Gugliotti, M; Chaimovich, H; Politi, M J
2000-02-15
Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.
Photowala, Huzefa; Blackmer, Trillium; Schwartz, Eric; Hamm, Heidi E; Alford, Simon
2006-03-14
Neurotransmitters are thought to be released as quanta, where synaptic vesicles deliver packets of neurotransmitter to the synaptic cleft by fusion with the plasma membrane. However, synaptic vesicles may undergo incomplete fusion. We provide evidence that G protein-coupled receptors inhibit release by causing such incomplete fusion. 5-hydroxytryptamine (5-HT) receptor signaling potently inhibits excitatory postsynaptic currents (EPSCs) between lamprey reticulospinal axons and their postsynaptic targets by a direct action on the vesicle fusion machinery. We show that 5-HT receptor-mediated presynaptic inhibition, at this synapse, involves a reduction in EPSC quantal size. Quantal size was measured directly by comparing unitary quantal amplitudes of paired EPSCs before and during 5-HT application and indirectly by determining the effect of 5-HT on the relationship between mean-evoked EPSC amplitude and variance. Results from FM dye-labeling experiments indicate that 5-HT prevents full fusion of vesicles. 5-HT reduces FM1-43 staining of vesicles with a similar efficacy to its effect on the EPSC. However, destaining of FM1-43-labeled vesicles is abolished by lower concentrations of 5-HT that leave a substantial EPSC. The use of a water-soluble membrane impermeant quenching agent in the extracellular space reduced FM1-43 fluorescence during stimulation in 5-HT. Thus vesicles contact the extracellular space during inhibition of synaptic transmission by 5-HT. We conclude that 5-HT, via free Gbetagamma, prevents the collapse of synaptic vesicles into the presynaptic membrane.
A Hierarchical Convolutional Neural Network for vesicle fusion event classification.
Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke
2017-09-01
Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dictyostelium LvsB has a regulatory role in endosomal vesicle fusion
Falkenstein, Kristin; De Lozanne, Arturo
2014-01-01
ABSTRACT Defects in human lysosomal-trafficking regulator (Lyst) are associated with the lysosomal disorder Chediak–Higashi syndrome. The absence of Lyst results in the formation of enlarged lysosome-related compartments, but the mechanism for how these compartments arise is not well established. Two opposing models have been proposed to explain Lyst function. The fission model describes Lyst as a positive regulator of fission from lysosomal compartments, whereas the fusion model identifies Lyst as a negative regulator of fusion between lysosomal vesicles. Here, we used assays that can distinguish between defects in vesicle fusion versus fission. We compared the phenotype of Dictyostelium discoideum cells defective in LvsB, the ortholog of Lyst, with that of two known fission defect mutants (μ3- and WASH-null mutants). We found that the temporal localization characteristics of the post-lysosomal marker vacuolin, as well as vesicular acidity and the fusion dynamics of LvsB-null cells are distinct from those of both μ3- and WASH-null fission defect mutants. These distinctions are predicted by the fusion defect model and implicate LvsB as a negative regulator of vesicle fusion. PMID:25086066
Uda, Ryoko M; Yoshikawa, Yuki; Kitaba, Moe; Nishimoto, Noriko
2018-07-01
Light-initiated fusion between vesicles has attracted much attention in the research community. In particular, fusion between photoresponsive and non-photoresponsive vesicles has been of much interest in the development of systems for the delivery of therapeutic agents to cells. We have performed fusion between giant vesicles (GVs) and photoresponsive smaller vesicles containing malachite green (MG) derivative, which undergoes ionization to afford a positive charge on the molecule by irradiation. The fusion proceeds as the concentration of GV lipid increases toward equimolarity with the lipid of the smaller vesicle. It is also dependent on the molar percentage of photoionized MG in the lipid of the smaller vesicle. On the other hand, the fusion is hardly affected by the anionic component of the GV. The photoinduced fusion was characterized by two methods, involving the mixing of lipid membranes and of aqueous contents. Fluorescence microscopy revealed that irradiation triggered the fusion of a single GV with the smaller vesicles containing MG. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shinozaki, Youichi; Siitonen, Ari M.; Sumitomo, Koji; Furukawa, Kazuaki; Torimitsu, Keiichi
2008-07-01
Lipid vesicle fusion is an important reaction in the cell. Calcium ions (Ca2+) participate in various important biological events including the fusion of vesicles with cell membranes in cells. We studied the effect of Ca2+ on the fusion of egg yolk phosphatidylcholine/brain phosphatidylserine (eggPC/brainPS) lipid vesicles on a mica substrate with fast scanning atomic force microscopy (AFM). When unattached and unfused lipid vesicles on mica were rinsed away, discrete patches of fused vesicles were observed under high Ca2+ concentrations. At 0 mM Ca2+, lipid vesicles were fused on mica and formed continuous supported lipid bilayers (SLBs) covering almost the entire mica surface. The effect of Ca2+ on SLB formation was offset by a Ca2+ chelating agent. When lipid vesicles were added during AFM observation, vesicles fused on mica and covered almost all areas even under high Ca2+ concentrations. These results indicate that force between AFM tip and vesicles overcomes the Ca2+-reduced fusion of lipid vesicles.
Sabeva, Nadezhda; Cho, Richard W.; Vasin, Alexander; Gonzalez, Agustin; Littleton, J. Troy
2017-01-01
Synaptic vesicles fuse at morphological specializations in the presynaptic terminal termed active zones (AZs). Vesicle fusion can occur spontaneously or in response to an action potential. Following fusion, vesicles are retrieved and recycled within nerve terminals. It is still unclear whether vesicles that fuse spontaneously or following evoked release share similar recycling mechanisms. Genetic deletion of the SNARE-binding protein complexin dramatically increases spontaneous fusion, with the protein serving as the synaptic vesicle fusion clamp at Drosophila synapses. We examined synaptic vesicle recycling pathways at complexin null neuromuscular junctions, where spontaneous release is dramatically enhanced. We combined loading of the lipophilic dye FM1–43 with photoconversion, electron microscopy, and electrophysiology to monitor evoked and spontaneous recycling vesicle pools. We found that the total number of recycling vesicles was equal to those retrieved through spontaneous and evoked pools, suggesting that retrieval following fusion is partially segregated for spontaneous and evoked release. In addition, the kinetics of FM1–43 destaining and synaptic depression measured in the presence of the vesicle-refilling blocker bafilomycin indicated that spontaneous and evoked recycling pools partially intermix during the release process. Finally, FM1–43 photoconversion combined with electron microscopy analysis indicated that spontaneous recycling preferentially involves synaptic vesicles in the vicinity of AZs, whereas vesicles recycled following evoked release involve a larger intraterminal pool. Together, these results suggest that spontaneous and evoked vesicles use separable recycling pathways and then partially intermix during subsequent rounds of fusion. SIGNIFICANCE STATEMENT Neurotransmitter release involves fusion of synaptic vesicles with the plasma membrane in response to an action potential, or spontaneously in the absence of stimulation. Upon fusion, vesicles are retrieved and recycled, and it is unclear whether recycling pathways for evoked and spontaneous vesicles are segregated after fusion. We addressed this question by taking advantage of preparations lacking the synaptic protein complexin, which have elevated spontaneous release that enables reliable tracking of the spontaneous recycling pool. Our results suggest that spontaneous and evoked recycling pathways are segregated during the retrieval process but can partially intermix during stimulation. PMID:28077717
Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian; Sørensen, Jakob Balslev; Verhage, Matthijs; Cornelisse, Lennart Niels
2015-04-14
The energy required to fuse synaptic vesicles with the plasma membrane ('activation energy') is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca(2+)-dependent release.
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Yeongseon; Choi, Won Tae; Heller, William T.
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
Jang, Yeongseon; Choi, Won Tae; Heller, William T.; ...
2017-07-27
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Early steps of supported bilayer formation probed by single vesicle fluorescence assays.
Johnson, Joseph M; Ha, Taekjip; Chu, Steve; Boxer, Steven G
2002-01-01
We have developed a single vesicle assay to study the mechanisms of supported bilayer formation. Fluorescently labeled, unilamellar vesicles (30-100 nm diameter) were first adsorbed to a quartz surface at low enough surface concentrations to visualize single vesicles. Fusion and rupture events during the bilayer formation, induced by the subsequent addition of unlabeled vesicles, were detected by measuring two-color fluorescence signals simultaneously. Lipid-conjugated dyes monitored the membrane fusion while encapsulated dyes reported on the vesicle rupture. Four dominant pathways were observed, each exhibiting characteristic two-color fluorescence signatures: 1) primary fusion, in which an unlabeled vesicle fuses with a labeled vesicle on the surface, is signified by the dequenching of the lipid-conjugated dyes followed by rupture and final merging into the bilayer; 2) simultaneous fusion and rupture, in which a labeled vesicle on the surface ruptures simultaneously upon fusion with an unlabeled vesicle; 3) no dequenching, in which loss of fluorescence signal from both dyes occur simultaneously with the final merger into the bilayer; and 4) isolated rupture (pre-ruptured vesicles), in which a labeled vesicle on the surface spontaneously undergoes content loss, a process that occurs with high efficiency in the presence of a high concentration of Texas Red-labeled lipids. Vesicles that have undergone content loss appear to be more fusogenic than intact vesicles. PMID:12496104
Resident CAPS on dense-core vesicles docks and primes vesicles for fusion
Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.
2016-01-01
The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF microscopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319
Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.
Prada, Ilaria; Meldolesi, Jacopo
2016-08-09
Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.
NASA Astrophysics Data System (ADS)
Dimcovic, Z. M.; Eagan, T. P.; Kidane, T. K.; Brown, R. W.; Petschek, R. G.; McEnery, M. W.
2001-10-01
The opening of voltage-dependent calcium channels results in an influx of calcium ions promoting the fusion of synaptic vesicles. The fusion leads to release of neurotransmitters, which in turn allow the propagation of nerve impulses. A Monte Carlo model of the diffusion of calcium following its surge into the cell is used to estimate the probability for exocytosis. Besides the calcium absorption by fixed and mobile buffers, key ingredients are the physical size and position of the tethered vesicle and a sensing model for the interaction of the vesicle and calcium. The release probability is compared to previously published studies where the finite vesicle size was not considered. (Supported by NIH MH55747, AHA 96001250, NSF0086643, and a CWRU Presidential Research Initiative grant.)
Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian
2015-01-01
The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846
High Cholesterol Obviates a Prolonged Hemifusion Intermediate in Fast SNARE-Mediated Membrane Fusion
Kreutzberger, Alex J.B.; Kiessling, Volker; Tamm, Lukas K.
2015-01-01
Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays. PMID:26200867
The mechanism of a nuclear pore assembly: a molecular biophysics view.
Kuvichkin, Vasily V
2011-06-01
The basic problem of nuclear pore assembly is the big perinuclear space that must be overcome for nuclear membrane fusion and pore creation. Our investigations of ternary complexes: DNA-PC liposomes-Mg²⁺, and modern conceptions of nuclear pore structure allowed us to introduce a new mechanism of nuclear pore assembly. DNA-induced fusion of liposomes (membrane vesicles) with a single-lipid bilayer or two closely located nuclear membranes is considered. After such fusion on the lipid bilayer surface, traces of a complex of ssDNA with lipids were revealed. At fusion of two identical small liposomes (membrane vesicles) < 100 nm in diameter, a "big" liposome (vesicle) with ssDNA on the vesicle equator is formed. ssDNA occurrence on liposome surface gives a biphasic character to the fusion kinetics. The "big" membrane vesicle surrounded by ssDNA is the base of nuclear pore assembly. Its contact with the nuclear envelope leads to fast fusion of half of the vesicles with one nuclear membrane; then ensues a fusion delay when ssDNA reaches the membrane. The next step is to turn inside out the second vesicle half and its fusion to other nuclear membrane. A hole is formed between the two membranes, and nucleoporins begin pore complex assembly around the ssDNA. The surface tension of vesicles and nuclear membranes along with the kinetic energy of a liquid inside a vesicle play the main roles in this process. Special cases of nuclear pore formation are considered: pore formation on both nuclear envelope sides, the difference of pores formed in various cell-cycle phases and linear nuclear pore clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelsey, D.R.; Flanagan, T.D.; Young, J.E.
1991-06-01
Hydrophobic di- and tripeptides which are capable of inhibiting enveloped virus infection of cells are also capable of inhibiting at least three different types of membrane fusion events. Large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE), containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and/or p-xylene bis(pyridinium bromide) (DPX), were formed by extrusion. Vesicle fusion and leakage were then monitored with the ANTS/DPX fluorescence assay. Sendai virus fusion with lipid vesicles and Sendai virus fusion with human erythrocyte membranes were measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride (R18). This study found that the effectivenessmore » of the peptides carbobenzoxy-L-Phe-L-Phe (Z-L-Phe-L-Phe), Z-L-Phe, Z-D-Phe, and Z-Gly-L-Phe-L-Phe in inhibiting N-methyl DOPE LUV fusion or fusion of virus with N-methyl DOPE LUV also paralleled their reported ability to block viral infectivity. Furthermore, Z-D-Phe-L-PheGly and Z-Gly-L-Phe inhibited Sendai virus fusion with human erythrocyte membranes with the same relative potency with which they inhibited vesicle-vesicle and virus-vesicle fusion. The evidence suggests a mechanism by which these peptides exert their inhibition of plaque formation by enveloped viruses. This class of inhibitors apparently acts by inhibiting fusion of the viral envelope with the target cell membrane, thereby preventing viral infection. The physical pathway by which these peptides inhibit membrane fusion was investigated. {sup 31}P nuclear magnetic resonance (NMR) of proposed intermediates in the pathway for membrane fusion in LUV revealed that the potent fusion inhibitor Z-D-Phe-L-PheGly selectively altered the structure (or dynamics) of the hypothesized fusion intermediates and that the poor inhibitor Z-Gly-L-Phe did not.« less
Remotely controlled fusion of selected vesicles and living cells: a key issue review
NASA Astrophysics Data System (ADS)
Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.
2018-03-01
Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.
Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles
Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong; Hamid, Edaeni; Sheng, Jiansong; Baydyuk, Maryna; Wen, Peter J.; Jin, Albert; Momboisse, Fanny; Wu, Ling-Gang
2014-01-01
Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and STED imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1–30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size, or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles. PMID:24561832
Vesicle Fusion Observed by Content Transfer across a Tethered Lipid Bilayer
Rawle, Robert J.; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G.
2011-01-01
Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. PMID:22004762
McDade, Joel R.; Michele, Daniel E.
2014-01-01
Mutations in the dysferlin gene resulting in dysferlin-deficiency lead to limb-girdle muscular dystrophy 2B and Myoshi myopathy in humans. Dysferlin has been proposed as a critical regulator of vesicle-mediated membrane resealing in muscle fibers, and localizes to muscle fiber wounds following sarcolemma damage. Studies in fibroblasts and urchin eggs suggest that trafficking and fusion of intracellular vesicles with the plasma membrane during resealing requires the intracellular cytoskeleton. However, the contribution of dysferlin-containing vesicles to resealing in muscle and the role of the cytoskeleton in regulating dysferlin-containing vesicle biology is unclear. Here, we use live-cell imaging to examine the behavior of dysferlin-containing vesicles following cellular wounding in muscle cells and examine the role of microtubules and kinesin in dysferlin-containing vesicle behavior following wounding. Our data indicate that dysferlin-containing vesicles move along microtubules via the kinesin motor KIF5B in muscle cells. Membrane wounding induces dysferlin-containing vesicle–vesicle fusion and the formation of extremely large cytoplasmic vesicles, and this response depends on both microtubules and functional KIF5B. In non-muscle cell types, lysosomes are critical mediators of membrane resealing, and our data indicate that dysferlin-containing vesicles are capable of fusing with lysosomes following wounding which may contribute to formation of large wound sealing vesicles in muscle cells. Overall, our data provide mechanistic evidence that microtubule-based transport of dysferlin-containing vesicles may be critical for resealing, and highlight a critical role for dysferlin-containing vesicle–vesicle and vesicle–organelle fusion in response to wounding in muscle cells. PMID:24203699
Resident CAPS on dense-core vesicles docks and primes vesicles for fusion.
Kabachinski, Greg; Kielar-Grevstad, D Michelle; Zhang, Xingmin; James, Declan J; Martin, Thomas F J
2016-02-15
The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. © 2016 Kabachinski, Kielar-Grevstad, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.
Woodman, P G; Adamczewski, J P; Hunt, T; Warren, G
1993-05-01
Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment.
Control of mechanically activated polymersome fusion: Factors affecting fusion
Henderson, Ian M.; Paxton, Walter F.
2014-12-15
Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less
Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles
Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.; ...
2015-12-13
In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS.more » The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.« less
Pore opening dynamics in the exocytosis of serotonin
NASA Astrophysics Data System (ADS)
Ramirez-Santiago, Guillermo; Cercos, Montserrat G.; Martinez-Valencia, Alejandro; Salinas Hernandez, Israel; Rodríguez-Sosa, Leonardo; de-Miguel, Francisco F.
2015-03-01
The current view of the exocytosis of transmitter molecules is that it starts with the formation of a fusion pore that connects the intravesicular and the extracellular spaces, and is completed by the release of the rest of the transmitter contained in the vesicle upon the full fusion and collapse of the vesicle with the plasma membrane. However, under certain circumstances, a rapid closure of the pore before the full vesicle fusion produces only a partial release of the transmitter. Here we show that whole release of the transmitter occurs through fusion pores that remain opened for tens of milliseconds without vesicle collapse. This was demonstrated through amperometric measurements of serotonin release from electrodense vesicles in the axon of leech Retzius neurons and mathematical modelling. By modeling transmitter release with a diffusion equation subjected to boundary conditions that are defined by the experiment, we showed that those pores with a fast half rise time constant remained opened and allowed the full quantum release without vesicle collapse, whereas pores with a slow rise time constant closed rapidly, thus producing partial release. We conclude that a full transmitter release may occur through the fusion pore in the absence of vesicle collapse. This work was founded by a DGAPA-UNAM grants IN200914 and IN118410 CONACYT GRANT 130031, and CONACyT doctoral fellowships.
Vesicle fusion observed by content transfer across a tethered lipid bilayer.
Rawle, Robert J; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G
2011-10-19
Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Fast retrieval and autonomous regulation of single spontaneously recycling synaptic vesicles
Leitz, Jeremy; Kavalali, Ege T
2014-01-01
Presynaptic terminals release neurotransmitters spontaneously in a manner that can be regulated by Ca2+. However, the mechanisms underlying this regulation are poorly understood because the inherent stochasticity and low probability of spontaneous fusion events has curtailed their visualization at individual release sites. Here, using pH-sensitive optical probes targeted to synaptic vesicles, we visualized single spontaneous fusion events and found that they are retrieved extremely rapidly with faster re-acidification kinetics than their action potential-evoked counterparts. These fusion events were coupled to postsynaptic NMDA receptor-driven Ca2+ signals, and at elevated Ca2+ concentrations there was an increase in the number of vesicles that would undergo fusion. Furthermore, spontaneous vesicle fusion propensity in a synapse was Ca2+-dependent but regulated autonomously: independent of evoked fusion probability at the same synapse. Taken together, these results expand classical quantal analysis to incorporate endocytic and exocytic phases of single fusion events and uncover autonomous regulation of spontaneous fusion. DOI: http://dx.doi.org/10.7554/eLife.03658.001 PMID:25415052
In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.
Woodman, P G; Adamczewski, J P; Hunt, T; Warren, G
1993-01-01
Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment. Images PMID:8334308
Cell biology. ER-to-Golgi traffic--this bud's for you.
Brittle, E E; Waters, M G
2000-07-21
How do protein-transporting vesicles, which bud from the endoplasmic reticulum (ER), specifically dock to, and fuse with, the Golgi apparatus? In their Perspective, Brittle and Waters discuss new work (Allan et al.) suggesting that some vesicle-associated docking and fusion proteins are "programmed" during vesicle budding from the ER and direct downstream events that occur during fusion of these transport vesicles with the membranes of the Golgi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.
In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS.more » The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.« less
A Novel Synaptic Vesicle Fusion Path in the Rat Cerebral Cortex: The “Saddle” Point Hypothesis
Zampighi, Guido A.; Serrano, Raul; Vergara, Julio L.
2014-01-01
We improved freeze-fracture electron microscopy to study synapses in the neuropil of the rat cerebral cortex at ∼2 nm resolution and in three-dimensions. In the pre-synaptic axon, we found that “rods” assembled from short filaments protruding from the vesicle and the plasma membrane connects synaptic vesicles to the membrane of the active zone. We equated these “connector rods” to protein complexes involved in “docking” and “priming” vesicles to the active zone. Depending on their orientation, the “rods” define two synaptic vesicle-fusion paths: When parallel to the plasma membrane, the vesicles hemi-fuse anywhere (“randomly”) in the active zone following the conventional path anticipated by the SNARE hypothesis. When perpendicular to the plasma membrane, the vesicles hemi-fuse at the base of sharp crooks, called “indentations,” that are spaced 75–85 nm center-to-center, arranged in files and contained within gutters. They result from primary and secondary membrane curvatures that intersect at stationary inflection (“saddle”) points. Computer simulations indicate that this novel vesicle-fusion path evokes neurotransmitter concentration domains on the post-synaptic spine that are wider, shallower, and that reach higher average concentrations than the more conventional vesicle fusion path. In the post-synaptic spine, large (∼9× ∼15 nm) rectangular particles at densities of 72±10/ µm2 (170–240/spine) match the envelopes of the homotetrameric GluR2 AMPA-sensitive receptor. While these putative receptors join clusters, called the “post-synaptic domains,” the overwhelming majority of the rectangular particles formed bands in the “non-synaptic” plasma membrane of the spine. In conclusion, in the neuropil of the rat cerebral cortex, curvatures of the plasma membrane define a novel vesicle-fusion path that preconditions specific regions of the active zone for neurotransmitter release. We hypothesize that a change in the hybridization of the R-SNARE synaptobrevin from parallel to antiparallel swings the synapse into this novel vesicle-fusion path. PMID:24959848
Exocytosis and Endocytosis: Modes, Functions, and Coupling Mechanisms*
Wu, Ling-Gang; Hamid, Edaeni; Shin, Wonchul; Chiang, Hsueh-Cheng
2016-01-01
Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis. PMID:24274740
NASA Astrophysics Data System (ADS)
Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam
Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.
v-SNAREs control exocytosis of vesicles from priming to fusion.
Borisovska, Maria; Zhao, Ying; Tsytsyura, Yaroslav; Glyvuk, Nataliya; Takamori, Shigeo; Matti, Ulf; Rettig, Jens; Südhof, Thomas; Bruns, Dieter
2005-06-15
SNARE proteins (soluble NSF-attachment protein receptors) are thought to be central components of the exocytotic mechanism in neurosecretory cells, but their precise function remained unclear. Here, we show that each of the vesicle-associated SNARE proteins (v-SNARE) of a chromaffin granule, synaptobrevin II or cellubrevin, is sufficient to support Ca(2+)-dependent exocytosis and to establish a pool of primed, readily releasable vesicles. In the absence of both proteins, secretion is abolished, without affecting biogenesis or docking of granules indicating that v-SNAREs are absolutely required for granule exocytosis. We find that synaptobrevin II and cellubrevin differentially control the pool of readily releasable vesicles and show that the v-SNARE's amino terminus regulates the vesicle's primed state. We demonstrate that dynamics of fusion pore dilation are regulated by v-SNAREs, indicating their action throughout exocytosis from priming to fusion of vesicles.
Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance
NASA Astrophysics Data System (ADS)
Heuvingh, J.; Pincet, F.; Cribier, S.
2004-07-01
Proteins involved in membrane fusion, such as SNARE or influenza virus hemagglutinin, share the common function of pulling together opposing membranes in closer contact. The reduction of inter-membrane distance can be sufficient to induce a lipid transition phase and thus fusion. We have used functionalized lipids bearing DNA bases as head groups incorporated into giant unilamellar vesicles in order to reproduce the reduction of distance between membranes and to trigger fusion in a model system. In our experiments, two vesicles were isolated and brought into adhesion by the mean of micromanipulation; their evolution was monitored by fluorescence microscopy. Actual fusion only occurred in about 5% of the experiments. In most cases, a state of “hemifusion” is observed and quantified. In this state, the outer leaflets of both vesicles' bilayers merged whereas the inner leaflets and the aqueous inner contents remained independent. The kinetics of the lipid probes redistribution is in good agreement with a diffusion model in which lipids freely diffuse at the circumference of the contact zone between the two vesicles. The minimal density of bridging structures, such as stalks, necessary to explain this redistribution kinetics can be estimated.
Siegel, D P
1986-01-01
Results of a kinetic model of thermotropic L alpha----HII phase transitions are used to predict the types and order-of-magnitude rates of interactions between unilamellar vesicles that can occur by intermediates in the L alpha----HII phase transition. These interactions are: outer monolayer lipid exchange between vesicles; vesicle leakage subsequent to aggregation; and (only in systems with ratios of L alpha and HII phase structural dimensions in a certain range or with unusually large bilayer lateral compressibilities) vesicle fusion with retention of contents. It was previously proposed that inverted micellar structures mediate membrane fusion. These inverted micellar structures are thought to form in all systems with such transitions. However, I show that membrane fusion probably occurs via structures that form from these inverted micellar intermediates, and that fusion should occur in only a sub-set of lipid systems that can adopt the HII phase. For single-component phosphatidylethanolamine (PE) systems with thermotropic L alpha----HII transitions, lipid exchange should be observed starting at temperatures several degrees below TH and at all higher temperatures, where TH is the L alpha----HII transition temperature. At temperatures above TH, the HII phase forms between apposed vesicles, and eventually ruptures them (leakage). In most single-component PE systems, fusion via L alpha----HII transition intermediates should not occur. This is the behavior observed by Bentz, Ellens, Lai, Szoka, et al. in PE vesicle systems. Fusion is likely to occur under circumstances in which multilamellar samples of lipid form the so-called "inverted cubic" or "isotropic" phase. This is as observed in the mono-methyl DOPE system (Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolamine containing liposomes and the mechanism of the L alpha-HII phase transition. Biochemistry. In press.) In lipid systems with L alpha----HII transitions driven by cation binding (e.g., Ca2+-cardiolipin), fusion should be more frequent than in thermotropic systems. PMID:3719075
Ca2+ Dependence of Synaptic Vesicle Endocytosis.
Leitz, Jeremy; Kavalali, Ege T
2016-10-01
Ca(2+)-dependent synaptic vesicle recycling is essential for structural homeostasis of synapses and maintenance of neurotransmission. Although, the executive role of intrasynaptic Ca(2+) transients in synaptic vesicle exocytosis is well established, identifying the exact role of Ca(2+) in endocytosis has been difficult. In some studies, Ca(2+) has been suggested as an essential trigger required to initiate synaptic vesicle retrieval, whereas others manipulating synaptic Ca(2+) concentrations reported a modulatory role for Ca(2+) leading to inhibition or acceleration of endocytosis. Molecular studies of synaptic vesicle endocytosis, on the other hand, have consistently focused on the roles of Ca(2+)-calmodulin dependent phosphatase calcineurin and synaptic vesicle protein synaptotagmin as potential Ca(2+) sensors for endocytosis. Most studies probing the role of Ca(2+) in endocytosis have relied on measurements of synaptic vesicle retrieval after strong stimulation. Strong stimulation paradigms elicit fusion and retrieval of multiple synaptic vesicles and therefore can be affected by several factors besides the kinetics and duration of Ca(2+) signals that include the number of exocytosed vesicles and accumulation of released neurotransmitters thus altering fusion and retrieval processes indirectly via retrograde signaling. Studies monitoring single synaptic vesicle endocytosis may help resolve this conundrum as in these settings the impact of Ca(2+) on synaptic fusion probability can be uncoupled from its putative role on synaptic vesicle retrieval. Future experiments using these single vesicle approaches will help dissect the specific role(s) of Ca(2+) and its sensors in synaptic vesicle endocytosis. © The Author(s) 2015.
Factors regulating the abundance and localization of synaptobrevin in the plasma membrane
Dittman, Jeremy S.; Kaplan, Joshua M.
2006-01-01
After synaptic vesicle fusion, vesicle proteins must be segregated from plasma membrane proteins and recycled to maintain a functional vesicle pool. We monitored the distribution of synaptobrevin, a vesicle protein required for exocytosis, in Caenorhabditis elegans motor neurons by using a pH-sensitive synaptobrevin GFP fusion protein, synaptopHluorin. We estimated that 30% of synaptobrevin was present in the plasma membrane. By using a panel of endocytosis and exocytosis mutants, we found that the majority of surface synaptobrevin derives from fusion of synaptic vesicles and that, in steady state, synaptobrevin equilibrates throughout the axon. The surface synaptobrevin was enriched near active zones, and its spatial extent was regulated by the clathrin adaptin AP180. These results suggest that there is a plasma membrane reservoir of synaptobrevin that is supplied by the synaptic vesicle cycle and available for retrieval throughout the axon. The size of the reservoir is set by the relative rates of exo- and endocytosis. PMID:16844789
Mechanism of lymphocytic choriomeningitis virus entry into cells.
Borrow, P; Oldstone, M B
1994-01-01
The path that the arenavirus lymphocytic choriomeningitis virus (LCMV) uses to enter rodent fibroblastic cell lines was dissected by infectivity and inhibition studies and immunoelectron microscopy. Lysosomotropic weak bases (chloroquine and ammonium chloride) and carboxylic ionophores (monensin and nigericin) inhibited virus entry, assessed as virus nucleoprotein expression at early times post-infection, indicating that the entry process involved a pH-dependent fusion step in intracellular vesicles. That entry occurred in vesicles rather than by direct fusion of virions with the plasma membrane was confirmed by immunoelectron microscopy. The vesicles involved were large (150-300 nm diameter), smooth-walled, and not associated with clathrin. Unlike classical phagocytosis, virus uptake in these vesicles was a microfilament-independent process, as it was not blocked by cytochalasins. LCMV entry into rodent fibroblast cell lines thus involves viropexis in large smooth-walled vesicles, followed by a pH-dependent fusion event inside the cell.
Fusion of small unilamellar vesicles induced by bovine serum albumin fragments.
Garcia, L A; Schenkman, S; Araujo, P S; Chaimovich, H
1983-07-01
The limited pepsin proteolysis products of bovine serum albumin, fragment A (residues 307-586) and fragment B (residues 1-306), induced the fusion of small unilamellar vesicles of egg phosphatidyl choline at concentrations near 5 microM. Fusion was demonstrated and analyzed on the basis of: a) time-dependent changes in absorbance; b) dilution of the fluorescent label 2-(10-(1-pyrene)decanoyl) phosphatidyl choline, incorporated into a small percentage of the vesicles, as measured by the decrease in the excimer to monomer (E/M) ratio; c) increase of the average hydrodynamic radius of the liposomes, estimated by Sepharose 4B filtration, and d) the strict inverse relationship between the size of the liposomes and their E/M ratios. Albumin fragment B, like albumin, induced the formation of large aggregates in which rapid cooperative fusion produced vesicles having a large hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius smaller than those obtained with fragment B. Albumin and fragments A and B are fusogenic only at pH below 4.0. These data discussed in terms of a general model for a signal-dependent protein-induced membrane fusion.
The dissimilar effect of diacylglycerols on Ca(2+)-induced phosphatidylserine vesicle fusion.
Sánchez-Migallón, M P; Aranda, F J; Gómez-Fernández, J C
1995-01-01
We have studied the effect of physiological concentrations of different diacylglycerols on Ca(2+)-induced fusion between phosphatidylserine vesicles. We monitored vesicle fusion as mixing of membrane lipids under conditions where the limiting factor was the aggregation and also in conditions where this aggregation was not the limiting factor. We found that diacylglycerols have a different modulating effect on the Ca(2+)-induced fusion: i) depending on their interfacial conformation, so that 1,2-isomers of diacylglycerols containing unsaturated or short saturated acyl chains stimulated fusion and their 1,3-isomers did not, and ii) depending on their specific type of bilayer interior perturbation, so that diacylglycerols containing unsaturated or short chain saturated acyl chains stimulated fusion but those containing long-chain saturated acyl chains did not. These requirements resembled those required for the diacylglycerol activation of protein kinase C, suggesting that diacylglycerol acts in both the specific activation of this enzyme and the induction of membrane fusion through the same perturbation of lipid structure. We found that polylysine affected the stimulatory role of 1,2-dioleoylglycerol differently, depending on whether aggregation was the limiting factor of fusion. When we studied the effect of very low concentrations of diacylglycerols on the bulk structural properties of phosphatidylserine, we found that they neither significantly perturbed the thermotropic transitions of phosphatidylserine nor affected the interaction of Ca2+ with the phosphate group of phosphatidylserine. The underlying mechanism of fusion between phosphatidylserine vesicles is discussed. PMID:7696508
CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions.
James, Declan J; Kowalchyk, Judith; Daily, Neil; Petrie, Matt; Martin, Thomas F J
2009-10-13
Ca(2+)-dependent activator protein for secretion (CAPS) is an essential factor for regulated vesicle exocytosis that functions in priming reactions before Ca(2+)-triggered fusion of vesicles with the plasma membrane. However, the precise events that CAPS regulates to promote vesicle fusion are unclear. In the current work, we reconstituted CAPS function in a SNARE-dependent liposome fusion assay using VAMP2-containing donor and syntaxin-1/SNAP-25-containing acceptor liposomes. The CAPS stimulation of fusion required PI(4,5)P(2) in acceptor liposomes and was independent of Ca(2+), but Ca(2+) dependence was restored by inclusion of synaptotagmin. CAPS stimulated trans-SNARE complex formation concomitant with the stimulation of full membrane fusion at physiological SNARE densities. CAPS bound syntaxin-1, and CAPS truncations that competitively inhibited syntaxin-1 binding also inhibited CAPS-dependent fusion. The results revealed an unexpected activity of a priming protein to accelerate fusion by efficiently promoting trans-SNARE complex formation. CAPS may function in priming by organizing SNARE complexes on the plasma membrane.
Williams, Dumaine; Vicôgne, Jérome; Zaitseva, Irina; McLaughlin, Stuart; Pessin, Jeffrey E
2009-12-01
The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in beta cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.
Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin.
Di Giovanni, Jerome; Iborra, Cécile; Maulet, Yves; Lévêque, Christian; El Far, Oussama; Seagar, Michael
2010-07-30
Neuroexocytosis requires SNARE proteins, which assemble into trans complexes at the synaptic vesicle/plasma membrane interface and mediate bilayer fusion. Ca(2+) sensitivity is thought to be conferred by synaptotagmin, although the ubiquitous Ca(2+)-effector calmodulin has also been implicated in SNARE-dependent membrane fusion. To examine the molecular mechanisms involved, we examined the direct action of calmodulin and synaptotagmin in vitro, using fluorescence resonance energy transfer to assay lipid mixing between target- and vesicle-SNARE liposomes. Ca(2+)/calmodulin inhibited SNARE assembly and membrane fusion by binding to two distinct motifs located in the membrane-proximal regions of VAMP2 (K(D) = 500 nm) and syntaxin 1 (K(D) = 2 microm). In contrast, fusion was increased by full-length synaptotagmin 1 anchored in vesicle-SNARE liposomes. When synaptotagmin and calmodulin were combined, synaptotagmin overcame the inhibitory effects of calmodulin. Furthermore, synaptotagmin displaced calmodulin binding to target-SNAREs. These findings suggest that two distinct Ca(2+) sensors act antagonistically in SNARE-mediated fusion.
Munc13 controls the location and efficiency of dense-core vesicle release in neurons.
van de Bospoort, Rhea; Farina, Margherita; Schmitz, Sabine K; de Jong, Arthur; de Wit, Heidi; Verhage, Matthijs; Toonen, Ruud F
2012-12-10
Neuronal dense-core vesicles (DCVs) contain diverse cargo crucial for brain development and function, but the mechanisms that control their release are largely unknown. We quantified activity-dependent DCV release in hippocampal neurons at single vesicle resolution. DCVs fused preferentially at synaptic terminals. DCVs also fused at extrasynaptic sites but only after prolonged stimulation. In munc13-1/2-null mutant neurons, synaptic DCV release was reduced but not abolished, and synaptic preference was lost. The remaining fusion required prolonged stimulation, similar to extrasynaptic fusion in wild-type neurons. Conversely, Munc13-1 overexpression (M13OE) promoted extrasynaptic DCV release, also without prolonged stimulation. Thus, Munc13-1/2 facilitate DCV fusion but, unlike for synaptic vesicles, are not essential for DCV release, and M13OE is sufficient to produce efficient DCV release extrasynaptically.
Chiou, Yi-Ling; Chen, Ying-Jung; Lin, Shinne-Ren; Chang, Long-Sen
2011-11-01
CMS-9, a phospholipase A(2) (PLA(2)) from Naja nigricollis venom, induced the death of human breast cancer MCF-7 cells accompanied with the formation of cell clumps without clear boundaries between cells. Annexin V-FITC staining indicated that abundant phosphatidylserine appeared on the outer membrane of MCF-7 cell clumps, implying the possibility that CMS-9 may promote membrane fusion via anionic phospholipids. To validate this proposition, fusogenic activity of CMS-9 on vesicles composed of zwitterionic phospholipid alone or a combination of zwitterionic and anionic phospholipids was examined. Although CMS-9-induced fusion of zwitterionic phospholipid vesicles depended on PLA(2) activity, CMS-9-induced fusion of vesicles containing anionic phospholipids could occur without the involvement of PLA(2) activity. Membrane-damaging activity of CMS-9 was associated with its fusogenicity. Moreover, CMS-9 induced differently membrane leakage and membrane fusion of vesicles with different compositions. Membrane fluidity and binding capability with phospholipid vesicles were not related to the fusogenicity of CMS-9. However, membrane-bound conformation and mode of CMS-9 depended on phospholipid compositions. Collectively, our data suggest that PLA(2) activity-dependent and -independent fusogenicity of CMS-9 are closely related to its membrane-bound modes and targeted membrane compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
van Lehn, Reid; Ricci, Maria; Carney, Randy; Voitchovsky, Kislon; Stellacci, Francesco; Alexander-Katz, Alfredo
2014-03-01
Vesicle fusion is a primary mechanism used to mediate the uptake and trafficking of materials both into and between cells. The pathway of vesicle fusion involves the formation of a lipid stalk in which the hydrophobic core regions of two closely associated bilayers merge. The transition state for stalk formation requires the transient protrusion of hydrophobic lipid tails into solvent; favorable contact between these hydrophobic tails then drives stalk creation. In this work, we use unbiased atomistic molecular dynamics simulations to show that lipid tail protrusions can also induce the insertion of charged, amphiphilic nanoparticles (NPs) into lipid bilayers. As in the case of vesicle fusion, the rate-limiting step for NP-bilayer fusion is the stochastic protrusion of aliphatic lipid tails into solvent and into contact with hydrophobic material in the amphiphilic NP monolayer. We confirm our predictions with experiments on supported lipid bilayers. The strong agreement between simulation and experiments indicates that the pre-stalk transition associated with vesicle fusion may be a general mechanism for the insertion of amphiphilic nano-objects that could be prominent in biological systems given the widespread use of NPs in applications ranging from drug delivery to biosensing.
The Multifaceted Role of SNARE Proteins in Membrane Fusion
Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A.
2017-01-01
Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined. PMID:28163686
The Multifaceted Role of SNARE Proteins in Membrane Fusion.
Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A
2017-01-01
Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.
Ratnayake, Punsisi U; Prabodha Ekanayaka, E A; Komanduru, Sweta S; Weliky, David P
2016-01-01
Influenza virus is a class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5-6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ∼ 25, ∼ 160, ∼ 25, and ∼ 10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP+SE, and SHA2-TM ≡ SE+TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm>90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM. Copyright © 2015 Elsevier Inc. All rights reserved.
Green fluorescence protein-based content-mixing assay of SNARE-driven membrane fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Paul; Kong, Byoungjae; Jung, Young-Hun
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion by forming a ternary SNARE complex. A minimalist approach utilizing proteoliposomes with reconstituted SNARE proteins yielded a wealth of information pinpointing the molecular mechanism of SNARE-mediated fusion and its regulation by accessory proteins. Two important attributes of a membrane fusion are lipid-mixing and the formation of an aqueous passage between apposing membranes. These two attributes are typically observed by using various fluorescent dyes. Currently available in vitro assay systems for observing fusion pore opening have several weaknesses such as cargo-bleeding, incomplete removal of unencapsulated dyes, and inadequate information regardingmore » the size of the fusion pore, limiting measurements of the final stage of membrane fusion. In the present study, we used a biotinylated green fluorescence protein and streptavidin conjugated with Dylight 594 (DyStrp) as a Föster resonance energy transfer (FRET) donor and acceptor, respectively. This FRET pair encapsulated in each v-vesicle containing synaptobrevin and t-vesicle containing a binary acceptor complex of syntaxin 1a and synaptosomal-associated protein 25 revealed the opening of a large fusion pore of more than 5 nm, without the unwanted signals from unencapsulated dyes or leakage. This system enabled determination of the stoichiometry of the merging vesicles because the FRET efficiency of the FRET pair depended on the molar ratio between dyes. Here, we report a robust and informative assay for SNARE-mediated fusion pore opening. - Highlights: • SNARE proteins drive membrane fusion and open a pore for cargo release. • Biotinylated GFP and DyStrp was used as the reporter pair of fusion pore opening. • Procedure for efficient SNARE reconstitution and reporter encapsulation was established. • The FRET pair reported opening of a large fusion pore bigger than 5 nm. • The assay was robust and provided information of stoichiometry of vesicle fusion.« less
Bartoletti, Theodore M.; Jackman, Skyler L.; Babai, Norbert; Mercer, Aaron J.; Kramer, Richard H.
2011-01-01
Light hyperpolarizes cone photoreceptors, causing synaptic voltage-gated Ca2+ channels to open infrequently. To understand neurotransmission under these conditions, we determined the number of L-type Ca2+ channel openings necessary for vesicle fusion at the cone ribbon synapse. Ca2+ currents (ICa) were activated in voltage-clamped cones, and excitatory postsynaptic currents (EPSCs) were recorded from horizontal cells in the salamander retina slice preparation. Ca2+ channel number and single-channel current amplitude were calculated by mean-variance analysis of ICa. Two different comparisons—one comparing average numbers of release events to average ICa amplitude and the other involving deconvolution of both EPSCs and simultaneously recorded cone ICa—suggested that fewer than three Ca2+ channel openings accompanied fusion of each vesicle at the peak of release during the first few milliseconds of stimulation. Opening fewer Ca2+ channels did not enhance fusion efficiency, suggesting that few unnecessary channel openings occurred during strong depolarization. We simulated release at the cone synapse, using empirically determined synaptic dimensions, vesicle pool size, Ca2+ dependence of release, Ca2+ channel number, and Ca2+ channel properties. The model replicated observations when a barrier was added to slow Ca2+ diffusion. Consistent with the presence of a diffusion barrier, dialyzing cones with diffusible Ca2+ buffers did not affect release efficiency. The tight clustering of Ca2+ channels, along with a high-Ca2+ affinity release mechanism and diffusion barrier, promotes a linear coupling between Ca2+ influx and vesicle fusion. This may improve detection of small light decrements when cones are hyperpolarized by bright light. PMID:21880934
Bartoletti, Theodore M; Jackman, Skyler L; Babai, Norbert; Mercer, Aaron J; Kramer, Richard H; Thoreson, Wallace B
2011-12-01
Light hyperpolarizes cone photoreceptors, causing synaptic voltage-gated Ca(2+) channels to open infrequently. To understand neurotransmission under these conditions, we determined the number of L-type Ca(2+) channel openings necessary for vesicle fusion at the cone ribbon synapse. Ca(2+) currents (I(Ca)) were activated in voltage-clamped cones, and excitatory postsynaptic currents (EPSCs) were recorded from horizontal cells in the salamander retina slice preparation. Ca(2+) channel number and single-channel current amplitude were calculated by mean-variance analysis of I(Ca). Two different comparisons-one comparing average numbers of release events to average I(Ca) amplitude and the other involving deconvolution of both EPSCs and simultaneously recorded cone I(Ca)-suggested that fewer than three Ca(2+) channel openings accompanied fusion of each vesicle at the peak of release during the first few milliseconds of stimulation. Opening fewer Ca(2+) channels did not enhance fusion efficiency, suggesting that few unnecessary channel openings occurred during strong depolarization. We simulated release at the cone synapse, using empirically determined synaptic dimensions, vesicle pool size, Ca(2+) dependence of release, Ca(2+) channel number, and Ca(2+) channel properties. The model replicated observations when a barrier was added to slow Ca(2+) diffusion. Consistent with the presence of a diffusion barrier, dialyzing cones with diffusible Ca(2+) buffers did not affect release efficiency. The tight clustering of Ca(2+) channels, along with a high-Ca(2+) affinity release mechanism and diffusion barrier, promotes a linear coupling between Ca(2+) influx and vesicle fusion. This may improve detection of small light decrements when cones are hyperpolarized by bright light.
Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses
Sinha, Raunak; Ahmed, Saheeb; Jahn, Reinhard; Klingauf, Jurgen
2011-01-01
Exocytosis of synaptic vesicles (SVs) during fast synaptic transmission is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly formed by the coil-coiling of three members of this protein family: vesicle SNARE protein, synaptobrevin 2 (syb2), and the presynaptic membrane SNAREs syntaxin-1A and SNAP-25. However, it is controversially debated how many SNARE complexes are minimally needed for SV priming and fusion. To quantify this effective number, we measured the fluorescence responses from single fusing vesicles expressing pHluorin (pHl), a pH-sensitive variant of GFP, fused to the luminal domain of the vesicular SNARE syb2 (spH) in cultured hippocampal neurons lacking endogenous syb2. Fluorescence responses were quantal, with the unitary signals precisely corresponding to single pHluorin molecules. Using this approach we found that two copies of spH per SV fully rescued evoked fusion whereas SVs expressing only one spH were unable to rapidly fuse upon stimulation. Thus, two syb2 molecules and likely two SNARE complexes are necessary and sufficient for SV fusion during fast synaptic transmission. PMID:21844343
Russo, Laura; Berardi, Valerio; Tardani, Franco; La Mesa, Camillo; Risuleo, Gianfranco
2013-01-01
Catanionic vesicles are supramolecular aggregates spontaneously forming in water by electrostatic attraction between two surfactants mixed in nonstoichiometric ratios. The outer surface charges allow adsorption to the biomembrane by electrostatic interactions. The lipoplex thus obtained penetrates the cell by endocytosis or membrane fusion. We examined the possible cytotoxic effects and evaluated the transfection efficiency of one vesicle type as compared to known commercial carriers. We show that the individual components of two different vesicles types, CTAB (cetyltrimethylammonium bromide) and DDAB (didodecyldimethylammonium bromide) are detrimental for cell survival. We also assayed the cytotoxicity of SDS-DDAB vesicles and showed dose and time dependency, with the DDAB component being per se extremely cytotoxic. The transfection efficiency of exogenous RNA mediated by SDS-CTAB increases if vesicles assemble in the presence of the reporter RNA; finally, freezing abrogates the transfection ability. The results of our experimental strategy suggest that catanionic vesicles may be adopted in gene therapy and control of antiproliferative diseases.
Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E
2015-01-01
Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that including the fusion-time statistics in our model does not produce any significant changes on the results. These findings indicate that the motion of the whole ensemble of vesicles towards the membrane is directed and reflected in the amperometric signals. Our results confirm the conclusions of previous imaging studies performed on single vesicles that vesicles' motion underneath plasma membranes is not purely random, but biased towards the membrane.
Fusion of small unilamellar vesicles induced by a serum albumin fragment of molecular weight 9000.
Garcia, L A; Araújo, P S; Chaimovich, H
1984-05-16
A peptide (P-9) comprising amino acids 307 to 385 of bovine serum albumin induced the fusion of small unilamellar vesicles of phosphatidylcholine at low pH. Upon acidification P-9 exhibited a ultraviolet differential spectrum characteristic of hydrophilic exposure of chromophores. This conformational change, and the structure of P-9 composed of three amphiphilic helixes , suggested a general working hypothesis for the description of protein-induced membrane fusion.
Kiss-and-Run Is a Significant Contributor to Synaptic Exocytosis and Endocytosis in Photoreceptors
Wen, Xiangyi; Saltzgaber, Grant W.; Thoreson, Wallace B.
2017-01-01
Accompanying sustained release in darkness, rod and cone photoreceptors exhibit rapid endocytosis of synaptic vesicles. Membrane capacitance measurements indicated that rapid endocytosis retrieves at least 70% of the exocytotic membrane increase. One mechanism for rapid endocytosis is kiss-and-run fusion where vesicles briefly contact the plasma membrane through a small fusion pore. Release can also occur by full-collapse in which vesicles merge completely with the plasma membrane. We assessed relative contributions of full-collapse and kiss-and-run in salamander photoreceptors using optical techniques to measure endocytosis and exocytosis of large vs. small dye molecules. Incubation with small dyes (SR101, 1 nm; 3-kDa dextran-conjugated Texas Red, 2.3 nm) loaded rod and cone synaptic terminals much more readily than larger dyes (10-kDa Texas Red, 4.6 nm; 10-kDa pHrodo, 4.6 nm; 70-kDa Texas Red, 12 nm) consistent with significant uptake through 2.3–4.6 nm fusion pores. By using total internal reflection fluorescence microscopy (TIRFM) to image individual vesicles, when rods were incubated simultaneously with Texas Red and AlexaFluor-488 dyes conjugated to either 3-kDa or 10-kDa dextran, more vesicles loaded small molecules than large molecules. Using TIRFM to detect release by the disappearance of dye-loaded vesicles, we found that SR101 and 3-kDa Texas Red were released from individual vesicles more readily than 10-kDa and 70-kDa Texas Red. Although 10-kDa pHrodo was endocytosed poorly like other large dyes, the fraction of release events was similar to SR101 and 3-kDa Texas Red. We hypothesize that while 10-kDa pHrodo may not exit through a fusion pore, release of intravesicular protons can promote detection of fusion events by rapidly quenching fluorescence of this pH-sensitive dye. Assuming that large molecules can only be released by full-collapse whereas small molecules can be released by both modes, our results indicate that 50%–70% of release from rods involves kiss-and-run with 2.3–4.6 nm fusion pores. Rapid retrieval of vesicles by kiss-and-run may limit membrane disruption of release site function during ongoing release at photoreceptor ribbon synapses. PMID:28979188
Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion.
James, Declan J; Khodthong, Chuenchanok; Kowalchyk, Judith A; Martin, Thomas F J
2008-07-28
Phosphatidylinositol 4,5-bisphosphate (PI 4,5-P(2)) on the plasma membrane is essential for vesicle exocytosis but its role in membrane fusion has not been determined. Here, we quantify the concentration of PI 4,5-P(2) as approximately 6 mol% in the cytoplasmic leaflet of plasma membrane microdomains at sites of docked vesicles. At this concentration of PI 4,5-P(2) soluble NSF attachment protein receptor (SNARE)-dependent liposome fusion is inhibited. Inhibition by PI 4,5-P(2) likely results from its intrinsic positive curvature-promoting properties that inhibit formation of high negative curvature membrane fusion intermediates. Mutation of juxtamembrane basic residues in the plasma membrane SNARE syntaxin-1 increase inhibition by PI 4,5-P(2), suggesting that syntaxin sequesters PI 4,5-P(2) to alleviate inhibition. To define an essential rather than inhibitory role for PI 4,5-P(2), we test a PI 4,5-P(2)-binding priming factor required for vesicle exocytosis. Ca(2+)-dependent activator protein for secretion promotes increased rates of SNARE-dependent fusion that are PI 4,5-P(2) dependent. These results indicate that PI 4,5-P(2) regulates fusion both as a fusion restraint that syntaxin-1 alleviates and as an essential cofactor that recruits protein priming factors to facilitate SNARE-dependent fusion.
