Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Bittencourt, Carla; Colomer, Jean-François

    2014-01-01

    Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.

  11. Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes

    NASA Astrophysics Data System (ADS)

    Berrod, Q.; Ferdeghini, F.; Judeinstein, P.; Genevaz, N.; Ramos, R.; Fournier, A.; Dijon, J.; Ollivier, J.; Rols, S.; Yu, D.; Mole, R. A.; Zanotti, J.-M.

    2016-04-01

    Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators.Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01445c

  12. Growth of vertically aligned carbon nanofibers by low-pressure inductively coupled plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Caughman, J. B. O.; Baylor, L. R.; Guillorn, M. A.; Merkulov, V. I.; Lowndes, D. H.; Allard, L. F.

    2003-08-01

    Vertically aligned carbon nanofibers (VACNFs) have been grown using a low-pressure, plasma-enhanced, chemical vapor deposition process. The nanofibers are grown from a nickel catalyst that can be patterned to form arrays of individual, isolated VACNFs. The fibers are grown at pressures below 100 mTorr, using an inductively coupled plasma source with a radio-frequency bias on the sample substrate to allow for independent control of the ion energies. Plasma conditions are related to growth results by comparing optical emission from the plasma to the physical structure of the nanofibers. We find that the ratio of etching species in the plasma to depositing species is critical to the final shape of the carbon structures that are formed.

  13. Vertically aligned gas-insulated transmission line having particle traps at the inner conductor

    DOEpatents

    Dale, Steinar J.

    1984-01-01

    Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.

  14. Vertically aligned carbon nanofiber electrode arrays for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Arumugam, Prabhu U.; Yu, Edmond; Riviere, Roger; Meyyappan, M.

    2010-10-01

    We present electrochemical detection of DNA targets that corresponds to Escherichia coli O157:H7 16S rRNA gene using a nanoelectrode array consisting of vertically aligned carbon nanofiber (VACNF) electrodes. Parylene C is used as gap filling 'matrix' material to avoid high temperature processing in electrode construction. This easy to deposit film of several micron heights provides a conformal coating between the high aspect ratio VACNFs with negligible pin-holes. The low background currents show the potential of this approach for ultra-sensitive detection. Consistent and reproducible electrochemical-signals are achieved using a simple electrode preparation. This simple, reliable and low-cost approach is a forward step in developing practical sensors for applications like pathogen detection, early cancer diagnosis and environmental monitoring.

  15. Fluid mechanics and heat transfer spirally fluted tubing

    NASA Astrophysics Data System (ADS)

    Larue, J. C.; Libby, P. A.; Yampolsky, J. S.

    1981-08-01

    The objective of this program is to develop both a qualitative and a quantitative understanding of the fluid mechanics and heat transfer mechanisms that underlie the measured performance of the spirally fluted tubes under development at General Atomic. The reason for the interest in the spirally fluted tubes is that results to date have indicated three advantages to this tubing concept: The fabrication technique of rolling flutes on strip and subsequently spiralling and simultaneously welding the strip to form tubing results in low fabrication costs, approximately equal to those of commercially welded tubing. The heat transfer coefficient is increased without a concomitant increase of the friction coefficient on the inside of the tube. In single-phase axial flow of water, the helical flutes continuously induce rotation of the flow both within and without the tube as a result of the effect of curvature. An increase in condensation heat transfer on the outside of the tube is achieved. In a vertical orientation with fluid condensing on the outside of the helically fluted tube, the flutes provide a channel for draining the condensed fluid.

  16. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration.

    PubMed

    Chang, Wei; Shah, Munish B; Lee, Paul; Yu, Xiaojun

    2018-06-01

    Recently in peripheral nerve regeneration, preclinical studies have shown that the use of nerve guidance conduits (NGCs) with multiple longitudinally channels and intra-luminal topography enhance the functional outcomes when bridging a nerve gap caused by traumatic injury. These features not only provide guidance cues for regenerating nerve, but also become the essential approaches for developing a novel NGC. In this study, a novel spiral NGC with aligned nanofibers and wrapped with an outer nanofibrous tube was first developed and investigated. Using the common rat sciatic 10-mm nerve defect model, the in vivo study showed that a novel spiral NGC (with and without inner nanofibers) increased the successful rate of nerve regeneration after 6 weeks recovery. Substantial improvements in nerve regeneration were achieved by combining the spiral NGC with inner nanofibers and outer nanofibrous tube, based on the results of walking track analysis, electrophysiology, nerve histological assessment, and gastrocnemius muscle measurement. This demonstrated that the novel spiral NGC with inner aligned nanofibers and wrapped with an outer nanofibrous tube provided a better environment for peripheral nerve regeneration than standard tubular NGCs. Results from this study will benefit for future NGC design to optimize tissue-engineering strategies for peripheral nerve regeneration. We developed a novel spiral nerve guidance conduit (NGC) with coated aligned nanofibers. The spiral structure increases surface area by 4.5 fold relative to a tubular NGC. Furthermore, the aligned nanofibers was coated on the spiral walls, providing cues for guiding neurite extension. Finally, the outside of spiral NGC was wrapped with randomly nanofibers to enhance mechanical strength that can stabilize the spiral NGC. Our nerve histological data have shown that the spiral NGC had 50% more myelinated axons than a tubular structure for nerve regeneration across a 10 mm gap in a rat sciatic nerve. Results from this study can help further optimize tissue engineering strategies for peripheral nerve repair. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Thermal convection currents in NMR: flow profiles and implications for coherence pathway selection

    PubMed

    Jerschow

    2000-07-01

    Rayleigh-Benard convection currents are visualized in a vertical cylindrical tube by means of magnetic resonance imaging. Axially antisymmetric flow, multiple vertical rolls, and twisted node planes are observed. The flow can also be induced by strong RF irradiation. Its effects on the coherence pathways in NMR experiments employing field gradients are discussed. Copyright 2000 Academic Press.

  18. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors.

    PubMed

    Zhang, Chenguang; Peng, Zhiwei; Lin, Jian; Zhu, Yu; Ruan, Gedeng; Hwang, Chih-Chau; Lu, Wei; Hauge, Robert H; Tour, James M

    2013-06-25

    Potassium vapor was used to longitudinally split vertically aligned multiwalled carbon nanotubes carpets (VA-CNTs). The resulting structures have a carpet of partially split MWCNTs and graphene nanoribbons (GNRs). The split structures were characterized by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. When compared to the original VA-CNTs carpet, the split VA-CNTs carpet has enhanced electrochemical performance with better specific capacitance in a supercapacitor. Furthermore, the split VA-CNTs carpet has excellent cyclability as a supercapacitor electrode material. There is a measured maximum power density of 103 kW/kg at an energy density of 5.2 Wh/kg and a maximum energy density of 9.4 Wh/kg. The superior electrochemical performances of the split VA-CNTs can be attributed to the increased surface area for ion accessibility after splitting, and the lasting conductivity of the structure with their vertical conductive paths based on the preserved GNR alignment.

  19. Effects of spatial separation on the growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Melechko, Anatoli V.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.

    2002-01-01

    Vertically aligned carbon nanofibers (VACNFs) with vastly different spacing were grown by catalytically controlled dc glow discharge chemical vapor deposition. Both densely packed VACNFs and essentially isolated VACNFs were studied using scanning electron microscopy and x-ray energy dispersive spectroscopy. The morphology and chemical composition of isolated VACNFs were found to have a strong dependence upon the growth conditions, in particular on the C2H2/NH3 gas mixture used. This is attributed to the sidewalls of isolated VACNFs being exposed to reactive species during growth. In contrast, the sidewalls of densely packed VACNFs were shielded by the neighboring VACNFs, so that their growth occurred mainly in the vertical direction, by diffusion of carbon through the catalyst nanoparticle and subsequent precipitation at the nanofiber/nanoparticle interface. These striking differences in the growth process result in the formation of flattened carbon nanostructures (carbon nanotriangles) and also are quite important for the realization of VACNF-based devices.

  20. The precision measurement and assembly for miniature parts based on double machine vision systems

    NASA Astrophysics Data System (ADS)

    Wang, X. D.; Zhang, L. F.; Xin, M. Z.; Qu, Y. Q.; Luo, Y.; Ma, T. M.; Chen, L.

    2015-02-01

    In the process of miniature parts' assembly, the structural features on the bottom or side of the parts often need to be aligned and positioned. The general assembly equipment integrated with one vertical downward machine vision system cannot satisfy the requirement. A precision automatic assembly equipment was developed with double machine vision systems integrated. In the system, a horizontal vision system is employed to measure the position of the feature structure at the parts' side view, which cannot be seen with the vertical one. The position measured by horizontal camera is converted to the vertical vision system with the calibration information. By careful calibration, the parts' alignment and positioning in the assembly process can be guaranteed. The developed assembly equipment has the characteristics of easy implementation, modularization and high cost performance. The handling of the miniature parts and assembly procedure were briefly introduced. The calibration procedure was given and the assembly error was analyzed for compensation.

  1. Conductive indium-tin oxidenanowire and nanotube arrays made by electrochemically assisted deposition in template membranes: switching between wire and tube growth modes by surface chemical modification of the template

    NASA Astrophysics Data System (ADS)

    Kovtyukhova, Nina I.; Mallouk, Thomas E.

