Post, Brady; Buchmueller, Tom; Ryan, Andrew M
2017-08-01
Hospital-physician vertical integration is on the rise. While increased efficiencies may be possible, emerging research raises concerns about anticompetitive behavior, spending increases, and uncertain effects on quality. In this review, we bring together several of the key theories of vertical integration that exist in the neoclassical and institutional economics literatures and apply these theories to the hospital-physician relationship. We also conduct a literature review of the effects of vertical integration on prices, spending, and quality in the growing body of evidence ( n = 15) to evaluate which of these frameworks have the strongest empirical support. We find some support for vertical foreclosure as a framework for explaining the observed results. We suggest a conceptual model and identify directions for future research. Based on our analysis, we conclude that vertical integration poses a threat to the affordability of health services and merits special attention from policymakers and antitrust authorities.
NASA Astrophysics Data System (ADS)
Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib
2017-08-01
Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.
Is vertical integration adding value to health systems?
Weil, T P
2000-04-01
Vertical integration is a concept used by health systems when attempting to achieve economies of scale, greater coordination of services, and improved market penetration. This article focuses on the actual outcomes of utilizing vertical integration in the health field and then compares these findings with those reported in other industries. This analysis concludes that this organizational model does not work particularly well in the health industry, as illustrated by health alliances' poor fiscal performance when they acquire physician practices or when they start their own HMO plans.
NASA Technical Reports Server (NTRS)
Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo
2004-01-01
Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
Vertical integration of medical education: Riverland experience, South Australia.
Rosenthal, D R; Worley, P S; Mugford, B; Stagg, P
2004-01-01
Vertical integration of medical education is currently a prominent international topic, resulting from recent strategic initiatives to improve medical education and service delivery in areas of poorly met medical need. In this article, vertical integration of medical education is defined as 'a grouping of curricular content and delivery mechanisms, traversing the traditional boundaries of undergraduate, postgraduate and continuing medical education, with the intent of enhancing the transfer of knowledge and skills between those involved in the learning-teaching process'. Educators closely involved with vertically integrated teaching in the Riverland of South Australia present an analytical description of the educational dynamics of this system. From this analysis, five elements are identified which underpin the process of successful vertical integration: (1) raised educational stakes; (2) local ownership; (3) broad university role; (4) longer attachments; and (5) shared workforce vision. Given the benefits to the Riverland medical education programs described in this paper, it is not surprising that vertical integration of medical education is a popular goal in many rural regions throughout the world. Although different contexts will result in different functional arrangements, it could be argued that the five principles outlined in this article can be applied in any region.
VERTICAL INTEGRATION OF THREE-PHASE FLOW EQUATIONS FOR ANALYSIS OF LIGHT HYDROCARBON PLUME MOVEMENT
A mathematical model is derived for areal flow of water and light hydrocarbon in the presence of gas at atmospheric pressure. Closed-form expressions for the vertically integrated constitutive relations are derived based on a three-phase extension of the Brooks-Corey saturation-...
Atun, Rifat; de Jongh, Thyra; Secci, Federica; Ohiri, Kelechi; Adeyi, Olusoji
2010-03-01
The benefits of integrating programmes that emphasize specific interventions into health systems to improve health outcomes have been widely debated. This debate has been driven by narrow binary considerations of integrated (horizontal) versus non-integrated (vertical) programmes, and characterized by polarization of views with protagonists for and against integration arguing the relative merits of each approach. The presence of both integrated and non-integrated programmes in many countries suggests benefits to each approach. While the terms 'vertical' and 'integrated' are widely used, they each describe a range of phenomena. In practice the dichotomy between vertical and horizontal is not rigid and the extent of verticality or integration varies between programmes. However, systematic analysis of the relative merits of integration in various contexts and for different interventions is complicated as there is no commonly accepted definition of 'integration'-a term loosely used to describe a variety of organizational arrangements for a range of programmes in different settings. We present an analytical framework which enables deconstruction of the term integration into multiple facets, each corresponding to a critical health system function. Our conceptual framework builds on theoretical propositions and empirical research in innovation studies, and in particular adoption and diffusion of innovations within health systems, and builds on our own earlier empirical research. It brings together the critical elements that affect adoption, diffusion and assimilation of a health intervention, and in doing so enables systematic and holistic exploration of the extent to which different interventions are integrated in varied settings and the reasons for the variation. The conceptual framework and the analytical approach we propose are intended to facilitate analysis in evaluative and formative studies of-and policies on-integration, for use in systematically comparing and contrasting health interventions in a country or in different settings to generate meaningful evidence to inform policy.
Can Vertical Integration Reduce Hospital Readmissions? A Difference-in-Differences Approach.
Lopes, Sílvia; Fernandes, Óscar B; Marques, Ana Patrícia; Moita, Bruno; Sarmento, João; Santana, Rui
2017-05-01
Vertical integration is expected to improve communication and coordination between inpatient care and care after discharge. Despite being used across health systems worldwide, evidence about its impact on readmissions is sparse and contradictory. To assess the impact of vertical integration on hospital readmissions. Using difference-in-differences we compared readmissions before and after vertical integration in 6 Portuguese hospitals for years 2004-2013. A control group with 6 similar hospitals not integrated was utilized. Considered outcome was 30-day unplanned readmission. We used logistic regression at the admission level and accounted for patients' risk factors using claims data. Analyses for each hospital and selected conditions were also run. Our results suggest that readmissions decreased overall after vertical integration [odds ratio (OR)=0.900; 95% confidence interval (CI), 0.812-0.997]. Hospital analysis indicated that there was no impact for 2 hospitals (OR=0.960; 95% CI, 0.848-1.087 and OR=0.944; 95% CI, 0.857-1.038), and a positive effect in 4 hospitals (greatest effect: OR=0.811; 95% CI, 0.736-0.894). A positive evolution was observed for a limited number of conditions, with better results for diabetes with complications (OR=0.689; 95% CI, 0.525-0.904), but no impact regarding congestive heart failure (OR=1.067; 95% CI, 0.827-1.377). Merging acute and primary care providers was associated with reduced readmissions, even though improvements were not found for all institutions or condition-specific groups. There are still challenges to be addressed regarding the success of vertical integration in reducing 30-day hospital readmissions.
Students' perceptions of vertical and horizontal integration in a discipline-based dental school.
Postma, T C; White, J G
2017-05-01
Integration is a key concern in discipline-based undergraduate dental curricula. Therefore, this study compared feedback on integration from students who participated in different instructional designs in a Comprehensive Patient Care course. The study was conducted at the University of Pretoria (2009-2011). Third-year cohorts (Cohorts A, B and C) participated in pre-clinical case-based learning, whilst fourth-year cohorts (Cohorts D and E) received didactic teaching in Comprehensive Patient Care. Cohorts A, D and E practised clinical Comprehensive Patient Care in a discipline-based clinic. Cohort B conducted their Comprehensive Patient Care patient examinations in a dedicated facility supervised by dedicated faculty responsible to teach integration. Students had to indicate on visual analogue scales whether the way they were taught at the school helped them to integrate knowledge from the same (horizontal integration) and preceding (vertical integration) year of study. The end-points of the scales were defined as 'definitely' and 'not at all'. Analysis of variance (ANOVA) was employed to measure the differences between cohorts according to the year of study. Third-year case-based learning cohorts rated the horizontal integration close to 80/100 and vertical integration ranging from 64 to 71/100. In year four, Cohort B rated vertical and horizontal integration 9-15% higher (ANOVA, P < 0.05) than Cohorts A and D. In year five, Cohort A rated vertical and horizontal integration 11-18% higher (ANOVA, P < 0.05) than Cohorts D and E. Pre-clinical case-based learning and Comprehensive Patient Care supervised by dedicated faculty were associated with more favourable perceptions about integration in the discipline-based undergraduate dental curriculum. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Xia, Weiwei; Shen, Lianfeng
We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.
Can Vertical Integration Reduce Hospital Readmissions? A Difference-in-Differences Approach
Fernandes, Óscar B.; Marques, Ana Patrícia; Moita, Bruno; Sarmento, João; Santana, Rui
2017-01-01
Background: Vertical integration is expected to improve communication and coordination between inpatient care and care after discharge. Despite being used across health systems worldwide, evidence about its impact on readmissions is sparse and contradictory. Objective: To assess the impact of vertical integration on hospital readmissions. Research Design, Subjects, and Measures: Using difference-in-differences we compared readmissions before and after vertical integration in 6 Portuguese hospitals for years 2004–2013. A control group with 6 similar hospitals not integrated was utilized. Considered outcome was 30-day unplanned readmission. We used logistic regression at the admission level and accounted for patients’ risk factors using claims data. Analyses for each hospital and selected conditions were also run. Results: Our results suggest that readmissions decreased overall after vertical integration [odds ratio (OR)=0.900; 95% confidence interval (CI), 0.812–0.997]. Hospital analysis indicated that there was no impact for 2 hospitals (OR=0.960; 95% CI, 0.848–1.087 and OR=0.944; 95% CI, 0.857–1.038), and a positive effect in 4 hospitals (greatest effect: OR=0.811; 95% CI, 0.736–0.894). A positive evolution was observed for a limited number of conditions, with better results for diabetes with complications (OR=0.689; 95% CI, 0.525–0.904), but no impact regarding congestive heart failure (OR=1.067; 95% CI, 0.827–1.377). Conclusions: Merging acute and primary care providers was associated with reduced readmissions, even though improvements were not found for all institutions or condition-specific groups. There are still challenges to be addressed regarding the success of vertical integration in reducing 30-day hospital readmissions. PMID:28403012
Mudie, Kurt L; Gupta, Amitabh; Green, Simon; Hobara, Hiroaki; Clothier, Peter J
2017-02-01
This study assessed the agreement between K vert calculated from 4 different methods of estimating vertical displacement of the center of mass (COM) during single-leg hopping. Healthy participants (N = 38) completed a 10-s single-leg hopping effort on a force plate, with 3D motion of the lower limb, pelvis, and trunk captured. Derived variables were calculated for a total of 753 hop cycles using 4 methods, including: double integration of the vertical ground reaction force, law of falling bodies, a marker cluster on the sacrum, and a segmental analysis method. Bland-Altman plots demonstrated that K vert calculated using segmental analysis and double integration methods have a relatively small bias (0.93 kN⋅m -1 ) and 95% limits of agreement (-1.89 to 3.75 kN⋅m -1 ). In contrast, a greater bias was revealed between sacral marker cluster and segmental analysis (-2.32 kN⋅m -1 ), sacral marker cluster and double integration (-3.25 kN⋅m -1 ), and the law of falling bodies compared with all methods (17.26-20.52 kN⋅m -1 ). These findings suggest the segmental analysis and double integration methods can be used interchangeably for the calculation of K vert during single-leg hopping. The authors propose the segmental analysis method to be considered the gold standard for the calculation of K vert during single-leg, on-the-spot hopping.
Market and organizational factors associated with hospital vertical integration into sub-acute care.
Hogan, Tory H; Lemak, Christy Harris; Hearld, Larry R; Sen, Bisakha P; Wheeler, Jack R C; Menachemi, Nir
2018-04-11
Changes in payment models incentivize hospitals to vertically integrate into sub-acute care (SAC) services. Through vertical integration into SAC, hospitals have the potential to reduce the transaction costs associated with moving patients throughout the care continuum and reduce the likelihood that patients will be readmitted. The purpose of this study is to examine the correlates of hospital vertical integration into SAC. Using panel data of U.S. acute care hospitals (2008-2012), we conducted logit regression models to examine environmental and organizational factors associated with hospital vertical integration. Results are reported as average marginal effects. Among 3,775 unique hospitals (16,269 hospital-year observations), 25.7% vertically integrated into skilled nursing facilities during at least 1 year of the study period. One measure of complexity, the availability of skilled nursing facilities in a county (ME = -1.780, p < .001), was negatively associated with hospital vertical integration into SAC. Measures of munificence, percentage of the county population eligible for Medicare (ME = 0.018, p < .001) and rural geographic location (ME = 0.069, p < .001), were positively associated with hospital vertical integration into SAC. Dynamism, when measured as the change county population between 2008 and 2011 (ME = 1.19e-06, p < .001), was positively associated with hospital vertical integration into SAC. Organizational resources, when measured as swing beds (ME = 0.069, p < .001), were positively associated with hospital vertical integration into SAC. Organizational resources, when measured as investor owned (ME = -0.052, p < .1) and system affiliation (ME = -0.041, p < .1), were negatively associated with hospital vertical integration into SAC. Hospital adaption to the changing health care landscape through vertical integration varies across market and organizational conditions. Current Centers for Medicare and Medicaid reimbursement programs do not take these factors into consideration. Vertical integration strategy into SAC may be more appropriate under certain market conditions. Hospital leaders may consider how to best align their organization's SAC strategy with their operating environment.
NASA Astrophysics Data System (ADS)
Peterson, Carl
Transaction costs economics (TCE) posits that firms have an incentive to bypass the market mechanisms in situations where the cost of using the market is prohibitive. Vertical integration, among other governance mechanisms, can be used to minimize the transactions costs associated with the market mechanism. The study analyses different governance mechanisms, which range from complete vertical integration to the use of market mechanisms, for firms in the US electric sector. This sector has undergone tremendous change in the past decade including the introduction of retail competition in some jurisdictions. As a result of the push toward deregulation of the industry, vertically integration, while still significant in the sector, has steadily been replaced by alternative governance structures. Using a sample of 136 investor-owned electric utilities that reported data the US Federal Energy Regulatory Commission between 1996 and 2002, this study estimates firm level efficiency using Data Envelopment Analysis (DEA) and relates these estimates to governance structure and public policies. The analysis finds that vertical integration is positively related to firm efficiency, although in a non-linear fashion suggesting that hybrid governance structures tend to be associated with lower efficiency scores. In addition, while some evidence is found for negative short-term effects on firm efficiency from the choice to deregulate, this result is sensitive to DEA model choice. Further, competition in retail markets is found to be positively related to firm level efficiency, but the retreat from deregulation, which occurred after 2000, is negatively associated with firm-level efficiency. These results are important in the ongoing academic and public policy debates concerning deregulation of the electric section and indicate that vertical economies remain in the industry, but that competition has provided incentives for improving firm level efficiency.
Effect of vertical integration on the utilization of hardwood resources
Jan Wiedenbeck
2002-01-01
The effectiveness of vertical integration in promoting the efficient utilization of the hardwood resource in the eastern United States was assessed during a series of interviews with vertically integrated hardwood manufacturers in the Appalachian region. Data from 19 companies that responded to the 1996 phone survey indicate that: 1) vertically integrated hardwood...
Upstairs downstairs: vertical integration of a pediatric service.
Racine, A D; Stein, R E; Belamarich, P F; Levine, E; Okun, A; Porder, K; Rosenfeld, J L; Schechter, M
1998-07-01
The combined effects of recent changes in health care financing and training priorities have compelled academic medical centers to develop innovative structures to maintain service commitments yet conform to health care marketplace demands. In 1992, a municipal hospital in the Bronx, New York, affiliated with a major academic medical center reorganized its pediatric service into a vertically integrated system of four interdependent practice teams that provided comprehensive care in the ambulatory as well as inpatient settings. One of the goals of the new system was to conserve inpatient resources. To describe the development of a new vertically integrated pediatric service at an inner-city municipal hospital and to test whether its adoption was associated with the use of fewer inpatient resources. A descriptive analysis of the rationale, goals, implementation strategies, and structure of the vertically integrated pediatric service combined with a before-and-after comparison of in-hospital resource consumption. A before-and-after comparison was conducted for two periods: the period before vertical integration, from January 1989 to December 1991, and the period after the adoption of vertical integration, from July 1992 to December 1994. Four measures of inpatient resource use were compared after adjustment for case mix index: mean certified length of stay per case, mean number of radiologic tests per case, mean number of ancillary tests per case, and mean number of laboratory tests per case. Difference-in-differences-in-differences estimators were used to control for institution-wide trends throughout the time period and regional trends in inpatient pediatric practice occurring across institutions. Results. In 1992, the Department of Pediatrics at the Albert Einstein College of Medicine reorganized the pediatric service at Jacobi Medical Center, one of its principal municipal hospital affiliates, into a vertically integrated pediatric service that combines ambulatory and inpatient activities into four interdependent practice teams composed of attending pediatricians, allied health professionals, house officers, and social workers. The new vertically integrated service was designed to improve continuity of care for patients, provide a model of practice for professional trainees, conserve scarce resources, and create a clinical research infrastructure. The vertically integrated pediatric service augmented the role of attending pediatricians, extended the use of allied health professionals from the ambulatory to the inpatient sites, established interdisciplinary practice teams that unified the care of pediatric patients and their families, and used less inpatient resources. Controlling for trends within the study institution and trends in the practice of pediatrics across institutions throughout the time period, the vertical integration was associated with a decline in 0.6 days per case, the use of 0.62 fewer radiologic tests per case, 0.21 fewer ancillary tests per case, and 2.68 fewer laboratory tests per case. We conclude that vertical integration of a pediatric service at an inner-city municipal hospital is achievable; conveys advantages of improved continuity of care, enhanced opportunities for primary care training, and increased participation of senior clinicians; and has the potential to conserve significant amounts of inpatient resources.
Tolstikhin, Valery; Saeidi, Shayan; Dolgaleva, Ksenia
2018-05-01
We report on the design optimization and tolerance analysis of a multistep lateral-taper spot-size converter based on indium phosphide (InP), performed using the Monte Carlo method. Being a natural fit to (and a key building block of) the regrowth-free taper-assisted vertical integration platform, such a spot-size converter enables efficient and displacement-tolerant fiber coupling to InP-based photonic integrated circuits at a wavelength of 1.31 μm. An exemplary four-step lateral-taper design featuring 0.35 dB coupling loss at optimal alignment of a standard single-mode fiber; ≥7 μm 1 dB displacement tolerance in any direction in a facet plane; and great stability against manufacturing variances is demonstrated.
Banks, D; Parker, E; Wendel, J
2001-03-01
Rising post-acute care expenditures for Medicare transfer patients and increasing vertical integration between hospitals and nursing facilities raise questions about the links between payment system structure, the incentive for vertical integration and the impact on efficiency. In the United States, policy-makers are responding to these concerns by initiating prospective payments to nursing facilities, and are exploring the bundling of payments to hospitals. This paper develops a static profit-maximization model of the strategic interaction between the transferring hospital and a receiving nursing facility. This model suggests that the post-1984 system of prospective payment for hospital care, coupled with nursing facility payments that reimburse for services performed, induces inefficient under-provision of hospital services and encourages vertical integration. It further indicates that the extension of prospective payment to nursing facilities will not eliminate the incentive to vertically integrate, and will not result in efficient production unless such integration takes place. Bundling prospective payments for hospitals and nursing facilities will neither remove the incentive for vertical integration nor induce production efficiency without such vertical integration. However, bundled payment will induce efficient production, with or without vertical integration, if nursing facilities are reimbursed for services performed. Copyright 2001 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Baharudin, M. E.; Nor, A. M.; Saad, A. R. M.; Yusof, A. M.
2018-03-01
The motion of vibration-driven robots is based on an internal oscillating mass which can move without legs or wheels. The oscillation of the unbalanced mass by a motor is translated into vibration which in turn produces vertical and horizontal forces. Both vertical and horizontal oscillations are of the same frequency but the phases are shifted. The vertical forces will deflect the bristles which cause the robot to move forward. In this paper, the horizontal motion direction caused by the vertically vibrated bristle is numerically simulated by tuning the frequency of their oscillatory actuation. As a preliminary work, basic equations for a simple off-centered vibration location on the robot platform and simulation model for vibration excitement are introduced. It involves both static and dynamic vibration analysis of robots and analysis of different type of parameters. In addition, the orientation of the bristles and oscillators are also analysed. Results from the numerical integration seem to be in good agreement with those achieved from the literature. The presented numerical integration modeling can be used for designing the bristles and controlling the speed and direction of the robot.
A Physician's Perspective On Vertical Integration.
Berenson, Robert A
2017-09-01
Vertical integration has been a central feature of health care delivery system change for more than two decades. Recent studies have demonstrated that vertically integrated health care systems raise prices and costs without observable improvements in quality, despite many theoretical reasons why cost control and improved quality might occur. Less well studied is how physicians view their newfound partnerships with hospitals. In this article I review literature findings and other observations on five aspects of vertical integration that affect physicians in their professional and personal lives: patients' access to physicians, physician compensation, autonomy versus system support, medical professionalism and culture, and lifestyle. I conclude that the movement toward physicians' alignment with and employment in vertically integrated systems seems inexorable but that policy should not promote such integration either intentionally or inadvertently. Instead, policy should address the flaws in current payment approaches that reward high prices and excessive service use-outcomes that vertical integration currently produces. Project HOPE—The People-to-People Health Foundation, Inc.
Shuttle payload interface verification equipment study. Volume 2: Technical document, part 1
NASA Technical Reports Server (NTRS)
1976-01-01
The technical analysis is reported that was performed during the shuttle payload interface verification equipment study. It describes: (1) the background and intent of the study; (2) study approach and philosophy covering all facets of shuttle payload/cargo integration; (3)shuttle payload integration requirements; (4) preliminary design of the horizontal IVE; (5) vertical IVE concept; and (6) IVE program development plans, schedule and cost. Also included is a payload integration analysis task to identify potential uses in addition to payload interface verification.
Pereira, Lorena M. S.; Sordi, Mariane B.; Magini, Ricardo S.; Calazans Duarte, Antônio R.; M. Souza, Júlio C.
2017-01-01
The aim of this study was to perform an integrative review of the literature on the clinically usual prosthesis-abutment misfit over implant-supported structures manufactured by conventional casting technique. The present integrative review used the PRISMA methodology. A bibliographical search was conducted on the following electronic databases: MEDLINE/PubMed (National Library of Medicine), Scopus (Elsevier), ScienceDirect (Elsevier), Web of Science (Thomson Reuters Scientific), Latin American and Caribbean Center on Health Sciences Information (BIREME), and Virtual Health Library (BVS). A total of 11 relevant studies were selected for qualitative analysis. The prosthetic-abutment vertical misfit considered clinically usual ranged from 50 to 160 μm. The vertical misfit depends on several steps during technical manufacturing techniques, which includes the materials and technical procedures. Lower values in misfit are recorded when precious metal or titanium alloys are utilized. Although a vertical misfit mean value of 100 μm has been considered clinically usual, most of the previous studies included in this revision showed lower mean values. PMID:29279686
Vertical integration from the large Hilbert space
NASA Astrophysics Data System (ADS)
Erler, Theodore; Konopka, Sebastian
2017-12-01
We develop an alternative description of the procedure of vertical integration based on the observation that amplitudes can be written in BRST exact form in the large Hilbert space. We relate this approach to the description of vertical integration given by Sen and Witten.
Integrating postgraduate and undergraduate general practice education: qualitative study.
O'Regan, Andrew; Culhane, Aidan; Dunne, Colum; Griffin, Michael; McGrath, Deirdre; Meagher, David; O'Dwyer, Pat; Cullen, Walter
2013-05-01
Educational activity in general practice has increased considerably in the past 20 years. Vertical integration, whereby practices support students and trainees at different stages, may enhance general practices' capacity to fulfil this role. To explore the potential for vertical integration in undergraduate and postgraduate education in general practice, by describing the experience of (and attitudes towards) 'vertical integration in general practice education' among key stakeholder groups. Qualitative study of GPs, practice staff, GPs-in-training and medical students involving focus groups which were thematically analysed. We identified four overarching themes: (1) Important practical features of vertical integration are interaction between learners at different stages, active involvement in clinical teams and interagency collaboration; (2) Vertical integration may benefit GPs/practices, students and patients through improved practice systems, exposure to team-working and multi-morbidity and opportunistic health promotion, respectively; (3) Capacity issues may challenge its implementation; (4) Strategies such as recognising and addressing diverse learner needs and inter-agency collaboration can promote vertical integration. Vertical integration, whereby practices support students and trainees at different stages, may enhance general practices' teaching capacity. Recognising the diverse educational needs of learners at different stages and collaboration between agencies responsible for the planning and delivery of specialist training and medical degree programmes would appear to be important.
Stocks, Nigel P; Frank, Oliver; Linn, Andrew M; Anderson, Katrina; Meertens, Sarah
2011-06-06
To examine vertical integration of teaching and clinical training in general practice and describe practical examples being undertaken by Australian general practice regional training providers (RTPs). A qualitative study of all RTPs in Australia, mid 2010. All 17 RTPs in Australia responded. Eleven had developed some vertical integration initiatives. Several encouraged registrars to teach junior doctors and medical students, others encouraged general practitioner supervisors to run multilevel educational sessions, a few coordinated placements, linkages and support across their region. Three RTPs provided case studies of vertical integration. Many RTPs in Australia use vertical integration of teaching in their training programs. RTPs with close associations with universities and rural clinical schools seem to be leading these initiatives.
Kawonga, Mary; Fonn, Sharon; Blaauw, Duane
2013-01-01
Background In light of an increasing global focus on health system strengthening and integration of vertical programmes within health systems, methods and tools are required to examine whether general health service managers exercise administrative authority over vertical programmes. Objective To measure the extent to which general health service (horizontal) managers, exercise authority over the HIV programme's monitoring and evaluation (M&E) function, and to explore factors that may influence this exercise of authority. Methods This cross-sectional survey involved interviews with 51 managers. We drew ideas from the concept of ‘exercised decision-space’ – traditionally used to measure local level managers’ exercise of authority over health system functions following decentralisation. Our main outcome measure was the degree of exercised authority – classified as ‘low’, ‘medium’ or ‘high’ – over four M&E domains (HIV data collection, collation, analysis, and use). We applied ordinal logistic regression to assess whether actor type (horizontal or vertical) was predictive of a higher degree of exercised authority, independent of management capacity (training and experience), and M&E knowledge. Results Relative to vertical managers, horizontal managers had lower HIV M&E knowledge, were more likely to exercise a higher degree of authority over HIV data collation (OR 7.26; CI: 1.9, 27.4), and less likely to do so over HIV data use (OR 0.19; CI: 0.05, 0.84). A higher HIV M&E knowledge score was predictive of a higher exercised authority over HIV data use (OR 1.22; CI: 0.99, 1.49). There was no association between management capacity and degree of authority. Conclusions This study demonstrates a HIV M&E model that is neither fully vertical nor integrated. The HIV M&E is characterised by horizontal managers producing HIV information while vertical managers use it. This may undermine policies to strengthen integrated health system planning and management under the leadership of horizontal managers. PMID:23364092
Kawonga, Mary; Fonn, Sharon; Blaauw, Duane
2013-01-24
In light of an increasing global focus on health system strengthening and integration of vertical programmes within health systems, methods and tools are required to examine whether general health service managers exercise administrative authority over vertical programmes. To measure the extent to which general health service (horizontal) managers, exercise authority over the HIV programme's monitoring and evaluation (M&E) function, and to explore factors that may influence this exercise of authority. This cross-sectional survey involved interviews with 51 managers. We drew ideas from the concept of 'exercised decision-space' - traditionally used to measure local level managers' exercise of authority over health system functions following decentralisation. Our main outcome measure was the degree of exercised authority - classified as 'low', 'medium' or 'high' - over four M&E domains (HIV data collection, collation, analysis, and use). We applied ordinal logistic regression to assess whether actor type (horizontal or vertical) was predictive of a higher degree of exercised authority, independent of management capacity (training and experience), and M&E knowledge. Relative to vertical managers, horizontal managers had lower HIV M&E knowledge, were more likely to exercise a higher degree of authority over HIV data collation (OR 7.26; CI: 1.9, 27.4), and less likely to do so over HIV data use (OR 0.19; CI: 0.05, 0.84). A higher HIV M&E knowledge score was predictive of a higher exercised authority over HIV data use (OR 1.22; CI: 0.99, 1.49). There was no association between management capacity and degree of authority. This study demonstrates a HIV M&E model that is neither fully vertical nor integrated. The HIV M&E is characterised by horizontal managers producing HIV information while vertical managers use it. This may undermine policies to strengthen integrated health system planning and management under the leadership of horizontal managers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ye; Karri, Naveen K.; Wang, Qi
Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studiesmore » on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.« less
Combined horizontal and vertical integration of care: a goal of practice-based commissioning.
Thomas, Paul; Meads, Geoffrey; Moustafa, Ahmet; Nazareth, Irwin; Stange, Kurt C; Donnelly Hess, Gertrude
2008-01-01
Practice-based commissioning (PBC) in the UK is intended to improve both the vertical and horizontal integration of health care, in order to avoid escalating costs and enhance population health. Vertical integration involves patient pathways to treat named medical conditions that transcend organisational boundaries and connect community-based generalists with largely hospital-sited specialists, whereas horizontal integration involves peer-based and cross-sectoral collaboration to improve overall health. Effective mechanisms are now needed to permit ongoing dialogue between the vertical and horizontal dimensions to ensure that medical and nonmedical care are both used to their best advantage. This paper proposes three different models for combining vertical and horizontal integration - each is a hybrid of internationally recognised ideal types of primary care organisation. Leaders of PBC should consider a range of models and apply them in ways that are relevant to the local context. General practitioners, policy makers and others whose job it is to facilitate horizontal and vertical integration must learn to lead such combined approaches to integration if the UK is to avoid the mistakes of the USA in over-medicalising health issues.
Crabb, Helen Kathleen; Allen, Joanne Lee; Devlin, Joanne Maree; Firestone, Simon Matthew; Stevenson, Mark Anthony; Gilkerson, James Rudkin
2018-05-01
To better understand factors influencing infectious agent dispersal within a livestock population information is needed on the nature and frequency of contacts between farm enterprises. This study uses social network analysis to describe the contact network within a vertically integrated broiler poultry enterprise to identify the potential horizontal and vertical transmission pathways for Salmonella spp. Nodes (farms, sheds, production facilities) were identified and the daily movement of commodities (eggs, birds, feed, litter) and people between nodes were extracted from routinely kept farm records. Three time periods were examined in detail, 1- and 8- and 17-weeks of the production cycle and contact networks were described for all movements, and by commodity and production type. All nodes were linked by at least one movement during the study period but network density was low indicating that all potential pathways between nodes did not exist. Salmonella spp. transmission via vertical or horizontal pathways can only occur along directed pathways when those pathways are present. Only two locations (breeder or feed nodes) were identified where the transmission of a single Salmonella spp. clone could theoretically percolate through the network to the broiler or processing nodes. Only the feed transmission pathway directly connected all parts of the network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vertical Integration, Monopoly, and the First Amendment.
ERIC Educational Resources Information Center
Brennan, Timothy J.
This paper addresses the relationship between the First Amendment, monopoly of transmission media, and vertical integration of transmission and content provision. A survey of some of the incentives a profit-maximizing transmission monopolist may have with respect to content is followed by a discussion of how vertical integration affects those…
Dick, Marie-Louise B; King, David B; Mitchell, Geoffrey K; Kelly, Glynn D; Buckley, John F; Garside, Susan J
2007-07-16
There is increasing demand to provide clinical and teaching experiences in the general practice setting. Vertical integration in teaching and learning, whereby teaching and learning roles are shared across all learner stages, has the potential to decrease time demands and stress on general practitioners, to provide teaching skills and experience to GP registrars, and to improve the learning experience for medical students, and may also help meet the increased demand for teaching in general practice. We consider potential advantages and barriers to vertical integration of teaching in general practice, and provide results of focus group discussions with general practice principals and registrars about vertical integration. We recommend further research into the feasibility of using vertical integration to enhance the capacity to teach medical students in general practice.
Preliminary design of a supersonic Short-Takeoff and Vertical-Landing (STOVL) fighter aircraft
NASA Technical Reports Server (NTRS)
1990-01-01
A preliminary study of a supersonic short takeoff and vertical landing (STOVL) fighter is presented. Three configurations (a lift plus lift/cruise concept, a hybrid fan vectored thrust concept, and a mixed flow vectored thrust concept) were initially investigated with one configuration selected for further design analysis. The selected configuration, the lift plus lift/cruise concept, was successfully integrated to accommodate the powered lift short takeoff and vertical landing requirements as well as the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capability using the lift plus lift/cruise engine concept seems a viable option for the next generation fighter.
Changing Donor Funding and the Challenges of Integrated HIV Treatment.
Nattrass, Nicoli; Hodes, Rebecca; Cluver, Lucie
2016-07-01
Donor financing for HIV prevention and treatment has shifted from supporting disease-specific ("vertical") programs to health systems strengthening ("horizontal") programs intended to integrate all aspects of care. We examine the consequences of shifting resources from three perspectives: first, through a broad analysis of the changing policy context of health care financing; second, through an account of changing priorities for HIV treatment in South Africa; and third, through a description of some clinical consequences that the authors observed in a research study examining adherence to antiretroviral therapy (ART) and sexual health among adolescents. We note that AIDS responses are neither completely vertical nor horizontal but rather increasingly diagonal, as disease-specific protocols operate alongside integrated supply chain management, human resource development, and preventive screening. We conclude that health care programs are better conceived of as networks of policies requiring different degrees of integration into communities. © 2016 American Medical Association. All Rights Reserved. ISSN 2376-6980.
Vertical Integration of Biochemistry and Clinical Medicine Using a Near-Peer Learning Model
ERIC Educational Resources Information Center
Gallan, Alexander J.; Offner, Gwynneth D.; Symes, Karen
2016-01-01
Vertical integration has been extensively implemented across medical school curricula but has not been widely attempted in the field of biochemistry. We describe a novel curricular innovation in which a near-peer learning model was used to implement vertical integration in our medical school biochemistry course. Senior medical students developed…
Vertical integration and diversification of acute care hospitals: conceptual definitions.
Clement, J P
1988-01-01
The terms vertical integration and diversification, although used quite frequently, are ill-defined for use in the health care field. In this article, the concepts are defined--specifically for nonuniversity acute care hospitals. The resulting definitions are more useful than previous ones for predicting the effects of vertical integration and diversification.
Integration of photoactive and electroactive components with vertical cavity surface emitting lasers
Bryan, R.P.; Esherick, P.; Jewell, J.L.; Lear, K.L.; Olbright, G.R.
1997-04-29
A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications. 9 figs.
Integration of photoactive and electroactive components with vertical cavity surface emitting lasers
Bryan, Robert P.; Esherick, Peter; Jewell, Jack L.; Lear, Kevin L.; Olbright, Gregory R.
1997-01-01
A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications.
Beyond vertical integration--Community based medical education.
Kennedy, Emma Margaret
2006-11-01
The term 'vertical integration' is used broadly in medical education, sometimes when discussing community based medical education (CBME). This article examines the relevance of the term 'vertical integration' and provides an alternative perspective on the complexities of facilitating the CBME process. The principles of learner centredness, patient centredness and flexibility are fundamental to learning in the diverse contexts of 'community'. Vertical integration as a structural concept is helpful for academic organisations but has less application to education in the community setting; a different approach illuminates the strengths and challenges of CBME that need consideration by these organisations.
Brynhildsen, J; Dahle, L O; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M
2002-05-01
Important elements in the curriculum at the Faculty of Health Sciences in Linköping are vertical integration, i.e. integration between the clinical and basic science sections of the curriculum, and horizontal integration between different subject areas. Integration throughout the whole curriculum is time-consuming for both teachers and students and hard work is required for planning, organization and execution. The aim was to assess the importance of vertical and horizontal integration in an undergraduate medical curriculum, according to opinions among students and teachers. In a questionnaire 102 faculty teachers and 106 students were asked about the importance of 14 different components of the undergraduate medical curriculum including vertical and horizontal integration. They were asked to assign between one and six points to each component (6 points = extremely important for the quality of the curriculum; 1 point = unimportant). Students as well as teachers appreciated highly both forms of integration. Students scored horizontal integration slightly but significantly higher than the teachers (median 6 vs 5 points; p=0.009, Mann-Whitney U-test), whereas teachers scored vertical integration higher than students (6 vs 5; p=0.019, Mann-Whitney U-test). Both students and teachers considered horizontal and vertical integration to be highly important components of the undergraduate medical programme. We believe both kinds of integration support problem-based learning and stimulate deep and lifelong learning and suggest that integration should always be considered deeply when a new curriculum is planned for undergraduate medical education.
NASA Astrophysics Data System (ADS)
Al-Zubaidy, Sarim; Abdulaziz, Nidhal; Dashtpour, Reza
2012-08-01
Recent scholarship references indicate that integration of the student body can result in an enhanced learning experience for students and also greater satisfaction. This paper reports the results of a case study whereby mechanical engineering students studying at a newly established branch campus in Dubai of a British university were exposed to vertical and horizontal integration. Different activities have been embedded to ensure that students integrated and worked together with their peers and colleagues at different levels. The implemented processes and practices led to improved academic achievements, which were better than those of a similar cohort of students where no effort had been made to integrate. The analysis revealed that cooperative learning and the degree of academic support provided by teachers are positively and directly correlated with academic as well as the students' own sense of personal achievement. The results are discussed in light of previous research and with reference to the cultural context of the study.
Vertical integration increases opportunities for patient flow.
Radoccia, R A; Benvenuto, J A; Blancett, L
1991-08-01
New sources of patients will become more and more important in the next decade as hospitals continue to feel the squeeze of a competitive marketplace. Vertical integration, a distribution tool used in other industries, will be a significant tool for health care administrators. In the following article, the authors explain the vertical integration model that shows promise for other institutions.
Yao, Ruyu; Heinrich, Michael; Wang, Zigui; Weckerle, Caroline S
2018-06-14
Goji (fruits of Lycium barbarum L. and L. chinense Mill., Solanaceae) have been used as a traditional food and medicine for hundreds of years in Asian countries and are now consumed globally. Quality of herbal medicines is critical for safe use and has been shown to be affected by value chains. Using a value chain (VC) framework, we aim at understanding the influence of different VC types on goji quality and revenue of stakeholders. Participant observation and semi-structured interviews were conducted during five months of fieldwork in the main production areas in China with a total of 65 stakeholders. Quality of goji, behaviour and financial performance of stakeholders was documented and analysed for different VCs. Ten different types of VCs were identified. VCs with vertical integration and horizontal collaboration were found to have a more coherent quality control and better goji quality as well as improved stakeholders' financial performance. Vertical integration at different levels was found for independent farmer-based VCs, horizontal collaboration was found in the cooperative-based VCs. Full vertically integrated VCs were found in large-scale production. Goji quality and stakeholders' revenues are linked with different types of VCs which mirror stakeholders' behaviour driven by target markets. Considering their positive influence on quality and revenues, well-developed vertically integrated value chains are likely to become more important in the near future. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel
2018-05-01
The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xin; Arbabi, Ehsan; Goddard, Lynford L.
2015-07-20
We demonstrate a self-rolled-up microtube-based vertical photonic coupler monolithically integrated on top of a ridge waveguide to achieve three-dimensional (3D) photonic integration. The fabrication process is fully compatible with standard planar silicon processing technology. Strong light coupling between the vertical coupler and the ridge waveguide was observed experimentally, which may provide an alternative route for 3D heterogeneous photonic integration. The highest extinction ratio observed in the transmission spectrum passing through the ridge waveguide was 23 dB.
Incentives for vertical integration in healthcare: the effect of reimbursement systems.
Byrne, M M; Ashton, C M
1999-01-01
In the United States, many healthcare organizations are being transformed into large integrated delivery systems, even though currently available empirical evidence does not provide strong or unequivocal support for or against vertical integration. Unfortunately, the manager cannot delay organizational changes until further research has been completed, especially when further research is not likely to reveal a single, correct solution for the diverse healthcare systems in existence. Managers must therefore carefully evaluate the expected effects of integration on their individual organizations. Vertical integration may be appropriate if conditions facing the healthcare organization provide opportunities for efficiency gains through reorganization strategies. Managers must consider (1) how changes in the healthcare market have affected the dynamics of production efficiency and transaction costs; (2) the likelihood that integration strategies will achieve increases in efficiency or reductions in transaction costs; and (3) how vertical integration will affect other costs, and whether the benefits gained will outweigh additional costs and efficiency losses. This article presents reimbursement systems as an example of how recent changes in the industry may have changed the dynamics and efficiency of production. Evaluation of the effects of vertical integration should allow for reasonable adjustment time, but obviously unsuccessful strategies should not be followed or maintained.
Youth Education and Training in the Context of Lifelong Learning and Continuing Education.
ERIC Educational Resources Information Center
Haffenden, Ian G.
1987-01-01
Criteria for analysis of youth education and training in the context of lifelong learning and continuing education should be democratization, vertical articulation, and horizontal integration. Such an analysis should pay attention to the psychological development of youth and the meaning given to the criteria in specific national contexts. (CH)
Hristovski, Robert; Aceski, Aleksandar; Balague, Natalia; Seifert, Ludovic; Tufekcievski, Aleksandar; Cecilia, Aguirre
2017-02-01
The article discusses general structure and dynamics of the sports science research content as obtained from the analysis of 21998 European College of Sport Science abstracts belonging to 12 science topics. The structural analysis showed intertwined multidisciplinary and unifying tendencies structured along horizontal (scope) and vertical (level) axes. Methodological (instrumental and mode of inquiry) integrative tendencies are dominant. Theoretical integrative tendencies are much less detectable along both horizontal and vertical axes. The dynamic analysis of written abstracts text content over the 19 years reveals the contextualizing and guiding role of thematic skeletons of each sports science topic in forming more detailed contingent research ideas and the role of the latter in stabilizing and procreating the former. This circular causality between both hierarchical levels and functioning on separate characteristic time scales is crucial for understanding how stable research traditions self-maintain and self-procreate through innovative contingencies. The structure of sports science continuously rebuilds itself through use and re-use of contingent research ideas. The thematic skeleton ensures its identity and the contingent conceptual sets its flexibility and adaptability to different research or applicative problems.
Vertically Integrated Models for Carbon Storage Modeling in Heterogeneous Domains
NASA Astrophysics Data System (ADS)
Bandilla, K.; Celia, M. A.
2017-12-01
Numerical modeling is an essential tool for studying the impacts of geologic carbon storage (GCS). Injection of carbon dioxide (CO2) into deep saline aquifers leads to multi-phase flow (injected CO2 and resident brine), which can be described by a set of three-dimensional governing equations, including mass-balance equation, volumetric flux equations (modified Darcy), and constitutive equations. This is the modeling approach on which commonly used reservoir simulators such as TOUGH2 are based. Due to the large density difference between CO2 and brine, GCS models can often be simplified by assuming buoyant segregation and integrating the three-dimensional governing equations in the vertical direction. The integration leads to a set of two-dimensional equations coupled with reconstruction operators for vertical profiles of saturation and pressure. Vertically-integrated approaches have been shown to give results of comparable quality as three-dimensional reservoir simulators when applied to realistic CO2 injection sites such as the upper sand wedge at the Sleipner site. However, vertically-integrated approaches usually rely on homogeneous properties over the thickness of a geologic layer. Here, we investigate the impact of general (vertical and horizontal) heterogeneity in intrinsic permeability, relative permeability functions, and capillary pressure functions. We consider formations involving complex fluvial deposition environments and compare the performance of vertically-integrated models to full three-dimensional models for a set of hypothetical test cases consisting of high permeability channels (streams) embedded in a low permeability background (floodplains). The domains are randomly generated assuming that stream channels can be represented by sinusoidal waves in the plan-view and by parabolas for the streams' cross-sections. Stream parameters such as width, thickness and wavelength are based on values found at the Ketzin site in Germany. Results from the vertically-integrated approach are compared to results using TOUGH2, both in terms of depth-averaged saturation and vertical saturation profiles.
The Diagnosis and application of a convective vorticity vector associated with convective systems
NASA Astrophysics Data System (ADS)
Gao, S.; Zhou, Y.; Tao, W.
2005-05-01
Although dry/moist potential vorticity is a very useful and powerful physical quantity in the large scale dynamics, it is not a quite ideal dynamical tool for the study of convective systems or severe storms. A new convective vorticity vector (CVV) is introduced in this study to identify the development of convective systems or severe storms. The daily Aviation (AVN) Model Data is used to diagnose the distribution of the CVV associated with rain storms occurred in the period of Meiyu in 1998. The results have clearly demonstrated that the CVV is an effective vector for indicating the convective actions along the Meiyu front. The CVV also is used to diagnose a 2-D cloud-resolving simulation data associated with 2-D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the Tropical cean-Global tmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE) and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2-D x-z frame. Analysis of zonally averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
Vertical and horizontal integration of knowledge and skills - a working model.
Snyman, W D; Kroon, J
2005-02-01
The new integrated outcomes-based curriculum for dentistry was introduced at the University of Pretoria in 1997. The first participants graduated at the end of 2001. Educational principles that underpin the new innovative dental curriculum include vertical and horizontal integration, problem-oriented learning, student-centred learning, a holistic attitude to patient care and the promotion of oral health. The aim of this research project was to develop and assay a model to facilitate vertical integration of knowledge and skills thereby justifying the above mentioned action. The learning methodology proposed for the specific outcome of the Odontology module, namely the diagnosis of dental caries and the design of a primary preventive programme, included problem-solving as the driving force for the facilitation of vertical and horizontal integration, and an instructional design for the integration of the basic knowledge and clinical skills into a single learning programme. The paper describes the methodology of problem-oriented learning as applied in this study together with the detail of the programme. The consensus of those teachers who represent the basic and clinical sciences and who participate in this learning programme is that this model is practical and can assist vertical as well as horizontal integration of knowledge.
Sell your practice to grow and compete--the synergism of vertical integration.
Robison, D L
1988-01-01
There are many advantages for selling a group practice to achieve vertical integration with a larger entity, including shared medical and management services, and greater efficiency, which results in greater profits. Health care in the 1990s will have a more formalized, structured system, greatly reducing freedoms enjoyed by both physicians and patients. An attractive option for smaller groups or solo practitioners is vertical integration.
Towards vertical integration in general practice education: literature review and discussion paper.
O'Regan, A; Culhane, A; Dunne, C; Griffin, M; Meagher, D; McGrath, D; O'Dwyer, P; Cullen, W
2013-09-01
Medical education policy in Ireland has enabled an increase in undergraduate and postgraduate education activity in general practice. Internationally, 'vertical integration in general practice education' is suggested as a key strategy to support the implementation of this policy development. To review the emerging literature on vertical integration in GP education, specifically to define the concept of 'vertical integration' with regard to education in general practice and to describe its benefits and challenges. We searched 'Pubmed', 'Academic Search Complete', 'Google', and 'MEDLINE' databases using multiple terms related to 'vertical integration' and 'general practice education' for relevant articles published since 2001. Discussion papers, reports, policy documents and position statements were identified from reference lists and retrieved through internet searches. The key components of 'vertical integration' in GP education include continuous educational pathway, all stages in GP education, supporting the continuing educational/professional development needs of learners at each stage and effective curriculum planning and delivery. Many benefits (for GPs, learners and the community) and many challenges (for GPs/practices, learners and GPs in training) have been described. Characteristics of successful implementation include role sharing and collaborative organisational structures. Recent developments in medical education in Ireland, such as the increase in medical school clinical placements in general practice and postgraduate GP training and the introduction of new competence assurance requirements offer an important opportunity to further inform how vertical integration can support increased educational activity in general practice. Describing this model, recognising its benefits and challenges and supporting its implementation in practice are priorities for medical education in Ireland.
NASA Technical Reports Server (NTRS)
Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.
1976-01-01
The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.
Baker, Laurence C; Bundorf, M Kate; Kessler, Daniel P
2014-05-01
We examined the consequences of contractual or ownership relationships between hospitals and physician practices, often described as vertical integration. Such integration can reduce health spending and increase the quality of care by improving communication across care settings, but it can also increase providers' market power and facilitate the payment of what are effectively kickbacks for inappropriate referrals. We investigated the impact of vertical integration on hospital prices, volumes (admissions), and spending for privately insured patients. Using hospital claims from Truven Analytics MarketScan for the nonelderly privately insured in the period 2001-07, we constructed county-level indices of prices, volumes, and spending and adjusted them for enrollees' age and sex. We measured hospital-physician integration using information from the American Hospital Association on the types of relationships hospitals have with physicians. We found that an increase in the market share of hospitals with the tightest vertically integrated relationship with physicians--ownership of physician practices--was associated with higher hospital prices and spending. We found that an increase in contractual integration reduced the frequency of hospital admissions, but this effect was relatively small. Taken together, our results provide a mixed, although somewhat negative, picture of vertical integration from the perspective of the privately insured.
Technology advancement for integrative stem cell analyses.
Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi
2014-12-01
Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.
Technology Advancement for Integrative Stem Cell Analyses
Jeong, Yoon
2014-01-01
Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose—by introducing a concept of vertical and horizontal approach—that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment. PMID:24874188
Dahle, L O; Brynhildsen, J; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M
2002-05-01
Problem-based learning (PBL), combined with early patient contact, multiprofessional education and emphasis on development of communications skills, has become the basis for the medical curriculum at the Faculty of Health Sciences in Linköping (FHS), Sweden, which was started in 1986. Important elements in the curriculum are vertical integration, i.e. integration between the clinical and basic science parts of the curriculum and horizontal integration between different subject areas. This article discusses the importance of vertical integration in an undergraduate medical curriculum, according to experiences from the Faculty of Health Sciences in Linköping, and also give examples on how it has been implemented during the latest 15 years. Results and views put forward in published articles concerning vertical integration within undergraduate medical education are discussed in relation to the experiences in Linköping. Vertical integration between basic sciences and clinical medicine in a PBL setting has been found to stimulate profound rather than superficial learning, and thereby stimulates better understanding of important biomedical principles. Integration probably leads to better retention of knowledge and the ability to apply basic science principles in the appropriate clinical context. Integration throughout the whole curriculum entails a lot of time and work in respect of planning, organization and execution. The teachers have to be deeply involved and enthusiastic and have to cooperate over departmental borders, which may produce positive spin-off effects in teaching and research but also conflicts that have to be resolved. The authors believe vertical integration supports PBL and stimulates deep and lifelong learning.
Vertical integration and organizational networks in health care.
Robinson, J C; Casalino, L P
1996-01-01
This paper documents the growing linkages between primary care-centered medical groups and specialists and between physicians and hospitals under managed care. We evaluate the two alternative forms of organizational coordination: "vertical integration," based on unified ownership, and "virtual integration," based on contractual networks. Excess capacity and the need for investment capital are major short-term determinants of these vertical versus virtual integration decisions in health care. In the longer term, the principal determinants are economies of scale, risk-bearing ability, transaction costs, and the capacity for innovation in methods of managing care.
NASA Astrophysics Data System (ADS)
Choi, Young Kwan; Lee, Jae Hyeong
2015-09-01
In this research, a facility was constructed and its performance was analyzed to improve the energy efficiency of a vertical-type water treatment building. After the design and construction of a fixed tilt Photovoltaic in Building (PVIB) on the rooftop using a crystalline silicon solar cell module and photovoltaic generator integrated with the building by using a Building Integrated Photovoltaic System (BIPV), a thin-film module on the rooftop and outer wall of water treatment building, and the generation efficiency was analyzed. Also, a DC distribution was established for use of a brushless DC (BLDC) pump motor, and the existing lighting-facility-based manual on-off method was turned into a system for energy conservation by controlling light emitting diode (LED) through a wireless motion sensor and dimming control. In addition, a Building Energy Management System (BEMS) for a real-time analysis of the energy efficiency for a vertical0type water treatment building was prepared and tested. The vertical-type water treatment building developed in this study is currently operating the BEMS. The vertical-type water treatment building reported in this paper is expected to reduce energy consumption by about 30% compared to existing water treatment systems.
The Integration Process of Very Thin Mirror Shells with a Particular Regard to Simbol-X
NASA Astrophysics Data System (ADS)
Basso, S.; Pareschi, G.; Tagliaferri, G.; Mazzoleni, F.; Valtolina, R.; Citterio, O.; Conconi, P.
2009-05-01
The optics of Simbol-X are very thin compared to previous X-ray missions (like XMM). Therefore their shells floppy and are unable to maintain the correct shape. To avoid the deformations of their very thin X-ray optics during the integration process we adopt two stiffening rings with a good roundness. In this article the procedure used for the first three prototypes of the Simbol-X optics is presented with a description of the problems involved and with an analysis of the degradation of the performances during the integration. This analysis has been performed with the UV vertical bench measurements at INAF-OAB.
Machta, Rachel M; Maurer, Kristin A; Jones, David J; Furukawa, Michael F; Rich, Eugene C
2018-04-02
Small independent practices are increasingly giving way to more complex affiliations between provider organizations and hospital systems. There are several ways in which vertically integrated health systems could improve quality and lower the costs of care. But there are also concerns that integrated systems may increase the price and costs of care without commensurate improvements in quality and outcomes. Despite a growing body of research on vertically integrated health systems, no systematic review that we know of compares vertically integrated health systems (defined as shared ownership or joint management of hospitals and physician practices) to nonintegrated hospitals or physician practices. We conducted a systematic search of the literature published from January 1996 to November 2016. We considered articles for review if they compared the performance of a vertically integrated health system and examined an outcome related to quality of care, efficiency, or patient-centered outcomes. Database searches generated 7,559 articles, with 29 articles included in this review. Vertical integration was associated with better quality, often measured as optimal care for specific conditions, but showed either no differences or lower efficiency as measured by utilization, spending, and prices. Few studies evaluated a patient-centered outcome; among those, most examined mortality and did not identify any effects. Across domains, most studies were observational and did not address the issue of selection bias. Recent evidence suggests the trend toward vertical integration will likely continue as providers respond to changing payment models and market factors. A growing body of research on comparative health system performance suggests that integration of physician practices with hospitals might not be enough to achieve higher-value care. More information is needed to identify the health system attributes that contribute to improved outcomes, as well as which policy levers can minimize anticompetitive effects and maximize the benefits of these affiliations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, Kirk W.; Oue, Mariko; Kollias, Pavlos
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less
North, Kirk W.; Oue, Mariko; Kollias, Pavlos; ...