Gesemann, Matthias; Mateos, José M.; Barmettler, Gery; Forbes, Austin; Ziegler, Urs
2017-01-01
Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming ciliary-directed vesicles, through organization of the vesicle fusion machinery at the periciliary membrane. PMID:29281629
Ojeda Naharros, Irene; Gesemann, Matthias; Mateos, José M; Barmettler, Gery; Forbes, Austin; Ziegler, Urs; Neuhauss, Stephan C F; Bachmann-Gagescu, Ruxandra
2017-12-01
Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming ciliary-directed vesicles, through organization of the vesicle fusion machinery at the periciliary membrane.
Multiple roles for the actin cytoskeleton during regulated exocytosis
Porat-Shliom, Natalie; Milberg, Oleg; Masedunskas, Andrius; Weigert, Roberto
2014-01-01
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e. secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules. PMID:22986507
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, William T.; Rai, Durgesh K.
HIV-1, like other enveloped viruses, undergoes fusion with the cell membrane to infect it. Viral coat proteins are thought to bind the virus to the membrane and actively fuse the viral and cellular membranes together. The actual molecular mechanism of fusion is challenging to visualize, resulting in the use of model systems. In this paper, the bilayer curvature modifying properties of a synthetic variant of the HIV-1 gp41 fusion peptide with lipid bilayer vesicles composed of a mixture of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) were studied. In 7:3 DMPC:DMPS vesicles made with deuterium-labeled DMPC, the peptide was observedmore » to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet. Through the use of small-angle neutron scattering (SANS) and selective deuterium labeling, it was revealed that conformational transition of the peptide is also accompanied by a transition in the structure of the lipid bilayer. In addition to changes in the distribution of the lipid between the leaflets of the vesicle, the SANS data are consistent with two regions having different thicknesses. Finally, of the two different bilayer structures, the one corresponding to the smaller area fraction, being ~8% of the vesicle area, is much thicker than the remainder of the vesicle, which suggests that there are regions of localized negative curvature similar to what takes place at the point of contact between two membranes immediately preceding fusion.« less
Heller, William T.; Rai, Durgesh K.
2017-01-16
HIV-1, like other enveloped viruses, undergoes fusion with the cell membrane to infect it. Viral coat proteins are thought to bind the virus to the membrane and actively fuse the viral and cellular membranes together. The actual molecular mechanism of fusion is challenging to visualize, resulting in the use of model systems. In this paper, the bilayer curvature modifying properties of a synthetic variant of the HIV-1 gp41 fusion peptide with lipid bilayer vesicles composed of a mixture of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) were studied. In 7:3 DMPC:DMPS vesicles made with deuterium-labeled DMPC, the peptide was observedmore » to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet. Through the use of small-angle neutron scattering (SANS) and selective deuterium labeling, it was revealed that conformational transition of the peptide is also accompanied by a transition in the structure of the lipid bilayer. In addition to changes in the distribution of the lipid between the leaflets of the vesicle, the SANS data are consistent with two regions having different thicknesses. Finally, of the two different bilayer structures, the one corresponding to the smaller area fraction, being ~8% of the vesicle area, is much thicker than the remainder of the vesicle, which suggests that there are regions of localized negative curvature similar to what takes place at the point of contact between two membranes immediately preceding fusion.« less
Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E.
2015-01-01
Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that including the fusion-time statistics in our model does not produce any significant changes on the results. These findings indicate that the motion of the whole ensemble of vesicles towards the membrane is directed and reflected in the amperometric signals. Our results confirm the conclusions of previous imaging studies performed on single vesicles that vesicles’ motion underneath plasma membranes is not purely random, but biased towards the membrane. PMID:26675312
Carmona-Ribeiro, A M; Chaimovich, H
1986-01-01
Small dioctadecyldimethylammonium chloride (DODAC) vesicles prepared by sonication fuse upon addition of NaCl as detected by several methods (electron microscopy, trapped volume determinations, temperature-dependent phase transition curves, and osmometer behavior. In contrast, small sodium dihexadecyl phosphate (DHP) vesicles mainly aggregate upon NaCl addition as shown by electron microscopy and the lack of osmometer behavior. Scatter-derived absorbance changes of small and large DODAC or DHP vesicles as a function of time after salt addition were obtained for a range of NaCl or amphiphile concentration. These changes were interpreted in accordance with a phenomenological model based upon fundamental light-scattering laws and simple geometrical considerations. Short-range hydration repulsion between DODAC (or DHP) vesicles is possibly the main energy barrier for the fusion process. Images FIGURE 2 FIGURE 9 PMID:3779002
A Monte Carlo Simulation of Vesicle Exocytosis in the Buffered Diffusion of Calcium Channel Currents
NASA Astrophysics Data System (ADS)
Dimcovic, Z.; Eagan, T. P.; Brown, R. W.; Petschek, R. G.; Eppell, S. J.; Yunker, A. M. R.; Sharp, A. H.; McEnery, M. W.
2001-04-01
The voltage-dependent opening of calcium channels results in an influx of calcium ions that leads to the fusion of synaptic vesicles with the cell membrane, resulting in the release of neurotransmitters. This allows nerve impulses to be transmitted from one neuron to another. A Monte Carlo model of the three-dimensional diffusion of calcium following a channel opening is employed to estimate the space and time dependence of the calcium density. The effects of fixed and mobile calcium buffers are included, and a tethered nearby vesicle is considered. The importance of the size and location of the vesicle is studied. When the vesicle is ignored, these results are compared with the analytical calculations of Naraghi and Neher and the Monte Carlo calculations of Bennett et al. The finite-vesicle-size analysis offers new insights into the process of neurosecretion. Support: NIH MH55747, AHA 96001250, NSF 0086643, and CWRU Presidential Research Initiative grants.
Walter, Alexander M; Pinheiro, Paulo S; Verhage, Matthijs; Sørensen, Jakob B
2013-01-01
Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca(2+) dependence, but also upstream steps depend on Ca(2+). After deletion of the Ca(2+) sensor for fast release - synaptotagmin-1 - slower Ca(2+)-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca(2+) sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca(2+)-dependent action: a Ca(2+)-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca(2+)-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca(2+)-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca(2+)-dependent fusion from the NRP. We conclude that the elusive 'alternative Ca(2+) sensor' for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca(2+)-dependent properties of secretion without assuming parallel pools or sensors.
Walter, Alexander M.; Pinheiro, Paulo S.; Verhage, Matthijs; Sørensen, Jakob B.
2013-01-01
Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca2+ dependence, but also upstream steps depend on Ca2+. After deletion of the Ca2+ sensor for fast release – synaptotagmin-1 – slower Ca2+-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca2+ sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca2+-dependent action: a Ca2+-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca2+-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca2+-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca2+-dependent fusion from the NRP. We conclude that the elusive ‘alternative Ca2+ sensor’ for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca2+-dependent properties of secretion without assuming parallel pools or sensors. PMID:24339761
Local protein dynamics during microvesicle exocytosis in neuroendocrine cells.
Somasundaram, Agila; Taraska, Justin
2018-06-06
Calcium triggered exocytosis is key to many physiological processes, including neurotransmitter and hormone release by neurons and endocrine cells. Dozens of proteins regulate exocytosis, yet the temporal and spatial dynamics of these factors during vesicle fusion remain unclear. Here we use total internal reflection fluorescence microscopy to visualize local protein dynamics at single sites of exocytosis of small synaptic-like microvesicles in live cultured neuroendocrine PC12 cells. We employ two-color imaging to simultaneously observe membrane fusion (using vesicular acetylcholine transporter (VAChT) tagged to pHluorin) and the dynamics of associated proteins at the moments surrounding exocytosis. Our experiments show that many proteins, including the SNAREs syntaxin1 and VAMP2, the SNARE modulator tomosyn, and Rab proteins, are pre-clustered at fusion sites and rapidly lost at fusion. The ATPase NSF is locally recruited at fusion. Interestingly, the endocytic BAR domain-containing proteins amphiphysin1, syndapin2, and endophilins are dynamically recruited to fusion sites, and slow the loss of vesicle membrane-bound cargo from fusion sites. A similar effect on vesicle membrane protein dynamics was seen with the over-expression of the GTPases dynamin1 and dynamin2. These results suggest that proteins involved in classical clathrin-mediated endocytosis can regulate exocytosis of synaptic-like microvesicles. Our findings provide insights into the dynamics, assembly, and mechanistic roles of many key factors of exocytosis and endocytosis at single sites of microvesicle fusion in live cells.
Kim, Jaewook; Shin, Yeon-Kyun
2017-01-01
Ca 2+ -triggered SNARE-mediated membrane fusion is essential for neuronal communication. The speed of this process is of particular importance because it sets a time limit to cognitive and physical activities. In this work, we expand the proteoliposome-to-supported bilayer (SBL) fusion assay by successfully incorporating synaptotagmin 1 (Syt1), a major Ca 2+ sensor. We report that Syt1 and Ca 2+ together can elicit more than a 50-fold increase in the number of membrane fusion events when compared with membrane fusion mediated by SNAREs only. What is remarkable is that ~55% of all vesicle fusion events occurs within 20 ms upon vesicle docking. Furthermore, pre-binding of Syt1 to SNAREs prior to Ca 2+ inhibits spontaneous fusion, but intriguingly, this leads to a complete loss of the Ca 2+ responsiveness. Thus, our results suggest that there is a productive and a non-productive pathway for Syt1, depending on whether there is a premature interaction between Syt1 and SNAREs. Our results show that Ca 2+ binding to Syt1 prior to Syt1's binding to SNAREs may be a prerequisite for the productive pathway. The successful reconstitution of Syt1 activities in the physiological time scale provides new opportunities to test the current mechanistic models for Ca 2+ -triggered exocytosis.
Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion
Hui, Enfu; Johnson, Colin P.; Yao, Jun; Dunning, F. Mark; Chapman, Edwin R.
2009-01-01
Summary Decades ago it was proposed that exocytosis involves invagination of the target membrane, resulting in a highly localized site of contact between the bilayers destined to fuse. The vesicle protein synaptotagmin-I (syt) bends membranes in response to Ca2+, but whether this drives localized invagination of the target membrane to accelerate fusion has not been determined; previous studies relied on reconstituted vesicles that were already highly curved and used mutations in syt that were not selective for membrane-bending activity. Here, we directly address this question by utilizing vesicles with different degrees of curvature. A tubulation-defective syt mutant was able to promote fusion between highly curved SNARE-bearing liposomes, but exhibited a marked loss of activity when the membranes were relatively flat. Moreover, bending of flat membranes by adding an N-BAR domain rescued the function of the tubulation-deficient syt mutant. Hence, syt-mediated membrane bending is a critical step in membrane fusion. PMID:19703397
Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B
2017-12-01
Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.
Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M
2007-07-15
Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.
Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model.
Weinreb, Gabriel; Lentz, Barry R
2007-06-01
We propose a model that accounts for the time courses of PEG-induced fusion of membrane vesicles of varying lipid compositions and sizes. The model assumes that fusion proceeds from an initial, aggregated vesicle state ((A) membrane contact) through two sequential intermediate states (I(1) and I(2)) and then on to a fusion pore state (FP). Using this model, we interpreted data on the fusion of seven different vesicle systems. We found that the initial aggregated state involved no lipid or content mixing but did produce leakage. The final state (FP) was not leaky. Lipid mixing normally dominated the first intermediate state (I(1)), but content mixing signal was also observed in this state for most systems. The second intermediate state (I(2)) exhibited both lipid and content mixing signals and leakage, and was sometimes the only leaky state. In some systems, the first and second intermediates were indistinguishable and converted directly to the FP state. Having also tested a parallel, two-intermediate model subject to different assumptions about the nature of the intermediates, we conclude that a sequential, two-intermediate model is the simplest model sufficient to describe PEG-mediated fusion in all vesicle systems studied. We conclude as well that a fusion intermediate "state" should not be thought of as a fixed structure (e.g., "stalk" or "transmembrane contact") of uniform properties. Rather, a fusion "state" describes an ensemble of similar structures that can have different mechanical properties. Thus, a "state" can have varying probabilities of having a given functional property such as content mixing, lipid mixing, or leakage. Our data show that the content mixing signal may occur through two processes, one correlated and one not correlated with leakage. Finally, we consider the implications of our results in terms of the "modified stalk" hypothesis for the mechanism of lipid pore formation. We conclude that our results not only support this hypothesis but also provide a means of analyzing fusion time courses so as to test it and gauge the mechanism of action of fusion proteins in the context of the lipidic hypothesis of fusion.
Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering.
Komorowski, Karlo; Salditt, Annalena; Xu, Yihui; Yavuz, Halenur; Brennich, Martha; Jahn, Reinhard; Salditt, Tim
2018-04-24
We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca 2+ or Mg 2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
da Costa, M H; Chaimovich, H
1997-09-01
Limited proteolysis of fatty acid-free bovine serum albumin by pepsin yields several well characterized peptides, one of which (P9, M(r) 9,000), induces fusion of small unilamellar vesicles (SUV) of phosphatidylcholine at pH 3.6. Circular dichroism (CD) of P9 solutions confirmed that the peptide undergoes a reversible transition between pH 7 and pH 3.6. The spectral changes observed with CD suggest that in the low pH conformation there is a decrease in the alpha-helical contents and an exposure of hydrophobic residues. CD and differential ultraviolet spectroscopy demonstrated that P9 binds to micelles of hexadecylphosphorylcholine and the binding produces changes in the tertiary structure of the peptide. Reduction and carboxymethylation of the two disulfide bridges of P9 produced loss of the ability to induce fusion of SUV, although the reduced peptide binds to vesicles, induces loss of entrapped marker and produces vesicle disruption. In the active form P9 exposes hydrophobic groups, one amphiphilic alpha-helix and requires the integrity of the disulfide bridge-stabilized tertiary structure.
Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1.
Morgera, Francesca; Sallah, Margaret R; Dubuke, Michelle L; Gandhi, Pallavi; Brewer, Daniel N; Carr, Chavela M; Munson, Mary
2012-01-01
Trafficking of protein and lipid cargo through the secretory pathway in eukaryotic cells is mediated by membrane-bound vesicles. Secretory vesicle targeting and fusion require a conserved multisubunit protein complex termed the exocyst, which has been implicated in specific tethering of vesicles to sites of polarized exocytosis. The exocyst is directly involved in regulating soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes and membrane fusion through interactions between the Sec6 subunit and the plasma membrane SNARE protein Sec9. Here we show another facet of Sec6 function-it directly binds Sec1, another SNARE regulator, but of the Sec1/Munc18 family. The Sec6-Sec1 interaction is exclusive of Sec6-Sec9 but compatible with Sec6-exocyst assembly. In contrast, the Sec6-exocyst interaction is incompatible with Sec6-Sec9. Therefore, upon vesicle arrival, Sec6 is proposed to release Sec9 in favor of Sec6-exocyst assembly and to simultaneously recruit Sec1 to sites of secretion for coordinated SNARE complex formation and membrane fusion.
Spontaneous and evoked release are independently regulated at individual active zones.
Melom, Jan E; Akbergenova, Yulia; Gavornik, Jeffrey P; Littleton, J Troy
2013-10-30
Neurotransmitter release from synaptic vesicle fusion is the fundamental mechanism for neuronal communication at synapses. Evoked release following an action potential has been well characterized for its function in activating the postsynaptic cell, but the significance of spontaneous release is less clear. Using transgenic tools to image single synaptic vesicle fusion events at individual release sites (active zones) in Drosophila, we characterized the spatial and temporal dynamics of exocytotic events that occur spontaneously or in response to an action potential. We also analyzed the relationship between these two modes of fusion at single release sites. A majority of active zones participate in both modes of fusion, although release probability is not correlated between the two modes of release and is highly variable across the population. A subset of active zones is specifically dedicated to spontaneous release, indicating a population of postsynaptic receptors is uniquely activated by this mode of vesicle fusion. Imaging synaptic transmission at individual release sites also revealed general rules for spontaneous and evoked release, and indicate that active zones with similar release probability can cluster spatially within individual synaptic boutons. These findings suggest neuronal connections contain two information channels that can be spatially segregated and independently regulated to transmit evoked or spontaneous fusion signals.
Study of the Interaction of the HIV-1 Fusion Peptide with Lipid Bilayer Membranes
NASA Astrophysics Data System (ADS)
Heller, William; Rai, Durgesh
HIV-1 undergoes fusion with the cell membrane through interactions between its coat proteins and the target cell. Visualization of fusion with sufficient detail to determine the molecular mechanism remains elusive. Here, the interaction between a synthetic variant of the HIV-1 gp41 fusion peptide with vesicles composed of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) was studied. The peptide was observed to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet that is accompanied by a transition in the structure of the lipid bilayer vesicle. The peptide changes the distribution of lipids between the vesicle leaflets. Further, it creates two regions having different thicknesses. The results shed new light on how the peptide modifies the membrane structure to favor fusion. A portion of this research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunner, J.; Zugliani, C.; Mischler, R.
1991-03-05
Fusion of influenza viruses with membranes is catalyzed by the viral spike protein hemagglutinin (HA). Under mildly acidic conditions ({approximately}pH 5) this protein undergoes a conformational change that triggers the exposure of the fusion peptide, the hydrophobic N-terminal segment of the HA2 polypeptide chain. Insertion of this segment into the target membrane (or viral membrane ) is likely to represent a key step along the fusion pathway, but the details are far from being clear. The photoreactive phospholipid 1-palmitoyl-2-(11-(4-(3-(trifluoromethyl)diazirinyl)phenyl)(2-{sup 3}H)undecanoyl)-sn-glycero-3-phosphocholine (({sup 3}H)PTPC/11), inserted into the bilayer of large unilamellar vesicles (LUVs), allowed the authors to investigate both the interaction ofmore » viruses with the vesicles under perfusion conditions and the fusion process itself occurring at elevated temperatures only. Despite the observed binding of viruses to LUVs at pH 5 and 0C, labeling of HA2 was very weak. They have studied also the effect of temperature on the acid-induced (pH 5) interaction of bromelain-solubilized HA (BHA) with vesicles.« less
Splaying of aliphatic tails plays a central role in barrier crossing during liposome fusion.
Mirjanian, Dina; Dickey, Allison N; Hoh, Jan H; Woolf, Thomas B; Stevens, Mark J
2010-09-02
The fusion between two lipid bilayers involves crossing a complicated energy landscape. The limiting barrier in the process appears to be between two closely opposed bilayers and the intermediate state where the outer leaflets are fused. We have performed molecular dynamics simulations to characterize the free energy barrier for the fusion of two liposomes and to examine the molecular details of barrier crossing. To capture the slow dynamics of fusion, a model using coarse-grained representations of lipids was used. The fusion between pairs of liposomes was simulated for four systems: DPPC, DOPC, a 3:1 mixture of DPPC/DPPE, and an asymmetric lipid tail system in which one tail of DPPC was reduced to half the length (ASTail). The weighted histogram method was used to compute the free energy as a function of separation distance. The relative barrier heights for these systems was found to be ASTail > DPPC > DPPC/DPPE > DOPC, in agreement with experimental observations. Further, the free energy curves for all four can be overlaid on a single curve by plotting the free energy versus the surface separation (differing only in the point of fusion). These simulations also confirm that the two main contributions to the free energy barrier are the removal of water between the vesicles and the deformation of the vesicle. The most prominent molecular detail of barrier crossing in all cases examined was the splaying of lipid tails, where initially a single splayed lipid formed a bridge between the two outer leaflets that promotes additional lipid mixing between the vesicles and eventually leads to fusion. The tail splay appears to be closely connected to the energetics of the process. For example, the high barrier for the ASTail is the result of a smaller distance between terminal methyl groups in the splayed molecule. The shortening of this distance requires the liposomes to be closer together, which significantly increases the cost of water removal and bilayer deformation. Before tail splay can initiate fusion, contact must occur between a tail end and the external water. In isolated vesicles, the contact fraction is correlated to the fusogenicity difference between DPPC and DOPC. Moreover, for planar bilayers, the contact fraction is much lower for DPPC, which is consistent with its lack of fusion in giant vesicles. The simulation results show the key roles of lipid tail dynamics in governing the fusion energy landscape.
Complexin and Ca2+ stimulate SNARE-mediated membrane fusion
Yoon, Tae-Young; Lu, Xiaobind; Diao, Jiajie; Lee, Soo-Min; Ha, Taekjip; Shin, Yeon-Kyun
2008-01-01
Ca2+-triggered, synchronized synaptic vesicle fusion underlies interneuronal communication. Complexin is a major binding partner of the SNARE complex, the core fusion machinery at the presynapse. The physiological data on complexin, however, have been at odds with each other, making delineation of its molecular function difficult. Here we report direct observation of two-faceted functions of complexin using the single-vesicle fluorescence fusion assay and EPR. We show that complexin I has two opposing effects on trans-SNARE assembly: inhibition of SNARE complex formation and stabilization of assembled SNARE complexes. Of note, SNARE-mediated fusion is markedly stimulated by complexin, and it is further accelerated by two orders of magnitude in response to an externally applied Ca2+ wave. We suggest that SNARE complexes, complexins and phospholipids collectively form a complex substrate for Ca2+ and Ca2+-sensing fusion effectors in neurotransmitter release. PMID:18552825
Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion.
Hoekstra, D
1982-06-08
The relationship between lipid phase separation and fusion of small unilamellar phosphatidylserine-containing vesicles was investigated. The kinetics of phase separation were monitored by following the increase of self-quenching of the fluorescent phospholipid analogue N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine, which occurs when the local concentration of the probe increases upon Ca2+-induced phase separation in phosphatidylserine (PS) bilayers [Hoekstra, D. (1982) Biochemistry 21, 1055-1061]. Fusion was determined by using the resonance energy transfer fusion assay [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099], which monitors the mixing of fluorescent lipid donor and acceptor molecules, resulting in an increase in energy transfer efficiency. The results show that in the presence of Ca2+, fusion proceeds much more rapidly (t 1/2 less than 5 s) than the process of phase separation (T 1/2 congruent to 1 min). Mg2+ also induced fusion, albeit at higher concentrations than Ca2+. Mg2+-induced phase separation were not detected, however. Subthreshold concentrations of Ca2+ (0.5 mM) or Mg2+ (2 mM) induced extensive fusion of PS-containing vesicles in poly(ethylene glycol) containing media. This effect did not appear to be a poly(ethylene glycol)-facilitated enhancement of cation binding to the bilayer, and consequently Ca2+-induced phase separation was not observed. The results suggest that macroscopic phase separation may facilitate but does not induced the fusion process and is therefore, not directly involved in the actual fusion mechanism. The fusion experiments performed in the presence of poly(ethylene glycol) suggest that the degree of bilayer dehydration and the creation of "point defects" in the bilayer without rigorous structural rearrangements in the membrane are dominant factors in the initial fusion events.
An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles.
Heyward, Catherine A; Pettitt, Trevor R; Leney, Sophie E; Welsh, Gavin I; Tavaré, Jeremy M; Wakelam, Michael J O
2008-05-20
Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.
Stochastic Model of Vesicular Sorting in Cellular Organelles
NASA Astrophysics Data System (ADS)
Vagne, Quentin; Sens, Pierre
2018-02-01
The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intracellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations, considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values lead to fast sorting but result in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well-defined sorted compartments but sorting is exponentially slow. Our results suggest an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components and highlight the importance of stochastic effects for the steady-state organization of intracellular compartments.
Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E
2017-01-01
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (Otof Ala515,Ala517/Ala515,Ala517) with lower Ca2+-binding affinity of the C2C domain. The IHC ribbon synapse structure, synaptic Ca2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca2+ concentration, by varying Ca2+ influx through voltage-gated Ca2+-channels or Ca2+ uncaging. Otoferlin thus functions as a Ca2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone. PMID:29111973
Michalski, Nicolas; Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E; Dulon, Didier; Safieddine, Saaid; Petit, Christine
2017-11-07
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C 2 -domain, Ca 2+ -binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice ( Otof Ala515,Ala517/Ala515,Ala517 ) with lower Ca 2+ -binding affinity of the C 2 C domain. The IHC ribbon synapse structure, synaptic Ca 2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca 2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca 2+ concentration, by varying Ca 2+ influx through voltage-gated Ca 2+ -channels or Ca 2+ uncaging. Otoferlin thus functions as a Ca 2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone.
Trafficking of astrocytic vesicles in hippocampal slices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potokar, Maja; Kreft, Marko; Celica Biomedical Center, Technology Park 24, 1000 Ljubljana
2009-12-25
The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing livemore » cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.« less
Daily, Neil J; Boswell, Kristin L; James, Declan J; Martin, Thomas F J
2010-11-12
CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca(2+)-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis.
Daily, Neil J.; Boswell, Kristin L.; James, Declan J.; Martin, Thomas F. J.
2010-01-01
CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca2+-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis. PMID:20826818
Towards fully automated Identification of Vesicle-Membrane Fusion Events in TIRF Microscopy
NASA Astrophysics Data System (ADS)
Vallotton, Pascal; James, David E.; Hughes, William E.
2007-11-01
Total Internal Reflection Fluorescence Microscopy (TIRFM) is imposing itself as the tool of choice for studying biological activity in close proximity to the plasma membrane. For example, the exquisite selectivity of TIRFM allows monitoring the diffusion of GFP-phogrin vesicles and their recruitment to the plasma membrane in pancreatic β-cells. We present a novel computer vision system for automatically identifying the elusive fusion events of GFP-phogrin vesicles with the plasma membrane. Our method is based on robust object tracking and matched filtering. It should accelerate the quantification of TIRFM data and allow the extraction of more biological information from image data to support research in diabetes and obesity.
Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations
Han, Jing; Pluhackova, Kristyna; Wassenaar, Tsjerk A.; Böckmann, Rainer A.
2015-01-01
Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin’s TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes. PMID:26287628
In vitro assay using engineered yeast vacuoles for neuronal SNARE-mediated membrane fusion
Ko, Young-Joon; Lee, Miriam; Kang, KyeongJin; Song, Woo Keun; Jun, Youngsoo
2014-01-01
Intracellular membrane fusion requires not only SNARE proteins but also other regulatory proteins such as the Rab and Sec1/Munc18 (SM) family proteins. Although neuronal SNARE proteins alone can drive the fusion between synthetic liposomes, it remains unclear whether they are also sufficient to induce the fusion of biological membranes. Here, through the use of engineered yeast vacuoles bearing neuronal SNARE proteins, we show that neuronal SNAREs can induce membrane fusion between yeast vacuoles and that this fusion does not require the function of the Rab protein Ypt7p or the SM family protein Vps33p, both of which are essential for normal yeast vacuole fusion. Although excess vacuolar SNARE proteins were also shown to mediate Rab-bypass fusion, this fusion required homotypic fusion and vacuole protein sorting complex, which bears Vps33p and was accompanied by extensive membrane lysis. We also show that this neuronal SNARE-driven vacuole fusion can be stimulated by the neuronal SM protein Munc18 and blocked by botulinum neurotoxin serotype E, a well-known inhibitor of synaptic vesicle fusion. Taken together, our results suggest that neuronal SNARE proteins are sufficient to induce biological membrane fusion, and that this new assay can be used as a simple and complementary method for investigating synaptic vesicle fusion mechanisms. PMID:24821814
Ratnayake, Punsisi U.; Ekanayaka, E. A. Prabodha; Komanduru, Sweta S.; Weliky, David P.
2015-01-01
Influenza virus is a Class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5–6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ~25, ~160, ~25, and ~10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP + SE, and SHA2-TM ≡ SE + TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm > 90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM. PMID:26297995
Costello, Deirdre A; Hsia, Chih-Yun; Millet, Jean K; Porri, Teresa; Daniel, Susan
2013-05-28
Virus-like particles are useful materials for studying virus-host interactions in a safe manner. However, the standard production of pseudovirus based on the vesicular stomatitis virus (VSV) backbone is an intricate procedure that requires trained laboratory personnel. In this work, a new strategy for creating virus-like proteoliposomes (VLPLs) and virus-like supported bilayers (VLSBs) is presented. This strategy uses a cell blebbing technique to induce the formation of nanoscale vesicles from the plasma membrane of BHK cells expressing the hemagglutinin (HA) fusion protein of influenza X-31. These vesicles and supported bilayers contain HA and are used to carry out single particle membrane fusion events, monitored using total internal reflection fluorescence microscopy. The results of these studies show that the VLPLs and VLSBs contain HA proteins that are fully competent to carry out membrane fusion, including the formation of a fusion pore and the release of fluorophores loaded into vesicles. This new strategy for creating spherical and planar geometry virus-like membranes has many potential applications. VLPLs could be used to study fusion proteins of virulent viruses in a safe manner, or they could be used as therapeutic delivery particles to transport beneficial proteins coexpressed in the cells to a target cell. VLSBs could facilitate high throughput screening of antiviral drugs or pathogen-host cell interactions.
Coupling Between Metabolism and Compartmentalization: Vesicle Growth in the Presence of Dipeptides
NASA Astrophysics Data System (ADS)
Wei, C.; Pohorille, A.
2017-07-01
Extensive molecular dynamics simulations demonstrate low energy pathway for fast fusion of vesicle mediated by membrane-bound hydrophobic dipeptides and facilitated flip-flop transport of fatty acid molecule for transmembrane proton transfer.
Jun, Yong Woong; Wang, Taejun; Hwang, Sekyu; Kim, Dokyoung; Ma, Donghee; Kim, Ki Hean; Kim, Sungjee; Jung, Junyang; Ahn, Kyo Han
2018-06-05
Vesicles exchange its contents through membrane fusion processes-kiss-and-run and full-collapse fusion. Indirect observation of these fusion processes using artificial vesicles enhanced our understanding on the molecular mechanisms involved. Direct observation of the fusion processes in a real biological system, however, remains a challenge owing to many technical obstacles. We disclose a ratiometric two-photon probe offering real-time tracking of lysosomal ATP with quantitative information for the first time. By applying the probe to two-photon live-cell imaging technique, lysosomal membrane fusion process in cells has been directly observed along with the concentration of its content-lysosomal ATP. Results show that the kiss-and-run process between lysosomes proceeds through repeating transient interactions with gradual content mixing, whereas the full-fusion process occurs at once. Furthermore, it is confirmed that both the fusion processes proceed with conservation of the content. Such a small-molecule probe exerts minimal disturbance and hence has potential for studying various biological processes associated with lysosomal ATP. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Drulis-Kawa, Zuzanna; Dorotkiewicz-Jach, Agata; Gubernator, Jerzy; Gula, Grzegorz; Bocer, Tomasz; Doroszkiewicz, Wlodzimierz
2009-02-09
The interactions between cationic liposomal formulations (PC:Chol:DOTAP 3:4:3) and 23 Pseudomonas aeruginosa strains were tested. The study was undertaken because different antimicrobial results had been obtained by the authors for Pseudomonas aeruginosa strains and liposomal antibiotics (Drulis-Kawa, Z., Gubernator, J., Dorotkiewicz-Jach, A., Doroszkiewicz, W., Kozubek, A., 2006. The comparison of in vitro antimicrobial activity of liposomes containing meropenem and gentamicin. Cell. Mol. Biol. Lett., 11, 360-375; Drulis-Kawa, Z., Gubernator, J., Dorotkiewicz-Jach, A., Doroszkiewicz W., Kozubek, A., 2006. In vitro antimicrobial activity of liposomal meropenem against Pseudomonas aeruginosa strains. Int. J. Pharm., 315, 59-66). The experiments evaluate the roles of the bacterial outer-membrane structure, especially outer-membrane proteins and LPS, and envelope properties (hydrophobicity and electrostatic potential) in the interactions/fusion process between cells and lipid vesicles. The interactions were examined by fluorescent microscopy using PE-rhodamine-labelled liposomes. Some of the strains exhibited red-light emission (fusion with vesicles or vesicles surrounding the cell) and some showed negative reaction (no red-light emission). The main aim of the study was to determine what kinds of bacterial structure or envelope properties have a major influence on the fusion process. Negatively charged cells and hydrophobic properties promote interaction with cationic lipid vesicles, but no specific correlation was noted for the tested strains. A similar situation concerned LPS structure, where parent strains and their mutants possessing identical ladder-like band patterns in SDS-PAGE analysis exhibited totally different results with fluorescent microscopy. Outer-membrane protein analysis showed that an 18-kDA protein occurred in the isolates showing fusion with rhodamine-labelled vesicles and, conversely, strains lacking the 18-kDA protein exhibited no positive reaction (red emission). This suggests that even one protein may be responsible for favouring stronger interactions between Pseudomonas aeruginosa cells and cationic liposomal formulations (PC:Chol:DOTAP 3:4:3).
PI(4,5)P2-binding effector proteins for vesicle exocytosis
Martin, Thomas F. J.
2014-01-01
PI(4,5)P2 participates directly in priming and possibly fusion steps of Ca2+-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P2 reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P2 domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P2 directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P2-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P2 effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P2, which promotes clustering, but an activating role for PI(4,5)P2 in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P2-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P2-binding proteins. PMID:25280637
Smith, Matthew B; Karatekin, Erdem; Gohlke, Andrea; Mizuno, Hiroaki; Watanabe, Naoki; Vavylonis, Dimitrios
2011-10-05
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Effect of gamma irradiation on hyaluronic acid and dipalmitoylphosphatidylcholine (DPPC) interaction
NASA Astrophysics Data System (ADS)
Ahmad, Ainee Fatimah; Mohd, Hur Munawar Kabir; bin Ayob, Muhammad Taqiyuddin Mawardi; Rosli, Nur Ratasha Alia Md; Mohamed, Faizal; Radiman, Shahidan; Rahman, Irman Abdul
2014-09-01
DPPC lipids are the major component constituting the biological membrane, and their importances in various physiological functions are well documented. Hyaluronic acid (HA) in the synovial joint fluid functions as a lubricant, shock absorber and a nutrient carrier. Gamma irradiation has also been found to be effective in depolymerizing and cleaving molecular chains related to free radicals, thus extends with changes in chemical composition as well as its physiological functions. This research are conducted to investigate the hyaluronic acid (HA) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) interaction in form of vesicles and its effect to gamma radiation. The size of DPPC vesicles formed via gentle hydration method is between 100 to 200 nm in diameter. HA (0.1, 0.5 and 1.0 mg/ml) was added into the vesicles and characterized by using TEM to determine vesicle size distributions, fusion and rupture of DPPC structure. The results demonstrated that the size of the vesicles approximately between 200 to 300 nm which caused by vesicles fusion with HA and formed even larger vesicles. After being irradiated by 0 to 200 Gy, the size of vesicles decreased as HA was degraded. To elucidate the mechanism of these effects, FTIR spectra were carried out and have shown that at absorption bands at 1700-1750 cm-1 due to formation of carboxylic acid and leads to alteration of HA structure.
Involvement of vesicle coat material in casein secretion and surface regeneration
1976-01-01
The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces. PMID:1254641
NASA Astrophysics Data System (ADS)
Ngatchou, Annita
2010-01-01
Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.
Single-molecule studies of the neuronal SNARE fusion machinery.
Brunger, Axel T; Weninger, Keith; Bowen, Mark; Chu, Steven
2009-01-01
SNAREs are essential components of the machinery for Ca(2+)-triggered fusion of synaptic vesicles with the plasma membrane, resulting in neurotransmitter release into the synaptic cleft. Although much is known about their biophysical and structural properties and their interactions with accessory proteins such as the Ca(2+) sensor synaptotagmin, their precise role in membrane fusion remains an enigma. Ensemble studies of liposomes with reconstituted SNAREs have demonstrated that SNAREs and accessory proteins can trigger lipid mixing/fusion, but the inability to study individual fusion events has precluded molecular insights into the fusion process. Thus, this field is ripe for studies with single-molecule methodology. In this review, we discuss applications of single-molecule approaches to observe reconstituted SNAREs, their complexes, associated proteins, and their effect on biological membranes. Some of the findings are provocative, such as the possibility of parallel and antiparallel SNARE complexes or of vesicle docking with only syntaxin and synaptobrevin, but have been confirmed by other experiments.
Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane
Wen, Peter J.; Grenklo, Staffan; Arpino, Gianvito; Tan, Xinyu; Liao, Hsien-Shun; Heureaux, Johanna; Peng, Shi-Yong; Chiang, Hsueh-Cheng; Hamid, Edaeni; Zhao, Wei-Dong; Shin, Wonchul; Näreoja, Tuomas; Evergren, Emma; Jin, Yinghui; Karlsson, Roger; Ebert, Steven N.; Jin, Albert; Liu, Allen P.; Shupliakov, Oleg; Wu, Ling-Gang
2016-01-01
Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30–300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging. PMID:27576662
Proteomic Analysis of Rat Hippocampus under Simulated Microgravity
NASA Astrophysics Data System (ADS)
Wang, Yun; Li, Yujuan; Zhang, Yongqian; Liu, Yahui; Deng, Yulin
It has been found that microgravity may lead to impairments in cognitive functions performed by CNS. However, the exact mechanism of effects of microgravity on the learning and memory function in animal nervous system is not elucidated yet. Brain function is mainly mediated by membrane proteins and their dysfunction causes degeneration of the learning and memory. To induce simulated microgravity, the rat tail suspension model was established. Comparative O (18) labeling quantitative proteomic strategy was applied to detect the differentially expressed proteins in rat brain hippocampus. The proteins in membrane fraction from rat hippocampus were digested by trypsin and then the peptides were separated by off-gel for the first dimension with 24 wells device encompassing the pH range of 3 - 10. An off-gel fraction was subjected into LC-ESI-QTOF in triplicate. Preliminary results showed that nearly 77% of the peptides identified were specific to one fraction. 676 proteins were identified among which 108 proteins were found differentially expressed under simulated microgravity. Using the KOBAS server, many enriched pathways, such as metabolic pathway, synaptic vesicle cycle, endocytosis, calcium signaling pathway, and SNAREs pathway were identified. Furthermore, it has been found that neurotransmitter released by Ca (2+) -triggered synaptic vesicles fusion may play key role in neural function. Rab 3A might inhibit the membrane fusion and neurotransmitter release. The protein alteration of the synaptic vesicle cycle may further explain the effects of microgravity on learning and memory function in rats. Key words: Microgravity; proteomics; synaptic vesicle; O (18) ({}) -labeling
Lee, Jun Bae; Lee, Dong Ryeol; Choi, Nak Cho; Jang, Jihui; Park, Chun Ho; Yoon, Moung Seok; Lee, Miyoung; Won, Kyoungae; Hwang, Jae Sung; Kim, B Moon
2015-10-12
Over the past decades, there has been a growing interest in dermal drug delivery. Although various novel delivery devices and methods have been developed, dermal delivery is still challenging because of problems such as poor drug permeation, instability of vesicles and drug leakage from vesicles induced by fusion of vesicles. To solve the vesicle instability problems in current dermal delivery systems, we developed materials comprised of liquid crystals as a new delivery vehicle of retinyl palmitate and report the characterization of the liquid crystals using a Mueller matrix polarimetry. The stability of the liquid-crystal materials was evaluated using the polarimeter as a novel evaluation tool along with other conventional methods. The dermal delivery of retinyl palmitate was investigated through the use of confocal Raman spectroscopy. The results indicate that the permeation of retinyl palmitate was enhanced by up to 106% compared to that using an ordinary emulsion with retinyl palmitate. Copyright © 2015 Elsevier B.V. All rights reserved.
Imaging plasma membrane deformations with pTIRFM.
Passmore, Daniel R; Rao, Tejeshwar C; Peleman, Andrew R; Anantharam, Arun
2014-04-02
To gain novel insights into the dynamics of exocytosis, our group focuses on the changes in lipid bilayer shape that must be precisely regulated during the fusion of vesicle and plasma membranes. These rapid and localized changes are achieved by dynamic interactions between lipids and specialized proteins that control membrane curvature. The absence of such interactions would not only have devastating consequences for vesicle fusion, but a host of other cellular functions that involve control of membrane shape. In recent years, the identity of a number of proteins with membrane-shaping properties has been determined. What remains missing is a roadmap of when, where, and how they act as fusion and content release progress. Our understanding of the molecular events that enable membrane remodeling has historically been limited by a lack of analytical methods that are sensitive to membrane curvature or have the temporal resolution to track rapid changes. PTIRFM satisfies both of these criteria. We discuss how pTIRFM is implemented to visualize and interpret rapid, submicron changes in the orientation of chromaffin cell membranes during dense core vesicle (DCV) fusion. The chromaffin cells we use are isolated from bovine adrenal glands. The membrane is stained with a lipophilic carbocyanine dye,1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate, or diD. DiD intercalates in the membrane plane with a "fixed" orientation and is therefore sensitive to the polarization of the evanescent field. The diD-stained cell membrane is sequentially excited with orthogonal polarizations of a 561 nm laser (p-pol, s-pol). A 488 nm laser is used to visualize vesicle constituents and time the moment of fusion. Exocytosis is triggered by locally perfusing cells with a depolarizing KCl solution. Analysis is performed offline using custom-written software to understand how diD emission intensity changes relate to fusion pore dilation.
Belluzzi, Elisa; Gonnelli, Adriano; Cirnaru, Maria-Daniela; Marte, Antonella; Plotegher, Nicoletta; Russo, Isabella; Civiero, Laura; Cogo, Susanna; Carrion, Maria Perèz; Franchin, Cinzia; Arrigoni, Giorgio; Beltramini, Mariano; Bubacco, Luigi; Onofri, Franco; Piccoli, Giovanni; Greggio, Elisa
2016-01-13
Lrrk2, a gene linked to Parkinson's disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins. Here, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion. We therefore investigated whether LRRK2 phosphorylates component(s) of the exo/endocytosis machinery. We have previously observed that LRRK2 interacts with NSF, a hexameric AAA+ ATPase that couples ATP hydrolysis to the disassembling of SNARE proteins allowing them to enter another fusion cycle during synaptic exocytosis. Here, we demonstrate that NSF is a substrate of LRRK2 kinase activity. LRRK2 phosphorylates full-length NSF at threonine 645 in the ATP binding pocket of D2 domain. Functionally, NSF phosphorylated by LRRK2 displays enhanced ATPase activity and increased rate of SNARE complex disassembling. Substitution of threonine 645 with alanine abrogates LRRK2-mediated increased ATPase activity. Given that the most common Parkinson's disease LRRK2 G2019S mutation displays increased kinase activity, our results suggest that mutant LRRK2 may impair synaptic vesicle dynamics via aberrant phosphorylation of NSF.
Basset, Antoine; Bouthemy, Patrick; Boulanger, Jérôme; Waharte, François; Salamero, Jean; Kervrann, Charles
2017-07-24
Characterizing membrane dynamics is a key issue to understand cell exchanges with the extra-cellular medium. Total internal reflection fluorescence microscopy (TIRFM) is well suited to focus on the late steps of exocytosis at the plasma membrane. However, it is still a challenging task to quantify (lateral) diffusion and estimate local dynamics of proteins. A new model was introduced to represent the behavior of cargo transmembrane proteins during the vesicle fusion to the plasma membrane at the end of the exocytosis process. Two biophysical parameters, the diffusion coefficient and the release rate parameter, are automatically estimated from TIRFM image sequences, to account for both the lateral diffusion of molecules at the membrane and the continuous release of the proteins from the vesicle to the plasma membrane. Quantitative evaluation on 300 realistic computer-generated image sequences demonstrated the efficiency and accuracy of the method. The application of our method on 16 real TIRFM image sequences additionally revealed differences in the dynamic behavior of Transferrin Receptor (TfR) and Langerin proteins. An automated method has been designed to simultaneously estimate the diffusion coefficient and the release rate for each individual vesicle fusion event at the plasma membrane in TIRFM image sequences. It can be exploited for further deciphering cell membrane dynamics.
Yang, Yoosoo; Kong, Byoungjae; Jung, Younghoon; Park, Joon-Bum; Oh, Jung-Mi; Hwang, Jaesung; Cho, Jae Youl; Kweon, Dae-Hyuk
2018-01-01
Vesicle-associated V-soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and target membrane-associated T-SNAREs (syntaxin 4 and SNAP-23) assemble into a core trans -SNARE complex that mediates membrane fusion during mast cell degranulation. This complex plays pivotal roles at various stages of exocytosis from the initial priming step to fusion pore opening and expansion, finally resulting in the release of the vesicle contents. In this study, peptides with the sequences of various SNARE motifs were investigated for their potential inhibitory effects against SNARE complex formation and mast cell degranulation. The peptides with the sequences of the N-terminal regions of vesicle-associated membrane protein 2 (VAMP2) and VAMP8 were found to reduce mast cell degranulation by inhibiting SNARE complex formation. The fusion of protein transduction domains to the N-terminal of each peptide enabled the internalization of the fusion peptides into the cells equally as efficiently as cell permeabilization by streptolysin-O without any loss of their inhibitory activities. Distinct subsets of mast cell granules could be selectively regulated by the N-terminal-mimicking peptides derived from VAMP2 and VAMP8, and they effectively decreased the symptoms of atopic dermatitis in mouse models. These results suggest that the cell membrane fusion machinery may represent a therapeutic target for atopic dermatitis.
Neurotransmitter release mechanisms studied in Caenorhabditis elegans.
Barclay, Jeff W; Morgan, Alan; Burgoyne, Robert D
2012-01-01
The process of regulated exocytosis has received considerable interest as a key component of synaptic transmission. Fusion of presynaptic vesicles and the subsequent release of their neurotransmitter contents is driven by a series of interactions between evolutionarily conserved proteins. Key insights into the molecular mechanisms of vesicle fusion have come from research using genetic model systems such as the nematode worm Caenorhabditis elegans. We review here the current knowledge regarding regulated exocytosis at the C. elegans synapse and future research directions involving this model organism. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xing, Pengyao; Wang, Yajie; Yang, Minmin; Zhang, Yimeng; Wang, Bo; Hao, Aiyou
2016-07-13
Vesicles with dynamic membranes provide an ideal model system for investigating biological membrane activities, whereby vesicle aggregation behaviors including adhesion, fusion, fission, and membrane contraction/extension have attracted much attention. In this work we utilize an aromatic amino acid (pyrene-appended glutamic acid, PGlu) to prepare nanovesicles that aggregate to form vesicle clusters selectively induced by Fe(3+) or Cu(2+), and the vesicles transform into irregular nano-objects when interacting with Al(3+). Vesicle clusters have better stability than pristine vesicles, which hinders the spontaneous morphological transformation from vesicles into lamellar nanosheets with long incubation period. The difference between complexation of Fe(3+) and Al(3+) with vesicles was studied by various techniques. On the basis of metal ion-vesicle interactions, this self-assembled nanovesicle system also behaves as an effective fluorescent sensor for Fe(3+) and Al(3+), which cause fluorescence quenching and enhanced excimer emission, respectively.
Martins, Paula; Machado, Daisy; Theizen, Thais Holtz; Guarnieri, João Paulo Oliveira; Bernardes, Bruno Gaia; Gomide, Gabriel Piccirillo; Corat, Marcus Alexandre Finzi; Abbehausen, Camilla; Módena, José Luiz Proença; Melo, Carlos Fernando Odir Rodrigues; Morishita, Karen Noda; Catharino, Rodrigo Ramos; Arns, Clarice Weis; Lancellotti, Marcelo
2018-05-29
The increase of Zika virus (ZIKV) infections in Brazil in the last two years leaves a prophylactic measures on alert for this new and emerging pathogen. Concerning of our positive experience, we developed a new prototype using Neisseria meningitidis outer membrane vesicles (OMV) on ZIKV cell growth in a fusion of OMV in the envelope of virus particles. The fusion of nanoparticles resulting from outer membrane vesicles of N. meningitidis with infected C6/36 cells line were analyzed by Nano tracking analysis (NTA), zeta potential, differential light scattering (DLS), scan and scanning transmission eletronic microscopy (SEM and STEM) and high resolution mass spectometry (HRMS) for nanostructure characterization. Also, the vaccination effects were viewed by immune response in mice protocols immunization (ELISA and inflammatory chemokines) confirmed by Zika virus soroneutralization test. The results of immunizations in mice showed that antibody production had a titer greater than 1:160 as compared to unvaccinated mice. The immune response of the adjuvant and non-adjuvant formulation activated the cellular immune response TH1 and TH2. In addition, the serum neutralization was able to prevent infection of virus particles in the glial tumor cell model (M059J). This research shows efficient strategies without recombinant technology or DNA vaccines.
Ultrafast endocytosis at mouse hippocampal synapses
NASA Astrophysics Data System (ADS)
Watanabe, Shigeki; Rost, Benjamin R.; Camacho-Pérez, Marcial; Davis, M. Wayne; Söhl-Kielczynski, Berit; Rosenmund, Christian; Jorgensen, Erik M.
2013-12-01
To sustain neurotransmission, synaptic vesicles and their associated proteins must be recycled locally at synapses. Synaptic vesicles are thought to be regenerated approximately 20s after fusion by the assembly of clathrin scaffolds or in approximately 1s by the reversal of fusion pores via `kiss-and-run' endocytosis. Here we use optogenetics to stimulate cultured hippocampal neurons with a single stimulus, rapidly freeze them after fixed intervals and examine the ultrastructure using electron microscopy--`flash-and-freeze' electron microscopy. Docked vesicles fuse and collapse into the membrane within 30ms of the stimulus. Compensatory endocytosis occurs within 50 to 100ms at sites flanking the active zone. Invagination is blocked by inhibition of actin polymerization, and scission is blocked by inhibiting dynamin. Because intact synaptic vesicles are not recovered, this form of recycling is not compatible with kiss-and-run endocytosis; moreover, it is 200-fold faster than clathrin-mediated endocytosis. It is likely that `ultrafast endocytosis' is specialized to restore the surface area of the membrane rapidly.
Fusion of single proteoliposomes with planar, cushioned bilayers in microfluidic flow cells
Karatekin, Erdem; Rothman, James E.