    2011-04-01

    Tin-doped indium hydroxide (InSnOH) nanowires (NWs) and nanotubes (NTs) were grown from acidic aqueous solutions of inorganic precursors in a simple one-step electrochemically assisted deposition (EAD) process inside Au-plugged anodic aluminium oxide and polycarbonatemembranes. When the membranes were used without any pre-treatment, InSnOH crystals nucleated on the both the Au-cathode and pore wall surfaces. By adjusting the surface chemistry of Au or the pore walls, it was possible to switch between NW and NT growth modes. InSnOH was converted into indiumtin oxide (ITO) by annealing the InSnOH-filled membranes at 300 °C. The resulting wires and tubes were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray and electron diffraction, Auger electron spectroscopy and electrical conductivity measurements. InSnOH and ITO NWs and NTs consisted of ~25-50 nm in size crystalline grains with the cubic crystal structures of In(OH)3 and In2O3, respectively, and showed essentially the same morphological features as planar ITO films made by the same method. Separate tin oxide/hydroxide phases were not observed by any of the characterization methods. After heating in air at 600 °C, the ITO NWs had resistivity on the order of 10°Ω cm. EAD is an inexpensive and scalable solution-based technique, and allows one to grow dense arrays of vertically aligned, crystalline and conductive ITO NWs and NTs.

  2. Combustor and method for purging a combustor

    DOEpatents

    Berry, Jonathan Dwight; Hughes, Michael John

    2015-06-09

    A combustor includes an end cap. The end cap includes a first surface and a second surface downstream from the first surface, a shroud that circumferentially surrounds at least a portion of the first and second surfaces, a plate that extends radially within the shroud, a plurality of tubes that extend through the plate and the first and second surfaces, and a first purge port that extends through one or more of the plurality of tubes, wherein the purge port is axially aligned with the plate.

  3. Strain-induced vertical self-organization of semiconductor quantum dots: A computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtinkov, N., E-mail: nshtinkov@uottawa.ca

    Atomistic strain simulations based on the valence force field method are employed to study the vertical arrangements of semiconductor quantum dot (QD) multilayers. The effects of the QD shape, dimensions, and materials parameters are systematically investigated, varying independently the following parameters: spacer width H, QD lateral spacing D, base b, and height h, slope of the side facets, elastic properties of the dot and the substrate materials, and lattice mismatch between the dot and the substrate. The transition between vertically aligned and anti-aligned structures is found to be determined mainly by the ratios H/D and b/D, as well as bymore » the strain anisotropy of the substrate and to a lesser extent of the QD. The dependence on the QD height h is significant only for steep side facets and large aspect ratios h/b, and the effects of the lattice mismatch strain and the bulk elastic moduli are found to be negligible. The comparison with experimental data shows an excellent agreement with the results from the simulations, demonstrating that the presented analysis results in precise theoretical predictions for the vertical self-organization regime in a wide range of QD materials systems.« less

  4. Role of cerebellar nodulus and uvula on the vestibular quick phase spatial constancy.

    PubMed

    Pettorossi, V E; Grassi, S; Errico, P; Barmack, N H

    2001-01-01

    We investigated the orientation of quick phases (QPs) of vestibularly-induced eye movements in rabbits in response to "off-vertical" sinusoidal vestibular stimulation. We also examined the possible role of the cerebellar nodulus and ventral uvula in controlling QP spatial orientation and modification. During "off-vertical" vestibular stimulation QPs remained aligned with the earth's horizontal plane, while the slow phases (SPs) were aligned with the plane of vestibular stimulation. This suggests that QPs are coded in gravito-inertial coordinates and SPs in head coordinates. When rabbits were oscillated in the light (20 degrees peak-to-peak; 0.2 Hz) about an "off-vertical" axis for 2 h, the QPs changed their trajectory, abandoning the earth's horizontal plane to approach the plane of the stimulus. By contrast, in the absence of conjunctive optokinetic stimulation, QPs remained fixed in the earth's horizontal plane even after 2 h of "off-vertical" stimulation. The conjunctive combination of optokinetic and vestibular stimulation caused QPs to change their plane of rotation. After lesion of the nodulus-uvula the ability of rabbits to reorient QPs during conjoint vestibular-optokinetic stimulation was maintained. We conclude that the space orientation and adaptation of QPs do not require cerebellar control.

  5. FLUID MODERATED REACTOR

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1957-10-22

    A reactor which utilizes fissionable fuel elements in rod form immersed in a moderator or heavy water and a means of circulating the heavy water so that it may also function as a coolant to remove the heat generated by the fission of the fuel are described. In this design, the clad fuel elements are held in vertical tubes immersed in heavy water in a tank. The water is circulated in a closed system by entering near the tops of the tubes, passing downward through the tubes over the fuel elements and out into the tank, where it is drawn off at the bottom, passed through heat exchangers to give up its heat and then returned to the tops of the tubes for recirculation.

  6. STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR

    DOEpatents

    Busey, H.M.

    1958-06-01

    A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.

  7. Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula.

    PubMed

    Wearne, S; Raphan, T; Cohen, B

    1998-05-01

    Spatial orientation of the angular vestibuloocular reflex (aVOR) was studied in rhesus monkeys after complete and partial ablation of the nodulus and ventral uvula. Horizontal, vertical, and torsional components of slow phases of nystagmus were analyzed to determine the axes of eye rotation, the time constants (Tcs) of velocity storage, and its orientation vectors. The gravito-inertial acceleration vector (GIA) was tilted relative to the head during optokinetic afternystagmus (OKAN), centrifugation, and reorientation of the head during postrotatory nystagmus. When the GIA was tilted relative to the head in normal animals, horizontal Tcs decreased, vertical and/or roll time constants (Tc(vert/roll)) lengthened according to the orientation of the GIA, and vertical and/or roll eye velocity components appeared (cross-coupling). This shifted the axis of eye rotation toward alignment with the tilted GIA. Horizontal and vertical/roll Tcs varied inversely, with T(chor) being longest and T(cvert/roll) shortest when monkeys were upright, and the reverse when stimuli were around the vertical or roll axes. Vertical or roll Tcs were longest when the axes of eye rotation were aligned with the spatial vertical, respectively. After complete nodulo-uvulectomy, T(chor) became longer, and periodic alternating nystagmus (PAN) developed in darkness. T(chor) could not be shortened in any of paradigms tested. In addition, yaw-to-vertical/roll cross-coupling was lost, and the axes of eye rotation remained fixed during nystagmus, regardless of the tilt of the GIA with respect to the head. After central portions of the nodulus and uvula were ablated, leaving lateral portions of the nodulus intact, yaw-to-vertical/roll cross-coupling and control of Tc(vert/roll) was lost or greatly reduced. However, control of Tchor was maintained, and T(chor) continued to vary as a function of the tilted GIA. Despite this, the eye velocity vector remained aligned with the head during yaw axis stimulation after partial nodulo-uvulectomy, regardless of GIA orientation to the head. The data were related to a three-dimensional model of the aVOR, which simulated the experimental results. The model provides a basis for understanding how the nodulus and uvula control processing within the vestibular nuclei responsible for spatial orientation of the aVOR. We conclude that the three-dimensional dynamics of the velocity storage system are determined in the nodulus and ventral uvula. We propose that the horizontal and vertical/roll Tcs are separately controlled in the nodulus and uvula with the dynamic characteristics of vertical/roll components modulated in central portions and the horizontal components laterally, presumably in a semicircular canal-based coordinate frame.

  8. Desktop aligner for fabrication of multilayer microfluidic devices.

    PubMed

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  9. Desktop aligner for fabrication of multilayer microfluidic devices

    PubMed Central

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-01-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409

  10. Growing Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In situ transmission electron microscope (TEM) video (accelerated 10 times) of nucleation and self-organization of a high-density carbon nanotube network from catalytic iron nanoparticles, forming a vertically aligned forest.

  11. Explosion interaction with water in a tube

    NASA Astrophysics Data System (ADS)

    Homae, T.; Sugiyama, Y.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y.

    2017-02-01

    As proposed and legislated in Japan, subsurface magazines have an explosive storage chamber, a horizontal passageway, and a vertical shaft for a vent. The authors found that a small amount of water on the floor of the storage chamber mitigated blast pressure remarkably. The mitigation mechanism has been examined more closely. To examine the effect of water, the present study assesses explosions in a transparent, square cross section, and a straight tube. A high-speed camera used to observe the tube interior. Blast pressure in and around the tube was also measured. Images obtained using the high-speed camera revealed that water inside the tube did not move after the explosion. Differences between cases of tubes without water and with water were unclear. Along with blast pressure measurements, these study results suggest that blast pressure mitigation by water occurs because of interaction between the explosion and the water near the explosion point.

  12. Multiplexed Energy Coupler for Rotating Equipment

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang

    2011-01-01

    A multiplexing antenna assembly can efficiently couple AC signal/energy into, or out of, rotating equipment. The unit only passes AC energy while blocking DC energy. Concentric tubes that are sliced into multiple pieces are assembled together so that, when a piece from an outer tube aligns well with an inner tube piece, efficient energy coupling is achieved through a capacitive scheme. With N outer pieces and M inner pieces, an effective N x M combination can be achieved in a multiplexed manner. The energy coupler is non-contact, which is useful if isolation from rotating and stationary parts is required. Additionally, the innovation can operate in high temperatures. Applications include rotating structure sensing, non-contact energy transmission, etc.

  13. Studies on equatorial shock formation during plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1994-01-01

    Investigations based on small-scale simulations of microprocesses occurring when a magnetic flux tube refills with a cold plasma are summarized. Results of these investigations are reported in the following attached papers: (1) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: The Role of Ion Beam-Driven Instabilities'; and (2) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: Effects of Magnetically Trapped Hot Plasma'. Other papers included are: 'Interaction of Field-Aligned Cold Plasma Flows with an Equatorially-Trapped Hot Plasma: Electrostatic Shock Formation'; and 'Comparison of Hydrodynamic and Semikinetic Treatments for a Plasma Flow along Closed Field Lines'. A proposal for further research is included.