2017-08-04
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less
Peer learning in the UNSW Medicine program.
Scicluna, Helen A; O'Sullivan, Anthony J; Boyle, Patrick; Jones, Philip D; McNeil, H Patrick
2015-10-02
The UNSW Australia Medicine program explicitly structures peer learning in program wide mixing of students where students from two adjoining cohorts complete the same course together, including all learning activities and assessment. The purpose of this evaluation is to explore the student experience of peer learning and determine benefits and concerns for junior and senior students. All medical students at UNSW Australia in 2012 (n = 1608) were invited to complete the Peer Learning Questionnaire consisting of 26 fixed-response items and 2 open-ended items exploring vertical integration and near-peer teaching. Assessment data from vertically integrated and non-vertically integrated courses were compared for the period 2011-2013. We received valid responses from 20 % of medical students (n = 328). Eighty percent of respondents were positive about their experience of vertical integration. Year 1 students reported that second year students provided guidance and reassurance (87.8 %), whilst year 2 students reported that the senior role helped them to improve their own understanding, communication and confidence (84 %). Vertical integration had little effect on examination performance and failure rates. This evaluation demonstrates that vertical integration of students who are one year apart and completing the same course leads to positive outcomes for the student experience of learning. Students benefit through deeper learning and the development of leadership qualities within teams. These results are relevant not only for medical education, but also for other professional higher education programs.
Walsh, A M
1998-01-01
During the next decade, the population over age 65 is expected to increase by 11% while the population over age 85 is expected to increase by 42%. These projections suggest that many organizations which currently provide services to the aged will be required to design a range of new products and services for this diverse population. Vertically integrated services provide a viable opportunity to competitively position an organization to respond to the diverse needs of an aged market. Since vertical integration will be essential in negotiating capitate contracts for the aged in the future, this study examined the extent of vertical integration in 116 health and social service organizations in an urban market with an expanding geriatric population.
Horizontal and vertical integration in hospital laboratories and the laboratory information system.
Friedman, B A; Mitchell, W
1990-09-01
An understanding of horizontal and vertical integration and their quasi-integration variants is important for pathologists to formulate a competitive strategy for hospital clinical laboratories. These basic organizational concepts, in turn, are based on the need to establish control over critical laboratory inputs and outputs. The pathologist seeks greater control of mission-critical system inputs and outputs to increase the quality and efficiency of the laboratory operations. The LIS produces horizontal integration of the various hospital laboratories by integrating them vertically. Forward vertical quasi-integration of the laboratories is mediated primarily by the LIS through front-end valued-added features such as reporting of results and creating a long-term on-line test result archive. These features increase the value of the information product of pathology for clinicians and increase the cost of switching to another system. The LIS can also serve as a means for customizing the information product of the laboratories to appeal to new market segments such as hospital administrators.
Vertical and lateral heterogeneous integration
NASA Astrophysics Data System (ADS)
Geske, Jon; Okuno, Yae L.; Bowers, John E.; Jayaraman, Vijay
2001-09-01
A technique for achieving large-scale monolithic integration of lattice-mismatched materials in the vertical direction and the lateral integration of dissimilar lattice-matched structures has been developed. The technique uses a single nonplanar direct-wafer-bond step to transform vertically integrated epitaxial structures into lateral epitaxial variation across the surface of a wafer. Nonplanar wafer bonding is demonstrated by integrating four different unstrained multi-quantum-well active regions lattice matched to InP on a GaAs wafer surface. Microscopy is used to verify the quality of the bonded interface, and photoluminescence is used to verify that the bonding process does not degrade the optical quality of the laterally integrated wells. The authors propose this technique as a means to achieve greater levels of wafer-scale integration in optical, electrical, and micromechanical devices.
Investigation for connecting waveguide in off-planar integrated circuits.
Lin, Jie; Feng, Zhifang
2017-09-01
The transmission properties of a vertical waveguide connected by different devices in off-planar integrated circuits are designed, investigated, and analyzed in detail by the finite-difference time-domain method. The results show that both guide bandwidth and transmission efficiency can be adjusted effectively by shifting the vertical waveguide continuously. Surprisingly, the wide guide band (0.385[c/a]∼0.407[c/a]) and well transmission (-6 dB) are observed simultaneously in several directions when the vertical waveguide is located at a specific location. The results are very important for all-optical integrated circuits, especially in compact integration.
Balch, William M; Bowler, Bruce C; Drapeau, David T; Lubelczyk, Laura C; Lyczkowski, Emily
2018-01-01
Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m -3 ) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained-variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone.
Bowler, Bruce C.; Drapeau, David T.; Lubelczyk, Laura C.; Lyczkowski, Emily
2018-01-01
Abstract Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m−3) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained‐variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone. PMID:29576683
Teaching Theory in an Empirically-Oriented Graduate Program.
ERIC Educational Resources Information Center
Warner, R. Stephen
1987-01-01
Stresses that the role of theory is to facilitate cognitive integration, which has a vertical dimension (abstract to concrete) and a horizontal one (across schools and substantive fields). The author emphasizes horizontal integration over upper-level vertical integration to help students communicate across specialities. (Author/DH)
Vertical electro-absorption modulator design and its integration in a VCSEL
NASA Astrophysics Data System (ADS)
Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Thienpont, H.; Almuneau, G.; Panajotov, K.
2018-04-01
Electro-absorption modulators, either embedded in CMOS technology or integrated with a semiconductor laser, are of high interest for many applications such as optical communications, signal processing and 3D imaging. Recently, the integration of a surface-normal electro-absorption modulator into a vertical-cavity surface-emitting laser has been considered. In this paper we implement a simple quantum well electro-absorption model and design and optimize an asymmetric Fabry-Pérot semiconductor modulator while considering all physical properties within figures of merit. We also extend this model to account for the impact of temperature on the different parameters involved in the calculation of the absorption, such as refractive indices and exciton transition broadening. Two types of vertical modulator structures have been fabricated and experimentally characterized by reflectivity and photocurrent measurements demonstrating a very good agreement with our model. Finally, preliminary results of an electro-absorption modulator vertically integrated with a vertical-cavity surface-emitting laser device are presented, showing good modulation performances required for high speed communications.
Juno at the Vertical Integration Facility
2011-08-03
At Space Launch Complex 41, the Juno spacecraft, enclosed in an Atlas payload fairing, was transferred into the Vertical Integration Facility where it was positioned on top of the Atlas rocket stacked inside.
Integrals and integral equations in linearized wing theory
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B
1951-01-01
The formulas of subsonic and supersonic wing theory for source, doublet, and vortex distributions are reviewed and a systematic presentation is provided which relates these distributions to the pressure and to the vertical induced velocity in the plane of the wing. It is shown that care must be used in treating the singularities involved in the analysis and that the order of integration is not always reversible. Concepts suggested by the irreversibility of order of integration are shown to be useful in the inversion of singular integral equations when operational techniques are used. A number of examples are given to illustrate the methods presented, attention being directed to supersonic flight speed.
ERIC Educational Resources Information Center
De Jarnette, Glenda
Vertical and lateral integration are two important nervous system integrations that affect the development of oral behaviors. There are three progressions in the vertical integration process for speech nervous system development: R-complex speech (ritualistic, memorized expressions), limbic speech (emotional expressions), and cortical speech…
Managed care, vertical integration strategies and hospital performance.
Wang, B B; Wan, T T; Clement, J; Begun, J
2001-09-01
The purpose of this study is to examine the association of managed care with hospital vertical integration strategies, as well as to observe the relationships of different types of vertical integration with hospital efficiency and financial performance. The sample consists of 363 California short-term acute care hospitals in 1994. Linear structure equation modeling is used to test six hypotheses derived from the strategic adaptation model. Several organizational and market factors are controlled statistically. Results suggest that managed care is a driving force for hospital vertical integration. In terms of performance, hospitals that are integrated with physician groups and provide outpatient services (backward integration) have better operating margins, returns on assets, and net cash flows (p < 0.01). These hospitals are not, however, likely to show greater productivity. Forward integration with a long-term-care facility, on the other hand, is positively and significantly related to hospital productivity (p < 0.001). Forward integration is negatively related to financial performance (p < 0.05), however, opposite to the direction hypothesized. Health executives should be responsive to the growth of managed care in their local market and should probably consider providing more backward integrated services rather than forward integrated services in order to improve the hospital's financial performance in today's competitive health care market.
Vawter, G Allen [Corrales, NM
2008-02-26
A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.
Yu, Woo Jong; Li, Zheng; Zhou, Hailong; Chen, Yu; Wang, Yang; Huang, Yu; Duan, Xiangfeng
2014-01-01
The layered materials such as graphene have attracted considerable interest for future electronics. Here we report the vertical integration of multi-heterostructures of layered materials to enable high current density vertical field-effect transistors (VFETs). An n-channel VFET is created by sandwiching few-layer molybdenum disulfide (MoS2) as the semiconducting channel between a monolayer graphene and a metal thin film. The VFETs exhibit a room temperature on-off ratio >103, while at same time deliver a high current density up to 5,000 A/cm2, sufficient for high performance logic applications. This study offers a general strategy for the vertical integration of various layered materials to obtain both p- and n-channel transistors for complementary logic functions. A complementary inverter with larger than unit voltage gain is demonstrated by vertically stacking the layered materials of graphene, Bi2Sr2Co2O8 (p-channel), graphene, MoS2 (n-channel), and metal thin film in sequence. The ability to simultaneously achieve high on-off ratio, high current density, and logic integration in the vertically stacked multi-heterostructures can open up a new dimension for future electronics to enable three-dimensional integration. PMID:23241535
Novel horizontal and vertical integrated bioethics curriculum for medical courses.
D'Souza, Russell F; Mathew, Mary; D'Souza, Derek S J; Palatty, Princy
2018-02-28
Studies conducted by the University of Haifa, Israel in 2001, evaluating the effectiveness of bioethics being taught in medical colleges, suggested that there was a significant lack of translation in clinical care. Analysis also revealed, ineffectiveness with the teaching methodology used, lack of longitudinal integration of bioethics into the undergraduate medical curriculum, and the limited exposure to the technology in decision making when confronting ethical dilemmas. A modern novel bioethics curriculum and innovative methodology for teaching bioethics for the medical course was developed by the UNESCO Chair in Bioethics, Haifa. The horizontal (subject-wise) curriculum was vertically integrated seamlessly through the entire course. An innovative bioethics teaching methodology was employed to implement the curriculum. This new curriculum was piloted in a few medical colleges in India from 2011 to 2015 and the outcomes were evaluated. The evaluation confirmed gains over the earlier identified translation gap with added high student acceptability and satisfaction. This integrated curriculum is now formally implemented in the Indian program's Health Science Universities which is affiliated with over 200 medical schools in India. This article offers insights from the evaluated novel integrated bioethics curriculum and the innovative bioethics teaching methodology that was used in the pilot program.
Positioning for vertical integration through clinics "without walls".
Johnson, B A; Schryver, D L
1994-01-01
Authors Bruce A. Johnson, J.D., M.P.A., and Darrell Schryver, D.P.A., offer the clinic without walls model as a transitory step to full vertical integration. They write that this model "may enable physicians to address the key issues associated with managed care and integration in a more gradual, controlled fashion.
Integrating Equity in a Public Health Funding Strategy.
Joseph, Kristy T; Rice, Ketra; Li, Chunyu
2016-01-01
Equity can be valuable to guide decision makers about where to target funds; however, there are few studies for modeling vertical equity in public health program funding strategies. This case study modeled vertical equity in the funding strategy of the Centers for Disease Control and Prevention's Colorectal Cancer Control Program. To integrate vertical equity by using historical funding and health data, we (a) examined the need for colorectal cancer screening, (b) conducted multiple regressions to examine the relationship between factors of need and funding of states, (c) stratified states into similar need groups, (d) estimated vertical equity within groups, and (e) assessed equity in the funding distribution. Certain states with similar needs had high relative funding, whereas other states with similar needs had low relative funding. The methods used to integrate vertical equity in this case study could be applied in publicly funded programs to potentially minimize inequities and improve outcomes.
Active Control of F/A-18 Vertical Tail Buffeting using Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Moses, Robert W.; Huttsell, Lawerence J.; Harrand, Vincent J.
2003-01-01
Vertical tail buffeting is a serious multidisciplinary problem that limits the performance of twin-tail fighter aircraft. The buffet problem occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced pressure loads on the vertical tails. This paper describes a multidisciplinary computational investigation for buffet load alleviation of full F/A-18 aircraft using distributed piezoelectric actuators. The inboard and outboard surfaces of the vertical tail are equipped with piezoelectric actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the smart structure are expressed with a three-dimensional finite element model. A single-input-single-output controller is designed to drive the active piezoelectric actuators. High-fidelity multidisciplinary analysis modules for the fluid dynamics, structure dynamics, electrodynamics of the piezoelectric actuators, fluid-structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. Peak values of the power spectral density of tail tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. RMS values of tip acceleration are reduced by as much as 12%.
Marshfield Clinic, physician networks, and the exercise of monopoly power.
Greenberg, W
1998-01-01
OBJECTIVE: Antitrust enforcement can improve the performance of large, vertically integrated physician-hospital organizations (PHOs). Objective: To examine the recent court decisions in the Blue Cross and Blue Shield United of Wisconsin v. Marshfield Clinic antitrust case to understand better the benefits and costs of vertical integration in healthcare. SUMMARY AND CONCLUSIONS: Vertical integration in the Marshfield Clinic may have had the benefits of reducing transactions and uncertainty costs while improving the coordination between ambulatory and inpatient visits, but at the cost of Marshfield Clinic's monopolizing of physician services and foreclosing of HMO entry in northwest Wisconsin. The denial of hospital staff privileges to non-Marshfield Clinic physicians combined with certificate-of-need regulations impeded physician entry and solidified Marshfield Clinic's monopoly position. Enforcement efforts of recent antitrust guidelines by the U.S. Department of Justice and the Federal Trade Commission will need to address carefully the benefits and costs of vertically integrated systems. PMID:9865229
Progress in the development of integrated mental health care in Scotland
Woods, Kevin; McCollam, Allyson
2002-01-01
Abstract The development of integrated care through the promotion of ‘partnership working’ is a key policy objective of the Scottish Executive, the administration responsible for health services in Scotland. This paper considers the extent to which this goal is being achieved in mental health services, particularly those for people with severe and enduring mental illness. Distinguishing between the horizontal and vertical integration of services, exploratory research was conducted to assess progress towards this objective by examining how far a range of functional activities in Primary Care Trusts (PCTs) and their constituent Local Health Care Co-operatives (LHCCs) were themselves becoming increasingly integrated. All PCTs in Scotland were surveyed by postal questionnaire, and followed up by detailed telephone interviews. Six LHCC areas were selected for detailed case study analysis. A Reference Group was used to discuss and review emerging themes from the fieldwork. The report suggests that faster progress is being made in the horizontal integration of services between health and social care organisations than is the case for vertical integration between primary health care and specialist mental health care services; and that there are significant gaps in the extent to which functional activities within Trusts are changing to support the development of integrated care. A number of models are briefly considered, including the idea of ‘intermediate care’ that might speed the process of integration. PMID:16896397
Integrated Medical Curriculum: Advantages and Disadvantages
Quintero, Gustavo A.; Vergel, John; Arredondo, Martha; Ariza, María-Cristina; Gómez, Paula; Pinzon-Barrios, Ana-Maria
2016-01-01
Most curricula for medical education have been integrated horizontally and vertically–-vertically between basic and clinical sciences. The Flexnerian curriculum has disappeared to permit integration between basic sciences and clinical sciences, which are taught throughout the curriculum. We have proposed a different form of integration where the horizontal axis represents the defined learning outcomes and the vertical axis represents the teaching of the sciences throughout the courses. We believe that a mere integration of basic and clinical sciences is not enough because it is necessary to emphasize the importance of humanism as well as health population sciences in medicine. It is necessary to integrate basic and clinical sciences, humanism, and health population in the vertical axis, not only in the early years but also throughout the curriculum, presupposing the use of active teaching methods based on problems or cases in small groups. PMID:29349303
Konetzka, R Tamara; Stuart, Elizabeth A; Werner, Rachel M
2018-02-07
In this paper we examine empirically the effect of integration on Medicare payment and rehospitalization. We use 2005-2013 data on Medicare beneficiaries receiving post-acute care (PAC) in the U.S. to examine integration between hospitals and the two most common post-acute care settings: skilled nursing facilities (SNFs) and home health agencies (HHA), using two measures of integration-formal vertical integration and informal integration representing preferential relationships between providers without formal relationships. Our identification strategy is twofold. First, we use longitudinal models with a fixed effect for each hospital-PAC pair in a market to test how changes in integration impact patient outcomes. Second, we use an instrumental variable approach to account for patient selection into integrated providers. We find that vertical integration between hospitals and SNFs increases Medicare payments and reduces rehospitalization rates. However, vertical integration between hospitals and HHAs has little effect, nor does informal integration between hospitals and either PAC setting. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
A new light on caloric test--what was disclosed by three dimensional analysis of caloric nystagmus?
NASA Technical Reports Server (NTRS)
Arai, Y.
2001-01-01
For better understanding of caloric nystagmus, this phenomenon will be reviewed historically in three stages. 1) The first light on caloric nystagmus was thrown by Barany 1906. Through direct observation of eye movements, Barany established the caloric test as an important tool to determine the side of lesion for vertigo. 2) The second light is shed by electrooculogram (EOG) from the late 1950th. EOG enabled qualitative analysis of caloric nystagmus, and proved Barany's convection theory, but resulted in neglect of vertical and roll eye movements. 3) The third light is gained by 3D recording of eye movements started from the late 1980th. 3D recordings of eye movements enabled us to analyze the spatial orientation of caloric nystagmus, and disclose the close correlation of the nystagmus components in the head vertical and the space vertical planes, suggesting a contribution of the velocity storage integrator. The 3D property of caloric nystagmus will be explained in detail.
Evaluation of Vertical Integrated Nanogenerator Performances in Flexion
NASA Astrophysics Data System (ADS)
Tao, R.; Hinchet, R.; Ardila, G.; Mouis, M.
2013-12-01
Piezoelectric nanowires have attracted great interest as new building blocks of mechanical energy harvesting systems. This paper presents the design improvements of mechanical energy harvesters integrating vertical ZnO piezoelectric nanowires onto a Silicon or plastic membrane. We have calculated the energy generation and conversion performance of ZnO nanowires based vertical integrated nanogenerators in flexion mode. We show that in flexion mode ZnO nanowires are superior to bulk ZnO layer. Both mechanical and electrical effects of matrix materials on the potential generation and energy conversion are discussed, in the aim of guiding further improvement of nanogenerator performance.
Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam
2014-04-15
We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.
Integrative Analysis of Omics Big Data.
Yu, Xiang-Tian; Zeng, Tao
2018-01-01
The diversity and huge omics data take biology and biomedicine research and application into a big data era, just like that popular in human society a decade ago. They are opening a new challenge from horizontal data ensemble (e.g., the similar types of data collected from different labs or companies) to vertical data ensemble (e.g., the different types of data collected for a group of person with match information), which requires the integrative analysis in biology and biomedicine and also asks for emergent development of data integration to address the great changes from previous population-guided to newly individual-guided investigations.Data integration is an effective concept to solve the complex problem or understand the complicate system. Several benchmark studies have revealed the heterogeneity and trade-off that existed in the analysis of omics data. Integrative analysis can combine and investigate many datasets in a cost-effective reproducible way. Current integration approaches on biological data have two modes: one is "bottom-up integration" mode with follow-up manual integration, and the other one is "top-down integration" mode with follow-up in silico integration.This paper will firstly summarize the combinatory analysis approaches to give candidate protocol on biological experiment design for effectively integrative study on genomics and then survey the data fusion approaches to give helpful instruction on computational model development for biological significance detection, which have also provided newly data resources and analysis tools to support the precision medicine dependent on the big biomedical data. Finally, the problems and future directions are highlighted for integrative analysis of omics big data.
A Study of Vertical Transport through Graphene toward Control of Quantum Tunneling.
Zhu, Xiaodan; Lei, Sidong; Tsai, Shin-Hung; Zhang, Xiang; Liu, Jun; Yin, Gen; Tang, Min; Torres, Carlos M; Navabi, Aryan; Jin, Zehua; Tsai, Shiao-Po; Qasem, Hussam; Wang, Yong; Vajtai, Robert; Lake, Roger K; Ajayan, Pulickel M; Wang, Kang L
2018-02-14
Vertical integration of van der Waals (vdW) materials with atomic precision is an intriguing possibility brought forward by these two-dimensional (2D) materials. Essential to the design and analysis of these structures is a fundamental understanding of the vertical transport of charge carriers into and across vdW materials, yet little has been done in this area. In this report, we explore the important roles of single layer graphene in the vertical tunneling process as a tunneling barrier. Although a semimetal in the lateral lattice plane, graphene together with the vdW gap act as a tunneling barrier that is nearly transparent to the vertically tunneling electrons due to its atomic thickness and the transverse momenta mismatch between the injected electrons and the graphene band structure. This is accentuated using electron tunneling spectroscopy (ETS) showing a lack of features corresponding to the Dirac cone band structure. Meanwhile, the graphene acts as a lateral conductor through which the potential and charge distribution across the tunneling barrier can be tuned. These unique properties make graphene an excellent 2D atomic grid, transparent to charge carriers, and yet can control the carrier flux via the electrical potential. A new model on the quantum capacitance's effect on vertical tunneling is developed to further elucidate the role of graphene in modulating the tunneling process. This work may serve as a general guideline for the design and analysis of vdW vertical tunneling devices and heterostructures, as well as the study of electron/spin injection through and into vdW materials.
NASA Technical Reports Server (NTRS)
Tyson, P. D.; Garstang, M.; Thompson, A. M.; DAbreton, P.; Diab, R. D.; Browell, E. V.
1997-01-01
Vertically integrated back and forward trajectories for the 300-200, 700-500 and surface-800 hPa levels are calculated using Pretoria as point of origin for the Southern Africa Fire-Atmosphere Research Initiative (SAFARI) period September-October 1992. The transport fields are then combined to show both horizontal and vertical transport of air to and from Pretoria at the different levels. Air transport patterns in the vertical are linked to the occurrence of absolutely stable layers which are also evident in the 16 ozonesonde profiles recorded at Pretoria during SAFARI. The coherence of the stratification based on dynamical and ozone analysis permits the use of mean ozone profiles with air volume fluxes to interpret the ozone in terms of photochemistry and transport within stable layers. Extensive recirculation across the meridional plane at Pretoria implies that advection of ozone is slow and that photochemistry is responsible for the observed vertical structure over central southern Africa in September and October 1992. Requisite ozone formation rates are supported by model analysis of ozone and ozone precursors measured from SAFARI and Transport and Atmospheric Research Chemistry near the Equator-Atlantic aircraft.
NASA Astrophysics Data System (ADS)
Konduru, R.; Gupta, A.; Matsumoto, J.; Takahashi, H. G.
2017-12-01
In order to explain monsoon circulation, surface temperature gradients described as most traditional concept. However, it cannot explain certain important aspects of monsoon circulation. Later, convective quasi-equilibrium framework and vertically integrated atmospheric energy budget has become recognized theories to explain the monsoon circulation. In this article, same theories were analyzed and observed for the duration 1979-2010 over south Asian summer monsoon region. With the help of NCEP-R2, NOAA 20th Century, and Era-Interim reanalysis an important feature was noticed pertained to subcloud layer entropy and vertical moist static energy. In the last 32 years, subcloud layer entropy and vertically integrated moist static energy has shown significant seasonal warming all over the region with peak over the poleward flank of the cross-equatorial cell. The important reason related to the warming was found to be increase in surface enthalpy fluxes. Instead, other dynamical contributions pertained to the warming was also observed. Increase in positive anomalies of vertical advection of moist static energy over northern Bay of Bengal, Central India, Peninsular India, Eastern Arabian Sea, and Equatorial Indian Ocean was found to be an important dynamic factor contributing for warming of vertically integrated moist static energy. Along with it vertical moist stability has also supported the argument. Similar interpretations were perceived in the AMIP simulation of CCSM4 model. Further modeling experiments on this warming will be helpful to know the exact mechanism behind it.
China’s new-age small farms and their vertical integration: agribusiness or co-ops?
Huang, Philip C C
2011-01-01
The future of Chinese agriculture lies not with large mechanized farms but with small capital-labor dual intensifying family farms for livestock-poultry-fish raising and vegetable-fruit cultivation. Chinese food consumption patterns have been changing from the old 8:1:1 pattern of 8 parts grain, 1 part meat, and 1 part vegetables to a 4:3:3 pattern, with a corresponding transformation in agricultural structure. Small family-farming is better suited for the new-age agriculture, including organic farming, than large-scale mechanized farming, because of the intensive, incremental, and variegated hand labor involved, not readily open to economies of scale, though compatible with economies of scope. It is also better suited to the realities of severe population pressure on land. But it requires vertical integration from cultivation to processing to marketing, albeit without horizontal integration for farming. It is against such a background that co-ops have arisen spontaneously for integrating small farms with processing and marketing. The Chinese government, however, has been supporting aggressively capitalistic agribusinesses as the preferred mode of vertical integration. At present, Chinese agriculture is poised at a crossroads, with the future organizational mode for vertical integration as yet uncertain.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
NASA Astrophysics Data System (ADS)
Steill, J. D.; Hager, J. S.; Compton, R. N.
2005-12-01
Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provides a unique opportunity to analyze the local atmospheric chemical composition. Many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of diurnal trends in the trace gas concentrations. Anthropogenic influences are of special interest, and seasonal and daily trends in amounts of tropospheric pollutants such as ozone correlate with other sources such as the EPA. Although obviously limited by weather considerations, the technique is suited to the regional climate and a body of data of more than two years extent is available for analysis.
Vertical Integration: Results from a Cross-Course Student Collaboration
ERIC Educational Resources Information Center
Sloan, Thomas; Lewis, David
2011-01-01
The authors report the results of a cross-class project involving sophomore-level students in an Operations Analysis (OA) class with junior-level students in an Operations Management (OM) class. The students formed virtual teams and developed a simulation model of a call center. The OM students provided the management expertise, while the OA…
Aeroelastic analysis of a troposkien-type wind turbine blade
NASA Technical Reports Server (NTRS)
Nitzsche, F.
1981-01-01
The linear aeroelastic equations for one curved blade of a vertical axis wind turbine in state vector form are presented. The method is based on a simple integrating matrix scheme together with the transfer matrix idea. The method is proposed as a convenient way of solving the associated eigenvalue problem for general support conditions.
Turbulent premixed combustion in V-shaped flames: Characteristics of flame front
NASA Astrophysics Data System (ADS)
Kheirkhah, S.; Gülder, Ö. L.
2013-05-01
Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.
Drazan, John F; Danielsen, Heather; Vercelletto, Matthew; Loya, Amy; Davis, James; Eglash, Ron
2016-08-01
The purpose of this study was to develop and deploy a low cost vertical jump platform using readily available materials for Science, Technology, Engineering, and Mathematics (STEM) education and outreach in the inner city. The platform was used to measure the jumping ability of participants to introduce students to the collection and analysis of scientific data in an engaging, accessible manner. This system was designed and fabricated by a student team of engineers as part of a socially informed engineering and design class. The vertical jump platform has been utilized in 10 classroom lectures in physics and biology. The system was also used in an after school program in which high school volunteers prepared a basketball based STEM outreach program, and at a community outreach events with over 100 participants. At present, the same group of high school students are now building their own set of vertical jump platform under the mentorship of engineering undergraduates. The construction and usage of the vertical jump platform provides an accessible introduction to the STEM fields within the urban community.
Sun, Min-Chul; Kim, Garam; Kim, Sang Wan; Kim, Hyun Woo; Kim, Hyungjin; Lee, Jong-Ho; Shin, Hyungcheol; Park, Byung-Gook
2012-07-01
In order to extend the conventional low power Si CMOS technology beyond the 20-nm node without SOI substrates, we propose a novel co-integration scheme to build horizontal- and vertical-channel MOSFETs together and verify the idea using TCAD simulations. From the fabrication viewpoint, it is highlighted that this scheme provides additional vertical devices with good scalability by adding a few steps to the conventional CMOS process flow for fin formation. In addition, the benefits of the co-integrated vertical devices are investigated using a TCAD device simulation. From this study, it is confirmed that the vertical device shows improved off-current control and a larger drive current when the body dimension is less than 20 nm, due to the electric field coupling effect at the double-gated channel. Finally, the benefits from the circuit design viewpoint, such as the larger midpoint gain and beta and lower power consumption, are confirmed by the mixed-mode circuit simulation study.
Vertical Integration Spurs American Health Care Revolution.
ERIC Educational Resources Information Center
Phillips, Richard C.
1986-01-01
Under new "managed health care systems," the classical functional separation of risk taker, claims payor, and provider are vertically integrated into a common entity. This evolution should produce a competitive environment with medical care rendered to all Americans on a more cost-effective basis. (CJH)
Barrier inhomogeneities at vertically stacked graphene-based heterostructures.
Lin, Yen-Fu; Li, Wenwu; Li, Song-Lin; Xu, Yong; Aparecido-Ferreira, Alex; Komatsu, Katsuyoshi; Sun, Huabin; Nakaharai, Shu; Tsukagoshi, Kazuhito
2014-01-21
The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.
Should nurses be leaders of integrated health care?
Thomas, Paul; While, Alison
2007-09-01
To examine the role of nurses within integrated health care. Healthcare planners are overly concerned with the treatment of diseases and insufficiently focused on social cohesion vertical rather than horizontal integration of healthcare effort. These domains need to be better connected, to avoid medicalization of social problems and socialisation of medical problems. Published literature, related to theories of whole system integration. *When conceptualizing whole system integration it helps to consider research insights to be snapshots of more complex stories-in-evolution, and change to be the result of ongoing community dance where multiple players adapt their steps to each other. *One image that helps to conceptualize integration is that of a railway network. Railway tracks and multiple journeys are equally needed; each requiring a different approach for success. *Traditional nursing values make nurses more attuned to the issues of combined vertical and horizontal integration than medical colleagues. Nurses should lead integration at the interface between horizontal and vertical activities. Nursing managers and universities should support the development of nurses as leaders of whole system integration, in partnership with local healthcare organizations.
CIRSS vertical data integration, San Bernardino study
NASA Technical Reports Server (NTRS)
Hodson, W.; Christenson, J.; Michel, R. (Principal Investigator)
1982-01-01
The creation and use of a vertically integrated data base, including LANDSAT data, for local planning purposes in a portion of San Bernardino County, California are described. The project illustrates that a vertically integrated approach can benefit local users, can be used to identify and rectify discrepancies in various data sources, and that the LANDSAT component can be effectively used to identify change, perform initial capability/suitability modeling, update existing data, and refine existing data in a geographic information system. Local analyses were developed which produced data of value to planners in the San Bernardino County Planning Department and the San Bernardino National Forest staff.
47 CFR 76.504 - Limits on carriage of vertically integrated programming.
Code of Federal Regulations, 2014 CFR
2014-10-01
... programming. 76.504 Section 76.504 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Limits on carriage of vertically integrated programming. (a) Except as otherwise provided in this section... national video programming services owned by the cable operator or in which the cable operator has an...
47 CFR 76.504 - Limits on carriage of vertically integrated programming.
Code of Federal Regulations, 2010 CFR
2010-10-01
... programming. 76.504 Section 76.504 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Limits on carriage of vertically integrated programming. (a) Except as otherwise provided in this section... national video programming services owned by the cable operator or in which the cable operator has an...
The vertical variability of hyporheic fluxes inferred from riverbed temperature data
NASA Astrophysics Data System (ADS)
Cranswick, Roger H.; Cook, Peter G.; Shanafield, Margaret; Lamontagne, Sebastien
2014-05-01
We present detailed profiles of vertical water flux from the surface to 1.2 m beneath the Haughton River in the tropical northeast of Australia. A 1-D numerical model is used to estimate vertical flux based on raw temperature time series observations from within downwelling, upwelling, neutral, and convergent sections of the hyporheic zone. A Monte Carlo analysis is used to derive error bounds for the fluxes based on temperature measurement error and uncertainty in effective thermal diffusivity. Vertical fluxes ranged from 5.7 m d-1 (downward) to -0.2 m d-1 (upward) with the lowest relative errors for values between 0.3 and 6 m d-1. Our 1-D approach provides a useful alternative to 1-D analytical and other solutions because it does not incorporate errors associated with simplified boundary conditions or assumptions of purely vertical flow, hydraulic parameter values, or hydraulic conditions. To validate the ability of this 1-D approach to represent the vertical fluxes of 2-D flow fields, we compare our model with two simple 2-D flow fields using a commercial numerical model. These comparisons showed that: (1) the 1-D vertical flux was equivalent to the mean vertical component of flux irrespective of a changing horizontal flux; and (2) the subsurface temperature data inherently has a "spatial footprint" when the vertical flux profiles vary spatially. Thus, the mean vertical flux within a 2-D flow field can be estimated accurately without requiring the flow to be purely vertical. The temperature-derived 1-D vertical flux represents the integrated vertical component of flux along the flow path intersecting the observation point. This article was corrected on 6 JUN 2014. See the end of the full text for details.
NASA Technical Reports Server (NTRS)
Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.
2002-01-01
The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components also produced variations in the temporal pattern of responses as a function of rotation direction. These findings are consistent with the hypothesis that a vestibulorecipient region of the PBN and KF integrates signals from the vestibular nuclei and relay information about changes in whole-body orientation to pathways that produce homeostatic and affective responses.
A full-duplex working integrated optoelectronic device for optical interconnect
NASA Astrophysics Data System (ADS)
Liu, Kai; Fan, Huize; Huang, Yongqing; Duan, Xiaofeng; Wang, Qi; Ren, Xiaomin; Wei, Qi; Cai, Shiwei
2018-05-01
In this paper, a full-duplex working integrated optoelectronic device is proposed. It is constructed by integrating a vertical cavity surface emitting laser (VCSEL) unit above a resonant cavity enhanced photodetector (RCE-PD) unit. Analysis shows that, the VCSEL unit has a threshold current of 1 mA and a slop efficiency of 0.66 W/A at 849.7 nm, the RCE-PD unit obtains its maximal absorption quantum efficiency of 90.24% at 811 nm with a FWHM of 4 nm. Moreover, the two units of the proposed integrated device can work independently from each other. So that the proposed integrated optoelectronic device can work full-duplex. It can be applied for single fiber bidirectional optical interconnects system.
Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed
NASA Astrophysics Data System (ADS)
Kenton, Brian J.; Fleming, Andrew J.; Leang, Kam K.
2011-12-01
The mechanical design of a high-bandwidth, short-range vertical positioning stage is described for integration with a commercial scanning probe microscope (SPM) for dual-stage actuation to significantly improve scanning performance. The vertical motion of the sample platform is driven by a stiff and compact piezo-stack actuator and guided by a novel circular flexure to minimize undesirable mechanical resonances that can limit the performance of the vertical feedback control loop. Finite element analysis is performed to study the key issues that affect performance. To relax the need for properly securing the stage to a working surface, such as a laboratory workbench, an inertial cancellation scheme is utilized. The measured dominant unloaded mechanical resonance of a prototype stage is above 150 kHz and the travel range is approximately 1.56 μm. The high-bandwidth stage is experimentally evaluated with a basic commercial SPM, and results show over 25-times improvement in the scanning performance.
Pecher, I.A.; Holbrook, W.S.; Sen, M.K.; Lizarralde, D.; Wood, W.T.; Hutchinson, D.R.; Dillon, William P.; Hoskins, H.; Stephen, R.A.
2003-01-01
We present results from an analysis of anisotropy in marine sediments using walkaway vertical seismic profiles from the Blake Ridge, offshore South Carolina. We encountered transverse isotropy (TI) with a vertical symmetry axis in a gas-hydrate-bearing unit of clay and claystone with Thomsen parameters ?? = 0.05 ?? 0.02 and ?? = 0.04 ?? 0.06. TI increased to ?? = 0.16 ?? 0.04 and ?? = 0.19 ?? 0.12 in the underlying gas zone. Rock physics modeling suggests that the observed TI is caused by a partial alignment of clay particles rather than high-velocity gas-hydrate veins. Similarly, the increase of TI in the gas zone is not caused by thin low-velocity gas layers but rather, we speculate, by the sharp contrast between seismic properties of an anisotropic sediment frame and elongated gas-bearing pore voids. Our results underscore the significance of anisotropy for integrating near-vertical and wide-angle seismic data.
Aigen, Kenneth
2009-01-01
This study illustrates the use of a new musicological method for analyzing music in music therapy. It examines two pieces of clinical music through the constructs of schema theory. It begins with an argument for enhanced musical analysis in music therapy as a means of elevating the status of explanation in music therapy. Schema theory is introduced as a means of integrating musical with clinical concerns. Some basic ideas in schema theory are explained and the schemas of VERTICALITY and CONTAINER are presented as central ones in the analysis of music. Two transcriptions-one of a composed song and one of an improvisation-are examined in detail to illustrate how decisions in the temporal, melodic, and harmonic dimensions of the music are linked to specific clinical goals. The article concludes with a discussion of the implications of this type of musicological analysis for explanatory theory in music therapy.
Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.
2011-01-01
Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required to result in substantial decreases in this error. During standard two-way depth integration, a depth-integrating suspended-sediment sampler collects a sample of the water-sediment mixture during two transits at each vertical in a cross section: one transit while moving from the water surface to the bed, and another transit while moving from the bed to the water surface. As the number of transits is doubled at an individual vertical, this error is reduced by ~30 percent in each size class of suspended sediment. For a given size class of suspended sediment, the error arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration depends only on the number of verticals collected, whereas the error arising from inadequate time averaging depends on both the number of verticals collected and the number of transits collected at each vertical. Summing these two errors in quadrature yields a total uncertainty in an equal-discharge-increment (EDI) or equal-width-increment (EWI) measurement of the time-averaged velocity-weighted suspended-sediment concentration in a river cross section (exclusive of any laboratory-processing errors). By virtue of how the number of verticals and transits influences the two individual errors within this total uncertainty, the error arising from inadequate time averaging slightly dominates that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. Adding verticals to an EDI or EWI measurement is slightly more effective in reducing the total uncertainty than adding transits only at each vertical, because a new vertical contributes both temporal and spatial information. However, because collection of depth-integrated samples at more transits at each vertical is generally easier and faster than at more verticals, addition of a combination of verticals and transits is likely a more practical approach to reducing the total uncertainty in most field situatio
Vertically Integrating Professional Skills throughout a Mathematics Major
ERIC Educational Resources Information Center
Dziak, Clarice; Leventhal, Brian; Luttman, Aaron; Skufca, Joseph
2014-01-01
In response to a university mandate to include "professional issues" as a component of every major, we have developed a vertically integrated approach to incorporating the study of professional skills and issues into the mathematics curriculum. Beginning in the first year of study, mathematics majors take an inquiry-based course in…
Vertical Integration: Teachers' Knowledge and Teachers' Voice.
ERIC Educational Resources Information Center
Corrie, L.
1995-01-01
Traces the theoretical basis for vertical integration in early school years. Contrasts transmission-based pedagogy with a higher level of teacher control, and acquirer-based pedagogy with a higher level of student control. Suggests that early childhood pedagogy will be maintained when teachers are able to articulate their pedagogical knowledge and…
Serotyping of Salmonella Isolates from Broiler Vertical Integrations in Colombia
USDA-ARS?s Scientific Manuscript database
This study analyzed 106 Salmonella isolates from different points in broiler vertical integrations of two important poultry areas of Colombia. It was possible to identify the presence of Salmonella in five categories: breeder farm (17.9%), hatchery (6.6 %), broiler farm (38.7 %), processing plant (9...
Vertical Integration of Geographic Information Sciences: A Recruitment Model for GIS Education
ERIC Educational Resources Information Center
Yu, Jaehyung; Huynh, Niem Tu; McGehee, Thomas Lee
2011-01-01
An innovative vertical integration model for recruiting to GIS education was introduced and tested following four driving forces: curriculum development, GIS presentations, institutional collaboration, and faculty training. Curriculum development was a useful approach to recruitment, student credit hour generation, and retention-rate improvement.…
NASA Astrophysics Data System (ADS)
Saito, Hideaki; Ogura, Ichiro; Sugimoto, Yoshimasa; Kasahara, Kenichi
1995-05-01
The monolithic incorporation and performance of vertical-cavity surface-emitting lasers (VCSELs) emitting at two distinct wavelengths, which were suited for application to wavelength division multiplexing (WDM) systems were reported. The monolithic integration of two-wavelength VCSEL arrays was achieved by using mask molecular beam epitaxy. This method can generate arrays that have the desired integration area size and wavelength separation.
Overcoming the matched-sample bottleneck: an orthogonal approach to integrate omic data.
Nguyen, Tin; Diaz, Diana; Tagett, Rebecca; Draghici, Sorin
2016-07-12
MicroRNAs (miRNAs) are small non-coding RNA molecules whose primary function is to regulate the expression of gene products via hybridization to mRNA transcripts, resulting in suppression of translation or mRNA degradation. Although miRNAs have been implicated in complex diseases, including cancer, their impact on distinct biological pathways and phenotypes is largely unknown. Current integration approaches require sample-matched miRNA/mRNA datasets, resulting in limited applicability in practice. Since these approaches cannot integrate heterogeneous information available across independent experiments, they neither account for bias inherent in individual studies, nor do they benefit from increased sample size. Here we present a novel framework able to integrate miRNA and mRNA data (vertical data integration) available in independent studies (horizontal meta-analysis) allowing for a comprehensive analysis of the given phenotypes. To demonstrate the utility of our method, we conducted a meta-analysis of pancreatic and colorectal cancer, using 1,471 samples from 15 mRNA and 14 miRNA expression datasets. Our two-dimensional data integration approach greatly increases the power of statistical analysis and correctly identifies pathways known to be implicated in the phenotypes. The proposed framework is sufficiently general to integrate other types of data obtained from high-throughput assays.
Advanced composite vertical fin for L-1011 aircraft
NASA Technical Reports Server (NTRS)
Jackson, A. C.
1984-01-01
The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.
NASA Technical Reports Server (NTRS)
Spinhirne, J. D.; Reagan, J. A.; Herman, B. M.
1980-01-01
The paper reports on vertical profiles of aerosol extinction and backscatter in the troposphere which were obtained from multi zenith angle lidar measurements. It is reported that a direct slant path solution was found to be not possible due to horizontal inhomogeneity of the atmosphere. Attention is given to the use of a regression analysis with respect to zenith angle for a layer integration of the angle dependent lidar equation in order to determine the optical thickness and aerosol extinction-to-backscatter ratio for defined atmospheric layers and the subsequent evaluation of cross-section profiles.
Optical characterization of tissue mimicking phantoms by a vertical double integrating sphere system
NASA Astrophysics Data System (ADS)
Han, Yilin; Jia, Qiumin; Shen, Shuwei; Liu, Guangli; Guo, Yuwei; Zhou, Ximing; Chu, Jiaru; Zhao, Gang; Dong, Erbao; Allen, David W.; Lemaillet, Paul; Xu, Ronald
2016-03-01
Accurate characterization of absorption and scattering properties for biologic tissue and tissue-simulating materials enables 3D printing of traceable tissue-simulating phantoms for medical spectral device calibration and standardized medical optical imaging. Conventional double integrating sphere systems have several limitations and are suboptimal for optical characterization of liquid and soft materials used in 3D printing. We propose a vertical double integrating sphere system and the associated reconstruction algorithms for optical characterization of phantom materials that simulate different human tissue components. The system characterizes absorption and scattering properties of liquid and solid phantom materials in an operating wavelength range from 400 nm to 1100 nm. Absorption and scattering properties of the phantoms are adjusted by adding titanium dioxide powder and India ink, respectively. Different material compositions are added in the phantoms and characterized by the vertical double integrating sphere system in order to simulate the human tissue properties. Our test results suggest that the vertical integrating sphere system is able to characterize optical properties of tissue-simulating phantoms without precipitation effect of the liquid samples or wrinkling effect of the soft phantoms during the optical measurement.
Microsoft C#.NET program and electromagnetic depth sounding for large loop source
NASA Astrophysics Data System (ADS)
Prabhakar Rao, K.; Ashok Babu, G.
2009-07-01
A program, in the C# (C Sharp) language with Microsoft.NET Framework, is developed to compute the normalized vertical magnetic field of a horizontal rectangular loop source placed on the surface of an n-layered earth. The field can be calculated either inside or outside the loop. Five C# classes with member functions in each class are, designed to compute the kernel, Hankel transform integral, coefficients for cubic spline interpolation between computed values and the normalized vertical magnetic field. The program computes the vertical magnetic field in the frequency domain using the integral expressions evaluated by a combination of straightforward numerical integration and the digital filter technique. The code utilizes different object-oriented programming (OOP) features. It finally computes the amplitude and phase of the normalized vertical magnetic field. The computed results are presented for geometric and parametric soundings. The code is developed in Microsoft.NET visual studio 2003 and uses various system class libraries.
Shang, Kuanping; Pathak, Shibnath; Liu, Guangyao; Feng, Shaoqi; Li, Siwei; Lai, Weicheng; Yoo, S J B
2017-05-01
We designed and demonstrated a tri-layer Si3N4/SiO2 photonic integrated circuit capable of vertical interlayer coupling with arbitrary splitting ratios. Based on this multilayer photonic integrated circuit platform with each layer thicknesses of 150 nm, 50 nm, and 150 nm, we designed and simulated the vertical Y-junctions and 3D couplers with arbitrary power splitting ratios between 1:10 and 10:1 and with negligible(< -50 dB) reflection. Based on the design, we fabricated and demonstrated tri-layer vertical Y-junctions with the splitting ratios of 1:1 and 3:2 with excess optical losses of 0.230 dB. Further, we fabricated and demonstrated the 1 × 3 3D couplers with the splitting ratio of 1:1:4 for symmetric structures and variable splitting ratio for asymmetric structures.
NASA Technical Reports Server (NTRS)
Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.
2015-01-01
The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.
Resistive Switching of Ta2O5-Based Self-Rectifying Vertical-Type Resistive Switching Memory
NASA Astrophysics Data System (ADS)
Ryu, Sungyeon; Kim, Seong Keun; Choi, Byung Joon
2018-01-01
To efficiently increase the capacity of resistive switching random-access memory (RRAM) while maintaining the same area, a vertical structure similar to a vertical NAND flash structure is needed. In addition, the sneak-path current through the half-selected neighboring memory cell should be mitigated by integrating a selector device with each RRAM cell. In this study, an integrated vertical-type RRAM cell and selector device was fabricated and characterized. Ta2O5 as the switching layer and TaOxNy as the selector layer were used to preliminarily study the feasibility of such an integrated device. To make the side contact of the bottom electrode with active layers, a thick Al2O3 insulating layer was placed between the Pt bottom electrode and the Ta2O5/TaOxNy stacks. Resistive switching phenomena were observed under relatively low currents (below 10 μA) in this vertical-type RRAM device. The TaOxNy layer acted as a nonlinear resistor with moderate nonlinearity. Its low-resistance-state and high-resistance-state were well retained up to 1000 s.
Vertically-integrated Approaches for Carbon Sequestration Modeling
NASA Astrophysics Data System (ADS)
Bandilla, K.; Celia, M. A.; Guo, B.
2015-12-01
Carbon capture and sequestration (CCS) is being considered as an approach to mitigate anthropogenic CO2 emissions from large stationary sources such as coal fired power plants and natural gas processing plants. Computer modeling is an essential tool for site design and operational planning as it allows prediction of the pressure response as well as the migration of both CO2 and brine in the subsurface. Many processes, such as buoyancy, hysteresis, geomechanics and geochemistry, can have important impacts on the system. While all of the processes can be taken into account simultaneously, the resulting models are computationally very expensive and require large numbers of parameters which are often uncertain or unknown. In many cases of practical interest, the computational and data requirements can be reduced by choosing a smaller domain and/or by neglecting or simplifying certain processes. This leads to a series of models with different complexity, ranging from coupled multi-physics, multi-phase three-dimensional models to semi-analytical single-phase models. Under certain conditions the three-dimensional equations can be integrated in the vertical direction, leading to a suite of two-dimensional multi-phase models, termed vertically-integrated models. These models are either solved numerically or simplified further (e.g., assumption of vertical equilibrium) to allow analytical or semi-analytical solutions. This presentation focuses on how different vertically-integrated models have been applied to the simulation of CO2 and brine migration during CCS projects. Several example sites, such as the Illinois Basin and the Wabamun Lake region of the Alberta Basin, are discussed to show how vertically-integrated models can be used to gain understanding of CCS operations.
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-11-01
The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.
Final Technical Report for Grant # DE-FG02-06ER64169
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Beat Schmid, PI
2007-07-13
The Atmospheric Radiation Measurement (ARM) program is funding this project to improve the methodology of ground-based remote sensing of the vertical distribution of aerosol and cloud optical properties, and their effect on atmospheric radiative transfer. Remotely-sensed and in situ observed aerosol, cloud physical, and optical properties collected during the May 2003 Aerosol Intensive Operational Period (AIOP) and the Aerosol Lidar Validation Experiment (ALIVE), conducted from September 11-22, 2005, are the basis for the investigation. We have used ground-based lidar, airborne sunphotometer and in situ measurements and other data to evaluate the vertical profile of aerosol properties. We have been pursuingmore » research in the following three areas: (1) Aerosol Best Estimate Product--Sensitivity Study: ARM is developing an Aerosol Best Estimate (ABE) Value Added Product (VAP) to provide aerosol optical properties at all times and heights above its sites. The ABE is used as input for the Broadband Heating Rate Profile (BBHRP) VAP, whose output will be used to evaluate the radiative treatment of aerosols and clouds in climate models. ARM has a need to assess how much detail is required for the ABE and if a useful ABE can be derived for the tropical and arctic climate research facilities (CRFs) where only limited aerosol information in the vertical is available. We have been determining the sensitivity of BBHRP to the vertical profile of aerosol optical properties used in ABE. (2) Vertically Resolved Aerosol and Cloud Radiative Properties over the Southern Great Plains (SGP): The AIOP delivered an unprecedented airborne radiometric and in situ data set related to aerosols and clouds. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS's) Twin Otter aircraft carried solar pointing, up- and down-looking radiometers (spectral and broadband, visible, and infrared) with the uplooking radiometers mounted on a stabilized platform. We are performing an integrated analysis of the largely unexploited radiometric data set to provide observation-based quantification of the effect of aerosols and clouds on the radiation field. We will link aerosol and cloud properties measured in situ with the observed radiative fluxes using radiative transfer models. This over-determined dataset will provide validation of the BBHRP VAP. (3) Integrated Analysis of Data from the Aerosol Lidar Validation Experiment: The ABE VAP relies on continuous lidar observations to provide the vertical distribution of the aerosols above the ARM sites. The goal of ALIVE, conducted in September 2005, was the validation of the aerosol extinction profiles obtained from the SGP Raman lidar, which has been recently refurbished/updated, and the Micro Pulse Lidar, for which a new algorithm to retrieve aerosol profiles has recently been developed, using the National Aeronautics and Space Administration (NASA) Ames Airborne Tracking 14 channel Sun photometer. We are performing and publishing the integrated analysis of the ALIVE data set.« less
Integrating Cognitive Linguistics Insights into Data-Driven Learning: Teaching Vertical Prepositions
ERIC Educational Resources Information Center
Kilimci, Abdurrahman
2017-01-01
The present study investigates the impact of the integration of the Cognitive Linguistics (CL) pedagogy into Data-driven learning (DDL) on the learners' acquisition of two sets of English spatial prepositions of verticality, "over/under" and "above/below." The study followed a quasi-experimental design with a control and an…
Owned vertical integration and health care: promise and performance.
Walston, S L; Kimberly, J R; Burns, L R
1996-01-01
This article examines the alleged benefits and actual outcomes of vertical integration in the health sector and compares them to those observed in other sectors of the economy. This article concludes that the organizational models on which these arrangements are based may be poorly adapted to the current environment in health care.
Vertical Integration at Junior and Intermediate Levels. School Research Newsletter.
ERIC Educational Resources Information Center
Marklund, Inger, Ed.; Hanse, Mona-Britt, Ed.
1984-01-01
In recent years, there has been a rapid growth of interest in Sweden in vertically integrated classes in compulsory schools, especially at junior high school and intermediate grade levels. This development is supported in various ways by the curriculum, partly because it puts more emphasis than previous curricula on the occurrence of teaching…
Changes in Quality of Health Care Delivery after Vertical Integration.