2013-01-01
Many biological processes rely on membrane fusion, therefore assays to study its mechanisms are necessary. Here we report an assay with sensitivity to single-vesicle, even to single-molecule events using fluorescently labeled vesicle-associated v-SNARE liposomes and target-membrane-associated t-SNARE-reconstituted planar, supported bilayers (SBLs). Docking and fusion events can be detected using conventional far-field epifluorescence or total internal reflection fluorsecence microscopy. Unlike most previous attempts, fusion here is dependent on SNAP25, one of the t-SNARE subunits that is required for fusion in vivo. The success of the assay is due to the use of (i) bilayers covered with a thin layer of poly(ethylene glycol) to control bilayer-bilayer and bilayer-substrate interactions, (ii) microfluidic flow channels which presents many advantages such as the removal of non-specifically bound liposomes by flow. The protocol takes 6–8 days to complete. Analysis can take up to two weeks. PMID:22517259
Direct simulation of amphiphilic nanoparticle mediated membrane interactions
NASA Astrophysics Data System (ADS)
Tahir, Mukarram; Alexander-Katz, Alfredo
Membrane fusion is a critical step in the transport of biological cargo through membrane-bound compartments like vesicles. Membrane proteins that alleviate energy barriers for initial stalk formation and eventual rupture of the hemifusion intermediate during fusion generally assist this process. Gold nanoparticles functionalized with a combination of hydrophobic and hydrophilic alkanethiol ligands have recently been shown to induce membrane re-arrangements that are similar to those associated with these fusion proteins. In this work, we utilize molecular dynamics simulation to systematically design nanoparticles that exhibit targeted interactions with membranes. We introduce a method for rapidly parameterizing nanoparticle topology for the MARTINI biomolecular force field to permit long timescale simulation of their interactions with lipid bilayers. We leverage this model to investigate how ligand chemistry governs the nanoparticle's insertion efficacy and the perturbations it generates in the membrane environment. We further demonstrate through unbiased simulations that these nanoparticles can direct the fusion of lipid assemblies such as micelles and vesicles in a manner that mimics the function of biological fusion peptides and SNARE proteins.
Nour, Adel M.; Li, Yue; Wolenski, Joseph; Modis, Yorgo
2013-01-01
Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion. PMID:24039574
Shin, Wonchul; Ge, Lihao; Arpino, Gianvito; Villarreal, Seth A; Hamid, Edaeni; Liu, Huisheng; Zhao, Wei-Dong; Wen, Peter J; Chiang, Hsueh-Cheng; Wu, Ling-Gang
2018-05-03
Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation. Published by Elsevier Inc.
The Fusion of Membranes and Vesicles: Pathway and Energy Barriers from Dissipative Particle Dynamics
Grafmüller, Andrea; Shillcock, Julian; Lipowsky, Reinhard
2009-01-01
The fusion of lipid bilayers is studied with dissipative particle dynamics simulations. First, to achieve control over membrane properties, the effects of individual simulation parameters are studied and optimized. Then, a large number of fusion events for a vesicle and a planar bilayer are simulated using the optimized parameter set. In the observed fusion pathway, configurations of individual lipids play an important role. Fusion starts with individual lipids assuming a splayed tail configuration with one tail inserted in each membrane. To determine the corresponding energy barrier, we measure the average work for interbilayer flips of a lipid tail, i.e., the average work to displace one lipid tail from one bilayer to the other. This energy barrier is found to depend strongly on a certain dissipative particle dynamics parameter, and, thus, can be adjusted in the simulations. Overall, three subprocesses have been identified in the fusion pathway. Their energy barriers are estimated to lie in the range 8–15 kBT. The fusion probability is found to possess a maximum at intermediate tension values. As one decreases the tension, the fusion probability seems to vanish before the tensionless membrane state is attained. This would imply that the tension has to exceed a certain threshold value to induce fusion. PMID:19348749
Fusion competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking
Wang, Shan Shan H.; Held, Richard G.; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S.
2016-01-01
In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483
Sriram, V; Krishnan, K S; Mayor, Satyajit
2003-05-12
Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.
Synaptotagmin C2B Domain Regulates Ca2+-triggered Fusion in Vitro
Gaffaney, Jon D.; Dunning, F. Mark; Wang, Zhao; Hui, Enfu; Chapman, Edwin R.
2008-01-01
Synaptotagmin (syt) 1 is localized to synaptic vesicles, binds Ca2+, and regulates neuronal exocytosis. Syt 1 harbors two Ca2+-binding motifs referred to as C2A and C2B. In this study we examine the function of the isolated C2 domains of Syt 1 using a reconstituted, SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor)-mediated, fusion assay. We report that inclusion of phosphatidylethanolamine into reconstituted SNARE vesicles enabled isolated C2B, but not C2A, to regulate Ca2+-triggered fusion. The isolated C2B domain had a 6-fold lower EC for Ca2+ 50-activated fusion than the intact cytosolic domain of Syt 1 (C2AB). Phosphatidylethanolamine increased both the rate and efficiency of C2AB- and C2B-regulated fusion without affecting their abilities to bind membrane-embedded syntaxin-SNAP-25 (t-SNARE) complexes. At equimolar concentrations, the isolated C2A domain was an effective inhibitor of C2B-, but not C2AB-regulated fusion; hence, C2A has markedly different effects in the fusion assay depending on whether it is tethered to C2B. Finally, scanning alanine mutagenesis of C2AB revealed four distinct groups of mutations within the C2B domain that play roles in the regulation of SNARE-mediated fusion. Surprisingly, substitution of Arg-398 with alanine, which lies on the opposite end of C2B from the Ca2+/membrane-binding loops, decreases C2AB t-SNARE binding and Ca2+-triggered fusion in vitro without affecting Ca2+-triggered interactions with phosphatidylserine or vesicle aggregation. In addition, some mutations uncouple the clamping and stimulatory functions of syt 1, suggesting that these two activities are mediated by distinct structural determinants in C2B. PMID:18784080
The Rab3A-22A Chimera Prevents Sperm Exocytosis by Stabilizing Open Fusion Pores*
Quevedo, María F.; Lucchesi, Ornella; Bustos, Matías A.; Pocognoni, Cristian A.; De la Iglesia, Paola X.
2016-01-01
At the final stage of exocytotis, a fusion pore opens between the plasma and a secretory vesicle membranes; typically, when the pore dilates the vesicle releases its cargo. Sperm contain a large dense-core secretory granule (the acrosome) whose contents are secreted by regulated exocytosis at fertilization. Minutes after the arrival of the triggering signal, the acrosomal and plasma membranes dock at multiple sites and fusion pores open at the contact points. It is believed that immediately afterward, fusion pores dilate spontaneously. Rab3A is an essential component of human sperm exocytotic machinery. Yet, recombinant, persistently active Rab3A halts calcium-triggered secretion when introduced after docking into streptolysin O-permeabilized cells; so does a Rab3A-22A chimera. Here, we applied functional assays, electron and confocal microscopy to show that the secretion blockage is due to the stabilization of open fusion pores. Other novel findings are that sperm SNAREs engage in α-SNAP/NSF-sensitive complexes at a post-fusion stage. Complexes are disentangled by these chaperons to achieve vesiculation and acrosomal contents release. Thus, post-fusion regulation of the pores determines their expansion and the success of the acrosome reaction. PMID:27613869
Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation.
Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S; Tang, Hui; McGurren, Kelly A; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O
2017-07-01
Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pszon-Bartosz, Kamila; Hansen, Jesper S.; Technical University of Denmark, Department of Micro- and Nanotechnology, DK-2800 Kongens Lyngby
2011-03-04
Research highlights: {yields} We have established a vesicle fusion efficacy assay based on the major non-specific porin of Fusobacterium nucleatum (FomA). {yields} Maximal fusion obtained was almost 150,000 porin insertions during 20 min. {yields} Incorporation can be either first order or exponential kinetics which has implications for establishing protein delivery to biomimetic membranes. -- Abstract: Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We establish a proteinmore » incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR) = 50 more than 10{sup 5} FomA proteins could be incorporated in a bilayer array with a total membrane area of 2 mm{sup 2} within 20 min. This novel assay for quantifying protein delivery into lipid bilayers may be a useful tool in developing biomimetic membrane applications.« less
Uda, Ryoko M; Hiraishi, Eri; Ohnishi, Ryo; Nakahara, Yoshio; Kimura, Keiichi
2010-04-20
Photoinduced morphological changes in phosphatidylcholine vesicles are triggered by a Malachite Green leuconitrile derivative dissolved in the lipidic membrane, and are observed at Malachite Green derivative/lipid ratios <5 mol %. This Malachite Green derivative is a photoresponsive compound that undergoes ionization to afford a positive charge on the molecule by UV irradiation. The Malachite Green derivative exhibits amphiphilicity when ionized photochemically, whereas it behaves as a lipophilic compound under dark conditions. Cryo-transmission electron microscopy was used to determine vesicle morphology. The effects of the Malachite Green derivative on vesicles were studied by dynamic light scattering and fluorescence resonance energy transfer. Irradiation of vesicles containing the Malachite Green derivative induces nonspherical vesicle morphology, fusion of vesicles, and membrane solubilization, depending on conditions. Furthermore, irradiation of the Malachite Green derivative induces the release of a vesicle-encapsulated compound.
Self-assembled polyhydroxy fatty acids vesicles: a mechanism for plant cutin synthesis.
Heredia-Guerrero, José A; Benítez, José J; Heredia, Antonio
2008-03-01
Despite its biological importance, the mechanism of formation of cutin, the polymeric matrix of plant cuticles, has not yet been fully clarified. Here, for the first time, we show the participation in the process of lipid vesicles formed by the self-assembly of endogenous polyhydroxy fatty acids. The accumulation and fusion of these vesicles (cutinsomes) at the outer part of epidermal cell wall is proposed as the mechanism for early cuticle formation.
Structures and mechanisms of vesicle coat components and multisubunit tethering complexes
Jackson, Lauren P; Kümmel, Daniel; Reinisch, Karin M; Owen, David J
2012-01-01
Eukaryotic cells face a logistical challenge in ensuring prompt and precise delivery of vesicular cargo to specific organelles within the cell. Coat protein complexes select cargo and initiate vesicle formation, while multisubunit tethering complexes participate in the delivery of vesicles to target membranes. Understanding these macromolecular assemblies has greatly benefited from their structural characterization. Recent structural data highlight principles in coat recruitment and uncoating in both the endocytic and retrograde pathways, and studies on the architecture of tethering complexes provide a framework for how they might link vesicles to the respective acceptor compartments and the fusion machinery. PMID:22728063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, So-Hee; Moon, Jeonghee; Lee, Myungkyu
2013-09-13
Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified asmore » a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.« less
Ibarguren, Maitane; Sot, Jesús; Montes, L Ruth; Vasil, Adriana I; Vasil, Michael L; Goñi, Félix M; Alonso, Alicia
2013-01-01
When giant unilamellar vesicles (GUVs) composed of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, and cholesterol are treated with PlcHR(2), a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa, the initial stages of lipid hydrolysis do not cause large changes in vesicle morphology (Ibarguren et al., 2011). However, when hydrolysis progresses confocal fluorescence microscopy reveals the formation of lipid aggregates, whose morphology is not compatible with that of bilayers. Smaller vesicles or droplets can also be seen inside the GUV. Our studies indicate that these aggregates or droplets are enriched in the non-lamellar lipid ceramide, an end-product of PlcHR(2) reaction. Moreover, the aggregates/droplets appear enriched in the hydrolytic enzyme PlcHR(2). At a final stage GUVs containing the enzyme-enriched droplets disintegrate and vanish from the microscope field. The observed non-lamellar enzyme-rich structures may be related to intermediates in the process of aggregation and fusion although the experimental design prevents vesicle free diffusion in the aqueous medium, thus actual aggregation or fusion cannot be observed. 2012 Elsevier Ireland Ltd. All rights reserved
Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder.
Lipstein, Noa; Verhoeven-Duif, Nanda M; Michelassi, Francesco E; Calloway, Nathaniel; van Hasselt, Peter M; Pienkowska, Katarzyna; van Haaften, Gijs; van Haelst, Mieke M; van Empelen, Ron; Cuppen, Inge; van Teeseling, Heleen C; Evelein, Annemieke M V; Vorstman, Jacob A; Thoms, Sven; Jahn, Olaf; Duran, Karen J; Monroe, Glen R; Ryan, Timothy A; Taschenberger, Holger; Dittman, Jeremy S; Rhee, Jeong-Seop; Visser, Gepke; Jans, Judith J; Brose, Nils
2017-03-01
Munc13 proteins are essential regulators of neurotransmitter release at nerve cell synapses. They mediate the priming step that renders synaptic vesicles fusion-competent, and their genetic elimination causes a complete block of synaptic transmission. Here we have described a patient displaying a disorder characterized by a dyskinetic movement disorder, developmental delay, and autism. Using whole-exome sequencing, we have shown that this condition is associated with a rare, de novo Pro814Leu variant in the major human Munc13 paralog UNC13A (also known as Munc13-1). Electrophysiological studies in murine neuronal cultures and functional analyses in Caenorhabditis elegans revealed that the UNC13A variant causes a distinct dominant gain of function that is characterized by increased fusion propensity of synaptic vesicles, which leads to increased initial synaptic vesicle release probability and abnormal short-term synaptic plasticity. Our study underscores the critical importance of fine-tuned presynaptic control in normal brain function. Further, it adds the neuronal Munc13 proteins and the synaptic vesicle priming process that they control to the known etiological mechanisms of psychiatric and neurological synaptopathies.
Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder
Lipstein, Noa; Verhoeven-Duif, Nanda M.; Calloway, Nathaniel; van Hasselt, Peter M.; Pienkowska, Katarzyna; van Haelst, Mieke M.; van Empelen, Ron; Cuppen, Inge; van Teeseling, Heleen C.; Evelein, Annemieke M.V.; Vorstman, Jacob A.; Jahn, Olaf; Duran, Karen J.; Monroe, Glen R.; Ryan, Timothy A.; Taschenberger, Holger; Rhee, Jeong-Seop; Visser, Gepke; Jans, Judith J.
2017-01-01
Munc13 proteins are essential regulators of neurotransmitter release at nerve cell synapses. They mediate the priming step that renders synaptic vesicles fusion-competent, and their genetic elimination causes a complete block of synaptic transmission. Here we have described a patient displaying a disorder characterized by a dyskinetic movement disorder, developmental delay, and autism. Using whole-exome sequencing, we have shown that this condition is associated with a rare, de novo Pro814Leu variant in the major human Munc13 paralog UNC13A (also known as Munc13-1). Electrophysiological studies in murine neuronal cultures and functional analyses in Caenorhabditis elegans revealed that the UNC13A variant causes a distinct dominant gain of function that is characterized by increased fusion propensity of synaptic vesicles, which leads to increased initial synaptic vesicle release probability and abnormal short-term synaptic plasticity. Our study underscores the critical importance of fine-tuned presynaptic control in normal brain function. Further, it adds the neuronal Munc13 proteins and the synaptic vesicle priming process that they control to the known etiological mechanisms of psychiatric and neurological synaptopathies. PMID:28192369
Fusion pores and their control of neurotransmitter and hormone release
Chang, Che-Wei; Chiang, Chung-Wei
2017-01-01
Ca2+-triggered exocytosis functions broadly in the secretion of chemical signals, enabling neurons to release neurotransmitters and endocrine cells to release hormones. The biological demands on this process can vary enormously. Although synapses often release neurotransmitter in a small fraction of a millisecond, hormone release can be orders of magnitude slower. Vesicles usually contain multiple signaling molecules that can be released selectively and conditionally. Cells are able to control the speed, concentration profile, and content selectivity of release by tuning and tailoring exocytosis to meet different biological demands. Much of this regulation depends on the fusion pore—the aqueous pathway by which molecules leave a vesicle and move out into the surrounding extracellular space. Studies of fusion pores have illuminated how cells regulate secretion. Furthermore, the formation and growth of fusion pores serve as a readout for the progress of exocytosis, thus revealing key kinetic stages that provide clues about the underlying mechanisms. Herein, we review the structure, composition, and dynamics of fusion pores and discuss the implications for molecular mechanisms as well as for the cellular regulation of neurotransmitter and hormone release. PMID:28167663
Satoh, Keita; Oti, Takumi; Katoh, Akiko; Ueta, Yoichi; Morris, John F; Sakamoto, Tatsuya; Sakamoto, Hirotaka
2015-07-01
Arginine vasopressin (AVP) is a neurohypophysial hormone synthesized as a part of a prepropeptide precursor containing the signal peptide, AVP hormone, AVP-associated neurophysin II and copeptin in the hypothalamic neurosecretory neurons. A transgenic (Tg) rat line expressing the AVP-eGFP fusion gene has been generated. To establish the AVP-eGFP Tg rat as a unique model for an analysis of AVP dynamics in vivo, we first examined the in vivo molecular dynamics of the AVP-eGFP fusion gene, and then the release of GFP in response to physiological stimuli. Double immunoelectron microscopy demonstrated that GFP was specifically localized in neurosecretory vesicles of AVP neurons in this Tg rat. After stimulation of the posterior pituitary with high potassium we demonstrated the exocytosis of AVP neurosecretory vesicles containing GFP at the ultrastructural level. Biochemical analyses indicated that the AVP-eGFP fusion gene is subjected to in vivo post-translational modifications like the native AVP gene, and is packaged into neurosecretory vesicles as a fusion protein: copeptin1-14 -GFP. Moreover, GFP release into the circulating blood appeared to be augmented after osmotic stimulation, like native AVP. Thus, here we show for the first time the in vivo molecular processing of the AVP-eGFP fusion gene and stimulated secretion after osmotic stimulation in rats. Because GFP behaved like native AVP in the hypothalamo-pituitary axis, and in particular was released into the circulation in response to a physiological stimulus, the AVP-eGFP Tg rat model appears to be a powerful tool for analyzing neuroendocrine systems at the organismal level. © 2015 FEBS.
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-01-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. PMID:26399746
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
NASA Astrophysics Data System (ADS)
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-09-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier.
Tsuboi, Takashi; Kikuta, Toshiteru; Sakurai, Takashi; Terakawa, Susumu
2002-01-01
It has been a long belief that release of substances from the cell to the extracellular milieu by exocytosis is completed by diffusion of the substances from secretory vesicles through the fusion pore. Involvement of any mechanical force that may be superposed on the diffusion to enhance the releasing process has not been elucidated to date. We tackled this problem in cultured bovine chromaffin cells using direct and sensitive methods: the laser-trap forcemetry and the evanescent-wave fluorescence microscopy. With a laser beam, we trapped a micro bead in the vicinity of a cell (with 1 microm of separation) and observed movements of the bead optically. Electrical stimulation of the cell induced many of rapid and transient movements of the bead in a direction away from the cell surface. Upon the same stimulation, secretory vesicles stained with a fluorescent probe, acridine orange, and excited under the evanescent field illumination, showed a flash-like response: a transient increase in fluorescence intensity associated with a diffuse cloud of brightness, followed by a complete disappearance. These mechanical and fluorescence transients indicate a directional flow of substances. Blockers of the Cl(-) channel suppressed the rates of both responses in a characteristic way but not exocytotic fusion itself. Immunocytochemical studies revealed the presence of Cl(-) and K(+) channels on the vesicle membranes. These results suggest that the externalization of hormones or transmitters upon exocytosis of vesicles is augmented by secretion of water from the vesicle membrane through the widened fusion pore, possibly modulating the rate and reach of the hormone or transmitter release and facilitating transport of the signal molecules in intercellular spaces. PMID:12080110
SNARE interactions in membrane trafficking: a perspective from mammalian central synapses.
Kavalali, Ege T
2002-10-01
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are a large family of proteins that are present on all organelles involved in intracellular vesicle trafficking and secretion. The interaction of complementary SNAREs found on opposing membranes presents an attractive lock-and-key mechanism, which may underlie the specificity of vesicle trafficking. Moreover, formation of the tight complex between a vesicle membrane SNARE and corresponding target membrane SNAREs could drive membrane fusion. In synapses, this tight complex, also referred to as the synaptic core complex, is essential for neurotransmitter release. However, recent observations in knockout mice lacking major synaptic SNAREs challenge the prevailing notion on the executive role of these proteins in fusion and open up several questions about their exact role(s) in neurotransmitter release. Persistence of a form of regulated neurotransmitter release in these mutant mice also raises the possibility that other cognate or non-cognate SNAREs may partially compensate for the loss of a particular SNARE. Future analysis of SNARE function in central synapses will also have implications for the role of these molecules in other vesicle trafficking events such as endocytosis and vesicle replenishment. Such analysis can provide a molecular basis for synaptic processes including certain forms of short-term synaptic plasticity. Copyright 2002 Wiley Periodicals, Inc.
The Rab3A-22A Chimera Prevents Sperm Exocytosis by Stabilizing Open Fusion Pores.
Quevedo, María F; Lucchesi, Ornella; Bustos, Matías A; Pocognoni, Cristian A; De la Iglesia, Paola X; Tomes, Claudia N
2016-10-28
At the final stage of exocytotis, a fusion pore opens between the plasma and a secretory vesicle membranes; typically, when the pore dilates the vesicle releases its cargo. Sperm contain a large dense-core secretory granule (the acrosome) whose contents are secreted by regulated exocytosis at fertilization. Minutes after the arrival of the triggering signal, the acrosomal and plasma membranes dock at multiple sites and fusion pores open at the contact points. It is believed that immediately afterward, fusion pores dilate spontaneously. Rab3A is an essential component of human sperm exocytotic machinery. Yet, recombinant, persistently active Rab3A halts calcium-triggered secretion when introduced after docking into streptolysin O-permeabilized cells; so does a Rab3A-22A chimera. Here, we applied functional assays, electron and confocal microscopy to show that the secretion blockage is due to the stabilization of open fusion pores. Other novel findings are that sperm SNAREs engage in α-SNAP/NSF-sensitive complexes at a post-fusion stage. Complexes are disentangled by these chaperons to achieve vesiculation and acrosomal contents release. Thus, post-fusion regulation of the pores determines their expansion and the success of the acrosome reaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kiessling, Volker; Liang, Binyong; Kreutzberger, Alex J. B.; Tamm, Lukas K.
2017-01-01
Synaptic vesicle membrane fusion, the process by which neurotransmitter gets released at the presynaptic membrane is mediated by a complex interplay between proteins and lipids. The realization that the lipid bilayer is not just a passive environment where other molecular players like SNARE proteins act, but is itself actively involved in the process, makes the development of biochemical and biophysical assays particularly challenging. We summarize in vitro assays that use planar supported membranes and fluorescence microscopy to address some of the open questions regarding the molecular mechanisms of SNARE-mediated membrane fusion. Most of the assays discussed in this mini-review were developed in our lab over the last 15 years. We emphasize the sample requirements that we found are important for the successful application of these methods. PMID:28360838
Stanley, Elise F; Reese, Tom S; Wang, Gary Z
2003-10-01
Neurotransmitter release sites at the freeze-fractured frog neuromuscular junction are composed of inner and outer paired rows of large membrane particles, the putative calcium channels, anchored by the ribs of an underlying protein scaffold. We analysed the locations of the release site particles as a reflection of the scaffold structure, comparing particle distributions in secreting terminals with those where secretion was blocked with botulinum toxin A, which cleaves a small segment off SNAP-25, or botulinum toxin C1, which cleaves the cytoplasmic domain of syntaxin. In the idle terminal the inner and outer paired rows were located approximately 25 and approximately 44 nm, respectively, from the release site midline. However, adjacent to vesicular fusion sites both particle rows were displaced towards the midline by approximately 25%. The intervals between the particles along each row were examined by a nearest-neighbour approach. In control terminals the peak interval along the inner row was approximately 17 nm, consistent with previous reports and the spacing of the scaffold ribs. While the average distance between particles in the outer row was also approximately 17 nm, a detailed analysis revealed short 'linear clusters' with a approximately 14 nm interval. These clusters were enriched at vesicle fusion sites, suggesting an association with the docking sites, and were eliminated by botulinum C1, but not A. Our findings suggest, first, that the release site scaffold ribs undergo a predictable, and possibly active, shortening during exocytosis and, second, that at the vesicle docking site syntaxin plays a role in the cross-linking of the rib tips to form the vesicle docking sites.
Zhang, Xinming; Rebane, Aleksander A.; Ma, Lu; Li, Feng; Jiao, Junyi; Qu, Hong; Pincet, Frederic; Rothman, James E.
2016-01-01
Synaptic soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) couple their stepwise folding to fusion of synaptic vesicles with plasma membranes. In this process, three SNAREs assemble into a stable four-helix bundle. Arguably, the first and rate-limiting step of SNARE assembly is the formation of an activated binary target (t)-SNARE complex on the target plasma membrane, which then zippers with the vesicle (v)-SNARE on the vesicle to drive membrane fusion. However, the t-SNARE complex readily misfolds, and its structure, stability, and dynamics are elusive. Using single-molecule force spectroscopy, we modeled the synaptic t-SNARE complex as a parallel three-helix bundle with a small frayed C terminus. The helical bundle sequentially folded in an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a central ionic layer, with total unfolding energy of ∼17 kBT, where kB is the Boltzmann constant and T is 300 K. Peptide binding to the CTD activated the t-SNARE complex to initiate NTD zippering with the v-SNARE, a mechanism likely shared by the mammalian uncoordinated-18-1 protein (Munc18-1). The NTD zippering then dramatically stabilized the CTD, facilitating further SNARE zippering. The subtle bidirectional t-SNARE conformational switch was mediated by the ionic layer. Thus, the t-SNARE complex acted as a switch to enable fast and controlled SNARE zippering required for synaptic vesicle fusion and neurotransmission. PMID:27911771
Suda, Yasuyuki; Tachikawa, Hiroyuki; Inoue, Ichiro; Kurita, Tomokazu; Saito, Chieko; Kurokawa, Kazuo; Nakano, Akihiko; Irie, Kenji
2018-02-01
Sec2 activates Sec4 Rab GTPase as a guanine nucleotide exchange factor for the recruitment of downstream effectors to facilitate tethering and fusion of post-Golgi vesicles at the plasma membrane. During the meiosis and sporulation of budding yeast, post-Golgi vesicles are transported to and fused at the spindle pole body (SPB) to form a de novo membrane, called the prospore membrane. Previous studies have revealed the role of the SPB outer surface called the meiotic outer plaque (MOP) in docking and fusion of post-Golgi vesicles. However, the upstream molecular machinery for post-Golgi vesicular fusion that facilitates prospore membrane formation remains enigmatic. Here, we demonstrate that the GTP exchange factor for Sec4, Sec2, participates in the formation of the prospore membrane. A conditional mutant in which the SEC2 expression is shut off during sporulation showed sporulation defects. Inactivation of Sec2 caused Sec4 targeting defects along the prospore membranes, thereby causing insufficient targeting of downstream effectors and cargo proteins to the prospore membrane. These results suggest that the activation of Sec4 by Sec2 is required for the efficient supply of post-Golgi vesicles to the prospore membrane and thus for prospore membrane formation/extension and subsequent deposition of spore wall materials. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Trans-Membrane Area Asymmetry Controls the Shape of Cellular Organelles
Beznoussenko, Galina V.; Pilyugin, Sergei S.; Geerts, Willie J. C.; Kozlov, Michael M.; Burger, Koert N. J.; Luini, Alberto; Derganc, Jure; Mironov, Alexander A.
2015-01-01
Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle. Thus, the shape of the organelle could be critically dependent on TAA. Here, using mathematical modeling and stereological measurements of TAA during fast transformation of organelle shapes, we present evidence that suggests that when organelle volume and surface area are constant, TAA can regulate transformation of the shape of the Golgi apparatus, endosomal multivesicular bodies, and microvilli of brush borders of kidney epithelial cells. Extraction of membrane curvature by small spheres, such as COPI-dependent vesicles within the Golgi (extraction of positive curvature), or by intraluminal vesicles within endosomes (extraction of negative curvature) controls the shape of these organelles. For instance, Golgi tubulation is critically dependent on the fusion of COPI vesicles with Golgi cisternae, and vice versa, for the extraction of membrane curvature into 50–60 nm vesicles, to induce transformation of Golgi tubules into cisternae. Also, formation of intraluminal ultra-small vesicles after fusion of endosomes allows equilibration of their TAA, volume and surface area. Finally, when microvilli of the brush border are broken into vesicles and microvilli fragments, TAA of these membranes remains the same as TAA of the microvilli. Thus, TAA has a significant role in transformation of organelle shape when other factors remain constant. PMID:25761238
Storage vesicles in neurons are related to Golgi complex alterations in mucopolysaccharidosis IIIB.
Vitry, Sandrine; Bruyère, Julie; Hocquemiller, Michaël; Bigou, Stéphanie; Ausseil, Jérôme; Colle, Marie-Anne; Prévost, Marie-Christine; Heard, Jean Michel
2010-12-01
The accumulation of intracellular storage vesicles is a hallmark of lysosomal storage diseases. Neither the identity nor origin of these implicated storage vesicles have yet been established. The vesicles are often considered as lysosomes, endosomes, and/or autophagosomes that are engorged with undigested materials. Our studies in the mouse model of mucopolysaccharidosis type IIIB, a lysosomal storage disease that induces neurodegeneration, showed that large storage vesicles in cortical neurons did not receive material from either the endocytic or autophagy pathway, which functioned normally. Storage vesicles expressed GM130, a Golgi matrix protein, which mediates vesicle tethering in both pre- and cis-Golgi compartments. However, other components of the tethering/fusion complex were not associated with GM130 on storage vesicles, likely accounting for both the resistance of the vesicles to brefeldin A and the alteration of Golgi ribbon architecture, which comprised distended cisterna connected to LAMP1-positive storage vesicles. We propose that alteration in the GM130-mediated control of vesicle trafficking in pre-Golgi and Golgi compartments affects Golgi biogenesis and gives rise to a dead-end storage compartment. Vesicle accumulation, Golgi disorganization, and alterations of other GM130 functions may account for neuron dysfunction and death.
Imaging synaptic vesicle recycling by staining and destaining vesicles with FM dyes.
Hoopmann, Peer; Rizzoli, Silvio O; Betz, William J
2012-01-01
The synaptic vesicle is the essential organelle of the synapse. Many approaches for studying synaptic vesicle recycling have been devised, one of which, the styryl (FM) dye, is well suited for this purpose. FM dyes reversibly stain, but do not permeate, membranes; hence they can specifically label membrane-bound organelles. Their quantum yield is drastically higher when bound to membranes than when in aqueous solution. This protocol describes the imaging of synaptic vesicle recycling by staining and destaining vesicles with FM dyes. Nerve terminals are stimulated (electrically or by depolarization with high K(+)) in the presence of dye, their vesicles are then allowed to recycle, and finally dye is washed from the chamber. In neuromuscular junction (NMJ) preparations, movements of the muscle must be inhibited if imaging during stimulation is desired (e.g., by application of curare, a potent acetylcholine receptor inhibitor). The main characteristics of FM dyes are also reviewed here, as are recent FM dye monitoring techniques that have been used to investigate the kinetics of synaptic vesicle fusion.
Entropic forces drive self-organization and membrane fusion by SNARE proteins
Stratton, Benjamin S.; Warner, Jason M.; Rothman, James E.; O’Shaughnessy, Ben
2017-01-01
SNARE proteins are the core of the cell’s fusion machinery and mediate virtually all known intracellular membrane fusion reactions on which exocytosis and trafficking depend. Fusion is catalyzed when vesicle-associated v-SNAREs form trans-SNARE complexes (“SNAREpins”) with target membrane-associated t-SNAREs, a zippering-like process releasing ∼65 kT per SNAREpin. Fusion requires several SNAREpins, but how they cooperate is unknown and reports of the number required vary widely. To capture the collective behavior on the long timescales of fusion, we developed a highly coarse-grained model that retains key biophysical SNARE properties such as the zippering energy landscape and the surface charge distribution. In simulations the ∼65-kT zippering energy was almost entirely dissipated, with fully assembled SNARE motifs but uncomplexed linker domains. The SNAREpins self-organized into a circular cluster at the fusion site, driven by entropic forces that originate in steric–electrostatic interactions among SNAREpins and membranes. Cooperative entropic forces expanded the cluster and pulled the membranes together at the center point with high force. We find that there is no critical number of SNAREs required for fusion, but instead the fusion rate increases rapidly with the number of SNAREpins due to increasing entropic forces. We hypothesize that this principle finds physiological use to boost fusion rates to meet the demanding timescales of neurotransmission, exploiting the large number of v-SNAREs available in synaptic vesicles. Once in an unfettered cluster, we estimate ≥15 SNAREpins are required for fusion within the ∼1-ms timescale of neurotransmitter release. PMID:28490503
Hsiao, Jye-Chian; Chu, Li-Wei; Lo, Yung-Tsun; Lee, Sue-Ping; Chen, Tzu-Jung; Huang, Cheng-Yen
2015-01-01
ABSTRACT Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex executes endosomal membrane fission and cargo sorting to the Rab11-positive and Rab22-positive recycling pathway, resulting in membrane fusion and virus core uncoating in the cytoplasm. PMID:26041286
1975-01-01
Depending on their phospholipid composition, liposomes are endocytosed by, or fuse with, the plasma membrane, of Acanthamoeba castellanii. Unilamellar egg lecithin vesicles are endocytosed by amoeba at 28 degrees C with equal uptake of the phospholipid bilayer and the contents of the internal aqueous space of the vesicles. Uptake is inhibited almost completely by incubation at 4 degrees C or in the presence of dinitrophenol. After uptake at 28 degrees C, the vesicle phospholipid can be visualized by electron microscope autoradiography within cytoplasmic vacuoles. In contrast, uptake of unilamellar dipalmitoyl lecithin vesicles and multilamellar dipalmitoyl lecithin liposomes is only partially inhibited at 4 degrees C, by dinitrophenol and by prior fixation of the amoebae with glutaraldehyde, each of which inhibits pinocytosis. Vesicle contents are taken up only about 40% as well as the phospholipid bilayer. Electron micrographs are compatible with the interpretation that dipalmitoyl lecithin vesicles fuse with the amoeba plasma membrane, adding their phospholipid to the cell surface, while their contents enter the cell cytoplasm. Dimyristoyl lecithin vesicles behave like egg lecithin vesicles while distearoyl lecithin vesicles behave like dipalmitoyl lecithin vesicles. PMID:1174130
Afuwape, Olusoji A. T.; Wasser, Catherine R.; Schikorski, Thomas
2016-01-01
Key points Synaptic transmission is mediated by the release of neurotransmitters from synaptic vesicles in response to stimulation or through the spontaneous fusion of a synaptic vesicle with the presynaptic plasma membrane.There is growing evidence that synaptic vesicles undergoing spontaneous fusion versus those fusing in response to stimuli are functionally distinct.In this study, we acutely probe the effects of intravesicular free radical generation on synaptic vesicles that fuse spontaneously or in response to stimuli.By targeting vesicles that preferentially release spontaneously, we can dissociate the effects of intravesicular free radical generation on spontaneous neurotransmission from evoked neurotransmission and vice versa.Taken together, these results further advance our knowledge of the synapse and the nature of the different synaptic vesicle pools mediating neurotransmission. Abstract Earlier studies suggest that spontaneous and evoked neurotransmitter release processes are maintained by synaptic vesicles which are segregated into functionally distinct pools. However, direct interrogation of the link between this putative synaptic vesicle pool heterogeneity and neurotransmission has been difficult. To examine this link, we tagged vesicles with horseradish peroxidase (HRP) – a haem‐containing plant enzyme – or antibodies against synaptotagmin‐1 (syt1). Filling recycling vesicles in hippocampal neurons with HRP and subsequent treatment with hydrogen peroxide (H2O2) modified the properties of neurotransmitter release depending on the route of HRP uptake. While strong depolarization‐induced uptake of HRP suppressed evoked release and augmented spontaneous release, HRP uptake during mild activity selectively impaired evoked release, whereas HRP uptake at rest solely potentiated spontaneous release. Expression of a luminal HRP‐tagged syt1 construct and subsequent H2O2 application resulted in a similar increase in spontaneous release and suppression as well as desynchronization of evoked release, recapitulating the canonical syt1 loss‐of‐function phenotype. An antibody targeting the luminal domain of syt1, on the other hand, showed that augmentation of spontaneous release and suppression of evoked release phenotypes are dissociable depending on whether the antibody uptake occurred at rest or during depolarization. Taken together, these findings indicate that vesicles that maintain spontaneous and evoked neurotransmitter release preserve their identity during recycling and syt1 function in suppression of spontaneous neurotransmission can be acutely dissociated from syt1 function to synchronize synaptic vesicle exocytosis upon stimulation. PMID:27723113
Belosludtsev, Konstantin N; Belosludtseva, Natalia V; Agafonov, Alexey V; Astashev, Maxim E; Kazakov, Alexey S; Saris, Nils-Erik L; Mironova, Galina D
2014-10-01
In the present work, we examine and compare the effects of saturated (palmitic) and unsaturated (oleic) fatty acids in relation to their ability to cause the Ca(2+)-dependent membrane permeabilization. The results obtained can be summarized as follows. (1) Oleic acid (OA) permeabilizes liposomal membranes at much higher concentrations of Ca(2+) than palmitic acid (PA): 1mM versus 100μM respectively. (2) The OA/Ca(2+)-induced permeabilization of liposomes is not accompanied by changes in the phase state of lipid bilayer, in contrast to what is observed with PA and Ca(2+). (3) The addition of Ca(2+) to the PA-containing vesicles does not change their size; in the case of OA, it leads to the appearance of larger and smaller vesicles, with larger vesicles dominating. This can be interpreted as a result of fusion and fission of liposomes. (4) Like PA, OA is able to induce a Ca(2+)-dependent high-amplitude swelling of mitochondria, yet it requires higher concentrations of Ca(2+) (30 and 100μM for PA and OA respectively). (5) In contrast to PA, OA is unable to cause the Ca(2+)-dependent high-amplitude swelling of mitoplasts, suggesting that the cause of OA/Ca(2+)-induced permeability transition in mitochondria may be the fusion of the inner and outer mitochondrial membranes. (6) The presence of OA enhances PA/Ca(2+)-induced permeabilization of liposomes and mitochondria. The paper discusses possible mechanisms of PA/Ca(2+)- and OA/Ca(2+)-induced membrane permeabilization, the probability of these mechanisms to be realized in the cell, and their possible physiological role. Copyright © 2014 Elsevier B.V. All rights reserved.
Dilation of fusion pores by crowding of SNARE proteins
Wu, Zhenyong; Bello, Oscar D; Thiyagarajan, Sathish; Auclair, Sarah Marie; Vennekate, Wensi; Krishnakumar, Shyam S; O'Shaughnessy, Ben; Karatekin, Erdem
2017-01-01
Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v-SNAREs and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed the dilation of single fusion pores using v-SNARE-reconstituted ~23-nm-diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, 'flipped' t-SNAREs. Pore nucleation required a minimum of two v-SNAREs per NLP face, and further increases in v-SNARE copy numbers did not affect nucleation rate. By contrast, the probability of pore dilation increased with increasing v-SNARE copies and was far from saturating at 15 v-SNARE copies per face, the NLP capacity. Our experimental and computational results suggest that SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient ('kiss and run') or an irreversibly dilating pore (full fusion). DOI: http://dx.doi.org/10.7554/eLife.22964.001 PMID:28346138
Optical detection of three modes of endocytosis at hippocampal synapses
Chanaday, Natali L
2018-01-01
Coupling of synaptic vesicle fusion and retrieval constitutes a core mechanism ensuring maintenance of presynaptic function. Recent studies using fast-freeze electron microscopy and capacitance measurements reported an ultrafast mode of endocytosis operating at physiological temperatures. Here, using rat hippocampal neurons, we optically monitored single synaptic vesicle endocytosis with high time resolution using the vesicular glutamate transporter, synaptophysin and the V0a1 subunit of the vacuolar ATPase as probes. In this setting, we could distinguish three components of retrieval operating at ultrafast (~150–250 ms, ~20% of events), fast (~5–12 s, ~40% of events) and ultraslow speeds (>20 s, ~40% of events). While increasing Ca2+ slowed the fast events, increasing temperature accelerated their time course. In contrast, the kinetics of ultrafast events were only mildly affected by these manipulations. These results suggest that synaptic vesicle proteins can be retrieved with ultrafast kinetics, although a majority of evoked fusion events are coupled to slower retrieval mechanisms. PMID:29683423
NASA Astrophysics Data System (ADS)
Ishmukhametov, Robert R.; Russell, Aidan N.; Berry, Richard M.
2016-10-01
An important goal in synthetic biology is the assembly of biomimetic cell-like structures, which combine multiple biological components in synthetic lipid vesicles. A key limiting assembly step is the incorporation of membrane proteins into the lipid bilayer of the vesicles. Here we present a simple method for delivery of membrane proteins into a lipid bilayer within 5 min. Fusogenic proteoliposomes, containing charged lipids and membrane proteins, fuse with oppositely charged bilayers, with no requirement for detergent or fusion-promoting proteins, and deliver large, fragile membrane protein complexes into the target bilayers. We demonstrate the feasibility of our method by assembling a minimal electron transport chain capable of adenosine triphosphate (ATP) synthesis, combining Escherichia coli F1Fo ATP-synthase and the primary proton pump bo3-oxidase, into synthetic lipid vesicles with sizes ranging from 100 nm to ~10 μm. This provides a platform for the combination of multiple sets of membrane protein complexes into cell-like artificial structures.
Exocytosis from chromaffin cells: hydrostatic pressure slows vesicle fusion
Stühmer, Walter
2015-01-01
Pressure affects reaction kinetics because chemical transitions involve changes in volume, and therefore pressure is a standard thermodynamic parameter to measure these volume changes. Many organisms live in environments at external pressures other than one atmosphere (0.1 MPa). Marine animals have adapted to live at depths of over 7000 m (at pressures over 70 MPa), and microorganisms living in trenches at over 110 MPa have been retrieved. Here, kinetic changes in secretion from chromaffin cells, measured as capacitance changes using the patch-clamp technique at pressures of up to 20 MPa are presented. It is known that these high pressures drastically slow down physiological functions. High hydrostatic pressure also affects the kinetics of ion channel gating and the amount of current carried by them, and it drastically slows down synaptic transmission. The results presented here indicate a similar change in volume (activation volume) of 390 ± 57 Å3 for large dense-core vesicles undergoing fusion in chromaffin cells and for degranulation of mast cells. It is significantly larger than activation volumes of voltage-gated ion channels in chromaffin cells. This information will be useful in finding possible protein conformational changes during the reactions involved in vesicle fusion and in testing possible molecular dynamic models of secretory processes. PMID:26009771
USDA-ARS?s Scientific Manuscript database
Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle fusion components that included 22 soluble N-ethylmaleimide...
Ca{sup 2+}-dependent mobility of vesicles capturing anti-VGLUT1 antibodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenovec, Matjaz; Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana; Kreft, Marko
2007-11-01
Several aspects of secretory vesicle cycle have been studied in the past, but vesicle trafficking in relation to the fusion site is less well understood. In particular, the mobility of recaptured vesicles that traffic back toward the central cytoplasm is still poorly defined. We exposed astrocytes to antibodies against the vesicular glutamate transporter 1 (VGLUT1), a marker of glutamatergic vesicles, to fluorescently label vesicles undergoing Ca{sup 2+}-dependent exocytosis and examined their number, fluorescence intensity, and mobility by confocal microscopy. In nonstimulated cells, immunolabeling revealed discrete fluorescent puncta, indicating that VGLUT1 vesicles, which are approximately 50 nm in diameter, cycle slowlymore » between the plasma membrane and the cytoplasm. When the cytosolic Ca{sup 2+} level was raised with ionomycin, the number and fluorescence intensity of the puncta increased, likely because the VGLUT1 epitopes were more accessible to the extracellularly applied antibodies following Ca{sup 2+}-triggered exocytosis. In nonstimulated cells, the mobility of labeled vesicles was limited. In stimulated cells, many vesicles exhibited directional mobility that was abolished by cytoskeleton-disrupting agents, indicating dependence on intact cytoskeleton. Our findings show that postfusion vesicle mobility is regulated and may likely play a role in synaptic vesicle cycle, and also more generally in the genesis and removal of endocytic vesicles.« less
Freeze-thaw cycles induce content exchange between cell-sized lipid vesicles
NASA Astrophysics Data System (ADS)
Litschel, Thomas; Ganzinger, Kristina A.; Movinkel, Torgeir; Heymann, Michael; Robinson, Tom; Mutschler, Hannes; Schwille, Petra
2018-05-01
Early protocells are commonly assumed to consist of an amphiphilic membrane enclosing an RNA-based self-replicating genetic system and a primitive metabolism without protein enzymes. Thus, protocell evolution must have relied on simple physicochemical self-organization processes within and across such vesicular structures. We investigate freeze-thaw (FT) cycling as a potential environmental driver for the necessary content exchange between vesicles. To this end, we developed a conceptually simple yet statistically powerful high-throughput procedure based on nucleic acid-containing giant unilamellar vesicles (GUVs) as model protocells. GUVs are formed by emulsion transfer in glass bottom microtiter plates and hence can be manipulated and monitored by fluorescence microscopy without additional pipetting and sample handling steps. This new protocol greatly minimizes artefacts, such as unintended GUV rupture or fusion by shear forces. Using DNA-encapsulating phospholipid GUVs fabricated by this method, we quantified the extent of content mixing between GUVs under different FT conditions. We found evidence of nucleic acid exchange in all detected vesicles if fast freezing of GUVs at ‑80 °C is followed by slow thawing at room temperature. In contrast, slow freezing and fast thawing both adversely affected content mixing. Surprisingly, and in contrast to previous reports for FT-induced content mixing, we found that the content is not exchanged through vesicle fusion and fission, but that vesicles largely maintain their membrane identity and even large molecules are exchanged via diffusion across the membranes. Our approach supports efficient screening of prebiotically plausible molecules and environmental conditions, to yield universal mechanistic insights into how cellular life may have emerged.
Nikolaus, Joerg; Karatekin, Erdem
2016-01-01
In the ubiquitous process of membrane fusion the opening of a fusion pore establishes the first connection between two formerly separate compartments. During neurotransmitter or hormone release via exocytosis, the fusion pore can transiently open and close repeatedly, regulating cargo release kinetics. Pore dynamics also determine the mode of vesicle recycling; irreversible resealing results in transient, "kiss-and-run" fusion, whereas dilation leads to full fusion. To better understand what factors govern pore dynamics, we developed an assay to monitor membrane fusion using polarized total internal reflection fluorescence (TIRF) microscopy with single molecule sensitivity and ~15 msec time resolution in a biochemically well-defined in vitro system. Fusion of fluorescently labeled small unilamellar vesicles containing v-SNARE proteins (v-SUVs) with a planar bilayer bearing t-SNAREs, supported on a soft polymer cushion (t-SBL, t-supported bilayer), is monitored. The assay uses microfluidic flow channels that ensure minimal sample consumption while supplying a constant density of SUVs. Exploiting the rapid signal enhancement upon transfer of lipid labels from the SUV to the SBL during fusion, kinetics of lipid dye transfer is monitored. The sensitivity of TIRF microscopy allows tracking single fluorescent lipid labels, from which lipid diffusivity and SUV size can be deduced for every fusion event. Lipid dye release times can be much longer than expected for unimpeded passage through permanently open pores. Using a model that assumes retardation of lipid release is due to pore flickering, a pore "openness", the fraction of time the pore remains open during fusion, can be estimated. A soluble marker can be encapsulated in the SUVs for simultaneous monitoring of lipid and soluble cargo release. Such measurements indicate some pores may reseal after losing a fraction of the soluble cargo. PMID:27585113
On the Computing Potential of Intracellular Vesicles
Mayne, Richard; Adamatzky, Andrew
2015-01-01
Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal ‘circuitry’ and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a ‘vesicle modification’ of the archetypal CBC ‘billiard ball model’ of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle ‘programming’ in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435
Zhou, Lu; Evangelinos, Minoas; Wernet, Valentin; Eckert, Antonia F.; Ishitsuka, Yuji; Fischer, Reinhard; Nienhaus, G. Ulrich; Takeshita, Norio
2018-01-01
Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live Aspergillus nidulans cells expressing the photoconvertible protein mEosFPthermo fused to the chitin synthase ChsB. ChsB is mainly located at the Spitzenkörper near the hyphal tip and produces chitin, a key component of the cell wall. We have visualized the pulsatory dynamics of the Spitzenkörper, reflecting vesicle accumulation before exocytosis and their subsequent fusion with the apical plasma membrane. Furthermore, high-speed pulse-chase imaging after photoconversion of mEosFPthermo in a tightly focused spot revealed that ChsB is transported with two different speeds from the cell body to the hyphal tip and vice versa. Comparative analysis using motor protein deletion mutants allowed us to assign the fast movements (7 to 10 μm s−1) to transport of secretory vesicles by kinesin-1, and the slower ones (2 to 7 μm s−1) to transport by kinesin-3 on early endosomes. Our results show how motor proteins ensure the supply of vesicles to the hyphal tip, where temporally regulated exocytosis results in stepwise tip extension. PMID:29387789
Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers
Chan, Yee-Hung M.; Lenz, Peter; Boxer, Steven G.
2007-01-01
Membrane–membrane recognition and binding are crucial in many biological processes. We report an approach to studying the dynamics of such reactions by using DNA-tethered vesicles as a general scaffold for displaying membrane components. This system was used to characterize the docking reaction between two populations of tethered vesicles that display complementary DNA. Deposition of vesicles onto a supported lipid bilayer was performed by using a microfluidic device to prevent mixing of the vesicles in bulk during sample preparation. Once tethered onto the surface, vesicles mixed via two-dimensional diffusion. DNA-mediated docking of two reacting vesicles results in their colocalization after collision and their subsequent tandem motion. Individual docking events and population kinetics were observed via epifluorescence microscopy. A lattice-diffusion simulation was implemented to extract from experimental data the probability, Pdock, that a collision leads to docking. For individual vesicles displaying small numbers of docking DNA, Pdock shows a first-order relationship with copy number as well as a strong dependence on the DNA sequence. Both trends are explained by a model that includes both tethered vesicle diffusion on the supported bilayer and docking DNA diffusion over each vesicle's surface. These results provide the basis for the application of tethered vesicles to study other membrane reactions including protein-mediated docking and fusion. PMID:18025472
NASA Astrophysics Data System (ADS)
Pi, Fengmei; Binzel, Daniel W.; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M.; Guo, Bin; Evers, B. Mark; Guo, Peixuan
2018-01-01
Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.
Nishigami, Misako; Mori, Takaaki; Tomita, Masahiro; Takiguchi, Kingo; Tsumoto, Kanta
2017-07-01
Giant proteoliposomes are generally useful as artificial cell membranes in biochemical and biophysical studies, and various procedures for their preparation have been reported. We present here a novel preparation technique that involves the combination of i) cell-sized lipid vesicles (giant unilamellar vesicles, GUVs) that are generated using the droplet-transfer method, where lipid monolayer-coated water-in-oil microemulsion droplets interact with oil/water interfaces to form enclosed bilayer vesicles, and ii) budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus) that express recombinant transmembrane proteins on their envelopes. GP64, a fusogenic glycoprotein on viral envelopes, is activated by weak acids and is thought to cause membrane fusion with liposomes. Using confocal laser scanning microscopy (CLSM), we observed that the single giant liposomes fused with octadecyl rhodamine B chloride (R18)-labeled wild-type BV envelopes with moderate leakage of entrapped soluble compounds (calcein), and the fusion profile depended on the pH of the exterior solution: membrane fusion occurred at pH ∼4-5. We further demonstrated that recombinant transmembrane proteins, a red fluorescent protein (RFP)-tagged GPCR (corticotropin-releasing hormone receptor 1, CRHR1) and envelope protein GP64 could be partly incorporated into membranes of the individual giant liposomes with a reduction of the pH value, though there were also some immobile fluorescent spots observed on their circumferences. This combination may be useful for preparing giant proteoliposomes containing the desired membranes and inner phases. Copyright © 2017 Elsevier B.V. All rights reserved.