  14. Automatic box loader

    DOEpatents

    Eldridge, Harry H.; Jones, Robert A.; Lindner, Gordon M.; Hight, Paul H.

    1976-01-01

    This invention relates to a system for repetitively forming an assembly consisting of a single layer of tubes and a row of ferromagnetic armatures underlying the same, electromagnetically conveying the resulting assembly to a position overlying a storage box, and depositing the assembly in the box. The system includes means for simultaneously depositing a row of the armatures on the inclined surface of a tube retainer. Tubes then are rolled down the surface to form a single tube layer bridging the armatures. A magnet assembly carrying electromagnets respectively aligned with the armatures is advanced close to the tube layer, and in the course of this advance is angularly displaced to bring the pole pieces of the electromagnets into parallelism with the tube layer. The magnets then are energized to pick up the assembly. The loaded magnet assembly is retracted to a position overlying the box, and during this retraction is again displaced to bring the pole pieces of the electromagnets into a horizontal plane. Means are provided for inserting the loaded electromagnets in the box and then de-energizing the electromagnets to deposit the assembly therein. The system accomplishes the boxing of fragile tubes at relatively high rates. Because the tubes are boxed as separated uniform layers, subsequent unloading operations are facilitated.

  15. Morphological transformations of BNCO nanomaterials: Role of intermediates

    NASA Astrophysics Data System (ADS)

    Wang, B. B.; Qu, X. L.; Zhu, M. K.; Levchenko, I.; Baranov, O.; Zhong, X. X.; Xu, S.; Ostrikov, K.

    2018-06-01

    Highly controllable structural transformation of various doped carbon and boron nitride nanomaterials have been achieved with the perspective of their application in microelectronics, optoelectronics, energy devices and catalytic reactions. Specifically, the syntheses of one-dimensional (1D) boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets on silicon coated with gold films in N2-H2 plasma was demonstrated. During the synthesis of nanomaterials, boron carbide was used as carbon and boron sources. The results of characterizations by scanning and transmission electron microscopes, as well as micro-Raman and X-ray photoelectron spectroscopes indicate that the formation of different nanomaterials relates to the growth temperature and quantity of boron carbide. Specifically, 1D tube-like carbon nanorods doped with boron and nitrogen are formed at ∼910 °C using a small quantity of boron carbide, while 2D vertical boron nitride nanosheets doped with carbon and oxygen are grown at ∼870 °C using a large quantity of boron carbide. These studies indicate that the behaviors of a reactive intermediate product B2O3 on surfaces of Au nanoparticles play an important role in the formation of different nanomaterials, i.e., whether the B2O3 molecules deposited on Au nanoparticles are desorbed mainly determines the formation of different nanomaterials. The formation of 2D vertical carbon and oxygen co-doped boron nitride nanosheets is related to the high growth rate of edges of nanosheets. Furthermore, the photoluminescence (PL) properties of 1D boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets were studied at room temperature. The PL results show that all the nanomaterials generate the ultraviolet, blue, green and red PL bands, but the 2D vertical carbon and oxygen co-doped boron nitride nanosheets emit more and stronger PL bands than the 1D boron and nitrogen co-doped tube-like carbon nanorods. The significant differences in the PL properties can be attributed to different carbon structures in these nanomaterials. These achievements can be used to synthesize and control the structures of nanomaterials and contribute to the development of the next generation optoelectronic nanodevices based on 1D and 2D nanomaterials.

  16. Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays.

    PubMed

    Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D

    2014-11-12

    Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.

  17. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.

    PubMed

    Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams

    2012-03-21

    A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.

  18. Size-tunable band alignment and optoelectronic properties of transition metal dichalcogenide van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Yipeng; Yu, Wangbing; Ouyang, Gang

    2018-01-01

    2D transition metal dichalcogenide (TMDC)-based heterostructures exhibit several fascinating properties that can address the emerging market of energy conversion and storage devices. Current achievements show that the vertical stacked TMDC heterostructures can form type II band alignment and possess significant optoelectronic properties. However, a detailed analytical understanding of how to quantify the band alignment and band offset as well as the optimized power conversion efficiency (PCE) is still lacking. Herein, we propose an analytical model to exhibit the PCEs of TMDC van der Waals (vdW) heterostructures and explore the intrinsic mechanism of photovoltaic conversion based on the detailed balance principle and atomic-bond-relaxation correlation mechanism. We find that the PCE of monolayer MoS2/WSe2 can be up to 1.70%, and that of the MoS2/WSe2 vdW heterostructures increases with thickness, owing to increasing optical absorption. Moreover, the results are validated by comparing them with the available evidence, providing realistic efficiency targets and design principles. Highlights • Both electronic and optoelectronic models are developed for vertical stacked MoS2/WSe2 heterostructures. • The underlying mechanism on size effect of electronic and optoelectronic properties for vertical stacked MoS2/WSe2 heterostructures is clarified. • The macroscopically measurable quantities and the microscopical bond identities are connected.

  19. STEAM GENERATOR FOR GAS COOLED NUCLEAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-03-14

    A steam generator for a gas-cooled nuclear reactor is disposed inside the same pressure vessel as the reactor and has a tube system heated by the gas circulating through the reactor; the pressure vessel is double-walled, and the interspace between these two walls is filled with concrete serving as radiation shielding. The steam generator has a cylindricaIly shaped vertical casing, through which the heating gas circulates, while the tubes are arranged in a plurality of parallel horizontal planes and each of them have the shape of an involute of a circle. The tubes are uniformly distributed over the available surfacemore » in the plane, all the tubes of the same plane being connected in parallel. The exterior extremities of these involute-shaped tubes are each connected with similar tubes disposed in the adjacent lower situated plane, while the interior extremities are connected with tubes in the adjacent higher situated plane. The alimentation of the tubes is performed over annular headers. The tube system is self-supporting, the tubes being joined together by welded spacers. The fluid flow in the tubes is performed by forced circulation. (NPO)« less

  20. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  1. Two-phase damping and interface surface area in tubes with vertical internal flow

    NASA Astrophysics Data System (ADS)

    Béguin, C.; Anscutter, F.; Ross, A.; Pettigrew, M. J.; Mureithi, N. W.

    2009-01-01

    Two-phase flow is common in the nuclear industry. It is a potential source of vibration in piping systems. In this paper, two-phase damping in the bubbly flow regime is related to the interface surface area and, therefore, to flow configuration. Experiments were performed with a vertical tube clamped at both ends. First, gas bubbles of controlled geometry were simulated with glass spheres let to settle in stagnant water. Second, air was injected in stagnant alcohol to generate a uniform and measurable bubble flow. In both cases, the two-phase damping ratio is correlated to the number of bubbles (or spheres). Two-phase damping is directly related to the interface surface area, based on a spherical bubble model. Further experiments were carried out on tubes with internal two-phase air-water flows. A strong dependence of two-phase damping on flow parameters in the bubbly flow regime is observed. A series of photographs attests to the fact that two-phase damping in bubbly flow increases for a larger number of bubbles, and for smaller bubbles. It is highest immediately prior to the transition from bubbly flow to slug or churn flow regimes. Beyond the transition, damping decreases. It is also shown that two-phase damping increases with the tube diameter.

  2. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization.

    PubMed

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-12-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 (3-/4-) as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  3. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  4. Simulations to verify horizontal flow measurements from a borehole flowmeter.

    PubMed

    James, Scott C; Jepsen, Richard A; Beauheim, Richard L; Pedler, William H; Mandell, Wayne A

    2006-01-01

    This paper reports on experiments and simulations of subsurface flow from a slotted acrylic tube deployed in a sand-tank flow chamber for two different purposes. In the first instance, the slotted tube is used to represent a single fracture intersected by an uncased well. In the second instance, the slotted tube is used to represent a multislot well screen within a porous medium. In both cases, the scanning colloidal borescope flowmeter (SCBFM) measures ground water velocity within the well by imaging colloids traveling through a well to measure their speed and direction. Measurements are compared against model simulations. For the case of a slotted tube representing a single fracture, SCBFM and model results agree with respect to the flow direction and to within a factor of 1.5 for the speed near the well's center. Model and experimental agreement lend confidence that for an uncased well drilled in a fractured-rock medium, a calibrated SCBFM could be used to identify and quantify flowing features. Next, the SCBFM was deployed in a four-column multislotted casing with slots aligned with the flow direction. Another numerical model was developed to estimate the flow field within this well screen to evaluate the potential usefulness of employing the SCBFM in a screened well to estimate flow speed and direction in the surrounding porous medium. Results indicate that if the slots are not aligned with the flow, the SCBFM may only provide order-of-magnitude speed measurements and direction measurements with an uncertainty of approximately +/-25 degrees .

  5. Two regimes of flux scaling in axially homogeneous turbulent convection in vertical tube

    NASA Astrophysics Data System (ADS)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-08-01

    From experiments of axially homogeneous turbulent convection in a vertical tube using heat (Prandtl number Pr≃6 ) and brine (Pr≃600 ) we show that at sufficiently high Rayleigh numbers (Rag), the Nusselt number Nug˜(RagPr)1/2, which corresponds to the so-called ultimate regime scaling. In heat experiments below certain Rag,however,there is transition to a new regime, Nug˜(RagPr)0.3. This transition also seems to exist in earlier reported data for Pr=1 and Pr≃600 , at different Rag. However, the transition occurs at a single Grashof number, Grgc≃1.6 ×105 , and unified flux scalings for Pr≥1 , Nug/Pr˜Grg0.3, and Nug/Pr˜Grg1/2 can be given for the two regimes.

  6. Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes

    NASA Astrophysics Data System (ADS)

    Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath

    2014-07-01

    The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2-300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80-300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.