Carlin, Caroline S; Dowd, Bryan; Feldman, Roger
2015-08-01
To fill an empirical gap in the literature by examining changes in quality of care measures occurring when multispecialty clinic systems were acquired by hospital-owned, vertically integrated health care delivery systems in the Twin Cities area. Administrative data for health plan enrollees attributed to treatment and control clinic systems, merged with U.S. Census data. We compared changes in quality measures for health plan enrollees in the acquired clinics to enrollees in nine control groups using a differences-in-differences model. Our dataset spans 2 years prior to and 4 years after the acquisitions. We estimated probit models with errors clustered within enrollees. Data were assembled by the health plan's informatics team. Vertical integration is associated with increased rates of colorectal and cervical cancer screening and more appropriate emergency department use. The probability of ambulatory care-sensitive admissions increased when the acquisition caused disruption in admitting patterns. Moving a clinic system into a vertically integrated delivery system resulted in limited increases in quality of care indicators. Caution is warranted when the acquisition causes disruption in referral patterns. © Health Research and Educational Trust.
Preliminary design of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft
NASA Technical Reports Server (NTRS)
Cox, Brian; Borchers, Paul; Gomer, Charlie; Henderson, Dean; Jacobs, Tavis; Lawson, Todd; Peterson, Eric; Ross, Tweed, III; Bellmard, Larry
1990-01-01
The preliminary design study of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter is presented. A brief historical survey of powered lift vehicles was presented, followed by a technology assessment of the latest supersonic STOVL engine cycles under consideration by industry and government in the U.S. and UK. A survey of operational fighter/attack aircraft and the modern battlefield scenario were completed to develop, respectively, the performance requirements and mission profiles for the study. Three configurations were initially investigated with the following engine cycles: a hybrid fan vectored thrust cycle, a lift+lift/cruise cycle, and a mixed flow vectored thrust cycle. The lift+lift/cruise aircraft configuration was selected for detailed design work which consisted of: (1) a material selection and structural layout, including engine removal considerations, (2) an aircraft systems layout, (3) a weapons integration model showing the internal weapons bay mechanism, (4) inlet and nozzle integration, (5) an aircraft suckdown prediction, (6) an aircraft stability and control analysis, including a takeoff, hover, and transition control analysis, (7) a performance and mission capability study, and (8) a life cycle cost analysis. A supersonic fighter aircraft with STOVL capability with the lift+lift/cruise engine cycle seems a viable option for the next generation fighter.
Kinetic energy budgets in areas of intense convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.
1980-01-01
A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.
3D hybrid integrated lasers for silicon photonics
NASA Astrophysics Data System (ADS)
Song, B.; Pinna, S.; Liu, Y.; Megalini, L.; Klamkin, J.
2018-02-01
A novel 3D hybrid integration platform combines group III-V materials and silicon photonics to yield high-performance lasers is presented. This platform is based on flip-chip bonding and vertical optical coupling integration. In this work, indium phosphide (InP) devices with monolithic vertical total internal reflection turning mirrors were bonded to active silicon photonic circuits containing vertical grating couplers. Greater than 2 mW of optical power was coupled into a silicon waveguide from an InP laser. The InP devices can also be bonded directly to the silicon substrate, providing an efficient path for heat dissipation owing to the higher thermal conductance of silicon compared to InP. Lasers realized with this technique demonstrated a thermal impedance as low as 6.2°C/W, allowing for high efficiency and operation at high temperature. InP reflective semiconductor optical amplifiers were also integrated with 3D hybrid integration to form integrated external cavity lasers. These lasers demonstrated a wavelength tuning range of 30 nm, relative intensity noise lower than -135 dB/Hz and laser linewidth of 1.5 MHz. This platform is promising for integration of InP lasers and photonic integrated circuits on silicon photonics.
An Active Smart Material Control System for F/A-18 Buffet Alleviation
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Moses, Robert W.; Huttsell, Lawrence J.; Harrand, Vincent J.
2003-01-01
The vertical tail buffet problem of fighter aircraft occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced pressure loads on the vertical tails. The buffet loads imposed upon the vertical tails resulted in a premature fatigue failure of the tails, and consequently limits the performance and super maneuverability of twin-tail fighter aircraft. An active smart material control system using distributed piezoelectric actuators has been developed for buffet alleviation and is presented. The inboard and outboard surfaces of the vertical tail are equipped with piezoelectric actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the piezoelectric actuators are expressed with a three-dimensional finite-element model. A single-input-single-output controller is designed to drive the active piezoelectric actuators. High-fidelity multidisciplinary analysis modules for the fluid dynamics, structure dynamics, electrodynamics of the piezoelectric actuators, control law, fluid structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. At 30 degree angle of attack, RMS values of tip acceleration are reduced by as much as 12%. The peak values of the power spectral density of tail-tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. The actively controlled piezoelectric actuators were also effective in adding damping at wide range of angles of attack.
Thaldorf, Carey; Liberman, Aaron
2007-01-01
Integration in health care attempts to provide all elements in a seamless continuum of care. Pressures influencing development of system-wide integration primarily come from unsustainable cost increases in the United States over the later part of the 20th century and the early 21st century. Promoters of health care integration assume that it will lead to increased effectiveness and quality of care while concurrently increasing cost-effectiveness and possibly facilitating cost savings. The primary focus of this literature review is on the Power Strategies of Horizontal and Vertical Integration. The material presented suggests that vertical integration is most effective in markets where the partners involved are larger and dominant in the regions they serve. The research has also found that integrating health care networks had little or no significant effect on improving overall organizational efficiencies or profits. Capital investment in information technologies still is cost prohibitive and outweighs its benefits to integration efficiencies in the private sector; however, there are some indications of improvements in publicly provided health care. Further research is needed to understand the reasons the public sector has had greater success in improving effectiveness and efficiency through integration than the private sector.
Integration of Twenty-Bladed Cross-Flow Fan into Vertical Take-Off and Landing Aircraft
2013-06-01
a new 20-bladed rotor was designed in SolidWorks and imported into ANSYS - CFX , which was used to analytically determine the thrust generated at speeds...implementation and experimentation. To accomplish this task, a new 20-bladed rotor was designed in SolidWorks and imported into ANSYS - CFX , which was...11 4. ANSYS - CFX CFD Analysis
AFC-Enabled Vertical Tail System Integration Study
NASA Technical Reports Server (NTRS)
Mooney, Helen P.; Brandt, John B.; Lacy, Douglas S.; Whalen, Edward A.
2014-01-01
This document serves as the final report for the SMAAART AFC-Enabled Vertical Tail System Integration Study. Included are the ground rule assumptions which have gone into the study, layouts of the baseline and AFC-enabled configurations, critical sizing information, system requirements and architectures, and assumed system properties that result in an NPV assessment of the two candidate AFC technologies.
ERIC Educational Resources Information Center
Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.
2011-01-01
This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…
Vertical integration - Reducing the load on GP teachers.
Anderson, Katrina; Thomson, Jennifer
2009-11-01
With the increased medical student numbers in Australia there is an expectation that general practice will train students, junior doctors and registrars, and the teaching burden for busy general practitioners will rise. We discuss the model of vertical integration of general practice education set up at the Australian National University Medical School in the Australian Capital Territory and southeast New South Wales. This model of vertical integration is unique. It could be adapted in a range of vocational settings and spans medical student, prevocational doctor, registrar and international medical graduate teaching. A key aim of these strategies is to reduce the load on the clinical GP teacher as sustaining their contribution is crucial to the future of training in general practice.
NASA Astrophysics Data System (ADS)
Murphy, Richard J.; Monteiro, Sildomar T.
2013-01-01
Hyperspectral imagery is used to map the distribution of iron and separate iron ore from shale (a waste product) on a vertical mine face in an open-pit mine in the Pilbara, Western Australia. Vertical mine faces have complex surface geometries which cause large spatial variations in the amount of incident and reflected light. Methods used to analyse imagery must minimise these effects whilst preserving any spectral variations between rock types and minerals. Derivative analysis of spectra to the 1st-, 2nd- and 4th-order is used to do this. To quantify the relative amounts and distribution of iron, the derivative spectrum is integrated across the visible and near infrared spectral range (430-970 nm) and over those wavelength regions containing individual peaks and troughs associated with specific iron absorption features. As a test of this methodology, results from laboratory spectra acquired from representative rock samples were compared with total amounts of iron minerals from X-ray diffraction (XRD) analysis. Relationships between derivatives integrated over the visible near-infrared range and total amounts (% weight) of iron minerals were strongest for the 4th- and 2nd-derivative (R2 = 0.77 and 0.74, respectively) and weakest for the 1st-derivative (R2 = 0.56). Integrated values of individual peaks and troughs showed moderate to strong relationships in 2nd- (R2 = 0.68-0.78) and 4th-derivative (R2 = 0.49-0.78) spectra. The weakest relationships were found for peaks or troughs towards longer wavelengths. The same derivative methods were then applied to imagery to quantify relative amounts of iron minerals on a mine face. Before analyses, predictions were made about the relative abundances of iron in the different geological zones on the mine face, as mapped from field surveys. Integration of the whole spectral curve (430-970 nm) from the 2nd- and 4th-derivative gave results which were entirely consistent with predictions. Conversely, integration of the 1st-derivative gave results that did not fit with predictions nor distinguish between zones with very large and small amounts of iron oxide. Classified maps of ore and shale were created using a simple level-slice of the 1st-derivative reflectance at 702, 765 and 809 nm. Pixels classified as shale showed a similar distribution to kaolinite (an indicator of shales in the region), as mapped by the depth of the diagnostic kaolinite absorption feature at 2196 nm. Standard statistical measures of classification performance (accuracy, precision, recall and the Kappa coefficient of agreement) indicated that nearly all of the pixels were classified correctly using 1st-derivative reflectance at 765 and 809 nm. These results indicate that data from the VNIR (430-970 nm) can be used to quantify, without a priori knowledge, the total amount of iron minerals and to distinguish ore from shale on vertical mine faces.
Realization of MEMS-IC Vertical Integration Utilizing Smart Bumpless Bonding
NASA Astrophysics Data System (ADS)
Shiozaki, Masayoshi; Moriguchi, Makoto; Sasaki, Sho; Oba, Masatoshi
This paper reports fundamental technologies, properties, and new experimental results of SBB (Smart Bumpless Bonding) to realize MEMS-IC vertical integration. Although conventional bonding technologies have had difficulties integrating MEMS and its processing circuit because of their rough bonding surfaces, fragile structures, and thermal restriction, SBB technology realized the vertical integration without thermal treatment, any adhesive materials including bumps, and chemical mechanical polishing. The SBB technology bonds sealing parts for vacuum sealing and electrodes for electrical connection simultaneously as published in previous experimental study. The plasma CVD SiO2 is utilized to realize vacuum sealing as sealing material. And Au projection studs are formed on each electrode and connected electrically between two wafers by compressive plastic deformation and surface activation. In this paper, new experimental results including vacuum sealing properties, electrical improvement, IC bonding results on the described fundamental concept and properties are reported.
Operational alternatives for LANDSAT in California
NASA Technical Reports Server (NTRS)
Wilson, P.; Gialdini, M. J.
1981-01-01
Data integration is defined and examined as the means of promoting data sharing among the various governmental and private geobased information systems in California. Elements of vertical integration considered included technical factors (such as resolution and classification) and institutional factors (such as organizational control, and legal and political barriers). Attempts are made to fit the theoretical elements of vertical integration into a meaningful structure for looking at the problem from a statewide focus. Both manual (mapped) and machine readable data systems are included. Special attention is given to LANDSAT imagery because of its strong potential for integrated use and its primary in the California Integrated Remote Sensing System program.
Electro-optical resonance modulation of vertical-cavity surface-emitting lasers.
Germann, Tim David; Hofmann, Werner; Nadtochiy, Alexey M; Schulze, Jan-Hindrik; Mutig, Alex; Strittmatter, André; Bimberg, Dieter
2012-02-27
Optical and electrical investigations of vertical-cavity surface-emitting lasers (VCSEL) with a monolithically integrated electro-optical modulator (EOM) allow for a detailed physical understanding of this complex compound cavity laser system. The EOM VCSEL light output is investigated to identify optimal working points. An electro-optic resonance feature triggered by the quantum confined Stark effect is used to modulate individual VCSEL modes by more than 20 dB with an extremely small EOM voltage change of less than 100 mV. Spectral mode analysis reveals modulation of higher order modes and very low wavelength chirp of < 0.5 nm. Dynamic experiments and simulation predict an intrinsic bandwidth of the EOM VCSEL exceeding 50 GHz.
Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles
NASA Technical Reports Server (NTRS)
Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie
2009-01-01
A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration
Cladé, Pierre; de Mirandes, Estefania; Cadoret, Malo; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François
2006-01-27
We report an accurate measurement of the recoil velocity of 87Rb atoms based on Bloch oscillations in a vertical accelerated optical lattice. We transfer about 900 recoil momenta with an efficiency of 99.97% per recoil. A set of 72 measurements of the recoil velocity, each one with a relative uncertainty of about 33 ppb in 20 min integration time, leads to a determination of the fine structure constant with a statistical relative uncertainty of 4.4 ppb. The detailed analysis of the different systematic errors yields to a relative uncertainty of 6.7 ppb. The deduced value of alpha-1 is 137.035 998 78(91).
Experiments on tropical stratospheric mean-wind variations in a spectral general circulation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, K.; Yuan, L.
1992-12-15
A 30-level version of the rhomboidal-15 GFDL spectral climate model was constructed with roughly 2-km vertical resolution. This model fails to produce a realistic quasi-biennial oscillation (QBO) in the tropical stratosphere. Several simulations were conducted in which the zonal-mean winds and temperatures in the equatorial lower and middle stratosphere were instantaneously perturbed and the model was integrated while the mean state relaxed toward its equilibrium. The time scale for the mean wind relaxation varied from over one month at 40 km to a few months in the lower stratosphere. The wind relaxations in the model also displayed the downward phasemore » propagation characteristic of QBO wind reversals, and mean wind anomalies of opposite sign to the imposed perturbation appear at higher levels. In the GCM the downward propagation is clear only above about 20 mb. Detailed investigations were made of the zonal-mean zonal momentum budget in the equatorial stratosphere. The mean flow relaxations above 20 mb were mostly driven by the vertical Eliassen-Palm flux convergence. The anomalies in the horizontal Eliassen-Palm fluxes from extratropical planetary waves were found to be the dominant effect forcing the mean flow to its equilibrium at altitudes below 20 mb. The vertical eddy momentum fluxes near the equator in the model were decomposed using space-time Fourier analysis. While total fluxes associated with easterly and westerly waves are comparable to those used in simple mechanistic models of the QBO, the GCM has its flux spread over a broad range of wavenumbers and phase speeds. The effects of vertical resolution were studied by repeating part of the control integration with a 69-level version of the model with greatly enhance vertical resolution in the lower and middle stratosphere. The results showed that there is almost no sensitivity of the simulation in the tropical stratosphere to the increased vertical resolution. 34 refs., 16 figs., 3 tabs.« less
Determining the Local Dark Matter Density with SDSS G-dwarf data
NASA Astrophysics Data System (ADS)
Silverwood, Hamish; Sivertsson, Sofia; Read, Justin; Bertone, Gianfranco; Steger, Pascal
2018-04-01
We present a determination of the local dark matter density derived using the integrated Jeans equation method presented in Silverwood et al. (2016) applied to SDSS-SEGUE G-dwarf data processed by Büdenbender et al. (2015). For our analysis we construct models for the tracer density, dark matter and baryon distribution, and tilt term (linking radial and vertical motions), and then calculate the vertical velocity dispersion using the integrated Jeans equation. These models are then fit to the data using MultiNest, and a posterior distribution for the local dark matter density is derived. We find the most reliable determination to come from the α-young population presented in Büdenbender et al. (2015), yielding a result of ρDM = 0.46+0.07 -0.09 GeV cm-3 = 0.012+0.001 -0.002 M⊙ pc-3. Our results also illuminate the path ahead for future analyses using Gaia DR2 data, highlighting which quantities will need to be determined and which assumptions could be relaxed.
Vertical Ge photodetector base on InP taper waveguide
NASA Astrophysics Data System (ADS)
Amiri, Iraj Sadegh; Ariannejad, M. M.; Azzuhri, S. R. B.; Anwar, T.; Kouhdaragh, V.; Yupapin, P.
2018-06-01
In this work, simulation is conducted to investigate Ge photodetectors monolithically integrated on Si chip. The performance of vertical Germanium photodetector with FDTD Solutions (optical simulation) and electrical simulation has been studied. Selective heteroepitaxy of Ge is functioned in the monolithic integration of Ge photodetectors. The potential of CMOS-compatible monolithic integration of Ge as photodetector is investigated and the performance optimization is presented. Additionally, the investigation is extended to electrical part, particularly in the conversion efficiency as well as operation under low supplied voltage condition.
WAATS: A computer program for Weights Analysis of Advanced Transportation Systems
NASA Technical Reports Server (NTRS)
Glatt, C. R.
1974-01-01
A historical weight estimating technique for advanced transportation systems is presented. The classical approach to weight estimation is discussed and sufficient data is presented to estimate weights for a large spectrum of flight vehicles including horizontal and vertical takeoff aircraft, boosters and reentry vehicles. A computer program, WAATS (Weights Analysis for Advanced Transportation Systems) embracing the techniques discussed has been written and user instructions are presented. The program was developed for use in the ODIN (Optimal Design Integration System) system.
Mergers, networking, and vertical integration: managed care and investor-owned hospitals.
Brown, M
1996-01-01
This article links the forces of managed care and investor-owned firms as major factors driving the industry toward consolidation into vertically integrated, merged firms, often financed with investor capital. This relentless pressure to build regional systems of health services has transformed the industry from a charitable, community orientation to one of business, market shares, and profits.
ERIC Educational Resources Information Center
National Academies Press, 2009
2009-01-01
In 1998, the National Science Foundation (NSF) launched a program of Grants for Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE). These grants were designed for institutions with PhD-granting departments in the mathematical sciences, for the purpose of developing high-quality education programs, at all levels,…
Accountable Care Organizations and Transaction Cost Economics.
Mick, Stephen S Farnsworth; Shay, Patrick D
2016-12-01
Using a Transaction Cost Economics (TCE) approach, this paper explores which organizational forms Accountable Care Organizations (ACOs) may take. A critical question about form is the amount of vertical integration that an ACO may have, a topic central to TCE. We posit that contextual factors outside and inside an ACO will produce variable transaction costs (the non-production costs of care) such that the decision to integrate vertically will derive from a comparison of these external versus internal costs, assuming reasonably rational management abilities. External costs include those arising from environmental uncertainty and complexity, small numbers bargaining, asset specificity, frequency of exchanges, and information "impactedness." Internal costs include those arising from human resource activities including hiring and staffing, training, evaluating (i.e., disciplining, appraising, or promoting), and otherwise administering programs. At the extreme, these different costs may produce either total vertical integration or little to no vertical integration with most ACOs falling in between. This essay demonstrates how TCE can be applied to the ACO organization form issue, explains TCE, considers ACO activity from the TCE perspective, and reflects on research directions that may inform TCE and facilitate ACO development. © The Author(s) 2016.
Evaluating The Role Of Payment Policy In Driving Vertical Integration In The Oncology Market.
Alpert, Abby; Hsi, Helen; Jacobson, Mireille
2017-04-01
The health care industry has experienced massive consolidation over the past decade. Much of the consolidation has been vertical (with hospitals acquiring physician practices) instead of horizontal (with physician practices or hospitals merging with similar entities). We documented the increase in vertical integration in the market for cancer care in the period 2003-15, finding that the rate of hospital or health system ownership of practices doubled from about 30 percent to about 60 percent. The two most commonly cited explanations for this consolidation are a 2005 Medicare Part B payment reform that dramatically reduced reimbursement for chemotherapy drugs, and the expansion of hospital eligibility for the 340B Drug Discount Program under the Affordable Care Act (ACA). To evaluate the evidence for these explanations, we used difference-in-differences methods to assess whether consolidation increased more in areas with greater exposure to each policy than in areas with less exposure. We found little evidence that either policy contributed to vertical integration. Rather, increased consolidation in the market for cancer care may be part of a broader post-ACA trend toward integrated health care systems. Project HOPE—The People-to-People Health Foundation, Inc.
Changes in Quality of Health Care Delivery after Vertical Integration
Carlin, Caroline S; Dowd, Bryan; Feldman, Roger
2015-01-01
Objectives To fill an empirical gap in the literature by examining changes in quality of care measures occurring when multispecialty clinic systems were acquired by hospital-owned, vertically integrated health care delivery systems in the Twin Cities area. Data Sources/Study Setting Administrative data for health plan enrollees attributed to treatment and control clinic systems, merged with U.S. Census data. Study Design We compared changes in quality measures for health plan enrollees in the acquired clinics to enrollees in nine control groups using a differences-in-differences model. Our dataset spans 2 years prior to and 4 years after the acquisitions. We estimated probit models with errors clustered within enrollees. Data Collection/Extraction Methods Data were assembled by the health plan’s informatics team. Principal Findings Vertical integration is associated with increased rates of colorectal and cervical cancer screening and more appropriate emergency department use. The probability of ambulatory care–sensitive admissions increased when the acquisition caused disruption in admitting patterns. Conclusions Moving a clinic system into a vertically integrated delivery system resulted in limited increases in quality of care indicators. Caution is warranted when the acquisition causes disruption in referral patterns. PMID:25529312
Lee, Dong-Jin; Yim, Hae-Dong; Lee, Seung-Gol; O, Beom-Hoan
2011-10-10
We propose a tiny surface plasmon resonance (SPR) sensor integrated on a silicon waveguide based on vertical coupling into a finite thickness metal-insulator-metal (f-MIM) plasmonic waveguide structure acting as a Fabry-Perot resonator. The resonant characteristics of vertically coupled f-MIM plasmonic waveguides are theoretically investigated and optimized. Numerical results show that the SPR sensor with a footprint of ~0.0375 μm2 and a sensitivity of ~635 nm/RIU can be designed at a 1.55 μm transmission wavelength.
The learner's perspective in GP teaching practices with multi-level learners: a qualitative study.
Thomson, Jennifer S; Anderson, Katrina; Haesler, Emily; Barnard, Amanda; Glasgow, Nicholas
2014-03-19
Medical students, junior hospital doctors on rotation and general practice (GP) registrars are undertaking their training in clinical general practices in increasing numbers in Australia. Some practices have four levels of learner. This study aimed to explore how multi-level teaching (also called vertical integration of GP education and training) is occurring in clinical general practice and the impact of such teaching on the learner. A qualitative research methodology was used with face-to-face, semi-structured interviews of medical students, junior hospital doctors, GP registrars and GP teachers in eight training practices in the region that taught all levels of learners. Interviews were audio-recorded and transcribed. Qualitative analysis was conducted using thematic analysis techniques aided by the use of the software package N-Vivo 9. Primary themes were identified and categorised by the co-investigators. 52 interviews were completed and analysed. Themes were identified relating to both the practice learning environment and teaching methods used.A practice environment where there is a strong teaching culture, enjoyment of learning, and flexible learning methods, as well as learning spaces and organised teaching arrangements, all contribute to positive learning from a learners' perspective.Learners identified a number of innovative teaching methods and viewed them as positive. These included multi-level learner group tutorials in the practice, being taught by a team of teachers, including GP registrars and other health professionals, and access to a supernumerary GP supervisor (also termed "GP consultant teacher"). Other teaching methods that were viewed positively were parallel consulting, informal learning and rural hospital context integrated learning. Vertical integration of GP education and training generally impacted positively on all levels of learner. This research has provided further evidence about the learning culture, structures and teaching processes that have a positive impact on learners in the clinical general practice setting where there are multiple levels of learners. It has also identified some innovative teaching methods that will need further examination. The findings reinforce the importance of the environment for learning and learner centred approaches and will be important for training organisations developing vertically integrated practices and in their training of GP teachers.
The learner’s perspective in GP teaching practices with multi-level learners: a qualitative study
2014-01-01
Background Medical students, junior hospital doctors on rotation and general practice (GP) registrars are undertaking their training in clinical general practices in increasing numbers in Australia. Some practices have four levels of learner. This study aimed to explore how multi-level teaching (also called vertical integration of GP education and training) is occurring in clinical general practice and the impact of such teaching on the learner. Methods A qualitative research methodology was used with face-to-face, semi-structured interviews of medical students, junior hospital doctors, GP registrars and GP teachers in eight training practices in the region that taught all levels of learners. Interviews were audio-recorded and transcribed. Qualitative analysis was conducted using thematic analysis techniques aided by the use of the software package N-Vivo 9. Primary themes were identified and categorised by the co-investigators. Results 52 interviews were completed and analysed. Themes were identified relating to both the practice learning environment and teaching methods used. A practice environment where there is a strong teaching culture, enjoyment of learning, and flexible learning methods, as well as learning spaces and organised teaching arrangements, all contribute to positive learning from a learners’ perspective. Learners identified a number of innovative teaching methods and viewed them as positive. These included multi-level learner group tutorials in the practice, being taught by a team of teachers, including GP registrars and other health professionals, and access to a supernumerary GP supervisor (also termed “GP consultant teacher”). Other teaching methods that were viewed positively were parallel consulting, informal learning and rural hospital context integrated learning. Conclusions Vertical integration of GP education and training generally impacted positively on all levels of learner. This research has provided further evidence about the learning culture, structures and teaching processes that have a positive impact on learners in the clinical general practice setting where there are multiple levels of learners. It has also identified some innovative teaching methods that will need further examination. The findings reinforce the importance of the environment for learning and learner centred approaches and will be important for training organisations developing vertically integrated practices and in their training of GP teachers. PMID:24645670
Kang, Jeongmin; Moon, Taeho; Jeon, Youngin; Kim, Hoyoung; Kim, Sangsig
2013-05-01
ZnO-nanowire-based logic circuits were constructed by the vertical integration of multilayered field-effect transistors (FETs) on plastic substrates. ZnO nanowires with an average diameter of -100 nm were synthesized by thermal chemical vapor deposition for use as the channel material in FETs. The ZnO-based FETs exhibited a high I(ON)/I(OFF) of > 10(6), with the characteristic of n-type depletion modes. For vertically integrated logic circuits, three multilayer FETs were sequentially prepared. The stacked FETs were connected in series via electrodes, and C-PVPs were used for the layer-isolation material. The NOT and NAND gates exhibited large logic-swing values of -93%. These results demonstrate the feasibility of three dimensional flexible logic circuits.
Essays on optimal capacity and optimal regulation of interconnection infrastructures
NASA Astrophysics Data System (ADS)
Boffa, Federico
The integration between geographically differentiated markets or between vertically related industries generate effects on welfare that depend on the structure of the underlying markets. My thesis investigates the impact of geographical interconnection on welfare, and illustrates welfare-enhancing modes of regulation of vertically integrated industries and of geographically integrated markets. The first chapter analyzes the effects of interconnection between two formerly fully-separated markets under the assumptions that producers in the two markets are capacity-constrained, and tacitly collude whenever it is rational for them to do so. I find that there exists a set of assumptions under which interconnection brings about greater collusion, hence it reduces overall welfare. The second chapter analyzes the optimal interconnection capacity allocation mechanism for a benevolent electricity regulator when generation is not competitive. The regulator's intervention should not only ensure that interconnection capacity is efficiently allocated to the most efficient firms, but it should also induce a higher welfare in the upstream generation market. In a two-node setting, with one firm per node, I show that the regulatory intervention becomes more effective as the cost asymmetries between the two firms become more pronounced. The third chapter illustrates a regulation mechanism for vertically related industries. Ownership shares of the upstream industry (that displays economies of scale) are allocated to the downstream (competitive) firms in proportion to their shares in the final goods market. I show that the mechanism combines the benefits of vertical integration with those of vertical separation. The advantages of vertical integration consist in avoiding double marginalization, and in internalizing the reduction in average cost resulting from the upstream increase in output; on the other hand, vertical separation allows to preserve the competitiveness of the downstream sector. I also show that this mechanism improves in efficiency with respect to the Demsetz auction, and, finally, that it displays desirable properties as far as collusion and quality levels are concerned. The fourth chapter empirically estimates the benefit of removing the most crucial transmission bottleneck in the Italian electricity market, by building additional transmission capacity. Benefits are found to be relevant.
NASA Astrophysics Data System (ADS)
Muradyan, P.; Coulter, R.; Kotamarthi, V. R.; Wang, J.; Ghate, V. P.
2016-12-01
Large-scale mean vertical motion affects the atmospheric stability and is an important component in cloud formation. Thus, the analysis of temporal variations in the long-term averages of large-scale vertical motion would provide valuable insights into weather and climate patterns. 915-MHz radar wind profilers (RWP) provide virtually unattended and almost uninterrupted long-term wind speed measurements. We use five years of RWP wind data from the Atmospheric Boundary Layer Experiments (ABLE) located within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site from 1999 to 2004. Wind speed data from a triangular array of SGP A1, A2, and A5 ancillary sites are used to calculate the horizontal divergence field over the profiler network area using the line integral method. The distance between each vertex of this triangle is approximately 60km. Thus, the vertical motion profiles deduced from the divergence/convergence of horizontal winds over these spatial scales are of relevance to mesoscale dynamics. The wind data from RWPs are averaged over 1 hour time slice and divergence is calculated at each range gate from the lowest at 82 m to the highest at 2.3 km. An analysis of temporal variations in the long-term averages of the atmospheric divergence and vertical air motion for the months of August/September indicates an overall vertical velocity of -0.002 m/s with a standard deviation of 0.013 m/s, agreeing well with previous studies. Overall mean of the diurnal variation of vertical velocity for the study period from surface to 500 m height is 0.0018 m/s with a standard error of 0.00095 m/s. Seasonal mean daytime vertical winds suggest generally downward motion in Winter and upward motion in Summer. Validation of the derived divergence and vertical motion against a regional climate model (Weather Forecast and Research, WRF) at a spatial resolution of 12 km, as well as clear-sky vs. cloudy conditions comparisons will also be presented.
Reduction, analysis, and properties of electric current systems in solar active regions
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Demoulin, Pascal
1995-01-01
The specific attraction and, in large part, the significance of solar magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 deg ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 deg ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local `preferred' direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar (beta) (gamma) (delta)-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA/sq m and have a linear decreasing distribution to a diameter of 30 Mn.
Reduction, Analysis, and Properties of Electric Current Systems in Solar Active Regions
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Demoulin, Pascal
1995-01-01
The specific attraction and, in large part, the significance of solar vector magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 degree ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 degree ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local "preferred" direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar beta gamma delta-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA per square meter and have a linear decreasing distribution to a diameter of 30 Mm.
NASA Technical Reports Server (NTRS)
Blum, P. W.; Harris, I.
1973-01-01
The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all the nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In part 1 the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analysed.
Liu, J.; Xia, J.; Luo, Y.; Chen, C.; Li, X.; Huang, Y.
2007-01-01
The geotechnical integrity of critical infrastructure can be seriously compromised by the presence of fractures or crevices. Non-destructive techniques to accurately detect fractures in critical infrastructure such as dams and highways could be of significant benefit to the geotechnical industry. This paper investigates the application of shallow seismic and georadar methods to the detection of a vertical discontinuity using numerical simulations. The objective is to address the kinematical analysis of a vertical discontinuity, determine the resulting wave field characteristics, and provide the basis for determining the existence of vertical discontinuities based on the recorded signals. Simulation results demonstrate that: (1) A reflection from a vertical discontinuity produces a hyperbolic feature on a seismic or georadar profile; (2) In order for a reflection from a vertical discontinuity to be produced, a reflecting horizon below the discontinuity must exist, the offset between source and receiver (x0) must be non-zero, on the same side of the vertical discontinuity; (3) The range of distances from the vertical discontinuity where a reflection event is observed is proportional to its length and to x0; (4) Should the vertical crevice (or fracture) pass through a reflecting horizon, dual hyperbolic features can be observed on the records, and this can be used as a determining factor that the vertical crevice passes through the interface; and (5) diffractions from the edges of the discontinuity can be recorded with relatively smaller amplitude than reflections and their ranges are not constrained by the length of discontinuity. If the length of discontinuity is short enough, diffractions are the dominant feature. Real-world examples show that the shallow seismic reflection method and the georadar method are capable of recording the hyperbolic feature, which can be interpreted as vertical discontinuity. Thus, these methods show some promise as effective non-destructive detection methods for locating vertical discontinuities (e.g., fractures or crevices) in infrastructure such as dams and highway pavement. ?? 2007 Elsevier B.V. All rights reserved.
Inverse design of near unity efficiency perfectly vertical grating couplers
NASA Astrophysics Data System (ADS)
Michaels, Andrew; Yablonovitch, Eli
2018-02-01
Efficient coupling between integrated optical waveguides and optical fibers is essential to the success of integrated photonics. While many solutions exist, perfectly vertical grating couplers which scatter light out of a waveguide in the direction normal to the waveguide's top surface are an ideal candidate due to their potential to reduce packaging complexity. Designing such couplers with high efficiency, however, has proven difficult. In this paper, we use electromagnetic inverse design techniques to optimize a high efficiency two-layer perfectly vertical silicon grating coupler. Our base design achieves a chip-to-fiber coupling efficiency of over 99% (-0.04 dB) at 1550 nm. Using this base design, we apply subsequent constrained optimizations to achieve vertical couplers with over 96% efficiency which are fabricable using a 65 nm process.
SpaceX: Breaking the Barrier to the Space Launch Vehicle Industry
2016-12-22
like FedEx, implemented a unique technique to the industry and found success. SpaceX was also evaluated against guidelines and principles presented by...associated with implementing vertical integration. Musk, following value innovative principles , is using the concept of reusability to decrease the...47 Figure 6: Vertical Integration, Relative Market Share, and Profitability (Buzzell, 1983) ...... 49 Figure 7. SpaceX Capabilities and
Zimbardi, Kirsten; Bugarcic, Andrea; Colthorpe, Kay; Good, Jonathan P; Lluka, Lesley J
2013-12-01
Science graduates require critical thinking skills to deal with the complex problems they will face in their 21st century workplaces. Inquiry-based curricula can provide students with the opportunities to develop such critical thinking skills; however, evidence suggests that an inappropriate level of autonomy provided to underprepared students may not only be daunting to students but also detrimental to their learning. After a major review of the Bachelor of Science, we developed, implemented, and evaluated a series of three vertically integrated courses with inquiry-style laboratory practicals for early-stage undergraduate students in biomedical science. These practical curricula were designed so that students would work with increasing autonomy and ownership of their research projects to develop increasingly advanced scientific thinking and communication skills. Students undertaking the first iteration of these three vertically integrated courses reported learning gains in course content as well as skills in scientific writing, hypothesis construction, experimental design, data analysis, and interpreting results. Students also demonstrated increasing skills in both hypothesis formulation and communication of findings as a result of participating in the inquiry-based curricula and completing the associated practical assessment tasks. Here, we report the specific aspects of the curricula that students reported as having the greatest impact on their learning and the particular elements of hypothesis formulation and communication of findings that were more challenging for students to master. These findings provide important implications for science educators concerned with designing curricula to promote scientific thinking and communication skills alongside content acquisition.
3D optimization of a polymer MOEMS for active focusing of VCSEL beam
NASA Astrophysics Data System (ADS)
Abada, S.; Camps, T.; Reig, B.; Doucet, JB; Daran, E.; Bardinal, V.
2014-05-01
We report on the optimized design of a polymer-based actuator that can be directly integrated on a VCSEL for vertical beam scanning. Its operation principle is based on the vertical displacement of a SU-8 membrane including a polymer microlens. Under an applied thermal gradient, the membrane is shifted vertically due to thermal expansion in the actuation arms induced by Joule effect. This leads to a modification of microlens position and thus to a vertical scan of the laser beam. Membrane vertical displacements as high as 8μm for only 3V applied were recently experimentally obtained. To explain these performances, we developed a comprehensive tri-dimensional thermo-mechanical model that takes into account SU-8 material properties and precise MOEMS geometry. Out-of-plane mechanical coefficients and thermal conductivity were thus integrated in our 3D model (COMSOL Multiphysics). Vertical displacements extracted from these data for different actuation powers were successfully compared to experimental values, validating this modelling tool. Thereby, it was exploited to increase MOEMS electrothermal performance by a factor higher than 5.
Yu, Woo Jong; Liu, Yuan; Zhou, Hailong; Yin, Anxiang; Li, Zheng; Huang, Yu
2014-01-01
Layered materials of graphene and MoS2, for example, have recently emerged as an exciting material system for future electronics and optoelectronics. Vertical integration of layered materials can enable the design of novel electronic and photonic devices. Here, we report highly efficient photocurrent generation from vertical heterostructures of layered materials. We show that vertically stacked graphene–MoS2–graphene and graphene–MoS2–metal junctions can be created with a broad junction area for efficient photon harvesting. The weak electrostatic screening effect of graphene allows the integration of single or dual gates under and/or above the vertical heterostructure to tune the band slope and photocurrent generation. We demonstrate that the amplitude and polarity of the photocurrent in the gated vertical heterostructures can be readily modulated by the electric field of an external gate to achieve a maximum external quantum efficiency of 55% and internal quantum efficiency up to 85%. Our study establishes a method to control photocarrier generation, separation and transport processes using an external electric field. PMID:24162001
Measuring Integration of Cancer Services to Support Performance Improvement: The CSI Survey
Dobrow, Mark J.; Paszat, Lawrence; Golden, Brian; Brown, Adalsteinn D.; Holowaty, Eric; Orchard, Margo C.; Monga, Neerav; Sullivan, Terrence
2009-01-01
Objective: To develop a measure of cancer services integration (CSI) that can inform clinical and administrative decision-makers in their efforts to monitor and improve cancer system performance. Methods: We employed a systematic approach to measurement development, including review of existing cancer/health services integration measures, key-informant interviews and focus groups with cancer system leaders. The research team constructed a Web-based survey that was field- and pilot-tested, refined and then formally conducted on a sample of cancer care providers and administrators in Ontario, Canada. We then conducted exploratory factor analysis to identify key dimensions of CSI. Results: A total of 1,769 physicians, other clinicians and administrators participated in the survey, responding to a 67-item questionnaire. The exploratory factor analysis identified 12 factors that were linked to three broader dimensions: clinical, functional and vertical system integration. Conclusions: The CSI Survey provides important insights on a range of typically unmeasured aspects of the coordination and integration of cancer services, representing a new tool to inform performance improvement efforts. PMID:20676250
NASA Astrophysics Data System (ADS)
Convers-Gomez, Carlos E.
The Vaca Muerta Formation in the Neuquen Basin has recently received a lot of attention from oil companies interested in developing its shale resources. Early identification of potential zones with possible good production is extremely important to optimize the return on capital investment. Developing a work flow in shale plays that associates an effective hydraulic fracture response with the presence of hydrocarbons is crucial for economic success. The vertical and lateral heterogeneity of rock properties are critical factors that impact production. The integration of 3D seismic and well data is necessary for prediction of rock properties and identifies their distribution in the rock, which can also be integrated with geomechanical properties to model the rock response favorable to hydraulic stimulation. This study includes a 3D seismic survey and six vertical wells with full log suites in each well. The well logs allowed for the computation of a pre-stack model-based inversion which uses seismic data to estimate rock property volumes. An inverse relationship between P-impedance and Total Organic Content (TOC) was observed and quantified. Likewise, a direct relationship between P-impedance and volume of carbonate was observed. The volume of kerogen, type of clay, type of carbonate and fluid pressure all control the geomechanical properties of the formation when subject to hydraulic fracturing. Probabilistic Neural Networks were then used to predict the lateral and vertical heterogeneity of rock properties. TOC and volume of kerogen behaved as adequate indicators of possible zones with high presence of hydrocarbons. Meanwhile, the volume of carbonate was a valid indicator of brittle-ductile rock. The predicted density volume was used to estimate geomechanical properties (Young's Modulus and Poisson's Ratio) and to identify the zones that have a better response to hydraulic stimulation. During the analysis of geomechanical properties, Young's Modulus was observed to have a direct relationship with volume of carbonate and an inverse relationship with TOC, enabling the identification of brittle and ductile rocks zones. The analysis detected zones that had a good presence of hydrocarbons and brittle rock. The information was integrated with the analysis of geomechanical properties generating a model with the most possible zones of good production. This model will aid in the future exploration and development of the Vaca Muerta Formation.
NASA Astrophysics Data System (ADS)
Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael
This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.
Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles
NASA Technical Reports Server (NTRS)
Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania
2011-01-01
A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.
NASA Astrophysics Data System (ADS)
Asgharzadeh, M. F.; Hashemi, H.; von Frese, R. RB
2018-01-01
Forward modeling is the basis of gravitational anomaly inversion that is widely applied to map subsurface mass variations. This study uses numerical least-squares Gauss-Legendre quadrature (GLQ) integration to evaluate the gravitational potential, anomaly and gradient components of the vertical cylindrical prism element. These results, in turn, may be integrated to accurately model the complete gravitational effects of fluid bearing rock formations and other vertical cylinder-like geological bodies with arbitrary variations in shape and density. Comparing the GLQ gravitational effects of uniform density, vertical circular cylinders against the effects calculated by a number of other methods illustrates the veracity of the GLQ modeling method and the accuracy limitations of the other methods. Geological examples include modeling the gravitational effects of a formation washout to help map azimuthal variations of the formation's bulk densities around the borehole wall. As another application, the gravitational effects of a seismically and gravimetrically imaged salt dome within the Laurentian Basin are evaluated for the velocity, density and geometric properties of the Basin's sedimentary formations.
Short-Wavelength Light-Emitting Devices With Enhanced Hole Injection Currents
2005-05-01
hot-hole injector with appreciably enhancement of the injection current is proposed and developed to be integrated with commonly used vertical...structures of the emitting devices. Second, we develop the alternative design of UV-light sources on the base of lateral p+ - i - n+ superlattice structures...enhancement of the injection current is proposed and developed to be integrated with commonly used vertical structures of the emitting devices. Second
Jaklevic, M C
1995-10-09
An estimated 3,000 physician-hospital organizations have formed since the early 1980s, most of them in the last two years. But their slow progress in managed-care contracting has many wondering if they're anything more than an expensive fad. Proponents argue that despite their failings, PHOs may have a role as a transition to vertical integration.
Vertical integration models to prepare health systems for capitation.
Cave, D G
1995-01-01
Health systems will profit most under capitation if their vertical integration strategy provides operational stability, a strong primary care physician base, efficient delivery of medical services, and geographic access to physicians. Staff- and equity-based systems best meet these characteristics for success because they have one governance structure and a defined mission statement. Moreover, physician bonds are strong because these systems maximize physicians' income potential and control the revenue stream.
The Role of Lower Extremity Joint Powers in Successful Stair Ambulation
2011-01-01
written informed consent, all subjects participated in a biomechanical gait assessment during stair ascent walking. A total of 55 markers were used...power generation and vertical COM acceleration (COMA) during stair ascent. Twenty-two healthy individuals underwent a biomechanical gait assessment...DA. An integrated biomechanical analysis of normal stair ascent and descent. J Biomech 1988;21:733–44. [6] Zachazewski JE, Riley PO, Krebs DE
Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor
2010-01-01
Rotor MCP Maximum Continuous Power MRP Maximum Rated Power (take-off power) NDARC NASA Design and Analysis of Rotorcraft OEI One Engine Inoperative...OGE Out of Ground Effect SFC Specific Fuel Consumption SNI Simultaneous Non-Interfering approach STOL Short Takeoff and Landing VTOL Vertical...that are assembled into a complete aircraft model. NDARC is designed for high computational efficiency. Performance is calculated with physics- based
STOVL aircraft simulation for integrated flight and propulsion control research
NASA Technical Reports Server (NTRS)
Mihaloew, James R.; Drummond, Colin K.
1989-01-01
The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.
Distributed support modelling for vertical track dynamic analysis
NASA Astrophysics Data System (ADS)
Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.
2018-04-01
The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.
De Monte, Silvia; Cotté, Cedric; d'Ovidio, Francesco; Lévy, Marina; Le Corre, Matthieu; Weimerskirch, Henri
2012-12-07
Marine top predators such as seabirds are useful indicators of the integrated response of the marine ecosystem to environmental variability at different scales. Large-scale physical gradients constrain seabird habitat. Birds however respond behaviourally to physical heterogeneity at much smaller scales. Here, we use, for the first time, three-dimensional GPS tracking of a seabird, the great frigatebird (Fregata minor), in the Mozambique Channel. These data, which provide at the same time high-resolution vertical and horizontal positions, allow us to relate the behaviour of frigatebirds to the physical environment at the (sub-)mesoscale (10-100 km, days-weeks). Behavioural patterns are classified based on the birds' vertical displacement (e.g. fast/slow ascents and descents), and are overlaid on maps of physical properties of the ocean-atmosphere interface, obtained by a nonlinear analysis of multi-satellite data. We find that frigatebirds modify their behaviours concurrently to transport and thermal fronts. Our results suggest that the birds' co-occurrence with these structures is a consequence of their search not only for food (preferentially searched over thermal fronts) but also for upward vertical wind. This is also supported by their relationship with mesoscale patterns of wind divergence. Our multi-disciplinary method can be applied to forthcoming high-resolution animal tracking data, and aims to provide a mechanistic understanding of animals' habitat choice and of marine ecosystem responses to environmental change.
High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California
Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.
2011-01-01
We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.
Vertical integration strategies: revenue effects in hospital and Medicare markets.
Cody, M
1996-01-01
The purpose of this study was to evaluate the revenue effects of seven vertically integrated strategies on California hospitals. The strategies investigated were managed care contracts, physician affiliations, ambulatory care, ambulatory surgery, home health services, inpatient rehabilitation, and skilled nursing care. The study population included 242 not-for-profit hospitals in continuous operation from 1983 to 1990. Many hospitals developed vertically integrated programs in the 1980s as inpatient utilization fell in response to the Medicare Prospective Payment program. Net revenue rose on average by $2,080 from 1983 to 1990, but fell by $2,421 from the Medicare program. On the whole, the more physicians affiliated with a hospital, the higher the net revenue. However, in the Medicare population, the number of managed care contracts was significant. The pre-hospital strategies generated significant revenue, while the post-hospital strategies did not. In the Medicare program, inpatient rehabilitation significantly reduced revenue.
The social control of energy: A case for the promise of decentralized solar technologies
NASA Astrophysics Data System (ADS)
Gilmer, R. W.
1980-05-01
Decentralized solar technology and centralized electric utilities were contrasted in the ways they assign property rights in capital and energy output; in the assignment of operational control; and in the means of monitoring, policing, and enforcing property rights. An analogy was drawn between the decision of an energy consumer to use decentralized solar and the decision of a firm to vertically integrate, that is, to extend the boundary of a the firm to vertically integrate, that is, to extend the boundary of the firm by making inputs or further processing output. Decentralized solar energy production offers the small energy consumer the chance to cut ties to outside suppliers--to vertically integrate energy production into the home or business. The development of this analogy provides insight into important noneconomic aspects of solar energy, and it points clearly to the lighter burdens of social management offered by decentralized solar technology.
Graph-based layout analysis for PDF documents
NASA Astrophysics Data System (ADS)
Xu, Canhui; Tang, Zhi; Tao, Xin; Li, Yun; Shi, Cao
2013-03-01
To increase the flexibility and enrich the reading experience of e-book on small portable screens, a graph based method is proposed to perform layout analysis on Portable Document Format (PDF) documents. Digital born document has its inherent advantages like representing texts and fractional images in explicit form, which can be straightforwardly exploited. To integrate traditional image-based document analysis and the inherent meta-data provided by PDF parser, the page primitives including text, image and path elements are processed to produce text and non text layer for respective analysis. Graph-based method is developed in superpixel representation level, and page text elements corresponding to vertices are used to construct an undirected graph. Euclidean distance between adjacent vertices is applied in a top-down manner to cut the graph tree formed by Kruskal's algorithm. And edge orientation is then used in a bottom-up manner to extract text lines from each sub tree. On the other hand, non-textual objects are segmented by connected component analysis. For each segmented text and non-text composite, a 13-dimensional feature vector is extracted for labelling purpose. The experimental results on selected pages from PDF books are presented.
Gross, Marit; Volmer, Daisy
2016-04-19
From 2020, the ownership of community pharmacies in Estonia will be limited to the pharmacy profession, and the vertical integration of wholesale companies and community pharmacies will not be allowed. The aim of this study was to evaluate the perception of different stakeholders in primary healthcare toward the new regulations of the community pharmacy sector in Estonia. A qualitative electronic survey was distributed to the main stakeholders in primary healthcare and higher education institutions providing pharmacy education ( n = 40) in May 2015. For data analysis, the systematic text condensation method was used. The study participants described two opposing positions regarding the development of community pharmacies in the future. Reform supporters emphasized increased professional independence and more healthcare-oriented operation of community pharmacies. Reform opponents argued against these ideas as community pharmacists do not have sufficient practical experience and finances to ensure sustainable development of the community pharmacy sector in Estonia. Based on the current perception of all respondents, the future operation of the community pharmacy sector in Estonia is unclear and there is urgent need for implementation criteria for the new regulations.
Differential GPS/inertial navigation approach/landing flight test results
NASA Technical Reports Server (NTRS)
Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary
1992-01-01
Results of a joint Honeywell/NASA-Langley differential GPS/inertial flight test conducted in November 1990 are discussed focusing on postflight data analysis. The test was aimed at acquiring a system performance database and demonstrating automatic landing based on an integrated differential GPS/INS with barometric and radar altimeters. Particular attention is given to characteristics of DGPS/inertial error and the magnitude of the differential corrections and vertical channel performance with and without altimeter augmentation. It is shown that DGPS/inertial integrated with a radar altimeter is capable of providing a precision approach and autoland guidance of manned return space vehicles within the Space Shuttle accuracy requirements.
Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits.
Nam, SungWoo; Jiang, Xiaocheng; Xiong, Qihua; Ham, Donhee; Lieber, Charles M
2009-12-15
Three-dimensional (3D), multi-transistor-layer, integrated circuits represent an important technological pursuit promising advantages in integration density, operation speed, and power consumption compared with 2D circuits. We report fully functional, 3D integrated complementary metal-oxide-semiconductor (CMOS) circuits based on separate interconnected layers of high-mobility n-type indium arsenide (n-InAs) and p-type germanium/silicon core/shell (p-Ge/Si) nanowire (NW) field-effect transistors (FETs). The DC voltage output (V(out)) versus input (V(in)) response of vertically interconnected CMOS inverters showed sharp switching at close to the ideal value of one-half the supply voltage and, moreover, exhibited substantial DC gain of approximately 45. The gain and the rail-to-rail output switching are consistent with the large noise margin and minimal static power consumption of CMOS. Vertically interconnected, three-stage CMOS ring oscillators were also fabricated by using layer-1 InAs NW n-FETs and layer-2 Ge/Si NW p-FETs. Significantly, measurements of these circuits demonstrated stable, self-sustained oscillations with a maximum frequency of 108 MHz, which represents the highest-frequency integrated circuit based on chemically synthesized nanoscale materials. These results highlight the flexibility of bottom-up assembly of distinct nanoscale materials and suggest substantial promise for 3D integrated circuits.
NASA Astrophysics Data System (ADS)
Parise, M.
2018-01-01
A highly accurate analytical solution is derived to the electromagnetic problem of a short vertical wire antenna located on a stratified ground. The derivation consists of three steps. First, the integration path of the integrals describing the fields of the dipole is deformed and wrapped around the pole singularities and the two vertical branch cuts of the integrands located in the upper half of the complex plane. This allows to decompose the radiated field into its three contributions, namely the above-surface ground wave, the lateral wave, and the trapped surface waves. Next, the square root terms responsible for the branch cuts are extracted from the integrands of the branch-cut integrals. Finally, the extracted square roots are replaced with their rational representations according to Newton's square root algorithm, and residue theorem is applied to give explicit expressions, in series form, for the fields. The rigorous integration procedure and the convergence of square root algorithm ensure that the obtained formulas converge to the exact solution. Numerical simulations are performed to show the validity and robustness of the developed formulation, as well as its advantages in terms of time cost over standard numerical integration procedures.
Parmar, Suresh K; Rathinam, Bertha A D
2011-01-01
The purpose of the present pilot study was to evaluate the benefits of innovative teaching methodologies introduced to final year occupational and physical therapy students in Christian Medical College in India. Students' satisfactions along the long-term retention of knowledge and clinical application of the respiratory anatomy have been assessed. The final year undergraduate physical therapy and occupational therapy students had respiratory anatomy teaching over two sessions. The teaching involved case-based learning and integrated anatomy lectures (vertical integration) with the Anatomy department. Pretest and immediate and follow-up post-tests were conducted to assess the effectiveness of the innovative methods. A feedback questionnaire was marked to grade case-based learning. The method of integrated and case-based teaching was appreciated and found to be useful in imparting knowledge to the students. Students retained the gained knowledge adequately and the same was inferred by statistically significant improvement in both post-test scores. Vertical integration of anatomy in the final year reinforces their existing knowledge of anatomy. Case-based learning may facilitate the development of effective and clinically sound therapists. Copyright © 2011 American Association of Anatomists.
Kosmos 856 and Kosmos 914 measurements of high-energy diffuse gamma rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinkin, L.F.; Nagornykh, Y.I.