Xiao, Qi; Sherman, Samuel E; Wilner, Samantha E; Zhou, Xuhao; Dazen, Cody; Baumgart, Tobias; Reed, Ellen H; Hammer, Daniel A; Shinoda, Wataru; Klein, Michael L; Percec, Virgil
2017-08-22
A three-component system of Janus dendrimers (JDs) including hydrogenated, fluorinated, and hybrid hydrogenated-fluorinated JDs are reported to coassemble by film hydration at specific ratios into an unprecedented class of supramolecular Janus particles (JPs) denoted Janus dendrimersomes (JDSs). They consist of a dumbbell-shaped structure composed of an onion-like hydrogenated vesicle and an onion-like fluorinated vesicle tethered together. The synthesis of dye-tagged analogs of each JD component enabled characterization of JDS architectures with confocal fluorescence microscopy. Additionally, a simple injection method was used to prepare submicron JDSs, which were imaged with cryogenic transmission electron microscopy (cryo-TEM). As reported previously, different ratios of the same three-component system yielded a variety of structures including homogenous onion-like vesicles, core-shell structures, and completely self-sorted hydrogenated and fluorinated vesicles. Taken together with the JDSs reported herein, a self-sorting pathway is revealed as a function of the relative concentration of the hybrid JD, which may serve to stabilize the interface between hydrogenated and fluorinated bilayers. The fission-like pathway suggests the possibility of fusion and fission processes in biological systems that do not require the assistance of proteins but instead may result from alterations in the ratios of membrane composition.
Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission
Kavalali, Ege T
2007-01-01
Short-term synaptic depression during repetitive activity is a common property of most synapses. Multiple mechanisms contribute to this rapid depression in neurotransmission including a decrease in vesicle fusion probability, inactivation of voltage-gated Ca2+ channels or use-dependent inhibition of release machinery by presynaptic receptors. In addition, synaptic depression can arise from a rapid reduction in the number of vesicles available for release. This reduction can be countered by two sources. One source is replenishment from a set of reserve vesicles. The second source is the reuse of vesicles that have undergone exocytosis and endocytosis. If the synaptic vesicle reuse is fast enough then it can replenish vesicles during a brief burst of action potentials and play a substantial role in regulating the rate of synaptic depression. In the last 5 years, we have examined the impact of synaptic vesicle reuse on neurotransmission using fluorescence imaging of synaptic vesicle trafficking in combination with electrophysiological detection of short-term synaptic plasticity. These studies have revealed that synaptic vesicle reuse shapes the kinetics of short-term synaptic depression in a frequency-dependent manner. In addition, synaptic vesicle recycling helps maintain the level of neurotransmission at steady state. Moreover, our studies showed that synaptic vesicle reuse is a highly plastic process as it varies widely among synapses and can adapt to changes in chronic activity levels. PMID:17690145
Castonguay, Jan; Orth, Joachim H C; Müller, Thomas; Sleman, Faten; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Mallmann, Robert Theodor; Bildl, Wolfgang; Schulte, Uwe; Klugbauer, Norbert
2017-08-30
Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca 2+ concentrations required for SNARE-mediated vesicle fusion.
Architecture of the Synaptotagmin-SNARE Machinery for Neuronal Exocytosis
Zhou, Qiangjun; Lai, Ying; Bacaj, Taulant; Zhao, Minglei; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Brewster, Aaron S.; Sauter, Nicholas K.; Cohen, Aina E.; Soltis, S. Michael; Alonso-Mori, Roberto; Chollet, Matthieu; Lemke, Henrik T.; Pfuetzner, Richard A.; Choi, Ucheor B.; Weis, William I.; Diao, Jiajie; Südhof, Thomas C.; Brunger, Axel T.
2015-01-01
Summary Synaptotagmin-1 and neuronal SNARE proteins play key roles in evoked synchronous neurotransmitter release. However, it is unknown how they cooperate to trigger synaptic vesicle fusion. Here we report atomic-resolution crystal structures of Ca2+- and Mg2+-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many sidechains. The structures revealed several interfaces, including a large, specific, Ca2+-independent, and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca2+-triggered neurotransmitter release in neuronal synapses and for Ca2+-triggered vesicle fusion in a reconstituted system. We propose that this interface forms prior to Ca2+-triggering, and moves en bloc as Ca2+ influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces. PMID:26280336
Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis
Zhou, Qiangjun; Lai, Ying; Bacaj, Taulant; ...
2015-08-17
Synaptotagmin-1 and neuronal SNARE proteins have central roles in evoked synchronous neurotransmitter release; however, it is unknown how they cooperate to trigger synaptic vesicle fusion. We report atomic-resolution crystal structures of Ca 2+- and Mg 2+-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free-electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many side chains. The structures reveal several interfaces, including a large, specific, Ca 2+-independent and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca 2+-triggered neurotransmitter releasemore » in mouse hippocampal neuronal synapses and for Ca 2+-triggered vesicle fusion in a reconstituted system. Lastly, we propose that this interface forms before Ca 2+ triggering, moves en bloc as Ca 2+ influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces.« less
Presynaptic pH and vesicle fusion in Drosophila larvae neurones.
Caldwell, Lesley; Harries, Peter; Sydlik, Sebastian; Schwiening, Christof J
2013-11-01
Both intracellular pH (pHi) and synaptic cleft pH change during neuronal activity yet little is known about how these pH shifts might affect synaptic transmission by influencing vesicle fusion. To address this we imaged pH- and Ca(2+) -sensitive fluorescent indicators (HPTS, Oregon green) in boutons at neuromuscular junctions. Electrical stimulation of motor nerves evoked presynaptic Ca(2+) i rises and pHi falls (∼0.1 pH units) followed by recovery of both Ca(2+) i and pHi. The plasma-membrane calcium ATPase (PMCA) inhibitor, 5(6)-carboxyeosin diacetate, slowed both the calcium recovery and the acidification. To investigate a possible calcium-independent role for the pHi shifts in modulating vesicle fusion we recorded post-synaptic miniature end-plate potential (mEPP) and current (mEPC) frequency in Ca(2+) -free solution. Acidification by propionate superfusion, NH(4)(+) withdrawal, or the inhibition of acid extrusion on the Na(+)/H(+) exchanger (NHE) induced a rise in miniature frequency. Furthermore, the inhibition of acid extrusion enhanced the rise induced by propionate addition and NH(4)(+) removal. In the presence of NH(4)(+), 10 out of 23 cells showed, after a delay, one or more rises in miniature frequency. These findings suggest that Ca(2+) -dependent pHi shifts, caused by the PMCA and regulated by NHE, may stimulate vesicle release. Furthermore, in the presence of membrane permeant buffers, exocytosed acid or its equivalents may enhance release through positive feedback. This hitherto neglected pH signalling, and the potential feedback role of vesicular acid, could explain some important neuronal excitability changes associated with altered pH and its buffering. Copyright © 2013 Wiley Periodicals, Inc.
Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.
Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi
2016-04-19
Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.
Stacking the odds for Golgi cisternal maturation
Mani, Somya; Thattai, Mukund
2016-01-01
What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo. DOI: http://dx.doi.org/10.7554/eLife.16231.001 PMID:27542195
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes.
Diao, Jiajie; Liu, Rong; Rong, Yueguang; Zhao, Minglei; Zhang, Jing; Lai, Ying; Zhou, Qiangjun; Wilz, Livia M; Li, Jianxu; Vivona, Sandro; Pfuetzner, Richard A; Brunger, Axel T; Zhong, Qing
2015-04-23
Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.
Wang, Ning; Lee, I-Ju; Rask, Galen; Wu, Jian-Qiu
2016-01-01
The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II) complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis. PMID:27082518
Khodthong, Chuenchanok; Kabachinski, Greg; James, Declan J; Martin, Thomas F J
2011-08-03
Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis. Copyright © 2011 Elsevier Inc. All rights reserved.
Chung, Gary Hong Chun; Domart, Marie Charlotte; Peddie, Christopher; Mantell, Judith; Mclaverty, Kieran; Arabiotorre, Angela; Hodgson, Lorna; Byrne, Richard D; Verkade, Paul; Arkill, Kenton; Collinson, Lucy M; Larijani, Banafshe
2018-06-12
Dysregulation of nuclear envelope (NE) assembly results in various cancers; for example, renal and some lung carcinomas ensue due to NE malformation. The NE is a dynamic membrane compartment and its completion during mitosis, is a highly regulated process but the detailed mechanism still remains incompletely understood. Previous studies have found isolated diacylglycerol (DAG) containing vesicles are essential for completing the fusion of NE in non-somatic cells. We investigated the impact of DAG depletion from cis-Golgi in mammalian cells on NE reassembly. Using advanced electron microscopy, we observed an enriched DAG population of vesicles at the vicinity of the NE gaps of telophase mammalian cells. We applied a miniSOG-C1-domain tag that localized DAG-enriched vesicles at the perinuclear region, which suggested the existence of NE fusogenic vesicles. We quantified the impact of Golgi-DAG depletion by measuring the in situ NE rim curvature of the re-forming NE. The rim curvature in these cells was significantly reduced compared with controls, which indicated a localized defect in NE morphology. Our novel results demonstrate the significance of the role of DAG from cis-Golgi for the regulation of NE assembly. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery.
Poëa-Guyon, Sandrine; Ammar, Mohamed Raafet; Erard, Marie; Amar, Muriel; Moreau, Alexandre W; Fossier, Philippe; Gleize, Vincent; Vitale, Nicolas; Morel, Nicolas
2013-10-28
Several studies have suggested that the V0 domain of the vacuolar-type H(+)-adenosine triphosphatase (V-ATPase) is directly implicated in secretory vesicle exocytosis through a role in membrane fusion. We report in this paper that there was a rapid decrease in neurotransmitter release after acute photoinactivation of the V0 a1-I subunit in neuronal pairs. Likewise, inactivation of the V0 a1-I subunit in chromaffin cells resulted in a decreased frequency and prolonged kinetics of amperometric spikes induced by depolarization, with shortening of the fusion pore open time. Dissipation of the granular pH gradient was associated with an inhibition of exocytosis and correlated with the V1-V0 association status in secretory granules. We thus conclude that V0 serves as a sensor of intragranular pH that controls exocytosis and synaptic transmission via the reversible dissociation of V1 at acidic pH. Hence, the V-ATPase membrane domain would allow the exocytotic machinery to discriminate fully loaded and acidified vesicles from vesicles undergoing neurotransmitter reloading.
The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery
Poëa-Guyon, Sandrine; Ammar, Mohamed Raafet; Erard, Marie; Amar, Muriel; Moreau, Alexandre W.; Fossier, Philippe; Gleize, Vincent
2013-01-01
Several studies have suggested that the V0 domain of the vacuolar-type H+-adenosine triphosphatase (V-ATPase) is directly implicated in secretory vesicle exocytosis through a role in membrane fusion. We report in this paper that there was a rapid decrease in neurotransmitter release after acute photoinactivation of the V0 a1-I subunit in neuronal pairs. Likewise, inactivation of the V0 a1-I subunit in chromaffin cells resulted in a decreased frequency and prolonged kinetics of amperometric spikes induced by depolarization, with shortening of the fusion pore open time. Dissipation of the granular pH gradient was associated with an inhibition of exocytosis and correlated with the V1–V0 association status in secretory granules. We thus conclude that V0 serves as a sensor of intragranular pH that controls exocytosis and synaptic transmission via the reversible dissociation of V1 at acidic pH. Hence, the V-ATPase membrane domain would allow the exocytotic machinery to discriminate fully loaded and acidified vesicles from vesicles undergoing neurotransmitter reloading. PMID:24165939
Vesicles Are Persistent Features of Different Plastids.
Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik
2016-10-01
Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins
Brunger, Axel T.; Cipriano, Daniel J.; Diao, Jiajie
2015-01-01
Abstract Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed. PMID:25788028
CAPS and Munc13: CATCHRs that SNARE Vesicles.
James, Declan J; Martin, Thomas F J
2013-12-04
CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mammalian Unc-13) proteins function to prime vesicles for Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes (MTCs) have been reported. MTCs coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.
Lindau, Manfred; Hall, Benjamin A.; Chetwynd, Alan; Beckstein, Oliver; Sansom, Mark S.P.
2012-01-01
Fusion of neurosecretory vesicles with the plasma membrane is mediated by SNARE proteins, which transfer a force to the membranes. However, the mechanism by which this force transfer induces fusion pore formation is still unknown. The neuronal vesicular SNARE protein synaptobrevin 2 (syb2) is anchored in the vesicle membrane by a single C-terminal transmembrane (TM) helix. In coarse-grain molecular-dynamics simulations, self-assembly of the membrane occurred with the syb2 TM domain inserted, as expected from experimental data. The free-energy profile for the position of the syb2 membrane anchor in the membrane was determined using umbrella sampling. To predict the free-energy landscapes for a reaction pathway pulling syb2 toward the extravesicular side of the membrane, which is the direction of the force transfer from the SNARE complex, harmonic potentials were applied to the peptide in its unbiased position, pulling it toward new biased equilibrium positions. Application of piconewton forces to the extravesicular end of the TM helix in the simulation detached the synaptobrevin C-terminus from the vesicle's inner-leaflet lipid headgroups and pulled it deeper into the membrane. This C-terminal movement was facilitated and hindered by specific mutations in parallel with experimentally observed facilitation and inhibition of fusion. Direct application of such forces to the intravesicular end of the TM domain resulted in tilting motion of the TM domain through the membrane with an activation energy of ∼70 kJ/mol. The results suggest a mechanism whereby fusion pore formation is induced by movement of the charged syb2 C-terminus within the membrane in response to pulling and tilting forces generated by C-terminal zippering of the SNARE complex. PMID:23009845
Lindau, Manfred; Hall, Benjamin A; Chetwynd, Alan; Beckstein, Oliver; Sansom, Mark S P
2012-09-05
Fusion of neurosecretory vesicles with the plasma membrane is mediated by SNARE proteins, which transfer a force to the membranes. However, the mechanism by which this force transfer induces fusion pore formation is still unknown. The neuronal vesicular SNARE protein synaptobrevin 2 (syb2) is anchored in the vesicle membrane by a single C-terminal transmembrane (TM) helix. In coarse-grain molecular-dynamics simulations, self-assembly of the membrane occurred with the syb2 TM domain inserted, as expected from experimental data. The free-energy profile for the position of the syb2 membrane anchor in the membrane was determined using umbrella sampling. To predict the free-energy landscapes for a reaction pathway pulling syb2 toward the extravesicular side of the membrane, which is the direction of the force transfer from the SNARE complex, harmonic potentials were applied to the peptide in its unbiased position, pulling it toward new biased equilibrium positions. Application of piconewton forces to the extravesicular end of the TM helix in the simulation detached the synaptobrevin C-terminus from the vesicle's inner-leaflet lipid headgroups and pulled it deeper into the membrane. This C-terminal movement was facilitated and hindered by specific mutations in parallel with experimentally observed facilitation and inhibition of fusion. Direct application of such forces to the intravesicular end of the TM domain resulted in tilting motion of the TM domain through the membrane with an activation energy of ∼70 kJ/mol. The results suggest a mechanism whereby fusion pore formation is induced by movement of the charged syb2 C-terminus within the membrane in response to pulling and tilting forces generated by C-terminal zippering of the SNARE complex. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Moon, E.-K.; Lee, S.-T.; Chung, D.-I.; Kong, H.-H.
2006-01-01
Proteinases have been proposed to play important roles in pathogenesis and various biologic actions in Acanthamoeba. Although genetic characteristics of several proteases of Acanthamoeba have been reported, the intracellular localization and trafficking of these enzymes has yet to be studied. In the present study, we analyzed the intracellular localization and trafficking of two proteinases, AhSub and AhCP, of Acanthamoeba healyi by transient transfection. Full-length AhSub-enhanced green fluorescent protein (EGFP) fusion protein was found in intracellular vesicle-like structures of transfected amoebae. Time-lapse photographs confirmed the secretion of the fluorescent material of the vesicle toward the extracellular space. The mutated AhSub, of which the pre or prepro region was deleted, was found to localize diffusely throughout the cytoplasm of the amoeba rather than concentrated in the secretory vesicle. Transfection of the construct containing the pre region only showed the same localization and trafficking of the full-length AhSub. A cysteine proteinase AhCP-EGFP fusion protein showed similar localization in the vesicle-like structure in the amoeba. However, using Lyso Tracker analysis, these vesicular structures of AhCP were confirmed to be lysosomes rather than secretory vesicles. The AhCP construct with a deletion of the prepro region showed a dispersed distribution of fluorescence in the cytoplasm of the cells. These results indicated that AhSub and AhCP would play different roles in Acanthameoba biology and that the pre region of AhSub and pro region of AhCP are important for proper intracellular localization and trafficking of each proteinase. PMID:16400174
Colloidosomes formed by nonpolar/polar/nonpolar nanoball amphiphiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hung-Yu; Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw, E-mail: hktsao@cc.ncu.edu.tw; Tu, Sheng-Hung
2014-08-07
Fullerene-based amphiphiles are able to form bilayer vesicles in aqueous solution. In this study, the self-assembly behavior of polymer-tethered nanoballs (NBs) with nonpolar/polar/nonpolar (n-p-n{sup ′}) motif in a selective solvent is investigated by dissipative particle dynamics. A model NB bears two hydrophobic polymeric arms (n{sup ′}-part) tethered on an extremely hydrophobic NB (n-part) with hydrophilic patch (p-part) patterned on its surface. Dependent on the hydrophobicity and length of tethered arms, three types of aggregates are exhibited, including NB vesicle, core-shell micelle, and segmented-worm. NB vesicles are developed for a wide range of hydrophobic arm lengths. The presence of tethered armsmore » perturbs the bilayer structure formed by NBs. The structural properties including the order parameter, membrane thickness, and area density of the inner leaflet decrease with increasing the arm length. These results indicate that for NBs with longer arms, the extent of interdigitation in the membrane rises so that the overcrowded arms in the inner corona are relaxed. The transport and mechanical properties are evaluated as well. As the arm length grows, the permeability increases significantly because the steric bulk of tethered arms loosens the packing of NBs. By contrast, the membrane tension decreases owing to the reduction of NB/solvent contacts by the polymer corona. Although fusion can reduce membrane tension, NB vesicles show strong resistance to fusion. Moreover, the size-dependent behavior observed in small liposomes is not significant for NB vesicles due to isotropic geometry of NB. Our simulation results are consistent with the experimental findings.« less
Terasaki, Mark; Miyake, Katsuya; McNeil, Paul L.
1997-01-01
A microneedle puncture of the fibroblast or sea urchin egg surface rapidly evokes a localized exocytotic reaction that may be required for the rapid resealing that follows this breach in plasma membrane integrity (Steinhardt, R.A,. G. Bi, and J.M. Alderton. 1994. Science (Wash. DC). 263:390–393). How this exocytotic reaction facilitates the resealing process is unknown. We found that starfish oocytes and sea urchin eggs rapidly reseal much larger disruptions than those produced with a microneedle. When an ∼40 by 10 μm surface patch was torn off, entry of fluorescein stachyose (FS; 1,000 mol wt) or fluorescein dextran (FDx; 10,000 mol wt) from extracellular sea water (SW) was not detected by confocal microscopy. Moreover, only a brief (∼5–10 s) rise in cytosolic Ca2+ was detected at the wound site. Several lines of evidence indicate that intracellular membranes are the primary source of the membrane recruited for this massive resealing event. When we injected FS-containing SW deep into the cells, a vesicle formed immediately, entrapping within its confines most of the FS. DiI staining and EM confirmed that the barrier delimiting injected SW was a membrane bilayer. The threshold for vesicle formation was ∼3 mM Ca2+ (SW is ∼10 mM Ca2+). The capacity of intracellular membranes for sealing off SW was further demonstrated by extruding egg cytoplasm from a micropipet into SW. A boundary immediately formed around such cytoplasm, entrapping FDx or FS dissolved in it. This entrapment did not occur in Ca2+-free SW (CFSW). When egg cytoplasm stratified by centrifugation was exposed to SW, only the yolk platelet–rich domain formed a membrane, suggesting that the yolk platelet is a critical element in this response and that the ER is not required. We propose that plasma membrane disruption evokes Ca2+ regulated vesicle–vesicle (including endocytic compartments but possibly excluding ER) fusion reactions. The function in resealing of this cytoplasmic fusion reaction is to form a replacement bilayer patch. This patch is added to the discontinuous surface bilayer by exocytotic fusion events. PMID:9314529
Progress in understanding the neuronal SNARE function and its regulation.
Yoon, T-Y; Shin, Y-K
2009-02-01
Vesicle budding and fusion underlies many essential biochemical deliveries in eukaryotic cells, and its core fusion machinery is thought to be built on one protein family named soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE). Recent technical advances based on site-directed fluorescence labelling and nano-scale detection down to the single-molecule level rapidly unveiled the protein and the lipid intermediates along the fusion pathway as well as the molecular actions of fusion effectors. Here we summarize these new exciting findings in context with a new mechanistic model that reconciles two existing fusion models: the proteinaceous pore model and the hemifusion model. Further, we attempt to locate the points of action for the fusion effectors along the fusion pathway and to delineate the energetic interplay between the SNARE complexes and the fusion effectors.
Hatakeyama, Hiroyasu; Kanzaki, Makoto
2017-08-15
Comprehensive imaging analyses of glucose transporter 4 (GLUT4) behaviour in mouse skeletal muscle was conducted. Quantum dot-based single molecule nanometry revealed that GLUT4 molecules in skeletal myofibres are governed by regulatory systems involving 'static retention' and 'stimulus-dependent liberation'. Vital imaging analyses and super-resolution microscopy-based morphometry demonstrated that insulin liberates the GLUT4 molecule from its static state by triggering acute heterotypic endomembrane fusion arising from the very small GLUT4-containing vesicles in skeletal myofibres. Prior exposure to exercise-mimetic stimuli potentiated this insulin-responsive endomembrane fusion event involving GLUT4-containing vesicles, suggesting that this endomembranous regulation process is a potential site related to the effects of exercise. Skeletal muscle is the major systemic glucose disposal site. Both insulin and exercise facilitate translocation of the glucose transporter glucose transporter 4 (GLUT4) via distinct signalling pathways and exercise also enhances insulin sensitivity. However, the trafficking mechanisms controlling GLUT4 mobilization in skeletal muscle remain poorly understood as a resuly of technical limitations. In the present study, which employs various imaging techniques on isolated skeletal myofibres, we show that one of the initial triggers of insulin-induced GLUT4 translocation is heterotypic endomembrane fusion arising from very small static GLUT4-containing vesicles with a subset of transferrin receptor-containing endosomes. Importantly, pretreatment with exercise-mimetic stimuli potentiated the susceptibility to insulin responsiveness, as indicated by these acute endomembranous activities. We also found that AS160 exhibited stripe-like localization close to sarcomeric α-actinin and that insulin induced a reduction of the stripe-like localization accompanying changes in its detergent solubility. The results of the present study thus provide a conceptual framework indicating that GLUT4 protein trafficking via heterotypic fusion is a critical feature of GLUT4 translocation in skeletal muscles and also suggest that the efficacy of the endomembranous fusion process in response to insulin is involved in the benefits of exercise. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Liu, Linying; Mao, Zheng; Zhang, Jianhua; Liu, Na; Liu, Qing Huo
2016-01-01
The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles) with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV) and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments. PMID:27391692
Endothelial microparticles: Sophisticated vesicles modulating vascular function
Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R
2015-01-01
Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447
Vesicle-mediated growth of tubular branches and centimeter-long microtubes from a single molecule.
Abbas, Abdennour; Brimer, Andrew; Tian, Limei; d'Avignon, D André; Hameed, Abdulrahman Shahul; Vittal, Jagadese J; Singamaneni, Srikanth
2013-08-12
The mechanism by which small molecules assemble into microscale tubular structures in aqueous solution remains poorly understood, particularly when the initial building blocks are non-amphiphilic molecules and no surfactant is used. It is here shown how a subnanometric molecule, namely p-aminothiophenol (p-ATP), prepared in normal water with a small amount of ethanol, spontaneously assembles into a new class of nanovesicle. Due to Brownian motion, these nanostructures rapidly grow into micrometric vesicles and start budding to yield macroscale tubular branches with a remarkable growth rate of ∼20 μm s⁻¹. A real-time visualization by optical microscopy reveals that tubular growth proceeds by vesicle walk and fusion on the apex (growth cone) and sides of the branches and ultimately leads to the generation of centimeter-long microtubes. This unprecedented growth mechanism is triggered by a pH-activated proton switch and maintained by hydrogen bonding. The vesicle fusion-mediated synthesis suggests that functional microtubes with biological properties can be efficiently prepared with a mixture of appropriate diaminophenyl blocks and the desired macromolecule. The reversibility, timescale, and very high yield (90%) of this synthetic approach make it a valuable model for the investigation of hierarchical and structural transition between organized assemblies with different size scales and morphologies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Qi; Rozovsky, Sharon; Chen, Wilfred
2017-07-04
Outer membrane vesicles (OMVs) are proteoliposomes derived from the outer membrane and periplasmic space of many Gram-negative bacteria including E. coli as part of their natural growth cycle. Inspired by the natural ability of E. coli to sort proteins to both the exterior and interior of OMVs, we reported here a one-pot synthesis approach to engineer multi-functionalized OMV-based sensors for both antigen binding and signal generation. SlyB, a native lipoprotein, was used a fusion partner to package nanoluciferase (Nluc) within OMVs, while a previously developed INP-Scaf3 surface scaffold was fused to the Z-domain for antibody recruiting. The multi-functionalized OMVs were used for thrombin detection with a detection limit of 0.5 nM, comparable to other detection methods. Using the cohesin domains inserted between the Z-domain and INP, these engineered OMVs were further functionalized with a dockerin-tagged GFP for cancer cell imaging.
The effect of spontaneous curvature on a two-phase vesicle
Cox, Geoffrey; Lowengrub, John
2015-01-01
Vesicles are membrane-bound structures commonly known for their roles in cellular transport and the shape of a vesicle is determined by its surrounding membrane (lipid bilayer). When the membrane is composed of different lipids, it is natural for the lipids of similar molecular structure to migrate towards one another (via spinodal decomposition), creating a multi-phase vesicle. In this article, we consider a two-phase vesicle model which is driven by nature’s propensity to maintain a minimal state of elastic energy. The model assumes a continuum limit, thereby treating the membrane as a closed three-dimensional surface. The main purpose of this study is to reveal the complexity of the Helfrich two-phase vesicle model with non-zero spontaneous curvature and provide further evidence to support the relevance of spontaneous curvature as a modelling parameter. In this paper, we illustrate the complexity of the Helfrich two-phase model by providing multiple examples of undocumented solutions and energy hysteresis. We also investigate the influence of spontaneous curvature on morphological effects and membrane phenomena such as budding and fusion. PMID:26097287
A kinetic model for chemical neurotransmission
NASA Astrophysics Data System (ADS)
Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco
Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.
A bio-synthetic interface for discovery of viral entry mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutzler, Mike; Maar, Dianna; Negrete, Oscar
2010-09-01
Understanding and defending against pathogenic viruses is an important public health and biodefense challenge. The focus of our LDRD project has been to uncover the mechanisms enveloped viruses use to identify and invade host cells. We have constructed interfaces between viral particles and synthetic lipid bilayers. This approach provides a minimal setting for investigating the initial events of host-virus interaction - (i) recognition of, and (ii) entry into the host via membrane fusion. This understanding could enable rational design of therapeutics that block viral entry as well as future construction of synthetic, non-proliferating sensors that detect live virus in themore » environment. We have observed fusion between synthetic lipid vesicles and Vesicular Stomatitis virus particles, and we have observed interactions between Nipah virus-like particles and supported lipid bilayers and giant unilamellar vesicles.« less
Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes.
Fulcher, F Kent; Smith, Bethany T; Russ, Misty; Patel, Yashomati M
2008-10-15
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.
Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty
2008-10-15
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform viamore » MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.« less
Differences in the Expression and Distribution of Flotillin-2 in Chick, Mice and Human Muscle Cells
Possidonio, Ana Claudia Batista; Soares, Carolina Pontes; Portilho, Débora Morueco; Midlej, Victor; Benchimol, Marlene; Butler-Browne, Gillian; Costa, Manoel Luis; Mermelstein, Claudia
2014-01-01
Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis. PMID:25105415
Differences in the expression and distribution of flotillin-2 in chick, mice and human muscle cells.
Possidonio, Ana Claudia Batista; Soares, Carolina Pontes; Portilho, Débora Morueco; Midlej, Victor; Benchimol, Marlene; Butler-Browne, Gillian; Costa, Manoel Luis; Mermelstein, Claudia
2014-01-01
Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis.
Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons.
Villarreal, Seth; Lee, Sung Hoon; Wu, Ling-Gang
2017-09-04
During endocytosis, fused synaptic vesicles are retrieved at nerve terminals, allowing for vesicle recycling and thus the maintenance of synaptic transmission during repetitive nerve firing. Impaired endocytosis in pathological conditions leads to decreases in synaptic strength and brain functions. Here, we describe methods used to measure synaptic vesicle endocytosis at the mammalian hippocampal synapse in neuronal culture. We monitored synaptic vesicle protein endocytosis by fusing a synaptic vesicular membrane protein, including synaptophysin and VAMP2/synaptobrevin, at the vesicular lumenal side, with pHluorin, a pH-sensitive green fluorescent protein that increases its fluorescence intensity as the pH increases. During exocytosis, vesicular lumen pH increases, whereas during endocytosis vesicular lumen pH is re-acidified. Thus, an increase of pHluorin fluorescence intensity indicates fusion, whereas a decrease indicates endocytosis of the labelled synaptic vesicle protein. In addition to using the pHluorin imaging method to record endocytosis, we monitored vesicular membrane endocytosis by electron microscopy (EM) measurements of Horseradish peroxidase (HRP) uptake by vesicles. Finally, we monitored the formation of nerve terminal membrane pits at various times after high potassium-induced depolarization. The time course of HRP uptake and membrane pit formation indicates the time course of endocytosis.
Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains
Wu, Zhenyong; Thiyagarajan, Sathish; O’Shaughnessy, Ben; Karatekin, Erdem
2017-01-01
Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs). Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx) and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs) of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores in a biochemically defined setting which have recently become available. Finally, computer simulations are valuable mechanistic tools because they have the power to access small length scales and very short times that are experimentally inaccessible. PMID:29066949
The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes
Marwaha, Rituraj; Arya, Subhash B.; Jagga, Divya; Kaur, Harmeet
2017-01-01
Endocytic, autophagic, and phagocytic vesicles move on microtubule tracks to fuse with lysosomes. Small GTPases, such as Rab7 and Arl8b, recruit their downstream effectors to mediate this transport and fusion. However, the potential cross talk between these two GTPases is unclear. Here, we show that the Rab7 effector PLEKHM1 simultaneously binds Rab7 and Arl8b, bringing about clustering and fusion of late endosomes and lysosomes. We show that the N-terminal RUN domain of PLEKHM1 is necessary and sufficient for interaction with Arl8b and its subsequent localization to lysosomes. Notably, we also demonstrate that Arl8b mediates recruitment of HOPS complex to PLEKHM1-positive vesicle contact sites. Consequently, Arl8b binding to PLEKHM1 is required for its function in delivery and, therefore, degradation of endocytic and autophagic cargo in lysosomes. Finally, we also show that PLEKHM1 competes with SKIP for Arl8b binding, which dictates lysosome positioning. These findings suggest that Arl8b, along with its effectors, orchestrates lysosomal transport and fusion. PMID:28325809
Reconstruction of mammalian oocytes by germinal vesicle transfer: A systematic review
Darbandi, Sara; Darbandi, Mahsa; Khorram Khorshid, Hamid Reza; Shirazi, Abolfazl; Sadeghi, Mohammad Reza; Agarwal, Ashok; Al-Hasani, Safaa; Naderi, Mohammad Mehdi; Ayaz, Ahmet; Akhondi, Mohammad Mehdi
2017-01-01
Nuclear transfer procedures have been recently applied for clinical and research targets as a novel assisted reproductive technique and were used for increasing the oocyte activity during its growth and maturation. In this review, we summarized the nuclear transfer technique for germinal vesicle stage oocytes to reconstruct the maturation of them. Our study covered publications between 1966 and August 2017. In result utilized germinal vesicle transfer techniques, fusion, and fertilization survival rate on five different mammalian species are discussed, regarding their potential clinical application. It seems that with a study on this method, there is real hope for effective treatments of old oocytes or oocytes containing mitochondrial problems in the near future. PMID:29387825
Cholesterol-dependent balance between evoked and spontaneous synaptic vesicle recycling
Wasser, Catherine R; Ertunc, Mert; Liu, Xinran; Kavalali, Ege T
2007-01-01
Cholesterol is a prominent component of nerve terminals. To examine cholesterol's role in central neurotransmission, we treated hippocampal cultures with methyl-β-cyclodextrin, which reversibly binds cholesterol, or mevastatin, an inhibitor of cholesterol biosynthesis, to deplete cholesterol. We also used hippocampal cultures from Niemann-Pick type C1-deficient mice defective in intracellular cholesterol trafficking. These conditions revealed an augmentation in spontaneous neurotransmission detected electrically and an increase in spontaneous vesicle endocytosis judged by horseradish peroxidase uptake after cholesterol depletion by methyl-β-cyclodextrin. In contrast, responses evoked by action potentials and hypertonicity were severely impaired after the same treatments. The increase in spontaneous vesicle recycling and the decrease in evoked neurotransmission were reversible upon cholesterol addition. Cholesterol removal did not impact on the low level of evoked neurotransmission seen in the absence of synaptic vesicle SNARE protein synaptobrevin-2 whereas the increase in spontaneous fusion remained. These results suggest that synaptic cholesterol balances evoked and spontaneous neurotransmission by hindering spontaneous synaptic vesicle turnover and sustaining evoked exo-endocytosis. PMID:17170046
Proteins on exocytic vesicles mediate calcium-triggered fusion.
Vogel, S S; Zimmerberg, J
1992-01-01
In many exocytic systems, micromolar concentrations of intracellular Ca2+ trigger fusion. We find that aggregates of secretory granules isolated from sea urchin eggs fuse together when perfused with greater than or equal to 10 microM free Ca2+. Mixing of membrane components was demonstrated by transfer of fluorescent lipophilic dye, and melding of granule contents was seen with differential interference microscopy. A technique based upon light scattering was developed to conveniently detect fusion. Two protein modifiers, trypsin and N-ethylmaleimide, inhibit granule-granule fusion at concentrations similar to those that inhibit granule-plasma membrane fusion. We suggest that molecular machinery sufficient for Ca(2+)-triggered fusion resides on secretory granules as purified and that at least some of these essential components are proteinaceous. Images PMID:1584814
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Hiroyuki; Peck, Grantley R.; Blachon, Stephanie
Insulin increases glucose transport in fat and muscle cells by stimulating the exocytosis of specialized vesicles containing the glucose transporter GLUT4. This process, which is referred to as GLUT4 translocation, increases the amount of GLUT4 at the cell surface. Previous studies have provided evidence that insulin signaling increases the amount of Rab10-GTP in the GLUT4 vesicles and that GLUT4 translocation requires the exocyst, a complex that functions in the tethering of vesicles to the plasma membrane, leading to exocytosis. In the present study we show that Rab10 in its GTP form binds to Exoc6 and Exoc6b, which are the twomore » highly homologous isotypes of an exocyst subunit, that both isotypes are found in 3T3-L1 adipocytes, and that knockdown of Exoc6, Exoc6b, or both inhibits GLUT4 translocation in 3T3-L1 adipocytes. These results suggest that the association of Rab10-GTP with Exoc6/6b is a molecular link between insulin signaling and the exocytic machinery in GLUT4 translocation. - Highlights: • Insulin stimulates the fusion of vesicles containing GLUT4 with the plasma membrane. • This requires vesicular Rab10-GTP and the exocyst plasma membrane tethering complex. • We find that Rab10-GTP associates with the Exoc6 subunit of the exocyst. • We find that knockdown of Exoc6 inhibits fusion of GLUT4 vesicles with the membrane. • The interaction of Rab10-GTP with Exoc6 potentially links signaling to exocytosis.« less
Wolosin, J M
1985-06-01
A summary of recent studies on relations between the properties of the membrane incorporating the H+-K+-ATPase, the H+ motive force in gastric acid secretion, and the secretory state of the parietal cell is presented. Depending on tissue secretory state, two distinct H+-K+-ATPase-rich membranes predominate in tissue homogenates, the gastric microsomes derived from the intracellular tubulovesicles of the resting cell and the stimulation-associated (SA) vesicle derived from the apical membrane of the acid-secreting cell. Structural and chemical differences between both vesicular types lend support to the notion that the formation of an expanded, elaborated apical membrane in the secreting parietal cell results from fusion of tubulovesicles containing the H+-K+-ATPase to an apical membrane of different chemical composition. Comparison of polypeptide composition of microsomes and SA membranes provides a way to identify and isolate membrane and cytoskeletal components putatively involved in the membrane interconversion process. Comparison of transport properties between gastric microsomes and SA vesicles demonstrates that stimulation triggers the appearance of rapid K+ and Cl- permeabilities in the H+-K+-ATPase membrane, allowing efficient acid accumulation in SA vesicles by the combination of rapid KCl influx followed by ATPase-driven H+ for K+ exchange, i.e., by K+ recycling. These stimulation-triggered conductances are functionally independent. Nevertheless, their concurrent inhibition by certain divalent cations (Mn2+,Zn2+) suggests their location within a single physical domain. The compatibility of the K+-recycling model for HCl accumulation in SA vesicles with gastric HCl secretion and selected electrophysiological observations and certain implications of the findings for cellular mechanisms of transport regulation in the context of a membrane fusion and recycling model are discussed.
Han, Wei-Qing; Xia, Min; Zhang, Chun; Zhang, Fan; Xu, Ming; Li, Ning-Jun
2011-01-01
The present study attempted to evaluate whether soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate lysosome fusion in response to death receptor activation and contribute to membrane raft (MR) clustering and consequent endothelial dysfunction in coronary arterial endothelial cells. By immunohistochemical analysis, vesicle-associated membrane proteins 2 (VAMP-2, vesicle-SNAREs) were found to be abundantly expressed in the endothelium of bovine coronary arteries. Direct lysosome fusion monitoring by N-(3-triethylammoniumpropyl)-4-[4-(dibutylamino)styryl]pyridinium dibromide (FM1-43) quenching demonstrated that the inhibition of VAMP-2 with tetanus toxin or specific small interfering ribonucleic acid (siRNA) almost completely blocked lysosome fusion to plasma membrane induced by Fas ligand (FasL), a well-known MR clustering stimulator. The involvement of SNAREs was further confirmed by an increased interaction of VAMP-2 with a target-SNARE protein syntaxin-4 after FasL stimulation in coimmunoprecipitation analysis. Also, the inhibition of VAMP-2 with tetanus toxin or VAMP-2 siRNA abolished FasL-induced MR clustering, its colocalization with a NADPH oxidase unit gp91phox, and increased superoxide production. Finally, FasL-induced impairment of endothelium-dependent vasodilation was reversed by the treatment of bovine coronary arteries with tetanus toxin or VAMP-2 siRNA. VAMP-2 is critical to lysosome fusion in MR clustering, and this VAMP-2-mediated lysosome-MR signalosomes contribute to redox regulation of coronary endothelial function. PMID:21926345
Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate
2016-01-01
The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed. PMID:26657767
NASA Astrophysics Data System (ADS)
Delacruz, Joannalyn Bongar
Healthy nervous system function depends on proper transmission. Synaptic transmission occurs by the release of transmitters from vesicles that fuse to the plasma membrane of a pre-synaptic cell. Regulated release of neurotransmitters, neuropeptides, and hormones occurs by exocytosis, initiated by the formation of the fusion pore. The initial fusion pore has molecular dimensions with a diameter of 1-2 nm and a rapid lifetime on the millisecond time scale. It connects the vesicular lumen and extracellular space, serving as an important step for regulating the release of charged transmitters. Comprehending the molecular structure and biophysical properties of the fusion pore is essential for a mechanistic understanding of vesicle-plasma membrane fusion and transmitter release. Release of charged transmitter molecules such as glutamate, acetylcholine, dopamine, or noradrenaline through a narrow fusion pore requires compensation of change in charge. Transmitter release through the fusion pore is therefore an electrodiffusion process. If the fusion pore is selective for specific ions, then its selectivity will affect the rate of transmitter release via the voltage gradient that develops across the fusion pore. The elucidation of these mechanisms can lead to a better understanding of nervous system cell biology, neural and endocrine signaling, learning, memory, motor control, sensory function and integration, and in particular synaptic transmission. This investigation can advance our understanding of neurological disorders in which noradrenergic and dopaminergic exocytosis is disturbed, leading to neurological consequences of developmental disorders, epilepsy, Parkinson's disease, and other neurodegenerative diseases. Ultimately, understanding the role of selectivity in the fusion pore and its effects on exocytosis can contribute to the development of more effective therapies. This study investigates the selectivity of the fusion pore by observing the effects of ion influx and efflux through the fusion pore. The experiments reveal negatively charged transmitter release can occur through a fusion pore at larger conductance values, past a threshold range. Narrow fusion pores with lower conductance values favor cation selectivity, which would accelerate the release of positively charged transmitters such as acetylcholine in the neuromuscular junction. However, release of negatively charged neurotransmitters such as glutamate can occur if an expanded fusion pore mediates release of this fast major excitatory transmitter. The intention of this research is to expand our understanding of the nervous system, which can contribute to healthy shifts in our clinical and educational interventions that are commonly delivered.
Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins.
Flavin, William P; Bousset, Luc; Green, Zachary C; Chu, Yaping; Skarpathiotis, Stratos; Chaney, Michael J; Kordower, Jeffrey H; Melki, Ronald; Campbell, Edward M
2017-10-01
Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from WT or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to induce vesicle rupture was not specific to α-syn, as amyloid assemblies of tau and huntingtin Exon1 with pathologic polyglutamine repeats also exhibited the ability to induce vesicle rupture. We also observe that vesicles ruptured by α-syn are positive for the autophagic marker LC3 and can accumulate and fuse into large, intracellular structures resembling Lewy bodies in vitro. Finally, we show that the same markers of vesicle rupture surround Lewy bodies in brain sections from PD patients. These data underscore the importance of this conserved endocytic vesicle rupture event as a damaging mechanism of cellular invasion by amyloid assemblies of multiple neurodegenerative disease-associated proteins, and suggest that proteinaceous inclusions such as Lewy bodies form as a consequence of continued fusion of autophagic vesicles in cells unable to degrade ruptured vesicles and their amyloid contents.
Differential Regulation of Synaptic Vesicle Tethering and Docking by UNC-18 and TOM-1.
Gracheva, Elena O; Maryon, Ed B; Berthelot-Grosjean, Martine; Richmond, Janet E
2010-01-01
The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18), unc-64(syntaxin) and tom-1(tomosyn). We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25 nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin.
Ji, Chen; Fan, Fan; Lou, Xuelin
2017-08-08
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P 2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence microscopy, we examined individual vesicle-trafficking steps. Unlike long-term PI(4,5)P 2 perturbations, rapid and cell-wide PI(4,5)P 2 reduction in the plasma membrane (PM) strongly inhibits secretion and intracellular Ca 2+ concentration ([Ca 2+ ] i ) responses, but not sytaxin1a clustering. Interestingly, local PI(4,5)P 2 reduction selectively at vesicle docking sites causes remarkable vesicle undocking from the PM without affecting [Ca 2+ ] i . These results highlight a key role of local PI(4,5)P 2 in vesicle tethering and docking, coordinated with its role in priming and fusion. Thus, different spatiotemporal PI(4,5)P 2 signaling regulates distinct steps of vesicle trafficking, and vesicle docking may be a key target of local PI(4,5)P 2 signaling in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Watson, Dionysios C.; Yung, Bryant C.; Bergamaschi, Cristina; Chowdhury, Bhabadeb; Bear, Jenifer; Stellas, Dimitris; Morales-Kastresana, Aizea; Jones, Jennifer C.; Felber, Barbara K.; Chen, Xiaoyuan; Pavlakis, George N.
2018-01-01
ABSTRACT The development of extracellular vesicles (EV) for therapeutic applications is contingent upon the establishment of reproducible, scalable, and high-throughput methods for the production and purification of clinical grade EV. Methods including ultracentrifugation (U/C), ultrafiltration, immunoprecipitation, and size-exclusion chromatography (SEC) have been employed to isolate EV, each facing limitations such as efficiency, particle purity, lengthy processing time, and/or sample volume. We developed a cGMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving bioreactor culture, tangential flow filtration (TFF), and preparative SEC. We applied this purification method for the isolation of engineered EV carrying multiple complexes of a novel human immunostimulatory cytokine-fusion protein, heterodimeric IL-15 (hetIL-15)/lactadherin. HEK293 cells stably expressing the fusion cytokine were cultured in a hollow-fibre bioreactor. Conditioned medium was collected and EV were isolated comparing three procedures: U/C, SEC, or TFF + SEC. SEC demonstrated comparable particle recovery, size distribution, and hetIL-15 density as U/C purification. Relative to U/C, SEC preparations achieved a 100-fold reduction in ferritin concentration, a major protein-complex contaminant. Comparative proteomics suggested that SEC additionally decreased the abundance of cytoplasmic proteins not associated with EV. Combination of TFF and SEC allowed for bulk processing of large starting volumes, and resulted in bioactive EV, without significant loss in particle yield or changes in size, morphology, and hetIL-15/lactadherin density. Taken together, the combination of bioreactor culture with TFF + SEC comprises a scalable, efficient method for the production of highly purified, bioactive EV carrying hetIL-15/lactadherin, which may be useful in targeted cancer immunotherapy approaches. PMID:29535850
Vibrio effector protein VopQ inhibits fusion of V-ATPase–containing membranes
Sreelatha, Anju; Bennett, Terry L.; Carpinone, Emily M.; O’Brien, Kevin M.; Jordan, Kamyron D.; Burdette, Dara L.; Orth, Kim; Starai, Vincent J.
2015-01-01
Vesicle fusion governs many important biological processes, and imbalances in the regulation of membrane fusion can lead to a variety of diseases such as diabetes and neurological disorders. Here we show that the Vibrio parahaemolyticus effector protein VopQ is a potent inhibitor of membrane fusion based on an in vitro yeast vacuole fusion model. Previously, we demonstrated that VopQ binds to the Vo domain of the conserved V-type H+-ATPase (V-ATPase) found on acidic compartments such as the yeast vacuole. VopQ forms a nonspecific, voltage-gated membrane channel of 18 Å resulting in neutralization of these compartments. We now present data showing that VopQ inhibits yeast vacuole fusion. Furthermore, we identified a unique mutation in VopQ that delineates its two functions, deacidification and inhibition of membrane fusion. The use of VopQ as a membrane fusion inhibitor in this manner now provides convincing evidence that vacuole fusion occurs independently of luminal acidification in vitro. PMID:25453092
Vibrio effector protein VopQ inhibits fusion of V-ATPase-containing membranes.
Sreelatha, Anju; Bennett, Terry L; Carpinone, Emily M; O'Brien, Kevin M; Jordan, Kamyron D; Burdette, Dara L; Orth, Kim; Starai, Vincent J
2015-01-06
Vesicle fusion governs many important biological processes, and imbalances in the regulation of membrane fusion can lead to a variety of diseases such as diabetes and neurological disorders. Here we show that the Vibrio parahaemolyticus effector protein VopQ is a potent inhibitor of membrane fusion based on an in vitro yeast vacuole fusion model. Previously, we demonstrated that VopQ binds to the V(o) domain of the conserved V-type H(+)-ATPase (V-ATPase) found on acidic compartments such as the yeast vacuole. VopQ forms a nonspecific, voltage-gated membrane channel of 18 Å resulting in neutralization of these compartments. We now present data showing that VopQ inhibits yeast vacuole fusion. Furthermore, we identified a unique mutation in VopQ that delineates its two functions, deacidification and inhibition of membrane fusion. The use of VopQ as a membrane fusion inhibitor in this manner now provides convincing evidence that vacuole fusion occurs independently of luminal acidification in vitro.
Loss of a membrane trafficking protein αSNAP induces non-canonical autophagy in human epithelia
Naydenov, Nayden G.; Harris, Gianni; Morales, Victor; Ivanov, Andrei I.
2012-01-01
Autophagy is a catabolic process that sequesters intracellular proteins and organelles within membrane vesicles called autophagosomes with their subsequent delivery to lyzosomes for degradation. This process involves multiple fusions of autophagosomal membranes with different vesicular compartments; however, the role of vesicle fusion in autophagosomal biogenesis remains poorly understood. This study addresses the role of a key vesicle fusion regulator, soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP), in autophagy. Small interfering RNA-mediated downregulation of αSNAP expression in cultured epithelial cells stimulated the autophagic flux, which was manifested by increased conjugation of microtubule-associated protein light chain 3 (LC3-II) and accumulation of LC3-positive autophagosomes. This enhanced autophagy developed via a non-canonical mechanism that did not require beclin1-p150-dependent nucleation, but involved Atg5 and Atg7-mediated elongation of autophagosomal membranes. Induction of autophagy in αSNAP-depleted cells was accompanied by decreased mTOR signaling but appeared to be independent of αSNAP-binding partners, N-ethylmaleimide-sensitive factor and BNIP1. Loss of αSNAP caused fragmentation of the Golgi and downregulation of the Golgi-specific GTP exchange factors, GBF1, BIG1 and BIG2. Pharmacological disruption of the Golgi and genetic inhibition of GBF1 recreated the effects of αSNAP depletion on the autophagic flux. Our study revealed a novel role for αSNAP as a negative regulator of autophagy that acts by enhancing mTOR signaling and regulating the integrity of the Golgi complex. PMID:23187805
A histological study of the seminal vesicle of the armoured catfish Corydoras aeneus.
Franceschini-Vicentini, I B; Papa, L P; Bombonato, M T S; Vicentini, C A; Ribeiro, K; Orsi, A M
2007-04-01
Most species of Corydoras exhibited a reproductive behaviour called 'T-position', and exhibited an accessory gland in the male genital tract, called the seminal vesicle. It appeared that both the structure and the composition of the fluid varied considerably between the species investigated. Consequently, different opinions were proposed regarding the possible role of seminal vesicle on this particular reproductive behaviour. Male adults of Corydoras aeneus were collected, anaesthetized, and samples of seminal vesicle were fixed in Bouin's solution. The sections were stained with haematoxylin-eosin and periodic acid Schiff. The seminal vesicle showed a system of anastomosed secretory tubules, forming a vesicular collective network, which gave rise to the vesicular ducts. The latter fused with the testicular efferent ducts and formed the spermatic ducts. Considering this fusion, when the sperm cells reached the spermatic ducts, the fluid produced at the seminal vesicle covered them. Histochemical studies evidenced the presence of neutral and acid glycosaminoglycans in the seminal fluid. Considering the reproductive behaviour of C. aeneus, it is believed that the protection associated with the immobilization of the sperm cells assures the sperm integrity during the passage through female's intestine until fertilization.
Fusogenic activity of PEGylated pH-sensitive liposomes.