  7. Thermal Conductivity of Ethylene Vinyl Acetate Copolymer/Carbon Nanofiller Blends

    NASA Technical Reports Server (NTRS)

    Ghose, S.; Watson, K. A.; Working, D. C.; Connell, J. W.; Smith, J. G., Jr.; Lin, Y.; Sun, Y. P.

    2007-01-01

    To reduce weight and increase the mobility, comfort, and performance of future spacesuits, flexible, thermally conductive fabrics and plastic tubes are needed for the Liquid Cooling and Ventilation Garment. Such improvements would allow astronauts to operate more efficiently and safely for extended extravehicular activities. As an approach to raise the thermal conductivity (TC) of an ethylene vinyl acetate copolymer (Elvax 260), it was compounded with three types of carbon based nanofillers: multi-walled carbon nanotubes (MWCNTs), vapor grown carbon nanofibers (CNFs), and expanded graphite (EG). In addition, other nanofillers including metallized CNFs, nickel nanostrands, boron nitride, and powdered aluminum were also compounded with Elvax 260 in the melt at various loading levels. In an attempt to improve compatibility between Elvax 260 and the nanofillers, MWCNTs and EG were modified by surface coating and through noncovalent and covalent attachment of organic molecules containing alkyl groups. Ribbons of the nanocomposites were extruded to form samples in which the nanofillers were aligned in the direction of flow. Samples were also fabricated by compression molding to yield nanocomposites in which the nanofillers were randomly oriented. Mechanical properties of the aligned samples were determined by tensile testing while the degree of dispersion and alignment of nanoparticles were investigated using high-resolution scanning electron microscopy. TC measurements were performed using a laser flash (Nanoflash ) technique. TC of the samples was measured in the direction of, and perpendicular to, the alignment direction. Additionally, tubing was also extruded from select nanocomposite compositions and the TC and mechanical flexibility measured.

  8. Thermal Conductivity of Ethylene Vinyl Acetate Copolymer/Nanofiller Blends

    NASA Technical Reports Server (NTRS)

    Ghose, S.; Watson, K. A.; Working, D. C.; Connell, J. W.; Smith, J. G., Jr.; Lin, Y.; Sun, Y. P.

    2007-01-01

    To reduce weight and increase the mobility, comfort, and performance of future spacesuits, flexible, thermally conductive fabrics and plastic tubes are needed for the Liquid Cooling and Ventilation Garment. Such improvements would allow astronauts to operate more efficiently and safely for extended extravehicular activities. As an approach to raise the thermal conductivity (TC) of an ethylene vinyl acetate copolymer (Elvax 260), it was compounded with three types of carbon based nanofillers: multi-walled carbon nanotubes (MWCNTs), vapor grown carbon nanofibers (CNFs), and expanded graphite (EG). In addition, other nanofillers including metallized CNFs, nickel nanostrands, boron nitride, and powdered aluminum were also compounded with Elvax 260 in the melt at various loading levels. In an attempt to improve compatibility between Elvax 260 and the nanofillers, MWCNTs and EG were modified by surface coating and through noncovalent and covalent attachment of organic molecules containing alkyl groups. Ribbons of the nanocomposites were extruded to form samples in which the nanofillers were aligned in the direction of flow. Samples were also fabricated by compression molding to yield nanocomposites in which the nanofillers were randomly oriented. Mechanical properties of the aligned samples were determined by tensile testing while the degree of dispersion and alignment of nanoparticles were investigated using high-resolution scanning electron microscopy. TC measurements were performed using a laser flash (Nanoflash ) technique. TC of the samples was measured in the direction of, and perpendicular to, the alignment direction. Additionally, tubing was also extruded from select nanocomposite compositions and the TC and mechanical flexibility measured.

  9. Thermal Conductivity of Ethylene Vinyl Acetate Copolymer/Nanofiller Blends

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Connell, John W.; Smith, Joseph G., Jr.; Lin, Y.; Sun, Y. P.

    2007-01-01

    To reduce weight and increase the mobility, comfort, and performance of future spacesuits, flexible, thermally conductive fabrics and plastic tubes are needed for the Liquid Cooling and Ventilation Garment. Such improvements would allow astronauts to operate more efficiently and safely for extended extravehicular activities. As an approach to raise the thermal conductivity (TC) of an ethylene vinyl acetate copolymer (Elvax(TM)260), it was compounded with three types of carbon based nanofillers: multi-walled carbon nanotubes (MWCNTs), vapor grown carbon nanofibers (CNFs), and expanded graphite (EG). In addition, other nanofillers including metallized CNFs, nickel nanostrands, boron nitride, and powdered aluminum were also compounded with Elvax(TM) 260 in the melt at various loading levels. In an attempt to improve compatibility between Elvax 260 and the nanofillers, MWCNTs and EG were modified by surface coating and through noncovalent and covalent attachment of organic molecules containing alkyl groups. Ribbons of the nanocomposites were extruded to form samples in which the nanofillers were aligned in the direction of flow. Samples were also fabricated by compression molding to yield nanocomposites in which the nanofillers were randomly oriented. Mechanical properties of the aligned samples were determined by tensile testing while the degree of dispersion and alignment of nanoparticles were investigated using high-resolution scanning electron microscopy. TC measurements were performed using a laser flash (Nanoflash(TM)) technique. TC of the samples was measured in the direction of, and perpendicular to, the alignment direction. Additionally, tubing was also extruded from select nanocomposite compositions and the TC and mechanical flexibility measured.

  10. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  11. ANSYS Fluent Modelling of an Underexpanded Supersonic Sootblower Jet Impinging into Recovery Boiler Tube Geometries

    NASA Astrophysics Data System (ADS)

    Doroudi, Shahed

    Sootblowers generate high pressure supersonic steam jets to control fireside deposition on heat transfer tubes of a kraft recovery boiler. Sootblowing is energy expensive, using 3-12% of the mill's total steam production. This motivates research on the dynamics of sootblower jet interaction with tubes and deposits, to optimize their use. A CFD investigation was performed using ANSYS Fluent 15.0 to model three-dimensional steady-state impingement of a Mach 2.5 mildly underexpanded (PR 1.2) air jet onto arrays of cylindrical tubes with and without fins, at various nozzle-to-tube centerline offsets. A free jet and four impingement cases for each of the economizer and generating bank geometries are compared to experimental visualizations. Pressure distributions on impinging surfaces suggest that the fins in the economizer produce a reduced but uniform sootblowing force. Pressure contours along the tubes (in the vertical direction) show a sharp decline one tube diameter away from the jet mid-plane.

  12. Electric analog studies of flow to wells in the Punjab aquifer of West Pakistan

    USGS Publications Warehouse

    Mundorff, Maurice John; Bennett, G.D.; Ahmad, Masood

    1972-01-01

    A series of experiments was performed with a steady-state electric analog simulating a cylindrical segment of the aquifer underlying the plains of the Punjab region of West Pakistan. In most of the experiments recharge was assumed to be from the surface, within a specified radius of influence, and distributed uniformly over the area within this radius. Experiments were made with different anisotropies (ratios of lateral to vertical resistance) so that various possible combinations of aquifer thickness and effective radius or radius of influence and combinations .of lateral and vertical permeability could be included in the models. Flow nets were constructed to show distribution of potential in the vertical section and intersections of stream surfaces with the vertical plane. The series of experiments in which the screened interval is in the upper part of the aquifer shows that flow decreases and stream tubes shift progressively toward the upper part of the aquifer as anisotropy increases. Another series illustrates that total yield increases and yield per foot of screen decreases as screen length increases. The experiments indicate that, under conditions prevalent in the Punjab, the Distance-drawdown method for determining permeability gives results with an error of 10 percent or less provided that at least one piezometer or observation well is within a few feet of the pumped well and that no observation well or piezometer used is more than 100 feet from the pumped well. Relative traveltime for each of 10 stream tubes is given for three models. Relative traveltimes for one-fourth and one-half the effective radius are given for selected stream tubes. By substituting values for the aquifer parameters, actual traveltimes are computed from the relative-traveltime data.

  13. Vertical Alignment of Single-Walled Carbon Nanotubes on Nanostructure Fabricated by Atomic Force Microscope

    DTIC Science & Technology

    2007-03-30

    Langmuir - Blodgett and self-assembly methods, WNTs are patterned selectively onto various substrates [3,4]. hou et al. assembled SWNTs into aligned...dispersion usually decreases with increasing ionic concentration, it is suggested that chloride ions are produced by dissociating from acid chloride groups...patterns can be attributed to the Marangoni effect and diffusion-limited aggregation (DLA) in the liquid film during droplet evaporation t different

  14. Multilevel, Multicomponent Microarchitectures of Vertically-Aligned Carbon Nanotubes for Diverse Applications

    DTIC Science & Technology

    2011-01-31

    Oxide from Synthesis to Proper- ties and to Novel Devices. J. Mater. Chem. 2007, 17, 711– 720. 29. Wang, Z. L. The New Field of Nanopiezotronics...regard, wehave reportedpreviously thepreparation of multicomponent micropatterns of VA- MWNTs interposed with nanoparticles ,17 nonaligned CNTs,18 or VA...aligned arrays on growth substrates, which enabled us to fabricate the CNT nanoelectrode *Address correspondence to lqu@bit.edu.cn, liming.dai

  15. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Won, Yoonjin; Gao, Yuan; Guzman de Villoria, Roberto; Wardle, Brian L.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Goodson, Kenneth E.

    2015-11-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications.

  16. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes.