1982-09-01
The measurements by the Kosmos 856 and Kosmos 914 satellites of diffuse cosmic ..gamma.. rays with photon energies above 100 MeV are discussed. Integrated energy spectra for the 100--4000 MeV energy range are given for galactic lattitudes Vertical BarbVertical Bar< or =30/sup 0/ and Vertical BarbVertical Bar>30/sup 0/. The form of the spectra suggests that at high lattitudes there may still be some contribution from the galactic component.
Analysis of current-meter data at Columbia River gaging stations, Washington and Oregon
Savini, John; Bodhaine, G.L.
1971-01-01
The U.S. Geological Survey developed equipment to measure stream velocity simultaneously with 10 current meters arranged in a vertical and to measure velocity closer to the streambed than attainable with conventional equipment. With the 10 current meters, synchronous velocities were recorded for a period of 66 minutes at 10 different depths in one vertical of one gaging-station cross section. In addition, with a current meter installed on a special bracket to allow measurements to 0.5 foot above streambed, data were obtained at two to four verticals in four gaging-station cross sections. The mean velocity determined for the 66-minute period of record was 3.30 fps (feet per second). The graphic record of velocity was analyzed on a minute-by-minute basis. It was noted that the shape of the vertical velocity curves (plot of horizontal flow velocities measured in a vertical) changed from one minute to the next, but the change seemed to be random. Velocities obtained at different depths in the, profile fluctuated significantly, with the 1-minute velocities obtained at 0.05 depth (5 percent of total depths measured from the surface at indicated vertical) showing the smallest range--0.66 fps--and those at 0.55 depth the largest range--l.22 fps. The standard deviation, expressed in feet per second, of the velocity at each point in the vertical tended to increase with depth--from 0.16 fps at 0.05 depth to a maximum of 0.24 fps at 0.75 depth. The standard deviation, expressed as a percentage of the mean velocity, ranged from about 4 percent near the surface to 11 percent at 0.95 depth. In spite of the fluctuation in mean velocity that occurred during the 66 minutes and observation period of 4 minutes yields a mean velocity that differs from the 66-minute mean by less than one-half of a percent. Determining the mean velocity by averaging the 10-point observations of the 66minute run proved to be as accurate as by plotting the vertical velocity curvy (from the averaged 10 points) and then integrating the depth-velocity profile. In comparing the velocity obtained by integrating the depth-velocity profile with the 10-point mean velocity for other field data, collected beyond that obtained during the 66-minute run, the difference ranged from -1.3 to +1.7 percent and averaged -0.2 percent. Extension of the curve below the 0.95 depth by use of a power function proved to be fairly accurate (when compared with actual measurements within this reach made with the special current-meter bracket). However, the extension did not improve significantly the accuracy of the integrated-curve mean velocity. Both the one- and two-point methods were found to agree with the 10-point velocity. In computing mean river velocity, values determined by the two-point method ranged from -1.4 to +1.6 percent when compared with the base integrated-curve mean river velocity. The one-point method yielded results that ranged from -1.9 to +4.4 percent and averaged 40.1 percent. In determining river flow by use of the midsection and mean-section methods, the mean-section method uniformly yields lower flows for the same dart.. The range in difference is from -0.2 percent to -1.6 percent, with an average difference of -0.6 percent.
Gerhardus, A; Schilling, I; Voss, M
2017-03-01
Public health education aims at enabling students to deal with complex health-related challenges using appropriate methods based on sound theoretical understanding. Virtually all health-related problems in science and practice require the involvement of different disciplines. However, the necessary interdisciplinarity is only partly reflected in the curricula of public health courses. Also theories, methods, health topics, and their application are often taught side-by-side and not together. For students, it can become an insurmountable challenge to integrate the different disciplines ("horizontal integration") and theories, methods, health topics, and their application ("vertical integration"). This situation is specific for education in public health but is representative for other interdisciplinary fields as well. Several approaches are available to achieve the horizontal integration of different disciplines and vertical integration of theories, methods, health topics, and their application. A curriculum that is structured by topics, rather than disciplines might be more successful in integrating different disciplines. Vertical integration can be achieved by research-based learning. Research-based learning places a student-led research project at the centre of teaching. Students choose a topic and a research question, raise their own questions for theories and methods and will hopefully cross the seeming chasm between science and practice. Challenges of research-based learning are enhanced demands on students, teachers and curriculum design. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Šprlák, Michal; Novák, Pavel
2017-02-01
New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy.
NASA Astrophysics Data System (ADS)
Steill, J. D.; Hager, J. S.; Compton, R. N.
2006-05-01
Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Infrared absorption spectroscopy of the atmosphere provides a unique opportunity to analyze the local chemical composition, since many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provide solar-sourced and boundary- layer atmospheric infrared spectra of these and other relevant atmospheric components. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar-sourced absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. A record of solar-sourced atmospheric spectra of greater than two years duration is under analysis to characterize experimental error and thus the limit of precision in the concentration determinations. Initial efforts using atmospheric O2 as a calibration indicate the solar- sourced spectra may not yet meet the precision required for accurate atmospheric CO2 quantification by such efforts as the OCO and NDSC. However, this variability is also indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the local trace gas concentrations.
Symmetry Analysis of Gauge-Invariant Field Equations via a Generalized Harrison-Estabrook Formalism.
NASA Astrophysics Data System (ADS)
Papachristou, Costas J.
The Harrison-Estabrook formalism for the study of invariance groups of partial differential equations is generalized and extended to equations that define, through their solutions, sections on vector bundles of various kinds. Applications include the Dirac, Yang-Mills, and self-dual Yang-Mills (SDYM) equations. The latter case exhibits interesting connections between the internal symmetries of SDYM and the existence of integrability characteristics such as a linear ("inverse scattering") system and Backlund transformations (BT's). By "verticalizing" the generators of coordinate point transformations of SDYM, nine nonlocal, generalized (as opposed to local, point) symmetries are constructed. The observation is made that the prolongations of these symmetries are parametric BT's for SDYM. It is thus concluded that the entire point group of SDYM contributes, upon verticalization, BT's to the system.
Modeling of self-potential anomalies near vertical dikes.
Fitterman, D.V.
1983-01-01
The self-potential (SP) Green's function for an outcropping vertical dike is derived from solutions for the dc resistivity problem for the same geometry. The Green's functions are numerically integrated over rectangular source regions on the contacts between the dike and the surrounding material to obtain the SP anomaly. The analysis is valid for thermoelectrical source mechanisms. Two types of anomalies can be produced by this geometry. When the two source planes are polarized in opposite directions, a monopolar anomaly is produced. This corresponds to the thermoelectrical properties of the dike being in contrast with the surrounding material. When the thermoelectric coefficients change monotonically across the dike, a dipolar anomaly is produced. In either case positive and negative anomalies are possible, and the greatest variation in potential will occur in the most resistive regions. -Author
Jones, Adam M; DeRose, Christopher T; Lentine, Anthony L; Trotter, Douglas C; Starbuck, Andrew L; Norwood, Robert A
2013-05-20
We explore the design space for optimizing CMOS compatible waveguide crossings on a silicon photonics platform. This paper presents simulated and experimental excess loss and crosstalk suppression data for vertically integrated silicon nitride over silicon-on-insulator waveguide crossings. Experimental results show crosstalk suppression exceeding -49/-44 dB with simulation results as low as -65/-60 dB for the TE/TM mode in a waveguide crossing with a 410 nm vertical gap.
The Utilization of Starute Decelerators for Improved Upper Atmosphere Measurements
1974-12-01
34 ECOM-5489, May 1973. 17. Miller, Walter B., and Donald R. Veazey , "An Integrated Error Description of Active and Passive Balloon Tracking Systems," ECOM...20. Miller, Walter B., and Donald R. Veazey , "Vertical Efficiency of Active and Passive Balloon Tracking Systems from a Standpoint of Integrated Error...5542, May 1974. 60. Miller, Walter B., and Donald R. Veazey , "On Increasing Vertical Efficiency of a Passive Balloon Tracking Device by Optimal Choice
Vertical integration of biochemistry and clinical medicine using a near-peer learning model.
Gallan, Alexander J; Offner, Gwynneth D; Symes, Karen
2016-11-12
Vertical integration has been extensively implemented across medical school curricula but has not been widely attempted in the field of biochemistry. We describe a novel curricular innovation in which a near-peer learning model was used to implement vertical integration in our medical school biochemistry course. Senior medical students developed and facilitated a case-based small group session for first year biochemistry students. Students were surveyed before and after the session on their attitudes about biochemistry, as well as the effectiveness of the session. Prior to the session, the students believed biochemistry was more important to understanding the basic science of medicine than it was to understanding clinical medicine or becoming a good physician. The session improved students' attitudes about the importance of biochemistry in clinical medicine, and after the session they now believe that understanding biochemistry is equally important to the basic sciences as clinical medicine. Students would like more sessions and believe the senior student facilitators were knowledgeable and effective teachers. The facilitators believe they improved their teaching skills. This novel combination of near-peer learning and vertical integration in biochemistry provided great benefit to both first year and senior medical students, and can serve as a model for other institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):507-516, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
Integration of transmissible organic electronic devices for sensor application
NASA Astrophysics Data System (ADS)
Tam, Hoi Lam; Wang, Xizu; Zhu, Furong
2013-09-01
A high performance proximity sensor that integrates a front semitransparent organic photodiode (OPD) and an organic light-emitting diode (OLED) is demonstrated. A 0.3-nm-thick plasma-polymerized fluorocarbon film (CFX)-modified thin silver interlayer, serving simultaneously as a semitransparent cathode for the OPD and an anode for OLED, is used to vertically connect the functional organic electronic components. A microcavity OLED is formed between a semitransparent Ag/CFX interlayer and the rear Al cathode enhancing the forward electroluminescence emission in the integrated device. The semitransparent-OPD/OLED stack is designed using an optical admittance analysis method. In the integrated sensor, the front semitransparent OPD component enables a high transmission of light emitted by the integrated OLED unit and a high absorption when light is reflected from objects, thereby to increase the signal/noise ratio. The design and fabrication flexibility of an integrated semitransparent-OPD/OLED device also has cost benefit, making it possible for application in organic proximity sensors.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Results of an investigation of the aerodynamic loads on a canard airplane model are presented without detailed analysis for the Mach number range of 0.70 t o 2.22. The model consisted of a triangular wing and canard of aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and either a single body-mounted vertical tail or twin wing mounted vertical tails of low aspect ratio and sweptback plan form. The body, right wing panel, single vertical tail, and left twin vertical tail were instrumented for measuring pressures. Data were obtained for angles of attack ranging from -4 degrees to +16 degrees, nominal canard deflection angles of 0 degrees and 10 degrees, and angles of sideslip of 0 degrees and 5.3 degrees. The Reynolds number was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data are presented in graphical form and attention is directed to some of the results of the investigation. All of the experimental results have been tabulated in the form of pressure coefficients and integrations of the pressure coefficients and are available as supplements to this paper. A brief summary of the contents of the tabular material is given.
Li, Albert S; Berger, Kenneth I; Schwartz, David R; Slater, William R; Goldfarb, David S
2014-04-12
In order to develop clinical reasoning, medical students must be able to integrate knowledge across traditional subject boundaries and multiple disciplines. At least two dimensions of integration have been identified: horizontal integration, bringing together different disciplines in considering a topic; and vertical integration, bridging basic science and clinical practice. Much attention has been focused on curriculum overhauls, but our approach is to facilitate horizontal and vertical integration on a smaller scale through an interdisciplinary case study discussion and then to assess its utility. An interdisciplinary case study discussion about a critically ill patient was implemented at the end of an organ system-based, basic sciences module at New York University School of Medicine. Three clinical specialists-a cardiologist, a pulmonologist, and a nephrologist-jointly led a discussion about a complex patient in the intensive care unit with multiple medical problems secondary to septic shock. The discussion emphasized the physiologic underpinnings behind the patient's presentation and the physiologic considerations across the various systems in determining proper treatment. The discussion also highlighted the interdependence between the cardiovascular, respiratory, and renal systems, which were initially presented in separate units. After the session students were given a brief, anonymous three-question free-response questionnaire in which they were asked to evaluate and freely comment on the exercise. Students not only took away physiological principles but also gained an appreciation for various thematic lessons for bringing basic science to the bedside, especially horizontal and vertical integration. The response of the participants was overwhelmingly positive with many indicating that the exercise integrated the material across organ systems, and strengthened their appreciation of the role of physiology in understanding disease presentations and guiding appropriate therapy. Horizontal and vertical integration can be presented effectively through a single-session case study, with complex patient cases involving multiple organ systems providing students opportunities to integrate their knowledge across organ systems while emphasizing the importance of physiology in clinical reasoning. Furthermore, having several clinicians from different specialties discuss the case together can reinforce the matter of integration across multiple organ systems and disciplines in students' minds.
2014-01-01
Background In order to develop clinical reasoning, medical students must be able to integrate knowledge across traditional subject boundaries and multiple disciplines. At least two dimensions of integration have been identified: horizontal integration, bringing together different disciplines in considering a topic; and vertical integration, bridging basic science and clinical practice. Much attention has been focused on curriculum overhauls, but our approach is to facilitate horizontal and vertical integration on a smaller scale through an interdisciplinary case study discussion and then to assess its utility. Methods An interdisciplinary case study discussion about a critically ill patient was implemented at the end of an organ system-based, basic sciences module at New York University School of Medicine. Three clinical specialists—a cardiologist, a pulmonologist, and a nephrologist—jointly led a discussion about a complex patient in the intensive care unit with multiple medical problems secondary to septic shock. The discussion emphasized the physiologic underpinnings behind the patient’s presentation and the physiologic considerations across the various systems in determining proper treatment. The discussion also highlighted the interdependence between the cardiovascular, respiratory, and renal systems, which were initially presented in separate units. After the session students were given a brief, anonymous three-question free-response questionnaire in which they were asked to evaluate and freely comment on the exercise. Results Students not only took away physiological principles but also gained an appreciation for various thematic lessons for bringing basic science to the bedside, especially horizontal and vertical integration. The response of the participants was overwhelmingly positive with many indicating that the exercise integrated the material across organ systems, and strengthened their appreciation of the role of physiology in understanding disease presentations and guiding appropriate therapy. Conclusions Horizontal and vertical integration can be presented effectively through a single-session case study, with complex patient cases involving multiple organ systems providing students opportunities to integrate their knowledge across organ systems while emphasizing the importance of physiology in clinical reasoning. Furthermore, having several clinicians from different specialties discuss the case together can reinforce the matter of integration across multiple organ systems and disciplines in students’ minds. PMID:24725336
A modeling technique for STOVL ejector and volume dynamics
NASA Technical Reports Server (NTRS)
Drummond, C. K.; Barankiewicz, W. S.
1990-01-01
New models for thrust augmenting ejector performance prediction and feeder duct dynamic analysis are presented and applied to a proposed Short Take Off and Vertical Landing (STOVL) aircraft configuration. Central to the analysis is the nontraditional treatment of the time-dependent volume integrals in the otherwise conventional control-volume approach. In the case of the thrust augmenting ejector, the analysis required a new relationship for transfer of kinetic energy from the primary flow to the secondary flow. Extraction of the required empirical corrections from current steady-state experimental data is discussed; a possible approach for modeling insight through Computational Fluid Dynamics (CFD) is presented.
Hlaing, Htay; Kim, Chang-Hyun; Carta, Fabio; Nam, Chang-Yong; Barton, Rob A; Petrone, Nicholas; Hone, James; Kymissis, Ioannis
2015-01-14
The vertical integration of graphene with inorganic semiconductors, oxide semiconductors, and newly emerging layered materials has recently been demonstrated as a promising route toward novel electronic and optoelectronic devices. Here, we report organic thin film transistors based on vertical heterojunctions of graphene and organic semiconductors. In these thin heterostructure devices, current modulation is accomplished by tuning of the injection barriers at the semiconductor/graphene interface with the application of a gate voltage. N-channel devices fabricated with a thin layer of C60 show a room temperature on/off ratio >10(4) and current density of up to 44 mAcm(-2). Because of the ultrashort channel intrinsic to the vertical structure, the device is fully operational at a driving voltage of 200 mV. A complementary p-channel device is also investigated, and a logic inverter based on two complementary transistors is demonstrated. The vertical integration of graphene with organic semiconductors via simple, scalable, and low-temperature fabrication processes opens up new opportunities to realize flexible, transparent organic electronic, and optoelectronic devices.
Volumetric integration of functions for a long term initial Mars habitat
NASA Astrophysics Data System (ADS)
Gutierrez, David John
Sucessfully planning a manned mission to Mars involves an extraordinary balance of resources, risk, technology development and innovation. The interdependency of these factors will ultimately drive out more feasible scenarios for supporting humans during three year, or longer, missions to the Mars surface and home to Earth. Based on a mission profile developed in the Exploration Programs Office at the Johnson Space Center, the Flight Crew Support division began developing conceptual Mars surface habitats to drive out the early human support issues and habitat development concerns. Following the completion of an analysis of a horizontally oriented and outfitted Initial Lunar Haitat (ILH), the decision was made to focus on a vertically oriented habitat as a comparative study. Drawing from the results of both KC-135 partial gravity locomotion testing and water immersion vertical translation studies, the Initial Mars Habitat (IMH), is an analysis of the habitat systems, volumes, and capabilities required to support the first crew of six on the surface of Mars for 500 to 600 days.
Petrovskaya, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A
2017-04-01
Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.
Gyro Systems (Selected Pages),
1982-03-19
of the oil wells, etc. With the aid of gyro systems determine the direction of meridian and true vertical, measure the angular velocities and the...integrating gyroscopes, gyrostabilizers, course gyro systems, gyroscopic sensors of the direction of the true vertical and inertial systems. The action of...direction of the true vertical are the gyro stabilizer, corrected with the aid of the inductive or magnetic detector, the physical pendulum, the local
Interdisciplinary Social Science: An Example of Vertical and Horizontal Integrative Strategies
NASA Astrophysics Data System (ADS)
Durlabhji, Subhash
2005-03-01
A "Concept-Centered" strategy for Integrative Studies was proposed and implemented in the creation of the book Power in Focus: Perspectives from Multiple Disciplines. Essays on the ubiquitous concept of Power were solicited internationally and a final cut of ten essays from ten different disciplines, written specifically for this project, were included. This provides an example of what might be called Horizontal Integration, as it cut across multiple disciplines. One of the essays in the volume provides an example of Vertical Integration, as it applies a psychodynamic hypothesis concerning the development of Power relations among humans across hierarchical levels, from the child to the family to other groups and institutions in society, including finally entire nations and regions of the world.
Integration of MATLAB Simulink(Registered Trademark) Models with the Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Lewis, Emily K.; Vuong, Nghia D.
2012-01-01
This paper describes the integration of MATLAB Simulink(Registered TradeMark) models into the Vertical Motion Simulator (VMS) at NASA Ames Research Center. The VMS is a high-fidelity, large motion flight simulator that is capable of simulating a variety of aerospace vehicles. Integrating MATLAB Simulink models into the VMS needed to retain the development flexibility of the MATLAB environment and allow rapid deployment of model changes. The process developed at the VMS was used successfully in a number of recent simulation experiments. This accomplishment demonstrated that the model integrity was preserved, while working within the hard real-time run environment of the VMS architecture, and maintaining the unique flexibility of the VMS to meet diverse research requirements.
Post-acute care and vertical integration after the Patient Protection and Affordable Care Act.
Shay, Patrick D; Mick, Stephen S
2013-01-01
The anticipated changes resulting from the passage of the Patient Protection and Affordable Care Act-including the proposed adoption of bundled payment systems and the promotion of accountable care organizations-have generated considerable controversy as U.S. healthcare industry observers debate whether such changes will motivate vertical integration activity. Using examples of accountable care organizations and bundled payment systems in the American post-acute healthcare sector, this article applies economic and sociological perspectives from organization theory to predict that as acute care organizations vary in the degree to which they experience environmental uncertainty, asset specificity, and network embeddedness, their motivation to integrate post-acute care services will also vary, resulting in a spectrum of integrative behavior.
NASA Astrophysics Data System (ADS)
Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi
2018-03-01
This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.
Optimal design of waveform digitisers for both energy resolution and pulse shape discrimination
NASA Astrophysics Data System (ADS)
Cang, Jirong; Xue, Tao; Zeng, Ming; Zeng, Zhi; Ma, Hao; Cheng, Jianping; Liu, Yinong
2018-04-01
Fast digitisers and digital pulse processing have been widely used for spectral application and pulse shape discrimination (PSD) owing to their advantages in terms of compactness, higher trigger rates, offline analysis, etc. Meanwhile, the noise of readout electronics is usually trivial for organic, plastic, or liquid scintillator with PSD ability because of their poor intrinsic energy resolution. However, LaBr3(Ce) has been widely used for its excellent energy resolution and has been proven to have PSD ability for alpha/gamma particles. Therefore, designing a digital acquisition system for such scintillators as LaBr3(Ce) with both optimal energy resolution and promising PSD ability is worthwhile. Several experimental research studies about the choice of digitiser properties for liquid scintillators have already been conducted in terms of the sampling rate and vertical resolution. Quantitative analysis on the influence of waveform digitisers, that is, fast amplifier (optional), sampling rates, and vertical resolution, on both applications is still lacking. The present paper provides quantitative analysis of these factors and, hence, general rules about the optimal design of digitisers for both energy resolution and PSD application according to the noise analysis of time-variant gated charge integration.
Reusable EGaIn-Injected Substrate-Integrated-Waveguide Resonator for Wireless Sensor Applications
Memon, Muhammad Usman; Lim, Sungjoon
2015-01-01
The proposed structure in this research is constructed on substrate integrated waveguide (SIW) technology and has a mechanism that produces 16 different and distinct resonant frequencies between 2.45 and 3.05 GHz by perturbing a fundamental TE10 mode. It is a unique method for producing multiple resonances in a radio frequency planar structure without any extra circuitry or passive elements is developed. The proposed SIW structure has four vertical fluidic holes (channels); injecting eutectic gallium indium (EGaIn), also known commonly as liquid metal (LM), into these vertical channels produces different resonant frequencies. Either a channel is empty, or it is filled with LM. In total, the combination of different frequencies produced from four vertical channels is 16. PMID:26569257
NASA Technical Reports Server (NTRS)
Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.
1985-01-01
A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.
Vertical integration and optimal reimbursement policy.
Afendulis, Christopher C; Kessler, Daniel P
2011-09-01
Health care providers may vertically integrate not only to facilitate coordination of care, but also for strategic reasons that may not be in patients' best interests. Optimal Medicare reimbursement policy depends upon the extent to which each of these explanations is correct. To investigate, we compare the consequences of the 1997 adoption of prospective payment for skilled nursing facilities (SNF PPS) in geographic areas with high versus low levels of hospital/SNF integration. We find that SNF PPS decreased spending more in high integration areas, with no measurable consequences for patient health outcomes. Our findings suggest that integrated providers should face higher-powered reimbursement incentives, i.e., less cost-sharing. More generally, we conclude that purchasers of health services (and other services subject to agency problems) should consider the organizational form of their suppliers when choosing a reimbursement mechanism.
Impact of flight systems integration on future aircraft design
NASA Technical Reports Server (NTRS)
Hood, R. V.; Dollyhigh, S. M.; Newsom, J. R.
1984-01-01
Integrations trends in aircraft are discussed with an eye to manifestations in future aircraft designs through interdisciplinary technology integration. Current practices use software changes or small hardware fixes to solve problems late in the design process, e.g., low static stability to upgrade fuel efficiency. A total energy control system has been devised to integrate autopilot and autothrottle functions, thereby eliminating hardware, reducing the software, pilot workload, and cost, and improving flight efficiency and performance. Integrated active controls offer reduced weight and larger payloads for transport aircraft. The introduction of vectored thrust may eliminate horizontal and vertical stabilizers, and location of the thrust at the vehicle center of gravity can provide vertical takeoff and landing capabilities. It is suggested that further efforts will open a new discipline, aeroservoelasticity, and tests will become multidisciplinary, involving controls, aerodynamics, propulsion and structures.
Vertical integration and optimal reimbursement policy
Afendulis, Christopher C.
2011-01-01
Health care providers may vertically integrate not only to facilitate coordination of care, but also for strategic reasons that may not be in patients’ best interests. Optimal Medicare reimbursement policy depends upon the extent to which each of these explanations is correct. To investigate, we compare the consequences of the 1997 adoption of prospective payment for skilled nursing facilities (SNF PPS) in geographic areas with high versus low levels of hospital/SNF integration. We find that SNF PPS decreased spending more in high integration areas, with no measurable consequences for patient health outcomes. Our findings suggest that integrated providers should face higher-powered reimbursement incentives, i.e., less cost-sharing. More generally, we conclude that purchasers of health services (and other services subject to agency problems) should consider the organizational form of their suppliers when choosing a reimbursement mechanism. PMID:21850551
ROBOCAL: An automated NDA (nondestructive analysis) calorimetry and gamma isotopic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, J.R.; Powell, W.D.; Ostenak, C.A.
1989-11-01
ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototype robotic system for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multidrawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface is provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric and gamma-ray data acquisitionmore » and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices.« less
NASA Astrophysics Data System (ADS)
Khatri, P.; Iwabuchi, H.; Saito, M.
2017-12-01
High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.
Decision making in quasi-markets: a pedagogic analysis.
Jones, P R; Cullis, J G
1996-04-01
The objective of the 1991 NHS reforms was to reduce "excessive" vertical integration by constructing a quasi-market in which incentive structures and increased availability of information would enable decision makers make better use of resources. There is, however, no overall framework in which to consider the welfare gains which result from the introduction of a quasi-market or the welfare losses which arise from distortions in a quasi-market. This paper offers an analysis which can be applied to illustrate the difficulty of estimating the welfare loss from cream skimming and also to consider the impact of local monopoly.
Advanced Concept Architecture Design and Integrated Analysis (ACADIA)
2017-11-03
and the vertical drag due to the induced velocity download on the vehicle structure. The propeller blades are assumed to be rigid and therefore any...flapping of the blades is assumed to be negligible. Thus, the tip path plane angle of attack gives an indication of the multicopter attitude when used...The software required to run this printer is called Catalyst EX. Catalyst EX generates an estimated print time with a given STL file. Fixed wing
On vertical profile of ozone at Syowa
NASA Technical Reports Server (NTRS)
Chubachi, Shigeru
1994-01-01
The difference in the vertical ozone profile at Syowa between 1966-1981 and 1982-1988 is shown. The month-height cross section of the slope of the linear regressions between ozone partial pressure and 100-mb temperature is also shown. The vertically integrated values of the slopes are in close agreement with the slopes calculated by linear regression of Dobson total ozone on 100-mb temperature in the period of 1982-1988.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with a single vertical tail are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static pressure coefficients measured on the wing, body, and vertical tail for angles of attack from -4 deg to + 16 deg, angles of sideslip of 0 deg and 5.3 deg, vertical-tail settings of 0 deg and 5 deg, and nominal canard deflections of 0 deg and 10 deg. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given.
2010-01-01
Background Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. Discussion This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Summary Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children. PMID:20478054
Maclean, Lynne M; Clinton, Kathryn; Edwards, Nancy; Garrard, Michael; Ashley, Lisa; Hansen-Ketchum, Patti; Walsh, Audrey
2010-05-17
Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children.
Inventory of available data elements for the San Bernardino, California region
NASA Technical Reports Server (NTRS)
Christenson, J.; Michel, R.
1981-01-01
Elements of data sets that are available to be integrated for the San Bernardino vertical data integration project are given. Each of the data sets has specified for it the ownership, validity, accuracy and technical requirements for integration.
High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai
2006-10-01
The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.
Coherence of simulated atmospheric boundary-layer turbulence
NASA Astrophysics Data System (ADS)
Jiadong, Zeng; Zhiguo, Li; Mingshui, Li
2017-12-01
The coherences in a plane perpendicular to incoming flow are measured in wind tunnel simulations of atmospheric turbulent flow. The measured coherences are compared with analytical expressions tailored to field measurements and with theoretical coherence models which assume homogeneous turbulence and the von Kármán’s spectrum. The comparison indicates that the simulated atmospheric boundary layer flow is approximately horizontally homogeneous turbulence. Based on the above assumption and the systematic analysis of lateral coherence, it can be concluded that the lateral coherences of simulated atmospheric boundary turbulence can be determined accurately using the von Kármán spectrum and the turbulence parameters measured by a few measurement points. The measured results also show that the spatial characteristics of vertical coherences are closely related to the dimensionless parameter {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The vertical coherence at two heights can be roughly estimated by the ratio to {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The relationship between the phase angles of u-, v- and w-components and the vertical separation distance and the height from the ground is further analyzed. Finally, the roles of the type of land surface roughness, the height from the ground, the turbulence intensity and the integral length scale in lateral and vertical coherences are also discussed in this study.
Polarity management: the key challenge for integrated health systems.
Burns, L R
1999-01-01
Integrated health systems are confronted with numerous dilemmas that must be managed. Many of these dilemmas are an inherent part of the system's structure, given that multiple competing hospitals, medical groups, and (sometimes) health plans are often under one organizational roof. This article presents an analysis of these dilemmas--referred to in the management literature as polarities--as they are found in six integrated health systems in Illinois. The nine polarities that must be managed include (1) hospital systems that want to be organizations of physicians; (2) system expansion by growing the physician component; (3) system centralization and physician decentralization; (4) centripetal and centrifugal forces involving physicians; (5) system objectives and physician interests; (6) system centralization and hospital decentralization; (7) primary care physicians and specialists; (8) physician autonomy via collectivization; and (9) vertical and virtual integration. The article identifies some of the solutions to the polarities that have been enacted by systems. In general, executives and physicians in integrated health systems must attend to the processes of integration as much as or more than the structures of integration.
NASA Astrophysics Data System (ADS)
Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A.
2016-06-01
We report on the free tropospheric spatio-temporal variability of water vapor investigated by the analysis of a five-year period of water vapor vertical soundings above Mt. Zugspitze (2962 m a.s.l., Germany). Our results are obtained from a combination of measurements of vertically integrated water vapor (IWV), recorded with a solar Fourier Transform InfraRed (FTIR) spectrometer and of water vapor profiles recorded with the nearby differential absorption lidar (DIAL). The special geometrical arrangement of one zenith-viewing and one sun-pointing instrument and the temporal resolution of both optical instruments allow for an investigation of the spatio-temporal variability of IWV on a spatial scale of less than one kilometer and on a time scale of less than one hour. We investigated the short-term variability of both IWV and water vapor profiles from statistical analyses. The latter was also examined by case studies with a clear assignment to certain atmospheric processes as local convection or long-range transport. This study is described in great detail in our recent publication [1].
V/STOL propulsion control analysis: Phase 2, task 5-9
NASA Technical Reports Server (NTRS)
1981-01-01
Typical V/STOL propulsion control requirements were derived for transition between vertical and horizontal flight using the General Electric RALS (Remote Augmented Lift System) concept. Steady-state operating requirements were defined for a typical Vertical-to-Horizontal transition and for a typical Horizontal-to-Vertical transition. Control mode requirements were established and multi-variable regulators developed for individual operating conditions. Proportional/Integral gain schedules were developed and were incorporated into a transition controller with capabilities for mode switching and manipulated variable reassignment. A non-linear component-level transient model of the engine was developed and utilized to provide a preliminary check-out of the controller logic. An inlet and nozzle effects model was developed for subsequent incorporation into the engine model and an aircraft model was developed for preliminary flight transition simulations. A condition monitoring development plan was developed and preliminary design requirements established. The Phase 1 long-range technology plan was refined and restructured toward the development of a real-time high fidelity transient model of a supersonic V/STOL propulsion system and controller for use in a piloted simulation program at NASA-Ames.
Integrated Hydrogeological Model of the General Separations Area, Vol. 2, Rev. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
FLACH, GREGORYK.
1999-04-01
The 15 mi2 General Separations Area (GSA) contains more than 35 RCRA and CERCLA waste units, and is the focus of numerous ongoing and anticipated contaminant migration and remedial alternatives studies. To meet the analysis needs of GSA remediation programs, a groundwater flow model of the area based on the FACT code was developed. The model is consistent with detailed characterization and monitoring data through 1996. Model preprocessing has been automated so that future updates and modifications can be performed quickly and efficiently. Most remedial action scenarios can be explicitly simulated, including vertical recirculation wells, vertical barriers, surface caps, pumpingmore » wells at arbitrary locations, specified drawdown within well casings (instead of flowrate), and wetland impacts of remedial actions. The model has a fine scale vertical mesh and heterogeneous conductivity field, and includes the vadose zone. Therefore, the model is well suited to support subsequent contaminant transport simulations. the model can provide a common framework for analyzing groundwater flow, contaminant migration, and remedial alternatives across Environmental Restoration programs within the GSA.« less
Vertical Profiling of Air Pollution at RAPCD
NASA Technical Reports Server (NTRS)
Newchurch, Michael J.; Fuller, Kirk A.; Bowdle, David A.; Johnson, Steven; Knupp, Kevin; Gillani, Noor; Biazar, Arastoo; Mcnider, Richard T.; Burris, John
2004-01-01
The interaction between local and regional pollution levels occurs at the interface of the Planetary Boundary Layer and the Free Troposphere. Measuring the vertical distribution of ozone, aerosols, and winds with high temporal and vertical resolution is essential to diagnose the nature of this interchange and ultimately for accurately forecasting ozone and aerosol pollution levels. The Regional Atmospheric Profiling Center for Discovery, RAPCD, was built and instrumented to address this critical issue. The ozone W DIAL lidar, Nd:YAG aerosol lidar, and 2.1 micron Doppler wind lidar, along with balloon- borne ECC ozonesondes form the core of the W C D instrumentation for addressing this problem. Instrumentation in the associated Mobile Integrated Profiling (MIPS) laboratory includes 91 5Mhz profiler, sodar, and ceilometer. The collocated Applied particle Optics and Radiometry (ApOR) laboratory hosts an FTIR along with MOUDI and optical particle counters. With MODELS-3 analysis by colleagues in the National Space Science and Technology Center on the UAH campus and the co- located National Weather Service Forecasting Office in Huntsville, AL we are developing a unique facility for advancing the state of the science of pollution forecasting.
V/STOL Dynamics, Control, and Flying Qualities
NASA Technical Reports Server (NTRS)
Franklin, James A.
2000-01-01
This publication presents material that constituted the lectures presented by the author as part of Course AA 234, Dynamics, Control, and Flying Qualities of Vertical/Short Takeoff and Landing (V/STOL) Aircraft that was taught in the Department of Aeronautics and Astronautics at Stanford University. It covers representative operations of vertical and short takeoff and landing (V/STOL) aircraft, a discussion of the pilot's strategy in controlling these aircraft, the equations of motion pertinent to V/STOL tasks, and their application in the analysis of longitudinal and lateral-directional control in hover and forward flight. Following that development, which applies to the characteristics of the basic airframe and propulsion system, the text concludes with a discussion of the contributions of control augmentation in specific flight tasks and of the integration of modern electronic displays with these controls.
Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal
NASA Astrophysics Data System (ADS)
Yeh, Hsi-Jen J.; Smith, John S.
1994-03-01
The successful integration of strained quantum well InGaAs vertical-cavity surface-emitting lasers (VCSELs) on both Si and Cu substrates was described using a GaAs substrate removal technique. The GaAs VCSEL structure was metallized and bonded to the Si substrate after growth. The GaAs substrate was then removed by selective chemical wet etching. Finally, the bonded GaAs film metallized on the top (emitting) side and separate lasers were defined. This is the first time a VCSEL had been integrated on a Si substrate with its substrate removed. The performance enhancement of GaAs VCSELs bonded on good thermal conductors are demonstrated.
Porcino, Antony; MacDougall, Colleen
2009-01-01
Background: Since the late 1980s, several taxonomies have been developed to help map and describe the interrelationships of complementary and alternative medicine (CAM) modalities. In these taxonomies, several issues are often incompletely addressed: A simple categorization process that clearly isolates a modality to a single conceptual categoryClear delineation of verticality—that is, a differentiation of scale being observed from individually applied techniques, through modalities (therapies), to whole medical systemsRecognition of CAM as part of the general field of health care Methods: Development of the Integrated Taxonomy of Health Care (ITHC) involved three stages: Development of a precise, uniform health glossaryAnalysis of the extant taxonomiesUse of an iterative process of classifying modalities and medical systems into categories until a failure to singularly classify a modality occurred, requiring a return to the glossary and adjustment of the classifying protocol Results: A full vertical taxonomy was developed that includes and clearly differentiates between techniques, modalities, domains (clusters of similar modalities), systems of health care (coordinated care system involving multiple modalities), and integrative health care. Domains are the classical primary focus of taxonomies. The ITHC has eleven domains: chemical/substance-based work, device-based work, soft tissue–focused manipulation, skeletal manipulation, fitness/movement instruction, mind–body integration/classical somatics work, mental/emotional–based work, bio-energy work based on physical manipulation, bio-energy modulation, spiritual-based work, unique assessments. Modalities are assigned to the domains based on the primary mode of interaction with the client, according the literature of the practitioners. Conclusions: The ITHC has several strengths: little interpretation is used while successfully assigning modalities to single domains; the issue of taxonomic verticality is fully resolved; and the design fully integrates the complementary health care fields of biomedicine and CAM. PMID:21589735
Baranes, Edmond; Bardey, David
2015-12-01
This article examines a model of competition between two types of health insurer: Health Maintenance Organizations (HMOs) and nonintegrated insurers. HMOs vertically integrate health care providers and pay them at a competitive price, while nonintegrated health insurers work as indemnity plans and pay the health care providers freely chosen by policyholders at a wholesale price. Such difference is referred to as an input price effect which, at first glance, favors HMOs. Moreover, we assume that policyholders place a positive value on the provider diversity supplied by their health insurance plan and that this value increases with the probability of disease. Due to the restricted choice of health care providers in HMOs a risk segmentation occurs: policyholders who choose nonintegrated health insurers are characterized by higher risk, which also tends to favor HMOs. Our equilibrium analysis reveals that the equilibrium allocation only depends on the number of HMOs in the case of exclusivity contracts between HMOs and providers. Surprisingly, our model shows that the interplay between risk segmentation and input price effects may generate ambiguous results. More precisely, we reveal that vertical integration in health insurance markets may decrease health insurers' premiums.
Gross, Marit; Volmer, Daisy
2016-01-01
Objectives: From 2020, the ownership of community pharmacies in Estonia will be limited to the pharmacy profession, and the vertical integration of wholesale companies and community pharmacies will not be allowed. The aim of this study was to evaluate the perception of different stakeholders in primary healthcare toward the new regulations of the community pharmacy sector in Estonia. Methods: A qualitative electronic survey was distributed to the main stakeholders in primary healthcare and higher education institutions providing pharmacy education (n = 40) in May 2015. For data analysis, the systematic text condensation method was used. Results: The study participants described two opposing positions regarding the development of community pharmacies in the future. Reform supporters emphasized increased professional independence and more healthcare-oriented operation of community pharmacies. Reform opponents argued against these ideas as community pharmacists do not have sufficient practical experience and finances to ensure sustainable development of the community pharmacy sector in Estonia. Conclusion: Based on the current perception of all respondents, the future operation of the community pharmacy sector in Estonia is unclear and there is urgent need for implementation criteria for the new regulations. PMID:28970391
System identification methods for aircraft flight control development and validation
NASA Technical Reports Server (NTRS)
Tischler, Mark B.
1995-01-01
System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.
SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring
NASA Astrophysics Data System (ADS)
Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.
2013-12-01
Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.
NASA Astrophysics Data System (ADS)
Tut, Turgut; Dan, Yaping; Duane, Peter; Yu, Young; Wober, Munib; Crozier, Kenneth B.
2012-01-01
We describe the experimental realization of vertical silicon nitride waveguides integrated with silicon photodetectors. The waveguides are embedded in a silicon dioxide layer. Scanning photocurrent microscopy is performed on a device containing a waveguide, and on a device containing the silicon dioxide layer, but without the waveguide. The results confirm the waveguide's ability to guide light onto the photodetector with high efficiency. We anticipate that the use of these structures in image sensors, with one waveguide per pixel, would greatly improve efficiency and significantly reduce inter-pixel crosstalk.
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
Verticality perception during and after galvanic vestibular stimulation.
Volkening, Katharina; Bergmann, Jeannine; Keller, Ingo; Wuehr, Max; Müller, Friedemann; Jahn, Klaus
2014-10-03
The human brain constructs verticality perception by integrating vestibular, somatosensory, and visual information. Here we investigated whether galvanic vestibular stimulation (GVS) has an effect on verticality perception both during and after application, by assessing the subjective verticals (visual, haptic and postural) in healthy subjects at those times. During stimulation the subjective visual vertical and the subjective haptic vertical shifted towards the anode, whereas this shift was reversed towards the cathode in all modalities once stimulation was turned off. Overall, the effects were strongest for the haptic modality. Additional investigation of the time course of GVS-induced changes in the haptic vertical revealed that anodal shifts persisted for the entire 20-min stimulation interval in the majority of subjects. Aftereffects exhibited different types of decay, with a preponderance for an exponential decay. The existence of such reverse effects after stimulation could have implications for GVS-based therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Integrated bio-fluorescence sensor.
Thrush, Evan; Levi, Ofer; Ha, Wonill; Wang, Ke; Smith, Stephen J; Harris, James S
2003-09-26
Due to the recent explosion in optoelectronics for telecommunication applications, novel optoelectronic sensing structures can now be realized. In this work, we explore the integration of optoelectronic components towards miniature and portable fluorescence sensors. The integration of these micro-fabricated sensors with microfluidics and capillary networks may reduce the cost and complexity of current research instruments and open up a world of new applications in portable biological analysis systems. A novel optoelectronic design that capitalizes on current vertical-cavity surface-emitting laser (VCSEL) technology is explored. Specifically, VCSELs, optical emission filters and PIN photodetectors are fabricated as part of a monolithically integrated near-infrared fluorescence detection system. High-performance lasers and photodetectors have been characterized and integrated to form a complete sensor. Experimental results show that sensor sensitivity is limited by laser background. The laser background is caused by spontaneous emission emitted from the side of the VCSEL excitation source. Laser background will limit sensitivity in most integrated sensing designs due to locating excitation sources and photodetectors in such close proximity, and methods are proposed to reduce the laser background in such designs so that practical fluorescent detection limits can be achieved.
Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
Rote, Donald M.; He, Jianliang; Johnson, Larry R.
1994-01-01
A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.
Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
Rote, D.M.; He, J.; Johnson, L.R.
1994-01-04
A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.
Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
Rote, D.M.; He, Jianliang; Johnson, L.R.
1992-01-01
This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with twin vertical tails are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static-pressure coefficients measured on the wing, body, and one of the vertical tails for angles of attack from -4 degrees to 16 degree angles of sideslip of 0 degrees and 5.3 degrees, and nominal canard deflections of O degrees and 10 degrees. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model are shown and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given. Detailed descriptions of the model and experiments and a brief discussion of some of the results are given. Tabulated results of measurements of the aerodynamic loads on the same canard model but having a single vertical tail instead of twin vertical tails are presented.
Integrated Vertical Bloch Line (VBL) memory
NASA Technical Reports Server (NTRS)
Katti, R. R.; Wu, J. C.; Stadler, H. L.
1991-01-01
Vertical Bloch Line (VBL) Memory is a recently conceived, integrated, solid state, block access, VLSI memory which offers the potential of 1 Gbit/sq cm areal storage density, data rates of hundreds of megabits/sec, and submillisecond average access time simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBLs are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of BVL pairs are used to store binary information. At present, efforts are being directed at developing a single chip memory using 25 Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. The current design architecture, functional elements, and supercomputer simulation results are described which are used to assist the design process.
NASA Astrophysics Data System (ADS)
Zheng, Jie; Tian, Jiwei; Liang, Hui
2017-04-01
Based on nearly 3 months of moored acoustic Doppler current profiler records on the continental slope in the northwestern South China Sea (SCS) in 2006, this study examines temporal and vertical characteristics of near-inertial internal waves (NIW). Rotary frequency spectrum indicates that motions in the near-inertial frequency are strongly polarized, with clockwise (CW) energy exceeding counterclockwise (CCW) by about a factor of 10. Wavelet analysis exhibits an energy peak exceeding the 95% confidence level at the frequency of local inertial during the passage of typhoon Xangsane (24 September to 4 October). This elevated near-inertial kinetic energy (NIKE) event possesses about a 4 days delay correlation with the time integral of energy flux induced by typhoon, indicating an energy source of wind. Further analysis shows that the upward phase velocity of this event is 3.8 m h-1 approximately, corresponding to a vertical wavelength of about 125 m if not taking the redshift of local inertial frequency into account. Rotary vertical wavenumber spectrum exhibits the dominance of clockwise-with-depth energy, indicating downward energy propagation and implying a surface energy source. Dynamical modes suggest that mode 1 plays a dominant role at the growth stage of NIW, whereas major contribution is from higher modes during the penetration of NIKE into the ocean interior.
METHODS FOR DETERMINING THE MECHANICAL INTEGRITY OF CLASS II INJECTION WELLS
The mechanical integrity of injection wells must be determined to insure that there is no significant leak in the casing, tubing or packer, and that there is no significant fluid movement through vertical channels adjacent to the injection well. Methods for mechanical integrity t...
Baillie, Lesley; Gallini, Andrew; Corser, Rachael; Elworthy, Gina; Scotcher, Ann; Barrand, Annabelle
2014-01-01
Introduction Frail older people experience frequent care transitions and an integrated healthcare system could reduce barriers to transitions between different settings. The study aimed to investigate care transitions of frail older people from acute hospital wards to community healthcare or community hospital wards, within a system that had vertically integrated acute hospital and community healthcare services. Theory and methods The research design was a multimethod, qualitative case study of one healthcare system in England; four acute hospital wards and two community hospital wards were studied in depth. The data were collected through: interviews with key staff (n = 17); focus groups (n = 9) with ward staff (n = 36); interviews with frail older people (n = 4). The data were analysed using the framework approach. Findings Three themes are presented: Care transitions within a vertically integrated healthcare system, Interprofessional communication and relationships; Patient and family involvement in care transitions. Discussion and conclusions A vertically integrated healthcare system supported care transitions from acute hospital wards through removal of organisational boundaries. However, boundaries between staff in different settings remained a barrier to transitions, as did capacity issues in community healthcare and social care. Staff in acute and community settings need opportunities to gain better understanding of each other's roles and build relationships and trust. PMID:24868193
Leppington, Charmody; Gleberzon, Brian; Fortunato, Lisa; Doucet, Nicolea; Vandervalk, Kyle
2012-01-01
The purpose of this study was to determine if diagnostic and therapeutic procedures for the cervical and cranial spine taught to students during the undergraduate program at Canadian Memorial Chiropractic College are required to be used during their internship by their supervising clinicians and, if so, to what extent these procedures are used. Course manuals and course syllabi from the Applied Chiropractic and Clinical Diagnosis faculty of the undergraduate chiropractic program for the academic year 2009-2010 were consulted and a list of all diagnostic and therapeutic procedures for the cranial and cervical spine was compiled. This survey asked clinicians to indicate if they themselves used or if they required the students they were supervising to use each procedure listed and, if so, to what extent each procedure was used. Demographic information of each clinician was also obtained. In general, most diagnostic procedures of the head and neck were seldom used, with the exception of postural observation and palpation. By contrast, most cervical orthopaedic tests were often used, with the exception of tests for vertigo. Most therapeutic procedures were used frequently with the exception of prone cervical and "muscle" adjustments. There was a low degree of vertical integration for cranial procedures as compared to a much higher degree of vertical integration for cervical procedures between the undergraduate and clinical internship programs taught. Vertical integration is an important element of curricular planning and these results may be helpful to aid educators to more appropriately allocate classroom instruction.
Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures
NASA Technical Reports Server (NTRS)
Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.
2010-01-01
Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are structurally and chemically compatible with the high-temperature synthesis of the PECVD-grown tubes. The techniques offer a wafer-scale process solution for integrating single PECVD-grown nanotubes into novel architectures that should accelerate their integration in 3D electronics in general. NASA can directly benefit from this technology for its extreme-environment planetary missions. Current Si transistors are inherently more susceptible to high radiation, and do not tolerate extremes in temperature. These novel 3D nanoscale architectures can form the basis for NEMS switches that are inherently less susceptible to radiation or to thermal extremes.
"I Was Told That My First Duty Was to Forget Physiology, Which Had No Relation to Medicine"
ERIC Educational Resources Information Center
Walsh, Kieran
2016-01-01
There has been much recent commentary on integration in health care professional education. This commentary is of importance to physiology education as integration often touches on integration between preclinical and clinical sciences. There are different forms of integration, from horizontal to vertical to spiral, and different theories underpin…
High Density Memory Based on Quantum Device Technology
NASA Technical Reports Server (NTRS)
vanderWagt, Paul; Frazier, Gary; Tang, Hao
1995-01-01
We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.
Angelstam, Per; Mikusiński, Grzegorz; Rönnbäck, Britt-Inger; Ostman, Anders; Lazdinis, Marius; Roberge, Jean-Michel; Arnberg, Wolter; Olsson, Jan
2003-12-01
The maintenance of biodiversity by securing representative and well-connected habitat networks in managed landscapes requires a wise combination of protection, management, and restoration of habitats at several scales. We suggest that the integration of natural and social sciences in the form of "Two-dimensional gap analysis" is an efficient tool for the implementation of biodiversity policies. The tool links biologically relevant "horizontal" ecological issues with "vertical" issues related to institutions and other societal issues. Using forest biodiversity as an example, we illustrate how one can combine ecological and institutional aspects of biodiversity conservation, thus facilitating environmentally sustainable regional development. In particular, we use regional gap analysis for identification of focal forest types, habitat modelling for ascertaining the functional connectivity of "green infrastructures", as tools for the horizontal gap analysis. For the vertical dimension we suggest how the social sciences can be used for assessing the success in the implementation of biodiversity policies in real landscapes by identifying institutional obstacles while implementing policies. We argue that this interdisciplinary approach could be applied in a whole range of other environments including other terrestrial biota and aquatic ecosystems where functional habitat connectivity, nonlinear response to habitat loss and a multitude of economic and social interests co-occur in the same landscape.
Yang, Tiefeng; Zheng, Biyuan; Wang, Zhen; Xu, Tao; Pan, Chen; Zou, Juan; Zhang, Xuehong; Qi, Zhaoyang; Liu, Hongjun; Feng, Yexin; Hu, Weida; Miao, Feng; Sun, Litao; Duan, Xiangfeng; Pan, Anlian
2017-12-04
High-quality two-dimensional atomic layered p-n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe 2 /SnS 2 vertical bilayer p-n junctions on SiO 2 /Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10 -14 A and a highest on-off ratio of up to 10 7 . Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.
Computational aspects of the nonlinear normal mode initialization of the GLAS 4th order GCM
NASA Technical Reports Server (NTRS)
Navon, I. M.; Bloom, S. C.; Takacs, L.
1984-01-01
Using the normal modes of the GLAS 4th Order Model, a Machenhauer nonlinear normal mode initialization (NLNMI) was carried out for the external vertical mode using the GLAS 4th Order shallow water equations model for an equivalent depth corresponding to that associated with the external vertical mode. A simple procedure was devised which was directed at identifying computational modes by following the rate of increase of BAL sub M, the partial (with respect to the zonal wavenumber m) sum of squares of the time change of the normal mode coefficients (for fixed vertical mode index) varying over the latitude index L of symmetric or antisymmetric gravity waves. A working algorithm is presented which speeds up the convergence of the iterative Machenhauer NLNMI. A 24 h integration using the NLNMI state was carried out using both Matsuno and leap-frog time-integration schemes; these runs were then compared to a 24 h integration starting from a non-initialized state. The maximal impact of the nonlinear normal mode initialization was found to occur 6-10 hours after the initial time.
NASA Astrophysics Data System (ADS)
Wang, Y. H.; Hasnain, G.; Tai, K.; Wynn, J. D.; Weir, B. E.; Choquette, K. D.; Cho, A. Y.
1991-12-01
An all-epitaxial planar top emitting AlGaAs/GaAs multi-quantum well laser is fabricated and characterized. The constructed vertical cavity surface emitting laser (VCSEL) consists of GaAs/Al0.2Ga0.8As (100/80 Å) quantum wells sandwiched between two doped distributed Bragg reflectors characterized by a two-step composition profile. Two Ga and two Al cells are used to facilitate the growth of mirror profile. The gain-guided VCSEL is found to generate continuous wave at a characteristic temperature of 210°K up to 90°C, and can be amplitude modulated at frequencies above 5 GHz. Thresholds as low as 2 mA, and a CW power more than 1.5 mW, are obtained at room temperature. Monolithic integration of a PIN photodetector on top of the VCSEL is demonstrated and discussed. The integrated photodetector shows an effective linear responsivity to the laser emission of 0.25 A/W.