Vanić, Zeljka; Barnert, Sabine; Süss, Regine; Schubert, Rolf
2012-06-01
The aim of this study was to investigate the fusogenic properties of poly(ethylene glycol) (PEG)ylated dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) liposomes. These pH-sensitive liposomes were prepared by incorporating two different PEG lipids: distearoylphosphatidylethanolamine (DSPE)-PEG₂₀₀₀ was mixed with the liposomal lipids using the conventional method, whereas sterol-PEG₁₁₀₀ was inserted into the outer monolayer of preformed vesicles. Both types of PEGylated liposomes were characterized and compared for their entrapment efficiency, zeta potential and size, and were tested in vitro for pH sensitivity by means of proton-induced leakage and membrane fusion activity. To mimic the routes of intracellular delivery, fusion between pH-sensitive liposomes and liposomes designed to simulate the endosomal membrane was studied. Our investigations confirmed that DOPE/CHEMS liposomes were capable of rapidly releasing calcein and of fusing upon acidification. However, after incorporation of DSPE-PEG₂₀₀₀ or sterol-PEG₁₁₀₀ into the membrane, pH sensitivity was significantly reduced; as the mol ratio of PEG-lipid was increased, the ability to fuse was decreased. Comparison between two different PEGylated pH-sensitive liposomes showed that only vesicles containing 0.6 mol% sterol-PEG₁₁₀₀ in the outer monolayer were still capable of fusing with the endosome-like liposomes and showing leakage of calcein at pH 5.5.
The structure and function of presynaptic endosomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jähne, Sebastian, E-mail: sebastian.jaehne1@stud.uni-goettingen.de; International Max Planck Research School for Neurosciences, 37077 Göttingen; Rizzoli, Silvio O.
The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in themore » sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.« less
The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes.
Marwaha, Rituraj; Arya, Subhash B; Jagga, Divya; Kaur, Harmeet; Tuli, Amit; Sharma, Mahak
2017-04-03
Endocytic, autophagic, and phagocytic vesicles move on microtubule tracks to fuse with lysosomes. Small GTPases, such as Rab7 and Arl8b, recruit their downstream effectors to mediate this transport and fusion. However, the potential cross talk between these two GTPases is unclear. Here, we show that the Rab7 effector PLEKHM1 simultaneously binds Rab7 and Arl8b, bringing about clustering and fusion of late endosomes and lysosomes. We show that the N-terminal RUN domain of PLEKHM1 is necessary and sufficient for interaction with Arl8b and its subsequent localization to lysosomes. Notably, we also demonstrate that Arl8b mediates recruitment of HOPS complex to PLEKHM1-positive vesicle contact sites. Consequently, Arl8b binding to PLEKHM1 is required for its function in delivery and, therefore, degradation of endocytic and autophagic cargo in lysosomes. Finally, we also show that PLEKHM1 competes with SKIP for Arl8b binding, which dictates lysosome positioning. These findings suggest that Arl8b, along with its effectors, orchestrates lysosomal transport and fusion. © 2017 Marwaha et al.
Collins, H L; Schaible, U E; Ernst, J D; Russell, D G
1997-01-01
The eukaryotic intracellular pathogen Leishmania mexicana resides inside macrophages contained within a membrane bound parasitophorous vacuole which, as it matures, acquires the characteristics of a late endosomal compartment. This study reports the selectivity of fusion of this compartment with other particle containing vacuoles. Phagosomes containing zymosan or live Listeria monocytogenes rapidly fused with L. mexicana parasitophorous vacuoles, while those containing latex beads or heat killed L. monocytogenes failed to do so. Fusigenicity of phagosomes was not primarily dependent on the receptor utilized for ingestion, as opsonization with defined ligands could not overcome the exclusion of either latex beads or heat killed organisms. However modulation of intracellular pH by pharmacological agents such as chloroquine and ammonium chloride increased delivery of live Listeria and also induced transfer of previously excluded particles. The absence of fusion correlated with the acquisition of annexin I, a putative lysosomal targeting, molecule, on the phagosome membrane. We propose that the acquisition of cellular membrane constituents such as annexin I during phagosome maturation can ultimately direct the fusion pathway of the vesicles formed and have described a model system to further document changes in vesicle fusigenicity within cells.
Xu, Lu; Chen, Jingfei; Feng, Lei; Dong, Shuli; Hao, Jingcheng
2014-12-07
Cationic and anionic (catanionic) vesicles were constructed from the mixtures of sodium laurate (SL) and alkyltrimethylammonium bromide (CnTAB, n = 12, 14, and 16) and were used to control the loading capacity of DNA. The binding saturation point (BSP) of DNA to catanionic vesicles increases with the chain length of cationic surfactants, which is at 1.0, 1.3 and 1.5 for CnTAB with n = 12, 14, and 16, respectively. Our measurements showed that the loading capacity and affinity of DNA can be controlled by catanionic vesicles. It increases with the chain length of cationic surfactants. Because of a large reduction in surface charge density, catanionic vesicles are prone to undergo re-aggregation or fusion with the addition of DNA. DNA molecules can still maintain original coil state during the interaction with catanionic CnTAL vesicles. (1)H NMR data reveals that the obvious dissociation of anionic ions, L(-), from catanionic C14TAL vesicles is due to the interaction with DNA; however, this phenomenon cannot be observed in C12TAB-SL vesicles. Agarose gel electrophoresis (AGE) results demonstrate that the electrostatic interaction between the two oppositely charged cationic and anionic surfactants is stronger than that between DNA and cationic surfactant, CnTAB (n = 12, 14, and 16). Not only is the dissociation of L(-) simply determined by the charge competition, but it also depends largely on the variations in the surface charge density as well as the cationic and anionic surfactant competing ability in geometry configuration of catanionic vesicles. The complicated interaction between DNA and catanionic vesicles induces the deformation of cationic vesicles. Our results should provide clear guidance for choosing more proper vectors for DNA delivery and gene therapy in cell experiments.
Amphiphilic gold nanoparticles as modulators of lipid membrane fusion
NASA Astrophysics Data System (ADS)
Tahir, Mukarram; Alexander-Katz, Alfredo
The fusion of lipid membranes is central to biological functions like inter-cellular transport and signaling and is coordinated by proteins of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) superfamily. We utilize molecular dynamics simulations to demonstrate that gold nanoparticles functionalized with a mixed-monolayer of hydrophobic and hydrophilic alkanethiol ligands can act as synthetic analogues of these fusion proteins and mediate lipid membrane fusion by catalyzing the formation of a toroidal stalk between adjacent membranes and enabling the formation of a fusion pore upon influx of Ca2+ into the exterior solvent. The fusion pathway enabled by these synthetic nanostructures is analogous to the regulated fast fusion pathway observed during synaptic vesicle fusion; it therefore provides novel physical insights into this important biological process while also being relevant in a number of single-cell therapeutic applications. Computational resources from NSF XSEDE contract TG-DMR130042. Financial support from DOE CSGF fellowship DE-FG02-97ER25308.
The Accelerated Late Adsorption of Pulmonary Surfactant
2011-01-01
Adsorption of pulmonary surfactant to an air−water interface lowers surface tension (γ) at rates that initially decrease progressively, but which then accelerate close to the equilibrium γ. The studies here tested a series of hypotheses concerning mechanisms that might cause the late accelerated drop in γ. Experiments used captive bubbles and a Wilhelmy plate to measure γ during adsorption of vesicles containing constituents from extracted calf surfactant. The faster fall in γ reflects faster adsorption rather than any feature of the equation of state that relates γ to surface concentration (Γ). Adsorption accelerates when γ reaches a critical value rather than after an interval required to reach that γ. The hydrophobic surfactant proteins (SPs) represent key constituents, both for reaching the γ at which the acceleration occurs and for producing the acceleration itself. The γ at which rates of adsorption increase, however, is unaffected by the Γ of protein in the films. In the absence of the proteins, a phosphatidylethanolamine, which, like the SPs, induces fusion of the vesicles with the interfacial film, also causes adsorption to accelerate. Our results suggest that the late acceleration is characteristic of adsorption by fusion of vesicles with the nascent film, which proceeds more favorably when the Γ of the lipids exceeds a critical value. PMID:21417351
Hammel, Ilan; Meilijson, Isaac
2013-11-06
The inventory of secretory granules along the plasma membrane can be viewed as maintained in two restricted compartments. The release-ready pool represents docked granules available for an initial stage of fast, immediate secretion, followed by a second stage of granule set-aside secretion pool, with significantly slower rate. Transmission electron microscopy ultra-structural investigations correlated with electrophysiological techniques and mathematical modelling have allowed the categorization of these secretory vesicle compartments, in which vesicles can be in various states of secretory competence. Using the above-mentioned approaches, the kinetics of single vesicle exocytosis can be worked out. The ultra-fast kinetics, explored in this study, represents the immediately available release-ready pool, in which granules bound to the plasma membrane are exocytosed upon Ca(2+) influx at the SNARE rosette at the base of porosomes. Formalizing Dodge and Rahamimoff findings on the effect of calcium concentration and incorporating the effect of SNARE transient rosette size, we postulate that secretion rate (rate), the number (X) of intracellular calcium ions available for fusion, calcium capacity (0 ≤ M ≤ 5) and the fusion nano-machine size (as measured by the SNARE rosette size K) satisfy the parsimonious M-K relation rate ≈ C × [Ca(2+)](min(X,M))e(-K/2).
Villarreal, Ashley M.; Adamson, Steven W.; Browning, Rebecca E.; Khem Raj, B.C.; Sajid, Muhammad Sohail; Karim, Shahid
2013-01-01
Exocytosis involves membrane fusion between secretory vesicles and the plasma membrane. The Soluble N-ethylmaleimide-sensitive factor attachment proteins (SNAPs) and their receptor proteins (SNAREs) interact to fuse vesicles with the membrane and trigger the release of their sialosecretome out of the tick salivary gland cells. In this study, we examined the functional significance of the Vti family of SNARE proteins of blood-feeding Amblyomma maculatum and A. americanum. Vti1A and Vti1B have been implicated in multiple functional roles in vesicle transport. QRT-PCR studies demonstrated that the highest transcriptional expression of vti1a and vti1b genes occurs in unfed salivary glands, suggesting that elevated secretory vesicle formation occurs prior to feeding but continues at low rates after blood feeding commences. Vti1A and Vti1B localize to the secretory vesicles in unfed tick salivary glands in immunofluorescence microscopy studies. Knockdown of vti1a and vti1b by RNA interference resulted in a significant decrease in the engorged tick weight compared to the control during prolonged blood-feeding on the host. RNA interference of vti1a or vti1b impaired oviposition and none of the ticks produced eggs masses. Surprisingly, the double knockdown did not produce a strong phenotype and ticks fed normally on the host and produced egg masses, suggesting a compensatory mechanism exists within the secretory system which may have been activated in the double knockdown. These results suggest an important functional role of the Vti family of SNARE proteins in tick blood feeding and ultimately oviposition. Understanding the basic functions of the Vti family of SNARE proteins in salivary glands may lead to better ways to prevent tick attachment and transmission of tick-borne diseases. PMID:23499931
Porosome: The Universal Secretory Portal in Cells
NASA Astrophysics Data System (ADS)
Jena, Bhanu
2012-10-01
In the past 50 years it was believed that during cell secretion, membrane-bound secretory vesicles completely merge at the cell plasma membrane resulting in the diffusion of intra-vesicular contents to the cell exterior and the compensatory retrieval of the excess membrane by endocytosis. This explanation made no sense or logic, since following cell secretion partially empty vesicles accumulate as demonstrated in electron micrographs. Furthermore, with the ``all or none'' mechanism of cell secretion by complete merger of secretory vesicle membrane at the cell plasma membrane, the cell is left with little regulation and control of the amount of content release. Moreover, it makes no sense for mammalian cells to possess such `all or none' mechanism of cell secretion, when even single-cell organisms have developed specialized and sophisticated secretory machinery, such as the secretion apparatus of Toxoplasma gondii, the contractile vacuoles in paramecium, or the various types of secretory structures in bacteria. Therefore, in 1993 in a News and Views article in Nature, E. Neher wrote ``It seems terribly wasteful that, during the release of hormones and neurotransmitters from a cell, the membrane of a vesicle should merge with the plasma membrane to be retrieved for recycling only seconds or minutes later.'' This conundrum in the molecular mechanism of cell secretion was finally resolved in 1997 following discovery of the ``Porosome,'' the universal secretory machinery in cells. Porosomes are supramolecular lipoprotein structures at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to release inravesicular contents to the outside during cell secretion. In the past decade, the composition of the porosome, its structure and dynamics at nm resolution and in real time, and its functional reconstitution into artificial lipid membrane, have all been elucidated. Since porosomes in exocrine and neuroendocrine cells measure 100-180 nm, and only 20-45% increase in porosome diameter is demonstrated following the docking and fusion of 0.2-1.2 μm in diameter secretory vesicles, it is concluded that secretory vesicles ``transiently'' dock and fuse, rather than completely merge at the base of the porosome complex to release their contents to the outside. In agreement, it has been demonstrated that ``secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells''; that ``single synaptic vesicles fuse transiently and successively without loss of identity''; and that``zymogen granule (the secretory vesicle in exocrine pancreas) exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity.'' In this presentation, the discovery of the porosome, resulting in a paradigm shift in our understanding of cell secretion will be briefly discussed.
Loss of syntaxin 3 causes variant microvillus inclusion disease.
Wiegerinck, Caroline L; Janecke, Andreas R; Schneeberger, Kerstin; Vogel, Georg F; van Haaften-Visser, Désirée Y; Escher, Johanna C; Adam, Rüdiger; Thöni, Cornelia E; Pfaller, Kristian; Jordan, Alexander J; Weis, Cleo-Aron; Nijman, Isaac J; Monroe, Glen R; van Hasselt, Peter M; Cutz, Ernest; Klumperman, Judith; Clevers, Hans; Nieuwenhuis, Edward E S; Houwen, Roderick H J; van Haaften, Gijs; Hess, Michael W; Huber, Lukas A; Stapelbroek, Janneke M; Müller, Thomas; Middendorp, Sabine
2014-07-01
Microvillus inclusion disease (MVID) is a disorder of intestinal epithelial differentiation characterized by life-threatening intractable diarrhea. MVID can be diagnosed based on loss of microvilli, microvillus inclusions, and accumulation of subapical vesicles. Most patients with MVID have mutations in myosin Vb that cause defects in recycling of apical vesicles. Whole-exome sequencing of DNA from patients with variant MVID showed homozygous truncating mutations in syntaxin 3 (STX3). STX3 is an apical receptor involved in membrane fusion of apical vesicles in enterocytes. Patient-derived organoid cultures and overexpression of truncated STX3 in Caco-2 cells recapitulated most characteristics of variant MVID. We conclude that loss of STX3 function causes variant MVID. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Gabrys, Charles M; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D; Weliky, David P
2013-10-03
Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the ∼25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of "HFP", i.e., a ∼25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was (13)CO backbone labeled. Samples were then prepared that each contained a singly (13)CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric β sheet structure. Proximity between the HFP (13)CO nuclei and (31)P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct (13)CO shifts for the α helical and β sheet structures so that the proximities to (31)P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the (13)CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. "HFPmn" was a linear peptide that contained the 23 N-terminal residues of gp41. "HFPmn_V2E" contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and infection. The present study shows that HFPmn_V2E induces much less vesicle fusion than HFPmn. "HFPtr" contained three strands with HFPmn sequence that were chemically cross-linked near their C-termini. HFPtr mimics the trimeric topology of gp41 and induces much more rapid and extensive vesicle fusion than HFPmn. For HFPmn and HFPtr, well-resolved α and β peaks were observed for A6-, L9-, and L12-labeled samples. For each of these samples, there were similar HFP (13)CO to lipid (31)P proximities in the α and β structures, which evidenced comparable membrane locations of the HFP in either structure including insertion into a single membrane leaflet. The data were also consistent with deeper insertion of HFPtr relative to HFPmn in both the α and β structures. The results supported a strong correlation between the membrane insertion depth of the HFP and its fusogenicity. More generally, the results supported membrane location of the HFP as an important determinant of its fusogenicity. The deep insertion of HFPtr in both the α and β structures provides the most relevant membrane location of the FP for HIV gp41-catalyzed membrane fusion because HIV gp41 is natively trimeric. Well-resolved α and β signals were observed in the HFPmn_V2E samples with L9- and L12- but not A6-labeling. The α signals were much more dominant for L9- and L12-labeled HFPmn_V2E than the corresponding HFPmn or HFPtr. The structural model for the less fusogenic HFPmn_V2E includes a shorter helix and less membrane insertion than either HFPmn or HFPtr. This greater helical population and different helical structure and membrane location could result in less membrane perturbation and lower fusogenicity of HFPmn_V2E and suggest that the β sheet fusion peptide is the most functionally relevant structure of HFPmn, HFPtr, and gp41.
Li, Cunxi; Hao, Mingming; Cao, Zheng; Ding, Wei; Graves-Deal, Ramona; Hu, Jianyong; Piston, David W.
2007-01-01
Transforming growth factor-α (TGF-α) is the major autocrine EGF receptor ligand in vivo. In polarized epithelial cells, proTGF-α is synthesized and then delivered to the basolateral cell surface. We previously reported that Naked2 interacts with basolateral sorting determinants in the cytoplasmic tail of a Golgi-processed form of TGF-α and that TGF-α is not detected at the basolateral surface of Madin-Darby canine kidney (MDCK) cells expressing myristoylation-deficient (G2A) Naked2. By high-resolution microscopy, we now show that wild-type, but not G2A, Naked2-associated vesicles fuse at the plasma membrane. We further demonstrate that Naked2-associated vesicles are delivered to the lower lateral membrane of polarized MDCK cells independent of μ1B adaptin. We identify a basolateral targeting segment within Naked2; residues 1-173 redirect NHERF-1 from the apical cytoplasm to the basolateral membrane, and internal deletion of residues 37-104 results in apical mislocalization of Naked2 and TGF-α. Short hairpin RNA knockdown of Naked2 leads to a dramatic reduction in the 16-kDa cell surface isoform of TGF-α and increased cytosolic TGF-α immunoreactivity. We propose that Naked2 acts as a cargo recognition and targeting (CaRT) protein to ensure proper delivery, tethering, and fusion of TGF-α–containing vesicles to a distinct region at the basolateral surface of polarized epithelial cells. PMID:17553928
Weathering features and secondary minerals in Antarctic Shergottites ALHA77005 and LEW88516
NASA Technical Reports Server (NTRS)
Wentworth, Susan J.; Gooding, James L.
1993-01-01
Previous work has shown that all three sub-groups of the shergottite, nakhlite, and chassignite (SNC) clan of meteorites contain aqueous precipitates of probable pre-terrestrial origin. In the context of secondary minerals, the most thoroughly studied shergottite has been Elephant Moraine, Antarctica A79001 (EETA79001). The recognition of LEW88516 as the latest SNC specimen, and its close similarity with ALHA77005, invite a comparative study of the latter two meteorites, and with EETA79001, from the perspective of aqueous alteration. The fusion crusts of the two meteorites are quite similar except that ALHA77005 is more vesicular (possibly indicating a higher indigenous volatile content). Secondary aluminosilicates (and salts on LEW88516) of definite Antarctic origin partially fill vesicles and fractures on both fusion crusts. Interior samples of the two meteorites are grossly similar in that traces of secondary minerals are present in both.
Investigation of Resonant AC-DC Magnetic Field Effects.
1987-07-31
phosphatidylethanolamine with smaller amounts of phosphatidylinosital and phosphatidic acid . The fluidity of the acyl chain region of these lipids at room temperature...fusion and lipid lateral separation in phosphatidylcholine- phosphatidic acid vesicles. Biochem 25:6978-6987. Liboff AR (1985): Cyclotron resonance in
Karim, Mahmoud Abdul; Samyn, Dieter Ronny; Mattie, Sevan; Brett, Christopher Leonard
2018-02-01
When marked for degradation, surface receptor and transporter proteins are internalized and delivered to endosomes where they are packaged into intralumenal vesicles (ILVs). Many rounds of ILV formation create multivesicular bodies (MVBs) that fuse with lysosomes exposing ILVs to hydrolases for catabolism. Despite being critical for protein degradation, the molecular underpinnings of MVB-lysosome fusion remain unclear, although machinery underlying other lysosome fusion events is implicated. But how then is specificity conferred? And how is MVB maturation and fusion coordinated for efficient protein degradation? To address these questions, we developed a cell-free MVB-lysosome fusion assay using Saccharomyces cerevisiae as a model. After confirming that the Rab7 ortholog Ypt7 and the multisubunit tethering complex HOPS (homotypic fusion and vacuole protein sorting complex) are required, we found that the Qa-SNARE Pep12 distinguishes this event from homotypic lysosome fusion. Mutations that impair MVB maturation block fusion by preventing Ypt7 activation, confirming that a Rab-cascade mechanism harmonizes MVB maturation with lysosome fusion. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wong, J Y; Park, C K; Seitz, M; Israelachvili, J
1999-01-01
We have created phospholipid bilayers supported on soft polymer "cushions" which act as deformable substrates (see accompanying paper, Wong, J. Y., J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith. 1999. Biophys. J. 77:1445-1457). In contrast to "solid-supported" membranes, such "soft-supported" membranes can exhibit more natural (higher) fluidity. Our bilayer system was constructed by adsorption of small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles onto polyethylenimine (PEI)-supported Langmuir-Blodgett lipid monolayers on mica. We used the surface forces apparatus (SFA) to investigate the long-range forces, adhesion, and fusion of two DMPC bilayers both above and below their main transition temperature (T(m) approximately 24 degrees C). Above T(m), hemi-fusion activation pressures of apposing bilayers were considerably smaller than for solid-supported bilayers, e.g., directly supported on mica. After separation, the bilayers naturally re-formed after short healing times. Also, for the first time, complete fusion of two fluid (liquid crystalline) phospholipid bilayers was observed in the SFA. Below T(m) (gel state), very high pressures were needed for hemi-fusion and the healing process became very slow. The presence of the polymer cushion significantly alters the interaction potential, e.g., long-range forces as well as fusion pressures, when compared to solid-supported systems. These fluid model membranes should allow the future study of integral membrane proteins under more physiological conditions. PMID:10465756
Johnson, Jennifer L; He, Jing; Ramadass, Mahalakshmi; Pestonjamasp, Kersi; Kiosses, William B; Zhang, Jinzhong; Catz, Sergio D
2016-02-12
The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Paramyxovirus F1 protein has two fusion peptides: implications for the mechanism of membrane fusion.
Peisajovich, S G; Samuel, O; Shai, Y
2000-03-10
Viral fusion proteins contain a highly hydrophobic segment, named the fusion peptide, which is thought to be responsible for the merging of the cellular and viral membranes. Paramyxoviruses are believed to contain a single fusion peptide at the N terminus of the F1 protein. However, here we identified an additional internal segment in the Sendai virus F1 protein (amino acids 214-226) highly homologous to the fusion peptides of HIV-1 and RSV. A synthetic peptide, which includes this region, was found to induce membrane fusion of large unilamellar vesicles, at concentrations where the known N-terminal fusion peptide is not effective. A scrambled peptide as well as several peptides from other regions of the F1 protein, which strongly bind to membranes, are not fusogenic. The functional and structural characterization of this active segment suggest that the F1 protein has an additional internal fusion peptide that could participate in the actual fusion event. The presence of homologous regions in other members of the same family suggests that the concerted action of two fusion peptides, one N-terminal and the other internal, is a general feature of paramyxoviruses. Copyright 2000 Academic Press.
Probing the functional equivalence of otoferlin and synaptotagmin 1 in exocytosis
Reisinger, Ellen; Bresee, Chris; Neef, Jakob; Nair, Ramya; Reuter, Kirsten; Bulankina, Anna; Nouvian, Régis; Koch, Manuel; Bückers, Johanna; Kastrup, Lars; Roux, Isabelle; Petit, Christine; Hell, Stefan W.; Brose, Nils; Rhee, Jeong-Seop; Kügler, Sebastian; Brigande, John; Moser, Tobias
2011-01-01
Cochlear inner hair cells (IHCs) use Ca2+-dependent exocytosis of glutamate to signal sound information. Otoferlin, a C2-domain protein essential for IHC exocytosis and hearing, may serve as a Ca2+ sensor in vesicle fusion in IHCs that seem to lack the classical neuronal Ca2+ sensors synaptotagmin 1 (Syt1) and 2. Support for the Ca2+ sensor of fusion hypothesis for otoferlin function comes from biochemical experiments, but additional roles in late exocytosis upstream of fusion have been indicated by physiological studies. Here, we tested the functional equivalence of otoferlin and Syt1 in three neurosecretory model systems: auditory IHCs, adrenal chromaffin cells and hippocampal neurons. Long-term and short-term ectopic expression of Syt1 in IHCs of Otof−/− mice by viral gene transfer in the embryonic inner ear and organotypic culture failed to rescue their Ca2+ influx-triggered exocytosis. On the other hand, virally mediated overexpression of otoferlin did not restore phasic exocytosis in Syt1-deficient chromaffin cells or neurons, but enhanced asynchronous release in the latter. We further tested exocytosis in Otof−/− hippocampal neurons and in Syt1−/− IHCs, but found no deficits in vesicle fusion. Expression analysis of different synaptotagmin isoforms indicated that Syt1 and Syt2 are absent from mature IHCs. Our data argue against a simple functional equivalence of the two C2 domain proteins in exocytosis of IHC ribbon synapses, chromaffin cells and hippocampal synapses. PMID:21451027
Thin film drainage between pre-inflated capsules or vesicles
NASA Astrophysics Data System (ADS)
Keh, Martin; Walter, Johann; Leal, Gary
2013-11-01
Capsules and vesicles are often used as vehicles to carry active ingredients or fragrance in drug delivery and consumer products and oftentimes in these applications the particles may be pre-inflated due to the existence of a small osmotic pressure difference between the interior and exterior fluid. We study the dynamics of thin film drainage between capsules and vesicles in flow as it is crucial to fusion and deposition of the particles and, therefore, the stability and effectiveness of the products. Simulations are conducted using a numerical model coupling the boundary integral method for the motion of the fluids and a finite element method for the membrane mechanics. For low capillary numbers, the drainage behavior of vesicles and capsules are approximately the same, and also similar to that of drops as the flow-independent and uniform tension due to pre-inflation dominates. The tension due to deformation caused by flow will become more important as the strength of the external flow (i.e. the capillary number) increases. In this case, the shapes of the thin film region are fundamentally different for capsules and vesicles, and the drainage behavior in both cases differs from a drop. Funded by P&G.
Fernandes, Ana Clara; Uytterhoeven, Valerie; Kuenen, Sabine; Wang, Yu-Chun; Slabbaert, Jan R; Swerts, Jef; Kasprowicz, Jaroslaw; Aerts, Stein; Verstreken, Patrik
2014-11-24
Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans. © 2014 Fernandes et al.
Ray, Krishanu
2014-03-01
Secretion is widespread in all eukaryotic cells: all of us experience this in the course of daily life--saliva, mucus, sweat, tears, bile juice, adrenalin, etc.--the list is extremely long. How does a cell manage to repeatedly spit out some stuff without losing the rest? The answer is: through regulated vesicle trafficking within the cell. The Nobel Prize in Physiology or Medicine 2013 was awarded to Drs Randy Schekman, James E Rothman and Thomas C Südhof for their 'discoveries of machinery regulating vesicle traffic, a major transport system in our cells'. Dr Randy Schekman and his colleagues discovered a number of genes required for vesicle trafficking from the endoplasmic reticulum (ER) and Golgi; the James E Rothman group unravelled the protein machinery that allows vesicles to bud off from the membrane and fuse to their targets; and Dr Thomas C Südhof along with his colleagues revealed how calcium ions could instruct vesicles to fuse and discharge their contents with precision. These enabled the biotechnology industry to produce a variety of pharmaceutical and industrial products like insulin and hepatitis B vaccines, in a cost-efficient manner, using yeast and tissue cultured cells.
Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions.
Falk, Matthias M; Bell, Cheryl L; Kells Andrews, Rachael M; Murray, Sandra A
2016-05-24
Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.
Gilloteaux, Jacques; Tomasello, Lisa M; Elgison, Deborah A
2003-01-01
Among the inflammatory changes seen in cholecystitis, the ultrastructural alterations of the human gallbladder epithelium include lipid and lipofuscin deposits, fusions of lipid deposits and mucus-containing vesicles forming complex substructural formations called lipo-mucosomes, and microvillar changes of sparse microvilli and basal bodies. Small, lipid-laden structures, such as VLDL-like vesicles, also are fused with the mucus vesicles. Epithelial cell sloughing could liberate and add lipo-mucosomes to the biliary sludge and participate in gallstone formation. With chronic cholelithiasis, fatty degeneration of scattered epithelial cells appears to alter the epithelial lining and favors metaplastic change that could lead to other pathologic changes, including carcinoma in situ-like lesions. In addition to lipid deposition in macrophages, lipid is also incorporated in other cells and tissues of the gallbladder wall (endothelium of capillaries, smooth muscles and fibrocytes).
Rolling blackout is required for synaptic vesicle exocytosis.
Huang, Fu-De; Woodruff, Elvin; Mohrmann, Ralf; Broadie, Kendal
2006-03-01
Rolling blackout (RBO) is a putative transmembrane lipase required for phospholipase C-dependent phosphatidylinositol 4,5-bisphosphate-diacylglycerol signaling in Drosophila neurons. Conditional temperature-sensitive (TS) rbo mutants display complete, reversible paralysis within minutes, demonstrating that RBO is acutely required for movement. RBO protein is localized predominantly in presynaptic boutons at neuromuscular junction (NMJ) synapses and throughout central synaptic neuropil, and rbo TS mutants display a complete, reversible block of both central and peripheral synaptic transmission within minutes. This phenotype appears limited to adults, because larval NMJs do not manifest the acute blockade. Electron microscopy of adult rbo TS mutant boutons reveals an increase in total synaptic vesicle (SV) content, with a concomitant shrinkage of presynaptic bouton size and an accumulation of docked SVs at presynaptic active zones within minutes. Genetic tests reveal a synergistic interaction between rbo and syntaxin1A TS mutants, suggesting that RBO is required in the mechanism of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated SV exocytosis, or in a parallel pathway necessary for SV fusion. The rbo TS mutation does not detectably alter SNARE complex assembly, suggesting a downstream requirement in SV fusion. We conclude that RBO plays an essential role in neurotransmitter release, downstream of SV docking, likely mediating SV fusion.
Ramm, Georg; Slot, Jan Willem; James, David E.; Stoorvogel, Willem
2000-01-01
Insulin treatment of fat cells results in the translocation of the insulin-responsive glucose transporter type 4, GLUT4, from intracellular compartments to the plasma membrane. However, the precise nature of these intracellular GLUT4-carrying compartments is debated. To resolve the nature of these compartments, we have performed an extensive morphological analysis of GLUT4-containing compartments, using a novel immunocytochemical technique enabling high labeling efficiency and 3-d resolution of cytoplasmic rims isolated from rat epididymal adipocytes. In basal cells, GLUT4 was localized to three morphologically distinct intracellular structures: small vesicles, tubules, and vacuoles. In response to insulin the increase of GLUT4 at the cell surface was compensated by a decrease in small vesicles, whereas the amount in tubules and vacuoles was unchanged. Under basal conditions, many small GLUT4 positive vesicles also contained IRAP (88%) and the v-SNARE, VAMP2 (57%) but not markers of sorting endosomes (EEA1), late endosomes, or lysosomes (lgp120). A largely distinct population of GLUT4 vesicles (56%) contained the cation-dependent mannose 6-phosphate receptor (CD-MPR), a marker protein that shuttles between endosomes and the trans-Golgi network (TGN). In response to insulin, GLUT4 was recruited both from VAMP2 and CD-MPR positive vesicles. However, while the concentration of GLUT4 in the remaining VAMP2-positive vesicles was unchanged, the concentration of GLUT4 in CD-MPR-positive vesicles decreased. Taken together, we provide morphological evidence indicating that, in response to insulin, GLUT4 is recruited to the plasma membrane by fusion of preexisting VAMP2-carrying vesicles as well as by sorting from the dynamic endosomal-TGN system. PMID:11102509
Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina
Van Hook, Matthew J.; Thoreson, Wallace B.
2013-01-01
Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (<100 ms) to cones evoked exocytosis followed by rapid endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726
Otegui, Marisa S.; Mastronarde, David N.; Kang, Byung-Ho; Bednarek, Sebastian Y.; Staehelin, L. Andrew
2001-01-01
The three-dimensional architecture of syncytial-type cell plates in the endosperm of Arabidopsis has been analyzed at ∼6-nm resolution by means of dual-axis high-voltage electron tomography of high-pressure frozen/freeze-substituted samples. Mini-phragmoplasts consisting of microtubule clusters assemble between sister and nonsister nuclei. Most Golgi-derived vesicles appear connected to these microtubules by two molecules that resemble kinesin-like motor proteins. These vesicles fuse with each other to form hourglass-shaped intermediates, which become wide (∼45 nm in diameter) tubules, the building blocks of wide tubular networks. New mini-phragmoplasts also are generated de novo around the margins of expanding wide tubular networks, giving rise to new foci of cell plate growth, which later become integrated into the main cell plate. Spiral-shaped rings of the dynamin-like protein ADL1A constrict but do not fission the wide tubules at irregular intervals. These rings appear to maintain the tubular geometry of the network. The wide tubular network matures into a convoluted fenestrated sheet in a process that involves increases of 45 and 130% in relative membrane surface area and volume, respectively. The proportionally larger increase in volume appears to reflect callose synthesis. Upon fusion with the parental plasma membrane, the convoluted fenestrated sheet is transformed into a planar fenestrated sheet. This transformation involves clathrin-coated vesicles that reduce the relative membrane surface area and volume by ∼70%. A ribosome-excluding matrix encompasses the cell plate membranes from the fusion of the first vesicles until the onset of the planar fenestrated sheet formation. We postulate that this matrix contains the molecules that mediate cell plate assembly. PMID:11549762
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu-Zhong Zhang; Ewart, G.; Capaldi, R.A.
The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane({sup 35}S)sulfonate and sodium methyl 4-({sup 3}H)formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibodymore » (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C-domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage produce from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.« less
Cholesterol suppresses membrane leakage by decreasing water penetrability.
Bu, Bing; Crowe, Michael; Diao, Jiajie; Ji, Baohua; Li, Dechang
2018-06-13
Membrane fusion is a fundamental biological process that lies at the heart of enveloped virus infection, synaptic signaling, intracellular vesicle trafficking, gamete fertilization, and cell-cell fusion. Membrane fusion is initiated as two apposed membranes merge to a single bilayer called a hemifusion diaphragm. It is believed that the contents of the two fusing membranes are released through a fusion pore formed at the hemifusion diaphragm, and yet another possible pathway has been proposed in which an undefined pore may form outside the hemifusion diaphragm at the apposed membranes, leading to the so-called leaky fusion. Here, we performed all-atom molecular dynamics simulations to study the evolution of the hemifusion diaphragm structure with various lipid compositions. We found that the lipid cholesterol decreased water penetrability to inhibit leakage pore formation. Biochemical leakage experiments support these simulation results. This study may shed light on the underlying mechanism of the evolution pathways of the hemifusion structure, especially the understanding of content leakage during membrane fusion.
USDA-ARS?s Scientific Manuscript database
Synucleins are a family of homologous proteins principally known for their involvement in neurodegeneration. In neurons a-synuclein promotes assembly of SNARE complexes required for fusion of synaptic vesicles with the plasma membrane during neurotransmitter release. Y-synuclein is highly expressed ...
ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating.
Rogers, Jason V; Arlow, Tim; Inkellis, Elizabeth R; Koo, Timothy S; Rose, Mark D
2013-12-01
During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway.
Multivesicular bodies: co-ordinated progression to maturity
Woodman, Philip G; Futter, Clare E
2008-01-01
Multivesicular endosomes/bodies (MVBs) sort endocytosed proteins to different destinations. Many lysosomally directed membrane proteins are sorted onto intralumenal vesicles, whilst recycling proteins remain on the perimeter membrane from where they are removed via tubular extensions. MVBs move to the cell centre during this maturation process and, when all recycling proteins have been removed, fuse with lysosomes. Recent advances have identified endosomal-sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways in intralumenal vesicle formation and mechanisms for sorting recycling cargo into tubules. Cytoskeletal motors, through interactions with these machineries and by regulating MVB movement, help to co-ordinate events leading to a mature, fusion-competent MVB. PMID:18502633
Adhesion of liposomes: a quartz crystal microbalance study
NASA Astrophysics Data System (ADS)
Lüthgens, Eike; Herrig, Alexander; Kastl, Katja; Steinem, Claudia; Reiss, Björn; Wegener, Joachim; Pignataro, Bruno; Janshoff, Andreas
2003-11-01
Three different systems are presented, exploring the adhesion of liposomes mediated by electrostatic and lipid-protein interactions as well as molecular recognition of ligand receptor pairs. Liposomes are frequently used to gain insight into the complicated processes involving adhesion and subsequent events such as fusion and fission mainly triggered by specific proteins. We combined liposome technology with the quartz crystal microbalance (QCM) technique as a powerful tool to study the hidden interface between the membrane and functionalized surface. Electrostatic attraction and molecular recognition were employed to bind liposomes to the functionalized quartz crystal. The QCM was used to distinguish between adsorption of vesicles and rupture due to strong adhesive forces. Intact vesicles display viscoelastic behaviour, while planar lipid bilayers as a result of vesicle rupture can be modelled by a thin rigid film. Furthermore, the adhesion of cells was modelled successfully by receptor bearing liposomes. Scanning force microscopy was used to confirm the results obtained by QCM measurements.
A molecular network for the transport of the TI-VAMP/VAMP7 vesicles from cell center to periphery.
Burgo, Andrea; Proux-Gillardeaux, Véronique; Sotirakis, Emmanuel; Bun, Philippe; Casano, Alessandra; Verraes, Agathe; Liem, Ronald K H; Formstecher, Etienne; Coppey-Moisan, Maïté; Galli, Thierry
2012-07-17
The compartmental organization of eukaryotic cells is maintained dynamically by vesicular trafficking. SNARE proteins play a crucial role in intracellular membrane fusion and need to be targeted to their proper donor or acceptor membrane. The molecular mechanisms that allow for the secretory vesicles carrying the v-SNARE TI-VAMP/VAMP7 to leave the cell center, load onto microtubules, and reach the periphery to mediate exocytosis are largely unknown. Here, we show that the TI-VAMP/VAMP7 partner Varp, a Rab21 guanine nucleotide exchange factor, interacts with GolginA4 and the kinesin 1 Kif5A. Activated Rab21-GTP in turn binds to MACF1, an actin and microtubule regulator, which is itself a partner of GolginA4. These components are required for directed movement of TI-VAMP/VAMP7 vesicles from the cell center to the cell periphery. The molecular mechanisms uncovered here suggest an integrated view of the transport of vesicles carrying a specific v-SNARE toward the cell surface. Copyright © 2012 Elsevier Inc. All rights reserved.
Dodonova, Svetlana O; Aderhold, Patrick; Kopp, Juergen; Ganeva, Iva; Röhling, Simone; Hagen, Wim J H; Sinning, Irmgard; Wieland, Felix; Briggs, John A G
2017-01-01
COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of βδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly. DOI: http://dx.doi.org/10.7554/eLife.26691.001 PMID:28621666
Self-Assembled Materials Made from Functional Recombinant Proteins.
Jang, Yeongseon; Champion, Julie A
2016-10-18
Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on the surface and can also carry protein, small-molecule, or nanoparticle cargo in the vesicle lumen. To create a material with a more complex hierarchical structure, we combined calcium phosphate with zipper fusion proteins containing random coil polypeptides to produce hybrid protein-inorganic supraparticles with high surface area and porous structure. The use of a functional enzyme created supraparticles with the ability to degrade inflammatory cytokines. Our characterization of these protein materials revealed that the molecular interactions are complex because of the large size of the protein building blocks, their folded structures, and the number of potential interactions including hydrophobic interactions, electrostatic interactions, van der Waals forces, and specific affinity-based interactions. It is difficult or even impossible to predict the structures a priori. However, once the basic assembly principles are understood, there is opportunity to tune the material properties, such as size, through control of the self-assembly conditions. Our future efforts on the fundamental side will focus on identifying the phase space of self-assembly of these fusion proteins and additional experimental levers with which to control and tune the resulting materials. On the application side, we are investigating an array of different functional proteins to expand the use of these structures in both therapeutic protein delivery and biocatalysis.
Exocyst and autophagy-related membrane trafficking in plants.
Pecenková, Tamara; Markovic, Vedrana; Sabol, Peter; Kulich, Ivan; Žárský, Viktor
2017-12-18
Endomembrane traffic in eukaryotic cells functions partially as a means of communication; delivery of membrane in one direction has to be balanced with a reduction at the other end. This effect is typically the case during the defence against pathogens. To combat pathogens, cellular growth and differentiation are suppressed, while endomembrane traffic is poised towards limiting the pathogen attack. The octameric exocyst vesicle-tethering complex was originally discovered as a factor facilitating vesicle-targeting and vesicle-plasma membrane (PM) fusion during exocytosis prior to and possibly during SNARE complex formation. Interestingly, it was recently implicated both in animals and plants in autophagy membrane traffic. In animal cells, the exocyst is integrated into the mTOR-regulated energy metabolism stress/starvation pathway, participating in the formation and especially initiation of an autophagosome. In plants, the first functional link was to autophagy-related anthocyanin import to the vacuole and to starvation. In this concise review, we summarize the current knowledge of exocyst functions in autophagy and defence in plants that might involve unconventional secretion and compare it with animal conditions. Formation of different exocyst complexes during undisturbed cell growth, as opposed to periods of cellular stress reactions involving autophagy, might contribute to the coordination of endomembrane trafficking pathways. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Beugin, S; Edwards, K; Karlsson, G; Ollivon, M; Lesieur, S
1998-01-01
Monomethoxypoly(ethylene glycol) cholesteryl carbonates (M-PEG-Chol) with polymer chain molecular weights of 1000 (M-PEG1000-Chol) and 2000 (M-PEG2000-Chol) have been newly synthesized and characterized. Their aggregation behavior in mixture with diglycerol hexadecyl ether (C16G2) and cholesterol has been examined by cryotransmission electron microscopy, high-performance gel exclusion chromatography, and quasielastic light scattering. Nonaggregated, stable, unilamellar vesicles were obtained at low polymer levels with optimal shape and size homogeneity at cholesteryl conjugate/ lipids ratios of 10 mol% M-PEG1000-Chol or 5 mol% M-PEG2000-Chol, corresponding to the theoretically predicted brush conformational state of the PEG chains. At 20 mol% M-PEG1000-Chol or 10 mol% M-PEG2000-Chol, the saturation threshold of the C16G2/cholesterol membrane in polymer is exceeded, and open disk-shaped aggregates are seen in coexistence with closed vesicles. Higher levels up to 30 mol% lead to the complete solubilization of the vesicles into disk-like structures of decreasing size with increasing PEG content. This study underlines the bivalent role of M-PEG-Chol derivatives: while behaving as solubilizing surfactants, they provide an efficient steric barrier, preventing the vesicles from aggregation and fusion over a period of at least 2 weeks. PMID:9635773
Rings of membrane sterols surround the openings of vesicles and fenestrae, in capillary endothelium.
Simionescu, N; Lupu, F; Simionescu, M
1983-11-01
We investigated the distribution of sterols in the cell membrane of microvascular endothelium (mouse pancreas, diaphragm, brain, heart, lung, kidney, thyroid, adrenal, and liver) with the polyene antibiotic filipin, which reportedly has binding specificity for free 3-beta-hydroxysterols. In some experiments, concomitantly, cell-surface anionic sites were detected with cationized ferritin. Vessels were perfused in situ with PBS, followed by light fixation and filipin administration for 10 to 60 min. Tissues were further processed for thin-section and freeze-fracture electron microscopy. Short exposure (10 min) to filipin-glutaraldehyde solution resulted in the initial appearance, on many areas, of rings of characteristic filipin-sterol complexes within the rim surrounding stomata of most plasmalemmal vesicles, transendothelial channels, and fenestrae. Such rings were absent from the rims of the large openings of the sinusoid endothelium (liver, adrenal), coated pits and phagocytic vacuoles. After longer exposure (30-60 min), filipin-sterol complexes labeled randomly the rest of plasma membrane (except for coated pits, and partially the interstrand areas of junctions), and also marked most plasmalemmal vesicles. These peristomal rings of sterols were displayed mostly on the P face, and, at their full development, consisted of 6-8 units around a vesicle stoma, and 10-12 units around a fenestra. At their level, the intramembranous particles and the cell surface anionic sites were virtually excluded. Peristomal rings of sterols were also detected on the plasma membrane of pericytes and smooth muscle cells of the microvascular wall, which otherwise were poorly labeled with filipin-sterol complexes as compared to endothelial plasmalemma. It is presumed that the peristomal rings of cholesterol may represent important contributors to the local transient stabilization of plasma membrane and to the phase separation between cell membrane and vesicle membrane at a certain stage of their fusion/fission process.
A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa.
Bullen, Hayley E; Soldati-Favre, Dominique
2016-08-01
Lipids are commonly known for the structural roles they play, however, the specific contribution of different lipid classes to wide-ranging signalling pathways is progressively being unravelled. Signalling lipids and their associated effector proteins are emerging as significant contributors to a vast array of effector functions within cells, including essential processes such as membrane fusion and vesicle exocytosis. Many phospholipids have signalling capacity, however, this review will focus on phosphatidic acid (PA) and the enzymes implicated in its production from diacylglycerol (DAG) and phosphatidylcholine (PC): DGK and PLD respectively. PA is a negatively charged, cone-shaped lipid identified as a key mediator in specific membrane fusion and vesicle exocytosis events in a variety of mammalian cells, and has recently been implicated in specialised secretory organelle exocytosis in apicomplexan parasites. This review summarises the recent work implicating a role for PA regulation in exocytosis in various cell types. We will discuss how these signalling events are linked to pathogenesis in the phylum Apicomplexa. © 2016 Federation of European Biochemical Societies.
NASA Astrophysics Data System (ADS)
Rietdorf, Jens; Stephens, David J.; Squire, Anthony; Simpson, Jeremy; Shima, David T.; Paccaud, Jean-Pierre; Bastiaens, Philippe I.; Pepperkok, Rainer
2000-04-01
Membrane traffic between the endoplasmic reticulum (ER) and the Golgi complex is regulated by two vesicular coat complexes, COPII and COPI. COPII has been implicated in selective packaging of anterograde cargo into coated transport vesicles budding from the ER. COPI-coated vesicles are proposed to mediate recycling of proteins from the Golgi complex to the ER. We have used multi spectral 3D imaging to visualize COPI and COPII behavior simultaneously with various GFP-tagged secretory markers in living cells. This shows that COPII and COPI act sequentially whereby COPI association with anterograde transport complexes is involved in microtubule-based transport and the en route segregation of ER recycling molecules from secretory cargo within TCS in transit to the Golgi complex. We have also investigated the possibility to discriminate spectrally GFP fusion proteins by fluorescence lifetime imaging. This shows that at least two, and possibly up to three GFP fusion proteins can be discriminated and localized in living cells using a single excitation wavelength and a single broad band emission filter.
SARS-CoV fusion peptides induce membrane surface ordering and curvature.
Basso, Luis G M; Vicente, Eduardo F; Crusca, Edson; Cilli, Eduardo M; Costa-Filho, Antonio J
2016-11-28
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.
Membrane Fusion Induced by Small Molecules and Ions
Mondal Roy, Sutapa; Sarkar, Munna
2011-01-01
Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes. PMID:21660306
The BAR Domain Proteins: Molding Membranes in Fission, Fusion, and Phagy
Ren, Gang; Vajjhala, Parimala; Lee, Janet S.; Winsor, Barbara; Munn, Alan L.
2006-01-01
The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt α-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes. PMID:16524918
The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.
2010-12-17
Research highlights: {yields} Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. {yields} Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. {yields} This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended themore » study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.« less
Vogel, Georg F; van Rijn, Jorik M; Krainer, Iris M; Janecke, Andreas R; Posovszky, Carsten; Cohen, Marta; Searle, Claire; Jantchou, Prevost; Escher, Johanna C; Patey, Natalie; Cutz, Ernest; Müller, Thomas; Middendorp, Sabine; Hess, Michael W; Huber, Lukas A
2017-07-20
Familial hemophagocytic lymphohistiocytosis 5 (FHL5) is an autosomal recessive disease caused by mutations in STXBP2, coding for Munc18-2, which is required for SNARE-mediated membrane fusion. FHL5 causes hematologic and gastrointestinal symptoms characterized by chronic enteropathy that is reminiscent of microvillus inclusion disease (MVID). However, the molecular pathophysiology of FHL5-associated diarrhea is poorly understood. Five FHL5 patients, including four previously unreported patients, were studied. Morphology of duodenal sections was analyzed by electron and fluorescence microscopy. Small intestinal enterocytes and organoid-derived monolayers displayed the subcellular characteristics of MVID. For the analyses of Munc18-2-dependent SNARE-protein interactions, a Munc18-2 CaCo2-KO model cell line was generated by applying CRISPR/Cas9 technology. Munc18-2 is required for Slp4a/Stx3 interaction in fusion of cargo vesicles with the apical plasma membrane. Cargo trafficking was investigated in patient biopsies, patient-derived organoids, and the genome-edited model cell line. Loss of Munc18-2 selectively disrupts trafficking of certain apical brush-border proteins (NHE3 and GLUT5), while transport of DPPIV remained unaffected. Here, we describe the molecular mechanism how the loss of function of Munc18-2 leads to cargo-selective mislocalization of brush-border components and a subapical accumulation of cargo vesicles, as it is known from the loss of polarity phenotype in MVID.
Hoerder-Suabedissen, Anna; Korrell, Kim V; Hayashi, Shuichi; Jeans, Alexander; Ramirez, Denise M O; Grant, Eleanor; Christian, Helen C; Kavalali, Ege T; Wilson, Michael C; Molnár, Zoltán
2018-05-30
Synaptosomal associated protein 25 kDa (SNAP25) is an essential component of the SNARE complex regulating synaptic vesicle fusion. SNAP25 deficiency has been implicated in a variety of cognitive disorders. We ablated SNAP25 from selected neuronal populations by generating a transgenic mouse (B6-Snap25tm3mcw (Snap25-flox)) with LoxP sites flanking exon5a/5b. In the presence of Cre-recombinase, Snap25-flox is recombined to a truncated transcript. Evoked synaptic vesicle release is severely reduced in Snap25 conditional knockout (cKO) neurons as shown by live cell imaging of synaptic vesicle fusion and whole cell patch clamp recordings in cultured hippocampal neurons. We studied Snap25 cKO in subsets of cortical projection neurons in vivo (L5-Rbp4-Cre; L6-Ntsr1-Cre; L6b-Drd1a-Cre). cKO neurons develop normal axonal projections, but axons are not maintained appropriately, showing signs of swelling, fragmentation and eventually complete absence. Onset and progression of degeneration are dependent on the neuron type, with L5 cells showing the earliest and most severe axonal loss. Ultrastructural examination revealed that cKO neurites contain autophagosome/lysosome-like structures. Markers of inflammation such as Iba1 and lipofuscin are increased only in adult cKO cortex. Snap25 cKO can provide a model to study genetic interactions with environmental influences in several disorders.