    PubMed

    Einarsson, Erik; Kadowaki, Masayuki; Ogura, Kazuaki; Okawa, Jun; Xiang, Rong; Zhang, Zhengyi; Yamamoto, Takahisa; Ikuhara, Yuichi; Maruyama, Shigeo

    2008-11-01

    An in situ optical absorbance technique was used to monitor the growth of vertically aligned single-walled carbon nanotubes (VA-SWNTs) at various temperatures and pressures. The effects of the growth temperature and ethanol pressure on the initial growth rate and catalyst lifetime were investigated. It was found that the ideal pressure for VA-SWNT synthesis changes with the growth temperature, shifting toward higher pressure as the growth temperature increases. It was also found that the growth reaction is first-order below this ideal pressure. Additionally, the internal structure of the VA-SWNT film was observed at different depths into the film by transmission electron microscopy. The absence of large bundles was confirmed, and little change in the structure was observed to a depth of approximately 1 microm.

  17. Large-scale synthesis of arrays of high-aspect-ratio rigid vertically aligned carbon nanofibres

    NASA Astrophysics Data System (ADS)

    Melechko, A. V.; McKnight, T. E.; Hensley, D. K.; Guillorn, M. A.; Borisevich, A. Y.; Merkulov, V. I.; Lowndes, D. H.; Simpson, M. L.

    2003-09-01

    We report on techniques for catalytic synthesis of rigid, high-aspect-ratio, vertically aligned carbon nanofibres by dc plasma enhanced chemical vapour deposition that are tailored for applications that require arrays of individual fibres that feature long fibre lengths (up to 20 µm) such as scanning probe microscopy, penetrant cell and tissue probing arrays and mechanical insertion approaches for gene delivery to cell cultures. We demonstrate that the definition of catalyst nanoparticles is the critical step that enables growth of individual, long-length fibres and discuss methods for catalyst particle preparation that allow the growth of individual isolated nanofibres from catalyst dots with diameters as large as 500 nm. This development enables photolithographic definition of catalyst and therefore the inexpensive, large-scale production of such arrays.

  18. A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers.

    PubMed

    Al Mamun, Khandaker A; Islam, Syed K; Hensley, Dale K; McFarlane, Nicole

    2016-08-01

    This paper reports a linear, low power, and compact CMOS based potentiostat for vertically aligned carbon nanofibers (VACNF) based amperometric glucose sensors. The CMOS based potentiostat consists of a single-ended potential control unit, a low noise common gate difference-differential pair transimpedance amplifier and a low power VCO. The potentiostat current measuring unit can detect electrochemical current ranging from 500 nA to 7 [Formula: see text] from the VACNF working electrodes with high degree of linearity. This current corresponds to a range of glucose, which depends on the fiber forest density. The potentiostat consumes 71.7 [Formula: see text] of power from a 1.8 V supply and occupies 0.017 [Formula: see text] of chip area realized in a 0.18 [Formula: see text] standard CMOS process.

  19. Fluid leakage through fractures in an impervious caprock embedded between two geologic aquifers

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P. S.

    2012-06-01

    The paper develops an analytical result for the flow through a single fracture under a hydraulic gradient between the two aquifer regions and takes into account permeability characteristics of all components of the system. Non-dimensional results are presented to illustrate the influence of the permeability mis-match between the two geologic formations and the permeability and geometry of the fracture on the flow rate through the fracture. The analytical result is then used to develop additional results for leakage through a swarm of vertically aligned hydraulically non-interacting fractures and a damaged region containing a densely spaced array of vertically aligned fractures and worm hole type features in the caprock. The work presents a convenient result for the estimation of leakage from storage formations in geoenvironmental applications.

  20. Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance

    PubMed Central

    2012-01-01

    In this work, we report a direct synthesis of vertically aligned ZnO nanowires on fluorine-doped tin oxide-coated substrates using the chemical vapor deposition (CVD) method. ZnO nanowires with a length of more than 30 μm were synthesized, and dye-sensitized solar cells (DSSCs) based on the as-grown nanowires were fabricated, which showed improvement of the device performance compared to those fabricated using transferred ZnO nanowires. Dependence of the cell performance on nanowire length and annealing temperature was also examined. This synthesis method provided a straightforward, one-step CVD process to grow relatively long ZnO nanowires and avoided subsequent nanowire transfer process, which simplified DSSC fabrication and improved cell performance. PMID:22673046

  1. Pattern formation of frictional fingers in a gravitational potential

    NASA Astrophysics Data System (ADS)

    Eriksen, Jon Alm; Toussaint, Renaud; Mâløy, Knut Jørgen; Flekkøy, Eirik; Galland, Olivier; Sandnes, Bjørnar

    2018-01-01

    Aligned finger structures, with a characteristic width, emerge during the slow drainage of a liquid-granular mixture in a tilted Hele-Shaw cell. A transition from vertical to horizontal alignment of the finger structures is observed as the tilting angle and the granular density are varied. An analytical model is presented, demonstrating that the alignment properties are the result of the competition between fluctuating granular stresses and the hydrostatic pressure. The dynamics is reproduced in simulations. We also show how the system explains patterns observed in nature, created during the early stages of a dike formation.

  2. Hydrological and dynamical characterization of Meddies in the Azores region: A paradigm for baroclinic vortex dynamics

    NASA Astrophysics Data System (ADS)

    Tychensky, A.; Carton, X.

    1998-10-01

    The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) oceanographic experiment surveyed a 500 × 500 km2 domain south of the Azores from June to November 1993 and collected hydrological data, float trajectories, and current meter recordings. This data exhibited three intrathermocline eddies of Mediterranean water (Meddies), two of them being repeatedly sampled. Their hydrological and dynamical properties are quantified here by an isopycnic analysis. For the three Meddies, intense temperature and salinity anomalies (up to 4°C and 1.1 practical salinity units (psu)) are observed extending vertically over up to 1000 m and centered around 1000 m. Horizontally, these anomalies spread out to radii of 50-60 km, while the maximum azimuthal velocities (30 cm s-1, as computed by geostrophy) lie only at 35-40 km from the central axis. These Meddies followed curved trajectories, with drift velocities up to 7.5 cm s-1, under the influence of the neighboring mesoscale features (cyclonic vortices or Azores Current meanders). The three-dimensional structure of potential vorticity in and around these features evidences their complex interactions. Northwest of the domain, a Meddy was coupled to a subsurface anticyclone, forming an "aligned" vortex. It later interacted with the Azores Current, creating a large-amplitude northward meander by vertical alignment of vorticity. In the southeastern part of the domain, another Meddy was vertically aligned with an anticyclonic meander of the Azores Current and horizontally coupled with a cyclone of large vertical extent. These two features, as well as a small warm and salty fragment in their vicinity, seem to result from the southward crossing of the Meddy under the Azores Current. These observations illustrate previous theoretical studies of baroclinic vortex dynamics.

  3. High power linear pulsed beam annealer. [Patent application

    DOEpatents

    Strathman, M.D.; Sadana, D.K.; True, R.B.

    1980-11-26

    A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.

  4. Fabrication of highly ordered 2D metallic arrays with disc-in-hole binary nanostructures via a newly developed nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Guo, Wei; Wang, Xixi; Liao, Mingdun; Gao, Pingqi; Ye, Jichun

    2017-11-01

    2D metallic arrays with binary nanostructures derived from a nanosphere lithography (NSL) method have been rarely reported. Here, we demonstrate a novel NSL strategy to fabricate highly ordered 2D gold arrays with disc-in-hole binary (DIHB) nanostructures in large scale by employing a sacrificing layer combined with a three-step lift-off process. The structural parameters of the resultant DIHB arrays, such as periodicity, hole diameter, disc diameter and thicknesses can be facilely controlled by tuning the nanospheres size, etching condition, deposition angle and duration, respectively. Due to the intimate interactions between two subcomponents, the DIHB arrays exhibit both an extraordinary high surface-enhanced Raman scattering enhancement factor up to 5 × 108 and a low sheet resistance down to 1.7 Ω/sq. Moreover, the DIHB array can also be used as a metal catalyzed chemical etching catalytic pattern to create vertically-aligned Si nano-tube arrays for anti-reflectance application. This strategy provides a universal route for synthesizing other diverse binary nanostructures with controlled morphology, and thus expands the applications of the NSL to prepare ordered nanostructures with multi-function.

  5. Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material.

    PubMed

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs.

  6. Fast Synthesis of Multilayer Carbon Nanotubes from Camphor Oil as an Energy Storage Material

    PubMed Central

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs. PMID:25258714

  7. Reliability of horizontal and vertical tube shift techniques in the localisation of supernumerary teeth.

    PubMed

    Mallineni, S K; Anthonappa, R P; King, N M

    2016-12-01

    To assess the reliability of the vertical tube shift technique (VTST) and horizontal tube shift technique (HTST) for the localisation of unerupted supernumerary teeth (ST) in the anterior region of the maxilla. A convenience sample of 83 patients who attended a major teaching hospital because of unerupted ST was selected. Only non-syndromic patients with ST and who had complete clinical and radiographic and surgical records were included in the study. Ten examiners independently rated the paired set of radiographs for each technique. Chi-square test, paired t test and kappa statistics were employed to assess the intra- and inter-examiner reliability. Paired sets of 1660 radiographs (830 pairs for each technique) were available for the analysis. The overall sensitivity for VTST and HTST was 80.6 and 72.1% respectively, with slight inter-examiner and good intra-examiner reliability. Statistically significant differences were evident between the two localisation techniques (p < 0.05). Localisation of unerupted ST using VTST was more successful than HTST in the anterior region of the maxilla.