Broadcasting GPS integrity information using Loran-C
NASA Astrophysics Data System (ADS)
Lo, Sherman Chih
The United States Federal Aviation Administration (FAA) will adopt the Global Positioning System (GPS) as its primary navigation systems for aviation as stated by the Federal Radionavigation Plans (FRP) of 1996 and 1999. The FRP also proposes the reduction or termination of some existing radionavigation system in favor of GPS and satellite navigation. It may be beneficial to retain some of these existing terrestrial navigation systems if they can provide increased safety and redundancy to the GPS based architecture. One manner in which this can be done is by using or creating a data link on these existing radionavigation systems. These systems thus can provide both navigation and an additional broadcast of GPS integrity information. This thesis examines the use of terrestrial data links to provide Wide Area Augmentation System (WAAS) based GPS integrity information for aviation. The thesis focuses on using Loran-C to broadcast WAAS data. Analysis and experimental results demonstrating the capabilities of these designs are also discussed. Using Loran for this purpose requires increasing its data capacity. Many Loran modulation schemes are developed and analyzed. The data rates developed significantly increased the Loran data capacity. However, retaining compatibility with Loran legacy users resulted in data rates below the WARS data rate of 250 bps. As a result, this thesis also examines means of reducing the data requirements for WAAS information. While higher data rates offer improved performance and compatibility with WAAS, this thesis demonstrates that higher rates incur greater interference. Therefore, this work develops and considers a 108 bps and 167 bps Loran GPS integrity channel (LOGIC) design. The performance of the two designs illustrates some of the advantages and disadvantages of using a higher data rate. Analysis demonstrated means of maintaining integrity with these low data rate systems and determined the theoretical capabilities of the systems. The system was tested empirically by developing software that generated the LOGIC message and applied these messages to a GPS user. The resulting 108 bps and 167 bps systems demonstrated capability to provide lateral navigation/vertical navigation (LNAV/VNAV) and approach with vertical guidance (APV) respectively.
Sabatini, Angelo Maria; Ligorio, Gabriele; Mannini, Andrea
2015-11-23
In biomechanical studies Optical Motion Capture Systems (OMCS) are considered the gold standard for determining the orientation and the position (pose) of an object in a global reference frame. However, the use of OMCS can be difficult, which has prompted research on alternative sensing technologies, such as body-worn inertial sensors. We developed a drift-free method to estimate the three-dimensional (3D) displacement of a body part during cyclical motions using body-worn inertial sensors. We performed the Fourier analysis of the stride-by-stride estimates of the linear acceleration, which were obtained by transposing the specific forces measured by the tri-axial accelerometer into the global frame using a quaternion-based orientation estimation algorithm and detecting when each stride began using a gait-segmentation algorithm. The time integration was performed analytically using the Fourier series coefficients; the inverse Fourier series was then taken for reconstructing the displacement over each single stride. The displacement traces were concatenated and spline-interpolated to obtain the entire trace. The method was applied to estimate the motion of the lower trunk of healthy subjects that walked on a treadmill and it was validated using OMCS reference 3D displacement data; different approaches were tested for transposing the measured specific force into the global frame, segmenting the gait and performing time integration (numerically and analytically). The width of the limits of agreements were computed between each tested method and the OMCS reference method for each anatomical direction: Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP); using the proposed method, it was observed that the vertical component of displacement (VT) was within ±4 mm (±1.96 standard deviation) of OMCS data and each component of horizontal displacement (ML and AP) was within ±9 mm of OMCS data. Fourier harmonic analysis was applied to model stride-by-stride linear accelerations during walking and to perform their analytical integration. Our results showed that analytical integration based on Fourier series coefficients was a useful approach to accurately estimate 3D displacement from noisy acceleration data.
Aeroelastic Response from Indicial Functions with a Finite Element Model of a Suspension Bridge
NASA Astrophysics Data System (ADS)
Mikkelsen, O.; Jakobsen, J. B.
2017-12-01
The present paper describes a comprehensive analysis of the aeroelastic bridge response in time-domain, with a finite element model of the structure. The main focus is on the analysis of flutter instability, accounting for the wind forces generated by the bridge motion, including twisting as well as vertical and horizontal translation, i.e. all three global degrees of freedom. The solution is obtained by direct integration of the equations of motion for the bridge-wind system, with motion-dependent forces approximated from flutter derivatives in terms of rational functions. For the streamlined bridge box-girder investigated, the motion dependent wind forces related to the along-wind response are found to have a limited influence on the flutter velocity. The flutter mode shapes in the time-domain and the frequency domain are consistent, and composed of the three lowest symmetrical vertical modes coupled with the first torsional symmetric mode. The method applied in this study provides detailed response estimates and contributes to an increased understanding of the complex aeroelastic behaviour of long-span bridges.
Variability of OH(3-1) and OH(6-2) emission altitude and volume emission rate from 2003 to 2011
NASA Astrophysics Data System (ADS)
Teiser, Georg; von Savigny, Christian
2017-08-01
In this study we report on variability in emission rate and centroid emission altitude of the OH(3-1) and OH(6-2) Meinel bands in the terrestrial nightglow based on spaceborne nightglow measurements with the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument on the Envisat satellite. The SCIAMACHY observations cover the time period from August 2002 to April 2012 and the nighttime observations used in this study are performed at 10:00 p.m. local solar time. Characterizing variability in OH emission altitude - particularly potential long-term variations - is important for an appropriate interpretation of ground-based OH rotational temperature measurements, because simultaneous observations of the vertical OH volume emission rate profile are usually not available for these measurements. OH emission altitude and vertically integrated emission rate time series with daily resolution for the OH(3-1) band and monthly resolution for the OH(6-2) band were analyzed using a standard multilinear regression approach allowing for seasonal variations, QBO-effects (Quasi-Biennial Oscillation), solar cycle (SC) variability and a linear long-term trend. The analysis focuses on low latitudes, where SCIAMACHY nighttime observations are available all year. The dominant sources of variability for both OH emission rate and altitude are the semi-annual and annual variations, with emission rate and altitude being highly anti-correlated. There is some evidence for a 11-year solar cycle signature in the vertically integrated emission rate and in the centroid emission altitude of both the OH(3-1) and OH(6-2) bands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradel, Lauren; Endert, Alexander; Koch, Kristen
2013-08-01
Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional textual intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the space management strategies of users partitioned by type of tool philosophy followed (visualization- or text-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with information on the display (integrated or independent workspaces). Next,more » we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we offer design suggestions for building future co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays.« less
Gardening as vector of a humanization of high-rise building
NASA Astrophysics Data System (ADS)
Lekareva, Nina; Zaslavskaya, Anna
2018-03-01
Article is devoted to issue of integration of vertical gardening into structure of high-rise building in the conditions of the constrained town-planning situation. On the basis of the analysis of the existing experience of design and building of "biopositive" high-rise building ecological, town-planning, social and constructive advantages of the organization of gardens on roofs and vertical gardens are considered [1]. As the main mechanism of increase in investment appeal of high-rise building the principle of a humanization due to gardening of high-rise building taking into account requirements of ecology, energy efficiency of buildings and improvement of quality of construction with minimization of expenses and maximizing comfort moves forward. The National Standards of Green construction designed to adapt the international requirements of architecture and construction of the energy efficient, eco-friendly and comfortable building or a complex to local conditions are considered [2,3].
Invited Article: Refined analysis of synchrotron radiation for NIST's SURF III facility
NASA Astrophysics Data System (ADS)
Shirley, Eric L.; Furst, Mitchell; Arp, Uwe
2018-04-01
We have developed a new method for the exact calculation of synchrotron radiation for the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility, SURF III. Instead of using the Schwinger formula, which is only an approximation, we develop formulae based on Graf's addition theorem for Bessel functions and accurate asymptotic expansions for Hankel functions and Bessel functions. By measuring the radiation intensity profile at two distances from the storage ring, we also confirm an apparent vertical emittance that is consistent with the vertical betatron oscillations that are intentionally introduced to extend beam lifetime by spreading the electron beam spatially. Finally, we determine how much diffraction by beamline apertures enhances the spectral irradiance at an integrating sphere entrance port at the end station. This should eliminate small but treatable components of the uncertainty budget that one should consider when using SURF III or similar synchrotrons as standard, calculable sources of ultraviolet and other radiation.
Fibre Optic Connections And Method For Using Same
Chan, Benson; Cohen, Mitchell S.; Fortier, Paul F.; Freitag, Ladd W.; Hall, Richard R.; Johnson, Glen W.; Lin, How Tzu; Sherman, John H.
2004-03-30
A package is described that couples a twelve channel wide fiber optic cable to a twelve channel Vertical Cavity Surface Emitting Laser (VCSEL) transmitter and a multiple channel Perpendicularly Aligned Integrated Die (PAID) receiver. The package allows for reduction in the height of the assembly package by vertically orienting certain dies parallel to the fiber optic cable and horizontally orienting certain other dies. The assembly allows the vertically oriented optoelectronic dies to be perpendicularly attached to the horizontally oriented laminate via a flexible circuit.
Perumal, Packiyaraj; Karuppiah, Chelladurai; Liao, Wei-Cheng; Liou, Yi-Rou; Liao, Yu-Ming; Chen, Yang-Fang
2017-08-30
Integrating different dimentional materials on vertically stacked p-n hetero-junctions have facinated a considerable scrunity and can open up excellent feasibility with various functionalities in opto-electronic devices. Here, we demonstrate that vertically stacked p-GaN/SiO 2 /n-MoS 2 /Graphene heterostructures enable to exhibit prominent dual opto-electronic characteristics, including efficient photo-detection and light emission, which represents the emergence of a new class of devices. The photoresponsivity was found to achieve as high as ~10.4 AW -1 and the detectivity and external quantum efficiency were estimated to be 1.1 × 10 10 Jones and ~30%, respectively. These values are superier than most reported hererojunction devices. In addition, this device exhibits as a self-powered photodetector, showing a high responsivity and fast response speed. Moreover, the device demonstrates the light emission with low turn-on voltage (~1.0 V) which can be realized by electron injection from graphene electrode and holes from GaN film into monolayer MoS 2 layer. These results indicate that with a suitable choice of band alignment, the vertical stacking of materials with different dimentionalities could be significant potential for integration of highly efficient heterostructures and open up feasible pathways towards integrated nanoscale multi-functional optoelectronic devices for a variety of applications.
NASA Astrophysics Data System (ADS)
Pigott, John D.; Abouelresh, Mohamed O.
2016-02-01
To construct a model of a sedimentary basin's thermal tectonic history is first to deconstruct it: taking apart its geological elements, searching for its initial conditions, and then to reassemble the elements in the temporal order that the basin is assumed to have evolved. Two inherent difficulties implicit to the analysis are that most organic thermal indicators are cumulative, irreversible and a function of both temperature and time and the non-uniqueness of crustal strain histories which complicates tectonic interpretations. If the initial conditions (e.g. starting maturity of the reactants and initial crustal temperature) can be specified and the boundary conditions incrementally designated from changes in the lithospheric heat engine owing to stratigraphic structural constraints, then the number of pathways for the temporal evolution of a basin is greatly reduced. For this investigation, model input uncertainties are reduced through seeking a solution that iteratively integrates the geologically constrained tectonic subsidence, geochemically constrained thermal indicators, and geophysically constrained fault mechanical stratigraphy. The Faras oilfield in the Abu Gharadig Basin, North Western Desert, Egypt, provides an investigative example of such a basin's deconstructive procedure. Multiple episodes of crustal extension and shortening are apparent in the tectonic subsidence analyses which are constrained from the fault mechanical stratigraphy interpreted from reflection seismic profiles. The model was iterated with different thermal boundary conditions until outputs best fit the geochemical observations. In so doing, the thermal iterations demonstrate that general relationship that basin heat flow increases decrease vertical model maturity gradients, increases in surface temperatures shift vertical maturity gradients linearly to higher values, increases in sediment conductivities lower vertical maturities with depth, and the addition of ;ghost; layers (those layers removed) prior to the erosional event increase maturities beneath, and conversely. These integrated constraints upon the basin evolution model indicate that the principal source rocks, Khatatba and the lowest part of the Alam El Bueib formations, entered the oil window at approximately 95 Ma and the gas window at approximately 25 Ma. The upper part of the Alam El Bueib Formation is within the oil window at the present day. Establishing initial and boundary value conditions for a basin's thermal evolution when geovalidated by the integration of seismic fault mechanical stratigraphy, tectonic subsidence analysis, and organic geochemical maturity indicators provides a powerful tool for optimizing petroleum exploration in both mature and frontier basins.
Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry
ERIC Educational Resources Information Center
Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris
2014-01-01
This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…
Quantifying the movement of multiple insects using an optical insect counter
USDA-ARS?s Scientific Manuscript database
An optical insect counter (OIC) was designed and tested. The new system integrated a line-scan camera and a vertical light sheet along with data collection and image processing software to count numbers of flying insects crossing a vertical plane defined by the light sheet. The system also allows ...
Schulz, S A; Draper, H R; Naidoo, P
2013-12-01
Although health policy in South Africa calls for the integration of services, the effectiveness of different models of integration on patient outcomes has not been well demonstrated. To evaluate the outcomes of coinfected patients starting antiretroviral treatment (ART) in a tuberculosis (TB) hospital who received different models of ongoing care. This cohort study compared outcomes for 271 coinfected patients who started ART in a TB hospital in the Western Cape. After discharge, one group of patients received anti-tuberculosis treatment and ART from different providers, in the same or in different clinics (vertical care). The other group received anti-tuberculosis treatment and ART at the same visit from the same service provider (integrated care). Demographic and clinical data and TB and ART outcomes were compared. The vertical care model had more unfavourable outcomes for anti-tuberculosis treatment (28.7% vs. 5.9%, P < 0.001) and ART (30.1% vs. 7.4%, P < 0.001) than the integrated care model. The vertical care model showed no difference whether services were provided by two service providers in the same or in geographically separate primary health care clinics. Patient outcomes were better when TB and HIV care was received from the same service provider at the same visit.
Sawyer, S M; Cooke, R; Conn, J; Marks, M K; Roseby, R; Cerritelli, B
2006-08-01
The majority of medical schools have curricula that address the health effects of smoking. However, there are many gaps in smoking education, especially in relationship to vertical integration. The authors aimed to determine whether medical students would better address adolescent smoking within a vertically integrated curriculum in comparison with the previous traditional curriculum. They studied two groups of fifth-year students; one group received a specific smoking intervention. Each group consisted of the entire cohort of students within the Child and Adolescent Health rotation of a newly designed medical curriculum. Two groups of students from the previous traditional undergraduate curriculum were available for direct comparison, one of which had received the same teaching on adolescent smoking. An objective structured clinical examination station was used to measure adolescent smoking enquiry. Intervention students in the new curriculum were more likely to enquire about smoking in the objective structured clinical examination than students who did not receive the intervention (p < 0.005). New curriculum students performed better than students from the previous curriculum, whether or not they had received the smoking intervention (p < 0.001). This study suggests that integrated undergraduate teaching can improve student clinical behaviours with regard to opportunistic smoking enquiry in adolescents.
NASA Astrophysics Data System (ADS)
Hirano, Soichiro; Kohma, Masashi; Sato, Kaoru
2016-07-01
Stratospheric final warming (SFW) in the Southern Hemisphere is examined in terms of their interannual variability and climatology using reanalysis data from January 1979 to March 2014. First, it is shown from a two-dimensional transformed Eulerian mean (TEM) analysis that a time-integrated vertical component of Eliassen-Palm flux during the spring is significantly related with SFW date. To clarify the role of residual mean flow in the interannual variability of the SFW date, SFWs are categorized into early and late groups according to the SFW date and their differences are examined. Significant difference in potential temperature tendency is observed in the middle and lower stratosphere in early October. Their structure in the meridional cross section accords well with that of vertical potential temperature advection by the residual mean flow. Difference in heating rate by shortwave radiation is minor. These results suggest that the adiabatic heating associated with the residual mean flow largely affects polar stratospheric temperature during austral spring and SFW date. The analysis is extended to investigate the longitudinal structure by using a three-dimensional (3-D) TEM theory. The significant difference in potential temperature tendency is mainly observed around the Weddell Sea at 10 hPa. Next, climatological 3-D structure of a vertical component of the residual mean flow in association with SFW is examined in terms of the effect on the troposphere. The results suggest that a downward residual mean flow from the stratosphere penetrates into underlying troposphere over East Antarctica and partly influences tropospheric temperature there.
NASA Astrophysics Data System (ADS)
Qi, Hui; Zhang, Xi-meng
2017-10-01
With the aid of the Green function method and image method, the problem of scattering of SH-wave by a semi-cylindrical salient near vertical interface in bi-material half-space is considered to obtain its steady state response. Firstly, by the means of the image method, Green function which is the essential solution of displacement field is constructed to satisfy the stress-free condition on the horizontal boundary in a right-angle space including a semi-cylindrical salient and bearing a harmonic out-of-plane line source force at any point on the vertical boundary. Secondly, the bi-material is separated into two parts along the vertical interface, then unknown anti-plane forces are applied on the vertical interface, and according to the continuity condition, the first kind of Fredholm integral equations is established to determine unknown anti-plane forces by "the conjunction method", then the integral equations are reduced to the linear algebraic equations by effective truncation. Finally, the dynamic stress concentration factor (DSCF) around the edge of semi-cylindrical salient is calculated, and the influences of incident wave number, incident angle, effect of interface and different combination of material parameters, etc. on DSCF are discussed.
External tank processing from barge to pad
NASA Technical Reports Server (NTRS)
Carpenter, J. E.
1985-01-01
Delivery and launch readiness events for the External Tanks (ET) are discussed. The ET is off-loaded at the KSC Barge Turning Basin and towed to the Vertical Assembly Building (VAB), High Bay Transfer Aisle. It is erected vertically and placed in the ET Checkout Area of High Bay 2 or 4 for standalone checkout. At the completion of checkout the ET is transferred to storage or to the Integration Area of High Bay 1 or 3 for SRB and Orbiter Mate. A Systems Integration Test performed with the Orbiter and Solid Rocket Booster is described. Final checkout activities are also described.
Honda, Wataru; Harada, Shingo; Ishida, Shohei; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-08-26
A vertically integrated inorganic-based flexible complementary metal-oxide-semiconductor (CMOS) inverter with a temperature sensor with a high inverter gain of ≈50 and a low power consumption of <7 nW mm(-1) is demonstrated using a layer-by-layer assembly process. In addition, the negligible influence of the mechanical flexibility on the performance of the CMOS inverter and the temperature dependence of the CMOS inverter characteristics are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Ma, XinCheng; Tie, Xuexi; Huang, Mengyu; Zhao, Chunsheng
In this study, aerosol vertical distributions of 17 in-situ aircraft measurements during 2005 and 2006 springs are analyzed. The 17 flights are carefully selected to exclude dust events, and the analyses are focused on the vertical distributions of aerosol particles associated with anthropogenic activities. The results show that the vertical distributions of aerosol particles are strongly affected by weather and meteorological conditions, and 3 different types of aerosol vertical distributions corresponding to different weather systems are defined in this study. The measurement with a flat vertical gradient and low surface aerosol concentrations is defined as type-1; a gradual decrease of aerosols with altitudes and modest surface aerosol concentrations is defined as type-2; a sharp vertical gradient (aerosols being strongly depressed in the PBL) with high surface aerosol concentrations is defined as type-3. The weather conditions corresponding to the 3 different aerosol types are high pressure, between two high pressures, and low pressure systems (frontal inversions), respectively. The vertical mixing and horizontal transport for the 3 different vertical distributions are analyzed. Under the type-1 condition, the vertical mixing and horizontal transport were rapid, leading to strong dilution of aerosols in both vertical and horizontal directions. As a result, the aerosol concentrations in PBL (planetary boundary layer) were very low, and the vertical distribution was flat. Under the type-2 condition, the vertical mixing was strong and there was no strong barrier at the PBL height. The horizontal transport (wind flux) was modest. As a result, the aerosol concentrations were gradually reduced with altitude, with modest surface aerosol concentrations. Under the type-3 condition, there was a cold front near the region. As a result, a frontal inversion associated with weak vertical mixing appeared at the top of the inversion layer, forming a very strong barrier to prevent aerosol particles being exchanged from the PBL height to the free troposphere. As a result, the aerosol particles were strongly depressed in the PBL height, producing high surface aerosol concentrations. The measured vertical aerosol distributions have important implications for studying the effects of aerosols on photochemistry. The J[O 3] values are reduced by 11%, 48%, and 50%, under the type-1, type-2, and type-3 conditions, respectively. This result reveals that atmospheric oxidant capacity (OH concentrations) is modestly reduced under the type-1 condition, but is significantly reduced under the type-2 and type-3 conditions. This result also suggests that the effect of aerosol particles on surface solar flux is an integrated column effect, and detailed vertical distributions of aerosol particles are very important for assessing the impacts of aerosol on photochemistry.
NASA Astrophysics Data System (ADS)
Iakshina, D. F.; Golubeva, E. N.
2017-11-01
The vertical distribution of the hydrological characteristics in the upper ocean layer is mostly formed under the influence of turbulent and convective mixing, which are not resolved in the system of equations for large-scale ocean. Therefore it is necessary to include additional parameterizations of these processes into the numerical models. In this paper we carry out a comparative analysis of the different vertical mixing parameterizations in simulations of climatic variability of the Arctic water and sea ice circulation. The 3D regional numerical model for the Arctic and North Atlantic developed in the ICMMG SB RAS (Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Science) and package GOTM (General Ocean Turbulence Model1,2, http://www.gotm.net/) were used as the numerical instruments . NCEP/NCAR reanalysis data were used for determination of the surface fluxes related to ice and ocean. The next turbulence closure schemes were used for the vertical mixing parameterizations: 1) Integration scheme based on the Richardson criteria (RI); 2) Second-order scheme TKE with coefficients Canuto-A3 (CANUTO); 3) First-order scheme TKE with coefficients Schumann and Gerz4 (TKE-1); 4) Scheme KPP5 (KPP). In addition we investigated some important characteristics of the Arctic Ocean state including the intensity of Atlantic water inflow, ice cover state and fresh water content in Beaufort Sea.
NASA Astrophysics Data System (ADS)
Wu, Mingching; Fang, Weileun
2005-03-01
This work integrates multi-depth DRIE etching, trench-refilled molding, two poly-Si layers MUMPs and bulk releasing to improve the variety and performance of MEMS devices. In summary, the present fabrication process, named MOSBE II, has three merits. First, this process can monolithically fabricate and integrate poly-Si thin-film structures with different thicknesses and stiffnesses, such as the flexible spring and the stiff mirror plate. Second, multi-depth structures, such as vertical comb electrodes, are available from the DRIE processes. Third, a cavity under the micromachined device is provided by the bulk silicon etching process, so that a large out-of-plane motion is allowed. In application, an optical scanner driven by the self-aligned vertical comb actuator was demonstrated. The poly-Si micromachined components fabricated by MOSBE II can further integrate with the MUMPs devices to establish a more powerful MOEMS platform.
NASA Astrophysics Data System (ADS)
Mosconi, A.; Pozzoli, A.; Meroni, A.; Gagliano, S.
2015-10-01
This paper presents an integrated approach for land subsidence monitoring using measures coming from different sensors. Eni S.p.A., the main Italian oil and gas company, constantly surveys the land with all the state of the art and innovative techniques, and a method able to integrate the results is an important and actual topic. Nowadays the world is a multi-sensor platform, and measure integration is strictly necessary. Combining the different data sources should be done in a clever way, taking advantages from the best performances of each technique. An integrated analysis allows the interpretation of simultaneous temporal series of data, coming from different sources, and try to separate subsidence contributions. With this purpose Exelis VIS in collaboration with Eni S.p.A. customize PISAV (Permanent Interferometric Scatterometer Analysis and Visualization), an ENVI extension able to capitalize on and combine all the different data collected in the surveys. In this article are presented some significant examples to show the potential of this tool in oil and gas activity: a hydrocarbon storage field where the comparison between SAR and production volumes emphasise a correlation between the two measures in few steps; and a hydrocarbon production field with the Satellite Survey Unit (S.S.U.), where SAR, CGPS, piezometers and assestimeters measure in the same area at the same time, giving the opportunity to analyse data contextually. In the integrated analysis performed with PISAV not always a mathematical rigorous study is possible, and a semi-quantitative approach is the only method for results interpretation. As a result, in the first test case strong correlation between injected hydrocarbon volume and vertical displacement were highlighted; in the second one the integrated analysis has different advantages in monitoring the land subsidence: permits a first qualitative "differentiation" of the natural and anthropic component of subsidence, and also gives more reliability and coverage to each measurement, taking advantages from the strong points of each technique.
Use of Vertically Integrated Ice in WRF-Based Forecasts of Lightning Threat
NASA Technical Reports Server (NTRS)
McCaul, E. W., jr.; Goodman, S. J.
2008-01-01
Previously reported methods of forecasting lightning threat using fields of graupel flux from WRF simulations are extended to include the simulated field of vertically integrated ice within storms. Although the ice integral shows less temporal variability than graupel flux, it provides more areal coverage, and can thus be used to create a lightning forecast that better matches the areal coverage of the lightning threat found in observations of flash extent density. A blended lightning forecast threat can be constructed that retains much of the desirable temporal sensitivity of the graupel flux method, while also incorporating the coverage benefits of the ice integral method. The graupel flux and ice integral fields contributing to the blended forecast are calibrated against observed lightning flash origin density data, based on Lightning Mapping Array observations from a series of case studies chosen to cover a wide range of flash rate conditions. Linear curve fits that pass through the origin are found to be statistically robust for the calibration procedures.
NASA Technical Reports Server (NTRS)
Hofmann, D. J.; Harder, J. W.; Rolf, S. R.; Rosen, J. M.
1987-01-01
The vertical distribution of ozone measured at McMurdo Station, Antarctica using balloon-borne sensors on 33 occasions during November 6, 1986 - August 25, 1986 is described. These observations suggest a highly structured cavity confined to the 12-20 km altitude region. In the 17-19 km altitude range, the ozone volume mixing ratio declined from about 2 ppm at the end of August to about 0.5 ppm by mid-October. The average decay in this region can be described as exponential with a half life of about 25 days. While total ozone, as obtained from profile integration, declined only about 35 percent, the integrated ozone between 14 and 18 km declined more than 70 percent. Vertical ozone profiles in the vortex revealed unusual structure with major features from 1 to 5 km thick which had suffered ozone depletions as great as 90 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carretero-Genevrier, Adrian; Oro-Sole, Judith; Gazquez, Jaume
2013-12-13
We developed an original strategy to produce vertical epitaxial single crystalline manganese oxide octahedral molecular sieve (OMS) nanowires with tunable pore sizes and compositions on silicon substrates by using a chemical solution deposition approach. The nanowire growth mechanism involves the use of track-etched nanoporous polymer templates combined with the controlled growth of quartz thin films at the silicon surface, which allowed OMS nanowires to stabilize and crystallize. α-quartz thin films were obtained after thermal activated crystallization of the native amorphous silica surface layer assisted by Sr 2+- or Ba 2+-mediated heterogeneous catalysis in the air at 800 °C. These α-quartzmore » thin films work as a selective template for the epitaxial growth of randomly oriented vertical OMS nanowires. Furthermore, the combination of soft chemistry and epitaxial growth opens new opportunities for the effective integration of novel technological functional tunneled complex oxides nanomaterials on Si substrates.« less
The GEON Integrated Data Viewer (IDV) for Exploration of Geoscience Data With Visualizations
NASA Astrophysics Data System (ADS)
Wier, S.; Meertens, C.
2008-12-01
The GEON Integrated Data Viewer (GEON IDV) is a fully interactive, research-level, true 3D and 4D (latitude, longitude, depth or altitude, and time) tool to display and explore almost any data located on the Earth, inside the Earth, or above the Earth's surface. Although the GEON IDV makes impressive 3D displays, it is primarily designed for data exploration and analysis. The GEON IDV is designed to meet the challenge of investigating complex, multi-variate, time-varying, three- dimensional geoscience questions anywhere on earth. The GEON IDV supports simultaneous displays of data sets of differing sources and data type or character, with complete control over map projection and area, time animation, vertical scale, and color schemes. The GEON IDV displays gridded and point data, images, GIS shape files, and other types of data, from files, HTTP servers, OPeNDAP catalogs, RSS feeds, and web map servers. GEON IDV displays include images and geology maps on 3D topographic relief surfaces, vertical geologic cross sections in their correct depth extent, tectonic plate boundaries and plate motion vectors including time animation, GPS velocity vectors and error ellipses, GPS time series at a station, earthquake locations in depth optionally colored and sized by magnitude, earthquake focal mechanisms 'beachballs,' 2D grids of gravity or magnetic anomalies, 2D grids of crustal strain imagery, seismic raypaths, seismic tomography model 3D grids as vertical and horizontal cross sections and isosurfaces, 3D grids of crust and mantle structure for any property, and time animation of 3D grids of mantle convection models as cross sections and isosurfaces. The IDV can also show tracks of aircraft, ships, drifting buoys and marine animals, colored observed values, borehole soundings, and vertical probes of 3D grids. The GEON IDV can drive a GeoWall or other 3D stereo system. IDV output files include imagery, movies, and KML files for Google Earth. The IDV has built in analysis capabilities with user-created Python language routines, and with automatic conversion of data sources with differing units and grid structures. The IDV can be scripted to create display images on user request or automatically on data arrival, offering the use of the IDV as a back end to support image generation in a data portal. Examples of GEON IDV use in seismology, geodesy, geodynamics and other fields will be shown.
Moving base simulation of an ASTOVL lift-fan aircraft
NASA Technical Reports Server (NTRS)
Chung, William W. Y.; Borchers, Paul F.; Franklin, James A.
1995-01-01
Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft was conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to (1) assess the effects of lift-fan propulsion system design features on aircraft control during transition and vertical flight including integration of lift fan/lift/cruise engine/aerodynamic controls and lift fan/lift/cruise engine dynamic response, (2) evaluate pilot-vehicle interface with the control system and head-up display including control modes for low-speed operational tasks and control mode/display integration, and (3) conduct operational evaluations of this configuration during takeoff, transition, and landing similar to those carried out previously by the Ames team for the mixed-flow, vectored thrust, and augmentor-ejector concepts. Based on results of the simulation, preliminary assessments of acceptable and borderline lift-fan and lift/cruise engine thrust response characteristics were obtained. Maximum pitch, roll, and yaw control power used during transition, hover, and vertical landing were documented. Control and display mode options were assessed for their compatibility with a range of land-based and shipboard operations from takeoff to cruise through transition back to hover and vertical landing. Flying qualities were established for candidate control modes and displays for instrument approaches and vertical landings aboard an LPH assault ship and DD-963 destroyer. Test pilot and engineer teams from the Naval Air Warfare Center, Boeing, Lockheed, McDonnell Douglas, and the British Defence Research Agency participated in the program.
Anatomy Integration Blueprint: A Fourth-Year Musculoskeletal Anatomy Elective Model
ERIC Educational Resources Information Center
Lazarus, Michelle D.; Kauffman, Gordon L., Jr.; Kothari, Milind J.; Mosher, Timothy J.; Silvis, Matthew L.; Wawrzyniak, John R.; Anderson, Daniel T.; Black, Kevin P.
2014-01-01
Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science-dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of…
The Integration of Psychomotor Skills in a Hybrid-PBL Dental Curriculum: The Clinical Clerkships.
ERIC Educational Resources Information Center
Walton, Joanne N.; MacNeil, M. A. J.; Harrison, Rosamund L.; Clark, D. Christopher
1998-01-01
Describes the restructuring of clinical clerkships at the University of British Columbia (Canada) dental school as part of a new, hybrid, problem-based learning (PBL) curriculum, focusing on strategies for integrating development of psychomotor skills. Methods of achieving both horizontal and vertical integration of competencies through grouping…
ERIC Educational Resources Information Center
Young, Dallin George
2016-01-01
This paper advocates an integrated approach to transition programmes at South Africa's higher education institutions through drawing on the US literature on the first-year student experience and specific reference to behavioural interaction theory. The case for developing intentional and vertically integrated transition programmes is tied to: the…
A generic approach for vertical integration of nanowires.
Latu-Romain, E; Gilet, P; Noel, P; Garcia, J; Ferret, P; Rosina, M; Feuillet, G; Lévy, F; Chelnokov, A
2008-08-27
We report on the collective integration technology of vertically aligned nanowires (NWs). Si and ZnO NWs have been used in order to develop a generic technological process. Both mineral and organic planarizations of the as-grown nanowires have been achieved. Chemical vapour deposition (CVD) oxides, spin on glass (SOG), and polymer have been investigated as filling materials. Polishing and/or etching of the composite structures have been set up so as to obtain a suitable morphology for the top and bottom electrical contacts. Electrical and optical characterizations of the integrated NWs have been performed. Contacts ohmicity has been demonstrated and specific contact resistances have been reported. The photoconducting properties of polymer-integrated ZnO NWs have also been investigated in the UV-visible range through collective electrical contacts. A small increase of the resistivity in the ZnO NWs under sub-bandgap illumination has been observed and discussed. A comparison of the photoluminescence (PL) spectra at 300 K of the as-grown and SOG-integrated ZnO nanowires has shown no significant impact of the integration process on the crystal quality of the NWs.
Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Oh, Jin Hyuk; Kim, Sun Ae; Park, Jaegyu; Kim, Sanggi
2015-06-10
When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications.
NASA Astrophysics Data System (ADS)
Butler, S. L.
2017-08-01
It is instructive to consider the sensitivity function for a homogeneous half space for resistivity since it has a simple mathematical formula and it does not require a priori knowledge of the resistivity of the ground. Past analyses of this function have allowed visualization of the regions that contribute most to apparent resistivity measurements with given array configurations. The horizontally integrated form of this equation gives the sensitivity function for an infinitesimally thick horizontal slab with a small resistivity contrast and analysis of this function has admitted estimates of the depth of investigation for a given electrode array. Recently, it has been shown that the average of the vertical coordinate over this function yields a simple formula that can be used to estimate the depth of investigation. The sensitivity function for a vertical inline slab has also been previously calculated. In this contribution, I show that the sensitivity function for a homogeneous half-space can also be integrated so as to give sensitivity functions to semi-infinite vertical slabs that are perpendicular to the array axis. These horizontal sensitivity functions can, in turn, be integrated over the spatial coordinates to give the mean horizontal positions of the sensitivity functions. The mean horizontal positions give estimates for the centres of the regions that affect apparent resistivity measurements for arbitrary array configuration and can be used as horizontal positions when plotting pseudosections even for non-collinear arrays. The mean of the horizontal coordinate that is perpendicular to a collinear array also gives a simple formula for estimating the distance over which offline resistivity anomalies will have a significant effect. The root mean square (rms) widths of the sensitivity functions are also calculated in each of the coordinate directions as an estimate of the inverse of the resolution of a given array. For depth and in the direction perpendicular to the array, the rms thickness is shown to be very similar to the mean distance. For the direction parallel to the array, the rms thickness is shown to be proportional to the array length and similar to the array length divided by 2 for many arrays. I expect that these formulas will provide useful rules of thumb for estimating the centres and extents of regions influencing apparent resistivity measurements for survey planning and for education.
Community assessment in a vertically integrated health care system.
Plescia, M; Koontz, S; Laurent, S
2001-01-01
OBJECTIVES: In this report, the authors present a representative case of the implementation of community assessment and the subsequent application of findings by a large, vertically integrated health care system. METHODS: Geographic information systems technology was used to access and analyze secondary data for a geographically defined community. Primary data included a community survey and asset maps. RESULTS: In this case presentation, information has been collected on demographics, prevalent health problems, access to health care, citizens' perceptions, and community assets. The assessment has been used to plan services for a new health center and to engage community members in health promotion interventions. CONCLUSIONS: Geographically focused assessments help target specific community needs and promote community participation. This project provides a practical application for integrating aspects of medicine and public health. PMID:11344895
Leppington, Charmody; Gleberzon, Brian; Fortunato, Lisa; Doucet, Nicolea; Vandervalk, Kyle
2012-01-01
Objective: The purpose of this study was to determine if diagnostic and therapeutic procedures for the cervical and cranial spine taught to students during the undergraduate program at Canadian Memorial Chiropractic College are required to be used during their internship by their supervising clinicians and, if so, to what extent these procedures are used. Methods: Course manuals and course syllabi from the Applied Chiropractic and Clinical Diagnosis faculty of the undergraduate chiropractic program for the academic year 2009–2010 were consulted and a list of all diagnostic and therapeutic procedures for the cranial and cervical spine was compiled. This survey asked clinicians to indicate if they themselves used or if they required the students they were supervising to use each procedure listed and, if so, to what extent each procedure was used. Demographic information of each clinician was also obtained. Results: In general, most diagnostic procedures of the head and neck were seldom used, with the exception of postural observation and palpation. By contrast, most cervical orthopaedic tests were often used, with the exception of tests for vertigo. Most therapeutic procedures were used frequently with the exception of prone cervical and “muscle” adjustments. Conclusion: There was a low degree of vertical integration for cranial procedures as compared to a much higher degree of vertical integration for cervical procedures between the undergraduate and clinical internship programs taught. Vertical integration is an important element of curricular planning and these results may be helpful to aid educators to more appropriately allocate classroom instruction PMID:22778531
Vertical integration of basic science in final year of medical education.
Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya
2016-01-01
Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P < 0.01). Students felt that it reinforced, motivated self-directed learning, enabled correlations, improved understanding, put things in perspective, gave confidence, aided application, and enabled them to follow discussions during clinical teaching. Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students.
ERIC Educational Resources Information Center
Klein, Joseph
2016-01-01
Purpose: To examine the contribution of horizontal and vertical organisational learning and its timing to the effective integration of teachers in classes they have not previously taught. Three hundred and forty-five teachers from 64 schools, with at least 4 years of teaching experience, completed questionnaires about the extent of horizontal (OL)…
ERIC Educational Resources Information Center
Morlando Zurlo, Tara
2017-01-01
The pathway for community college students to transfer vertically into four-year institutions to complete a bachelor's degree was designed nearly a century ago, yet it remains plagued by the same structural problems, such as confusing admissions processes, lack of transparent advising resources, and unrealistic time-to-degree demands without…
Hoppe, Katharina; Küper, Kristina; Wascher, Edmund
2017-01-01
In the Simon task, participants respond faster when the task-irrelevant stimulus position and the response position are corresponding, for example on the same side, compared to when they have a non-corresponding relation. Interestingly, this Simon effect is reduced after non-corresponding trials. Such sequential effects can be explained in terms of a more focused processing of the relevant stimulus dimension due to increased cognitive control, which transfers from the previous non-corresponding trial (conflict adaptation effects). Alternatively, sequential modulations of the Simon effect can also be due to the degree of trial-to-trial repetitions and alternations of task features, which is confounded with the correspondence sequence (feature integration effects). In the present study, we used a spatially two-dimensional Simon task with vertical response keys to examine the contribution of adaptive cognitive control and feature integration processes to the sequential modulation of the Simon effect. The two-dimensional Simon task creates correspondences in the vertical as well as in the horizontal dimension. A trial-by-trial alternation of the spatial dimension, for example from a vertical to a horizontal stimulus presentation, generates a subset containing no complete repetitions of task features, but only complete alternations and partial repetitions, which are equally distributed over all correspondence sequences. In line with the assumed feature integration effects, we found sequential modulations of the Simon effect only when the spatial dimension repeated. At least for the horizontal dimension, this pattern was confirmed by the parietal P3b, an event-related potential that is assumed to reflect stimulus–response link processes. Contrary to conflict adaptation effects, cognitive control, measured by the fronto-central N2 component of the EEG, was not sequentially modulated. Overall, our data provide behavioral as well as electrophysiological evidence for feature integration effects contributing to sequential modulations of the Simon effect. PMID:28713305
Hoppe, Katharina; Küper, Kristina; Wascher, Edmund
2017-01-01
In the Simon task, participants respond faster when the task-irrelevant stimulus position and the response position are corresponding, for example on the same side, compared to when they have a non-corresponding relation. Interestingly, this Simon effect is reduced after non-corresponding trials. Such sequential effects can be explained in terms of a more focused processing of the relevant stimulus dimension due to increased cognitive control, which transfers from the previous non-corresponding trial (conflict adaptation effects). Alternatively, sequential modulations of the Simon effect can also be due to the degree of trial-to-trial repetitions and alternations of task features, which is confounded with the correspondence sequence (feature integration effects). In the present study, we used a spatially two-dimensional Simon task with vertical response keys to examine the contribution of adaptive cognitive control and feature integration processes to the sequential modulation of the Simon effect. The two-dimensional Simon task creates correspondences in the vertical as well as in the horizontal dimension. A trial-by-trial alternation of the spatial dimension, for example from a vertical to a horizontal stimulus presentation, generates a subset containing no complete repetitions of task features, but only complete alternations and partial repetitions, which are equally distributed over all correspondence sequences. In line with the assumed feature integration effects, we found sequential modulations of the Simon effect only when the spatial dimension repeated. At least for the horizontal dimension, this pattern was confirmed by the parietal P3b, an event-related potential that is assumed to reflect stimulus-response link processes. Contrary to conflict adaptation effects, cognitive control, measured by the fronto-central N2 component of the EEG, was not sequentially modulated. Overall, our data provide behavioral as well as electrophysiological evidence for feature integration effects contributing to sequential modulations of the Simon effect.
Steady-State Pursuit Is Driven by Object Motion Rather Than the Vector Average of Local Motions
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Beutter, B. R.; Lorenceau, J. D.; Ahumada, Al (Technical Monitor)
1997-01-01
We have previously shown that humans can pursue the motion of objects whose trajectories can be recovered only by spatio-temporal integration of local motion signals. We now explore the integration rule used to derive the target-motion signal driving pursuit. We measured the pursuit response of 4 observers (2 naive) to the motion of a line-figure diamond viewed through two vertical bar apertures (0.2 cd/square m). The comers were always occluded so that only four line segments (93 cd/square m) were visible behind the occluding foreground (38 cd/square m). The diamond was flattened (40 & 140 degree vertex angles) such that vector averaging of the local normal motions and vertical integration (e.g. IOC) yield very I or different predictions, analogous to using a Type II plaid. The diamond moved along Lissajous-figure trajectories (Ax = Ay = 2 degrees; TFx = 0.8 Hz; TFy = 0.4 Hz). We presented only 1.25 cycles and used 6 different randomly interleaved initial relative phases to minimize the role of predictive strategies. Observers were instructed to track the diamond and reported that its motion was always coherent (unlike type II plaids). Saccade-free portions of the horizontal and vertical eye-position traces sampled at 240 Hz were fit by separate sinusoids. Pursuit gain with respect to the diamond averaged 0.7 across subjects and directions. The ratio of the mean vertical to horizontal amplitude of the pursuit response was 1.7 +/- 0.7 averaged across subjects (1SD). This is close to the prediction of 1.0 from vertical motion-integration rules, but far from 7.7 predicted by vector averaging and infinity predicted by segment- or terminator-tracking strategies. Because there is no retinal motion which directly corresponds to the diamond's motion, steady-state pursuit of our "virtual" diamond is not closed-loop in the traditional sense. Thus, accurate pursuit is unlikely to result simply from local retinal negative feedback. We conclude that the signal driving steady-state pursuit is not the vector average of local motion signals, but rather a more vertical estimate of object motion, derived in extrastriate cortical areas beyond V1, perhaps NIT or MST.
Simplified nonplanar wafer bonding for heterogeneous device integration
NASA Astrophysics Data System (ADS)
Geske, Jon; Bowers, John E.; Riley, Anton
2004-07-01
We demonstrate a simplified nonplanar wafer bonding technique for heterogeneous device integration. The improved technique can be used to laterally integrate dissimilar semiconductor device structures on a lattice-mismatched substrate. Using the technique, two different InP-based vertical-cavity surface-emitting laser active regions have been integrated onto GaAs without compromising the quality of the photoluminescence. Experimental and numerical simulation results are presented.
Non-hydrostatic general circulation model of the Venus atmosphere
NASA Astrophysics Data System (ADS)
Rodin, Alexander V.; Mingalev, Igor; Orlov, Konstantin; Ignatiev, Nikolay
We present the first non-hydrostatic global circulation model of the Venus atmosphere based on the complete set of gas dynamics equations. The model employs a spatially uniform triangular mesh that allows to avoid artificial damping of the dynamical processes in the polar regions, with altitude as a vertical coordinate. Energy conversion from the solar flux into atmospheric motion is described via explicitly specified heating and cooling rates or, alternatively, with help of the radiation block based on comprehensive treatment of the Venus atmosphere spectroscopy, including line mixing effects in CO2 far wing absorption. Momentum equations are integrated using the semi-Lagrangian explicit scheme that provides high accuracy of mass and energy conservation. Due to high vertical grid resolution required by gas dynamics calculations, the model is integrated on the short time step less than one second. The model reliably repro-duces zonal superrotation, smoothly extending far below the cloud layer, tidal patterns at the cloud level and above, and non-rotating, sun-synchronous global convective cell in the upper atmosphere. One of the most interesting features of the model is the development of the polar vortices resembling those observed by Venus Express' VIRTIS instrument. Initial analysis of the simulation results confirms the hypothesis that it is thermal tides that provides main driver for the superrotation.
The Telecommunications Industry; Integration Vs. Competition.
ERIC Educational Resources Information Center
Irwin, Manley R.
Vertical integration stands as the salient structural configuration of the telecommunications equipment market. Computer hardware manufacturers are obviously potential competitors with the captive telecommunications equipment suppliers. Direct government policies, such as patents and a permissive attitude toward mergers, and indirect policies,…
Statistical Methods in Integrative Genomics
Richardson, Sylvia; Tseng, George C.; Sun, Wei
2016-01-01
Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions. PMID:27482531
Integrated medical school ultrasound: development of an ultrasound vertical curriculum.
Bahner, David P; Adkins, Eric J; Hughes, Daralee; Barrie, Michael; Boulger, Creagh T; Royall, Nelson A
2013-07-02
Physician-performed focused ultrasonography is a rapidly growing field with numerous clinical applications. Focused ultrasound is a clinically useful tool with relevant applications across most specialties. Ultrasound technology has outpaced the education, necessitating an early introduction to the technology within the medical education system. There are many challenges to integrating ultrasound into medical education including identifying appropriately trained faculty, access to adequate resources, and appropriate integration into existing medical education curricula. As focused ultrasonography increasingly penetrates academic and community practices, access to ultrasound equipment and trained faculty is improving. However, there has remained the major challenge of determining at which level is integrating ultrasound training within the medical training paradigm most appropriate. The Ohio State University College of Medicine has developed a novel vertical curriculum for focused ultrasonography which is concordant with the 4-year medical school curriculum. Given current evidenced-based practices, a curriculum was developed which provides medical students an exposure in focused ultrasonography. The curriculum utilizes focused ultrasonography as a teaching aid for students to gain a more thorough understanding of basic and clinical science within the medical school curriculum. The objectives of the course are to develop student understanding in indications for use, acquisition of images, interpretation of an ultrasound examination, and appropriate decision-making of ultrasound findings. Preliminary data indicate that a vertical ultrasound curriculum is a feasible and effective means of teaching focused ultrasonography. The foreseeable limitations include faculty skill level and training, initial cost of equipment, and incorporating additional information into an already saturated medical school curriculum. Focused ultrasonography is an evolving concept in medicine. It has been shown to improve education and patient care. The indications for and implementation of focused ultrasound is rapidly expanding in all levels of medicine. The ideal method for teaching ultrasound has yet to be established. The vertical curriculum in ultrasound at The Ohio State University College of Medicine is a novel evidenced-based training regimen at the medical school level which integrates ultrasound training into medical education and serves as a model for future integrated ultrasound curricula.
1.6μm DIAL System for Measurements of CO2 Concentration Profiles in the Atmosphere
NASA Astrophysics Data System (ADS)
Nagasawa, C.; Abo, M.; Shibata, Y.
2013-12-01
We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere. Our 1.6 μm DIAL system has a 60 cm telescope for vertical measurement and a 25 cm scanning telescope for horizontal measurement. This 1.6 μm DIAL system is also available to measure CO2 concentration profiles for daytime by using narrow-band interference filters. The 1.6 μm DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 30 minutes and vertical resolution of 300 - 600 m. The CO2 DIAL was also operated with the range-height indicator (RHI) mode, and the 2-D measurement provided inhomogeneity in the boundary layer. The vertical distribution of CO2 concentration from 2 km to 7 km altitude has been observed using two telescopes with different apertures. We hope to get the data of the CO2 concentration from lower altitude to 7 km at the same time. Since the change of signal intensity is larger near the ground, it is also important to the install the photon counter with the faster count rate to expand the dynamic range. The high speed counter and the telescope system make the dynamic range expand more than 10 times and the vertical distribution observation of CO2 concentration from 0.5 km to 7 km altitude is performed. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp. 748-757, 2009. Stephens, B. B. et al., Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2, Science 316, pp. 1732-1735, 2007.
Linear photonic frequency discriminator on As₂S₃-ring-on-Ti:LiNbO₃ hybrid platform.
Kim, Jaehyun; Sung, Won Ju; Eknoyan, Ohannes; Madsen, Christi K
2013-10-21
We report a photonic frequency discriminator built on the vertically integrated As₂S₃-ring-on-Ti:LiNbO₃ hybrid platform. The discriminator consists of a Mach Zehnder interferometer (MZI) formed by the optical path length difference (OPD) between polarization modes of Ti-diffused waveguide on LiNbO₃ substrate and a vertically integrated As₂S₃ race-track ring resonator on top of the substrate. The figures of merit of the device, enhancement of the signal-to-3rd order intermodulation distortion (IMD3) power ratio and corresponding 3rd order intercept point (IP3) over a traditional MZI, are demonstrated through device characterization.
NASA Technical Reports Server (NTRS)
Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)
2001-01-01
In this paper, novel low loss, wide-band coplanar stripline technology for RF/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semiconductor devices and microelectromechanical systems (MEMS).
NASA Astrophysics Data System (ADS)
MacMackin, C. T.; Wells, A.
2017-12-01
While relatively small in mass, ice shelves play an important role in buttressing ice sheets, slowing their flow into the ocean. As such, an understanding of ice shelf stability is needed for predictions of future sea level rise. Networks of channels have been observed underneath Antarctic ice shelves and are thought to affect their stability. While the origins of channels running parallel to ice flow are thought to be well understood, transverse channels have also been observed and the mechanism for their formation is less clear. It has been suggested that seasonal variations in ice and ocean properties could be a source and we run nonlinear, vertically integrated 1-D simulations of a coupled ice shelf and plume to test this hypothesis. We also examine how these variations might alter the shape of internal radar reflectors within the ice, suggesting a new technique to model their distribution using a vertically integrated model of ice flow. We examine a range of sources for seasonal forcing which might lead to channel formation, finding that variability in subglacial discharge results in small variations of ice thickness. Additional mechanisms would be required to expand these into large transverse channels.
Integrated aerodynamic/dynamic optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Walsh, Joanne L.; Riley, Michael F.
1989-01-01
An integrated aerodynamic/dynamic optimization procedure is used to minimize blade weight and 4 per rev vertical hub shear for a rotor blade in forward flight. The coupling of aerodynamics and dynamics is accomplished through the inclusion of airloads which vary with the design variables during the optimization process. Both single and multiple objective functions are used in the optimization formulation. The Global Criteria Approach is used to formulate the multiple objective optimization and results are compared with those obtained by using single objective function formulations. Constraints are imposed on natural frequencies, autorotational inertia, and centrifugal stress. The program CAMRAD is used for the blade aerodynamic and dynamic analyses, and the program CONMIN is used for the optimization. Since the spanwise and the azimuthal variations of loading are responsible for most rotor vibration and noise, the vertical airload distributions on the blade, before and after optimization, are compared. The total power required by the rotor to produce the same amount of thrust for a given area is also calculated before and after optimization. Results indicate that integrated optimization can significantly reduce the blade weight, the hub shear and the amplitude of the vertical airload distributions on the blade and the total power required by the rotor.
Kim, J.-W.; Lu, Z.; Lee, H.; Shum, C.K.; Swarzenski, C.M.; Doyle, T.W.; Baek, S.-H.
2009-01-01
Interferometric Synthetic Aperture Radar (InSAR) has been used to detect relative water level changes in wetlands. We developed an innovative method to integrate InSAR and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identify double-bounce backscattering areas in the wetland. ENVISAT radar altimeter-measured 18-Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (~ 40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-1 C-band InSAR are then integrated with ENVISAT radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. We anticipate that this new technique will allow retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.
The hidden life of integrative and conjugative elements
Delavat, François; Miyazaki, Ryo; Carraro, Nicolas; Pradervand, Nicolas
2017-01-01
Abstract Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE–host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE ‘fitness’). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells. PMID:28369623
A model-based theory on the origin of downbeat nystagmus.