α-SNAP Interferes with the Zippering of the SNARE Protein Membrane Fusion Machinery
Park, Yongsoo; Vennekate, Wensi; Yavuz, Halenur; Preobraschenski, Julia; Hernandez, Javier M.; Riedel, Dietmar; Walla, Peter Jomo; Jahn, Reinhard
2014-01-01
Neuronal exocytosis is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Before fusion, SNARE proteins form complexes bridging the membrane followed by assembly toward the C-terminal membrane anchors, thus initiating membrane fusion. After fusion, the SNARE complex is disassembled by the AAA-ATPase N-ethylmaleimide-sensitive factor that requires the cofactor α-SNAP to first bind to the assembled SNARE complex. Using chromaffin granules and liposomes we now show that α-SNAP on its own interferes with the zippering of membrane-anchored SNARE complexes midway through the zippering reaction, arresting SNAREs in a partially assembled trans-complex and preventing fusion. Intriguingly, the interference does not result in an inhibitory effect on synaptic vesicles, suggesting that membrane properties also influence the final outcome of α-SNAP interference with SNARE zippering. We suggest that binding of α-SNAP to the SNARE complex affects the ability of the SNARE complex to harness energy or transmit force to the membrane. PMID:24778182
Coiled coil interactions for the targeting of liposomes for nucleic acid delivery
NASA Astrophysics Data System (ADS)
Oude Blenke, Erik E.; van den Dikkenberg, Joep; van Kolck, Bartjan; Kros, Alexander; Mastrobattista, Enrico
2016-04-01
Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner. Electronic supplementary information (ESI) available: Two videos of the experiment are shown in Fig. 5, demonstrating the distinctive characteristics of the peptide pair in a mixed population of cells are available in online. Video S1 shows the experiment in the bright field channel including the green channel (calcein-AM stained unfunctionalized cells) and orange channel (rhodamine labeled liposomes). Video S2 shows the exact same frames but combining the fluorescent channels only, including the blue channel for Hoechst nuclear staining. Both videos consist of 31 frames at a frame rate of 5 fps. The labeled liposomes are injected after frame 1. The videos span a total timeframe of 15 minutes. See DOI: 10.1039/c6nr00711b
Alcohol induces synaptotagmin 1 expression in neurons via activation of heat shock factor 1.
Varodayan, F P; Pignataro, L; Harrison, N L
2011-10-13
Many synapses within the central nervous system are sensitive to ethanol. Although alcohol is known to affect the probability of neurotransmitter release in specific brain regions, the effects of alcohol on the underlying synaptic vesicle fusion machinery have been little studied. To identify a potential pathway by which ethanol can regulate neurotransmitter release, we investigated the effects of acute alcohol exposure (1-24 h) on the expression of the gene encoding synaptotagmin 1 (Syt1), a synaptic protein that binds calcium to directly trigger vesicle fusion. Syt1 was identified in a microarray screen as a gene that may be sensitive to alcohol and heat shock. We found that Syt1 mRNA and protein expression are rapidly and robustly up-regulated by ethanol in mouse cortical neurons, and that the distribution of Syt1 protein along neuronal processes is also altered. Syt1 mRNA up-regulation is dependent on the activation of the transcription factor heat shock factor 1 (HSF1). The transfection of a constitutively active Hsf1 construct into neurons stimulates Syt1 transcription, while transfection of Hsf1 small interfering RNA (siRNA) or a constitutively inactive Hsf1 construct into neurons attenuates the induction of Syt1 by ethanol. This suggests that the activation of HSF1 can induce Syt1 expression and that this may be a mechanism by which alcohol regulates neurotransmitter release during brief exposures. Further analysis revealed that a subset of the genes encoding the core synaptic vesicle fusion (soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor; SNARE) proteins share this property of induction by ethanol, suggesting that alcohol may trigger a specific coordinated adaptation in synaptic function. This molecular mechanism could explain some of the changes in synaptic function that occur following alcohol administration and may be an important step in the process of neuronal adaptation to alcohol. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish
2015-04-21
A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.
Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V
2010-01-01
Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.
Yavuz, Halenur; Kattan, Iman; Hernandez, Javier Matias; Hofnagel, Oliver; Witkowska, Agata; Raunser, Stefan; Walla, Peter Jomo; Jahn, Reinhard
2018-04-17
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion in the secretory pathway. They contain conserved regions, termed SNARE motifs, that assemble between opposing membranes directionally from their N-termini to their membrane-proximal C-termini in a highly exergonic reaction. However, how this energy is utilized to overcome the energy barriers along the fusion pathway is still under debate. Here we have used mutants of the SNARE synaptobrevin to arrest trans-SNARE zippering at defined stages. We have uncovered two distinct vesicle docking intermediates, where the membranes are loosely and tightly connected, respectively. The tightly connected state is irreversible and independent of maintaining assembled SNARE complexes. Together, our results shed new light on the intermediate stages along the pathway of membrane fusion. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation
van den Bogaart, Geert; Thutupalli, Shashi; Risselada, Jelger H.; Meyenberg, Karsten; Holt, Matthew; Riedel, Dietmar; Diederichsen, Ulf; Herminghaus, Stephan; Grubmüller, Helmut; Jahn, Reinhard
2011-01-01
Synaptotagmin-1 triggers Ca2+-sensitive, rapid neurotransmitter release by promoting the interaction of SNARE proteins between the synaptic vesicles and the plasma membrane. How synaptotagmin-1 promotes this interaction is controversial, and the massive increase in membrane fusion efficiency of Ca2+-synaptotagmin-1 has not been reproduced in vitro. However, previous experiments have been performed at relatively high salt concentrations, screening potentially important electrostatic interactions. Using functional reconstitution in liposomes, we show here that at low ionic strength SNARE-mediated membrane fusion becomes strictly dependent on both Ca2+ and synaptotagmin-1. Under these conditions, synaptotagmin-1 functions as a distance regulator: tethering the liposomes too far for SNARE nucleation in the absence of Ca2+, but brings the liposomes close enough for membrane fusion in the presence of Ca2+. These results may explain how the relatively weak electrostatic interactions of synaptotagmin-1 with membranes substantially accelerate fusion. PMID:21642968
ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating
Rogers, Jason V.; Arlow, Tim; Inkellis, Elizabeth R.; Koo, Timothy S.; Rose, Mark D.
2013-01-01
During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide–sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway. PMID:24152736
Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H
2007-08-15
Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.
Vesicular PtdIns(3,4,5)P3 and Rab7 are key effectors of sea urchin zygote nuclear membrane fusion.
Lete, Marta G; Byrne, Richard D; Alonso, Alicia; Poccia, Dominic; Larijani, Banafshé
2017-01-15
Regulation of nuclear envelope dynamics is an important example of the universal phenomena of membrane fusion. The signalling molecules involved in nuclear membrane fusion might also be conserved during the formation of both pronuclear and zygote nuclear envelopes in the fertilised egg. Here, we determine that class-I phosphoinositide 3-kinases (PI3Ks) are needed for in vitro nuclear envelope formation. We show that, in vivo, PtdIns(3,4,5)P 3 is transiently located in vesicles around the male pronucleus at the time of nuclear envelope formation, and around male and female pronuclei before membrane fusion. We illustrate that class-I PI3K activity is also necessary for fusion of the female and male pronuclear membranes. We demonstrate, using coincidence amplified Förster resonance energy transfer (FRET) monitored using fluorescence lifetime imaging microscopy (FLIM), a protein-lipid interaction of Rab7 GTPase and PtdIns(3,4,5)P 3 that occurs during pronuclear membrane fusion to create the zygote nuclear envelope. We present a working model, which includes several molecular steps in the pathways controlling fusion of nuclear envelope membranes. © 2017. Published by The Company of Biologists Ltd.
Sackett, Kelly; Nethercott, Matthew J.; Shai, Yechiel; Weliky, David P.
2009-01-01
Conformational changes in the HIV gp41 protein are directly correlated with fusion between the HIV and target cell plasma membranes which is the initial step of infection. Key gp41 fusion conformations include an early extended conformation termed pre-hairpin which contains exposed regions and a final low energy conformation termed hairpin which has compact six-helix bundle structure. Current fusion models debate the roles of hairpin and pre-hairpin conformations in the process of membrane merger. In the present work, gp41 constructs have been engineered which correspond to fusion relevant parts of both pre-hairpin and hairpin conformations, and have been analyzed for their ability to induce lipid mixing between membrane vesicles. The data correlate membrane fusion function with the pre-hairpin conformation and suggest that one of the roles of the final hairpin conformation is sequestration of membrane perturbing gp41 regions with consequent loss of the membrane disruption induced earlier by the pre-hairpin structure. To our knowledge, this is the first biophysical study to delineate the membrane fusion potential of gp41 constructs modeling key fusion conformations. PMID:19222185
Cueto, Juan Agustín; Vanrell, María Cristina; Salassa, Betiana Nebaí; Nola, Sébastien; Galli, Thierry; Colombo, María Isabel; Romano, Patricia Silvia
2017-06-01
Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular parasite that exploits different host vesicular pathways to invade the target cells. Vesicular and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are key proteins of the intracellular membrane fusion machinery. During the early times of T. cruzi infection, several vesicles are attracted to the parasite contact sites in the plasma membrane. Fusion of these vesicles promotes the formation of the parasitic vacuole and parasite entry. In this work, we study the requirement and the nature of SNAREs involved in the fusion events that take place during T. cruzi infection. Our results show that inhibition of N-ethylmaleimide-sensitive factor protein, a protein required for SNARE complex disassembly, impairs T. cruzi infection. Both TI-VAMP/VAMP7 and cellubrevin/VAMP3, two v-SNAREs of the endocytic and exocytic pathways, are specifically recruited to the parasitophorous vacuole membrane in a synchronized manner but, although VAMP3 is acquired earlier than VAMP7, impairment of VAMP3 by tetanus neurotoxin fails to reduce T. cruzi infection. In contrast, reduction of VAMP7 activity by expression of VAMP7's longin domain, depletion by small interfering RNA or knockout, significantly decreases T. cruzi infection susceptibility as a result of a minor acquisition of lysosomal components to the parasitic vacuole. In addition, overexpression of the VAMP7 partner Vti1b increases the infection, whereas expression of a KIF5 kinesin mutant reduces VAMP7 recruitment to vacuole and, concomitantly, T. cruzi infection. Altogether, these data support a key role of TI-VAMP/VAMP7 in the fusion events that culminate in the T. cruzi parasitophorous vacuole development. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasik, Anita A.; Dumont, Vincent; Tienari, Jukka
Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex,more » as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane. - Highlights: • Septin 7, nonmuscle myosin heavy chain IIA (NMHC-IIA) and SNAP23 form a complex. • Knockdown of septin 7 increases NM-IIA activity in the SNAP23 complex. • Insulin decreases septin 7 level and increases NM-IIA activity in the SNAP23 complex. • Septin 7 hinders GSV docking/fusion by reducing NM-IIA activity in the SNAP23 complex.« less
Funahashi, Junichiro; Tanaka, Hiromitsu; Hirano, Tomoo
2018-01-01
Fast repetitive synaptic transmission depends on efficient exocytosis and retrieval of synaptic vesicles around a presynaptic active zone. However, the functional organization of an active zone and regulatory mechanisms of exocytosis, endocytosis and reconstruction of release-competent synaptic vesicles have not been fully elucidated. By developing a novel visualization method, we attempted to identify the location of exocytosis of a single synaptic vesicle within an active zone and examined movement of synaptic vesicle protein synaptophysin (Syp) after exocytosis. Using cultured hippocampal neurons, we induced formation of active-zone-like membranes (AZLMs) directly adjacent and parallel to a glass surface coated with neuroligin, and imaged Syp fused to super-ecliptic pHluorin (Syp-SEP) after its translocation to the plasma membrane from a synaptic vesicle using total internal reflection fluorescence microscopy (TIRFM). An AZLM showed characteristic molecular and functional properties of a presynaptic active zone. It contained active zone proteins, cytomatrix at the active zone-associated structural protein (CAST), Bassoon, Piccolo, Munc13 and RIM, and showed an increase in intracellular Ca 2+ concentration upon electrical stimulation. In addition, single-pulse stimulation sometimes induced a transient increase of Syp-SEP signal followed by lateral spread in an AZLM, which was considered to reflect an exocytosis event of a single synaptic vesicle. The diffusion coefficient of Syp-SEP on the presynaptic plasma membrane after the membrane fusion was estimated to be 0.17-0.19 μm 2 /s, suggesting that Syp-SEP diffused without significant obstruction. Synchronous exocytosis just after the electrical stimulation tended to occur at multiple restricted sites within an AZLM, whereas locations of asynchronous release occurring later after the stimulation tended to be more scattered.
NASA Astrophysics Data System (ADS)
Patra, Samir Kumar; Sengupta, Dipta; Deb, Moonmoon; Kar, Swayamsiddha; Kausar, Chahat
2017-02-01
Phospholipase C (PLC)1 is known to help the pathogen B. cereus entry to the host cell and human PLC is over expressed in multiple cancers. Knowledge of dynamic activity of the enzyme PLC while in action on membrane lipids is essential and helpful to drug design and delivery. In view of this, interactions of PLC with liposome of various lipid compositions have been visualized by testing enzyme activity and microenvironments around the intrinsic fluorophores of the enzyme. Overall change of the protein's conformation has been monitored by fluorescence spectroscopy and circular dichroism (CD). Liposome aggregation and fusion were predicted by increase in turbidity and vesicle size. PLC in solution has high fluorescence and exhibit appreciable shift in its emission maxima, upon gradual change in excitation wavelength towards the red edge of the absorption band. REES fluorescence studies indicated that certain Trp fluorophores of inactive PLC are in motionally restricted compact/rigid environments in solution conformation. PLC fluorescence decreased in association with liposome and Trps loosed rigidity where liposome aggregation and fusion occurred. We argue that the structural flexibility is the cause of decrease of fluorescence, mostly to gain optimum conformation for maximum activity of the enzyme PLC. Further studies deciphered that the enzyme PLC undergoes change of conformation when mixed to LUVs prepared with specific lipids. CD data at the far-UV and near-UV regions of PLC in solution are in excellent agreement with the previous reports. CD analyses of PLC with LUVs, showed significant reduction of α-helices, increase of β-sheets; and confirmed dramatic change of orientations of Trps. In case of liposome composed of lipid raft like composition, the enzyme binds very fast, hydrolyze PC with higher rate, exhibit highest structural flexibility and promote vesicle fusion. These data strongly suggest marked differences in conformation transition induced PLC activation and liposome fusion on the lipid composition.
Discrete, continuous, and stochastic models of protein sorting in the Golgi apparatus
Gong, Haijun; Guo, Yusong; Linstedt, Adam
2017-01-01
The Golgi apparatus plays a central role in processing and sorting proteins and lipids in eukaryotic cells. Golgi compartments constantly exchange material with each other and with other cellular components, allowing them to maintain and reform distinct identities despite dramatic changes in structure and size during cell division, development, and osmotic stress. We have developed three minimal models of membrane and protein exchange in the Golgi—a discrete, stochastic model, a continuous ordinary differential equation model, and a continuous stochastic differential equation model—each based on two fundamental mechanisms: vesicle-coat-mediated selective concentration of cargoes and soluble N-ethylmaleimide-sensitive factor attachment protein receptor SNARE proteins during vesicle formation and SNARE-mediated selective fusion of vesicles. By exploring where the models differ, we hope to discover whether the discrete, stochastic nature of vesicle-mediated transport is likely to have appreciable functional consequences for the Golgi. All three models show similar ability to restore and maintain distinct identities over broad parameter ranges. They diverge, however, in conditions corresponding to collapse and reassembly of the Golgi. The results suggest that a continuum model provides a good description of Golgi maintenance but that considering the discrete nature of vesicle-based traffic is important to understanding assembly and disassembly of the Golgi. Experimental analysis validates a prediction of the models that altering guanine nucleotide exchange factor expression levels will modulate Golgi size. PMID:20365406
NASA Astrophysics Data System (ADS)
Raudino, Antonio; Pannuzzo, Martina
2010-01-01
A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate-limiting step to the whole adhesion process. Approximate relationships between the experimental fusion rates reported in the literature and parameters such as membrane elastic bending modulus, repulsion strength, temperature, osmotic forces, ligand-receptor binding energy, solvent and membrane viscosities are satisfactory explained by our model. The present results hint a possible role of the initial long-distance→short-distance transition in determining the whole fusion kinetics.
Raudino, Antonio; Pannuzzo, Martina
2010-01-28
A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate-limiting step to the whole adhesion process. Approximate relationships between the experimental fusion rates reported in the literature and parameters such as membrane elastic bending modulus, repulsion strength, temperature, osmotic forces, ligand-receptor binding energy, solvent and membrane viscosities are satisfactory explained by our model. The present results hint a possible role of the initial long-distance-->short-distance transition in determining the whole fusion kinetics.
Park, Seungmee; Bin, Na-Ryum; Wong, Raymond; Sitarska, Ewa; Sugita, Kyoko; Ma, Ke; Algouneh, Arash; Turlova, Ekaterina; Wang, Siyan; Siriya, Pranay; Kalia, Lorraine; Feng, Zhong-Ping; Monnier, Philippe P.; Zhen, Mei; Gao, Shangbang
2017-01-01
Munc18-1/UNC-18 is believed to prime SNARE-mediated membrane fusion, yet the underlying mechanisms remain enigmatic. Here, we examine how potential gain-of-function mutations of Munc18-1/UNC-18 affect locomotory behavior and synaptic transmission, and how Munc18-1-mediated priming is related to Munc13-1/UNC-13 and Tomosyn/TOM-1, positive and negative SNARE regulators, respectively. We show that a Munc18-1(P335A)/UNC-18(P334A) mutation leads to significantly increased locomotory activity and acetylcholine release in Caenorhabditis elegans, as well as enhanced synaptic neurotransmission in cultured mammalian neurons. Importantly, similar to tom-1 null mutants, unc-18(P334A) mutants partially bypass the requirement of UNC-13. Moreover, unc-18(P334A) and tom-1 null mutations confer a strong synergy in suppressing the phenotypes of unc-13 mutants. Through biochemical experiments, we demonstrate that Munc18-1(P335A) exhibits enhanced activity in SNARE complex formation as well as in binding to the preformed SNARE complex, and partially bypasses the Munc13-1 requirement in liposome fusion assays. Our results indicate that Munc18-1/UNC-18 primes vesicle fusion downstream of Munc13-1/UNC-13 by templating SNARE complex assembly and acts antagonistically with Tomosyn/TOM-1. SIGNIFICANCE STATEMENT At presynaptic sites, SNARE-mediated membrane fusion is tightly regulated by several key proteins including Munc18/UNC-18, Munc13/UNC-13, and Tomosyn/TOM-1. However, how these proteins interact with each other to achieve the precise regulation of neurotransmitter release remains largely unclear. Using Caenorhabditis elegans as an in vivo model, we found that a gain-of-function mutant of UNC-18 increases locomotory activity and synaptic acetylcholine release, that it partially bypasses the requirement of UNC-13 for release, and that this bypass is synergistically augmented by the lack of TOM-1. We also elucidated the biochemical basis for the gain-of-function caused by this mutation. Thus, our study provides novel mechanistic insights into how Munc18/UNC-18 primes synaptic vesicle release and how this protein interacts functionally with Munc13/UNC-13 and Tomosyn/TOM-1. PMID:28821673
Wiener, H; Turnheim, K
1990-10-26
Using differential sedimentation, isopycnic and Ficoll-400 barrier centrifugation, basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon were enriched 34- and 9-fold, respectively. 86Rb(+)-uptake into these vesicles, driven by an electrical potential difference, was stimulated by submicromolar Ca2+ activities and inhibited by Ba2+. These findings indicate the presence of Ca2(+)-activated K+ channels. The K+ channels in surface and crypt cell membranes differed with respect to inhibition by the bee venom apamin, the scorpion venom charybdotoxin and tetraethylammonium and exhibited a different pH dependence. Fusion of basolateral membrane vesicles with planar phospholipid bilayers revealed the presence of high-conductance Ba2(+)-sensitive K+ channels which were activated by micromolar Ca2+ and inhibited by crude scorpion venom and trifluoperazine. These K+ channels may be involved in the coupling of apical and basolateral membrane conductances during Na+ absorption and Cl- secretion, but they may also play a role in cell volume regulation.
Luo, Fujun; Dittrich, Markus; Stiles, Joel R.; Meriney, Stephen D.
2011-01-01
We used high-resolution fluorescence imaging and single-pixel optical fluctuation analysis to estimate the opening probability of individual voltage-gated calcium (Ca2+) channels during an action potential and the number of such Ca2+ channels within active zones of frog neuromuscular junctions. Analysis revealed ~36 Ca2+ channels within each active zone, similar to the number of docked synaptic vesicles but far less than the total number of transmembrane particles reported based on freeze-fracture analysis (~200–250). The probability that each channel opened during an action potential was only ~0.2. These results suggest why each active zone averages only one quantal release event during every other action potential, despite a substantial number of docked vesicles. With sparse Ca2+ channels and low opening probability, triggering of fusion for each vesicle is primarily controlled by Ca2+ influx through individual Ca2+ channels. In contrast, the entire synapse is highly reliable because it contains hundreds of active zones. PMID:21813687
COPI mediates recycling of an exocytic SNARE by recognition of a ubiquitin sorting signal
Xu, Peng; Hankins, Hannah M; MacDonald, Chris; Erlinger, Samuel J; Frazier, Meredith N; Diab, Nicholas S; Piper, Robert C; Jackson, Lauren P; MacGurn, Jason A
2017-01-01
The COPI coat forms transport vesicles from the Golgi complex and plays a poorly defined role in endocytic trafficking. Here we show that COPI binds K63-linked polyubiquitin and this interaction is crucial for trafficking of a ubiquitinated yeast SNARE (Snc1). Snc1 is a v-SNARE that drives fusion of exocytic vesicles with the plasma membrane, and then recycles through the endocytic pathway to the Golgi for reuse in exocytosis. Removal of ubiquitin from Snc1, or deletion of a β'-COP subunit propeller domain that binds K63-linked polyubiquitin, disrupts Snc1 recycling causing aberrant accumulation in internal compartments. Moreover, replacement of the β'-COP propeller domain with unrelated ubiquitin-binding domains restores Snc1 recycling. These results indicate that ubiquitination, a modification well known to target membrane proteins to the lysosome or vacuole for degradation, can also function as recycling signal to sort a SNARE into COPI vesicles in a non-degradative pathway. PMID:29058666
Bryksa, Brian C; Grahame, Douglas A; Yada, Rickey Y
2017-05-01
The present study characterized the aspartic protease saposin-like domains of four plant species, Solanum tuberosum (potato), Hordeum vulgare L. (barley), Cynara cardunculus L. (cardoon; artichoke thistle) and Arabidopsis thaliana, in terms of bilayer disruption and fusion, and structure pH-dependence. Comparison of the recombinant saposin-like domains revealed that each induced leakage of bilayer vesicles composed of a simple phospholipid mixture with relative rates Arabidopsis>barley>cardoon>potato. When compared for leakage of bilayer composed of a vacuole-like phospholipid mixture, leakage was approximately five times higher for potato saposin-like domain compared to the others. In terms of fusogenic activity, distinctions between particle size profiles were noted among the four proteins, particularly for potato saposin-like domain. Bilayer fusion assays in reducing conditions resulted in altered fusion profiles except in the case of cardoon saposin-like domain which was virtually unchanged. Secondary structure profiles were similar across all four proteins under different pH conditions, although cardoon saposin-like domain appeared to have higher overall helix structure. Furthermore, increases in Trp emission upon protein-bilayer interactions suggested that protein structure rearrangements equilibrated with half-times ranging from 52 to 120s, with cardoon saposin-like domain significantly slower than the other three species. Overall, the present findings serve as a foundation for future studies seeking to delineate protein structural features and motifs in protein-bilayer interactions based upon variability in plant aspartic protease saposin-like domain structures. Copyright © 2017 Elsevier B.V. All rights reserved.
SARS-CoV fusion peptides induce membrane surface ordering and curvature
Basso, Luis G. M.; Vicente, Eduardo F.; Crusca Jr., Edson; Cilli, Eduardo M.; Costa-Filho, Antonio J.
2016-01-01
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed. PMID:27892522
Bennett, Terry L.; Kraft, Shannon M.; Reaves, Barbara J.; Mima, Joji; O’Brien, Kevin M.; Starai, Vincent J.
2013-01-01
During infection, the intracellular pathogenic bacterium Legionella pneumophila causes an extensive remodeling of host membrane trafficking pathways, both in the construction of a replication-competent vacuole comprised of ER-derived vesicles and plasma membrane components, and in the inhibition of normal phagosome:endosome/lysosome fusion pathways. Here, we identify the LegC3 secreted effector protein from L. pneumophila as able to inhibit a SNARE- and Rab GTPase-dependent membrane fusion pathway in vitro, the homotypic fusion of yeast vacuoles (lysosomes). This vacuole fusion inhibition appeared to be specific, as similar secreted coiled-coiled domain containing proteins from L. pneumophila, LegC7/YlfA and LegC2/YlfB, did not inhibit vacuole fusion. The LegC3-mediated fusion inhibition was reversible by a yeast cytosolic extract, as well as by a purified soluble SNARE, Vam7p. LegC3 blocked the formation of trans-SNARE complexes during vacuole fusion, although we did not detect a direct interaction of LegC3 with the vacuolar SNARE protein complexes required for fusion. Additionally, LegC3 was incapable of inhibiting a defined synthetic model of vacuolar SNARE-driven membrane fusion, further suggesting that LegC3 does not directly inhibit the activity of vacuolar SNAREs, HOPS complex, or Sec17p/18p during membrane fusion. LegC3 is likely utilized by Legionella to modulate eukaryotic membrane fusion events during pathogenesis. PMID:23437241
Balkarli, Ayse; Sengül, Cem; Tepeli, Emre; Balkarli, Huseyin; Cobankara, Veli
2014-05-31
SNAP-25 protein is contributory to plasma membrane and synaptic vesicle fusions that are critical points in neurotransmission. SNAP-25 gene is associated with behavioral symptoms, personality and psychological disorders. In addition, SNAP-25 protein can be related to different neurotransmitter functions due to its association with vesicle membrane transition and fusion. This is important because neurologic, cognitive, and psychologic disorders in fibromyalgia syndrome (FMS) can be related to this function. This relationship may be enlightening for etiopathogenesis of FMS and treatment approaches. We aimed to study a SNAP-25 gene polymorphism, which is related to many psychiatric diseases, and FMS association in this prospective study. We included 71 patients who were diagnosed according to new criteria and 57 matched healthy women in this study. Both groups were evaluated regarding age, height, weight, BMI, education level, marital and occupational status. A new diagnosis of FMS was made from criteria scoring, SF-36, Beck depression scale, and VAS that were applied to the patient group. SNAP-25 gene polymorphism and disease activity score correlations were compared. Mean age was 38±5,196 and 38.12±4.939 in patient and control groups, respectively (p=0.542). No significant difference was found between groups regarding age, height, weight, BMI, education level, marital or occupational status (p > 0.05). Ddel T/C genotype was significantly higher in the patient group (p = 0.009). MnlI gene polymorphism did not show a correlation with any score whereas a significant correlation was found between Ddel T/C genotype and Beck depression scale and VAS score (p < 0.05). FMS etiopathogenesis is not clearly known. Numerous neurologic, cognitive and psychological disorders were found during studies looking at cause. Our study showed increased SNAP-25 Ddel T/C genotype in FMS patients compared to the control group, which is related to behavioral symptoms, personality and psychological disorders in FMS patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Nazarul; Hu, Chuan, E-mail: chuan.hu@louisville.edu
2010-01-01
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cellmore » surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.« less
Membrane Electromechanics at Hair-Cell Synapses
NASA Astrophysics Data System (ADS)
Brownell, W. E.; Farrell, B.; Raphael, R. M.
2003-02-01
Both outer hair cell electromotility and neurotransmission at the inner hair cell synapse are rapid mechanical events that are synchronized to the hair-cell receptor potential. We analyze whether the forces and potentials resulting from membrane flexoelectricity could affect synaptic vesicle fusion. The results suggest that the coupling of membrane curvature with membrane potential is of sufficient magnitude to influence neurotransmitter release.
Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy.
Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-Yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong
2016-01-01
A mixture of docetaxel (DTX) and Solutol(®) HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.
Neufeld, Thomas P.
2017-01-01
Autophagy plays an essential role in the cellular homeostasis of neurons, facilitating the clearance of cellular debris. This clearance process is orchestrated through the assembly, transport, and fusion of autophagosomes with lysosomes for degradation. The motor protein dynein drives autophagosome motility from distal sites of assembly to sites of lysosomal fusion. In this study, we identify the scaffold protein CKA (connector of kinase to AP-1) as essential for autophagosome transport in neurons. Together with other core components of the striatin-interacting phosphatase and kinase (STRIPAK) complex, we show that CKA associates with dynein and directly binds Atg8a, an autophagosomal protein. CKA is a regulatory subunit of PP2A, a component of the STRIPAK complex. We propose that the STRIPAK complex modulates dynein activity. Consistent with this hypothesis, we provide evidence that CKA facilitates axonal transport of dense core vesicles and autophagosomes in a PP2A-dependent fashion. In addition, CKA-deficient flies exhibit PP2A-dependent motor coordination defects. CKA function within the STRIPAK complex is crucial to prevent transport defects that may contribute to neurodegeneration. PMID:28100687
Salivary Exosomes: Emerging Roles in Systemic Disease
Han, Yineng; Jia, Lingfei; Zheng, Yunfei; Li, Weiran
2018-01-01
Saliva, which contains biological information, is considered a valuable diagnostic tool for local and systemic diseases and conditions because, similar to blood, it contains important molecules like DNA, RNA, and proteins. Exosomes are cell-derived vesicles 30-100 nm in diameter with substantial biological functions, including intracellular communication and signalling. These vesicles, which are present in bodily fluids, including saliva, are released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. Salivary diagnosis has notable advantages, which include noninvasiveness, ease of collection, absence of coagulation, and a similar content as plasma, as well as increased patient compliance compared to other diagnostic approaches. However, investigation of the roles of salivary exosomes is still in its early years. In this review, we first describe the characteristics of endocytosis and secretion of salivary exosomes, as well as database and bioinformatics analysis of exosomes. Then, we describe strategies for the isolation of exosomes from human saliva and the emerging role of salivary exosomes as potential biomarkers of oral and other systemic diseases. Given the ever-growing role of salivary exosomes, defining their functions and understanding their specific mechanisms will provide novel insights into possible applications of salivary exosomes in the diagnosis and treatment of systemic diseases. PMID:29904278
The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged?
Rizo, Josep; Südhof, Thomas C
2012-01-01
Neurotransmitter release is governed by proteins that have homo-logs in most types of intracellular membrane fusion, including the Sec1/Munc18 protein Munc18-1 and the SNARE proteins syntaxin-1, synaptobrevin/VAMP, and SNAP-25. The SNAREs initiate fusion by forming tight SNARE complexes that bring the vesicle and plasma membranes together. SNARE maintenance in a functional state depends on two chaperone systems (Hsc70/αCSP/SGT and synuclein); defects in these systems lead to neurodegeneration. Munc18-1 binds to an autoinhibitory closed conformation of syntaxin-1, gating formation of SNARE complexes, and also binds to SNARE complexes, which likely underlies the crucial function of Munc18-1 in membrane fusion by an as-yet unclear mechanism. Syntaxin-1 opening is mediated by Munc13s through their MUN domain, which is homologous to diverse tethering factors and may also have a general role in fusion. MUN domain activity is likely modulated in diverse presynaptic plasticity processes that depend on Ca(2+) and RIM proteins, among others.
α-SNAP interferes with the zippering of the SNARE protein membrane fusion machinery.
Park, Yongsoo; Vennekate, Wensi; Yavuz, Halenur; Preobraschenski, Julia; Hernandez, Javier M; Riedel, Dietmar; Walla, Peter Jomo; Jahn, Reinhard
2014-06-06
Neuronal exocytosis is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Before fusion, SNARE proteins form complexes bridging the membrane followed by assembly toward the C-terminal membrane anchors, thus initiating membrane fusion. After fusion, the SNARE complex is disassembled by the AAA-ATPase N-ethylmaleimide-sensitive factor that requires the cofactor α-SNAP to first bind to the assembled SNARE complex. Using chromaffin granules and liposomes we now show that α-SNAP on its own interferes with the zippering of membrane-anchored SNARE complexes midway through the zippering reaction, arresting SNAREs in a partially assembled trans-complex and preventing fusion. Intriguingly, the interference does not result in an inhibitory effect on synaptic vesicles, suggesting that membrane properties also influence the final outcome of α-SNAP interference with SNARE zippering. We suggest that binding of α-SNAP to the SNARE complex affects the ability of the SNARE complex to harness energy or transmit force to the membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Structure and Function Study of HIV and Influenza Fusion Proteins
NASA Astrophysics Data System (ADS)
Liang, Shuang
Human immunodeficiency virus (HIV) and influenza virus are membrane-enveloped viruses causing acquired immunodeficiency syndrome (AIDS) and flu. The initial step of HIV and influenza virus infection is fusion between viral and host cell membrane catalyzed by the viral fusion protein gp41 and hemagglutinin (HA) respectively. However, the structure of gp41 and HA as well as the infection mechanism are still not fully understood. This work addresses (1) full length gp41 ectodomain and TM domain structure and function and (2) IFP membrane location and IFP-membrane interaction. My studies of gp41 protein and IFP can provide better understanding of the membrane fusion mechanism and may aid development of anti-viral therapeutics and vaccine. The full length ectodomain and transmembrane domain of gp41 and shorter constructs were expressed, purified and solubilized at physiology conditions. The constructs adopt overall alpha helical structure in SDS and DPC detergents, and showed hyperthermostability with Tm > 90 °C. The oligomeric states of these proteins vary in different detergent buffer: predominant trimer for all constructs and some hexamer fraction for HM and HM_TM protein in SDS at pH 7.4; and mixtures of monomer, trimer, and higher-order oligomer protein in DPC at pH 4.0 and 7.4. Substantial protein-induced vesicle fusion was observed, including fusion of neutral vesicles at neutral pH, which are the conditions similar HIV/cell fusion. Vesicle fusion by a gp41 ectodomain construct has rarely been observed under these conditions, and is aided by inclusion of both the FP and TM, and by protein which is predominantly trimer rather than monomer. Current data was integrated with existing data, and a structural model was proposed. Secondary structure and conformation of IFP is a helix-turn-helix structure in membrane. However, there has been arguments about the IFP membrane location. 13C-2H REDOR solid-state NMR is used to solve this problem. The IFP adopts major alpha helical, minor beta strand secondary structure in PC/PG membrane. The alpha helical IFP's with respectively 13CO labeled Leu-2, Ala-7 and Gly-16 all show close contacts with the lipid acyl chain tail, suggesting IFP has strong interaction with the membrane. By screening the current IFP topology models, it either has a membrane-spanning confirmation, or it promotes lipid trail protrusion. IFP bounded lipid membrane structure was studied by paramagnetic relaxation enhancement (PRE) solid-state NMR to provide more information about the detailed IFP membrane location model. The T2 relaxation time and rate were measured for membrane with or without IFP and with or without Mn2+ . Based on the results, it is concluded that IFP does not promote lipid protrusion at both gel phase and liquid phase, which is evidenced by that the R2 difference with and without Mn2+ is smaller for IFP free membrane than IFP bounded membrane, meaning IFP does not induce a smaller average distance between lipid acyl chain and aqueous layer. By integrating these results, a IFP membrane spanning model was proposed, in which IFP N-terminal helix adopts a 45° angle with respect to membrane normal.
Bavarsad, Neda; Akhgari, Abbas; Seifmanesh, Somayeh; Salimi, Anayatollah; Rezaie, Annahita
2016-02-29
The aim of this study was to develop and optimize deformable liposome for topical delivery of tretinoin. Liposomal formulations were designed based on the full factorial design and prepared by fusion method. The influence of different ratio of soy phosphatidylcholine and transcutol (independent variables) on incorporation efficiency and drug release in 15 min and 24 h (responses) from liposomal formulations was evaluated. Liposomes were characterized for their vesicle size and Differential Scanning Calorimetry (DSC) was used to investigate changes in their thermal behavior. The penetration and retention of drug was determined using mouse skin. Also skin histology study was performed. Particle size of all formulations was smaller than 20 nm. Incorporation efficiency of liposomes was 79-93 %. Formulation F7 (25:5) showed maximum drug release. Optimum formulations were selected based on the contour plots resulted by statistical equations of drug release in 15 min and 24 h. Solubility properties of transcutol led to higher skin penetration for optimum formulations compared to tretinoin cream. There was no significant difference between the amount of drug retained in the skin by applying optimum formulations and cream. Histopatological investigation suggested optimum formulations could decrease the adverse effect of tretinoin in liposome compared to conventional cream. According to the results of the study, it is concluded that deformable liposome containing transcutol may be successfully used for dermal delivery of tretinoin.
Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling
Baker, Kate; Gordon, Sarah L.; Grozeva, Detelina; van Kogelenberg, Margriet; Roberts, Nicola Y.; Pike, Michael; Blair, Edward; Hurles, Matthew E.; Chong, W. Kling; Baldeweg, Torsten; Kurian, Manju A.; Boyd, Stewart G.; Cousin, Michael A.; Raymond, F. Lucy
2015-01-01
Synaptotagmin-1 (SYT1) is a calcium-binding synaptic vesicle protein that is required for both exocytosis and endocytosis. Here, we describe a human condition associated with a rare variant in SYT1. The individual harboring this variant presented with an early onset dyskinetic movement disorder, severe motor delay, and profound cognitive impairment. Structural MRI was normal, but EEG showed extensive neurophysiological disturbances that included the unusual features of low-frequency oscillatory bursts and enhanced paired-pulse depression of visual evoked potentials. Trio analysis of whole-exome sequence identified a de novo SYT1 missense variant (I368T). Expression of rat SYT1 containing the equivalent human variant in WT mouse primary hippocampal cultures revealed that the mutant form of SYT1 correctly localizes to nerve terminals and is expressed at levels that are approximately equal to levels of endogenous WT protein. The presence of the mutant SYT1 slowed synaptic vesicle fusion kinetics, a finding that agrees with the previously demonstrated role for I368 in calcium-dependent membrane penetration. Expression of the I368T variant also altered the kinetics of synaptic vesicle endocytosis. Together, the clinical features, electrophysiological phenotype, and in vitro neuronal phenotype associated with this dominant negative SYT1 mutation highlight presynaptic mechanisms that mediate human motor control and cognitive development. PMID:25705886
Shinoda, Wataru; DeVane, Russell; Klein, Michael L.
2010-01-01
A new coarse-grained (CG) intermolecular force field is presented for a series of zwitterionic lipids. The model is an extension of our previous work on nonionic surfactants and is designed to reproduce experimental surface/interfacial properties as well as distribution functions from all-atom molecular dynamics (MD) simulations. Using simple functional forms, the force field parameters are optimized for multiple lipid molecules, simultaneously. The resulting CG lipid bilayers have reasonable molecular areas, chain order parameters, and elastic properties. The computed surface pressure vs. area (π-A) curve for a DPPC monolayer demonstrates a significant improvement over the previous CG models. The DPPC monolayer has a longer persistence length than a PEG lipid monolayer, exhibiting a long-lived curved monolayer surface under negative tension. The bud ejected from an oversaturated DPPC monolayer has a large bicelle-like structure, which is different from the micellar bud formed from an oversaturated PEG lipid monolayer. We have successfully observed vesicle formation during CG-MD simulations, starting from an aggregate of DMPC molecules. Depending on the aggregate size, the lipid assembly spontaneously transforms into a closed vesicle or a bicelle. None of the various intermediate structures between these extremes seem to be stable. An attempt to observe fusion of two vesicles through the application of an external adhesion force was not successful. The present CG force field also supports stable multi-lamellar DMPC vesicles. PMID:20438090
Christopher, David A; Borsics, Tamas; Yuen, Christen Y L; Ullmer, Wendy; Andème-Ondzighi, Christine; Andres, Marilou A; Kang, Byung-Ho; Staehelin, L Andrew
2007-09-19
The cyclic nucleotide-gated ion channels (CNGCs) maintain cation homeostasis essential for a wide range of physiological processes in plant cells. However, the precise subcellular locations and trafficking of these membrane proteins are poorly understood. This is further complicated by a general deficiency of information about targeting pathways of membrane proteins in plants. To investigate CNGC trafficking and localization, we have measured Atcngc5 and Atcngc10 expression in roots and leaves, analyzed AtCNGC10-GFP fusions transiently expressed in protoplasts, and conducted immunofluorescence labeling of protoplasts and immunoelectron microscopic analysis of high pressure frozen leaves and roots. AtCNGC10 mRNA and protein levels were 2.5-fold higher in roots than leaves, while AtCNGC5 mRNA and protein levels were nearly equal in these tissues. The AtCNGC10-EGFP fusion was targeted to the plasma membrane in leaf protoplasts, and lightly labeled several intracellular structures. Immunofluorescence microscopy with affinity purified CNGC-specific antisera indicated that AtCNGC5 and AtCNGC10 are present in the plasma membrane of protoplasts. Immunoelectron microscopy demonstrated that AtCNGC10 was associated with the plasma membrane of mesophyll, palisade parenchyma and epidermal cells of leaves, and the meristem, columella and cap cells of roots. AtCNCG10 was also observed in the endoplasmic reticulum and Golgi cisternae and vesicles of 50-150 nm in size. Patch clamp assays of an AtCNGC10-GFP fusion expressed in HEK293 cells measured significant cation currents. AtCNGC5 and AtCNGC10 are plasma membrane proteins. We postulate that AtCNGC10 traffics from the endoplasmic reticulum via the Golgi apparatus and associated vesicles to the plasma membrane. The presence of the cation channel, AtCNGC10, in root cap meristem cells, cell plate, and gravity-sensing columella cells, combined with the previously reported antisense phenotypes of decreased gravitropic and cell enlargement responses, suggest roles of AtCNGC10 in modulating cation balance required for root gravitropism, cell division and growth.
Guo, Feng; McCubbin, Andrew G.
2012-01-01
The growing pollen tube apex is dedicated to balancing exo- and endocytic processes to form a rapidly extending tube. As perturbation of either tends to cause a morphological phenotype, this system provides tractable model for studying these processes. Vesicle-associated membrane protein 7s (VAMP7s) are members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family that mediate cognate membrane fusion but their role in pollen tube growth has not been investigated. This manuscript identifies PiVAMP726 of Petunia inflata as a pollen-specific VAMP7 that localizes to the inverted cone of transport vesicles at the pollen tube tip. The endocytic marker FM4-64 was found to colocalize with yellow fluorescent protein (YFP)-PiVAMP726, which is consistent with PiVAMP726 containing an amino-acid motif implicated in endosomal localization, At high overexpression levels, YFP- PiVAMP726 inhibited growth and caused the formation of novel membrane compartments within the pollen tube tip. Functional dissection of PiVAMP726 implicated the N-terminal longin domain in negative regulation of the SNARE activity, but not localization of PiVAMP726. Expression of the constitutively active C-terminal SNARE domain alone, in pollen tubes, generated similar phenotypes to the full-length protein, but the truncated domain was more potent than the wild-type protein at both inhibiting growth and forming the novel membrane compartments. Both endo- and exocytic markers localized to these compartments in addition to YFP-PiVAMP726, leading to the speculation that PiVAMP726 might be involved in the recycling of endocytic vesicles in tip growth. PMID:22345643
Liu, W.; Montana, Vedrana; Parpura, Vladimir; Mohideen, U.
2010-01-01
We use an Atomic Force Microscope based single molecule measurements to evaluate the activation free energy in the interaction of SNARE proteins syntaxin 1A, SNAP25B and synaptobrevin 2 which regulate intracellular fusion of vesicles with target membranes. The dissociation rate of the binary syntaxin-synaptobrevin and the ternary syntaxin-SNAP25B-synaptobrevin complex was measured from the rupture force distribution as a function of the rate of applied force. The temperature dependence of the spontaneous dissociation rate was used to obtain the activation energy to the transition state of 19.8 ± 3.5 kcal/mol = 33 ± 6 kBT and 25.7 ± 3.0 kcal/mol = 43 ± 5 kBT for the binary and ternary complex, respectively. They are consistent with those measured previously for the ternary complex in lipid membranes and are of order expected for bilayer fusion and pore formation. The ΔG was 12.4–16.6 kcal/mol = 21–28 kBT and 13.8–18.0 kcal/mol = 23–30 kBT for the binary and ternary complex, respectively. The ternary complex was more stable by 1.4 kcal/mol = 2.3 kBT, consistent with the spontaneous dissociation rates. The higher adhesion energies and smaller molecular extensions measured with SNAP25B point to its possible unique and important physiological role in tethering/docking the vesicle in closer proximity to the plasma membrane and increasing the probability for fusion completion. PMID:20107522
Carvalho, Carlos A.M.; Silva, Jerson L.; Oliveira, Andréa C.
2017-01-01
Mayaro virus (MAYV) is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell. PMID:28462045
Sobrado, Pablo; Goren, Michael A; James, Declan; Amundson, Carissa K; Fox, Brian G
2008-04-01
A specialized vector backbone from the Protein Structure Initiative was used to express full-length human cytochrome b5 as a C-terminal fusion to His8-maltose binding protein in Escherichia coli. The fusion protein could be completely cleaved by tobacco etch virus protease, and a yield of approximately 18 mg of purified full-length human cytochrome b5 per liter of culture medium was obtained (2.3mg per g of wet weight bacterial cells). In situ proteolysis of the fusion protein in the presence of chemically defined synthetic liposomes allowed facile spontaneous delivery of the functional peripheral membrane protein into a defined membrane environment without prior exposure to detergents or other lipids. The utility of this approach as a delivery method for production and incorporation of monotopic (peripheral) membrane proteins is discussed.
Cargo selection by specific kinesin light chain 1 isoforms.
Woźniak, Marcin J; Allan, Victoria J
2006-11-29
Kinesin-1 drives the movement of diverse cargoes, and it has been proposed that specific kinesin light chain (KLC) isoforms target kinesin-1 to these different structures. Here, we test this hypothesis using two in vitro motility assays, which reconstitute the movement of rough endoplasmic reticulum (RER) and vesicles present in a Golgi membrane fraction. We generated GST-tagged fusion proteins of KLC1B and KLC1D that included the tetratricopeptide repeat domain and the variable C-terminus. We find that preincubation of RER with KLC1B inhibits RER motility, whereas KLC1D does not. In contrast, Golgi fraction vesicle movement is inhibited by KLC1D but not KLC1B reagents. Both RER and vesicle movement is inhibited by preincubation with the GST-tagged C-terminal domain of ubiquitous kinesin heavy chain (uKHC), which binds to the N-terminal domain of uKHC and alters its interaction with microtubules. We propose that although the TRR domains are required for cargo binding, it is the variable C-terminal region of KLCs that are vital for targeting kinesin-1 to different cellular structures.
Cargo selection by specific kinesin light chain 1 isoforms
Woźniak, Marcin J; Allan, Victoria J
2006-01-01
Kinesin-1 drives the movement of diverse cargoes, and it has been proposed that specific kinesin light chain (KLC) isoforms target kinesin-1 to these different structures. Here, we test this hypothesis using two in vitro motility assays, which reconstitute the movement of rough endoplasmic reticulum (RER) and vesicles present in a Golgi membrane fraction. We generated GST-tagged fusion proteins of KLC1B and KLC1D that included the tetratricopeptide repeat domain and the variable C-terminus. We find that preincubation of RER with KLC1B inhibits RER motility, whereas KLC1D does not. In contrast, Golgi fraction vesicle movement is inhibited by KLC1D but not KLC1B reagents. Both RER and vesicle movement is inhibited by preincubation with the GST-tagged C-terminal domain of ubiquitous kinesin heavy chain (uKHC), which binds to the N-terminal domain of uKHC and alters its interaction with microtubules. We propose that although the TRR domains are required for cargo binding, it is the variable C-terminal region of KLCs that are vital for targeting kinesin-1 to different cellular structures. PMID:17093494
Lou, Xuelin
2018-01-01
The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time and space during SV recycling, and this process is essential for synaptic function and structural stability. Research in the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and endocytosis; however, the mechanisms that timely connect these two fundamental events are poorly understood at central synapses. Here we discuss recent progress in SV recycling and summarize several emerging mechanisms by which synapses can “sense” the occurrence of exocytosis and timely initiate compensatory endocytosis. They include Ca2+ sensing, SV proteins sensing, and local membrane stress sensing. In addition, the spatial organization of endocytic zones adjacent to active zones provides a structural basis for efficient coupling between SV exocytosis and endocytosis. Through linking different endocytosis pathways with SV fusion, these mechanisms ensure necessary plasticity and robustness of nerve terminals to meet diverse physiological needs. PMID:29593500
Activity-Dependent IGF-1 Exocytosis is Controlled by the Ca2+-Sensor Synaptotagmin-10
Cao, Peng; Maximov, Anton; Südhof, Thomas C.