  8. Haptic subjective vertical shows context dependence: task and vision play a role during dynamic tilt stimulation.

    PubMed

    Wright, William Geoffrey; Glasauer, Stefan

    2003-10-01

    Perceiving one's vertical is an integral part of efficiently functioning in an environment physically polarized along that dimension. How one determines the direction of gravity is not a task left only to inertial sensors, such as the vestibular organs, rather as numerous studies have shown, this task is influenced visually and somatosensorily. In addition, there is evidence that higher order cognitive effects such as expectancies and context are critical in perception of the vertical. One's ability to integrate these various inputs during normal activity is not generally questioned, one's doubts being satisfied by observing a waiter navigating a crowded restaurant with a tray balanced on one hand, neither tripping or dropping an entree. But how these various sources are integrated is still debated. Most research focuses on subjective vertical perception used visual matching/alignment tasks, verbal reports, or saccadic eye movements as a dependent measure. Although a motor task involving a joystick or indicator to be aligned with gravity without visual feedback is used much less frequently, there is good evidence that individuals easily orient limbs to an external gravity-aligned coordinate axis while being statically tilted. By exposure to a dynamic situation, the central nervous system should be no more challenged by the task of determining the subjective vertical than during static conditions, because our spatial orientation systems were likely selected for just that. In addition, the sensitive calibration between visual and other sensory input also must have been key to its selection. This sensory interaction can be tested by changing the relation between the various sources. With the advent of virtual reality technology, a complex and "natural" visual stimulus is achievable and is easily manipulable. How one tests perception of verticality is also a pertinent question when researching spatial orientation systems. The system's performance may be better indicated by a task of higher relevance to its normal function. In other words, the dependent measure can be made more or less relevant to real-world tasks. With an experimental design that attempts to mimic natural conditions, the current study focuses on two main topics. First, how does manipulation of the visual inputs during passive roll-tilt affect one's sense of body orientation? And second, how does changing the task used to measure subjective vertical affect one's performance?

  9. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown, lithographically fabricated ap - proaches to form cantilever or bridgetype structures. Top-down approaches, however, rely on complicated and expensive e-beam lithography, and often require a release mechanism. Reso - nance effects in structures synthesized using bottom-up approaches have also recently been reported based on carbon nanotubes, but such approaches have relied on a planar two-dimensional (2D) geometry. In this innovation, vertically aligned tubes synthesized using a bottom- up approach have been considered, where the vertical orientation of the tubes has the potential to increase integration density even further. The simulation of a vertically oriented, cantilevered carbon nanotube was performed using COMSOL Multi - physics, a finite element simulation package. All simulations were performed in a 2D geometry that provided consistent results and minimized computational complexity. The simulations assumed a vertically oriented, cantilevered nanotube of uniform density (1.5 g/cu cm). An elastic modulus was assumed to be 600 GPa, relative permittivity of the nanotube was assumed to be 5.0, and Poisson s ratio was assumed to be 0.2. It should be noted that the relative permittivity and Poisson s ratio for the nanotubes of interest are not known accurately. However, as in previous simulations, the relative permittivity and Poisson s ratios were treated as weak variables in the simulation, and no significant changes were recognized when these variables were varied.

  10. Clip gage attachment for frictionless measurement of displacement during high-temperature mechanical testing

    DOEpatents

    Alexander, David J.

    1994-01-01

    An attachment for placement between a test specimen and a remote clip gage extensometer providing improved fracture toughness tests of materials at elevated temperature. Using a cylindrical tube and axial rod in new relationship, the device transfers the displacement signal of the fracture toughness test specimen directly to a clip gage extensometer located outside the high temperature furnace. Virtually frictionless operation is assured by having the test specimen center one end of the rod in one end of the tube, while the clip gage extensometer arms center the other end of the rod in the other end of the tube. By providing positive control over both ends of both rod and tube, the attachment may be operated in orientations other than vertical.

  11. Volumetric dispenser for small particles from plural sources

    DOEpatents

    Bradley, R.A.; Miller, W.H.; Sease, J.D.

    1975-12-16

    Apparatus is described for rapidly and accurately dispensing measured volumes of small particles from a supply hopper. The apparatus includes an adjustable, vertically oriented measuring tube and orifice member defining the volume to be dispensed, a ball plug valve for selectively closing the bottom end of the orifice member, and a compression valve for selectively closing the top end of the measuring tube. A supply hopper is disposed above and in gravity flow communication with the measuring tube. Properly sequenced opening and closing of the two valves provides accurate volumetric discharge through the ball plug valve. A dispensing system is described wherein several appropriately sized measuring tubes, orifice members, and associated valves are arranged to operate contemporaneously to facilitate blending of different particles.

  12. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Dickson, J.J.

    1963-09-24

    A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

  13. Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: Effects of carbon sources on morphology of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Kiyofumi; Kuwano, Jun

    2017-06-01

    This paper describes a unique and innovative synthesis technique for carbon nanotubes (CNTs) by a one-step liquid-phase process under ambient pressure. Vertically aligned multi-walled CNT arrays with a maximum height of 100 µm are prepared on stainless steel substrates, which are submerged and electrically heated in straight-chain primary alcohols with n C = 1-4 (n C: number of C atoms in the molecule) containing an appropriate amount of cobalt-based organometallic complex as a catalyst precursor. Structural isomers of butanol were also used for the synthesis to examine the effects of structural factors on the morphology of the deposited products. Notably, 2-methyl-2-propanol, which is a tertiary alcohol, produced only a small amount of low-crystallinity carbonaceous deposits, whereas vertically aligned CNTs were grown from the other isomers of butanol. These results suggest that the presence or absence of β-hydrogen in the molecular structure is a key factor for understanding the dissociation behavior of the carbon source molecules on the catalyst.

  14. Laser-driven coating of vertically aligned carbon nanotubes with manganese oxide from metal organic precursors for energy storage.

    PubMed

    Pérez Del Pino, A; György, E; Alshaikh, I; Pantoja-Suárez, F; Andújar, J L; Pascual, E; Amade, R; Bertran-Serra, E

    2017-09-29

    Carbon nanotubes-transition metal oxide systems are intensively studied due to their excellent properties for electrochemical applications. In this work, an innovative procedure is developed for the synthesis of vertically aligned multi-walled carbon nanotubes (VACNTs) coated with transition metal oxide nanostructures. VACNTs are grown by plasma enhanced chemical vapor deposition and coated with a manganese-based metal organic precursor (MOP) film based on manganese acetate solution. Subsequent UV pulsed laser irradiation induces the effective heating-decomposition of the MOP leading to the crystallization of manganese oxide nanostructures on the VACNT surface. The study of the morphology, structure and composition of the synthesized materials shows the formation of randomly oriented MnO 2 crystals, with few nanometers in size, and to their alignment in hundreds of nm long filament-like structures, parallel to the CNT's long axis. Electrochemical measurements reveal a significant increase of the specific capacitance of the MnO 2 -VACNT system (100 F g -1 ) as compared to the initial VACNT one (21 F g -1 ).

  15. Mass Transport Through Carbon Nanotube-Polystyrene Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Rongzhou; Tran, Tuan

    2016-05-01

    Carbon nanotubes have been widely used as test channels to study nanofluidic transport, which has been found to have distinctive properties compared to transport of fluids in macroscopic channels. A long-standing challenge in the study of mass transport through carbon nanotubes (CNTs) is the determination of flow enhancement. Various experimental investigations have been conducted to measure the flow rate through CNTs, mainly based on either vertically aligned CNT membranes or individual CNTs. Here, we proposed an alternative approach that can be used to quantify the mass transport through CNTs. This is a simple method relying on the use of carbon nanotube-polystyrene bundles, which are made of CNTs pulled out from a vertically aligned CNT array and glued together by polystyrene. We experimentally showed by using fluorescent tagging that the composite bundles allowed measureable and selective mass transport through CNTs. This type of composite bundle may be useful in various CNT research areas as they are simple to fabricate, less likely to form macroscopic cracks, and offer a high density of CNT pores while maintaining the aligned morphology of CNTs.

  16. Laser-driven coating of vertically aligned carbon nanotubes with manganese oxide from metal organic precursors for energy storage

    NASA Astrophysics Data System (ADS)

    Pérez del Pino, A.; György, E.; Alshaikh, I.; Pantoja-Suárez, F.; Andújar, J. L.; Pascual, E.; Amade, R.; Bertran-Serra, E.

    2017-09-01

    Carbon nanotubes-transition metal oxide systems are intensively studied due to their excellent properties for electrochemical applications. In this work, an innovative procedure is developed for the synthesis of vertically aligned multi-walled carbon nanotubes (VACNTs) coated with transition metal oxide nanostructures. VACNTs are grown by plasma enhanced chemical vapor deposition and coated with a manganese-based metal organic precursor (MOP) film based on manganese acetate solution. Subsequent UV pulsed laser irradiation induces the effective heating-decomposition of the MOP leading to the crystallization of manganese oxide nanostructures on the VACNT surface. The study of the morphology, structure and composition of the synthesized materials shows the formation of randomly oriented MnO2 crystals, with few nanometers in size, and to their alignment in hundreds of nm long filament-like structures, parallel to the CNT’s long axis. Electrochemical measurements reveal a significant increase of the specific capacitance of the MnO2-VACNT system (100 F g-1) as compared to the initial VACNT one (21 F g-1).

  17. Shear induced alignment of short nanofibers in 3D printed polymer composites.

    PubMed

    Yunus, Doruk Erdem; Shi, Wentao; Sohrabi, Salman; Liu, Yaling

    2016-12-09

    3D printing of composite materials offers an opportunity to combine the desired properties of composite materials with the flexibility of additive manufacturing in geometric shape and complexity. In this paper, the shear-induced alignment of aluminum oxide nanowires during stereolithography printing was utilized to fabricate a nanowire reinforced polymer composite. To align the fibers, a lateral oscillation mechanism was implemented and combined with wall pattern printing technique to generate shear flow in both vertical and horizontal directions. A series of specimens were fabricated for testing the composite material's tensile strength. The results showed that mechanical properties of the composite were improved by reinforcement of nanofibers through shear induced alignment. The improvement of tensile strength was approximately ∼28% by aligning the nanowires at 5 wt% (∼1.5% volume fraction) loading of aluminum oxide nanowires.