Marti, Sarah; Straumann, Dominik; Büttner, Ulrich; Glasauer, Stefan
2008-07-01
The pathomechanism of downbeat nystagmus (DBN), an ocular motor sign typical for vestibulo-cerebellar lesions, remains unclear. Previous hypotheses conjectured various deficits such as an imbalance of central vertical vestibular or smooth pursuit pathways to be causative for the generation of spontaneous upward drift. However, none of the previous theories explains the full range of ocular motor deficits associated with DBN, i.e., impaired vertical smooth pursuit (SP), gaze evoked nystagmus, and gravity dependence of the upward drift. We propose a new hypothesis, which explains the ocular motor signs of DBN by damage of the inhibitory vertical gaze-velocity sensitive Purkinje cells (PCs) in the cerebellar flocculus (FL). These PCs show spontaneous activity and a physiological asymmetry in that most of them exhibit downward on-directions. Accordingly, a loss of vertical floccular PCs will lead to disinhibition of their brainstem target neurons and, consequently, to spontaneous upward drift, i.e., DBN. Since the FL is involved in generation and control of SP and gaze holding, a single lesion, e.g., damage to vertical floccular PCs, may also explain the associated ocular motor deficits. To test our hypothesis, we developed a computational model of vertical eye movements based on known ocular motor anatomy and physiology, which illustrates how cortical, cerebellar, and brainstem regions interact to generate the range of vertical eye movements seen in healthy subjects. Model simulation of the effect of extensive loss of floccular PCs resulted in ocular motor features typically associated with cerebellar DBN: (1) spontaneous upward drift due to decreased spontaneous PC activity, (2) gaze evoked nystagmus corresponding to failure of the cerebellar loop supporting neural integrator function, (3) asymmetric vertical SP deficit due to low gain and asymmetric attenuation of PC firing, and (4) gravity-dependence of DBN caused by an interaction of otolith-ocular pathways with impaired neural integrator function.
Vertically integrated photonic multichip module architecture for vision applications
NASA Astrophysics Data System (ADS)
Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong
2000-05-01
The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.
Do IDSs really benefit from affiliating with managed care plans?
Hogan, K; Thomopoulos, M
1998-02-01
Integrated delivery systems (IDSs) affiliate with HMOs primarily to gain access to patients enrolled in managed care plans. Outright ownership of an HMO offers an IDS additional advantages, including opportunities to create a more seamless care process, improve patient outcomes, draw on the HMOs' experience in reducing costs, and administer health management and delivery at a significantly lower cost than the industry standard. The current trend toward IDS ownership of HMOs suggests that the line between providers and payers is blurring. Some states have encouraged this trend by enacting legislation that allows IDSs to act as insurers. Recent data indicate that IDSs with HMO components tend to be more vertically integrated than those without such components. These data suggest that close alignment with an HMO may be a key element in the effort to achieve vertical integration.
NASA Astrophysics Data System (ADS)
Caffrey, Peter F.; Hoppel, William A.; Shi, Jainn J.
2006-12-01
The dynamics of aerosols in the marine boundary layer are simulated with a one-dimensional, multicomponent, sectional aerosol model using vertical profiles of turbulence, relative humidity, temperature, vertical velocity, cloud cover, and precipitation provided by 3-D mesoscale meteorological model output. The Naval Research Laboratory's (NRL) sectional aerosol model MARBLES (Fitzgerald et al., 1998a) was adapted to use hourly meteorological input taken from NRL's Coupled Ocean-Atmosphere Prediction System (COAMPS). COAMPS-generated turbulent mixing coefficients and large-scale vertical velocities determine vertical exchange within the marine boundary layer and exchange with the free troposphere. Air mass back trajectories were used to define the air column history along which the meteorology was retrieved for use with the aerosol model. Details on the integration of these models are described here, as well as a description of improvements made to the aerosol model, including transport by large-scale vertical motions (such as subsidence and lifting), a revised sea-salt aerosol source function, and separate tracking of sulfate mass from each of the five sources (free tropospheric, nucleated, condensed from gas phase oxidation products, cloud-processed, and produced from heterogeneous oxidation of S(IV) on sea-salt aerosol). Results from modeling air masses arriving at Oahu, Hawaii, are presented, and the relative contribution of free-tropospheric sulfate particles versus sea-salt aerosol from the surface to CCN concentrations is discussed. Limitations and benefits of the method are presented, as are sensitivity analyses of the effect of large-scale vertical motions versus turbulent mixing.
Thin film materials and devices for resistive temperature sensing applications
NASA Astrophysics Data System (ADS)
Basantani, Hitesh A.
Thin films of vanadium oxide (VOx) and hydrogenated amorphous silicon (a-Si:H) are the two dominant material systems used in resistive infrared radiation detectors (microbolometers) for sensing long wave infrared (LWIR) wavelengths in the 8--14 microm range. Typical thin films of VO x (x < 2) currently used in the bolometer industry have a magnitude of temperature coefficient of resistance (TCR) between 2%/K -- 3%/K. In contrast, thin films of hydrogenated germanium (SiGe:H) have |TCR| between 3%/K to 4%/K. Devices made from either of these materials have resulted in similar device performance with NETD ≈ 25 mK. The performance of the microbolometers is limited by the electronic noise, especially 1/f noise. Therefore, regardless of the choice of bolometer sensing material and read out circuitry, manufacturers are constantly striving to reduce 1/f noise while simultaneously increasing TCR to give better signal to noise ratios in their bolometers and ultimately, better image quality with more thermal information to the end user. In this work, thin films of VOx and hydrogenated germanium (Ge:H), having TCR values > 4 %/K are investigated as potential candidates for higher sensitivity next generation of microbolometers. Thin films of VO x were deposited by Biased Target Ion Beam Deposition (BTIBD) (˜85 nm thick). Electrical characterization of lateral resistor structures showed resistivity ranging from 104 O--cm to 2.1 x 104 O--cm, TCR varying from --4%/K to --5%/K, normalized Hooge parameter (alphaH/n) of 5 x 10 -21 to 5 x 10-18 cm3. Thin films of Ge:H were deposited by plasma enhanced chemical vapor deposition (PECVD) by incorporating an increasing amount of crystal fraction in the growing thin films. Thin films of Ge:H having a mixed phase, amorphous + nanocrystalline, having a |TCR| > 6 %/K were deposited with resistivity < 2,300 O--cm and a normalized Hooge's parameter 'alphaH/n' < 2 x 10-20 cm3. Higher TCR materials are desired, however, such materials have higher resistivity and therefore unacceptable large electrical resistance in a lateral resistor configuration. This work looks at an alternate bolometer device design which incorporates higher TCR materials in a vertically integrated configuration. Thin films of high TCR hydrogenated germanium (Ge:H, |TCR| > 6%/K) and vanadium oxide (VOx, TCR > 5%/K) were integrated in lateral and through film configuration. The electrical performance of the vertically integrated devices is compared with lateral resistance structures. It was confirmed experimentally that the device impedance was significantly lowered while maintaining the signal to noise ratio of the lateral resistor configuration. The vertically integrated devices allow higher device currents without any increase in self heating. These structures may help reduce integration time and may result in higher frame rate. Finally, one dimensional arrays were fabricated using both lateral and vertically integrated configurations and their performance was evaluated. It was found that the performance of the lateral devices was limited by noise floor of the measurement setup used. However, due to the lower impedance of the vertically integrated resistors, a higher signal and therefore higher signal to noise ratio could be obtained. These vertically integrated devices exhibited low RMS noise values of 12 mK.
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Atlas, Robert (Technical Monitor)
2002-01-01
Precipitation recycling is defined as the amount of water that evaporates from a region that precipitates within the same region. This is also interpreted as the local source of water for precipitation. In this study, the local and remote sources of water for precipitation have been diagnosed through the use of passive constituent tracers that represent regional evaporative sources along with their transport and precipitation. We will discuss the differences between this method and the simpler bulk diagnostic approach to precipitation recycling. A summer seasonal simulation has been analyzed for the regional sources of the United States Great Plains precipitation. While the tropical Atlantic Ocean (including the Gulf of Mexico) and the local continental sources of precipitation are most dominant, the vertically integrated column of water contains substantial water content originating from the Northern Pacific Ocean, which is not precipitated. The vertical profiles of regional water sources indicate that local Great Plains source of water dominates the lower troposphere, predominantly in the PBL. However, the Pacific Ocean source is dominant over a large portion of the middle to upper troposphere. The influence of the tropical Atlantic Ocean is reasonably uniform throughout the column. While the results are not unexpected given the formulation of the model's convective parameterization, the analysis provides a quantitative assessment of the impact of local evaporation on the occurrence of convective precipitation in the GCM. Further, these results suggest that local source of water is not well mixed throughout the vertical column.
NASA Technical Reports Server (NTRS)
Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.
1987-01-01
Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).
NASA Astrophysics Data System (ADS)
Scarth, P.; Phinn, S. R.; Armston, J.; Lucas, R.
2015-12-01
Vertical plant profiles are important descriptors of canopy structure and are used to inform models of biomass, biodiversity and fire risk. In Australia, an approach has been developed to produce large area maps of vertical plant profiles by extrapolating waveform lidar estimates of vertical plant profiles from ICESat/GLAS using large area segmentation of ALOS PALSAR and Landsat satellite image products. The main assumption of this approach is that the vegetation height profiles are consistent across the segments defined from ALOS PALSAR and Landsat image products. More than 1500 field sites were used to develop an index of fractional cover using Landsat data. A time series of the green fraction was used to calculate the persistent green fraction continuously across the landscape. This was fused with ALOS PALSAR L-band Fine Beam Dual polarisation 25m data and used to segment the Australian landscapes. K-means clustering then grouped the segments with similar cover and backscatter into approximately 1000 clusters. Where GLAS-ICESat footprints intersected these clusters, canopy profiles were extracted and aggregated to produce a mean vertical vegetation profile for each cluster that was used to derive mean canopy and understorey height, depth and density. Due to the large number of returns, these retrievals are near continuous across the landscape, enabling them to be used for inventory and modelling applications. To validate this product, a radiative transfer model was adapted to map directional gap probability from airborne waveform lidar datasets to retrieve vertical plant profiles Comparison over several test sites show excellent agreement and work is underway to extend the analysis to improve national biomass mapping. The integration of the three datasets provide options for future operational monitoring of structure and AGB across large areas for quantifying carbon dynamics, structural change and biodiversity.
Vertical integration of basic science in final year of medical education
Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya
2016-01-01
Background: Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. Aim: To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. Materials and Methods: After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Results: Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P < 0.01). Students felt that it reinforced, motivated self-directed learning, enabled correlations, improved understanding, put things in perspective, gave confidence, aided application, and enabled them to follow discussions during clinical teaching. Conclusion: Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students. PMID:27563584
Scaling Laws in Canopy Flows: A Wind-Tunnel Analysis
NASA Astrophysics Data System (ADS)
Segalini, Antonio; Fransson, Jens H. M.; Alfredsson, P. Henrik
2013-08-01
An analysis of velocity statistics and spectra measured above a wind-tunnel forest model is reported. Several measurement stations downstream of the forest edge have been investigated and it is observed that, while the mean velocity profile adjusts quickly to the new canopy boundary condition, the turbulence lags behind and shows a continuous penetration towards the free stream along the canopy model. The statistical profiles illustrate this growth and do not collapse when plotted as a function of the vertical coordinate. However, when the statistics are plotted as function of the local mean velocity (normalized with a characteristic velocity scale), they do collapse, independently of the streamwise position and freestream velocity. A new scaling for the spectra of all three velocity components is proposed based on the velocity variance and integral time scale. This normalization improves the collapse of the spectra compared to existing scalings adopted in atmospheric measurements, and allows the determination of a universal function that provides the velocity spectrum. Furthermore, a comparison of the proposed scaling laws for two different canopy densities is shown, demonstrating that the vertical velocity variance is the most sensible statistical quantity to the characteristics of the canopy roughness.
NASA Astrophysics Data System (ADS)
Mitishita, E.; Costa, F.; Martins, M.
2017-05-01
Photogrammetric and Lidar datasets should be in the same mapping or geodetic frame to be used simultaneously in an engineering project. Nowadays direct sensor orientation is a common procedure used in simultaneous photogrammetric and Lidar surveys. Although the direct sensor orientation technologies provide a high degree of automation process due to the GNSS/INS technologies, the accuracies of the results obtained from the photogrammetric and Lidar surveys are dependent on the quality of a group of parameters that models accurately the user conditions of the system at the moment the job is performed. This paper shows the study that was performed to verify the importance of the in situ camera calibration and Integrated Sensor Orientation without control points to increase the accuracies of the photogrammetric and LIDAR datasets integration. The horizontal and vertical accuracies of photogrammetric and Lidar datasets integration by photogrammetric procedure improved significantly when the Integrated Sensor Orientation (ISO) approach was performed using Interior Orientation Parameter (IOP) values estimated from the in situ camera calibration. The horizontal and vertical accuracies, estimated by the Root Mean Square Error (RMSE) of the 3D discrepancies from the Lidar check points, increased around of 37% and 198% respectively.
Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Gyoo Kim, In; Hyuk Oh, Jin; Ae Kim, Sun; Park, Jaegyu; Kim, Sanggi
2015-01-01
When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications. PMID:26061463
Vertical and Lateral Electron Content in the Martian Ionosphere
NASA Astrophysics Data System (ADS)
Paetzold, M. P.; Peter, K.; Bird, M. K.; Häusler, B.; Tellmann, S.
2016-12-01
The radio-science experiment MaRS (Mars Express Radio Science) on the Mars Express spacecraft sounds the neutral atmosphere and ionosphere of Mars since 2004. Approximately 800 vertical profiles of the ionospheric electron density have been acquired until today. The vertical electron content (TEC) is easily computed from the vertical electron density profile by integrating along the altitude. The TEC is typically a fraction of a TEC unit (1E16 m^-2) and depends on the solar zenith angle. The magnitude of the TEC is however fully dominated by the electron density contained in the main layer M2. The contributions by the M1 layer below M2 or the topside is marginal. MaRS is using two radio frequencies for the sounding of the ionosphere. The directly observed differential Doppler from the two received frequencies is a measure of the lateral electron content that means along the ray path and perpendicular to the vertical electron density profile. Combining both the vertical electron density profile, the vertical TEC and the directly observed lateral TEC describes the lateral electron density distribution in the ionosphere.
Wright, William Geoffrey; Glasauer, Stefan
2003-10-01
Perceiving one's vertical is an integral part of efficiently functioning in an environment physically polarized along that dimension. How one determines the direction of gravity is not a task left only to inertial sensors, such as the vestibular organs, rather as numerous studies have shown, this task is influenced visually and somatosensorily. In addition, there is evidence that higher order cognitive effects such as expectancies and context are critical in perception of the vertical. One's ability to integrate these various inputs during normal activity is not generally questioned, one's doubts being satisfied by observing a waiter navigating a crowded restaurant with a tray balanced on one hand, neither tripping or dropping an entree. But how these various sources are integrated is still debated. Most research focuses on subjective vertical perception used visual matching/alignment tasks, verbal reports, or saccadic eye movements as a dependent measure. Although a motor task involving a joystick or indicator to be aligned with gravity without visual feedback is used much less frequently, there is good evidence that individuals easily orient limbs to an external gravity-aligned coordinate axis while being statically tilted. By exposure to a dynamic situation, the central nervous system should be no more challenged by the task of determining the subjective vertical than during static conditions, because our spatial orientation systems were likely selected for just that. In addition, the sensitive calibration between visual and other sensory input also must have been key to its selection. This sensory interaction can be tested by changing the relation between the various sources. With the advent of virtual reality technology, a complex and "natural" visual stimulus is achievable and is easily manipulable. How one tests perception of verticality is also a pertinent question when researching spatial orientation systems. The system's performance may be better indicated by a task of higher relevance to its normal function. In other words, the dependent measure can be made more or less relevant to real-world tasks. With an experimental design that attempts to mimic natural conditions, the current study focuses on two main topics. First, how does manipulation of the visual inputs during passive roll-tilt affect one's sense of body orientation? And second, how does changing the task used to measure subjective vertical affect one's performance?
Gravity and gravity gradient changes caused by a point dislocation
NASA Astrophysics Data System (ADS)
Huang, Jian-Liang; Li, Hui; Li, Rui-Hao
1995-02-01
In this paper we studied gravitational potential, gravity and its gradient changes, which are caused by a point dislocation, and gave the concise mathematical deduction with definite physical implication in dealing with the singular integral at a seismic source. We also analysed the features of the fields of gravity and gravity gradient, gravity-vertical-displacement gradient. The conclusions are: (1) Gravity and gravity gradient changes are very small with the change of vertical position; (2) Gravity change is much greater than the gravity gradient change which is not so distinct; (3) The gravity change due to redistribution of mass accounts for 10 50 percent of the total gravity change caused by dislocation. The signs (positive or negative) of total gravity change and vertical displacement are opposite each other at the same point for strike slip and dip slip; (4) Gravity-vertical-displacement-gradient is not constant; it manifests a variety of patterns for different dislocation models; (5) Gravity-vertical-displacement-gradient is approximately equal to apparent gravity-vertical-displacement-gradient.
NASA Astrophysics Data System (ADS)
Gianetta, Ivan; Schwarz, Massimiliano; Glenz, Christian; Lammeranner, Walter
2013-04-01
In recent years the effects of roots on river banks and levees have been the subject of major discussions. The main issue about the presence of woody vegetation on levees is related to the possibility that roots increase internal erosion processes and the superimposed load of large trees compromise the integrity of these structures. However, ecologists and landscape managers argue that eliminating the natural vegetation from the riverbanks also means eliminating biotopes, strengthening anthropisation of the landscape, as well as limiting recreations areas. In the context of the third correction of the Rhone in Switzerland, the discussion on new levee geometries and the implementation of woody vegetation on them, lead to a detailed analysis of this issue for this specific case. The objective of this study was to describe quantitatively the processes and factors that influence the root distribution on levees and test modeling approaches for the simulation of vertical root distribution with laboratory and field data. An extension of an eco-hydrological analytic model that considers climatic and pedological condition for the quantification of vertical root distribution was validated with data provided by the University of Vienna (BOKU) of willows' roots (Salix purpurea) grown under controlled conditions. Furthermore, root distribution data of four transversal sections of a levee near Visp (canton Wallis, Switzerland) was used to validate the model. The positions of the levee's sections were chosen based on the species and dimensions of the woody vegetation. The dominant species present in the sections were birch (Betula pendula) and poplar (Populus nigra). For each section a grid of 50x50 cm was created to count and measure the roots. The results show that vertical distribution of root density under controlled growing conditions has an exponential form, decreasing with increasing soil depth, and can be well described by the eco-hydrological model. Vice versa, field data of vertical roots distribution show a non-exponential function and cannot fully be described by the model. A compacted layer of stones at about 2 m depth is considered as limiting factor for the rooting depth on the analyzed levee. The collected data and the knowledge gained from quantitative analysis represent the starting point for a discussion on new levee geometries and the development of new strategies for the implementation of woody vegetation on levees. A long term monitoring project for the analysis of the effectiveness of new implementation strategies of vegetation on levees, is considered an important prospective for future studies on this topic.
NASA Astrophysics Data System (ADS)
Bagheri, Amirhossein; Greenhalgh, Stewart; Khojasteh, Ali; Rahimian, Mohammad; Attarnejad, Reza
2016-10-01
In this paper, closed-form integral expressions are derived to describe how surface gravity waves (tsunamis) are generated when general asymmetric ground displacement (due to earthquake rupturing), involving both horizontal and vertical components of motion, occurs at arbitrary depth within the interior of an anisotropic subsea solid beneath the ocean. In addition, we compute the resultant hydrodynamic pressure within the seawater and the elastic wavefield within the seabed at any position. The method of potential functions and an integral transform approach, accompanied by a special contour integration scheme, are adopted to handle the equations of motion and produce the numerical results. The formulation accounts for any number of possible acoustic-gravity modes and is valid for both shallow and deep water situations as well as for any focal depth of the earthquake source. Phase and group velocity dispersion curves are developed for surface gravity (tsunami mode), acoustic-gravity, Rayleigh, and Scholte waves. Several asymptotic cases which arise from the general analysis are discussed and compared to existing solutions. The role of effective parameters such as hypocenter location and frequency of excitation is examined and illustrated through several figures which show the propagation pattern in the vertical and horizontal directions. Attention is directed to the unexpected contribution from the horizontal ground motion. The results have important application in several fields such as tsunami hazard prediction, marine seismology, and offshore and coastal engineering. In a companion paper, we examine the effect of ocean stratification on the appearance and character of internal and surface gravity waves.
Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer.
Heilmann, Martin; Munshi, A Mazid; Sarau, George; Göbelt, Manuela; Tessarek, Christian; Fauske, Vidar T; van Helvoort, Antonius T J; Yang, Jianfeng; Latzel, Michael; Hoffmann, Björn; Conibeer, Gavin; Weman, Helge; Christiansen, Silke
2016-06-08
The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.
The precision measurement and assembly for miniature parts based on double machine vision systems
NASA Astrophysics Data System (ADS)
Wang, X. D.; Zhang, L. F.; Xin, M. Z.; Qu, Y. Q.; Luo, Y.; Ma, T. M.; Chen, L.
2015-02-01
In the process of miniature parts' assembly, the structural features on the bottom or side of the parts often need to be aligned and positioned. The general assembly equipment integrated with one vertical downward machine vision system cannot satisfy the requirement. A precision automatic assembly equipment was developed with double machine vision systems integrated. In the system, a horizontal vision system is employed to measure the position of the feature structure at the parts' side view, which cannot be seen with the vertical one. The position measured by horizontal camera is converted to the vertical vision system with the calibration information. By careful calibration, the parts' alignment and positioning in the assembly process can be guaranteed. The developed assembly equipment has the characteristics of easy implementation, modularization and high cost performance. The handling of the miniature parts and assembly procedure were briefly introduced. The calibration procedure was given and the assembly error was analyzed for compensation.
Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.
Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming
2016-08-25
Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.
Sumerall, S W; Oehlert, M E; Trent, D D
1995-12-01
Vertical integration in medical settings typically involves the merging of independent physicians, physician groups, and hospitals to render an organized health care network. Such systems are considered to be vertical, as they may allow for a seamless continuation of services throughout the range of needs a patient may require. Mergers often result in the redefining of professional services offered in the acquired facility or across the network. As such, mergers have the potential of adversely impacting psychological practices. Professional psychology needs to take a proactive stance in this changing health care landscape. Research regarding empirically validated treatments and effects of psychological interventions on overall health-care costs needs to be properly disseminated to health care administrators to assure their knowledge of the utility of psychological services in the medical setting. Training psychologists to assume leadership positions in health-care institutions, gaining representation on hospital staff boards, and linking psychologists and physicians through collaborative training, to provide improved care, may allow for psychology to influence health care delivery.
NASA Astrophysics Data System (ADS)
Hao, Huadong; Shi, Haolei; Yi, Pengju; Liu, Ying; Li, Cunjun; Li, Shuguang
2018-01-01
A Volume Metrology method based on Internal Electro-optical Distance-ranging method is established for large vertical energy storage tank. After analyzing the vertical tank volume calculation mathematical model, the key processing algorithms, such as gross error elimination, filtering, streamline, and radius calculation are studied for the point cloud data. The corresponding volume values are automatically calculated in the different liquids by calculating the cross-sectional area along the horizontal direction and integrating from vertical direction. To design the comparison system, a vertical tank which the nominal capacity is 20,000 m3 is selected as the research object, and there are shown that the method has good repeatability and reproducibility. Through using the conventional capacity measurement method as reference, the relative deviation of calculated volume is less than 0.1%, meeting the measurement requirements. And the feasibility and effectiveness are demonstrated.
This case study defines well integrity by the prevention of vertical migration of fluids to protect drinking water resources. A generic shale development well is presented, including design, construction, operational phase, and its plug and abandonment.
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Thompson, A. M.; Holdren, D. H.; Northam, E. T.; Witte, J. C.; Oltmans, S. J.; Hoegger, B.; Levrat, G. M.; Kirchhoff, V.
2000-01-01
Vertical ozone profiles between the Equator and 10 S latitude available from the Southern Hemisphere Additional Ozone (SHADOZ) program provide consistent data Ozone sets from up to 10 sounding locations. SHADOZ designed to provide independent ozone profiles in the tropics for evaluation of satellite ozone data and models has made available over 600 soundings over the period 1998-1999. These observations provide an ideal data base for the detailed description of ozone and afford differential comparison between sites. TOMS total ozone when compared with correlative integrated total ozone overburden from the sondes is found to be negatively biased when using the classical constant mixing ratio procedure to determine residual ozone. On the other hand, the climatological method proposed by McPeters and Labow appears to give consistent results but is positively biased. The longer then two years series of measurements also was subjected to harmonic analysis to examine data cycles. These will be discussed as well.
Moisture Budget of the MJO over the Maritime Continent
NASA Astrophysics Data System (ADS)
Kim, J. E.; Zhang, C.; Kiladis, G. N.; Bechtold, P.
2017-12-01
The Maritime Continent (MC) often acts as a barrier for the eastward propagation of the MJO originating from the Indian Ocean (IO). Convective anomalies associated with the MJO tend to weaken over the MC, and MJO convection sometimes fails to pass through the MC. MJO events observed during the DYNAMO field campaign during late 2011 to early 2012 are not an exception in this regard. Modulation of convection for DYNAMO MJOs over the MC is investigated using moisture budget analysis of a reforecast product by the ECMWF Integrated Forecasting System (IFS). Vertical profiles of diabatic drying and heating by physical processes from convection, microphysics, and radiation schemes in IFS under the weak temperature gradient (WTG) environment enable us to estimate vertically resolved processes that control local moistening and drying associated with the MJO. We will compare three-dimensional moisture budgets over the IO and MC to understand which processes contribute to the changes in the MJO propagation and intensity over the MC.
NASA Astrophysics Data System (ADS)
Jo, Y. H.; Kim, J. Y.
2017-08-01
Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.
Vertical III-V nanowire device integration on Si(100).
Borg, Mattias; Schmid, Heinz; Moselund, Kirsten E; Signorello, Giorgio; Gignac, Lynne; Bruley, John; Breslin, Chris; Das Kanungo, Pratyush; Werner, Peter; Riel, Heike
2014-01-01
We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.
Performance and Transient Behavior of Vertically Integrated Thin-film Silicon Sensors
Wyrsch, Nicolas; Choong, Gregory; Miazza, Clément; Ballif, Christophe
2008-01-01
Vertical integration of amorphous hydrogenated silicon diodes on CMOS readout chips offers several advantages compared to standard CMOS imagers in terms of sensitivity, dynamic range and dark current while at the same time introducing some undesired transient effects leading to image lag. Performance of such sensors is here reported and their transient behaviour is analysed and compared to the one of corresponding amorphous silicon test diodes deposited on glass. The measurements are further compared to simulations for a deeper investigation. The long time constant observed in dark or photocurrent decay is found to be rather independent of the density of defects present in the intrinsic layer of the amorphous silicon diode. PMID:27873778
NASA Astrophysics Data System (ADS)
Maamary, Rabih; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albora, Grégory; Chauvin, Nicolas; Miftah-El-Khair, Zineb; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Moulin, Eric; Ramonet, Michel; Bréon, François-Marie; Durry, Georges
2016-04-01
Human activities disrupt natural biogeochemical cycles such as the carbon and contribute to an increase in the concentrations of the greenhouse gases (carbone dioxide and methane) in the atmosphere. The current atmospheric transport modeling (the vertical trade) still represents an important source of uncertainty in the determination of regional flows of greenhouse gases, which means that a good knowledge of the vertical distribution of CO2 is necessary to (1) make the link between the ground measurements and spatial measurements that consider an integrated concentration over the entire column of the atmosphere, (2) validate and if possible improve CO2 transport model to make the link between surface emissions and observed concentration. The aim of this work is to develop a lightweight instrument (based on mid-infrared laser spectrometry principles) for in-situ measuring at high temporal/spatial resolution (5 Hz) the vertical profiles of the CO2 and the CH4 using balloons (meteorological and BSO at high precision levels (< 1 ppm in 1 second integration time for the CO2 sensor, and smaller than several tenths of ppb in 1 second integration time for the CH4 sensor). The instrument should be lighter than 2.5 kg in order to facilitate authorizations, costs and logistics flights. These laser spectrometers are built on recent instrumental developments. Several flights were successfully done in the region Champagne-Ardenne and in Canada recently. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS défi instrumental and the region Champagne-Ardenne.
Integration of electro-absorption modulator in a vertical-cavity surface-emitting laser
NASA Astrophysics Data System (ADS)
Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Rumeau, A.; Viallon, C.; Thienpont, H.; Panajotov, K.; Almuneau, G.
2018-02-01
VCSELs became dominant laser sources in many short optical link applications such as datacenter, active cables, etc. Actual standards and commercialized VCSEL are providing 25 Gb/s data rates, but new solutions are expected to settle the next device generation enabling 100 Gb/s. Directly modulated VCSEL have been extensively studied and improved to reach bandwidths in the range of 26-32 GHz [Chalmers, TU Berlin], however at the price of increased applied current and thus reduced device lifetime. Furthermore, the relaxation oscillation limit still subsists with this solution. Thus, splitting the emission and the modulation functions as done with DFB lasers is a very promising alternative [TI-Tech, TU Berlin]. Here, we study the vertical integration of an ElectroAbsorption Modulator (EAM) within a VCSEL, where the output light of the VCSEL is modulated through the EAM section. In our original design, we finely optimized the EAM design to maximize the modulation depth by implementing perturbative Quantum Confined Stark Effect (QCSE) calculations, while designing the vertical integration of the EAM without penalty on the VCSEL static performances. We will present the different fabricated vertical structures, as well as the experimental electrical and optical static measurements for those configurations demonstrating a very good agreement with the reflectivity and absorption simulations obtained for both the VCSEL and the EAM-VCSEL structures. Finally, to reach very high frequency modulation we studied the BCB electrical properties up to 110 GHz and investigated coplanar and microstrip lines access to decrease both the parasitic capacitance and the influence of the substrate.
NASA Astrophysics Data System (ADS)
Runkel, Anthony C.; Tipping, Robert G.; Meyer, Jessica R.; Steenberg, Julia R.; Retzler, Andrew J.; Parker, Beth L.; Green, Jeff A.; Barry, John D.; Jones, Perry M.
2018-06-01
A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.
Kingsley, Karl; O'Malley, Susan; Stewart, Tanis; Howard, Katherine M
2008-01-01
Background Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their students. Methods A series of structured seminars, incorporating faculty research, was designed for first-year dental students at the University of Nevada, Las Vegas, School of Dental Medicine to reinforce and support the concepts and skills taught in concurrent courses. A structured research enrichment period was also created to facilitate student engagement in active research using faculty and student curricular release time. Course evaluations and surveys were administered to gauge student perceptions of the curricular integration of research, the impact of these seminars on recruitment to the research program, and overall levels of student satisfaction with research enrichment. Results The analysis of course surveys revealed that students perceived the research-containing seminars effectively illustrated concepts, were logically sequenced, and were well-integrated into their curriculum. In addition, analysis of surveys revealed that the Integration Seminar courses motivated students to engage in research enrichment. Finally, this analysis provided evidence that students were very satisfied with their overall learning experience during research enrichment. Conclusion Curricular integration is one method of improving the teaching and learning of complicated and inter-related concepts, providing an opportunity to incorporate research training and objectives into traditionally separate didactic courses. Despite the benefits of curricular integration, finding the most appropriate points of integration, obtaining release time for curricular development and for research engagement, and funding predoctoral student research remain issues to be addressed in ways that reflect the character of the faculty and the goals of each institution. PMID:18284692
Kingsley, Karl; O'Malley, Susan; Stewart, Tanis; Howard, Katherine M
2008-02-19
Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their students. A series of structured seminars, incorporating faculty research, was designed for first-year dental students at the University of Nevada, Las Vegas, School of Dental Medicine to reinforce and support the concepts and skills taught in concurrent courses. A structured research enrichment period was also created to facilitate student engagement in active research using faculty and student curricular release time. Course evaluations and surveys were administered to gauge student perceptions of the curricular integration of research, the impact of these seminars on recruitment to the research program, and overall levels of student satisfaction with research enrichment. The analysis of course surveys revealed that students perceived the research-containing seminars effectively illustrated concepts, were logically sequenced, and were well-integrated into their curriculum. In addition, analysis of surveys revealed that the Integration Seminar courses motivated students to engage in research enrichment. Finally, this analysis provided evidence that students were very satisfied with their overall learning experience during research enrichment. Curricular integration is one method of improving the teaching and learning of complicated and inter-related concepts, providing an opportunity to incorporate research training and objectives into traditionally separate didactic courses. Despite the benefits of curricular integration, finding the most appropriate points of integration, obtaining release time for curricular development and for research engagement, and funding predoctoral student research remain issues to be addressed in ways that reflect the character of the faculty and the goals of each institution.
Web-based visualization of gridded dataset usings OceanBrowser
NASA Astrophysics Data System (ADS)
Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie
2015-04-01
OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).
Cloudiness over the Amazon rainforest: Meteorology and thermodynamics
NASA Astrophysics Data System (ADS)
Collow, Allison B. Marquardt; Miller, Mark A.; Trabachino, Lynne C.
2016-07-01
Comprehensive meteorological observations collected during GOAmazon2014/15 using the Atmospheric Radiation Measurement Mobile Facility no. 1 and assimilated observations from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 are used to document the seasonal cycle of cloudiness, thermodynamics, and precipitation above the Amazon rainforest. The reversal of synoptic-scale vertical motions modulates the transition between the wet and dry seasons. Ascending moist air during the wet season originates near the surface of the Atlantic Ocean and is advected into the Amazon rainforest, where it experiences convergence and, ultimately, precipitates. The dry season is characterized by weaker winds and synoptic-scale subsidence with little or no moisture convergence accompanying moisture advection. This combination results in the drying of the midtroposphere during June through October as indicated by a decrease in liquid water path, integrated water, and the vertical profile of water vapor mixing ratio. The vertical profile of cloud fraction exhibits a relatively consistent decline in cloud fraction from the lifting condensation level (LCL) to the freezing level where a minimum is observed, unlike many other tropical regions. Coefficients of determination between the LCL and cloud fractional coverage suggest a relatively robust relationship between the LCL and cloudiness beneath 5 km during the dry season (R2 = 0.42) but a weak relationship during the wet season (0.12).
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Polanco, Michael A.
2010-01-01
A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.
NASA Astrophysics Data System (ADS)
Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda
2018-05-01
This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.
Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.
Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali
2013-07-29
We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).
NASA Astrophysics Data System (ADS)
Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda
2018-01-01
This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.
On the relationship between hurricane cost and the integrated wind profile
NASA Astrophysics Data System (ADS)
Wang, S.; Toumi, R.
2016-11-01
It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.
Jones, Sonya A.; Paillet, Frederick L.
1997-01-01
The results of borehole geophysical log analysis indicate that two of the production wells could have vertically connected intervals where cement bonding in the well annulus is poor. The other production wells have overall good bonding. Temperature logs do not indicate flow behind casing except in the screened interval of one well. Geophysical logs show the Eagle Ford Shale ranges from 147 to 185 feet thick at the site. The Eagle Ford Shale has low permeability and a high plasticity index. These physical characteristics make the Eagle Ford Shale an excellent confining unit.
Lim-Dunham, Jennifer E; Ensminger, David C; McNulty, John A; Hoyt, Amy E; Chandrasekhar, Arcot J
2016-02-01
The principles of Collins' cognitive apprenticeship model were used to design a radiology curriculum in which medical students practice radiological skills using online case-based modules. The modules are embedded within clinical third-year clerkships, and students are provided with personalized feedback from the instructors. We describe the development of the vertical online radiology curriculum and evaluate its impact on student achievement and learning process using a mixed method approach. The curriculum was developed over a 2-year period. Student participation was voluntary in the first year and mandatory in the second year. For quantitative curriculum evaluation, student metrics for voluntary versus mandatory groups were assessed using independent sample t tests and variable entry method regression analysis. For qualitative analysis, responses from a survey of students about the value of the curriculum were organized into defined themes using consensus coding. Mandatory participation significantly improved (p = .001) the mean radiology examination score (82 %) compared to the voluntary group (73%), suggesting that mandatory participation had a beneficial effect on student performance. Potential preexisting differences in underlying general academic performance were accounted for by including mean basic science grades as the first variable in the regression model. The significant increase in R(2) from .16 to .28 when number of radiology cases completed was added to the original model, and the greater value of the standardized beta for this variable, suggest that the curriculum made a significant contribution to students' radiology examination scores beyond their baseline academic performance. Five dominant themes about curricular characteristics that enhanced student learning and beneficial outcomes emerged from consensus coding. These themes were (1) self-paced design, (2) receiving feedback from faculty, (3) clinical relevance of cases, (4) gaining confidence in interpreting radiological images, and (5) transfer of conceptual knowledge to actual practice. The vertically integrated online radiology curriculum can positively impact student performance and learning process in the context of the cognitive apprenticeship model. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere
NASA Astrophysics Data System (ADS)
Yi, Tae-Hyeong; Park, Ja-Rin
2017-06-01
A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.
NASA Astrophysics Data System (ADS)
Bargiel, Sylwester; Lullin, Justine; Lemoal, Patrice; Perrin, Stéphane; Passilly, Nicolas; Albero, Jorge; Froehly, Luc; Lardet-Vieudrin, Franck; Gorecki, Christophe
2016-04-01
In this paper, we present construction, fabrication and characterization of an electrostatic MOEMS vertical microscanner for generation of an optical phase shift in array-type interferometric microsystems. The microscanner employs asymmetric comb-drives for a vertical displacement of a large 4x4 array of reference micromirrors and for in-situ position sensing. The device is designed to be fully compatible with Mirau configuration and with vertical integration strategy. This enables further integration of the device within an "active" multi-channel Mirau micro-interferometer and implementation of the phase shifting interferometry (PSI) technique for imaging applications. The combination of micro-interferometer and PSI is particularly interesting in the swept-source optical coherence tomography, since it allows not only strong size reduction of a system but also improvement of its performance (sensitivity, removal of the image artefacts). The technology of device is based on double-side DRIE of SOI wafer and vapor HF releasing of the suspended platform. In the static mode, the device provides vertical displacement of micromirrors up to 2.8μm (0 - 40V), whereas at resonance (fo=500 Hz), it reaches 0.7 μm for only 1VDC+1VAC. In both operation modes, the measured displacement is much more than required for PSI implementation (352nm peak-to-peak). The presented device is a key component of array-type Mirau micro-interferometer that enables the construction of portable, low-cost interferometric systems, e.g. for in vivo medical diagnostics.
NASA Astrophysics Data System (ADS)
Nielsen, M.; Elezzabi, A. Y.
2013-03-01
To become a competitor to replace CMOS-electronics for next-generation data processing, signal routing, and computing, nanoplasmonic circuits will require an analogue to electrical vias in order to enable vertical connections between device layers. Vertically stacked nanoplasmonic nanoring resonators formed of Ag/Si/Ag gap plasmon waveguides were studied as a novel 3-D coupling scheme that could be monolithically integrated on a silicon platform. The vertically coupled ring resonators were evanescently coupled to 100 nm x 100 nm Ag/Si/Ag input and output waveguides and the whole device was submerged in silicon dioxide. 3-D finite difference time domain simulations were used to examine the transmission spectra of the coupling device with varying device sizes and orientations. By having the signal coupling occur over multiple trips around the resonator, coupling efficiencies as high as 39% at telecommunication wavelengths between adjacent layers were present with planar device areas of only 1.00 μm2. As the vertical signal transfer was based on coupled ring resonators, the signal transfer was inherently wavelength dependent. Changing the device size by varying the radii of the nanorings allowed for tailoring the coupled frequency spectra. The plasmonic resonator based coupling scheme was found to have quality (Q) factors of upwards of 30 at telecommunication wavelengths. By allowing different device layers to operate on different wavelengths, this coupling scheme could to lead to parallel processing in stacked independent device layers.
NASA Technical Reports Server (NTRS)
Warner, Thomas T.; Key, Lawrence E.; Lario, Annette M.
1989-01-01
The effects of horizontal and vertical data resolution, data density, data location, different objective analysis algorithms, and measurement error on mesoscale-forecast accuracy are studied with observing-system simulation experiments. Domain-averaged errors are shown to generally decrease with time. It is found that the vertical distribution of error growth depends on the initial vertical distribution of the error itself. Larger gravity-inertia wave noise is produced in forecasts with coarser vertical data resolution. The use of a low vertical resolution observing system with three data levels leads to more forecast errors than moderate and high vertical resolution observing systems with 8 and 14 data levels. Also, with poor vertical resolution in soundings, the initial and forecast errors are not affected by the horizontal data resolution.
Analytical solution for the wind-driven circulation in a lake containing an island
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Gedney, R. T.
1971-01-01
An analysis was carried out to determine analytically the effect of an island on the wind driven currents in a shallow lake (or sea). A general analysis is developed that can be applied to a large class of lake and island geometries and bottom topographies. Detailed numerical results are obtained for a circular island located eccentrically or concentrically in a circular lake with a logarithmic bottom topography. It is shown that an island can produce volume flow (vertically integrated velocities) gyres that are completely different from those produced by a normal basin without an island. These gyres in the neighborhood of the island will produce different velocity patterns, which include the acceleration of flow near the island shore.
Cage Regional Energy Budgets from the GLAS 4TH Order Model
NASA Technical Reports Server (NTRS)
Herman, G. F.; Alexder, M. A.; Shubert, S. D.
1984-01-01
The status and future plans of a study to (1) assess the accuracy of regional energy balance calculations obtained from the 4th-order model, (2) determine the impact of satellite data on the calculations, and (3) determine their utility for ocean energy transport studies are discussed. An equation is presented which models the vertically-integrated, time and areally-averaged total energy content of a region of the atmosphere extending from the surface to the top of the atmosphere. All of the terms of the equation were evaluated using early versions of the GLAS FGGE IIIb analysis, and analysis with satellite data deleted. Results show that the budget is dominated by the surface fluxes, net radiation, and horizontal atmospoheric divergence.
Engine/vehicle integration for vertical takeoff and landing single stage to orbit vehicles
NASA Astrophysics Data System (ADS)
Weegar, R. K.
1992-08-01
SSTO vehicles design which is currently being developed under the Single Stage Rocket Technology program of the Strategic Defense Initiative Organization is discussed. Particular attention is given to engine optimization and integration of ascent, orbital, and landing propulsion requirements into a single system.
Schooling and National Integration: the Case of Interwar Vietnam.
ERIC Educational Resources Information Center
Kelly, Gail P.
1982-01-01
Explains the colonial school's role in terms of the distribution of education by vertical (social strata) and horizontal (regional) integration, the type of education offered, and the political and social context of interwar Vietnam. Indicates the schools played a divisive role, an effect not due solely to foreign domination. (LC)
Interfacing the NRL 1-D High Vertical Resolution Aerosol Model with COAMPS
2006-09-30
model integrated with mesoscale meterological data to study marine boundary layer aerosol dynamics, J. Geophys. Res., in press, 2006. Hoppel, W. A...W.A. Hoppel, J.J. Shi: A one-dimensional sectional aerosol model integrated with mesoscale meterological data to study marine boundary layer aerosol
Design and fabrication of vertically-integrated CMOS image sensors.
Skorka, Orit; Joseph, Dileepan
2011-01-01
Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.
Vertical integration in medical school: effect on the transition to postgraduate training.
Wijnen-Meijer, Marjo; ten Cate, Olle Th J; van der Schaaf, Marieke; Borleffs, Jan C C
2010-03-01
Recently, many medical schools' curricula have been revised so that they represent vertically integrated (VI) curricula. Important changes include: the provision of earlier clinical experience; longer clerkships, and the fostering of increasing levels of responsibility. One of the aims of vertical integration is to facilitate the transition to postgraduate training. The purpose of the present study is to determine whether a VI curriculum at medical school affects the transition to postgraduate training in a positive way. We carried out a questionnaire study among graduates of six medical schools in the Netherlands, who had followed either a VI or a non-VI curriculum. Items in the questionnaire focused on preparedness for work and postgraduate training, the time and number of applications required to be admitted to residency, and the process of making career choices. In comparison with those who have followed non-VI programmes, graduates of VI curricula appear to make definitive career choices earlier, need less time and fewer applications to obtain residency positions and feel more prepared for work and postgraduate training. The curriculum at medical school affects the transition to postgraduate training. Additional research is required to determine which components of the curriculum cause this effect and to specify under which conditions this effect occurs.
Design and Fabrication of Vertically-Integrated CMOS Image Sensors
Skorka, Orit; Joseph, Dileepan
2011-01-01
Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860
Inter-comparison of three-dimensional models of volcanic plumes
Suzuki, Yujiro; Costa, Antonio; Cerminara, Matteo; Esposti Ongaro, Tomaso; Herzog, Michael; Van Eaton, Alexa; Denby, Leif
2016-01-01
We performed an inter-comparison study of three-dimensional models of volcanic plumes. A set of common volcanological input parameters and meteorological conditions were provided for two kinds of eruptions, representing a weak and a strong eruption column. From the different models, we compared the maximum plume height, neutral buoyancy level (where plume density equals that of the atmosphere), and level of maximum radial spreading of the umbrella cloud. We also compared the vertical profiles of eruption column properties, integrated across cross-sections of the plume (integral variables). Although the models use different numerical procedures and treatments of subgrid turbulence and particle dynamics, the inter-comparison shows qualitatively consistent results. In the weak plume case (mass eruption rate 1.5 × 106 kg s− 1), the vertical profiles of plume properties (e.g., vertical velocity, temperature) are similar among models, especially in the buoyant plume region. Variability among the simulated maximum heights is ~ 20%, whereas neutral buoyancy level and level of maximum radial spreading vary by ~ 10%. Time-averaging of the three-dimensional (3D) flow fields indicates an effective entrainment coefficient around 0.1 in the buoyant plume region, with much lower values in the jet region, which is consistent with findings of small-scale laboratory experiments. On the other hand, the strong plume case (mass eruption rate 1.5 × 109 kg s− 1) shows greater variability in the vertical plume profiles predicted by the different models. Our analysis suggests that the unstable flow dynamics in the strong plume enhances differences in the formulation and numerical solution of the models. This is especially evident in the overshooting top of the plume, which extends a significant portion (~ 1/8) of the maximum plume height. Nonetheless, overall variability in the spreading level and neutral buoyancy level is ~ 20%, whereas that of maximum height is ~ 10%. This inter-comparison study has highlighted the different capabilities of 3D volcanic plume models, and identified key features of weak and strong plumes, including the roles of jet stability, entrainment efficiency, and particle non-equilibrium, which deserve future investigation in field, laboratory, and numerical studies.
Llamas, Ana; Mayhew, Susannah
2016-01-01
Maternal mortality continues to claim the lives of thousands of women in Latin America despite the availability of effective treatments to avert maternal death. In the past, efforts to acknowledge cultural diversity in birth practices had not been clearly integrated into policy. However, in Otavalo (Ecuador) a local hospital pioneered the implementation of the ‘Vertical Birth’—a practical manifestation of an intercultural health policy aimed at increasing indigenous women’s access to maternity care. Drawing on agenda-setting theory, this qualitative research explores how the vertical birth practice made it onto the local policy agenda and the processes that allowed actors to seize a window of opportunity allowing the vertical birth practice to emerge. Our results show that the processes that brought about the vertical birth practice took place over a prolonged period of time and resulted from the interplay between various factors. Firstly, a maternal health policy community involving indigenous actors played a key role in identifying maternal mortality as a policy problem, defining its causes and framing it as an indigenous rights issue. Secondly, previous initiatives to address maternal mortality provided a wealth of experience that gave these actors the knowledge and experience to formulate a feasible policy solution and consolidate support from powerful actors. Thirdly, the election of a new government that had incorporated the demands of the indigenous movement opened up a window of opportunity to push intercultural health policies such as the vertical birth. We conclude that the socioeconomic and political changes at both national and local level allowed the meaningful participation of indigenous actors that made a critical contribution to the emergence of the vertical birth practice. These findings can help us advance our knowledge of strategies to set the agenda for intercultural maternal health policy and inform future policy in similar settings. Our results also show that Kingdon’s model was useful in explaining how the VB practice emerged but also that it needs modifications when applied to low and middle income countries. PMID:26758539
Alquezar-Planas, David E.; Ishida, Yasuko; Courtiol, Alexandre; Timms, Peter; Johnson, Rebecca N.; Lenz, Dorina; Helgen, Kristofer M.; Roca, Alfred L.; Hartman, Stefanie
2016-01-01
Background. Retroviral integration into the host germline results in permanent viral colonization of vertebrate genomes. The koala retrovirus (KoRV) is currently invading the germline of the koala (Phascolarctos cinereus) and provides a unique opportunity for studying retroviral endogenization. Previous analysis of KoRV integration patterns in modern koalas demonstrate that they share integration sites primarily if they are related, indicating that the process is currently driven by vertical transmission rather than infection. However, due to methodological challenges, KoRV integrations have not been comprehensively characterized. Results. To overcome these challenges, we applied and compared three target enrichment techniques coupled with next generation sequencing (NGS) and a newly customized sequence-clustering based computational pipeline to determine the integration sites for 10 museum Queensland and New South Wales (NSW) koala samples collected between the 1870s and late 1980s. A secondary aim of this study sought to identify common integration sites across modern and historical specimens by comparing our dataset to previously published studies. Several million sequences were processed, and the KoRV integration sites in each koala were characterized. Conclusions. Although the three enrichment methods each exhibited bias in integration site retrieval, a combination of two methods, Primer Extension Capture and hybridization capture is recommended for future studies on historical samples. Moreover, identification of integration sites shows that the proportion of integration sites shared between any two koalas is quite small. PMID:27069793
Vertically aligned carbon nanotubes for microelectrode arrays applications.
Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric
2012-09-01
In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.
Zhang, Lei; Pavlica, Egon; Zhong, Xiaolan; Liscio, Fabiola; Li, Songlin; Bratina, Gvido; Orgiu, Emanuele; Samorì, Paolo
2017-03-01
Crystalline dioctyl-3,4,9,10-perylenedicarboximide nanowires and 6,13-bis(triisopropylsilylethynyl) pentacene microplates are integrated into a vertical-yet-open asymmetrical heterojunction for the realization of a high-performance organic photovoltaic detector, which shows fast photoresponse, ultrahigh signal-to-noise ratio, and high sensitivity to weak light. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Corradetti, A.; Tavani, S.; Parente, M.; Iannace, A.; Vinci, F.; Pirmez, C.; Torrieri, S.; Giorgioni, M.; Pignalosa, A.; Mazzoli, S.
2018-03-01
Through-going joints cutting across beds are often invoked to match large-scale permeability patterns in tight carbonate reservoirs. However, despite the importance of these structures for fluid flow, only few field studies focused on the understanding and estimation of through-going joint dimensional parameters, including spacing and vertical extent in relation to stratigraphy. Recent improvements in the construction of digital models of outcrops can greatly help to overcome many logistic issues, favouring the evaluation of relationships between jointing and stratigraphy at the reservoir scale. In this study, we present the results obtained from integrating field measurements with a digital outcrop model of a carbonate platform reservoir analogue in the Sorrento peninsula (Italy). The outcrop consists of a nearly vertical cliff exposing a monocline of alternating gently-dipping shallow-water limestones and dolostones, crossed by several vertical joints of different size. This study allowed us to define how major through-going joints pass across thick beds (bed thickness > 30 cm), while they arrest against packages made of thinly stratified layers. In essence, through-going joints arrest on "weak" levels, consisting of thinly bedded layers interposed between packages made of thick beds, in the same manner as bed-confined joints arrest on less competent interlayers.
Using smartphone pressure sensors to measure vertical velocities of elevators, stairways, and drones
NASA Astrophysics Data System (ADS)
Monteiro, Martín; Martí, Arturo C.
2017-01-01
We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are derived. The approximation considered is valid in the first hundred meters of the inner layers of the atmosphere. In addition to pressure, acceleration values were also recorded using the built-in accelerometer. Numerical integration was performed, obtaining both vertical velocity and altitude. We show that data obtained using the pressure sensor is significantly less noisy than that obtained using the accelerometer. Error accumulation is also evident in the numerical integration of the acceleration values. In the proposed experiments, the pressure sensor also outperforms GPS, because this sensor does not receive satellite signals indoors and, in general, the operating frequency is considerably lower than that of the pressure sensor. In the cases in which it is possible, comparison with reference values taken from the architectural plans of buildings validates the results obtained using the pressure sensor. This proposal is ideally performed as an external or outreach activity with students to gain insight about fundamental questions in mechanics, fluids, and thermodynamics.
Estimates of the seasonal mean vertical velocity fields of the extratropical Northern Hemisphere
NASA Technical Reports Server (NTRS)
White, G. H.
1983-01-01
Indirect methods are employed to estimate the wintertime and summertime mean vertical velocity fields of the extratropical Northern Hemisphere and intercomparisons are made, together with comparisons with mean seasonal patterns of cloudiness and precipitation. Twice-daily NMC operational analyses produced general circulation statistics for 11 winters and 12 summers, permitting calculation of the seasonal NMC averages for 6 hr forecasts, solution of the omega equation, integration of continuity equation downward from 100 mb, and solution of the thermodynamic energy equation in the absence of diabatic heating. The methods all yielded similar vertical velocity patterns; however, the magnitude of the vertical velocities could not be calculated with great accuracy. Orography was concluded to have less of an effect in summer than in winter, when winds are stronger.
4-aminopyridine restores vertical and horizontal neural integrator function in downbeat nystagmus.