2011-01-01
Synaptotagmins Syt1, Syt2, Syt7, and Syt9 act as Ca2+-sensors for synaptic and neuroendocrine exocytosis, but the function of other synaptotagmins remains unknown. Here, we show that olfactory bulb neurons secrete IGF-1 by an activity-dependent pathway of exocytosis, and that Syt10 functions as the Ca2+-sensor that triggers IGF-1 exocytosis in these neurons. Deletion of Syt10 impaired activity-dependent IGF-1 secretion in olfactory bulb neurons, resulting in smaller neurons and an overall decrease in synapse numbers. Exogenous IGF-1 completely reversed the Syt10 knockout phenotype. Syt10 co-localized with IGF-1 in somatodendritic vesicles of olfactory bulb neurons, and Ca2+-binding to Syt10 caused these vesicles to undergo exocytosis, thereby secreting IGF-1. Thus, Syt10 controls a previously unrecognized pathway of Ca2+-dependent exocytosis that is spatially and temporally distinct from Ca2+-dependent synaptic vesicle exocytosis controlled by Syt1 in the same neurons, and two different synaptotagmins regulate distinct Ca2+-dependent membrane fusion reactions during exocytosis in the same neuron. PMID:21496647
Arndt, Lilli; Castonguay, Jan; Arlt, Elisabeth; Meyer, Dorke; Hassan, Sami; Borth, Heike; Zierler, Susanna; Wennemuth, Gunther; Breit, Andreas; Biel, Martin; Wahl-Schott, Christian; Gudermann, Thomas; Klugbauer, Norbert; Boekhoff, Ingrid
2014-01-01
The functional relationship between the formation of hundreds of fusion pores during the acrosome reaction in spermatozoa and the mobilization of calcium from the acrosome has been determined only partially. Hence, the second messenger NAADP, promoting efflux of calcium from lysosome-like compartments and one of its potential molecular targets, the two-pore channel 1 (TPC1), were analyzed for its involvement in triggering the acrosome reaction using a TPCN1 gene–deficient mouse strain. The present study documents that TPC1 and NAADP-binding sites showed a colocalization at the acrosomal region and that treatment of spermatozoa with NAADP resulted in a loss of the acrosomal vesicle that showed typical properties described for TPCs: Registered responses were not detectable for its chemical analogue NADP and were blocked by the NAADP antagonist trans-Ned-19. In addition, two narrow bell-shaped dose-response curves were identified with maxima in either the nanomolar or low micromolar NAADP concentration range, where TPC1 was found to be responsible for activating the low affinity pathway. Our finding that two convergent NAADP-dependent pathways are operative in driving acrosomal exocytosis supports the concept that both NAADP-gated cascades match local NAADP concentrations with the efflux of acrosomal calcium, thereby ensuring complete fusion of the large acrosomal vesicle. PMID:24451262
Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy
Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong
2016-01-01
A mixture of docetaxel (DTX) and Solutol® HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects. PMID:27042062
Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis
Wierda, Keimpe DB; Pinheiro, Paulo S; Nadler, André; McCarthy, Anthony W; Ziomkiewicz, Iwona; Kruse, Martin; Reither, Gregor; Rettig, Jens; Lehmann, Martin; Haucke, Volker; Hille, Bertil
2017-01-01
Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging may bypass CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors. PMID:29068313
Kou, Xiaoxing; Xu, Xingtian; Chen, Chider; Sanmillan, Maria Laura; Cai, Tao; Zhou, Yanheng; Giraudo, Claudio; Le, Anh; Shi, Songtao
2018-03-14
Mesenchymal stem cells (MSCs) are capable of secreting exosomes, extracellular vesicles, and cytokines to regulate cell and tissue homeostasis. However, it is unknown whether MSCs use a specific exocytotic fusion mechanism to secrete exosomes and cytokines. We show that Fas binds with Fas-associated phosphatase-1 (Fap-1) and caveolin-1 (Cav-1) to activate a common soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated membrane fusion mechanism to release small extracellular vesicles (sEVs) in MSCs. Moreover, we reveal that MSCs produce and secrete interleukin-1 receptor antagonist (IL-1RA) associated with sEVs to maintain rapid wound healing in the gingiva via the Fas/Fap-1/Cav-1 cascade. Tumor necrosis factor-α (TNF-α) serves as an activator to up-regulate Fas and Fap-1 expression via the nuclear factor κB pathway to promote IL-1RA release. This study identifies a previously unknown Fas/Fap-1/Cav-1 axis that regulates SNARE-mediated sEV and IL-1RA secretion in stem cells, which contributes to accelerated wound healing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Technical Reports Server (NTRS)
Clarke, M. S.; Vanderburg, C. R.; Feeback, D. L.; McIntire, L. V. (Principal Investigator)
2001-01-01
Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". Both membrane rupture and membrane resealing events mediated by membrane-membrane fusion characterize this response. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.
NASA Technical Reports Server (NTRS)
Clarke, Mark, S. F.; Vanderburg, Charles R.; Feedback, Daniel L.
2001-01-01
Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". This response is characterized by both membrane rupture and membrane resealing events mediated by membrane-membrane fusion. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.
Freeze-thaw and high-voltage discharge allow macromolecule uptake into ileal brush-border vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donowitz, M.; Emmer, E.; McCullen, J.
1987-06-01
High-voltage discharge or one cycle of freeze-thawing are shown to transiently permeabilize rabbit ileal brush-border membrane vesicles to macromolecules. Uptake of the radiolabeled macromolecule dextran, mol wt 70,000, used as a marker for vesicle permeability, was determined by a rapid filtration technique, with uptake defined as substrate associated with the vesicle and releasable after incubation of vesicles with 0.1% saponin. Dextran added immediately after electric shock (2000 V) or at the beginning of one cycle of freeze-thawing was taken up approximately eightfold compared with control. ATP also was taken up into freeze-thawed vesicles, whereas there was no significant uptake intomore » control vesicles. The increase in vesicle permeability was reversible, based on Na-dependent D-glucose uptake being decreased when studied 5 but not 15 min after electric shock, and was not significantly decreased after completion of one cycle of freeze-thawing. In addition, adenosine 3',5'-cyclic monophosphate and Ca/sup 2 +/-calmodulin-dependent protein kinase activity were similar in control vesicles and vesicles exposed to high-voltage discharge or freeze-thawing. Also, vesicles freeze-thawed with (/sup 32/P)ATP demonstrated increased phosphorylation compared with nonfrozen vesicles, while freeze-thawing did not alter vesicle protein as judged by Coomassie blue staining. These techniques should allow intestinal membrane vesicles to be used for studies of intracellular control of transport processes, for instance, studies of protein kinase regulation of transport.« less
A Role for an Hsp70 Nucleotide Exchange Factor in the Regulation of Synaptic Vesicle Endocytosis
Morgan, Jennifer R.; Jiang, Jianwen; Oliphint, Paul A.; Jin, Suping; Gimenez, Luis E.; Busch, David J.; Foldes, Andrea E.; Zhuo, Yue; Sousa, Rui; Lafer, Eileen M.
2013-01-01
Neurotransmission requires a continuously available pool of synaptic vesicles (SVs) that can fuse with the plasma membrane and release their neurotransmitter contents upon stimulation. After fusion, SV membranes and membrane proteins are retrieved from the presynaptic plasma membrane by clathrin-mediated endocytosis. Following the internalization of a clathrin coated vesicle (CCV), the vesicle must uncoat to replenish the pool of SVs. CCV uncoating requires ATP and is mediated by the ubiquitous molecular chaperone Hsc70. In vitro, depolymerized clathrin forms a stable complex with Hsc70*ADP. This complex can be dissociated by nucleotide exchange factors (NEFs) that release ADP from Hsc70, allowing ATP to bind and induce disruption of the clathrin:Hsc70 association. Whether NEFs generally play similar roles in vesicle trafficking in vivo, and whether they play such roles in SV endocytosis in particular is unknown. To address this question we used information from recent structural and mechanistic studies of Hsp70:NEF and Hsp70:cochaperone interactions to design a NEF inhibitor. Using acute perturbations at giant reticulospinal synapses of the sea lamprey (Petromyzon marinus), we found that this NEF inhibitor inhibited SV endocytosis. When this inhibitor was mutated so it could no longer bind and inhibit Hsp110--a NEF that we find to be highly abundant in brain cytosol--its ability to inhibit SV endocytosis was eliminated. These observations indicate that the action of a NEF, most likely Hsp110, is normally required during SV trafficking to release clathrin from Hsc70 and make it available for additional rounds of endocytosis. PMID:23637191
The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.
Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca 2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. In conclusion, the tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less
The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.
Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. The tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less
The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis
Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.; ...
2017-08-16
Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca 2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. In conclusion, the tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less
Carrion, Maria Dolores Perez; Marsicano, Silvia; Daniele, Federica; Marte, Antonella; Pischedda, Francesca; Di Cairano, Eliana; Piovesana, Ester; von Zweydorf, Felix; Kremmer, Elisabeth; Gloeckner, Christian Johannes; Onofri, Franco; Perego, Carla; Piccoli, Giovanni
2017-07-14
Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely β3-Cav2.1 at N-terminus part and β-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause disease.
Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation.
Klip, Amira; Sun, Yi; Chiu, Tim Ting; Foley, Kevin P
2014-05-15
Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays ("software") that engage structural/mechanical elements ("hardware") to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane. Copyright © 2014 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam; Smith, Steve
2017-02-01
Clathrin-mediated endocytosis (CME) is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. Currently, there are two models describing membrane bending during the formation of clathrin cages: the first involves the deposition of all clathrin molecules to the plasma membrane, forming a flat lattice prior to membrane bending, whereas in the second model, membrane bending happens simultaneously as the clathrin arrives to the site to form a clathrin-coated cage. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorophores (actin filaments labeled with green phalloidin and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. An extensive statistical survey of many hundreds of CME events, at various stages of progression, are observed via this method, allowing inferences about the dominant mechanisms active in CME in SKMEL cells. Results indicate a mixed model incorporating aspects of both the aforementioned mechanisms for CME.
Haglerød, C; Hussain, S; Nakamura, Y; Xia, J; Haug, F-M S; Ottersen, O P; Henley, J M; Davanger, S
2017-03-06
Previous studies have indicated that presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) contribute to the regulation of neurotransmitter release. In hippocampal synapses, the presynaptic surface expression of several AMPAR subunits, including GluA2, is regulated in a ligand-dependent manner. However, the molecular mechanisms underlying the presynaptic trafficking of AMPARs are still unknown. Here, using bright-field immunocytochemistry, western blots, and quantitative immunogold electron microscopy of the hippocampal CA1 area from intact adult rat brain, we demonstrate the association of AMPA receptors with the presynaptic active zone and with small presynaptic vesicles, in Schaffer collateral synapses in CA1 of the hippocampus. Furthermore, we show that GluA2 and protein interacting with C kinase 1 (PICK1) are colocalized at presynaptic vesicles. Similar to postsynaptic mechanisms, overexpression of either PICK1 or pep2m, which inhibit the N-ethylmaleimide sensitive fusion protein (NSF)-GluA2 interaction, decreases the concentration of GluA2 in the presynaptic active zone membrane. These data suggest that the interacting proteins PICK1 and NSF act as regulators of presynaptic GluA2-containing AMPAR trafficking between the active zone and a vesicle pool that may provide the basis of presynaptic components of synaptic plasticity. Copyright © 2017 IBRO. All rights reserved.
Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly.
Munson, M; Chen, X; Cocina, A E; Schultz, S M; Hughson, F M
2000-10-01
In the eukaryotic secretory and endocytic pathways, transport vesicles shuttle cargo among intracellular organelles and to and from the plasma membrane. Cargo delivery entails fusion of the transport vesicle with its target, a process thought to be mediated by membrane bridging SNARE protein complexes. Temporal and spatial control of intracellular trafficking depends in part on regulating the assembly of these complexes. In vitro, SNARE assembly is inhibited by the closed conformation adopted by the syntaxin family of SNAREs. To visualize this closed conformation directly, the X-ray crystal structure of a yeast syntaxin, Sso1p, has been determined and refined to 2.1 A resolution. Mutants designed to destabilize the closed conformation exhibit accelerated rates of SNARE assembly. Our results provide insight into the mechanism of SNARE assembly and its intramolecular and intermolecular regulation.
Phospholipase D function in Saccharomyces cerevisiae.
Mendonsa, Rima; Engebrecht, JoAnne
2009-09-01
Phosphatidylinositol 4,5-bisphosphate-regulated phosphatidylcholine-specific phospholipase D is conserved from yeast to man. The essential role of this enzyme in yeast is to mediate the fusion of Golgi and endosome-derived vesicles to generate the prospore membrane during the developmental program of sporulation, through the production of the fusogenic lipid phosphatidic acid. In addition to recruiting proteins required for fusion, phosphatidic acid is believed to lower the energy barrier to stimulate membrane curvature. During mitotic growth, phospholipase D activity is dispensable unless the major phosphatidylinositol/phosphatidylcholine transfer protein is absent; it also appears to play a nonessential role in the mating signal transduction pathway. The regulation of phospholipase D activity during both sporulation and mitotic growth is still not fully understood and awaits further characterization.
Nizard, P; Liger, D; Gaillard, C; Gillet, D
1998-08-14
We have constructed a fusion protein, T-ZZ, in which the IgG-Fc binding protein ZZ was fused to the C-terminus of the diphtheria toxin transmembrane domain (T domain). While soluble at neutral pH, T-ZZ retained the capacity of the T domain to bind to phospholipid membranes at acidic pH. Once anchored to the membrane, the ZZ part of the protein was capable of binding mouse monoclonal or rabbit polyclonal IgG. Our results show that the T-ZZ protein can function as a pH sensitive membrane anchor for the linkage of IgG to the membrane of lipid vesicles, adherent and non-adherent cells.
Synthetic vaccines: Immunity without harm
NASA Astrophysics Data System (ADS)
Acharya, Abhinav P.; Murthy, Niren
2011-03-01
Multilamellar lipid vesicles with crosslinked walls carrying protein antigens in the vesicle core and immunostimulatory drugs in the vesicle walls generate immune responses comparable to the strongest live vector vaccines.
Biomarkers in the Detection of Prostate Cancer in African Americans
2012-09-01
Watkins S, Whiteside TL (2005) Fas ligand- positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of...Papworth GD, ZahorchakAF, LogarAJ, Wang Z, Watkins SC, Falo, LD Jr, ThomsonAW (2004) Endocytosis, intracellular sorting, and processing of exosomes by...Stanimirovic, E. Encioiu, M. Neill, D.A. Loblaw, J. Trachtenberg, S.A. Narod and A. Seth , Expression of the TMPRSS2:ERG fusion gene predicts cancer
Development of Biomimetic Surfaces by Vesicle Fusion
2004-12-01
Egawa, H. and Furusawa , K., 1999; Hubbard, J. B., Silin, V., and Plant, A. L., 1998; Johnson, J. M ., Ha, T., Chu, S., and Boxer, S. G., 2002...hydrophilic moieties. In an effort to mimic the interactions of biological membranes peptide amphiphiles (Berndt, P., Fields, G. B., and Tirrell, M ...1995) can be synthesized encoded with the appropriate specific message via a peptide (Aota, S., Nomizu, M ., and Yamada, K. M ., 1994; Pierschbacher
Fabrication of patterned surface by soft lithographic technique for confinement of lipid bilayer
NASA Astrophysics Data System (ADS)
Moulick, Ranjita Ghosh; Mayer, Dirk
2018-04-01
In this paper we demonstrated that a 3D pattern can be well transferred from a silicon Master to a gold substrate using µcontact printing. In this process 1-Octadecanthiol served as an ink and printing followed by etching generated the desired pattern on the gold substrate. The prepatterned substrate was also used for lipid vesicle fusion and revealed that lipid molecules selectively bind to the gold layer.
Ubiquitin–Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice
Liu, Yun; Li, Hongqiao; Sugiura, Yoshie; Han, Weiping; Gallardo, Gilbert; Khvotchev, Mikhail; Zhang, Yinan; Kavalali, Ege T.; Südhof, Thomas C.
2015-01-01
Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a “noncleavable” N-terminal ubiquitin moiety (UbG76V). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) UbG76V, GFP, and a synaptic vesicle protein synaptobrevin-2 (UbG76V-GFP-Syb2); (2) GFP-Syb2; or (3) UbG76V-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, UbG76V-GFP-Syb2, GFP-Syb2, and UbG76V-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, UbG76V-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and UbG76V-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in UbG76V-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that UbG76V-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in UbG76V-GFP-Syb2 mice. These findings indicate that UbG76V-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals. SIGNIFICANCE STATEMENT Degeneration of motor nerve terminals occurs in amyotrophic lateral sclerosis (ALS) patients as well as in mouse models of ALS, leading to progressive paralysis. What causes a motor nerve terminal to degenerate remains unknown. Here we report on transgenic mice expressing a ubiquitinated synaptic vesicle protein (UbG76V-GFP-Syb2) that develop progressive degeneration of motor nerve terminals. These mice may serve as a model for further elucidating the underlying cellular and molecular mechanisms of presynaptic nerve terminal degeneration. PMID:26290230
Crystal structure of the GTPase domain and the bundle signalling element of dynamin in the GDP state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Roopsee; Eschenburg, Susanne; Reubold, Thomas F., E-mail: Reubold.Thomas@mh-hannover.de
Dynamin is the prototype of a family of large multi-domain GTPases. The 100 kDa protein is a key player in clathrin-mediated endocytosis, where it cleaves off vesicles from membranes using the energy from GTP hydrolysis. We have solved the high resolution crystal structure of a fusion protein of the GTPase domain and the bundle signalling element (BSE) of dynamin 1 liganded with GDP. The structure provides a hitherto missing snapshot of the GDP state of the hydrolytic cycle of dynamin and reveals how the switch I region moves away from the active site after GTP hydrolysis and release of inorganic phosphate.more » Comparing our structure of the GDP state with the known structures of the GTP state, the transition state and the nucleotide-free state of dynamin 1 we describe the structural changes through the hydrolytic cycle. - Highlights: • High resolution crystal structure of the GDP-state of a dynamin 1 GTPase-BSE fusion. • Visualizes one of the key states of the hydrolytic cycle of dynamin. • The dynamin-specific loop forms a helix as soon as a guanine base is present.« less
Pore dynamics in lipid membranes
NASA Astrophysics Data System (ADS)
Gozen, I.; Dommersnes, P.
2014-09-01
Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses.
Kaltdorf, Kristin Verena; Schulze, Katja; Helmprobst, Frederik; Kollmannsberger, Philip; Stigloher, Christian
2017-01-01
Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i) in embryonic Danio rerio 4 and 8 days past fertilization (dpf) and (ii) to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ) wild-type and its septin mutant (unc-59(e261)). We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261) on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement). This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter). Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles) and specificity (true vesicles) as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual annotation. Both automatic and semi-automatic modes are explained including a tutorial. PMID:28056033
Diffusion behavior of lipid vesicles in entangled polymer solutions.
Cao, X; Bansil, R; Gantz, D; Moore, E W; Niu, N; Afdhal, N H
1997-01-01
Dynamic light scattering was used to follow the tracer diffusion of phospholipid/cholesterol vesicles in aqueous polyacrylamide solutions and compared with the diffusive behavior of polystyrene (PS) latex spheres of comparable diameters. Over the range of the matrix concentration examined (Cp = 0.1-10 mg/ml), the diffusivities of the PS spheres and the large multilamellar vesicles exhibited the Stokes-Einstein (SE) relation, while the diffusivity of the unilamellar vesicles did not follow the increase of the solution's viscosity caused by the presence of the matrix molecules. The difference between the diffusion behaviors of unilamellar vesicles and hard PS spheres of similar size is possibly due to the flexibility of the lipid bilayer of the vesicles. The unilamellar vesicles are capable of changing their shape to move through the entangled polymer solution so that the hindrance to their diffusion due to the presence of the polymer chains is reduced, while the rigid PS spheres have little flexibility and they encounter greater resistance. The multilamellar vesicles are less flexible, thus their diffusion is similar to the hard PS spheres of similar diameter. Images FIGURE 2 PMID:9336189
McLeish, Kenneth R.; Uriarte, Silvia M.; Tandon, Shweta; Creed, Timothy M.; Le, Junyi; Ward, Richard A.
2013-01-01
This study tested the hypothesis that priming the neutrophil respiratory burst requires both granule exocytosis and activation of the prolyl isomerase, Pin1. Fusion proteins containing the TAT cell permeability sequence and either the SNARE domain of syntaxin-4 or the N-terminal SNARE domain of SNAP-23 were used to examine the role of granule subsets in TNF-mediated respiratory burst priming using human neutrophils. Concentration-inhibition curves for exocytosis of individual granule subsets and for priming of fMLF-stimulated superoxide release and phagocytosis-stimulated H2O2 production were generated. Maximal inhibition of priming ranged from 72% to 88%. Linear regression lines for inhibition of priming versus inhibition of exocytosis did not differ from the line of identity for secretory vesicles and gelatinase granules, while the slopes or the y-intercepts were different from the line of identity for specific and azurophilic granules. Inhibition of Pin1 reduced priming by 56%, while exocytosis of secretory vesicles and specific granules was not affected. These findings indicate that exocytosis of secretory vesicles and gelatinase granules and activation of Pin1 are independent events required for TNF-mediated priming of neutrophil respiratory burst. PMID:23363774
Wang, Lei; Wang, Xiao-Rong; Liu, Jin; Chen, Chu-Xian; Liu, Yuan; Wang, Wei-Na
2015-10-01
With the destruction of the ecological environment, shrimp cultivation in China has been seriously affected by outbreaks of infectious diseases. Rab, which belong to small GTPase Ras superfamily, can regulate multiple steps in eukaryotic vesicle trafficking including vesicle budding, vesicle tethering, and membrane fusion. Knowledge of Rab in shrimp is essential to understanding regulation and detoxification mechanisms of environmental stress. In this study, we analyzed the functions of Rab from the Pacific white shrimp, Litopenaeus vannamei. Full-length cDNA of Rab was obtained, which was 751 bp long, with open reading frame encoding 206 amino acids. In this study, for the first time, the gene expression of Rab of L. vannamei was analyzed by quantitative real-time PCR after exposure to five kinds of environmental stresses (bacteria, pH, Cd, salinity and low temperature). The results demonstrate that Rab is sensitive and involved in bacteria, pH, and Cd stress responses and Rab is more sensitive to bacteria than other stresses. Therefore we infer that Rab may have relationship with the anti-stress mechanism induced by environment stress in shrimp and Rab could be used as critical biomarkers for environmental quality assessment.
Tetraspanins and Mouse Oocyte Microvilli Related to Fertilizing Ability.
Benammar, Achraf; Ziyyat, Ahmed; Lefèvre, Brigitte; Wolf, Jean-Philippe
2017-07-01
Our electron microscopy observations demonstrate for the first time that the number of microvilli on the mice oocyte membrane decreases when meiosis progresses from prophase I to metaphase II (MII) stage, and the morphology of the microvilli also changes. Microvilli are significantly shorter and larger on the ovulated oocyte membrane than at the previous stages. Although clathrin vesicles clearly disappear during oocyte maturation, exosome-like vesicles begin to be secreted at the metaphase I stage, more strongly at the MII stage. Multivesicular bodies are visible only at the MII stage. Since several oocyte tetraspanins are involved in the gamete interaction, Cd9 being congregated on the MII oocyte microvilli, we analyzed the effect of tetraspanin deletion on oocyte membrane morphology. The Cd9 -/- and Cd9 -/- Cd81 -/- deletions are associated with a decreased microvilli density on the MII oocyte surface. Microvilli thickness is significantly increased whatever the deleted tetraspanin gene be. Only Cd9 deletion clearly disturbs the vesicular traffic, increasing the number of clathrin and exosome vesicles. Additional investigations are necessary to elucidate how tetraspanins modulate the microvilli morphology, likely in relation with cytoskeleton. The role of oocyte exosomes in gamete adhesion/fusion remains to be further studied.
VanRheenen, Susan M.; Cao, Xiaochun; Sapperstein, Stephanie K.; Chiang, Elbert C.; Lupashin, Vladimir V.; Barlowe, Charles; Waters, M. Gerard
1999-01-01
A screen for mutants of Saccharomyces cerevisiae secretory pathway components previously yielded sec34, a mutant that accumulates numerous vesicles and fails to transport proteins from the ER to the Golgi complex at the restrictive temperature (Wuestehube, L.J., R. Duden, A. Eun, S. Hamamoto, P. Korn, R. Ram, and R. Schekman. 1996. Genetics. 142:393–406). We find that SEC34 encodes a novel protein of 93-kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec34-2 is suppressed by the rab GTPase Ypt1p that functions early in the secretory pathway, or by the dominant form of the ER to Golgi complex target-SNARE (soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor)–associated protein Sly1p, Sly1-20p. Weaker suppression is evident upon overexpression of genes encoding the vesicle tethering factor Uso1p or the vesicle-SNAREs Sec22p, Bet1p, or Ykt6p. This genetic suppression profile is similar to that of sec35-1, a mutant allele of a gene encoding an ER to Golgi vesicle tethering factor and, like Sec35p, Sec34p is required in vitro for vesicle tethering. sec34-2 and sec35-1 display a synthetic lethal interaction, a genetic result explained by the finding that Sec34p and Sec35p can interact by two-hybrid analysis. Fractionation of yeast cytosol indicates that Sec34p and Sec35p exist in an ∼750-kD protein complex. Finally, we describe RUD3, a novel gene identified through a genetic screen for multicopy suppressors of a mutation in USO1, which suppresses the sec34-2 mutation as well. PMID:10562277
Li, Bing; Liu, Luping; Li, Ying; Dong, Xin; Zhang, Haifeng; Chen, Huaigu; Zheng, Xiaobo; Zhang, Zhengguang
2017-05-01
Vesicle trafficking is an important event in eukaryotic organisms. Many proteins and lipids transported between different organelles or compartments are essential for survival. These processes are mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Rab-GTPases, and multisubunit tethering complexes such as class C core vacuole or endosome tethering and homotypic fusion or vacuole protein sorting (HOPS). Our previous study has demonstrated that FgVam7, which encodes a SNARE protein involving in vesicle trafficking, plays crucial roles in growth, asexual or sexual development, deoxynivalenol production, and pathogenicity in Fusarium graminearum. Here, the affinity purification approach was used to identify FgVam7-interacting proteins to explore its regulatory mechanisms during vesicle trafficking. The orthologs of yeast Vps39, a HOPS tethering complex subunit, and Sso1, a SNARE protein localized to the vacuole or endosome, were identified and selected for further characterization. In yeast two-hybrid and glutathione-S-transferase pull-down assays, FgVam7, FgVps39, and FgSso1 interacted with each other as a complex. The ∆Fgvps39 mutant generated by targeted deletion was significantly reduced in vegetative growth and asexual development. It failed to produce sexual spores and was defective in plant infection and deoxynivalenol production. Further cellular localization and cytological examinations suggested that FgVps39 is involved in vesicle trafficking from early or late endosomes to vacuoles in F. graminearum. Additionally, the ∆Fgvps39 mutant was defective in vacuole morphology and autophagy, and it was delayed in endocytosis. Our results demonstrate that FgVam7 interacts with FgVps39 and FgSso1 to form a unique complex, which is involved in vesicle trafficking and modulating the proper development of infection-related morphogenesis in F. graminearum.
NASA Astrophysics Data System (ADS)
Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.
2011-03-01
Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.
Wang, Xiaodong; Wang, Xiaojie; Deng, Lin; Chang, Haitao; Dubcovsky, Jorge; Feng, Hao; Han, Qingmei; Huang, Lili; Kang, Zhensheng
2014-01-01
Subcellular localisation of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and their ability to form SNARE complexes are critical for determining the specificity of vesicle fusion. NPSN11, a Novel Plant SNARE (NPSN) gene, has been reported to be involved in the delivery of cell wall precursors to the newly formed cell plate during cytokinesis. However, functions of NPSN genes in plant–pathogen interactions are largely unknown. In this study, we cloned and characterized three NPSN genes (TaNPSN11, TaNPSN12, and TaNPSN13) and three plant defence-related SNARE homologues (TaSYP132, TaSNAP34, and TaMEMB12). TaSYP132 showed a highly specific interaction with TaNPSN11 in both yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. We hypothesize that this interaction may indicate a partnership in vesicle trafficking. Expressions of the three TaNPSNs and TaSYP132 were differentially induced in wheat leaves when challenged by Puccinia striiformis f. sp. tritici (Pst). In virus-induced gene silencing (VIGS) assays, resistance of wheat (Triticum aestivum) cultivar Xingzi9104 to the Pst avirulent race CYR23 was reduced by knocking down TaNPSN11, TaNPSN13 and TaSYP132, but not TaNPSN12, implying diversified functions of these wheat SNARE homologues in prevention of Pst infection and hyphal elongation. Immuno-localization results showed that TaNPSN11 or its structural homologues were mainly distributed in vesicle structures near cell membrane toward Pst hypha. Taken together, our data suggests a role of TaNPSN11 in vesicle-mediated resistance to stripe rust. PMID:24963004
Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C
2007-06-12
Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.
Biomarkers in the Detection of Prostate Cancer in African Americans
2012-09-01
176:1534–1542 19. Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL (2005) Fas ligand- positive membranous vesicles isolated from...Larregina AT, Shufesky WJ, Sullivan MMLG, Sullivan DBS, Papworth GD, ZahorchakAF, LogarAJ, Wang Z, Watkins SC, Falo, LD Jr, ThomsonAW (2004... Seth , Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence af- ter surgery for localised prostate cancer, British Journal of Cancer 97(12
Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair
Redpath, G. M. I.; Woolger, N.; Piper, A. K.; Lemckert, F. A.; Lek, A.; Greer, P. A.; North, K. N.; Cooper, S. T.
2014-01-01
Dysferlin and calpain are important mediators of the emergency response to repair plasma membrane injury. Our previous research revealed that membrane injury induces cleavage of dysferlin to release a synaptotagmin-like C-terminal module we termed mini-dysferlinC72. Here we show that injury-activated cleavage of dysferlin is mediated by the ubiquitous calpains via a cleavage motif encoded by alternately spliced exon 40a. An exon 40a–specific antibody recognizing cleaved mini-dysferlinC72 intensely labels the circumference of injury sites, supporting a key role for dysferlinExon40a isoforms in membrane repair and consistent with our evidence suggesting that the calpain-cleaved C-terminal module is the form specifically recruited to injury sites. Calpain cleavage of dysferlin is a ubiquitous response to membrane injury in multiple cell lineages and occurs independently of the membrane repair protein MG53. Our study links calpain and dysferlin in the calcium-activated vesicle fusion of membrane repair, placing calpains as upstream mediators of a membrane repair cascade that elicits cleaved dysferlin as an effector. Of importance, we reveal that myoferlin and otoferlin are also cleaved enzymatically to release similar C-terminal modules, bearing two C2 domains and a transmembrane domain. Evolutionary preservation of this feature highlights its functional importance and suggests that this highly conserved C-terminal region of ferlins represents a functionally specialized vesicle fusion module. PMID:25143396
Reconstitution of a Kv channel into lipid membranes for structural and functional studies.
Lee, Sungsoo; Zheng, Hui; Shi, Liang; Jiang, Qiu-Xing
2013-07-13
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Karnik, Rucha; Zhang, Ben; Waghmare, Sakharam; Aderhold, Christin; Grefen, Christopher; Blatt, Michael R.
2015-01-01
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins drive vesicle fusion in all eukaryotes and contribute to homeostasis, pathogen defense, cell expansion, and growth in plants. Two homologous SNAREs, SYP121 (=SYR1/PEN1) and SYP122, dominate secretory traffic to the Arabidopsis thaliana plasma membrane. Although these proteins overlap functionally, differences between SYP121 and SYP122 have surfaced, suggesting that they mark two discrete pathways for vesicular traffic. The SNAREs share primary cognate partners, which has made separating their respective control mechanisms difficult. Here, we show that the regulatory protein SEC11 (=KEULE) binds selectively with SYP121 to affect secretory traffic mediated by this SNARE. SEC11 rescued traffic block by dominant-negative (inhibitory) fragments of both SNAREs, but only in plants expressing the native SYP121. Traffic and its rescue were sensitive to mutations affecting SEC11 interaction with the N terminus of SYP121. Furthermore, the domain of SEC11 that bound the SYP121 N terminus was itself able to block secretory traffic in the wild type and syp122 but not in syp121 mutant Arabidopsis. Thus, SEC11 binds and selectively regulates secretory traffic mediated by SYP121 and is important for recycling of the SNARE and its cognate partners. PMID:25747882
Targeting Chronic and Neuropathic Pain: The N-type Calcium Channel Comes of Age
Snutch, Terrance P.
2005-01-01
Summary: The rapid entry of calcium into cells through activation of voltage-gated calcium channels directly affects membrane potential and contributes to electrical excitability, repetitive firing patterns, excitation-contraction coupling, and gene expression. At presynaptic nerve terminals, calcium entry is the initial trigger mediating the release of neurotransmitters via the calcium-dependent fusion of synaptic vesicles and involves interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex of synaptic release proteins. Physiological factors or drugs that affect either presynaptic calcium channel activity or the efficacy of calcium-dependent vesicle fusion have dramatic consequences on synaptic transmission, including that mediating pain signaling. The N-type calcium channel exhibits a number of characteristics that make it an attractive target for therapeutic intervention concerning chronic and neuropathic pain conditions. Within the past year, both U.S. and European regulatory agencies have approved the use of the cationic peptide Prialt for the treatment of intractable pain. Prialt is the first N-type calcium channel blocker approved for clinical use and represents the first new proven mechanism of action for chronic pain intervention in many years. The present review discusses the rationale behind targeting the N-type calcium channel, some of the limitations confronting the widespread clinical application of Prialt, and outlines possible strategies to improve upon Prialt's relatively narrow therapeutic window. PMID:16489373
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, Alexey M., E-mail: fysio@rambler.ru; Zakyrjanova, Guzalija F., E-mail: guzik121192@mail.ru; Yakovleva, Anastasia A., E-mail: nastya1234qwer@mail.ru
Highlights: • We examine the involvement of PKC in MCD induced synaptic vesicle exocytosis. • PKC inhibitor does not decrease the effect MCD on MEPP frequency. • PKC inhibitor prevents MCD induced FM1-43 unloading. • PKC activation may switch MCD induced exocytosis from kiss-and-run to a full mode. • Inhibition of phospholipase C does not lead to similar change in exocytosis. - Abstract: Previous studies demonstrated that depletion of membrane cholesterol by 10 mM methyl-beta-cyclodextrin (MCD) results in increased spontaneous exocytosis at both peripheral and central synapses. Here, we investigated the role of protein kinase C in the enhancement ofmore » spontaneous exocytosis at frog motor nerve terminals after cholesterol depletion using electrophysiological and optical methods. Inhibition of the protein kinase C by myristoylated peptide and chelerythrine chloride prevented MCD-induced increases in FM1-43 unloading, whereas the frequency of spontaneous postsynaptic events remained enhanced. The increase in FM1-43 unloading still could be observed if sulforhodamine 101 (the water soluble FM1-43 quencher that can pass through the fusion pore) was added to the extracellular solution. This suggests a possibility that exocytosis of synaptic vesicles under these conditions could occur through the kiss-and-run mechanism with the formation of a transient fusion pore. Inhibition of phospholipase C did not lead to similar change in MCD-induced exocytosis.« less
Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone
Ullrich, Alexander; Böhme, Mathias A.; Schöneberg, Johannes; Depner, Harald; Sigrist, Stephan J.; Noé, Frank
2015-01-01
Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release. PMID:26367029
Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs
Phinney, Donald G.; Di Giuseppe, Michelangelo; Njah, Joel; Sala, Ernest; Shiva, Sruti; St Croix, Claudette M.; Stolz, Donna B.; Watkins, Simon C.; Di, Y. Peter; Leikauf, George D.; Kolls, Jay; Riches, David W. H.; Deiuliis, Giuseppe; Kaminski, Naftali; Boregowda, Siddaraju V.; McKenna, David H.; Ortiz, Luis A.
2015-01-01
Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs. PMID:26442449
Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs.
Phinney, Donald G; Di Giuseppe, Michelangelo; Njah, Joel; Sala, Ernest; Shiva, Sruti; St Croix, Claudette M; Stolz, Donna B; Watkins, Simon C; Di, Y Peter; Leikauf, George D; Kolls, Jay; Riches, David W H; Deiuliis, Giuseppe; Kaminski, Naftali; Boregowda, Siddaraju V; McKenna, David H; Ortiz, Luis A
2015-10-07
Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs.
Structure of synaptophysin: a hexameric MARVEL-domain channel protein.
Arthur, Christopher P; Stowell, Michael H B
2007-06-01
Synaptophysin I (SypI) is an archetypal member of the MARVEL-domain family of integral membrane proteins and one of the first synaptic vesicle proteins to be identified and cloned. Most all MARVEL-domain proteins are involved in membrane apposition and vesicle-trafficking events, but their precise role in these processes is unclear. We have purified mammalian SypI and determined its three-dimensional (3D) structure by using electron microscopy and single-particle 3D reconstruction. The hexameric structure resembles an open basket with a large pore and tenuous interactions within the cytosolic domain. The structure suggests a model for Synaptophysin's role in fusion and recycling that is regulated by known interactions with the SNARE machinery. This 3D structure of a MARVEL-domain protein provides a structural foundation for understanding the role of these important proteins in a variety of biological processes.
A recursive vesicle-based model protocell with a primitive model cell cycle
NASA Astrophysics Data System (ADS)
Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi
2015-09-01
Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution.
Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses
Delvendahl, Igor; Vyleta, Nicholas P.; von Gersdorff, Henrique; Hallermann, Stefan
2016-01-01
The fusion of neurotransmitter-filled vesicles during synaptic transmission is balanced by endocytotic membrane retrieval. Despite extensive research, the speed and mechanisms of synaptic vesicle endocytosis have remained controversial. Here, we establish low-noise time-resolved membrane capacitance measurements that allow monitoring changes in surface membrane area elicited by single action potentials and stronger stimuli with high-temporal resolution at physiological temperature in individual bonafide mature central synapses. We show that single action potentials trigger very rapid endocytosis, retrieving presynaptic membrane with a time constant of 470 ms. This fast endocytosis is independent of clathrin, but mediated by dynamin and actin. In contrast, stronger stimuli evoke a slower mode of endocytosis that is clathrin-, dynamin-, and actin-dependent. Furthermore, the speed of endocytosis is highly temperature-dependent with a Q10 of ~3.5. These results demonstrate that distinct molecular modes of endocytosis with markedly different kinetics operate at central synapses. PMID:27146271
Wang, Ting; Hay, Jesse C.
2015-01-01
Alpha-synuclein is a predominant player in the pathogenesis of Parkinson's Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the dysfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress, and others. Here we examine recent developments in alpha-synuclein's toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration. PMID:26617485
Placing and shaping liposomes with reconfigurable DNA nanocages
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Yang, Yang; Pincet, Frederic; C. Llaguno, Marc; Lin, Chenxiang
2017-07-01
The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.
Placing and shaping liposomes with reconfigurable DNA nanocages.
Zhang, Zhao; Yang, Yang; Pincet, Frederic; Llaguno, Marc C; Lin, Chenxiang
2017-06-23
The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.
Transport According to GARP: Receiving Retrograde Cargo at the Trans-Golgi Network
Bonifacino, Juan S.; Hierro, Aitor
2010-01-01
Tethering factors are large protein complexes that capture transport vesicles and enable their fusion with acceptor organelles at different stages of the endomembrane system. Recent studies have shed new light on the structure and function of a heterotetrameric tethering factor named Golgi-associated retrograde protein (GARP), which promotes fusion of endosome-derived, retrograde transport carriers to the trans-Golgi network (TGN). X-ray crystallography of the Vps53 and Vps54 subunits of GARP has revealed that this complex is structurally related to other tethering factors such as the exocyst, COG and Dsl1, indicating that they all might work by a similar mechanism. Loss of GARP function compromises the growth, fertility and/or viability of the defective organisms, underscoring the essential nature of GARP-mediated retrograde transport. PMID:21183348
Banerjee, Shubhadeep; Sen, Kacoli; Pal, Tapan K; Guha, Sujoy K
2012-10-15
pH-responsive polymers render liposomes pH-sensitive and facilitate the intracellular release of encapsulated payload by fusing with endovascular membranes under mildly acidic conditions found inside cellular endosomes. The present study reports the use of high-molecular weight poly(styrene-co-maleic acid) (SMA), which exhibits conformational transition from a charged extended structure to an uncharged globule below its pK(1) value, to confer pH-sensitive property to liposomes. The changes in the co-polymer chain conformation resulted in destabilization of the liposomes at mildly acidic pH due to vesicle fusion and/or channel formation within the membrane bilayer, and ultimately led to the release of the encapsulated cargo. The vesicles preserved their pH-sensitivity and stability in serum unlike other polymer-based liposomes and exhibited no hemolytic activity at physiological pH. The lysis of RBCs at endosomal pH due to SMA-based liposome-induced alterations in the bilayer organization leading to spherocyte formation indicated the potential of these vesicles to mediate cytosolic delivery of bio-active molecules through endosome destabilization. The SMA-loaded liposomes exhibiting excellent cytocompatibility, efficiently delivered chemotherapeutic agent 5-Fluorouracil (5-FU) within colon cancer cells HT-29 in comparison to neat liposomes. This caused increased cellular-availability of the drug, which resulted in enhanced apoptosis and highlighted the clinical potential of SMA-based vesicles. Copyright © 2012 Elsevier B.V. All rights reserved.
New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid.
Sánchez, Marina; Aranda, Francisco J; Teruel, José A; Ortiz, Antonio
2011-01-01
Phosphatidylethanolamine-based pH-sensitive liposomes of various compositions have been described as efficient systems for cytoplasmic delivery of molecules into cells. Incorporation of an amphiphile of appropriate structure is needed for the stabilization and performance of these vesicles. Among the wide variety of interesting activities displayed by Pseudomonas aeruginosa dirhamnolipids (diRL), is their capacity to stabilize bilayer structures in phosphatidylethanolamine systems. In this work, X-ray scattering, dynamic light scattering, fluorescence spectroscopy and fluorescence microscopy have been used to study the structure and pH-dependent behaviour of phosphatidylethanolamine/diRL liposomes. We show that diRL, in combination with dioleoylphosphatidylethanolamine (DOPE), forms stable multilamellar and unilamellar liposomes. Acidification of DOPE/diRL vesicles leads to membrane destabilization, fusion, and release of entrapped aqueous vesicle contents. Finally, DOPE/diRL pH-sensitive liposomes act as efficient vehicles for the cytoplasmic delivery of fluorescent probes into cultured cells. It is concluded that DOPE/diRL form stable pH-sensitive liposomes, and that these liposomes are incorporated into cultured cells through the endocytic pathway, delivering its contents into the cytoplasm, which means a potential use of these liposomes for the delivery of foreign substances into living cells. Our results establish a new application of diRL as a bilayer stabilizer in phospholipid vesicles, and the use of diRL-containing pH-sensitive liposomes as delivery vehicles. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Meng, Jianghui; Wang, Jiafu; Steinhoff, Martin; Dolly, James Oliver
2016-01-01
Transient receptor potential (TRP) A1 and V1 channels relay sensory signals, yet little is known about their transport to the plasmalemma during inflammation. Herein, TRPA1 and TRPV1 were found on vesicles containing calcitonin gene-related peptide (CGRP), accumulated at sites of exo- and endo-cytosis, and co-localised on fibres and cell bodies of cultured sensory neurons expressing both. A proinflammatory cytokine, TNFα, elevated their surface content, and both resided in close proximity, indicating co-trafficking. Syntaxin 1–interacting protein, Munc18–1, proved necessary for the response to TNFα, and for TRPV1-triggered CGRP release. TNFα-induced surface trafficking of TRPV1 and TRPA1 required a synaptic vesicle membrane protein VAMP1 (but not 2/3), which is essential for CGRP exocytosis from large dense-core vesicles. Inactivation of two proteins on the presynaptic plasma membrane, syntaxin-1 or SNAP-25, by botulinum neurotoxin (BoNT)/C1 or /A inhibited the TNFα-elevated delivery. Accordingly, enhancement by TNFα of Ca2+ influx through the upregulated surface-expressed TRPV1 and TRPA1 channels was abolished by BoNT/A. Thus, in addition, the neurotoxins’ known inhibition of the release of pain transmitters, their therapeutic potential is augmented by lowering the exocytotic delivery of transducing channels and the resultant hyper-sensitisation in inflammation. PMID:26888187
Nuzhat, Zarin; Kinhal, Vyjayanthi; Sharma, Shayna; Rice, Gregory E; Joshi, Virendra; Salomon, Carlos
2017-03-07
Pancreatic cancer is the fourth most common cause of death due to cancer in the world. It is known to have a poor prognosis, mostly because early stages of the disease are generally asymptomatic. Progress in pancreatic cancer research has been slow, leaving several fundamental questions pertaining to diagnosis and treatment unanswered. Recent studies highlight the putative utility of tissue-specific vesicles (i.e. extracellular vesicles) in the diagnosis of disease onset and treatment monitoring in pancreatic cancer. Extracellular vesicles are membrane-limited structures derived from the cell membrane. They contain specific molecules including proteins, mRNA, microRNAs and non-coding RNAs that are secreted in the extracellular space. Extracellular vesicles can be classified according to their size and/or origin into microvesicles (~150-1000 nm) and exosomes (~40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosomes are released via the endocytic pathway by fusion of multivesicular bodies with the plasmatic membrane. This endosomal origin means that exosomes contain an abundance of cell-specific biomolecules which may act as a 'fingerprint' of the cell of origin. In this review, we discuss our current knowledge in the diagnosis and treatment of pancreatic cancer, particularly the potential role of EVs in these facets of disease management. In particular, we suggest that as exosomes contain cellular protein and RNA molecules in a cell type-specific manner, they may provide extensive information about the signature of the tumour and pancreatic cancer progression.
Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery.
Carita, Amanda C; Eloy, Josimar O; Chorilli, Marlus; Lee, Robert J; Leonardi, Gislaine Ricci
2018-02-13
The cutaneous route is attractive for the delivery of drugs in the treatment of a wide variety of diseases. However the stratum corneum (SC) is an effective barrier that hampers skin penetration. Within this context, liposomes emerge as a potential carrier for improving topical delivery of therapeutic agents. In this review, we aimed to discuss key aspects for the topical delivery by drug-loaded liposomes. Phospholipid type and phase transition temperature have been shown to affect liposomal topical delivery. The effect of surface charge is subject to considerable variation depending on drug and composition. In addition, modified vesicles with the presence of components for permeation enhancement, such as surfactants and solvents, have been shown to have a considerable effect. These liposomes include: Transfersomes, Niosomes, Ethosomes, Transethosomes, Invasomes, coated liposomes, penetration enhancer containing vesicles (PEVs), fatty acids vesicles, Archaeosomes and Marinosomes. Furthermore, adding polymeric coating onto liposome surface could influence cutaneous delivery. Mechanisms of delivery include intact vesicular skin penetration, free drug diffusion, permeation enhancement, vesicle adsorption to and/or fusion with the SC, trans-appendageal penetration, among others. Finally, several skin conditions, including acne, melasma, skin aging, fungal infections and skin cancer, have benefited from liposomal topical delivery of drugs, with promising in vitro and in vivo results. However, despite the existence of some clinical trials, more studies are needed to be conducted in order to explore the potential of liposomes in the dermatological field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Nievas, Yesica R; Coceres, Veronica M; Midlej, Victor; de Souza, Wanderley; Benchimol, Marlene; Pereira-Neves, Antonio; Vashisht, Ajay A; Wohlschlegel, James A; Johnson, Patricia J; de Miguel, Natalia
2018-06-01
Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract, where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Despite the serious consequences associated with trichomoniasis disease, little is known about parasite or host factors involved in attachment of the parasite-to-host epithelial cells. Here, we report the identification of microvesicle-like structures (MVs) released by T. vaginalis. MVs are considered universal transport vehicles for intercellular communication as they can incorporate peptides, proteins, lipids, miRNA, and mRNA, all of which can be transferred to target cells through receptor-ligand interactions, fusion with the cell membrane, and delivery of a functional cargo to the cytoplasm of the target cell. In the present study, we demonstrated that T. vaginalis release MVs from the plasma and the flagellar membranes of the parasite. We performed proteomic profiling of these structures demonstrating that they possess physical characteristics similar to mammalian extracellular vesicles and might be selectively charged with specific protein content. In addition, we demonstrated that viable T. vaginalis parasites release large vesicles (LVs), membrane structures larger than 1 µm that are able to interact with other parasites and with the host cell. Finally, we show that both populations of vesicles present on the surface of T vaginalis are induced in the presence of host cells, consistent with a role in modulating cell interactions.
Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles.
Dufes, Christine; Muller, Jean-Marc; Couet, William; Olivier, Jean-Christophe; Uchegbu, Ijeoma F; Schätzlein, Andreas G
2004-01-01
The study reports the initial biological evaluation of targeted polymeric glycol chitosan vesicles as carrier systems for doxorubicin (Dox). Transferrin (Tf) was covalently bound to the Dox-loaded palmitoylated glycol chitosan (GCP) vesicles using dimethylsuberimidate (DMSI). For comparison, glucose targeted niosomes were prepared using N-palmitoyl glucosamine. Biological properties were studied using confocal microscopy, flow cytometry, and cytotoxicity assays as well as a mouse xenograft model. Tf vesicles were taken up rapidly with a plateau after 1-2 h and Dox reached the nucleus after 60-90 min. Uptake was not increased with the use of glucose ligands, but higher uptake and increased cytotoxicity were observed for Tf targeted as compared to GCP Dox alone. In the drug-resistant A2780AD cells and in A431 cells, the relative increase in activity was significantly higher for the Tf-GCP vesicles than would have been expected from the uptake studies. All vesicle formulations had a superior in vivo safety profile compared to the free drug. The in vitro advantage of targeted Tf vesicles did not translate into a therapeutic advantage in vivo. All vesicles reduced tumor size on day 2 but were overall less active than the free drug.
Coupled diffusion in lipid bilayers upon close approach
Pronk, Sander; Lindahl, Erik; Kasson, Peter M.
2014-12-23
Biomembrane interfaces create regions of slowed water dynamics in their vicinity. When two lipid bilayers come together, this effect is further accentuated, and the associated slowdown can affect the dynamics of larger-scale processes such as membrane fusion. We have used molecular dynamics simulations to examine how lipid and water dynamics are affected as two lipid bilayers approach each other. These two interacting fluid systems, lipid and water, both slow and become coupled when the lipid membranes are separated by a thin water layer. We show in particular that the water dynamics become glassy, and diffusion of lipids in the apposedmore » leaflets becomes coupled across the water layer, while the “outer” leaflets remain unaffected. This dynamic coupling between bilayers appears mediated by lipid–water–lipid hydrogen bonding, as it occurs at bilayer separations where water–lipid hydrogen bonds become more common than water–water hydrogen bonds. We further show that such coupling occurs in simulations of vesicle–vesicle fusion prior to the fusion event itself. As a result, such altered dynamics at membrane–membrane interfaces may both stabilize the interfacial contact and slow fusion stalk formation within the interface region.« less
Reid, Andrew T.; Lord, Tessa; Stanger, Simone J.; Roman, Shaun D.; McCluskey, Adam; Robinson, Phillip J.; Aitken, R. John; Nixon, Brett
2012-01-01
Mammalian spermatozoa must complete an acrosome reaction prior to fertilizing an oocyte. The acrosome reaction is a unique exocytotic event involving a series of prolonged membrane fusions that ultimately result in the production of membrane vesicles and release of the acrosomal contents. This event requires the concerted action of a large number of fusion-competent signaling and scaffolding proteins. Here we show that two different members of the dynamin GTPase family localize to the developing acrosome of maturing mouse germ cells. Both dynamin 1 and 2 also remain within the periacrosomal region of mature mouse spermatozoa and are thus well positioned to regulate the acrosome reaction. Two pharmacological inhibitors of dynamin, dynasore and Dyngo-4a, blocked the in vitro induction of acrosomal exocytosis by progesterone, but not by the calcium ionophore A23187, and elicited a concomitant reduction of in vitro fertilization. In vivo treatment with these inhibitors also resulted in spermatozoa displaying reduced acrosome reaction potential. Dynamin 1 and 2 phosphorylation increased on progesterone treatment, and this was also selectively blocked by dynasore. On the basis of our collective data, we propose that dynamin could regulate specific membrane fusion events necessary for acrosomal exocytosis in mouse spermatozoa. PMID:22977254
Furrow microtubules and localized exocytosis in cleaving Xenopus laevis embryos
NASA Technical Reports Server (NTRS)
Danilchik, Michael V.; Bedrick, Steven D.; Brown, Elizabeth E.; Ray, Kimberly
2003-01-01
In dividing Xenopus eggs, furrowing is accompanied by expansion of a new domain of plasma membrane in the cleavage plane. The source of the new membrane is known to include a store of oogenetically produced exocytotic vesicles, but the site where their exocytosis occurs has not been described. Previous work revealed a V-shaped array of microtubule bundles at the base of advancing furrows. Cold shock or exposure to nocodazole halted expansion of the new membrane domain, which suggests that these microtubules are involved in the localized exocytosis. In the present report, scanning electron microscopy revealed collections of pits or craters, up to approximately 1.5 micro m in diameter. These pits are evidently fusion pores at sites of recent exocytosis, clustered in the immediate vicinity of the deepening furrow base and therefore near the furrow microtubules. Confocal microscopy near the furrow base of live embryos labeled with the membrane dye FM1-43 captured time-lapse sequences of individual exocytotic events in which irregular patches of approximately 20 micro m(2) of unlabeled membrane abruptly displaced pre-existing FM1-43-labeled surface. In some cases, stable fusion pores, approximately 2 micro m in diameter, were seen at the surface for up to several minutes before suddenly delivering patches of unlabeled membrane. To test whether the presence of furrow microtubule bundles near the surface plays a role in directing or concentrating this localized exocytosis, membrane expansion was examined in embryos exposed to D(2)O to induce formation of microtubule monasters randomly under the surface. D(2)O treatment resulted in a rapid, uniform expansion of the egg surface via random, ectopic exocytosis of vesicles. This D(2)O-induced membrane expansion was completely blocked with nocodazole, indicating that the ectopic exocytosis was microtubule-dependent. Results indicate that exocytotic vesicles are present throughout the egg subcortex, and that the presence of microtubules near the surface is sufficient to mobilize them for exocytosis at the end of the cell cycle.