  18. The Shank-to-Vertical-Angle as a parameter to evaluate tuning of Ankle-Foot Orthoses.

    PubMed

    Kerkum, Yvette L; Houdijk, Han; Brehm, Merel-Anne; Buizer, Annemieke I; Kessels, Manon L C; Sterk, Arjan; van den Noort, Josien C; Harlaar, Jaap

    2015-09-01

    The effectiveness of an Ankle-Foot Orthosis footwear combination (AFO-FC) may be partly dependent on the alignment of the ground reaction force with respect to lower limb joint rotation centers, reflected by joint angles and moments. Adjusting (i.e. tuning) the AFO-FC's properties could affect this alignment, which may be guided by monitoring the Shank-to-Vertical-Angle. This study aimed to investigate whether the Shank-to-Vertical-Angle during walking responds to variations in heel height and footplate stiffness, and if this would reflect changes in joint angles and net moments in healthy adults. Ten subjects walked on an instrumented treadmill and performed six trials while walking with bilateral rigid Ankle-Foot Orthoses. The AFO-FC heel height was increased, aiming to impose a Shank-to-Vertical-Angle of 5°, 11° and 20°, and combined with a flexible or stiff footplate. For each trial, the Shank-to-Vertical-Angle, joint flexion-extension angles and net joint moments of the right leg at midstance were averaged over 25 gait cycles. The Shank-to-Vertical-Angle significantly increased with increasing heel height (p<0.001), resulting in an increase in knee flexion angle and internal knee extensor moment (p<0.001). The stiff footplate reduced the effect of heel height on the internal knee extensor moment (p=0.030), while the internal ankle plantar flexion moment increased (p=0.035). Effects of heel height and footplate stiffness on the hip joint were limited. Our results support the potential to use the Shank-to-Vertical-Angle as a parameter to evaluate AFO-FC tuning, as it is responsive to changes in heel height and reflects concomitant changes in the lower limb angles and moments. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Gas slug ascent through changes in conduit diameter: Laboratory insights into a volcano-seismic source process in low-viscosity magmas

    USGS Publications Warehouse

    James, M.R.; Lane, S.J.; Chouet, B.A.

    2006-01-01

    Seismic signals generated during the flow and degassing of low-viscosity magmas include long-period (LP) and very-long-period (VLP) events, whose sources are often attributed to dynamic fluid processes within the conduit. We present the results of laboratory experiments designed to investigate whether the passage of a gas slug through regions of changing conduit diameter could act as a suitable source mechanism. A vertical, liquid-filled glass tube featuring a concentric diameter change was used to provide canonical insights into potentially deep or shallow seismic sources. As gas slugs ascend the tube, we observe systematic pressure changes varying with slug size, liquid depth, tube diameter, and liquid viscosity. Gas slugs undergoing an abrupt flow pattern change upon entering a section of significantly increased tube diameter induce a transient pressure decrease in and above the flare and an associated pressure increase below it, which stimulates acoustic and inertial resonant oscillations. When the liquid flow is not dominantly controlled by viscosity, net vertical forces on the apparatus are also detected. The net force is a function of the magnitude of the pressure transients generated and the tube geometry, which dictates where, and hence when, the traveling pressure pulses can couple into the tube. In contrast to interpretations of related volcano-seismic data, where a single downward force is assumed to result from an upward acceleration of the center of mass in the conduit, our experiments suggest that significant downward forces can result from the rapid deceleration of relatively small volumes of downward-moving liquid. Copyright 2006 by the American Geophysical Union.

  20. Optical alignment using a CGH and an autostigmatic microscope

    NASA Astrophysics Data System (ADS)

    Parks, Robert E.

    2017-08-01

    We show how custom computer generated holograms (CGH) are used along with an autostigmatic microscope (ASM) to align both optical and mechanical components relative to the CGH. The patterns in the CGHs define points and lines in space when interrogated with the focus of the ASM. Once the ASM is aligned to the CGH, an optical or mechanical component such as a lens, a well-polished ball or a cylinder can be aligned to the ASM in 3 or 4 degrees of freedom and thus to the CGH. In this case we show how a CGH is used to make a fixture for cementing a doublet lens without the need for a rotary table or a precision vertical stage.

  1. A method to align a bent crystal for channeling experiments by using quasichanneling oscillations

    NASA Astrophysics Data System (ADS)

    Sytov, A. I.; Guidi, V.; Tikhomirov, V. V.; Bandiera, L.; Bagli, E.; Germogli, G.; Mazzolari, A.; Romagnoni, M.

    2018-04-01

    A method to calculate both the bent crystal angle of alignment and radius of curvature by using only one distribution of deflection angles has been developed. The method is based on measuring of the angular position of recently predicted and observed quasichanneling oscillations in the deflection angle distribution and consequent fitting of both the radius and angular alignment by analytic formulae. In this paper this method is applied on the example of simulated angular distributions over a wide range of values of both radius and alignment for electrons. It is carried out through the example of (111) nonequidistant planes though this technique is general and could be applied to any kind of planes. In addition, the method application constraints are also discussed. It is shown by simulations that this method, being in fact a sort of beam diagnostics, allows one in a certain case to increase the crystal alignment accuracy as well as to control precisely the radius of curvature inside an accelerator tube without vacuum breaking. In addition, it speeds up the procedure of crystal alignment in channeling experiments, reducing beamtime consuming.

  2. A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction

    NASA Astrophysics Data System (ADS)

    Belu, Radian

    2010-11-01

    In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.

  3. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes

    DOE PAGES

    Xia, Yu; Mathis, Tyler S.; Zhao, Meng -Qiang; ...

    2018-05-16

    The scalable and sustainable manufacture of thick electrode films with high energy and power densities is critical for the large-scale storage of electrochemical energy for application in transportation and stationary electric grids. Two-dimensional nanomaterials have become the predominant choice of electrode material in the pursuit of high energy and power densities owing to their large surface-area-to-volume ratios and lack of solid-state diffusion. However, traditional electrode fabrication methods often lead to restacking of two-dimensional nanomaterials, which limits ion transport in thick films and results in systems in which the electrochemical performance is highly dependent on the thickness of the film. Strategiesmore » for facilitating ion transport—such as increasing the interlayer spacing by intercalation or introducing film porosity by designing nanoarchitectures—result in materials with low volumetric energy storage as well as complex and lengthy ion transport paths that impede performance at high charge–discharge rates. Vertical alignment of two-dimensional flakes enables directional ion transport that can lead to thickness-independent electrochemical performances in thick films. However, so far only limited success has been reported, and the mitigation of performance losses remains a major challenge when working with films of two-dimensional nanomaterials with thicknesses that are near to or exceed the industrial standard of 100 micrometres. Here we demonstrate electrochemical energy storage that is independent of film thickness for vertically aligned two-dimensional titanium carbide (Ti 3C 2T x), a material from the MXene family (two-dimensional carbides and nitrides of transition metals (M), where X stands for carbon or nitrogen). The vertical alignment was achieved by mechanical shearing of a discotic lamellar liquid-crystal phase of Ti 3C 2T x. The resulting electrode films show excellent performance that is nearly independent of film thickness up to 200 micrometres, which makes them highly attractive for energy storage applications. In conclusion, the self-assembly approach presented here is scalable and can be extended to other systems that involve directional transport, such as catalysis and filtration.« less

  4. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yu; Mathis, Tyler S.; Zhao, Meng -Qiang

    The scalable and sustainable manufacture of thick electrode films with high energy and power densities is critical for the large-scale storage of electrochemical energy for application in transportation and stationary electric grids. Two-dimensional nanomaterials have become the predominant choice of electrode material in the pursuit of high energy and power densities owing to their large surface-area-to-volume ratios and lack of solid-state diffusion. However, traditional electrode fabrication methods often lead to restacking of two-dimensional nanomaterials, which limits ion transport in thick films and results in systems in which the electrochemical performance is highly dependent on the thickness of the film. Strategiesmore » for facilitating ion transport—such as increasing the interlayer spacing by intercalation or introducing film porosity by designing nanoarchitectures—result in materials with low volumetric energy storage as well as complex and lengthy ion transport paths that impede performance at high charge–discharge rates. Vertical alignment of two-dimensional flakes enables directional ion transport that can lead to thickness-independent electrochemical performances in thick films. However, so far only limited success has been reported, and the mitigation of performance losses remains a major challenge when working with films of two-dimensional nanomaterials with thicknesses that are near to or exceed the industrial standard of 100 micrometres. Here we demonstrate electrochemical energy storage that is independent of film thickness for vertically aligned two-dimensional titanium carbide (Ti 3C 2T x), a material from the MXene family (two-dimensional carbides and nitrides of transition metals (M), where X stands for carbon or nitrogen). The vertical alignment was achieved by mechanical shearing of a discotic lamellar liquid-crystal phase of Ti 3C 2T x. The resulting electrode films show excellent performance that is nearly independent of film thickness up to 200 micrometres, which makes them highly attractive for energy storage applications. In conclusion, the self-assembly approach presented here is scalable and can be extended to other systems that involve directional transport, such as catalysis and filtration.« less

  5. Fabrication of high gradient insulators by stack compression

    DOEpatents

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  6. Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays

    PubMed Central

    2011-01-01

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices. PMID:27502660

  7. Fiber optics welder

    DOEpatents

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  8. Vertically Aligned Carbon Nanotube Electrodes for Lithium-Ion Batteries

    DTIC Science & Technology

    2011-01-01

    wpafb.af.mil (M.F. Durstock). [11] nanowires, and iron oxide/copper [12] and tin/copper [13] nanorods. Carbon nanotubes ( CNTs ) have also been examined as...negative electrodes [14–17]. Although CNTs and other nega- tive electrode nanomaterials have been shown to exhibit similar or greater capacities...rate capability [18]. Studies suggest that aligned CNTs could allow for better contact with the current collector and increased ion diffu- sivity to

  9. Correction coil cable

    DOEpatents

    Wang, Sou-Tien

    1994-11-01

    A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).