Kalla, Roger; Glasauer, Stefan; Büttner, Ulrich; Brandt, Thomas; Strupp, Michael
2007-09-01
Downbeat nystagmus (DBN), the most common form of acquired fixation nystagmus, is often caused by cerebellar degeneration, especially if the vestibulo-cerebellum is involved. The upward ocular drift in DBN has a spontaneous and a vertical gaze-evoked component. Since cerebellar involvement is suspected to be the underlying pathomechanism of DBN, we tested in 15 patients with DBN whether the application of the potassium-channel blocker 4-aminopyridine (4-AP), which increases the excitability of cerebellar Purkinje cells as shown in animal experiments, reduces the vertical ocular drift leading to nystagmus. Fifteen age-matched healthy subjects served as the control group. 4-AP may affect spontaneous drift or gaze-evoked drift by either enhancing visual fixation ability or restoring vision-independent gaze holding. We therefore recorded 3D slow-phase eye movements using search coils during attempted fixation in nine different eye positions and with or without a continuously visible target before and 45 min after ingestion of 10mg 4-AP. Since the effect of 4-AP may depend on the associated etiology, we divided our patients into three groups (cerebellar atrophy, n = 4; idiopathic DBN, n = 5; other etiology, n = 6). 4-AP decreased DBN during gaze straight ahead in 12 of 15 patients. Statistical analysis showed that improvement occurred predominantly in patients with cerebellar atrophy, in whom the drift was reduced from -4.99 +/- 1.07 deg/s (mean +/- SE) before treatment to -0.60 +/- 0.82 deg/s afterwards. Regression analysis of slow-phase velocity (SPV) in different eye positions revealed that vertical and horizontal gaze-evoked drift was significantly reduced independently of the patient group and caused perfect gaze holding on the average. Since the observed improvements were independent of target visibility, 4-AP improved fixation by restoring gaze-holding ability. All in all, the present study demonstrates that 4-AP has a differential effect on DBN: drift with gaze straight ahead was predominantly reduced in patients with cerebellar atrophy, but less so in the remaining patients; 4-AP on the average improved neural integrator function, i.e. gaze-evoked drift, regardless of etiology. Our results thus show that 4-AP was a successful treatment option in the majority of DBN patients, possibly by increasing Purkinje cell excitability in the cerebellar flocculi. It may work best when DBN is associated with cerebellar atrophy. Furthermore, 4-AP may be a promising treatment option for patients with a dominant gaze-evoked component of nystagmus, regardless of its etiology.
Abubakar, Amina; Van de Vijver, Fons J R; Hassan, Amin S; Fischer, Ronald; Nyongesa, Moses K; Kabunda, Beatrice; Berkley, James A; Stein, Alan; Newton, Charles R
Little is known of mental health outcomes among vertically HIV-infected or HIV-affected adolescents in Africa. The current study set out to describe depressive symptoms and their correlates among vertically HIV-infected and HIV-affected adolescents at the Kenyan Coast. 130 adolescents (vertically HIV-infected [n = 44], HIV-affected [n = 53], and unexposed [n = 33]) and their caregivers participated in this cross-sectional study. An adapted version of the Beck Depression Inventory-11 (BDI) was administered to examine depressive symptoms in both adolescents and caregivers, together with measures of sociodemographic, medical, and anthropometric characteristics. Our analysis indicated a main effect of HIV status on mean BDI scores in HIV-infected (18.4 [SD = 8.3) and HIV-affected (16.8 [SD = 7.3]) adolescents compared to the community controls (12.0 [SD = 7.9]), F (2, 127) = 6.704, P = .002, η 2 = .095. Post hoc analysis showed that BDI scores of HIV-infected adolescents were higher than those of community controls (P < .001). Similarly, HIV-affected adolescents had BDI scores that were higher than those of community controls (P = .007). However, there was no difference in BDI scores between HIV-infected and HIV-affected adolescents (P = .304). A path analytic model indicated that cumulative psychosocial risk (orphanhood, family poverty, and caregiver depressive symptoms) were positive predictors of BDI scores among adolescents, while nutritional status had a limited role. Both HIV-infected and HIV-affected adolescents are at a high risk of experiencing depressive symptoms, largely due to the multiple psychosocial risk factors in their environment. The provision of adequate psychosocial support and counseling needs to become an integral part of the care program for adolescents from families living with HIV/AIDS at the Kenyan coast and other similar settings. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yuebing
2017-04-01
Based on the observation data of Compass/GPSobserved at five stations, time span from July 1, 2014 to June 30, 2016. UsingPPP positioning model of the PANDA software developed by Wuhan University,Analyzedthe positioning accuracy of single system and Compass/GPS integrated resolving, and discussed the capability of Compass navigation system in crustal motion monitoring. The results showed that the positioning accuracy in the east-west directionof the Compass navigation system is lower than the north-south direction (the positioning accuracy de 3 times RMS), in general, the positioning accuracyin the horizontal direction is about 1 2cm and the vertical direction is about 5 6cm. The GPS positioning accuracy in the horizontal direction is better than 1cm and the vertical direction is about 1 2cm. The accuracy of Compass/GPS integrated resolving is quite to GPS. It is worth mentioning that although Compass navigation system precision point positioning accuracy is lower than GPS, two sets of velocity fields obtained by using the Nikolaidis (2002) model to analyze the Compass and GPS time series results respectively, the results showed that the maximum difference of the two sets of velocity field in horizontal directions is 1.8mm/a. The Compass navigation system can now be used to monitor the crustal movement of the large deformation area, based on the velocity field in horizontal direction.
Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris
2016-07-08
This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) BACKGROUND: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) METHODS: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) RESULTS: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) CONCLUSION: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database.
Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris
2016-01-01
This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) Background: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) Methods: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) Results: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) Conclusion: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database. PMID:27399717
Wave-current interactions in three dimensions: why 3D radiation stresses are not practical
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice
2017-04-01
The coupling of ocean circulation and wave models is based on a wave-averaged mass and momentum conservation equations. Whereas several equivalent equations for the evolution of the current momentum have been proposed, implemented, and used, the possibility to formulate practical equations for the total momentum, which is the sum of the current and wave momenta, has been obscured by a series of publications. In a recent update on previous derivations, Mellor (J. Phys. Oceanogr. 2015) proposed a new set of wave-forced total momentum equations. Here we show that this derivation misses a term that integrates to zero over the vertical. This is because he went from his depth-integrated eq. (28) to the 3D equation (30) by simply removing the integral, but any extra zero-integrating term can be added. Corrected for this omission, the equations of motion are equivalent to the earlier equations by Mellor (2003) which are correct when expressed in terms of wave-induced pressure, horizontal velocity and vertical displacement. Namely the total momentum evolution is driven by the horizontal divergence of a horizontal momentum flux, ----- --- ∂^s- Sαβ = ^uα^uβ + δαβ ∂ς (^p- g^s) (1) and the vertical divergence of a vertical flux, Sαz = (p^-g^s)∂^s/∂xα, (2) where p is the wave-induced non-hydrostatic pressure, s is the wave-induced vertical displacement, and u^ α is the horizontal wave-induced velocity in direction α. So far, so good. Problems arise when p and s are evaluated. Indeend, Ardhuin et al. (J. Phys. Oceanogr. 2008) showed that, over a sloping bottom ∂Sαβ/∂xβ is of order of the slope, hence a consistent wave forcing requires an estimation of Sαz that must be estimated to first order in the bottom slope. For this, Airy wave theory, i.e. cosh(kz-+-kh) p ≃ ga cosh (kD ) cosψ, (3) is not enough. Ardhuin et al. (2008) has shown that using an exact solution of the Laplace equations the vertical flux can indeed be computed. The alternative of neglecting completely Sαz, as suggested by Mellor (2011) for small slopes, will always generate spurious currents because of the unbalanced forcing ∂Sαβ/∂xβ. Fortunately, there are many explicit versions of the wave-averaged equations without the wave momentum in them (Suzuki and Fox-Kemper 2016), with or without vortex force which are all consistent with the exact 3D equations of Andrews and McIntyre (1978). There is thus no need to stumble again and again on this fundamental problem of vertical momentum flux, which is a flux of wave momentum. The problem simply goes away by writing the equations for the current momentum only, without the problematic wave momentum. The current and wave momentum are coupled by forcing terms, and the wave momentum can be solved in 2D, the vertical distribution of momentum being maintained by the complex flux Sαz.
A Pseudo-Vertical Equilibrium Model for Slow Gravity Drainage Dynamics
NASA Astrophysics Data System (ADS)
Becker, Beatrix; Guo, Bo; Bandilla, Karl; Celia, Michael A.; Flemisch, Bernd; Helmig, Rainer
2017-12-01
Vertical equilibrium (VE) models are computationally efficient and have been widely used for modeling fluid migration in the subsurface. However, they rely on the assumption of instant gravity segregation of the two fluid phases which may not be valid especially for systems that have very slow drainage at low wetting phase saturations. In these cases, the time scale for the wetting phase to reach vertical equilibrium can be several orders of magnitude larger than the time scale of interest, rendering conventional VE models unsuitable. Here we present a pseudo-VE model that relaxes the assumption of instant segregation of the two fluid phases by applying a pseudo-residual saturation inside the plume of the injected fluid that declines over time due to slow vertical drainage. This pseudo-VE model is cast in a multiscale framework for vertically integrated models with the vertical drainage solved as a fine-scale problem. Two types of fine-scale models are developed for the vertical drainage, which lead to two pseudo-VE models. Comparisons with a conventional VE model and a full multidimensional model show that the pseudo-VE models have much wider applicability than the conventional VE model while maintaining the computational benefit of the conventional VE model.
NASA Astrophysics Data System (ADS)
LAI, Y. R.; Hsu, Y. J.; You, R. J.
2017-12-01
GPS technique services as the most powerful method in monitoring crustal deformation owing to its advantage of temporal continuity. Geodetic leveling is also widely used not only in engineering but also in geophysics applicants due to its high precision in vertical datum determination and spatial continuity advantages. As widely known, the reference frames of GPS and geodetic leveling are different- the former refers to the reference ellipsoid (WGS84 ellipsoid) and the latter refers to the geoid. In order to combine vertical velocity fields from different datums, we decide to examine discrepancy between these two data sets. Moreover, GPS stations and benchmarks always do not locate at the same places. In place of using a spatial reduced function (Ching et.al, JGR, 2011) to find the discrepancy between them, we focused on comparing termporal variation of GPS vertical motions and geodetic leveling displacements. In this study, we analyzed the vertical velocity field from 238 GPS stations and 1634 benchmarks, including the time-period (2000 to 2015) influenced by postseismiceffects from 1999 Chi-Chi earthquake (Mw 7.6), 2003 Chengkung earthquake (Mw 6.8), and so on. After we thoroughly examined all the process and considered coseismic and postseismic deformation of significant earthquakes, we found that the discrepancy of vertical velocity of the GPS station and its nearby benchmarks is about 1 - 2 mm/yr, including several source of errors in data processing. We suggest that this discrepancy of vertical velocity field can be ignored as tolerable error, and two heterogeneous fields can be integrated together without any mathematical presumptions of spatial regression. The result shows that the western coast is suffering sever subsidence with rates up to 40 mm/yr; the Central Range of Taiwan is uplifting with rates about +10 mm/yr and active landslides with significant subsidence of 5-10 mm/yr in local area. A huge velocity contrast of 30 mm;/yr indicating east over west thrusting is shown across the Longitudinal Valley Fault. Estimation of vertical velocity from 2000 to 2015 is consistent with velocities from 2008 to 2015, indicating our modification process is not affected by the Chi-Chi earthquake (Mw 7.6).
Barnett-Cowan, Michael; Meilinger, Tobias; Vidal, Manuel; Teufel, Harald; Bülthoff, Heinrich H
2012-05-10
Path integration is a process in which self-motion is integrated over time to obtain an estimate of one's current position relative to a starting point (1). Humans can do path integration based exclusively on visual (2-3), auditory (4), or inertial cues (5). However, with multiple cues present, inertial cues - particularly kinaesthetic - seem to dominate (6-7). In the absence of vision, humans tend to overestimate short distances (<5 m) and turning angles (<30°), but underestimate longer ones (5). Movement through physical space therefore does not seem to be accurately represented by the brain. Extensive work has been done on evaluating path integration in the horizontal plane, but little is known about vertical movement (see (3) for virtual movement from vision alone). One reason for this is that traditional motion simulators have a small range of motion restricted mainly to the horizontal plane. Here we take advantage of a motion simulator (8-9) with a large range of motion to assess whether path integration is similar between horizontal and vertical planes. The relative contributions of inertial and visual cues for path navigation were also assessed. 16 observers sat upright in a seat mounted to the flange of a modified KUKA anthropomorphic robot arm. Sensory information was manipulated by providing visual (optic flow, limited lifetime star field), vestibular-kinaesthetic (passive self motion with eyes closed), or visual and vestibular-kinaesthetic motion cues. Movement trajectories in the horizontal, sagittal and frontal planes consisted of two segment lengths (1st: 0.4 m, 2nd: 1 m; ±0.24 m/s(2) peak acceleration). The angle of the two segments was either 45° or 90°. Observers pointed back to their origin by moving an arrow that was superimposed on an avatar presented on the screen. Observers were more likely to underestimate angle size for movement in the horizontal plane compared to the vertical planes. In the frontal plane observers were more likely to overestimate angle size while there was no such bias in the sagittal plane. Finally, observers responded slower when answering based on vestibular-kinaesthetic information alone. Human path integration based on vestibular-kinaesthetic information alone thus takes longer than when visual information is present. That pointing is consistent with underestimating and overestimating the angle one has moved through in the horizontal and vertical planes respectively, suggests that the neural representation of self-motion through space is non-symmetrical which may relate to the fact that humans experience movement mostly within the horizontal plane.
NASA Technical Reports Server (NTRS)
Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.
1988-01-01
A vertically integrated formulation (VIF) model for sea ice/snow and land snow is discussed which can simulate the nonlinear effects of heat storage and transfer through the layers of snow and ice. The VIF demonstates the accuracy of the multilayer formulation, while benefitting from the computational flexibility of linear formulations. In the second part, the model is implemented in a seasonal dynamic zonally averaged climate model. It is found that, in response to a change between extreme high and low summer insolation orbits, the winter orbital change dominates over the opposite summer change for sea ice. For snow over land the shorter but more pronounced summer orbital change is shown to dominate.
Numerical modeling of the atmosphere with an isentropic vertical coordinate
NASA Technical Reports Server (NTRS)
Hsu, Yueh-Jiuan G.; Arakawa, Akio
1990-01-01
A theta-coordinate model simulating the nonlinear evolution of a baroclinic wave is presented. In the model, vertical discretization maintains important integral constraints such as conservation of the angular momentum and total energy. A massless-layer approach is used in the treatment of the intersections of coordinate surfaces with the lower boundary. This formally eliminates the intersection problem, but raises other computational problems. Horizontal discretization of the continuity and momentum equations in the model are designed to overcome these problems. Selected results from a 10-day integration with the 25-layer, beta-plane version of the model are presented. It is concluded that the model can simulate the nonlinear evolution of a baroclinic wave and associated dynamical processes without major computational difficulties.
Transfer function analysis of thermospheric perturbations
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.; Spencer, N. W.
1986-01-01
Applying perturbation theory, a spectral model in terms of vectors spherical harmonics (Legendre polynomials) is used to describe the short term thermospheric perturbations originating in the auroral regions. The source may be Joule heating, particle precipitation or ExB ion drift-momentum coupling. A multiconstituent atmosphere is considered, allowing for the collisional momentum exchange between species including Ar, O2, N2, O, He and H. The coupled equations of energy, mass and momentum conservation are solved simultaneously for the major species N2 and O. Applying homogeneous boundary conditions, the integration is carred out from the Earth's surface up to 700 km. In the analysis, the spherical harmonics are treated as eigenfunctions, assuming that the Earth's rotation (and prevailing circulation) do not significantly affect perturbations with periods which are typically much less than one day. Under these simplifying assumptions, and given a particular source distribution in the vertical, a two dimensional transfer function is constructed to describe the three dimensional response of the atmosphere. In the order of increasing horizontal wave numbers (order of polynomials), this transfer function reveals five components. To compile the transfer function, the numerical computations are very time consuming (about 100 hours on a VAX for one particular vertical source distribution). However, given the transfer function, the atmospheric response in space and time (using Fourier integral representation) can be constructed with a few seconds of a central processing unit. This model is applied in a case study of wind and temperature measurements on the Dynamics Explorer B, which show features characteristic of a ringlike excitation source in the auroral oval. The data can be interpreted as gravity waves which are focused (and amplified) in the polar region and then are reflected to propagate toward lower latitudes.
Transfer function analysis of thermospheric perturbations
NASA Astrophysics Data System (ADS)
Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.; Spencer, N. W.
1986-06-01
Applying perturbation theory, a spectral model in terms of vectors spherical harmonics (Legendre polynomials) is used to describe the short term thermospheric perturbations originating in the auroral regions. The source may be Joule heating, particle precipitation or ExB ion drift-momentum coupling. A multiconstituent atmosphere is considered, allowing for the collisional momentum exchange between species including Ar, O2, N2, O, He and H. The coupled equations of energy, mass and momentum conservation are solved simultaneously for the major species N2 and O. Applying homogeneous boundary conditions, the integration is carred out from the Earth's surface up to 700 km. In the analysis, the spherical harmonics are treated as eigenfunctions, assuming that the Earth's rotation (and prevailing circulation) do not significantly affect perturbations with periods which are typically much less than one day. Under these simplifying assumptions, and given a particular source distribution in the vertical, a two dimensional transfer function is constructed to describe the three dimensional response of the atmosphere. In the order of increasing horizontal wave numbers (order of polynomials), this transfer function reveals five components. To compile the transfer function, the numerical computations are very time consuming (about 100 hours on a VAX for one particular vertical source distribution). However, given the transfer function, the atmospheric response in space and time (using Fourier integral representation) can be constructed with a few seconds of a central processing unit. This model is applied in a case study of wind and temperature measurements on the Dynamics Explorer B, which show features characteristic of a ringlike excitation source in the auroral oval. The data can be interpreted as gravity waves which are focused (and amplified) in the polar region and then are reflected to propagate toward lower latitudes.
NASA Astrophysics Data System (ADS)
Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey
2015-10-01
Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.
Opportunities for and constraints to integration of health services in Poland*
Sobczak, Alicja
2002-01-01
Abstract At the beginning of the article the typologies, expected outcomes and forces aiming at health care integration are discussed. Integration is recognised as a multidimensional concept. The suggested typologies of integration are based on structural configurations, co-ordination mechanisms (including clinical co-ordination), and driving forces. A review of the Polish experience in integration/disintegration of health care systems is the main part of the article. Creation of integrated health care management units (ZOZs) in the beginning of the 1970s serves as an example of structural vertical integration missing co-ordination mechanisms. ZOZs as huge, costly and inflexible organisations became subjects of public criticism and discredited the idea of health care integration. At the end of the 1980s and in the decade of the 1990s, management of public health care was decentralised, the majority of ZOZs dismantled, and many health care public providers got the status of independent entities. The private sector developed rapidly. Sickness funds, which in 1999 replaced the previous state system, introduced “quasi-market” conditions where health providers have to compete for contracts. Some providers developed strategies of vertical and horizontal integration to get a competitive advantage. Consolidation of private ambulatory clinics, the idea of “integrated care” as a “contracting package”, development of primary health care and ambulatory specialist clinics in hospitals are the examples of such strategies. The new health policy declared in 2002 has recognised integration as a priority. It stresses the development of payment mechanisms and information base (Register of Health Services – RUM) that promote integration. The Ministry of Health is involved directly in integrated emergency system designing. It seems that after years of disintegration and deregulation the need for effective integration has become obvious. PMID:16896398
Electrical sensing of the dynamical structure of the planetary boundary layer
NASA Astrophysics Data System (ADS)
Nicoll, K. A.; Harrison, R. G.; Silva, H. G.; Salgado, R.; Melgâo, M.; Bortoli, D.
2018-04-01
Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also important in determining the electrical charge transport of the lower atmosphere. This paper presents the first high resolution vertical charge profiles during fair weather conditions, obtained with instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. The short intervals (4 h) between balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller charges (up to 20 pC m- 3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was complex, demonstrating charged ultrafine aerosol, lofted upwards by daytime convection. This produced charge up to 92 pC m- 3 up to 500 m above the surface. The diurnal variation in the integrated column of charge above the site tracked closely with the diurnal variation in near surface charge as derived from a nearby electric field sensor, confirming the importance of the link between surface charge generation processes and aloft. The local aerosol vertical profiles were estimated using backscatter measurements from a collocated ceilometer. These were utilised in a simple model to calculate the charge expected due to vertical conduction current flow in the global electric circuit through aerosol layers. The analysis presented here demonstrates that charge can provide detailed information about boundary layer transport, particularly in regard to the ultrafine aerosol structure, that conventional thermodynamic and ceilometer measurements do not.
Valenzuela, Saúl; Miralles, Rodolfo; Ravera, María José; Zúñiga, Claudia; Santander, Hugo; Ferrer, Marcelo; Nakouzi, Jorge
2005-07-01
The aim of this study was to evaluate the associations between head posture (head extension, normal head posture, and head flexion) and anteroposterior head position, hyoid bone position, and the sternocleidomastoid integrated electromyographic (IEMG) activity in a sample of young adults. The study included 50 individuals with natural dentition and bilateral molar support. A lateral craniocervical radiograph was taken for each subject and a cephalometric analysis was performed. Head posture was measured by means of the craniovertebral angle formed by the MacGregor plane and the odontoid plane. According to the value of this angle, the sample was divided into the following three groups: head extension (less than 95 degrees); normal head posture (between 95 degrees and 106 degrees); and head flexion (more than 106 degrees). The following cephalometric measurements were taken to compare the three groups: anteroposterior head position (true vertical plane/pterygoid distance), anteroposterior hyoid bone position (true vertical plane-Ha distance), vertical hyoid bone position (H-H' distance in the hyoid triangle), and CO-C2 distance. In the three groups, IEMG recordings at rest and during swallowing of saliva and maximal voluntary clenching were performed by placing bipolar surface electrodes on the right and left sternocleidomastoid muscles. In addition, the condition with/without craniomandibular dysfunction (CMD) in each group was also assessed. Head posture showed no significant association with anteroposterior head position, anteroposterior hyoid bone position, vertical hyoid bone position, or sternocleidomastoid IEMG activity. There was no association to head posture with/without the condition of CMD. Clinical relevance of the results is discussed.
NASA Astrophysics Data System (ADS)
Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina
2016-04-01
The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2. The potentiality of the new EARLINET data products and first examples of integrated studies with models will be presented at the conference. Acknowledgments: ACTRIS2 Research Infrastructure Project is funded by the European Union's Horizon 2020 research and innovation programme under the grant agreement n. 654169 and previously under FP7 grant agreement n. 262254.
2006-06-01
systems. Cyberspace is the electronic medium of net-centric operations, communications systems, and computers, in which horizontal integration and online...will be interoperable, more robust, responsive, and able to support faster spacecraft initialization times. This Intergrated Satellite Control... horizontally and vertically integrated information through machine-to-machine conversations enabled by a peer-based network of sensors, command
Kendall, Tamil; Langer, Ana; Bärnighausen, Till
2014-01-01
Objective: Both sexual and reproductive health (SRH) services and HIV programs in sub-Saharan Africa are typically delivered vertically, operating parallel to national health systems. The objective of this study was to map the evidence on national and international strategies for integration of SRH and HIV services in sub-Saharan Africa and to develop a research agenda for future health systems integration. Methods: We examined the literature on national and international strategies to integrate SRH and HIV services using a scoping study methodology. Current policy frameworks, national HIV strategies and research, and gray literature on integration were mapped. Five countries in sub-Saharan Africa with experience of integrating SRH and HIV services were purposively sampled for detailed thematic analysis, according to the health systems functions of governance, policy and planning, financing, health workforce organization, service organization, and monitoring and evaluation. Results: The major international health policies and donor guidance now support integration. Most integration research has focused on linkages of SRH and HIV front-line services. Yet, the common problems with implementation are related to delayed or incomplete integration of higher level health systems functions: lack of coordinated leadership and unified national integration policies; separate financing streams for SRH and HIV services and inadequate health worker training, supervision and retention. Conclusions: Rigorous health systems research on the integration of SRH and HIV services is urgently needed. Priority research areas include integration impact, performance, and economic evaluation to inform the planning, financing, and coordination of integrated service delivery. PMID:25436826
The Flinders experiment in medical education revisited.
Geffen, L B; Birkett, D J; Alpers, J H
The undergraduate medical curriculum of the Flinders University of South Australia is reviewed and evaluated against American recommendations for the basic education of doctors practising in the 21st century. Two previous articles in The Medical Journal of Australia describing earlier versions of the Flinders curriculum and the report on General Professional Education for the Physician of the Association of American Medical Colleges. The Flinders curriculum attempts to fully integrate the teaching of medical science and clinical disciplines. The earliest version of the curriculum emphasised horizontal integration of normal structure and function of body systems, followed by abnormalities of these systems, and finally clinical practice. The second version introduced vertical integration of basic science and clinical medicine within a body system. The present version attempts to balance the demands of horizontal and vertical integration. An important feature of all versions is the large proportion of time allowed for elective studies in most years of the course. The Flinders curriculum has been able to adapt to the changing needs of medical education because its organisation is relatively free from the constraints of departmental rivalry over resources.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
The solid rocket motor has been lifted to the vertical position and moved into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida for mating to the United Launch Alliance Atlas V rocket. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
The solid rocket motor has been lifted to the vertical position for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samimi, B.; Bagherpour, H.; Nioc, A.
1995-08-01
The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than themore » flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.« less
Strong parameterization and coordination encirclements of graph of Penrose tiling vertices
NASA Astrophysics Data System (ADS)
Shutov, A. V.; Maleev, A. V.
2017-07-01
The coordination encirclements in a graph of Penrose tiling vertices have been investigated based on the analysis of vertice parameters. A strong parameterization of these vertices is developed in the form of a tiling of a parameter set in the region corresponding to different first coordination encirclements of vertices. An algorithm for constructing tilings of a set of parameters determining different coordination encirclements in a graph of Penrose tiling vertices of order n is proposed.
2010-01-01
Introduction In 2004, Mozambique, supported by large increases in international disease-specific funding, initiated a national rapid scale-up of antiretroviral treatment (ART) and HIV care through a vertical "Day Hospital" approach. Though this model showed substantial increases in people receiving treatment, it diverted scarce resources away from the primary health care (PHC) system. In 2005, the Ministry of Health (MOH) began an effort to use HIV/AIDS treatment and care resources as a means to strengthen their PHC system. The MOH worked closely with a number of NGOs to integrate HIV programs more effectively into existing public-sector PHC services. Case Description In 2005, the Ministry of Health and Health Alliance International initiated an effort in two provinces to integrate ART into the existing primary health care system through health units distributed across 23 districts. Integration included: a) placing ART services in existing units; b) retraining existing workers; c) strengthening laboratories, testing, and referral linkages; e) expanding testing in TB wards; f) integrating HIV and antenatal services; and g) improving district-level management. Discussion: By 2008, treatment was available in nearly 67 health facilities in 23 districts. Nearly 30,000 adults were on ART. Over 80,000 enrolled in the HIV/AIDS program. Loss to follow-up from antenatal and TB testing to ART services has declined from 70% to less than 10% in many integrated sites. Average time from HIV testing to ART initiation is significantly faster and adherence to ART is better in smaller peripheral clinics than in vertical day hospitals. Integration has also improved other non-HIV aspects of primary health care. Conclusion The integration approach enables the public sector PHC system to test more patients for HIV, place more patients on ART more quickly and efficiently, reduce loss-to-follow-up, and achieve greater geographic HIV care coverage compared to the vertical model. Through the integration process, HIV resources have been used to rehabilitate PHC infrastructure (including laboratories and pharmacies), strengthen supervision, fill workforce gaps, and improve patient flow between services and facilities in ways that can benefit all programs. Using aid resources to integrate and better link HIV care with existing services can strengthen wider PHC systems. PMID:20180975
Dai, Dongkai; Wang, Xingshu; Zhan, Dejun; Huang, Zongsheng
2014-01-01
A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008). In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch–Tung–Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s. PMID:25192311
Dai, Dongkai; Wang, Xingshu; Zhan, Dejun; Huang, Zongsheng
2014-09-03
A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008). In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch-Tung-Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s.
The Storage Ring Proton EDM Experiment
NASA Astrophysics Data System (ADS)
Semertzidis, Yannis; Storage Ring Proton EDM Collaboration
2014-09-01
The storage ring pEDM experiment utilizes an all-electric storage ring to store ~1011 longitudinally polarized protons simultaneously in clock-wise and counter-clock-wise directions for 103 seconds. The radial E-field acts on the proton EDM for the duration of the storage time to precess its spin in the vertical plane. The ring lattice is optimized to reduce intra-beam scattering, increase the statistical sensitivity and reduce the systematic errors of the method. The main systematic error is a net radial B-field integrated around the ring causing an EDM-like vertical spin precession. The counter-rotating beams sense this integrated field and are vertically shifted by an amount, which depends on the strength of the vertical focusing in the ring, thus creating a radial B-field. Modulating the vertical focusing at 10 kHz makes possible the detection of this radial B-field by a SQUID-magnetometer (SQUID-based BPM). For a total number of n SQUID-based BPMs distributed around the ring the effectiveness of the method is limited to the N = n /2 harmonic of the background radial B-field due to the Nyquist sampling theorem limit. This limitation establishes the requirement to reduce the maximum radial B-field to 0.1-1 nT everywhere around the ring by layers of mu-metal and aluminum vacuum tube. The metho's sensitivity is 10-29 e .cm , more than three orders of magnitude better than the present neutron EDM experimental limit, making it sensitive to SUSY-like new physics mass scale up to 300 TeV.
Farming of Vegetables in Space-Limited Environments
NASA Astrophysics Data System (ADS)
He, Jie
2015-10-01
Vegetables that contain most of the essential components of human nutrition are perishable and cannot be stocked. To secure vegetable supply in space limited cities such as Singapore, there are different farming methods to produce vegetables. These include low-cost urban community gardening and innovative rooftop and vertical farms integrated with various technologies such as hydroponics, aquaponics and aeroponics. However, for large-scale vegetable production in space-limited Singapore, we need to develop farming systems that not only increase productivity many-fold per unit of land but also produce all types of vegetable, all year-round for today and the future. This could be resolved through integrated vertical aeroponic farming system. Manipulation of root-zone (RZ) environments such as cooling the RZ, modifying mineral nutrients and introducing elevated RZ CO2 using aeroponics can further boost crop productivity beyond what can be achieved from more efficient use of land area. We could also adopt energy saving light emitting diodes (LEDs) for vertical aeroponic farming system to promote uniform growth and to improve the utilisation of limited space via shortening the growth cycle, thus improving vegetable production in a cost-effective manner.
Advanced BCD technology with vertical DMOS based on a semi-insulation structure
NASA Astrophysics Data System (ADS)
Kui, Ma; Xinghua, Fu; Jiexin, Lin; Fashun, Yang
2016-07-01
A new semi-insulation structure in which one isolated island is connected to the substrate was proposed. Based on this semi-insulation structure, an advanced BCD technology which can integrate a vertical device without extra internal interconnection structure was presented. The manufacturing of the new semi-insulation structure employed multi-epitaxy and selectively multi-doping. Isolated islands are insulated with the substrate by reverse-biased PN junctions. Adjacent isolated islands are insulated by isolation wall or deep dielectric trenches. The proposed semi-insulation structure and devices fixed in it were simulated through two-dimensional numerical computer simulators. Based on the new BCD technology, a smart power integrated circuit was designed and fabricated. The simulated and tested results of Vertical DMOS, MOSFETs, BJTs, resistors and diodes indicated that the proposed semi-insulation structure is reasonable and the advanced BCD technology is validated. Project supported by the National Natural Science Foundation of China (No. 61464002), the Science and Technology Fund of Guizhou Province (No. Qian Ke He J Zi [2014]2066), and the Dr. Fund of Guizhou University (No. Gui Da Ren Ji He Zi (2013)20Hao).
An innovative integrated oxidation ditch with vertical circle (IODVC) for wastewater treatment.
Xia, Shi-bin; Liu, Jun-xin
2004-01-01
The oxidation ditch process is economic and efficient for wastewater treatment, but its application is limited in case where land is costly due to its large land area required. An innovative integrated oxidation ditch with vertical circle (IODVC) system was developed to treat domestic and industrial wastewater aiming to save land area. The new system consists of a single-channel divided into two ditches(the top one and the bottom one by a plate), a brush, and an innovative integral clarifier. Different from the horizontal circle of the conventional oxidation ditch, the flow of IODVC system recycles from the top zone to the bottom zone in the vertical circle as the brush is running, and then the IODVC saved land area required by about 50% compared with a conventional oxidation ditch with an intrachannel clarifier. The innovative integral clarifier is effective for separation of liquid and solids, and is preferably positioned at the opposite end of the brush in the ditch. It does not affect the hydrodynamic characteristics of the mixed liquor in the ditch, and the sludge can automatically return to the down ditch without any pump. In this study, experiments of domestic and dye wastewater treatment were carried out in bench scale and in full scale, respectively. Results clearly showed that the IODVC efficiently removed pollutants in the wastewaters, i.e., the average of COD removals for domestic and dye wastewater treatment were 95% and 90%, respectively, and that the IODVC process may provide a cost effective way for full scale dye wastewater treatment.
Al-Janabi, Shahd; Greenberg, Adam S
2016-10-01
The representational basis of attentional selection can be object-based. Various studies have suggested, however, that object-based selection is less robust than spatial selection across experimental paradigms. We sought to examine the manner by which the following factors might explain this variation: Target-Object Integration (targets 'on' vs. part 'of' an object), Attention Distribution (narrow vs. wide), and Object Orientation (horizontal vs. vertical). In Experiment 1, participants discriminated between two targets presented 'on' an object in one session, or presented as a change 'of' an object in another session. There was no spatial cue-thus, attention was initially focused widely-and the objects were horizontal or vertical. We found evidence of object-based selection only when targets constituted a change 'of' an object. Additionally, object orientation modulated the sign of object-based selection: We observed a same-object advantage for horizontal objects, but a same-object cost for vertical objects. In Experiment 2, an informative cue preceded a single target presented 'on' an object or as a change 'of' an object (thus, attention was initially focused narrowly). Unlike in Experiment 1, we found evidence of object-based selection independent of target-object integration. We again found that the sign of selection was modulated by the objects' orientation. This result may reflect a meridian effect, which emerged due to anisotropies in the cortical representations when attention is oriented endogenously. Experiment 3 revealed that object orientation did not modulate object-based selection when attention was oriented exogenously. Our findings suggest that target-object integration, attention distribution, and object orientation modulate object-based selection, but only in combination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, J.R.; Bonner, C.A.; Ostenak, C.A.
1989-01-01
ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototypical robotic system, for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multi-drawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface and data-base system are provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric andmore » gamma-ray data acquisition and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices. 10 refs., 10 figs., 4 tabs.« less
III-V heterostructure tunnel field-effect transistor.
Convertino, C; Zota, C B; Schmid, H; Ionescu, A M; Moselund, K E
2018-07-04
The tunnel field-effect transistor (TFET) is regarded as one of the most promising solid-state switches to overcome the power dissipation challenge in ultra-low power integrated circuits. TFETs take advantage of quantum mechanical tunneling hence exploit a different current control mechanism compared to standard MOSFETs. In this review, we describe state-of-the-art development of TFET both in terms of performances and of materials integration and we identify the main remaining technological challenges such as heterojunction defects and oxide/channel interface traps causing trap-assisted-tunneling (TAT). Mesa-structures, planar as well as vertical geometries are examined. Conductance slope analysis on InAs/GaSb nanowire tunnel diodes are reported, these two-terminal measurements can be relevant to investigate the tunneling behavior. A special focus is dedicated to III-V heterostructure TFET, as different groups have recently shown encouraging results achieving the predicted sub-thermionic low-voltage operation.
The History of the Internet Search Engine: Navigational Media and the Traffic Commodity
NASA Astrophysics Data System (ADS)
van Couvering, E.
This chapter traces the economic development of the search engine industry over time, beginning with the earliest Web search engines and ending with the domination of the market by Google, Yahoo! and MSN. Specifically, it focuses on the ways in which search engines are similar to and different from traditional media institutions, and how the relations between traditional and Internet media have changed over time. In addition to its historical overview, a core contribution of this chapter is the analysis of the industry using a media value chain based on audiences rather than on content, and the development of traffic as the core unit of exchange. It shows that traditional media companies failed when they attempted to create vertically integrated portals in the late 1990s, based on the idea of controlling Internet content, while search engines succeeded in creating huge "virtually integrated" networks based on control of Internet traffic rather than Internet content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, K.P.; Lamontagne, B.; Delage, A.
2006-05-15
We present a technique to lithographically define and fabricate all required optical facets on a silicon-on-insulator photonic integrated circuit by an inductively coupled plasma etch process. This technique offers 1 {mu}m positioning accuracy of the facets at any location within the chip and eliminates the need of polishing. Facet fabrication consists of two separate steps to ensure sidewall verticality and minimize attack on the end surfaces of the waveguides. Protection of the waveguides by a thermally evaporated aluminum layer before the 40-70 {mu}m deep optical facet etching has been proven essential in assuring the facet smoothness and integrity. Both scanningmore » electron microscopy analysis and optical measurement results show that the quality of the facets prepared by this technique is comparable to the conventional facets prepared by polishing.« less
NASA Technical Reports Server (NTRS)
Blum, P. W.; Harris, I.
1975-01-01
The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In Part I the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analyzed. Results of the method given in Part I are presented with comparison with previous calculations and observations of upper atmospheric winds. Conclusions are that nonlinear effects are only significant in the equatorial region, especially at solstice conditions and that nonlinear effects do not produce any superrotation.
III–V heterostructure tunnel field-effect transistor
NASA Astrophysics Data System (ADS)
Convertino, C.; Zota, C. B.; Schmid, H.; Ionescu, A. M.; Moselund, K. E.
2018-07-01
The tunnel field-effect transistor (TFET) is regarded as one of the most promising solid-state switches to overcome the power dissipation challenge in ultra-low power integrated circuits. TFETs take advantage of quantum mechanical tunneling hence exploit a different current control mechanism compared to standard MOSFETs. In this review, we describe state-of-the-art development of TFET both in terms of performances and of materials integration and we identify the main remaining technological challenges such as heterojunction defects and oxide/channel interface traps causing trap-assisted-tunneling (TAT). Mesa-structures, planar as well as vertical geometries are examined. Conductance slope analysis on InAs/GaSb nanowire tunnel diodes are reported, these two-terminal measurements can be relevant to investigate the tunneling behavior. A special focus is dedicated to III–V heterostructure TFET, as different groups have recently shown encouraging results achieving the predicted sub-thermionic low-voltage operation.
Industrial approach to piezoelectric damping of large fighter aircraft components
NASA Astrophysics Data System (ADS)
Simpson, John; Schweiger, Johannes
1998-06-01
Different concepts to damp structural vibrations of the vertical tail of fighter aircraft are reported. The various requirements for a vertical tail bias an integrated approach for the design. Several active vibrations suppression concepts had been investigated during the preparatory phase of a research program shared by Daimler-Benz Aerospace Military Aircraft (Dasa), Daimler-Benz Forschung (DBF) and Deutsche Forschungsandstalt fuer Luftund Raumfahrt (DLR). Now in the main phase of the programme, four concepts were finally chosen: two concepts with aerodynamic control surfaces and two concepts with piezoelectric components. One piezo concept approach will be described rigorously, the other concepts are briefly addressed. In the Dasa concept, thin surface piezo actuators are set out carefully to flatten the dynamic portion of the combined static and dynamic maximum bending moment loading case directly in the shell structure. The second piezo concept by DLR involves pre-loaded lead zirconate titanate (PZT)-block actuators at host structure fixtures. To this end a research apparatus was designed and built as a full scale simplified fin box with carbon fiber reinformed plastic skins and an aluminium stringer-rib substructure restrained by relevant aircraft fixtures. It constitutes a benchmark 3D-structural impedance. The engineering design incorporates 7kg of PZT surface actuators. The structural system then should be excited to more than 15mm tip displacement amplitude. This prepares the final step to total A/C integration. Typical analysis methods using cyclic thermal analogies adapted to induced load levels are compared. Commercial approaches leading onto basic state space model interpretation wrt. actuator sizing and positioning, structural integrity constraints, FE-validation and testing are described. Both piezoelectric strategies are aimed at straight open-loop performance related to concept weight penalty and input electric power. The required actuators, power and integration are then enhanced to specification standards. An adapted qualification program plan is used to improve analytical read across, specifications, manufacturing decisions, handling requirements. The next research goals are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea
2012-07-02
At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and couplingmore » corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.« less
Evidence of ghost suppression in gluon mass scale dynamics
NASA Astrophysics Data System (ADS)
Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J.
2018-03-01
In this work we study the impact that the ghost sector of pure Yang-Mills theories may have on the generation of a dynamical gauge boson mass scale, which hinges on the appearance of massless poles in the fundamental vertices of the theory, and the subsequent realization of the well-known Schwinger mechanism. The process responsible for the formation of such structures is itself dynamical in nature, and is governed by a set of Bethe-Salpeter type of integral equations. While in previous studies the presence of massless poles was assumed to be exclusively associated with the background-gauge three-gluon vertex, in the present analysis we allow them to appear also in the corresponding ghost-gluon vertex. The full analysis of the resulting Bethe-Salpeter system reveals that the contribution of the poles associated with the ghost-gluon vertex are particularly suppressed, their sole discernible effect being a slight modification in the running of the gluon mass scale, for momenta larger than a few GeV. In addition, we examine the behavior of the (background-gauge) ghost-gluon vertex in the limit of vanishing ghost momentum, and derive the corresponding version of Taylor's theorem. These considerations, together with a suitable Ansatz, permit us the full reconstruction of the pole sector of the two vertices involved.
NASA Astrophysics Data System (ADS)
Makabe, Ryosuke; Tanimura, Atsushi; Tamura, Takeshi; Hirano, Daisuke; Shimada, Keishi; Hashihama, Fuminori; Fukuchi, Mitsuo
2017-06-01
To elucidate spatial differences in mesozooplankton community structure in local scale, vertical hauls using a 60-μm mesh closing net were carried out off Lützow-Holm Bay in January 2008. All of the zooplankton samples collected from three layers (0-100, 100-200, and 200-500 m) at seven stations were dominated by Oithona spp., Oncaea spp., Ctenocalanus citer, Microcalanus pygmaeus, and copepod nauplii. The cluster analysis of mesozooplankton abundances showed three distinct groups according to sampling depth, which appeared to be due to the preferential vertical distribution of dominant copepods. The other cluster analysis on integrated abundance upper 500 m revealed that mesozooplankton community structures at stations located on the western and eastern edges of the observation area (Cluster A) differed from those at the central stations (Cluster B). Abundance of copepod nauplii, Oithona spp., and C. citer differed between Clusters A and B, which was likely caused by differences in recruitment and early development in the dominant copepods, being associated with the timing and duration of ice edge blooms. This suggests that such heterogeneity in abundance and recruitment/development of dominant taxa was likely caused by local heterogeneity in sea ice dynamics. This may affect our understanding of zooplankton distribution.
Site characterization at Groningen gas field area through joint surface-borehole H/V analysis
NASA Astrophysics Data System (ADS)
Spica, Zack J.; Perton, Mathieu; Nakata, Nori; Liu, Xin; Beroza, Gregory C.
2018-01-01
A new interpretation of the horizontal to vertical (H/V) spectral ratio in terms of the Diffuse Field Assumption (DFA) has fuelled a resurgence of interest in that approach. The DFA links H/V measurements to Green's function retrieval through autocorrelation of the ambient seismic field. This naturally allows for estimation of layered velocity structure. In this contribution, we further explore the potential of H/V analysis. Our study is facilitated by a distributed array of surface and co-located borehole stations deployed at multiple depths, and by detailed prior information on velocity structure that is available due to development of the Groningen gas field. We use the vertical distribution of H/V spectra recorded at discrete depths inside boreholes to obtain shear wave velocity models of the shallow subsurface. We combine both joint H/V inversion and borehole interferometry to reduce the non-uniqueness of the problem and to allow faster convergence towards a reliable velocity model. The good agreement between our results and velocity models from an independent study validates the methodology, demonstrates the power of the method, but more importantly provides further constraints on the shallow velocity structure, which is an essential component of integrated hazard assessment in the area.
Sodankylä ionospheric tomography dataset 2003-2014
NASA Astrophysics Data System (ADS)
Norberg, J.; Roininen, L.; Kero, A.; Raita, T.; Ulich, T.; Markkanen, M.; Juusola, L.; Kauristie, K.
2015-12-01
Sodankylä Geophysical Observatory has been operating a tomographic receiver network and collecting the produced data since 2003. The collected dataset consists of phase difference curves measured from Russian COSMOS dual-frequency (150/400 MHz) low-Earth-orbit satellite signals, and tomographic electron density reconstructions obtained from these measurements. In this study vertical total electron content (VTEC) values are integrated from the reconstructed electron densities to make a qualitative and quantitative analysis to validate the long-term performance of the tomographic system. During the observation period, 2003-2014, there were three-to-five operational stations at the Fenno-Scandinavian sector. Altogether the analysis consists of around 66 000 overflights, but to ensure the quality of the reconstructions, the examination is limited to cases with descending (north to south) overflights and maximum elevation over 60°. These constraints limit the number of overflights to around 10 000. Based on this dataset, one solar cycle of ionospheric vertical total electron content estimates is constructed. The measurements are compared against International Reference Ionosphere IRI-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model are on average 40 % higher of that of the tomographic results.
2017-09-01
in the vertical (z) directions. There are several instruments controls like proportional, integral , and derivative (PID) gain as well as tip force...the PID control, where P stands for proportional gain, I stands for integral gain, and D stands for derivative gain. An additional parameter that...contributes to the scanned image quality is set point. Proportional gain is multiplied by the error to adjust controller output and integral gain sums
A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation
Smith, Peter E.
2006-01-01
A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.
Interconnected operations services in a vertically integrated utility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, S.P.
1999-11-01
The North American electric industry has historically been composed of regulated Vertically Integrated Utilities (VIU). Vertical integration means that the same company owns generation, transmission, and distribution facilities. Regulated utilities were ensured cost recovery for all justifiable expenses. The entire industry is in the process of deregulation. The industry-wide trend is to competitive generation, while transmission and distribution remain regulated. Many variations, in both timing and structure, exist in states that have enacted deregulation and retail choice legislation. Some have combined retail choice with an ISO and power exchange; others have opted for retail choice without either. In the past,more » Interconnected Operations Services (IOS) were obtained by informal means within the same company. Generation is now being actively bought and sold as companies align their strategic direction with different sectors of the emerging electric industry. In the future, these IOS will have to be obtained by formal arrangements. The formal arrangements will need to encompass parameters including service definitions, compensation, performance measurement, and performance incentives. These formal arrangements are presently taking different forms in the industry depending on the stage of deregulation in each area, and on the particular agreements made by each Control Area. This paper describes how VIUs obtained and dispatched the IOS needed for reliability, and what challenges will be faced with respect to these services.« less
System noise analysis of the dumbbell tethered satellite for gravity-gradient measurements
NASA Technical Reports Server (NTRS)
Colombo, G.
1979-01-01
An analysis of the dumbbell gravity gradiometer concept for measuring short wavelength variations in the earth's gravity gradient is presented. Variations in the gradient are recorded by measuring tension variations in a vertically stabilized satellite consisting of heavy masses connected by a long wire or rod. Tension noise arises from the excitation of various mechanical oscillations of the system. The principal noise sources that were identified are fluctuations in atmospheric drag heating and drag force resulting from density variations and winds. Approximate analytical expressions are presented for the tension noise as a function of the system design parameters for various possible configurations. Computer simulations using numerical integration were performed to study the tension noise for several sample cases. Three designs consistent with Shuttle launch capabilities are discussed.
Endogenously determined cycles: empirical evidence from livestock industries.
McCullough, Michael P; Huffaker, Ray; Marsh, Thomas L
2012-04-01
This paper applies the techniques of phase space reconstruction and recurrence quantification analysis to investigate U.S. livestock cycles in relation to recent literature on the business cycle. Results are presented for pork and cattle cycles, providing empirical evidence that the cycles themselves have slowly diminished. By comparing the evolution of production processes for the two livestock cycles we argue that the major cause for this moderation is largely endogenous. The analysis suggests that previous theoretical models relying solely on exogenous shocks to create cyclical patterns do not fully capture changes in system dynamics. Specifically, the biological constraint in livestock dynamics has become less significant while technology and information are relatively more significant. Concurrently, vertical integration of the supply chain may have improved inventory management, all resulting in a small, less deterministic, cyclical effect.
Wood, Tamara M.; Gartner, Jeffrey W.
2010-01-01
Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.
Feng, Guohu; Wu, Wenqi; Wang, Jinling
2012-01-01
A matrix Kalman filter (MKF) has been implemented for an integrated navigation system using visual/inertial/magnetic sensors. The MKF rearranges the original nonlinear process model in a pseudo-linear process model. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system is observable. It has been proved that such observability conditions are: (a) at least one degree of rotational freedom is excited, and (b) at least two linearly independent horizontal lines and one vertical line are observed. Experimental results have validated the correctness of these observability conditions. PMID:23012523
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
The solid rocket motor has been lifted to the vertical position on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
Hoell, Andrew; Funk, Christopher C.
2013-01-01
The temporal evolution and distribution of Pacific SST as well as the near-surface tropical Pacific zonal wind, tropical divergence and vertical velocity are considerably different during ENSO events partitioned according to the strength of the WPG. Modifications to the tropical circulation result in changes to the Indo-west Pacific precipitation and vertically integrated energy budgets and are linked to strong and consistent circulation and precipitation modifications throughout the Northern Hemisphere during winter.
ERIC Educational Resources Information Center
Al-Zubaidy, Sarim; Abdulaziz, Nidhal; Dashtpour, Reza
2012-01-01
Recent scholarship references indicate that integration of the student body can result in an enhanced learning experience for students and also greater satisfaction. This paper reports the results of a case study whereby mechanical engineering students studying at a newly established branch campus in Dubai of a British university were exposed to…
The Problems of Validation in a Competency-Based Preservice Reading Education Program.
ERIC Educational Resources Information Center
Bergquist, Sidney R.
A problem of teacher education is to successfully integrate the knowledge students learn in the college classroom with the practical experiences of student teaching. A principal objective of an ideal teacher training situation would be to establish a vertical integration of the various types of exposure to reading both prior to and during contact…
Interdisciplinary design study of a high-rise integrated roof wind energy system
NASA Astrophysics Data System (ADS)
Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.
2012-10-01
Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.
NASA Astrophysics Data System (ADS)
Catalano, G.; Povero, P.; Fabiano, M.; Benedetti, F.; Goffart, A.
1997-01-01
The relationships among vertical stability, estimated nutrient utilisation and particulate organic matter in the Ross Sea are analysed from data collected during two cruises in the summers of 1987-1988 and 1989-1990. In the upper mixed layer (UML), identified through the vertical stability E( Z(UML)), nutrient consumption is calculated as the difference between the "diluted" nutrient value and the mean calculated from the integrated value in the UML. The nutrient utilisation ratio and E( Z(UML)) are linearly related for E( Z(UML))≤25, whereas for values > 25, the distribution pattern is more scattered and independent of E( Z(UML)). For E( Z(UML))≥25, utilisation values were ≥4, 0.4 and 10 mmol m -3 for nitrate, phosphate and silicate, respectively. Significant relationships between nutrient depletion and both particulate organic carbon (POC) and particulate protein/particulate carbohydrate ratios (PPRT/PCHO) are found. The analysis of particulate matter distribution vs nutrient utilisation shows that the stations could be divided into two groups having different characteristics. The first group includes coastal stations, where high nutrient utilisation, POC and PPRT/PCHO are typical of areas with high production. In the second group (pelagic stations), nutrient utilisation, POC and PPRT/PCHO are lower. The vertical stability can be used to discriminate among the factors that influence primary production.
Vertical nanowire heterojunction devices based on a clean Si/Ge interface.
Chen, Lin; Fung, Wayne Y; Lu, Wei
2013-01-01
Different vertical nanowire heterojunction devices were fabricated and tested based on vertical Ge nanowires grown epitaxially at low temperatures on (111) Si substrates with a sharp and clean Si/Ge interface. The nearly ideal Si/Ge heterojuctions with controlled and abrupt doping profiles were verified through material analysis and electrical characterizations. In the nSi/pGe heterojunction diode, an ideality factor of 1.16, subpicoampere reverse saturation current, and rectifying ratio of 10(6) were obtained, while the n+Si/p+Ge structure leads to Esaki tunnel diodes with a high peak tunneling current of 4.57 kA/cm(2) and negative differential resistance at room temperature. The large valence band discontinuity between the Ge and Si in the nanowire heterojunctions was further verified in the p+Si/pGe structure, which shows a rectifying behavior instead of an Ohmic contact and raises an important issue in making Ohmic contacts to heterogeneously integrated materials. A raised Si/Ge structure was further developed using a self-aligned etch process, allowing greater freedom in device design for applications such as the tunneling field-effect transistor (TFET). All measurement data can be well-explained and fitted with theoretical models with known bulk properties, suggesting that the Si/Ge nanowire system offers a very clean heterojunction interface with low defect density, and holds great potential as a platform for future high-density and high-performance electronics.