  10. Fabrication and gas sensing properties of vertically aligned Si nanowires

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Kang, Sung Yong; Choi, Sun-Woo; Kwon, Yong Jung; Choi, Myung Sik; Bang, Jae Hoon; Kim, Sang Sub; Kim, Hyoun Woo

    2018-01-01

    In this study, a peculiar configuration for a gas sensor consisting of vertically aligned silicon nanowires (VA-Si NWs) synthesized by metal-assisted chemical etching (MACE) is reported. Si NWs were prepared via a facile MACE method and subsequent thermal annealing. Etching was performed by generation of silver nanoparticles (Ag NPs) and subsequent etching in HF/H2O2 aqueous solution; the growth conditions were optimized by changing the process parameters. Highly vertically oriented arrays of Si NWs with a straight-line morphology were obtained, and a top-top electrode configuration was applied. The VA-Si NW gas sensor showed good sensing performance, and the VA-Si NWs exhibited a remarkable response (Rg/Ra = 11.5 ∼ 17.1) to H2 gas (10-50 ppm) at 100 °C which was the optimal working temperature. The formation mechanism and gas sensing mechanism of VA-Si NWs are described. The obtained results can suggest new approaches to making inexpensive, versatile, and portable sensors based on Si NWs having a novel top-top electrode structure that are fully compatible with well-developed Si technologies.

  11. Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures

    PubMed Central

    Gao, Teng; Song, Xiuju; Du, Huiwen; Nie, Yufeng; Chen, Yubin; Ji, Qingqing; Sun, Jingyu; Yang, Yanlian; Zhang, Yanfeng; Liu, Zhongfan

    2015-01-01

    In-plane and vertically stacked heterostructures of graphene and hexagonal boron nitride (h-BN-G and G/h-BN, respectively) are both recent focuses of graphene research. However, targeted synthesis of either heterostructure remains a challenge. Here, via chemical vapour deposition and using benzoic acid precursor, we have achieved the selective growth of h-BN-G and G/h-BN through a temperature-triggered switching reaction. The perfect in-plane h-BN-G is characterized by scanning tunnelling microscopy (STM), showing atomically patched graphene and h-BN with typical zigzag edges. In contrast, the vertical alignment of G/h-BN is confirmed by unique lattice-mismatch-induced moiré patterns in high-resolution STM images, and two sets of aligned selected area electron diffraction spots, both suggesting a van der Waals epitaxial mechanism. The present work demonstrates the chemical designability of growth process for controlled synthesis of graphene and h-BN heterostructures. With practical scalability, high uniformity and quality, our approach will promote the development of graphene-based electronics and optoelectronics. PMID:25869236

  12. Arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube

    DOEpatents

    Pidcoe, Stephen V.; Zink, Roger A.; Boroski, William N.; McCaw, William R.

    1993-01-01

    An arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube of a magnet such as is used with the Superconducting Super Collider (SSC). The arrangement includes a magnetic field alignment gauge that is carried through the magnet bore tube by a positioning shuttle in predetermined increments. The positioning shuttle includes an extensible body assembly which is actuated by an internal piston arrangement. A pair of spaced inflatable cuffs are carried by the body assembly and are selectively actuated in cooperation with pressurizing of the piston to selectively drive the positioning shuttle in an axial direction. Control of the shuttle is provided by programmed electronic computer means located exteriorly of the bore tube and which controls valves provided pressurized fluid to the inflatable cuss and the piston arrangement.

  13. Penetration of the Interplanetary Magnetic Field B(sub y) into Earth's Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Erickson, G. M.

    1995-01-01

    There has been considerable recent interest in the relationship between the cross-tail magnetic field component B(sub y) and tail dynamics. The purpose of this paper is to give an overall description of the penetration of the interplanetary magnetic field (IMF) B(sub y) into the near-Earth plasma sheet. We show that plasma sheet B(sub y) may be generated by the differential shear motion of field lines and enhanced by flux tube compression. The latter mechanism leads to a B(sub y) analogue of the pressure-balance inconsistency as flux tubes move from the far tail toward the Earth. The growth of B(sub y), however, may be limited by the dawn-dusk asymmetry in the shear velocity as a result of plasma sheet tilting. B(sub y) penetration into the plasma sheet implies field-aligned currents flowing between hemispheres. These currents together with the IMF B(sub y) related mantle field-aligned currents effectively shield the lobe from the IMF B(sub y).

  14. Sleeve Push Technique: A Novel Method of Space Gaining.

    PubMed

    Verma, Sanjeev; Bhupali, Nameksh Raj; Gupta, Deepak Kumar; Singh, Sombir; Singh, Satinder Pal

    2018-01-01

    Space gaining is frequently required in orthodontics. Multiple loops were initially used for space gaining and alignment. The most common used mechanics for space gaining is the use of nickel-titanium open coil springs. The disadvantage of nickel-titanium coil spring is that they cannot be used until the arches are well aligned to receive the stiffer stainless steel wires. Therefore, a new method of gaining space during initial alignment and leveling has been developed and named as sleeve push technique (SPT). The nickel-titanium wires, i.e. 0.012 inches and 0.014 inches along with archwire sleeve (protective tubing) can be used in a modified way to gain space along with alignment. This method helps in gaining space right from day 1 of treatment. The archwire sleeve and nickel-titanium wire in this new SPT act as a mutually synergistic combination and provide the orthodontist with a completely new technique for space opening.

  15. Imaging of Nuclear Weapon Trainers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwellenbach, David

    2017-12-06

    The Configurable Muon Tracker (CMT) is an adaptation of the existing drift tube detector commercially available from Decision Sciences International Corporation (DSIC). NSTec engineered the CMT around commercially available drift tube assemblies to make a detector that is more versatile than previous drift tube assemblies. The CMT became operational in February 2013. Traditionally, cosmic-ray muon trackers rely on near-vertical trajectory muons for imaging. Since there are scenarios where imaging using vertical trajectory muons is not practical, NSTec designed the CMT specifically for quick configurability to track muons from any trajectory. The CMT was originally designed to be changed from verticalmore » imaging mode to horizontal imaging mode in a few hours with access to a crane or other lifting equipment. In FY14, locations for imaging weapon trainers and SNM were identified and it was determined that lifting equipment would not typically be available in experimental areas. The CMT was further modified and a portable lifting system was developed to allow reconfiguration of the CMT without access to lifting equipment at the facility. This system was first deployed at Los Alamos National Laboratory’s W-division, where several trainers were imaged in both horizontal and vertical modes. Real-time images have been compared in both modes showing that imaging can be done in both modes with the expected longer integration time for horizontal mode. Further imaging and post processing of the data is expected to continue into early FY15.« less

  16. Acoustic levitation

    NASA Astrophysics Data System (ADS)

    Hansen, Uwe J.

    2005-09-01

    A speaker, driven by an amplified audio signal is used to set up a standing wave in a 3b-ft-long, 4-in.-diam transparent tube. Initially the tube is oriented horizontally, and Styrofoam packing peanuts accumulate near the pressure nodes. When the tube is turned to a position with the axis oriented vertically, the peanuts drop slightly, until the gravitational force on the peanuts is balanced by the force due to the sound pressure, at which point levitation is observed. Sound-pressure level measurements are used to map the air column normal mode pattern. Similarly, standing waves are established between an ultrasonic horn and a metal reflector and millimeter size Styrofoam balls are levitated.

  17. Transition to chaos of a vertical collapsible tube conveying air flow

    NASA Astrophysics Data System (ADS)

    Castillo Flores, F.; Cros, A.

    2009-05-01

    "Sky dancers", the large collapsible tubes used as advertising, are studied in this work through a simple experimental device. Our study is devoted to the nonlinear dynamics of this system and to its transition to chaos. Firstly, we have shown that after a collapse occurs, the air fills the tube at a different speed rate from the flow velocity. Secondly, the temporal intermittency is studied as the flow rate is increased. A statistical analysis shows that the chaotic times maintain roughly the same value by increasing air speed. On the other hand, laminar times become shorter, until the system reaches a completely chaotic state.

  18. 40 CFR 93.127 - Projects exempt from regional emissions analyses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Interchange reconfiguration projects. Changes in vertical and horizontal alignment. Truck size and weight inspection stations. Bus terminals and transfer points. [58 FR 62235, Nov. 24, 1993, as amended at 71 FR...

  19. 40 CFR 93.127 - Projects exempt from regional emissions analyses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Interchange reconfiguration projects. Changes in vertical and horizontal alignment. Truck size and weight inspection stations. Bus terminals and transfer points. [58 FR 62235, Nov. 24, 1993, as amended at 71 FR...

  20. 40 CFR 93.127 - Projects exempt from regional emissions analyses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Interchange reconfiguration projects. Changes in vertical and horizontal alignment. Truck size and weight inspection stations. Bus terminals and transfer points. [58 FR 62235, Nov. 24, 1993, as amended at 71 FR...

Top