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2017-01-25
Results are reported from a search for R-parity violating supersymmetry in proton-proton collision events collected by the CMS experiment at a center-of-mass energy of √s = 8 TeV. Here, the data sample corresponds to an integrated luminosity of 17.6 fb –1. This search assumes a minimal flavor violating model in which the lightest supersymmetric particle is a long-lived neutralino or gluino, leading to a signal with jets emanating from displaced vertices. In a sample of events with two displaced vertices, no excess yield above the expectation from standard model processes is observed, and limits are placed on the pair productionmore » cross section as a function of mass and lifetime of the neutralino or gluino. At 95% confidence level, the analysis excludes cross sections above approximately 1 fb for neutralinos or gluinos with mass between 400 and 1500 GeV and mean proper decay length between 1 and 30 mm. Gluino masses are excluded below 1 and 1.3 TeV for mean proper decay lengths of 300 μm an 1 mm, respectively, and below 1.4 TeV for the range 2–30 mm. The results are also applicable to other models in which long-lived particles decay into multijet final states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.
Results are reported from a search for R-parity violating supersymmetry in proton-proton collision events collected by the CMS experiment at a center-of-mass energy of √s = 8 TeV. Here, the data sample corresponds to an integrated luminosity of 17.6 fb –1. This search assumes a minimal flavor violating model in which the lightest supersymmetric particle is a long-lived neutralino or gluino, leading to a signal with jets emanating from displaced vertices. In a sample of events with two displaced vertices, no excess yield above the expectation from standard model processes is observed, and limits are placed on the pair productionmore » cross section as a function of mass and lifetime of the neutralino or gluino. At 95% confidence level, the analysis excludes cross sections above approximately 1 fb for neutralinos or gluinos with mass between 400 and 1500 GeV and mean proper decay length between 1 and 30 mm. Gluino masses are excluded below 1 and 1.3 TeV for mean proper decay lengths of 300 μm an 1 mm, respectively, and below 1.4 TeV for the range 2–30 mm. The results are also applicable to other models in which long-lived particles decay into multijet final states.« less
On the asymmetric distribution of shear-relative typhoon rainfall
NASA Astrophysics Data System (ADS)
Gao, Si; Zhai, Shunan; Li, Tim; Chen, Zhifan
2018-02-01
The Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation, the National Centers for Environmental Prediction (NCEP) Final analysis and the Regional Specialized Meteorological Center (RSMC) Tokyo best-track data during 2000-2015 are used to compare spatial rainfall distribution associated with Northwest Pacific tropical cyclones (TCs) with different vertical wind shear directions and investigate possible mechanisms. Results show that the maximum TC rainfall are all located in the downshear left quadrant regardless of shear direction, and TCs with easterly shear have greater magnitudes of rainfall than those with westerly shear, consistent with previous studies. Rainfall amount of a TC is related to its relative position and proximity from the western Pacific subtropical high (WPSH) and the intensity of water vapor transport, and low-level jet is favorable for water vapor transport. The maximum of vertically integrated moisture flux convergence (MFC) are located on the downshear side regardless of shear direction, and the contribution of wind convergence to the total MFC is far larger than that of moisture advection. The cyclonic displacement of the maximum rainfall relative to the maximum MFC is possibly due to advection of hydrometeors by low- and middle-level cyclonic circulation of TCs. The relationship between TC rainfall and the WPSH through water vapor transport and vertical wind shear implies that TC rainfall may be highly predictable given the high predictability of the WPSH.
Development and operation of a real-time simulation at the NASA Ames Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Sweeney, Christopher; Sheppard, Shirin; Chetelat, Monique
1993-01-01
The Vertical Motion Simulator (VMS) facility at the NASA Ames Research Center combines the largest vertical motion capability in the world with a flexible real-time operating system allowing research to be conducted quickly and effectively. Due to the diverse nature of the aircraft simulated and the large number of simulations conducted annually, the challenge for the simulation engineer is to develop an accurate real-time simulation in a timely, efficient manner. The SimLab facility and the software tools necessary for an operating simulation will be discussed. Subsequent sections will describe the development process through operation of the simulation; this includes acceptance of the model, validation, integration and production phases.
NASA Astrophysics Data System (ADS)
Wu, Mingching; Fang, Weileun
2006-02-01
This work attempts to integrate poly-Si thin film and single-crystal-silicon (SCS) structures in a monolithic process. The process integrated multi-depth DRIE (deep reactive ion etching), trench-refilled molding, a two poly-Si MUMPs process and (1 1 1) Si bulk micromachining to accomplish multi-thickness and multi-depth structures for superior micro-optical devices. In application, a SCS scanning mirror driven by self-aligned vertical comb-drive actuators was demonstrated. The stiffness of the mirror was significantly increased by thick SCS structures. The thin poly-Si film served as flexible torsional springs and electrical routings. The depth difference of the vertical comb electrodes was tuned by DRIE to increase the devices' stroke. Finally, a large moving space was available after the bulk Si etching. In summary, the present fabrication process, named (1 1 1) MOSBE (molded surface-micromachining and bulk etching release on (1 1 1) Si substrate), can further integrate with the MUMPs devices to establish a more powerful platform.
Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik
2015-08-01
This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers.
Theoretical and experimental characterization of the DUal-BAse transistor (DUBAT)
NASA Astrophysics Data System (ADS)
Wu, Chung-Yu; Wu, Ching-Yuan
1980-11-01
A new A-type integrated voltage controlled differential negative resistance device using an extra effective base region to form a lateral pnp (npn) bipolar transistor beside the original base region of a vertical npn (pnp) bipolar junction transistor, and so called the DUal BAse Transistor (DUBAT), is studied both experimentally and theoretically, The DUBAT has three terminals and is fully comparible with the existing bipolar integrated circuits technologies. Based upon the equivalent circuit of the DUBAT, a simple first-order analytical theory is developed, and important device parameters, such as: the I-V characteristic, the differential negative resistance, and the peak and valley points, are also characterized. One of the proposed integrated structures of the DUBAT, which is similar in structure to I 2L but with similar high density and a normally operated vertical npn transistor, has been successfully fabricated and studied. Comparisons between the experimental data and theoretical analyses are made, and show in satisfactory agreements.
NASA Technical Reports Server (NTRS)
Bates, J. R.; Moorthi, S.; Higgins, R. W.
1993-01-01
An adiabatic global multilevel primitive equation model using a two time-level, semi-Lagrangian semi-implicit finite-difference integration scheme is presented. A Lorenz grid is used for vertical discretization and a C grid for the horizontal discretization. The momentum equation is discretized in vector form, thus avoiding problems near the poles. The 3D model equations are reduced by a linear transformation to a set of 2D elliptic equations, whose solution is found by means of an efficient direct solver. The model (with minimal physics) is integrated for 10 days starting from an initialized state derived from real data. A resolution of 16 levels in the vertical is used, with various horizontal resolutions. The model is found to be stable and efficient, and to give realistic output fields. Integrations with time steps of 10 min, 30 min, and 1 h are compared, and the differences are found to be acceptable.
Vertical resonant tunneling transistors with molecular quantum dots for large-scale integration.
Hayakawa, Ryoma; Chikyow, Toyohiro; Wakayama, Yutaka
2017-08-10
Quantum molecular devices have a potential for the construction of new data processing architectures that cannot be achieved using current complementary metal-oxide-semiconductor (CMOS) technology. The relevant basic quantum transport properties have been examined by specific methods such as scanning probe and break-junction techniques. However, these methodologies are not compatible with current CMOS applications, and the development of practical molecular devices remains a persistent challenge. Here, we demonstrate a new vertical resonant tunneling transistor for large-scale integration. The transistor channel is comprised of a MOS structure with C 60 molecules as quantum dots, and the structure behaves like a double tunnel junction. Notably, the transistors enabled the observation of stepwise drain currents, which originated from resonant tunneling via the discrete molecular orbitals. Applying side-gate voltages produced depletion layers in Si substrates, to achieve effective modulation of the drain currents and obvious peak shifts in the differential conductance curves. Our device configuration thus provides a promising means of integrating molecular functions into future CMOS applications.
Anderson, Gerald L; Prosser, Chad W; Wendel, Lloyd E; Delfosse, Ernest S; Faust, Robert M
2003-01-01
The Ecological Areawide Management (TEAM) of Leafy Spurge program was developed to focus research and control efforts on a single weed, leafy spurge, and demonstrate the effectiveness of a coordinated, biologically based, integrated pest management program (IPM). This was accomplished through partnerships and teamwork that clearly demonstrated the advantages of the biologically based IPM approach. However, the success of regional weed control programs horizontally across several states and provinces also requires a vertical integration of several sectors of society. Awareness and education are the essential elements of vertical integration. Therefore, a substantial effort was made to produce a wide variety of information products specifically designed to educate different segments of society. During its tenure, land managers and agency decision makers have seen the potential of using the TEAM approach to accelerate the regional control of leafy spurge. The example set by the TEAM organization and participants is viewed as a model for future weed-control efforts.
Ellwood, P M
1988-01-01
Vertical integration of national medical firms that contract with physicians has slowed dramatically. At the same time, several top-level group practices, taking advantage of reputations for excellence, are integrating vertically on a national or regional scale. A shift from buying well to actually managing medical care will separate the "prospective supermeds" that learned to collaborate with physicians from those that are attempting to manipulate them. In view of the budget deficit and the needs for long-term care, Congress is likely to espouse more drastic Part B cost-cutting measures such as a physician PPO or an indexed relative-value scale. An emerging feature in health care is the growing variety of prospective payment arrangements in which the price for various combination services is set in advance. To be truly competitive, medical care organizations will have to be more selective, choosing physicians because they are cooperative and economical and because they are capable practitioners.
COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets
NASA Technical Reports Server (NTRS)
Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego;
2017-01-01
The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.
Kearns, Noreen; Coen, Liam
2014-01-01
Introduction This paper assesses the policy developments pertaining to the implementation of an integrated approach to domestic violence over the past 15 years. The contextual setting is outlined in terms of the international policy response to the problem of domestic violence based on an ecological perspective. Description of policy and case Periods of core strategic policy and related structural developments are considered illustrating the Irish experience of domestic violence policy-making and service provision. The value of adopting an integrated approach to domestic violence based on the rationale of improving strategic policy formulation, coordinating service provision and facilitating joined-up governance is set out. The core facilitators and challenges associated with such an approach are described. Analysis and conclusion The policy framework and restructured landscape of domestic violence in Ireland has undergone significant change over the past decade and a half. The paper uses a three-dimensional matrix of domestic violence policy development and service integration as a means of addressing horizontal, vertical and resource aspects of collaboration and integration. While the changes have been characterised by significant phases of fluctuation in terms of coordinated action and the situation currently appears promising, however it is too early to judge the outcomes of the most recent reforms. PMID:25337062
TDRS-M: Atlas V 2nd Stage Erection/Off-site Verticle Integration (OVI)
2017-07-13
A United Launch Alliance Atlas V Centaur upper stage arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. United Launch Alliance team members monitor the operation progress as the Centaur upper stage is lifted and mated to the Atlas V booster in the vertical position. The rocket is scheduled to help launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 in early August.
A curvature-corrected Kirchhoff formulation for radar sea-return from the near vertical
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1974-01-01
A new theoretical treatment of the problem of electromagnetic wave scattering from a randomly rough surface is given. A high frequency correction to the Kirchhoff approximation is derived from a field integral equation for a perfectly conducting surface. The correction, which accounts for the effect of local surface curvature, is seen to be identical with an asymptotic form found by Fock (1945) for diffraction by a paraboloid. The corrected boundary values are substituted into the far field Stratton-Chu integral, and average backscattered powers are computed assuming the scattering surface is a homogeneous Gaussian process. Preliminary calculations for K(-4) ocean wave spectrum indicate a resonable modelling of polarization effects near the vertical, theta 45 deg. Correspondence with the results of small perturbation theory is shown.
[Kinshicho Model for Community Care by Multifunctional Vertical Integration of Psychiatric Care].
Kubota, Akira
2015-01-01
The future of psychiatric community care in Japan requires a medical team for outpatient care to offer support and take responsibility for a region; respecting human rights and supporting high risk patients who have concluded a long-period of hospitalized or repeated involuntary commitment, and for people who suffer from social withdraws over a long period of time. There are over 3,000 private psychiatric outpatient clinics in Japan. Over 400 of them are multifunctional psychiatric outpatient clinics that provide daycare services and outreach activities. In the future, if systematized those clinics entrusted by an administrative organ with performing as a "community mental health center". Multifunctional vertical integration of psychiatric care is possible in Japan to create a catchment area with 24 hours phone service and continued free access.
1997-01-22
KENNEDY SPACE CENTER, FLA. - STS-82 crew members examine part of the Flight Support System during the Crew Equipment Integration Test (CEIT) in KSC's Vertical Processing Facility. From left are Mission Specialists Steven L. Smith and Gregory J. Harbaugh and Payload Commander Mark C. Lee. Liftoff of STS-82, the second Hubble Space Telescope (HST) servicing mission, is scheduled Feb. 11 aboard Discovery with a crew of seven.
NASA Astrophysics Data System (ADS)
Yang, Y. J.; Dziura, T. G.; Bardin, T.; Wang, S. C.; Fernandez, R.; Liao, Andrew S. H.
1993-02-01
Monolithic integration of a vertical cavity surface emitting laser (VCSEL) and a metal semiconductor field effect transistor (MESFET) is reported for the first time. The epitaxial layers for both GaAs VCSELs and MESFETs are grown on an n-type GaAs substrate by molecular-beam epitaxy at the same time. The VCSELs with a 10-micron diam active region exhibit an average threshold current (Ith) of 6 mA and a continuous wave (CW) maximum power of 1.1 mW. The MESFETs with a 3-micron gate length have a transconductance of 50 mS/mm. The laser output is modulated by the gate voltage of the MESFETs and exhibits an optical/electrical conversion factor of 0.5 mW/V.
Diagnosing MJO Destabilization and Propagation with the Moisture and MSE Budgets
NASA Astrophysics Data System (ADS)
Maloney, Eric; Wolding, Brandon
2015-04-01
Novel diagnostics obtained as an extension of empirical orthogonal function analysis are used as a composting basis to gain insight into MJO dynamics through examination of reanalysis moisture and moist static energy budgets. The net effect of vertical moisture advection and cloud processes was found to be a modest positive feedback to column moisture anomalies during both enhanced and suppressed phases of the MJO. This positive feedback is regionally strengthened by anomalous surface fluxes of latent heat. The modulation of horizontal synoptic scale eddy mixing acts as a negative feedback to column moisture anomalies, while anomalous winds acting against the mean state moisture gradient aid in eastward propagation. These processes act in a systematic fashion across the Indian Ocean and oceanic regions of the Maritime Continent. The ability to approximately close the MSE budget serves an important role in constraining the moisture budget, whose residual is several times larger than the total and horizontal advective moisture tendencies. Comparison with TRMM precipitation anomalies suggests that the moisture budget residual results from an underestimation by ERAi of variations in both total precipitation and vertical moisture advection associated with the MJO. The results of this study support the concept of the MJO as a moisture-mode. This analysis is extended to examine the impact of boundary layer convergence driven by MJO SST anomalies on the vertically-integrated moisture budget. Results from a coupled version of the SP-CAM suggest that SST-driven moisture convergence anomalies are of a sufficient amplitude to be important for MJO propagation and destabilization, and may help explain why coupled models produce better simulations of the MJO than uncoupled models.
NASA Astrophysics Data System (ADS)
Barros, A. P.; Duan, Y.
2017-12-01
A new cloud parcel model (CPM) including activation, condensation, collision-coalescence, and lateral entrainment processes is presented here to investigate aerosol-cloud interactions (ACI) in cumulus development prior to rainfall onset. The CPM was employed along with ground based radar and surface aerosol measurements to predict the vertical structure of cloud formation at early stages and evaluated against airborne observations of cloud microphysics and thermodynamic conditions during the Integrated Precipitation and Hydrology Experiment (IPHEx) over the Southern Appalachian Mountains. Further, the CPM was applied to explore the space of ACI physical parameters controlling cumulus congestus growth not available from measurements, and to examine how variations in aerosol properties and microphysical processes influence the evolution and thermodynamic state of clouds over complex terrain via sensitivity analysis. Modeling results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations around the same altitude. This is in contrast with high values reported in previous studies assuming adiabatic conditions. Entrainment is shown to govern the vertical development of clouds and the change of droplet numbers with height, and the sensitivity analysis suggests that there is a trade-off between entrainment strength and condensation process. Simulated CDNC also exhibits high sensitivity to variations in initial aerosol concentration at cloud base, but weak sensitivity to aerosol hygroscopicity. Exploratory multiple-parcel simulations capture realistic time-scales of vertical development of cumulus congestus (deeper clouds and faster droplet growth). These findings provide new insights into determinant factors of mid-day cumulus congestus formation that can explain a large fraction of warm season rainfall in mountainous regions.
Do Lower-Body Dimensions and Body Composition Explain Vertical Jump Ability?
Caia, Johnpaul; Weiss, Lawrence W; Chiu, Loren Z F; Schilling, Brian K; Paquette, Max R; Relyea, George E
2016-11-01
Caia, J, Weiss, LW, Chiu, LZF, Schilling, BK, Paquette, MR, and Relyea, GE. Do lower-body dimensions and body composition explain vertical jump ability? J Strength Cond Res 30(11): 3073-3083, 2016-Vertical jump (VJ) capability is integral to the level of success attained by individuals participating in numerous sport and physical activities. Knowledge of factors related to jump performance may help with talent identification and/or optimizing training prescription. Although myriad variables are likely related to VJ, this study focused on determining if various lower-body dimensions and/or body composition would explain some of the variability in performance. Selected anthropometric dimensions were obtained from 50 university students (25 men and 25 women) on 2 occasions separated by 48 or 72 hours. Estimated body fat percentage (BF%), height, body weight, hip width, pelvic width, bilateral quadriceps angle (Q-angle), and bilateral longitudinal dimensions of the feet, leg, thigh, and lower limb were obtained. Additionally, participants completed countermovement VJs. Analysis showed BF% to have the highest correlation with countermovement VJ displacement (r = -0.76, p < 0.001). When examining lower-body dimensions, right-side Q-angle displayed the strongest association with countermovement VJ displacement (r = -0.58, p < 0.001). Regression analysis revealed that 2 different pairs of variables accounted for the greatest variation (66%) in VJ: (a) BF% and sex and (b) BF% and body weight. Regression models involving BF% and lower-body dimensions explained up to 61% of the variance observed in VJ. Although the variance explained by BF% may be increased by using several lower-body dimensions, either sex identification or body weight explains comparatively more. Therefore, these data suggest that the lower-body dimensions measured herein have limited utility in explaining VJ performance.
Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum
NASA Astrophysics Data System (ADS)
Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman
2017-10-01
Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
Investigating Summer Thermal Stratification in Lake Ontario
NASA Astrophysics Data System (ADS)
James, S. C.; Arifin, R. R.; Craig, P. M.; Hamlet, A. F.
2017-12-01
Seasonal temperature variations establish strong vertical density gradients (thermoclines) between the epilimnion and hypolimnion. Accurate simulation of vertical mixing and seasonal stratification of large lakes is a crucial element of the thermodynamic coupling between lakes and the atmosphere in integrated models. Time-varying thermal stratification patterns can be accurately simulated with the versatile Environmental Fluid Dynamics Code (EFDC). Lake Ontario bathymetry was interpolated onto a 2-km-resolution curvilinear grid with vertical layering using a new approach in EFDC+, the so-called "sigma-zed" coordinate system which allows the number of vertical layers to be varied based on water depth. Inflow from the Niagara River and outflow to the St. Lawrence River in conjunction with hourly meteorological data from seven local weather stations plus three-hourly data from the North American Regional Reanalysis govern the hydrodynamic and thermodynamic responses of the Lake. EFDC+'s evaporation algorithm was updated to more accurately simulate net surface heat fluxes. A new vertical mixing scheme from Vinçon-Leite that implements different eddy diffusivity formulations above and below the thermocline was compared to results from the original Mellor-Yamada vertical mixing scheme. The model was calibrated by adjusting solar-radiation absorption coefficients in addition to background horizontal and vertical mixing parameters. Model skill was evaluated by comparing measured and simulated vertical temperature profiles at shallow (20 m) and deep (180 m) locations on the Lake. These model improvements, especially the new sigma-zed vertical discretization, accurately capture thermal-stratification patterns with low root-mean-squared errors when using the Vinçon-Leite vertical mixing scheme.
NASA Astrophysics Data System (ADS)
Abe, O. E.; Otero Villamide, X.; Paparini, C.; Radicella, S. M.; Nava, B.
2017-02-01
Investigating the effects of the Equatorial Ionization Anomaly (EIA) ionosphere and space weather on Global Navigation Satellite Systems (GNSS) is very crucial, and a key to successful implementation of a GNSS augmentation system (SBAS) over the equatorial and low-latitude regions. A possible ionospheric vertical delay (GIVD, Grid Ionospheric Vertical Delay) broadcast at a Ionospheric Grid Point (IGP) and its confidence bounds errors (GIVE, Grid Ionospheric Vertical Error) are analyzed and compared with the ionospheric vertical delay estimated at a nearby user location over the West African Sub-Saharan region. Since African sub-Saharan ionosphere falls within the EIA region, which is always characterized by a disturbance in form of irregularities after sunset, and the disturbance is even more during the geomagnetically quiet conditions unlike middle latitudes, the need to have a reliable ionospheric threat model to cater for the nighttime ionospheric plasma irregularities for the future SBAS user is essential. The study was done during the most quiet and disturbed geomagnetic conditions on October 2013. A specific low latitude EGNOS-like algorithm, based on single thin layer model, was engaged to simulate SBAS message in the study. Our preliminary results indicate that, the estimated GIVE detects and protects a potential SBAS user against sampled ionospheric plasma irregularities over the region with a steep increment in GIVE to non-monitored after local sunset to post midnight. This corresponds to the onset of the usual ionospheric plasma irregularities in the region. The results further confirm that the effects of the geomagnetic storms on the ionosphere are not consistent in affecting GNSS applications over the region. Finally, this paper suggests further work to be investigated in order to improve the threat integrity model activity, and thereby enhance the availability of the future SBAS over African sub-Saharan region.
Integration and Task Allocation: Evidence from Patient Care*
David, Guy; Rawley, Evan; Polsky, Daniel
2013-01-01
Using the universe of patient transitions from inpatient hospital care to skilled nursing facilities and home health care in 2005, we show how integration eliminates task misallocation problems between organizations. We find that vertical integration allows hospitals to shift patient recovery tasks downstream to lower-cost organizations by discharging patients earlier (and in poorer health) and increasing post-hospitalization service intensity. While integration facilitates a shift in the allocation of tasks and resources, health outcomes either improved or were unaffected by integration on average. The evidence suggests that integration solves coordination problems that arise in market exchange through improvements in the allocation of tasks across care settings. PMID:24415893
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.
1990-01-01
Delay in the spin-up of precipitation early in numerical atmospheric forecasts is a deficiency correctable by diabatic initialization combined with diabatic forcing. For either to be effective requires some knowledge of the magnitude and vertical placement of the latent heating fields. Until recently the best source of cloud and rain water data was the remotely sensed vertical integrated precipitation rate or liquid water content. Vertical placement of the condensation remains unknown. Some information about the vertical distribution of the heating rates and precipitating liquid water and ice can be obtained from retrieval techniques that use a physical model of precipitating clouds to refine and improve the interpretation of the remotely sensed data. A description of this procedure and an examination of its 3-D liquid water products, along with improved modeling methods that enhance or speed-up storm development is discussed.
Vertical InAs nanowire wrap gate transistors with f(t) > 7 GHz and f(max) > 20 GHz.
Egard, M; Johansson, S; Johansson, A-C; Persson, K-M; Dey, A W; Borg, B M; Thelander, C; Wernersson, L-E; Lind, E
2010-03-10
In this letter we report on high-frequency measurements on vertically standing III-V nanowire wrap-gate MOSFETs (metal-oxide-semiconductor field-effect transistors). The nanowire transistors are fabricated from InAs nanowires that are epitaxially grown on a semi-insulating InP substrate. All three terminals of the MOSFETs are defined by wrap around contacts. This makes it possible to perform high-frequency measurements on the vertical InAs MOSFETs. We present S-parameter measurements performed on a matrix consisting of 70 InAs nanowire MOSFETs, which have a gate length of about 100 nm. The highest unity current gain cutoff frequency, f(t), extracted from these measurements is 7.4 GHz and the maximum frequency of oscillation, f(max), is higher than 20 GHz. This demonstrates that this is a viable technique for fabricating high-frequency integrated circuits consisting of vertical nanowires.
Envisioning a Planetary Spatial Data Infrastructure
NASA Astrophysics Data System (ADS)
Laura, J. R.; Fergason, R. L.; Skinner, J.; Gaddis, L.; Hare, T.; Hagerty, J.
2017-02-01
We present a vision of a codified Planetary Spatial Data Infrastructure to support vertical and horizontal data integration and reduce the burden of spatial data expertise from the planetary science expert.
Miniature thermoacoustic cryocooler driven by a vertical comb-drive
NASA Astrophysics Data System (ADS)
Hao, Zhili; Fowler, Mark; Hammer, Jay A.; Whitley, Michael R.; Brown, David
2003-01-01
In this paper, we propose a novel miniature MEMS based thermoacoustic cryo-cooler for thermal management of cryogenic electronic devices. The basic idea is to exploit a new way to realize a highly-reliable miniature cryo-cooler, which would allow integration of a cryogenic cooling system directly into a cryogenic electronic device. A vertical comb-drive is proposed as the means to provide an acoustic source through a driving plate to a resonant tube. By exciting a standing wave within the resonant tube, a temperature difference develops across the stack in the tube, thereby enabling heat exchange between two heat exchangers. The use of gray scale technology to fabricate tapered resonant tube provides a way to improve the efficiency of the cooling system, compared with a simple cylinder configuration. Furthermore, a tapered tube leads to extremely strong standing waves with relatively pure waveforms and reduces possible harmonics. The working principle of this device is described here. The fabrication of this device is considered, which is compatible with current MEMS fabrication technology. Finally, the theoretical analysis of key components of this cryo-cooler is presented.
Analysis of the NASA/MSFC Airborne Doppler Lidar results from San Gorgonio Pass, California
NASA Technical Reports Server (NTRS)
Cliff, W. C.; Skarda, J. R.; Renne, D. S.; Sandusky, W. F.
1984-01-01
Two days during July of 1981 the NASA/MSFC Airborne Doppler Lidar System (ADLS) was flown aboard the NASA/AMES Convair 990 on the east side of San Gorgonio Pass California, near Palm Springs, to measure and investigate the accelerated atmospheric wind field discharging from the pass. The vertical and horizontal extent of the fast moving atmospheric flow discharging from the San Gorgonio Pass were examined. Conventional ground measurements were also taken during the tests to assist in validating the ADLS results. This particular region is recognized as a high wind resource region and, as such, a knowledge of the horizontal and vertical extent of this flow was of interest for wind energy applications. The statistics of the atmospheric flow field itself as it discharges from the pass and then spreads out over the desert were also of scientific interests. This data provided the first spatial data for ensemble averaging of spatial correlations to compute longitudinal and lateral integral length scales in the longitudinal and lateral directions for both components.
Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse
NASA Technical Reports Server (NTRS)
Fritts, David C.; Luo, Zhangai
1993-01-01
We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.
Karacan, C. Özgen
2015-01-01
Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2–3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam. PMID:26435557
Karacan, C Özgen
2013-07-30
Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2-3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam.
Moving-Base Simulation Evaluation of Control/Display Integration Issues for ASTOVL Aircraft
NASA Technical Reports Server (NTRS)
Franklin, James A.
1997-01-01
A moving-base simulation has been conducted on the Vertical Motion Simulator at Ames Research Center using a model of an advanced, short takeoff and vertical landing (STOVL) lift fan fighter aircraft. This experiment expanded on investigations during previous simulations with this STOVL configuration with the objective of evaluating (1) control law modifications over the low speed flight envelope, (2) integration of the throttle inceptor with flight control laws that provide direct thrust command for conventional flight, vertical and short takeoff, and flightpath or vertical velocity command for transition, hover, and vertical landing, (3) control mode blending for pitch, roll, yaw, and flightpath control during transition from wing-borne to jet-borne flight, and (4) effects of conformal versus nonconformal presentation of flightpath and pursuit guidance symbology on the out-the-window display for low speed STOVL operations. Assessments were made for takeoff, transition, hover, and landing, including precision hover and landing aboard an LPH-type amphibious assault ship in the presence of winds and rough seas. Results yielded Level 1 pilot ratings for the flightpath and vertical velocity command modes for a range of land-based and shipboard operation and were consistent with previous experience with earlier control laws and displays for this STOVL concept. Control mode blending was performed over speed ranges in accord with the pilot's tasks and with the change of the basic aircraft's characteristics between wing-borne and hover flight. Blending of yaw control from heading command in hover to sideslip command in wing-borne flight performed over a broad speed range helped reduce yaw transients during acceleration through the low speed regime. Although the pilots appreciated conformality of flightpath and guidance symbols with the external scene during the approach, increased sensitivity of the symbols for lateral path tracking elevated the pilots' control activity in the presence of turbulence. The pilots preferred the choice of scaling that was originally established during the display development and in-flight evaluations.
Characterizing the Relationships Among Lightning and Storm Parameters: Lightning as a Proxy Variable
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Raghavan, R.; William, E.; Weber, M.; Boldi, B.; Matlin, A.; Wolfson, M.; Hodanish, S.; Sharp. D.
1997-01-01
We have gained important insights from prior studies that have suggested relationships between lightning and storm growth, decay, convective rain flux, vertical distribution of storm mass and echo volume in the region, and storm energetics. A study was initiated in the Summer of 1996 to determine how total (in-cloud plus ground) lightning observations might provide added knowledge to the forecaster in the determination and identification of severe thunderstorms and weather hazards in real-time. The Melbourne Weather Office was selected as a primary site to conduct this study because Melbourne is the only site in the world with continuous and open access to total lightning (LDAR) data and a Doppler (WSR-88D) radar. A Lightning Imaging Sensor Data Applications Demonstration (LISDAD) system was integrated into the forecaster's workstation during the Summer 1996 to allow the forecaster to interact in real-time with the multi-sensor data being displayed. LISDAD currently ingests LDAR data, the cloud-to-ground National Lightning Detection Network (NLDN) data, and the Melbourne radar data in f real-time. The interactive features provide the duty forecaster the ability to perform quick diagnostics on storm cells of interest. Upon selection of a storm cell, a pop-up box appears displaying the time-history of various storm parameters (e.g., maximum radar reflectivity, height of maximum reflectivity, echo-top height, NLDN and LDAR lightning flash rates, storm-based vertically integrated liquid water content). This product is archived to aid on detailed post-analysis.
Integrated control of lateral and vertical vehicle dynamics based on multi-agent system
NASA Astrophysics Data System (ADS)
Huang, Chen; Chen, Long; Yun, Chaochun; Jiang, Haobin; Chen, Yuexia
2014-03-01
The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.
Horizontal and vertical integration of physicians: a tale of two tails.
Burns, Lawton Robert; Goldsmith, Jeff C; Sen, Aditi
2013-01-01
Researchers recommend a reorganization of the medical profession into larger groups with a multispecialty mix. We analyze whether there is evidence for the superiority of these models and if this organizational transformation is underway. DESIGN/METHODOLOGY APPROACH: We summarize the evidence on scale and scope economies in physician group practice, and then review the trends in physician group size and specialty mix to conduct survivorship tests of the most efficient models. The distribution of physician groups exhibits two interesting tails. In the lower tail, a large percentage of physicians continue to practice in small, physician-owned practices. In the upper tail, there is a small but rapidly growing percentage of large groups that have been organized primarily by non-physician owners. While our analysis includes no original data, it does collate all known surveys of physician practice characteristics and group practice formation to provide a consistent picture of physician organization. Our review suggests that scale and scope economies in physician practice are limited. This may explain why most physicians have retained their small practices. Larger, multispecialty groups have been primarily organized by non-physician owners in vertically integrated arrangements. There is little evidence supporting the efficiencies of such models and some concern they may pose anticompetitive threats. This is the first comprehensive review of the scale and scope economies of physician practice in nearly two decades. The research results do not appear to have changed much; nor has much changed in physician practice organization.
NASA Technical Reports Server (NTRS)
Lane, J. E.; Metzger, P. T.
2010-01-01
A simple trajectory model has been developed and is presented. The particle trajectory path is estimated by computing the vertical position as a function of the horizontal position using a constant horizontal velocity and a vertical acceleration approximated as a power law. The vertical particle position is then found by solving the differential equation of motion using a double integral of vertical acceleration divided by the square of the horizontal velocity, integrated over the horizontal position. The input parameters are: x(sub 0) and y(sub 0), the initial particle starting point; the derivative of the trajectory at x(sub 0) and y(sub 0), s(sub 0) = s(x(sub 0))= dx(y)/dy conditional expectation y = y((sub 0); and b where bx(sub 0)/y(sub 0) is the final trajectory angle before gravity pulls the particle down. The final parameter v(sub 0) is an approximation to a constant horizontal velocity. This model is time independent, providing vertical position x as a function of horizontal distance y: x(y) = (x(sub 0) + s(sub 0) (y-y(sub 0))) + bx(sub 0) -(s(sub 0)y(sub 0) ((y - y(sub 0)/y(sub 0) - ln((y/y(sub 0)))-((g(y-y(sub 0)(exp 2))/ 2((v(sub 0)(exp 2). The first term on the right in the above equation is due to simple ballistics and a spherically expanding gas so that the trajectory is a straight line intersecting (0,0), which is the point at the center of the gas impingement on the surface. The second term on the right is due to vertical acceleration, which may be positive or negative. The last term on the right is the gravity term, which for a particle with velocities less than escape velocity will eventually bring the particle back to the ground. The parameters b, s(sub 0), and in some cases v(sub 0), are taken from an interpolation of similar parameters determined from a CFD simulation matrix, coupled with complete particle trajectory simulations.
NASA Astrophysics Data System (ADS)
Kong, Duanhua; Kim, Taek; Kim, Sihan; Hong, Hyungi; Shcherbatko, Igor; Park, Youngsoo; Shin, Dongjae; Ha, Kyoung-Ho; Jeong, Gitae
2014-03-01
We designed and fabricated a 1.3-um hybrid vertical Resonant-Cavity Light-Emitting Diode for optical interconnect by using direct III-V wafer bonding on silicon on insulator (SOI). The device included InP based front distributed Bragg reflector (DBR), InGaAlAs based active layer, and SOI-based high-contrast-grating (HCG) as a back reflector. 42-uW continuous wave optical power was achieved at 20mA at room temperature.
SILVERMAN, ED
2012-01-01
Healthcare reform is encouraging the vertical integration of payers and providers. How far can this go in any one market before such efforts risk being deemed illegal? Pittsburgh provides a case study. PMID:23091428
Integrity modelling of tropospheric delay models
NASA Astrophysics Data System (ADS)
Rózsa, Szabolcs; Bastiaan Ober, Pieter; Mile, Máté; Ambrus, Bence; Juni, Ildikó
2017-04-01
The effect of the neutral atmosphere on signal propagation is routinely estimated by various tropospheric delay models in satellite navigation. Although numerous studies can be found in the literature investigating the accuracy of these models, for safety-of-life applications it is crucial to study and model the worst case performance of these models using very low recurrence frequencies. The main objective of the INTegrity of TROpospheric models (INTRO) project funded by the ESA PECS programme is to establish a model (or models) of the residual error of existing tropospheric delay models for safety-of-life applications. Such models are required to overbound rare tropospheric delays and should thus include the tails of the error distributions. Their use should lead to safe error bounds on the user position and should allow computation of protection levels for the horizontal and vertical position errors. The current tropospheric model from the RTCA SBAS Minimal Operational Standards has an associated residual error that equals 0.12 meters in the vertical direction. This value is derived by simply extrapolating the observed distribution of the residuals into the tail (where no data is present) and then taking the point where the cumulative distribution has an exceedance level would be 10-7.While the resulting standard deviation is much higher than the estimated standard variance that best fits the data (0.05 meters), it surely is conservative for most applications. In the context of the INTRO project some widely used and newly developed tropospheric delay models (e.g. RTCA MOPS, ESA GALTROPO and GPT2W) were tested using 16 years of daily ERA-INTERIM Reanalysis numerical weather model data and the raytracing technique. The results showed that the performance of some of the widely applied models have a clear seasonal dependency and it is also affected by a geographical position. In order to provide a more realistic, but still conservative estimation of the residual error of tropospheric delays, the mathematical formulation of the overbounding models are currently under development. This study introduces the main findings of the residual error analysis of the studied tropospheric delay models, and discusses the preliminary analysis of the integrity model development for safety-of-life applications.
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Lee, Choonsup; Schlecht, Erich T.; Skalare, Anders; Ward, John S.; Siegel, Peter H.; Thomas, Bertrand C.
2009-01-01
The radiometer on a chip (ROC) integrates whole wafers together to p rovide a robust, extremely powerful way of making submillimeter rece ivers that provide vertically integrated functionality. By integratin g at the wafer level, customizing the interconnects, and planarizing the transmission media, it is possible to create a lightweight asse mbly performing the function of several pieces in a more conventiona l radiometer.
ERIC Educational Resources Information Center
Rist, Georg; Schneider, Peter
This study describes and analyzes the Hibernia School where the aim of curriculum articulation in its essential vertical and horizontal dimensions has been successfully converted into actual practice. (Curriculum articulation means the equal representation and integration of three major components--artistic, practical, and academic learning.)…
Producibility of Vertically Integrated Photodiode (VIP)tm scanning focal plane arrays
NASA Astrophysics Data System (ADS)
Turner, Arthur M.; Teherani, Towfik; Ehmke, John C.; Pettitt, Cindy; Conlon, Peggy; Beck, Jeffrey D.; McCormack, Kent; Colombo, Luigi; Lahutsky, Tom; Murphy, Terry; Williams, Robert L.
1994-07-01
Vertically integrated photodiode, VIPTM, technology is now being used to produce second generation infrared focal plane arrays with high yields and performance. The VIPTM process employs planar, ion implanted, n on p diodes in HgCdTe which is epoxy hybridized directly to the read out integrated circuits on 100 mm Si wafers. The process parameters that are critical for high performance and yield include: HgCdTe dislocation density and thickness, backside passivation, frontside passivation, and junction formation. Producibility of infrared focal plane arrays (IRFPAs) is also significantly enhanced by read out integrated circuits (ROICs) which have the ability to deselect defective pixels. Cold probe screening before lab dewar assembly reduces costs and improves cycle times. The 240 X 1 and 240 X 2 scanning array formats are used to demonstrate the effect of process optimization, deselect, and cold probe screening on yield and cycle time. The versatility of the VIPTM technology and its extension to large area arrays is demonstrated using 240/288 X 4 and 480 X 5 TDI formats. Finally, the high performance of VIPTM IRFPAs is demonstrated by comparing data from a 480 X 5 to the SADA-II specification.
Gibs, Jacob; Brown, G. Allan; Turner, Kenneth S.; MacLeod, Cecilia L.; Jelinski, James; Koehnlein, Susan A.
1993-01-01
Because a water sample collected from a well is an integration of water from different depths along the well screen, measured concentrations can be biased if analyte concentrations are not uniform along the length of the well screen. The resulting concentration in the sample, therefore, is a function of variations in well-screen inflow rate and analyte concentration with depth. A multiport sampler with seven short screened intervals was designed and used to investigate small-scale vertical variations in water chemistry and aquifer hydraulic conductivity in ground water contaminated by leaded gasoline at Galloway Township, Atlantic County, New Jersey. The multiport samplers were used to collect independent samples from seven intervals within the screened zone that were flow-rate weighted and integrated to simulate a 5-foot-long, 2.375-inch- outside-diameter conventional wire-wound screen. The integration of the results of analyses of samples collected from two multiport samplers showed that a conventional 5-foot-long well screen would integrate contaminant concentrations over its length and resulted in an apparent contaminant concentration that was a little as 28 percent of the maximum concentration observed in the multiport sampler.
NASA Astrophysics Data System (ADS)
Wang, Wei-Shan; Wiemer, Maik; Froemel, Joerg; Enderlein, Tom; Gessner, Thomas; Lullin, Justine; Bargiel, Sylwester; Passilly, Nicolas; Albero, Jorge; Gorecki, Christophe
2016-04-01
In this work, vertical integration of miniaturized array-type Mirau interferometers at wafer level by using multi-stack anodic bonding is presented. Mirau interferometer is suitable for MEMS metrology and for medical imaging according to its vertical-, lateral- resolutions and working distances. Miniaturized Mirau interferometer can be a promising candidate as a key component of an optical coherence tomography (OCT) system. The miniaturized array-type interferometer consists of a microlens doublet, a Si-based MEMS Z scanner, a spacer for focus-adjustment and a beam splitter. Therefore, bonding technologies which are suitable for heterogeneous substrates are of high interest and necessary for the integration of MEMS/MOEMS devices. Multi-stack anodic bonding, which meets the optical and mechanical requirements of the MOEMS device, is adopted to integrate the array-type interferometers. First, the spacer and the beam splitter are bonded, followed by bonding of the MEMS Z scanner. In the meanwhile, two microlenses, which are composed of Si and glass wafers, are anodically bonded to form a microlens doublet. Then, the microlens doublet is aligned and bonded with the scanner/spacer/beam splitter stack. The bonded array-type interferometer is a 7- wafer stack and the thickness is approximately 5mm. To separate such a thick wafer stack with various substrates, 2-step laser cutting is used to dice the bonded stack into Mirau chips. To simplify fabrication process of each component, electrical connections are created at the last step by mounting a Mirau chip onto a flip chip PCB instead of through wafer vias. Stability of Au/Ti films on the MEMS Z scanner after anodic bonding, laser cutting and flip chip bonding are discussed as well.
Seasonal variability of light availability and utilization in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, David A.; Michaels, Anthony F.; Sorensen, Jens C.; O'Brein, Margaret C.; Hammer, Melodie A.
1995-01-01
A 2 year time series of optical, biogeochemical, and physical parameters, taken near the island of Bermuda, is used to evaluate the sources of temporal variability in light avaliability and utilization in the Sargasso Sea. Integrated assessments of light availability are made by examining the depth of constant percent incident photosynthetically available radiation (% PAR) isolumes. To first order, changes in the depth %PAR isolumes were caused by physical processes: deep convection mixing in the winter which led to the spring bloom and concurrent shallowing of %PAR depths and the occurrence of anomalous thermohaline water masses during the summer and fall seasons. Spectral light availability variations are assessed using determinations of diffuse attenuation coefficient spectra which illustrates a significant seasonal cycle in colored detrital particulate and/or dissolved materials that is unrelated to changes in chlorophyll pigment concentrations. Temporal variations in the photosynthetic light utilization index Psi are used to assess vertically intergrated light utilization variations. Values of Psi are highly variable and show no apparent seasonal pattern which indicates that Psi is not simply a 'biogeochemical constant.' Determinations of in situ primary production rates and daily mean PAR fluxes are used to diagnose the relative role of light limitation in determining vertically integrated rates of primary production integral PP. The mean depth of the light-saturated zone (the vertical region where the daily mean PAR flux was greater than or equal to the saturation irradiance) is only approximately 40 m, although more than one half of interal PP occurred within this zone. Production model results illustrate that accurate predictions of integral PP are dependent upon rates of light-saturated production rather than upon indices of light limitation. It seems unlikely that significant improvements in simple primary production models will come from the partitioning of the Earth's seas into biogeochemical provinces.
Krewer, Carmen; Luther, Marianne; Koenig, Eberhard; Müller, Friedemann
2015-01-01
One major aim of the neurological rehabilitation of patients with severe disorders of consciousness (DOC) is to enhance patients’ arousal and ability to communicate. Mobilization into a standing position by means of a tilt table has been shown to improve their arousal and awareness. However, due to the frequent occurrence of syncopes on a tilt table, it is easier to accomplish verticalization using a tilt table with an integrated stepping device. The objective of this randomized controlled clinical trial was to evaluate the effectiveness of a tilt table therapy with or without an integrated stepping device on the level of consciousness. A total of 50 participants in vegetative or minimally conscious states 4 weeks to 6 month after injury were treated with verticalization during this randomized controlled trial. Interventions involved ten 1-hour sessions of the specific treatment over a 3-week period. Blinded assessors made measurements before and after the intervention period, as well as after a 3-week follow-up period. The coma recovery scale-revised (CRS-R) showed an improvement by a median of 2 points for the group receiving tilt table with integrated stepping (Erigo). The rate of recovery of the group receiving the conventional tilt table therapy significantly increased by 5 points during treatment and by an additional 2 points during the 3-week follow-up period. Changes in spasticity did not significantly differ between the two intervention groups. Compared to the conventional tilt table, the tilt table with integrated stepping device failed to have any additional benefit for DOC patients. Verticalization itself seems to be beneficial though and should be administered to patients in DOC in early rehabilitation. Trial Registration: Current Controlled Trials Ltd (www.controlled-trials.com), identifier number ISRCTN72853718 PMID:26623651
Krewer, Carmen; Luther, Marianne; Koenig, Eberhard; Müller, Friedemann
2015-01-01
One major aim of the neurological rehabilitation of patients with severe disorders of consciousness (DOC) is to enhance patients' arousal and ability to communicate. Mobilization into a standing position by means of a tilt table has been shown to improve their arousal and awareness. However, due to the frequent occurrence of syncopes on a tilt table, it is easier to accomplish verticalization using a tilt table with an integrated stepping device. The objective of this randomized controlled clinical trial was to evaluate the effectiveness of a tilt table therapy with or without an integrated stepping device on the level of consciousness. A total of 50 participants in vegetative or minimally conscious states 4 weeks to 6 month after injury were treated with verticalization during this randomized controlled trial. Interventions involved ten 1-hour sessions of the specific treatment over a 3-week period. Blinded assessors made measurements before and after the intervention period, as well as after a 3-week follow-up period. The coma recovery scale-revised (CRS-R) showed an improvement by a median of 2 points for the group receiving tilt table with integrated stepping (Erigo). The rate of recovery of the group receiving the conventional tilt table therapy significantly increased by 5 points during treatment and by an additional 2 points during the 3-week follow-up period. Changes in spasticity did not significantly differ between the two intervention groups. Compared to the conventional tilt table, the tilt table with integrated stepping device failed to have any additional benefit for DOC patients. Verticalization itself seems to be beneficial though and should be administered to patients in DOC in early rehabilitation. Trial Registration: Current Controlled Trials Ltd (www.controlled-trials.com), identifier number ISRCTN72853718.
An integrated weather and sea-state forecasting system for the Arabian Peninsula (WASSF)
NASA Astrophysics Data System (ADS)
Kallos, George; Galanis, George; Spyrou, Christos; Mitsakou, Christina; Solomos, Stavros; Bartsotas, Nikolaos; Kalogrei, Christina; Athanaselis, Ioannis; Sofianos, Sarantis; Vervatis, Vassios; Axaopoulos, Panagiotis; Papapostolou, Alexandros; Qahtani, Jumaan Al; Alaa, Elyas; Alexiou, Ioannis; Beard, Daniel
2013-04-01
Nowadays, large industrial conglomerates such as the Saudi ARAMCO, require a series of weather and sea state forecasting products that cannot be found in state meteorological offices or even commercial data providers. The two major objectives of the system is prevention and mitigation of environmental problems and of course early warning of local conditions associated with extreme weather events. The management and operations part is related to early warning of weather and sea-state events that affect operations of various facilities. The environmental part is related to air quality and especially the desert dust levels in the atmosphere. The components of the integrated system include: (i) a weather and desert dust prediction system with forecasting horizon of 5 days, (ii) a wave analysis and prediction component for Red Sea and Arabian Gulf, (iii) an ocean circulation and tidal analysis and prediction of both Red Sea and Arabian Gulf and (iv) an Aviation part specializing in the vertical structure of the atmosphere and extreme events that affect air transport and other operations. Specialized data sets required for on/offshore operations are provided ate regular basis. State of the art modeling components are integrated to a unique system that distributes the produced analysis and forecasts to each department. The weather and dust prediction system is SKIRON/Dust, the wave analysis and prediction system is based on WAM cycle 4 model from ECMWF, the ocean circulation model is MICOM while the tidal analysis and prediction is a development of the Ocean Physics and Modeling Group of University of Athens, incorporating the Tidal Model Driver. A nowcasting subsystem is included. An interactive system based on Google Maps gives the capability to extract and display the necessary information for any location of the Arabian Peninsula, the Red Sea and Arabian Gulf.
NASA Astrophysics Data System (ADS)
Yoshida, Takashi
Combined-levitation-and-propulsion single-sided linear induction motor (SLIM) vehicle can be levitated without any additional levitation system. When the vehicle runs, the attractive-normal force varies depending on the phase of primary current because of the short primary end effect. The ripple of the attractive-normal force causes the vertical vibration of the vehicle. In this paper, instantaneous attractive-normal force is analyzed by using space harmonic analysis method. And based on the analysis, vertical vibration control is proposed. The validity of the proposed control method is verified by numerical simulation.
Vollebregt, Sten; Ishihara, Ryoichi
2015-01-01
We demonstrate a method for the low temperature growth (350 °C) of vertically-aligned carbon nanotubes (CNT) bundles on electrically conductive thin-films. Due to the low growth temperature, the process allows integration with modern low-κ dielectrics and some flexible substrates. The process is compatible with standard semiconductor fabrication, and a method for the fabrication of electrical 4-point probe test structures for vertical interconnect test structures is presented. Using scanning electron microscopy the morphology of the CNT bundles is investigated, which demonstrates vertical alignment of the CNT and can be used to tune the CNT growth time. With Raman spectroscopy the crystallinity of the CNT is investigated. It was found that the CNT have many defects, due to the low growth temperature. The electrical current-voltage measurements of the test vertical interconnects displays a linear response, indicating good ohmic contact was achieved between the CNT bundle and the top and bottom metal electrodes. The obtained resistivities of the CNT bundle are among the average values in the literature, while a record-low CNT growth temperature was used. PMID:26709530
Vertical root fractures and their management
Khasnis, Sandhya Anand; Kidiyoor, Krishnamurthy Haridas; Patil, Anand Basavaraj; Kenganal, Smita Basavaraj
2014-01-01
Vertical root fractures associated with endodontically treated teeth and less commonly in vital teeth represent one of the most difficult clinical problems to diagnose and treat. In as much as there are no specific symptoms, diagnosis can be difficult. Clinical detection of this condition by endodontists is becoming more frequent, where as it is rather underestimated by the general practitioners. Since, vertical root fractures almost exclusively involve endodontically treated teeth; it often becomes difficult to differentiate a tooth with this condition from an endodontically failed one or one with concomitant periodontal involvement. Also, a tooth diagnosed for vertical root fracture is usually extracted, though attempts to reunite fractured root have been done in various studies with varying success rates. Early detection of a fractured root and extraction of the tooth maintain the integrity of alveolar bone for placement of an implant. Cone beam computed tomography has been shown to be very accurate in this regard. This article focuses on the diagnostic and treatment strategies, and discusses about predisposing factors which can be useful in the prevention of vertical root fractures. PMID:24778502
Gong, Chensheng; Zhang, Jianhao; He, Sailing
2017-12-15
Unidirectional optical manipulation, especially the coupling from a vertical light beam to a waveguide unidirectionally, is desirable in photonic integration. We first propose a hybrid unidirectional meta-coupler for vertical incidence to a high-refractive-index waveguide in telecom wavelength, a periodic plasmonic metasurface composed of metal-insulator-metal unit cells is used for phase matching. Three designs are given for devices working around wavelengths 0.85, 1.31, and 1.55 μm. The simulated coupling efficiencies are all around 70%, and the 1 dB coupling bandwidths are 29, 82, and 105 nm, respectively. Our approach paves the way for the applications of optical metasurfaces to planar lightwave circuits.
Vertical cities - the new form of high-rise construction evolution
NASA Astrophysics Data System (ADS)
Akristiniy, Vera A.; Boriskina, Yulia I.
2018-03-01
The article considers the basic principles of the vertical cities formation for the creation of a comfortable urban environment in conditions of rapid population growth and limited territories. As urban growth increases, there is a need for new concepts and approaches to urban space planning through the massive introduction of high-rise construction. The authors analyzed and systematized the list of high-tech solutions for arrangement the space of vertical cities, which are an integral part of the creation of the methodology for forming a high-rise buildings. Their concept differs in scale, presence of the big areas of public spaces, tendencies to self-sufficiency and sustainability, opportunity to offer the new unique comfortable environment to the population living in them.
NASA Technical Reports Server (NTRS)
Revelle, D. O.
1987-01-01
A mechanistic one dimensional numerical (iteration) model was developed which can be used to simulate specific types of mesoscale atmospheric density (and pressure) variability in the mesosphere and the thermosphere, namely those due to waves and those due to vertical flow accelerations. The model was developed with the idea that it could be used as a supplement to the TGCMs (thermospheric general circulation models) since such models have a very limited ability to model phenomena on small spatial scales. The simplest case to consider was the integration upward through a time averaged, height independent, horizontally divergent flow field. Vertical winds were initialized at the lower boundary using the Ekman pumping theory over flat terrain. The results of the computations are summarized.