Studies of matrix vesicle-induced mineralization in a gelatin gel
NASA Technical Reports Server (NTRS)
Boskey, A. L.; Boyan, B. D.; Doty, S. B.; Feliciano, A.; Greer, K.; Weiland, D.; Swain, L. D.; Schwartz, Z.
1992-01-01
Matrix vesicles isolated from fourth-passage cultures of chondrocytes were tested for their ability to induce hydroxyapatite formation in a gelatin gel in order to gain insight into the function of matrix vesicles in in situ mineralization. These matrix vesicles did not appear to be hydroxyapatite nucleators per se since the extent of mineral accumulation in the gel diffusion system was not altered by the presence of matrix vesicles alone, and in the vesicle containing gels, mineral crystals were formed whether associated with vesicles or not. In gels with these matrix vesicles and beta-glycerophosphate, despite the presence of alkaline phosphatase activity, there was no increase in mineral deposition. This suggested that in the gel system these culture-derived vesicles did not increase local phosphate concentrations. However, when known inhibitors of mineral crystal formation and growth (proteoglycan aggregates [4 mg/ml], or ATP [1 mM], or both proteoglycan and ATP) were included in the gel, more mineral was deposited in gels with the vesicles than in comparable gels without vesicles, indicating that enzymes within these vesicles were functioning to remove the inhibition. These data support the suggestion that one function of the extracellular matrix vesicles is to transport enzymes for matrix modification.
Braun, Stefan; Pokorná, Šárka; Šachl, Radek; Hof, Martin; Heerklotz, Heiko; Hoernke, Maria
2018-01-23
The mode of action of membrane-active molecules, such as antimicrobial, anticancer, cell penetrating, and fusion peptides and their synthetic mimics, transfection agents, drug permeation enhancers, and biological signaling molecules (e.g., quorum sensing), involves either the general or local destabilization of the target membrane or the formation of defined, rather stable pores. Some effects aim at killing the cell, while others need to be limited in space and time to avoid serious damage. Biological tests reveal translocation of compounds and cell death but do not provide a detailed, mechanistic, and quantitative understanding of the modes of action and their molecular basis. Model membrane studies of membrane leakage have been used for decades to tackle this issue, but their interpretation in terms of biology has remained challenging and often quite limited. Here we compare two recent, powerful protocols to study model membrane leakage: the microscopic detection of dye influx into giant liposomes and time-correlated single photon counting experiments to characterize dye efflux from large unilamellar vesicles. A statistical treatment of both data sets does not only harmonize apparent discrepancies but also makes us aware of principal issues that have been confusing the interpretation of model membrane leakage data so far. Moreover, our study reveals a fundamental difference between nano- and microscale systems that needs to be taken into account when conclusions about microscale objects, such as cells, are drawn from nanoscale models.
RIM, Munc13, and Rab3A interplay in acrosomal exocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bello, Oscar D.; Zanetti, M. Natalia; Laboratorio de Biologia Reproductiva, Instituto de Histologia y Embriologia, IHEM
2012-03-10
Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggestedmore » as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking. -- Highlights: Black-Right-Pointing-Pointer RIM and Munc13 are present in human sperm and localize to the acrosomal region. Black-Right-Pointing-Pointer RIM and Munc13 are necessary for acrosomal exocytosis. Black-Right-Pointing-Pointer RIM and Munc13 participate before the acrosomal calcium efflux. Black-Right-Pointing-Pointer RIM, Munc13 and Rab3A interplay in human sperm acrosomal exocytosis. Black-Right-Pointing-Pointer RIM and Rab3A have critical roles in membrane docking.« less
1H, 15N, 13C resonance assignment of human GAP-43.
Flamm, Andrea Gabriele; Żerko, Szymon; Zawadzka-Kazimierczuk, Anna; Koźmiński, Wiktor; Konrat, Robert; Coudevylle, Nicolas
2016-04-01
GAP-43 is a 25 kDa neuronal intrinsically disordered protein, highly abundant in the neuronal growth cone during development and regeneration. The exact molecular function(s) of GAP-43 remains unclear but it appears to be involved in growth cone guidance and actin cytoskeleton organization. Therefore, GAP-43 seems to play an important role in neurotransmitter vesicle fusion and recycling, long-term potentiation, spatial memory formation and learning. Here we report the nearly complete assignment of recombinant human GAP-43.
Physical determinants of vesicle mobility and supply at a central synapse
Rothman, Jason Seth; Kocsis, Laszlo; Herzog, Etienne; Nusser, Zoltan; Silver, Robin Angus
2016-01-01
Encoding continuous sensory variables requires sustained synaptic signalling. At several sensory synapses, rapid vesicle supply is achieved via highly mobile vesicles and specialized ribbon structures, but how this is achieved at central synapses without ribbons is unclear. Here we examine vesicle mobility at excitatory cerebellar mossy fibre synapses which sustain transmission over a broad frequency bandwidth. Fluorescent recovery after photobleaching in slices from VGLUT1Venus knock-in mice reveal 75% of VGLUT1-containing vesicles have a high mobility, comparable to that at ribbon synapses. Experimentally constrained models establish hydrodynamic interactions and vesicle collisions are major determinants of vesicle mobility in crowded presynaptic terminals. Moreover, models incorporating 3D reconstructions of vesicle clouds near active zones (AZs) predict the measured releasable pool size and replenishment rate from the reserve pool. They also show that while vesicle reloading at AZs is not diffusion-limited at the onset of release, diffusion limits vesicle reloading during sustained high-frequency signalling. DOI: http://dx.doi.org/10.7554/eLife.15133.001 PMID:27542193
Venter, E; van der Merwe, C F; Buys, A V; Huismans, H; van Staden, V
2014-03-01
African horse sickness virus (AHSV) is an arbovirus capable of successfully replicating in both its mammalian host and insect vector. Where mammalian cells show a severe cytopathic effect (CPE) following AHSV infection, insect cells display no CPE. These differences in cell death could be linked to the method of viral release, i.e. lytic or non-lytic, that predominates in a specific cell type. Active release of AHSV, or any related orbivirus, has, however, not yet been documented from insect cells. We applied an integrated microscopy approach to compare the nanomechanical and morphological response of mammalian and insect cells to AHSV infection. Atomic force microscopy revealed plasma membrane destabilization, integrity loss and structural deformation of the entire surface of infected mammalian cells. Infected insect cells, in contrast, showed no morphological differences from mock-infected cells other than an increased incidence of circular cavities present on the cell surface. Transmission electron microscopy imaging identified a novel large vesicle-like compartment within infected insect cells, not present in mammalian cells, containing viral proteins and virus particles. Extracellular clusters of aggregated virus particles were visualized adjacent to infected insect cells with intact plasma membranes. We propose that foreign material is accumulated within these vesicles and that their subsequent fusion with the cell membrane releases entrapped viruses, thereby facilitating a non-lytic virus release mechanism different from the budding previously observed in mammalian cells. This insect cell-specific defence mechanism contributes to the lack of cell damage observed in AHSV-infected insect cells.
Rodriguez, April R; Choe, Uh-Joo; Kamei, Daniel T; Deming, Timothy J
2015-01-01
We prepared dual hydrophilic triblock copolypeptide vesicles that form both micron and nanometer scale vesicles in aqueous media. The incorporation of terminal homoarginine segments into methionine sulfoxide-based vesicles was found to significantly enhance their cellular uptake compared to a non-ionic control. We also demonstrated that diblock and triblock copolypeptides with similar hydrophobic domains were found to mix well and form vesicle populations with uniform compositions. Blending of amphiphiles in vesicle nanocarriers was found to impart these materials with many advantageous properties, including good cellular uptake while maintaining minimal toxicity, as well as biological responsiveness to promote vesicle disruption and release of encapsulated cargos. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chin, Christopher R.; Savidis, George; Brass, Abraham L.; Melikyan, Gregory B.
2014-01-01
Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion (lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3 over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3's ability to block fusion pore formation at a post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with intralumenal vesicles within multivesicular bodies/late endosomes. PMID:24699674
Biller, Steven J; McDaniel, Lauren D; Breitbart, Mya; Rogers, Everett; Paul, John H; Chisholm, Sallie W
2017-01-01
Diverse microbes release membrane-bound extracellular vesicles from their outer surfaces into the surrounding environment. Vesicles are found in numerous habitats including the oceans, where they likely have a variety of functional roles in microbial ecosystems. Extracellular vesicles are known to contain a range of biomolecules including DNA, but the frequency with which DNA is packaged in vesicles is unknown. Here, we examine the quantity and distribution of DNA associated with vesicles released from five different bacteria. The average quantity of double-stranded DNA and size distribution of DNA fragments released within vesicles varies among different taxa. Although some vesicles contain sufficient DNA to be visible following staining with the SYBR fluorescent DNA dyes typically used to enumerate viruses, this represents only a small proportion (<0.01–1%) of vesicles. Thus DNA is packaged heterogeneously within vesicle populations, and it appears that vesicles are likely to be a minor component of SYBR-visible particles in natural sea water compared with viruses. Consistent with this hypothesis, chloroform treatment of coastal and offshore seawater samples reveals that vesicles increase epifluorescence-based particle (viral) counts by less than an order of magnitude and their impact is variable in space and time. PMID:27824343
Tian, Xuejun; Gala, Upasana; Zhang, Yongping; Shang, Weina; Nagarkar Jaiswal, Sonal; di Ronza, Alberto; Jaiswal, Manish; Yamamoto, Shinya; Sandoval, Hector; Duraine, Lita; Sardiello, Marco; Sillitoe, Roy V; Venkatachalam, Kartik; Fan, Hengyu; Bellen, Hugo J; Tong, Chao
2015-03-01
Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.
Song, Chung Kil; Balakrishnan, Prabagar; Shim, Chang-Koo; Chung, Suk-Jae; Chong, Saeho; Kim, Dae-Duk
2012-04-01
This study describes a novel carrier, transethosome, for enhanced skin delivery of voriconazole. Transethosomes (TELs) are composed of phospholipid, ethanol, water and edge activator (surfactants) or permeation enhancer (oleic acid). Characterization of the TELs was based on results from recovery, particle size, transmission electron microscopy (TEM), zeta potential and elasticity studies. In addition, skin permeation profile was obtained using static vertical diffusion Franz cells and hairless mouse skin treated with TELs containing 0.3% (w/w) voriconazole, and compared with those of ethosomes (ELs), deformable liposomes (DLs), conventional liposomes (CLs) and control (polyethylene glycol, PG) solutions. The recovery of the studied vesicles was above 90% in all vesicles, as all of them contained ethanol (7-30%). There was no significant difference in the particles size of all vesicles. The TEM study revealed that the TELs were in irregular spherical shape, implying higher fluidity due to perturbed lipid bilayer compared to that of other vesicles which were of spherical shape. The zeta potential of vesicles containing sodium taurocholate or oleic acid showed higher negative value compared to other vesicles. The elasticities of ELs and TELs were much higher than that of CLs and DLs. Moreover, TELs dramatically enhanced the skin permeation of voriconazole compared to the control and other vesicles (p<0.05). Moreover, the TELs enhanced both in vitro and in vivo skin deposition of voriconazole in the dermis/epidermis region compared to DLs, CLs and control. Therefore, based on the current study, the novel carrier TELs could serve as an effective dermal delivery for voriconazole. Copyright © 2011 Elsevier B.V. All rights reserved.
Puchner, Elias M.; Walter, Jessica M.; Kasper, Robert; Huang, Bo; Lim, Wendell A.
2013-01-01
Cells tightly regulate trafficking of intracellular organelles, but a deeper understanding of this process is technically limited by our inability to track the molecular composition of individual organelles below the diffraction limit in size. Here we develop a technique for intracellularly calibrated superresolution microscopy that can measure the size of individual organelles as well as accurately count absolute numbers of molecules, by correcting for undercounting owing to immature fluorescent proteins and overcounting owing to fluorophore blinking. Using this technique, we characterized the size of individual vesicles in the yeast endocytic pathway and the number of accessible phosphatidylinositol 3-phosphate binding sites they contain. This analysis reveals a characteristic vesicle maturation trajectory of composition and size with both stochastic and regulated components. The trajectory displays some cell-to-cell variability, with smaller variation between organelles within the same cell. This approach also reveals mechanistic information on the order of events in this trajectory: Colocalization analysis with known markers of different vesicle maturation stages shows that phosphatidylinositol 3-phosphate production precedes fusion into larger endosomes. This single-organelle analysis can potentially be applied to a range of small organelles to shed light on their precise composition/structure relationships, the dynamics of their regulation, and the noise in these processes. PMID:24043832
Ca-Mediated Electroformation of Cell-Sized Lipid Vesicles
Tao, Fei; Yang, Peng
2015-01-01
Cell-sized lipid giant unilamellar vesicles (GUVs) are formed when lipid molecules self-assemble to construct a single bilayer compartment with similar morphology to living cells. The physics of self-assembly process is only generally understood and the size distribution of GUVs tends to be very polydisperse. Herein we report a strategy for the production of controlled size distributions of GUVs by a novel mechanism dissecting the mediation ability of calcium (Ca) on the conventional electroformation of GUVs. We finely construct both of the calcium ion (Ca2+) and calcium carbonate (CaCO3) mineral adsorption layers on a lipid film surface respectively during the electroformation of GUVs. It is found that Ca2+ Slip plane polarized by alternating electric field could induce a pattern of electroosmotic flow across the surface, and thus confine the fusion and growth of GUVs to facilitate the formation of uniform GUVs. The model is further improved by directly using CaCO3 that is in situ formed on a lipid film surface, providing a GUV population with narrow polydispersity. The two models deciphers the new biological function of calcium on the birth of cell-like lipid vesicles, and thus might be potentially relevant to the construction of new model to elucidate the cellular development process. PMID:25950604
When intracellular logistics fails--genetic defects in membrane trafficking.
Olkkonen, Vesa M; Ikonen, Elina
2006-12-15
The number of human genetic disorders shown to be due to defects in membrane trafficking has greatly increased during the past five years. Defects have been identified in components involved in sorting of cargo into transport carriers, vesicle budding and scission, movement of vesicles along cytoskeletal tracks, as well as in vesicle tethering, docking and fusion at the target membrane. The nervous system is extremely sensitive to such disturbances of the membrane trafficking machinery, and the majority of these disorders display neurological defects--particularly diseases affecting the motility of transport carriers along cytoskeletal tracks. In several disorders, defects in a component that represents a fundamental part of the trafficking machinery fail to cause global transport defects but result in symptoms limited to specific cell types and transport events; this apparently reflects the redundancy of the transport apparatus. In groups of closely related diseases such as Hermansky-Pudlak and Griscelli syndromes, identification of the underlying gene defects has revealed groups of genes in which mutations lead to similar phenotypic consequences. New functionally linked trafficking components and regulatory mechanisms have thus been discovered. Studies of the gene defects in trafficking disorders therefore not only open avenues for new therapeutic approaches but also significantly contribute to our knowledge of the fundamental mechanisms of intracellular membrane transport.
Ca-mediated electroformation of cell-sized lipid vesicles.
Tao, Fei; Yang, Peng
2015-05-07
Cell-sized lipid giant unilamellar vesicles (GUVs) are formed when lipid molecules self-assemble to construct a single bilayer compartment with similar morphology to living cells. The physics of self-assembly process is only generally understood and the size distribution of GUVs tends to be very polydisperse. Herein we report a strategy for the production of controlled size distributions of GUVs by a novel mechanism dissecting the mediation ability of calcium (Ca) on the conventional electroformation of GUVs. We finely construct both of the calcium ion (Ca(2+)) and calcium carbonate (CaCO3) mineral adsorption layers on a lipid film surface respectively during the electroformation of GUVs. It is found that Ca(2+) Slip plane polarized by alternating electric field could induce a pattern of electroosmotic flow across the surface, and thus confine the fusion and growth of GUVs to facilitate the formation of uniform GUVs. The model is further improved by directly using CaCO3 that is in situ formed on a lipid film surface, providing a GUV population with narrow polydispersity. The two models deciphers the new biological function of calcium on the birth of cell-like lipid vesicles, and thus might be potentially relevant to the construction of new model to elucidate the cellular development process.
Electron microscopic characterization of nuclear egress in the sea urchin gastrula.
LaMassa, Nicole; Arenas-Mena, Cesar; Phillips, Greg R
2018-05-01
Nuclear egress, also referred to as nuclear envelope (NE) budding, is a process of transport in which vesicles containing molecular complexes or viral particles leave the nucleus through budding from the inner nuclear membrane (INM) to enter the perinuclear space. Following this event, the perinuclear vesicles (PNVs) fuse with the outer nuclear membrane (ONM), where they release their contents into the cytoplasm. Nuclear egress is thought to participate in many functions such as viral replication, cellular differentiation, and synaptic development. The molecular basis for nuclear egress is now beginning to be elucidated. Here, we observe in the sea urchin gastrula, using serial section transmission electron microscopy, strikingly abundant PNVs containing as yet unidentified granules that resemble the ribonucleoprotein complexes (RNPs) previously observed in similar types of PNVs. Some PNVs were observed in the process of fusion with the ONM where they appeared to release their contents into the cytoplasm. These vesicles were abundantly observed in all three presumptive germ layers. These findings indicate that nuclear egress is likely to be an important mechanism for nucleocytoplasmic transfer during sea urchin development. The sea urchin may be a useful model to characterize further and gain a better understanding of the process of nuclear egress. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Le Thi Kim, E-mail: ngocanh@nutr.med.tokushima-u.ac.jp; Hosaka, Toshio; Harada, Nagakatsu
2010-01-01
In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4more » to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamoto, Shuhei; Shinoda, Wataru, E-mail: w.shinoda@apchem.nagoya-u.ac.jp; Klein, Michael L.
The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle–vesicle, vesicle–planar, and planar–planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusionmore » of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.« less
Vesicle Pool Size at the Salamander Cone Ribbon Synapse
Bartoletti, Theodore M.; Babai, Norbert
2010-01-01
Cone light responses are transmitted to postsynaptic neurons by changes in the rate of synaptic vesicle release. Vesicle pool size at the cone synapse constrains the amount of release and can thus shape contrast detection. We measured the number of vesicles in the rapidly releasable and reserve pools at cone ribbon synapses by performing simultaneous whole cell recording from cones and horizontal or off bipolar cells in the salamander retinal slice preparation. We found that properties of spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs) are representative of mEPSCs evoked by depolarizing presynaptic stimulation. Strong, brief depolarization of the cone stimulated release of the entire rapidly releasable pool (RRP) of vesicles. Comparing charge transfer of the EPSC with mEPSC charge transfer, we determined that the fast component of the EPSC reflects release of ∼40 vesicles. Comparing EPSCs with simultaneous presynaptic capacitance measurements, we found that horizontal cell EPSCs constitute 14% of the total number of vesicles released from a cone terminal. Using a fluorescent ribeye-binding peptide, we counted ∼13 ribbons per cone. Together, these results suggest each cone contacts a single horizontal cell at ∼2 ribbons. The size of discrete components in the EPSC amplitude histogram also suggested ∼2 ribbon contacts per cell pair. We therefore conclude there are ∼20 vesicles per ribbon in the RRP, similar to the number of vesicles contacting the plasma membrane at the ribbon base. EPSCs evoked by lengthy depolarization suggest a reserve pool of ∼90 vesicles per ribbon, similar to the number of additional docking sites further up the ribbon. PMID:19923246
Nuzhat, Zarin; Kinhal, Vyjayanthi; Sharma, Shayna; Rice, Gregory E.; Joshi, Virendra; Salomon, Carlos
2017-01-01
Pancreatic cancer is the fourth most common cause of death due to cancer in the world. It is known to have a poor prognosis, mostly because early stages of the disease are generally asymptomatic. Progress in pancreatic cancer research has been slow, leaving several fundamental questions pertaining to diagnosis and treatment unanswered. Recent studies highlight the putative utility of tissue-specific vesicles (i.e. extracellular vesicles) in the diagnosis of disease onset and treatment monitoring in pancreatic cancer. Extracellular vesicles are membrane-limited structures derived from the cell membrane. They contain specific molecules including proteins, mRNA, microRNAs and non-coding RNAs that are secreted in the extracellular space. Extracellular vesicles can be classified according to their size and/or origin into microvesicles (∼150-1000 nm) and exosomes (∼40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosomes are released via the endocytic pathway by fusion of multivesicular bodies with the plasmatic membrane. This endosomal origin means that exosomes contain an abundance of cell-specific biomolecules which may act as a fingerprint of the cell of origin. In this review, we discuss our current knowledge in the diagnosis and treatment of pancreatic cancer, particularly the potential role of EVs in these facets of disease management. In particular, we suggest that as exosomes contain cellular protein and RNA molecules in a cell type-specific manner, they may provide extensive information about the signature of the tumour and pancreatic cancer progression. PMID:27999198
Dezi, Manuela; Di Cicco, Aurelie; Bassereau, Patricia; Lévy, Daniel
2013-01-01
Giant unilamellar vesicles (GUVs) are convenient biomimetic systems of the same size as cells that are increasingly used to quantitatively address biophysical and biochemical processes related to cell functions. However, current approaches to incorporate transmembrane proteins in the membrane of GUVs are limited by the amphiphilic nature or proteins. Here, we report a method to incorporate transmembrane proteins in GUVs, based on concepts developed for detergent-mediated reconstitution in large unilamellar vesicles. Reconstitution is performed either by direct incorporation from proteins purified in detergent micelles or by fusion of purified native vesicles or proteoliposomes in preformed GUVs. Lipid compositions of the membrane and the ionic, protein, or DNA compositions in the internal and external volumes of GUVs can be controlled. Using confocal microscopy and functional assays, we show that proteins are unidirectionally incorporated in the GUVs and keep their functionality. We have successfully tested our method with three types of transmembrane proteins. GUVs containing bacteriorhodopsin, a photoactivable proton pump, can generate large transmembrane pH and potential gradients that are light-switchable and stable for hours. GUVs with FhuA, a bacterial porin, were used to follow the DNA injection by T5 phage upon binding to its transmembrane receptor. GUVs incorporating BmrC/BmrD, a bacterial heterodimeric ATP-binding cassette efflux transporter, were used to demonstrate the protein-dependent translocation of drugs and their interactions with encapsulated DNA. Our method should thus apply to a wide variety of membrane or peripheral proteins for producing more complex biomimetic GUVs. PMID:23589883
Müller, Heidi Kaastrup; Kragballe, Marie; Fjorback, Anja Winther; Wiborg, Ove
2014-01-01
The serotonin transporter (SERT) is a key regulator of serotonergic signalling as it mediates the re-uptake of synaptic serotonin into nerve terminals, thereby terminating or modulating its signal. It is well-known that SERT regulation is a dynamic process orchestrated by a wide array of proteins and mechanisms. However, molecular details on possible coordinated regulation of SERT activity and 5-HT release are incomplete. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, interacts with SERT. This was documented in vitro, through GST pull-down assays, by co-immunoprecipitation experiments on heterologous cells and rat hippocampal synaptosomes, and with FRET analysis in live transfected HEK-293 MSR cells. The related isoforms VAMP1 and VAMP3 also physically interact with SERT. However, comparison of the three VAMP isoforms shows that only VAMP2 possesses a functionally distinct role in relation to SERT. VAMP2 influences 5-HT uptake, cell surface expression and the delivery rate of SERT to the plasma membrane differentially in HEK-293 MSR and PC12 cells. Moreover, siRNA-mediated knock-down of endogenous VAMP2 reduces 5-HT uptake in CAD cells stably expressing low levels of heterologous SERT. Deletion and mutant analysis suggest a role for the isoform specific C-terminal domain of VAMP2 in regulating SERT function. Our data identify a novel interaction between SERT and a synaptic vesicle protein and support a link between 5-HT release and re-uptake. PMID:24878716
Stabilization of exosome-targeting peptides via engineered glycosylation.
Hung, Michelle E; Leonard, Joshua N
2015-03-27
Exosomes are secreted extracellular vesicles that mediate intercellular transfer of cellular contents and are attractive vehicles for therapeutic delivery of bimolecular cargo such as nucleic acids, proteins, and even drugs. Efficient exosome-mediated delivery in vivo requires targeting vesicles for uptake by specific recipient cells. Although exosomes have been successfully targeted to several cellular receptors by displaying peptides on the surface of the exosomes, identifying effective exosome-targeting peptides for other receptors has proven challenging. Furthermore, the biophysical rules governing targeting peptide success remain poorly understood. To evaluate one factor potentially limiting exosome delivery, we investigated whether peptides displayed on the exosome surface are degraded during exosome biogenesis, for example by endosomal proteases. Indeed, peptides fused to the N terminus of exosome-associated transmembrane protein Lamp2b were cleaved in samples derived from both cells and exosomes. To suppress peptide loss, we engineered targeting peptide-Lamp2b fusion proteins to include a glycosylation motif at various positions. Introduction of this glycosylation motif both protected the peptide from degradation and led to an increase in overall Lamp2b fusion protein expression in both cells and exosomes. Moreover, glycosylation-stabilized peptides enhanced targeted delivery of exosomes to neuroblastoma cells, demonstrating that such glycosylation does not ablate peptide-target interactions. Thus, we have identified a strategy for achieving robust display of targeting peptides on the surface of exosomes, which should facilitate the evaluation and development of new exosome-based therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
MacDonald, Michael J.; Ade, Lacmbouh; Ntambi, James M.; Ansari, Israr-Ul H.; Stoker, Scott W.
2015-01-01
The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. PMID:25762724
Jäger, Jens; Keese, Susanne; Roessle, Manfred; Steinert, Michael; Schromm, Andra B
2015-05-01
The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane-bound compartment termed Legionella-containing vacuole. In the current study, we analysed the membrane architecture of L. pneumophila OMVs by small-angle X-ray scattering and biophysically characterized OMV membranes. We investigated the interaction of L. pneumophila OMVs with model membranes by Förster resonance energy transfer and Fourier transform infrared spectroscopy. These experiments demonstrated the incorporation of OMV membrane material into liposomes composed of different eukaryotic phospholipids, revealing an endogenous property of OMVs to fuse with eukaryotic membranes. Cellular co-incubation experiments showed a dose- and time-dependent binding of fluorophore-labelled OMVs to macrophages. Trypan blue quenching experiments disclosed a rapid internalization of OMVs into macrophages at 37 and 4 °C. Purified OMVs induced tumour necrosis factor-α production in human macrophages at concentrations starting at 300 ng ml(-1). Experiments on HEK293-TLR2 and TLR4/MD-2 cell lines demonstrated a dominance of TLR2-dependent signalling pathways. In summary, we demonstrate binding, internalization and biological activity of L. pneumophila OMVs on human macrophages. Our data support OMV membrane fusion as a mechanism for the remote delivery of virulence factors to host cells. © 2014 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Suzuki, Kazuhiro; Grinnell, Alan D.; Kidokoro, Yoshiaki
2002-01-01
The frequency of quantal transmitter release increases upon application of hypertonic solutions. This effect bypasses the Ca(2+) triggering step, but requires the presence of key molecules involved in vesicle fusion, and hence could be a useful tool for dissecting the molecular process of vesicle fusion. We have examined the hypertonicity response at neuromuscular junctions of Drosophila embryos in Ca(2+)-free saline. Relative to wild-type, the response induced by puff application of hypertonic solution was enhanced in a mutant, dunce, in which the cAMP level is elevated, or in wild-type embryos treated with forskolin, an activator of adenylyl cyclase, while protein kinase A (PKA) inhibitors decreased it. The response was also smaller in a mutant, DC0, which lacks the major subunit of PKA. Thus the cAMP/PKA cascade is involved in the hypertonicity response. Peptides containing the sequence Arg-Gly-Asp (RGD), which inhibit binding of integrins to natural ligands, reduced the response, whereas a peptide containing the non-binding sequence Arg-Gly-Glu (RGE) did not. A reduced response persisted in a mutant, myospheroid, which expresses no integrins, and the response in DC0 was unaffected by RGD peptides. These data indicate that there are at lease two components in the hypertonicity response: one that is integrin mediated and involves the cAMP/PKA cascade, and another that is not integrin mediated and does not involve the cAMP/PKA cascade.
Renal epithelial cells can release ATP by vesicular fusion
Bjaelde, Randi G.; Arnadottir, Sigrid S.; Overgaard, Morten T.; Leipziger, Jens; Praetorius, Helle A.
2013-01-01
Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30), which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1) cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin) reduced both the spontaneous and hypotonically (80%)-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1) and vesicular transport (nocodazole). These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ~90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP) or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50%) or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8 and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells. PMID:24065923
Kümmel, D; Heinemann, U
2008-04-01
The term 'tethering factor' has been coined for a heterogeneous group of proteins that all are required for protein trafficking prior to vesicle docking and SNARE-mediated membrane fusion. Two groups of tethering factors can be distinguished, long coiled-coil proteins and multi-subunit complexes. To date, eight such protein complexes have been identified in yeast, and they are required for different trafficking steps. Homologous complexes are found in all eukaryotic organisms, but conservation seems to be less strict than for other components of the trafficking machinery. In fact, for most proposed multi-subunit tethers their ability to actually bridge two membranes remains to be shown. Here we discuss recent progress in the structural and functional characterization of tethering complexes and present the emerging view that the different complexes are quite diverse in their structure and the molecular mechanisms underlying their function. TRAPP and the exocyst are the structurally best characterized tethering complexes. Their comparison fails to reveal any similarity on a struc nottural level. Furthermore, the interactions with regulatory Rab GTPases vary, with TRAPP acting as a nucleotide exchange factor and the exocyst being an effector. Considering these differences among the tethering complexes as well as between their yeast and mammalian orthologs which is apparent from recent studies, we suggest that tethering complexes do not mediate a strictly conserved process in vesicular transport but are diverse regulators acting after vesicle budding and prior to membrane fusion.
Hsu, Mei-Ju; Rixon, Frazer J.; Knebel-Mörsdorf, Dagmar
2011-01-01
Herpes simplex virus type 1 (HSV-1) can enter cells via endocytic pathways or direct fusion at the plasma membrane depending on the cell line and receptor(s). Most studies into virus entry have used cultured fibroblasts but since keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin, which demonstrates the requirement for host cholesterol during virus entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require dynamin and host cholesterol. PMID:22022400
de Curtis, Ivan; Meldolesi, Jacopo
2012-10-01
Small GTPases are known to regulate hundreds of cell functions. In particular, Rho family GTPases are master regulators of the cytoskeleton. By regulating actin nucleation complexes, Rho GTPases control changes in cell shape, including the extension and/or retraction of surface protrusions and invaginations. Protrusion and invagination of the plasma membrane also involves the interaction between the plasma membrane and the cortical cytoskeleton. This interplay between membranes and the cytoskeleton can lead to an increase or decrease in the plasma membrane surface area and its tension as a result of the fusion (exocytosis) or internalization (endocytosis) of membranous compartments, respectively. For a long time, the cytoskeleton and plasma membrane dynamics were investigated separately. However, studies from many laboratories have now revealed that Rho GTPases, their modulation of the cytoskeleton, and membrane traffic are closely connected during the dynamic remodeling of the cell surface. Arf- and Rab-dependent exocytosis of specific vesicles contributes to the targeting of Rho GTPases and their regulatory factors to discrete sites of the plasma membrane. Rho GTPases regulate the tethering of exocytic vesicles and modulate their subsequent fusion. They also have crucial roles in the different forms of endocytosis, where they participate in the sorting of membrane domains as well as the sculpting and sealing of membrane flasks and cups. Here, we discuss how cell surface dynamics depend on the orchestration of the cytoskeleton and the plasma membrane by Rho GTPases.
Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmo, Lívia A.S.; Dias, Felipe F.; Malta, Kássia K.
Background: SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood. Methods: Flow cytometry and a pre-embedding immunonanogold electron microscopy (EM) technique that combines optimal epitope preservation and secondary Fab-fragments of antibodies linked to 1.4 nm gold particles for optimal access to microdomains, were used to investigate STX17. Results: STX17more » was detected within unstimulated eosinophils. Immunogold EM revealed STX17 on secretory granules and on granule-derived vesiculotubular transport carriers (Eosinophil Sombrero Vesicles-EoSVs). Quantitative EM analyses showed that 77.7% of the granules were positive for STX17 with a mean±SEM of 3.9±0.2 gold particles/granule. Labeling was present on both granule outer membranes and matrices while EoSVs showed clear membrane-associated labeling. STX17 was also present in secretory granules in eosinophils stimulated with the cytokine tumor necrosis factor alpha (TNF-α) or the CC-chemokine ligand 11 CCL11 (eotaxin-1), stimuli that induce eosinophil degranulation. The number of secretory granules labeled for STX17 was significantly higher in CCL11 compared with the unstimulated group. The level of cell labeling did not change when unstimulated cells were compared with TNF-α-stimulated eosinophils. Conclusions: The present study clearly shows by immunanonogold EM that STX17 is localized in eosinophil secretory granules and transport vesicles and might be involved in the transport of granule-derived cargos. - Highlights: • First demonstration of the Qa-SNARE syntaxin-17 (STX17) in human eosinophils. • High resolution immunogold EM shows STX17 in granules and tubular vesicles. • Unstimulated, TNF-α or CCL11-stimulated eosinophils express STX17. • Our findings suggest a role for STX17 in the transport of granule-derived cargos.« less
Park, Soonhong; Ahuja, Malini; Kim, Min Seuk; Brailoiu, G Cristina; Jha, Archana; Zeng, Mei; Baydyuk, Maryna; Wu, Ling-Gang; Wassif, Christopher A; Porter, Forbes D; Zerfas, Patricia M; Eckhaus, Michael A; Brailoiu, Eugen; Shin, Dong Min; Muallem, Shmuel
2016-02-01
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV. © 2015 The Authors.
Sphingosine Kinase 1 Cooperates with Autophagy to Maintain Endocytic Membrane Trafficking.
Young, Megan M; Takahashi, Yoshinori; Fox, Todd E; Yun, Jong K; Kester, Mark; Wang, Hong-Gang
2016-11-01
Sphingosine kinase 1 (Sphk1) associates with early endocytic membranes during endocytosis; however, the role of sphingosine or sphingosine-1-phosphate as the critical metabolite in endocytic trafficking has not been established. Here, we demonstrate that the recruitment of Sphk1 to sphingosine-enriched endocytic vesicles and the generation of sphingosine-1-phosphate facilitate membrane trafficking along the endosomal pathway. Exogenous sphingosine and sphingosine-based Sphk1 inhibitors induce the Sphk1-dependent fusion of endosomal membranes to accumulate enlarged late endosomes and amphisomes enriched in sphingolipids. Interestingly, Sphk1 also appears to facilitate endosomal fusion independent of its catalytic activity, given that catalytically inactive Sphk1 G82D is recruited to endocytic membranes by sphingosine or sphingosine-based Sphk1 inhibitor and promotes membrane fusion. Furthermore, we reveal that the clearance of enlarged endosomes is dependent on the activity of ceramide synthase, lysosomal biogenesis, and the restoration of autophagic flux. Collectively, these studies uncover intersecting roles for Sphk1, sphingosine, and autophagic machinery in endocytic membrane trafficking. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion
Gui, Long; Ebner, Jamie L.; Mileant, Alexander; Williams, James A.
2016-01-01
ABSTRACT Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While structures of a subset of conformations and parts of the fusion machinery have been characterized, the nature and sequence of membrane deformations during fusion have largely eluded characterization. Building upon studies that focused on early stages of HA-mediated membrane remodeling, here cryo-electron tomography (cryo-ET) was used to image the three-dimensional organization of intact influenza virions at different stages of fusion with liposomes, leading all the way to completion of the fusion reaction. By monitoring the evolution of fusion intermediate populations over the course of acid-induced fusion, we identified the progression of membrane reorganization that leads to efficient fusion by an enveloped virus. PMID:27226364
GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in
Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of thismore » domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm interacts with NP via its N-terminal unfolded region and the NSm–NP complex could in turn interact with the ER membrane via the C-terminal coiled coil domain of NSm to form vesicles that are targeted to PD and there by assist the cell to cell movement of the viral genome complex. - Highlights: • GBNV NSm localizes to plasmodesmata via the C-terminal coiled coil domain. • GBNV NSm interacts with endoplasmic reticulum network and remodels it to vesicles. • The C-terminal coiled domain alone is responsible for vesicle formation. • The N-terminal unfolded region of NSm is involved in the re-localization of NP to PD.« less
Wang, Zheng; Miao, Guangyan; Xue, Xue; Guo, Xiangyang; Yuan, Chongzhen; Wang, Zhaoyu; Zhang, Gangming; Chen, Yingyu; Feng, Du; Hu, Junjie; Zhang, Hong
2016-09-01
Mutations in the human autophagy gene EPG5 cause the multisystem disorder Vici syndrome. Here we demonstrated that EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. EPG5 is recruited to late endosomes/lysosomes by direct interaction with Rab7 and the late endosomal/lysosomal R-SNARE VAMP7/8. EPG5 also binds to LC3/LGG-1 (mammalian and C. elegans Atg8 homolog, respectively) and to assembled STX17-SNAP29 Qabc SNARE complexes on autophagosomes. EPG5 stabilizes and facilitates the assembly of STX17-SNAP29-VAMP7/8 trans-SNARE complexes, and promotes STX17-SNAP29-VAMP7-mediated fusion of reconstituted proteoliposomes. Loss of EPG5 activity causes abnormal fusion of autophagosomes with various endocytic vesicles, in part due to elevated assembly of STX17-SNAP25-VAMP8 complexes. SNAP25 knockdown partially suppresses the autophagy defect caused by EPG5 depletion. Our study reveals that EPG5 is a Rab7 effector involved in autophagosome maturation, providing insight into the molecular mechanism underlying Vici syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.
Albanesi, Joseph; Wang, Hanzhi; Sun, Hui-Qiao; Levine, Beth; Yin, Helen
2015-11-02
For decades, phosphatidylinositol 4-phosphate (PtdIns4P) was considered primarily as a precursor in the synthesis of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P 2 ). More recently, specific functions for PtdIns4P itself have been identified, particularly in the regulation of intracellular membrane trafficking. PI4K2A/PI4KIIα (phosphatidylinositol 4-kinase type 2 α), one of the 4 enzymes that catalyze PtdIns4P production in mammalian cells, promotes vesicle formation from the trans-Golgi network (TGN) and endosomes. We recently identified a novel function for PI4K2A-derived PtdIns4P, as a facilitator of autophagosome-lysosome (A-L) fusion. We further showed that that this function requires the presence of the autophagic adaptor protein GABARAP (GABA[A] receptor-associated protein), which binds to PI4K2A and recruits it to autophagosomes. The mechanism whereby GABARAP-PI4K2A-PtdIns4P promotes A-L fusion remains to be defined. Based on other examples of phosphoinositide involvement in membrane trafficking, we speculate that it acts by recruiting elements of the membrane docking and fusion machinery.
The complex nature of calcium cation interactions with phospholipid bilayers
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-01-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555
A recursive vesicle-based model protocell with a primitive model cell cycle
Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi
2015-01-01
Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution. PMID:26418735
Compromised fidelity of endocytic synaptic vesicle protein sorting in the absence of stonin 2
Kononenko, Natalia L.; Diril, M. Kasim; Puchkov, Dmytro; Kintscher, Michael; Koo, Seong Joo; Pfuhl, Gerit; Winter, York; Wienisch, Martin; Klingauf, Jürgen; Breustedt, Jörg; Schmitz, Dietmar; Maritzen, Tanja; Haucke, Volker
2013-01-01
Neurotransmission depends on the exocytic fusion of synaptic vesicles (SVs) and their subsequent reformation either by clathrin-mediated endocytosis or budding from bulk endosomes. How synapses are able to rapidly recycle SVs to maintain SV pool size, yet preserve their compositional identity, is poorly understood. We demonstrate that deletion of the endocytic adaptor stonin 2 (Stn2) in mice compromises the fidelity of SV protein sorting, whereas the apparent speed of SV retrieval is increased. Loss of Stn2 leads to selective missorting of synaptotagmin 1 to the neuronal surface, an elevated SV pool size, and accelerated SV protein endocytosis. The latter phenotype is mimicked by overexpression of endocytosis-defective variants of synaptotagmin 1. Increased speed of SV protein retrieval in the absence of Stn2 correlates with an up-regulation of SV reformation from bulk endosomes. Our results are consistent with a model whereby Stn2 is required to preserve SV protein composition but is dispensable for maintaining the speed of SV recycling. PMID:23345427
Soykan, Tolga; Kaempf, Natalie; Sakaba, Takeshi; Vollweiter, Dennis; Goerdeler, Felix; Puchkov, Dmytro; Kononenko, Natalia L; Haucke, Volker
2017-02-22
Neurotransmission is based on the exocytic fusion of synaptic vesicles (SVs) followed by endocytic membrane retrieval and the reformation of SVs. Recent data suggest that at physiological temperature SVs are internalized via clathrin-independent ultrafast endocytosis (UFE) within hundreds of milliseconds, while other studies have postulated a key role for clathrin-mediated endocytosis (CME) of SV proteins on a timescale of seconds to tens of seconds. Here we demonstrate using cultured hippocampal neurons as a model that at physiological temperature SV endocytosis occurs on several timescales from less than a second to several seconds, yet, is largely independent of clathrin. Clathrin-independent endocytosis (CIE) of SV membranes is mediated by actin-nucleating formins such as mDia1, which are required for the formation of presynaptic endosome-like vacuoles from which SVs reform. Our results resolve previous discrepancies in the field and suggest that SV membranes are predominantly retrieved via CIE mediated by formin-dependent actin assembly. Copyright © 2017 Elsevier Inc. All rights reserved.
Fast, Temperature-Sensitive and Clathrin-Independent Endocytosis at Central Synapses.
Delvendahl, Igor; Vyleta, Nicholas P; von Gersdorff, Henrique; Hallermann, Stefan
2016-05-04
The fusion of neurotransmitter-filled vesicles during synaptic transmission is balanced by endocytotic membrane retrieval. Despite extensive research, the speed and mechanisms of synaptic vesicle endocytosis have remained controversial. Here, we establish low-noise time-resolved membrane capacitance measurements that allow monitoring changes in surface membrane area elicited by single action potentials and stronger stimuli with high-temporal resolution at physiological temperature in individual bona-fide mature central synapses. We show that single action potentials trigger very rapid endocytosis, retrieving presynaptic membrane with a time constant of 470 ms. This fast endocytosis is independent of clathrin but mediated by dynamin and actin. In contrast, stronger stimuli evoke a slower mode of endocytosis that is clathrin, dynamin, and actin dependent. Furthermore, the speed of endocytosis is highly temperature dependent with a Q10 of ∼3.5. These results demonstrate that distinct molecular modes of endocytosis with markedly different kinetics operate at central synapses. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnsson, Anna-Karin; Karlsson, Roger, E-mail: roger.karlsson@wgi.su.se
2012-01-15
Here we demonstrate that a dramatic actin polymerizing activity caused by ectopic expression of the synaptic vesicle protein synaptotagmin 1 that results in extensive filopodia formation is due to the presence of a lysine rich sequence motif immediately at the cytoplasmic side of the transmembrane domain of the protein. This polybasic sequence interacts with anionic phospholipids in vitro, and, consequently, the actin remodeling caused by this sequence is interfered with by expression of a phosphatidyl inositol (4,5)-bisphosphate (PIP2)-targeted phosphatase, suggesting that it intervenes with the function of PIP2-binding actin control proteins. The activity drastically alters the behavior of a rangemore » of cultured cells including the neuroblastoma cell line SH-SY5Y and primary cortical mouse neurons, and, since the sequence is conserved also in synaptotagmin 2, it may reflect an important fine-tuning role for these two proteins during synaptic vesicle fusion and neurotransmitter release.« less
Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy.
Huang, Xiaoshuai; Fan, Junchao; Li, Liuju; Liu, Haosen; Wu, Runlong; Wu, Yi; Wei, Lisi; Mao, Heng; Lal, Amit; Xi, Peng; Tang, Liqiang; Zhang, Yunfeng; Liu, Yanmei; Tan, Shan; Chen, Liangyi
2018-06-01
To increase the temporal resolution and maximal imaging time of super-resolution (SR) microscopy, we have developed a deconvolution algorithm for structured illumination microscopy based on Hessian matrixes (Hessian-SIM). It uses the continuity of biological structures in multiple dimensions as a priori knowledge to guide image reconstruction and attains artifact-minimized SR images with less than 10% of the photon dose used by conventional SIM while substantially outperforming current algorithms at low signal intensities. Hessian-SIM enables rapid imaging of moving vesicles or loops in the endoplasmic reticulum without motion artifacts and with a spatiotemporal resolution of 88 nm and 188 Hz. Its high sensitivity allows the use of sub-millisecond excitation pulses followed by dark recovery times to reduce photobleaching of fluorescent proteins, enabling hour-long time-lapse SR imaging of actin filaments in live cells. Finally, we observed the structural dynamics of mitochondrial cristae and structures that, to our knowledge, have not been observed previously, such as enlarged fusion pores during vesicle exocytosis.
The complex nature of calcium cation interactions with phospholipid bilayers
NASA Astrophysics Data System (ADS)
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-12-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.
Global Analysis of Yeast Endosomal Transport Identifies the Vps55/68 Sorting Complex
Schluter, Cayetana; Lam, Karen K.Y.; Brumm, Jochen; Wu, Bella W.; Saunders, Matthew; Stevens, Tom H.
2008-01-01
Endosomal transport is critical for cellular processes ranging from receptor down-regulation and retroviral budding to the immune response. A full understanding of endosome sorting requires a comprehensive picture of the multiprotein complexes that orchestrate vesicle formation and fusion. Here, we use unsupervised, large-scale phenotypic analysis and a novel computational approach for the global identification of endosomal transport factors. This technique effectively identifies components of known and novel protein assemblies. We report the characterization of a previously undescribed endosome sorting complex that contains two well-conserved proteins with four predicted membrane-spanning domains. Vps55p and Vps68p form a complex that acts with or downstream of ESCRT function to regulate endosomal trafficking. Loss of Vps68p disrupts recycling to the TGN as well as onward trafficking to the vacuole without preventing the formation of lumenal vesicles within the MVB. Our results suggest the Vps55/68 complex mediates a novel, conserved step in the endosomal maturation process. PMID:18216282
Boassa, Daniela; Nguyen, Phuong; Hu, Junru; Ellisman, Mark H; Sosinsky, Gina E
2014-01-01
Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.
Quantification of mixing in vesicle suspensions using numerical simulations in two dimensions.
Kabacaoğlu, G; Quaife, B; Biros, G
2017-02-01
We study mixing in Stokesian vesicle suspensions in two dimensions on a cylindrical Couette apparatus using numerical simulations. The vesicle flow simulation is done using a boundary integral method, and the advection-diffusion equation for the mixing of the solute is solved using a pseudo-spectral scheme. We study the effect of the area fraction, the viscosity contrast between the inside (the vesicles) and the outside (the bulk) fluid, the initial condition of the solute, and the mixing metric. We compare mixing in the suspension with mixing in the Couette apparatus without vesicles. On the one hand, the presence of vesicles in most cases slightly suppresses mixing. This is because the solute can be only diffused across the vesicle interface and not advected. On the other hand, there exist spatial distributions of the solute for which the unperturbed Couette flow completely fails to mix whereas the presence of vesicles enables mixing. We derive a simple condition that relates the velocity and solute and can be used to characterize the cases in which the presence of vesicles promotes mixing.
Quantification of mixing in vesicle suspensions using numerical simulations in two dimensions
Quaife, B.; Biros, G.
2017-01-01
We study mixing in Stokesian vesicle suspensions in two dimensions on a cylindrical Couette apparatus using numerical simulations. The vesicle flow simulation is done using a boundary integral method, and the advection-diffusion equation for the mixing of the solute is solved using a pseudo-spectral scheme. We study the effect of the area fraction, the viscosity contrast between the inside (the vesicles) and the outside (the bulk) fluid, the initial condition of the solute, and the mixing metric. We compare mixing in the suspension with mixing in the Couette apparatus without vesicles. On the one hand, the presence of vesicles in most cases slightly suppresses mixing. This is because the solute can be only diffused across the vesicle interface and not advected. On the other hand, there exist spatial distributions of the solute for which the unperturbed Couette flow completely fails to mix whereas the presence of vesicles enables mixing. We derive a simple condition that relates the velocity and solute and can be used to characterize the cases in which the presence of vesicles promotes mixing. PMID:28344432
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, A.S.W.; Kevan, L.
1983-09-07
The photoionization of N,N,N',N'-tetramethylbenzidine (TMB) in dihexadecylphosphate anionic vesicles and in dioctadecyldimethylammonium chloride cationic vesicles has been studied by optical absorption and electron spin resonance in liquid and frozen solutions. The TMB cation has been observed to be stabilized in both types of vesicles. The photoionization efficiency is about twofold greater in the cationic vesicles compared to the anionic vesicles. Shifts in the optical absorption maximum between micellar and vesicle solutions indicate that TMB is in a less polar environment in the vesicle systems. Electron spin echo modulation spectrometry has been used to detect TMB cation-water interactions that are foundmore » to be weaker than in previously studied micellar solutions. This is consistent with the optical absorption results and with an asymmetric solubilization site for TMB and TMB/sup +/ within the vesicular structure. A new absorption in the photoionized vesicles is assigned to a nonparamagnetic diamine-diimine charge-transfer complex between two TMB cations in the same vesicle. This complex is not formed in micellar systems. 5 figures.« less
Fate of the surface protein gp70 during entry of retrovirus into mouse fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, K.B.
1985-04-15
The kinetics of the viral surface protein gp70 and the viral core proteins p30 and p15C were followed during retrovirus entry into mouse fibroblasts. All three proteins were internalized, but whereas essentially all the gp70 was degraded, approximately one-third of the core proteins remained stable in the cells. These diverging routes of the different proteins are in agreement with the proposed route, that retrovirus enters the cells by endocytosis followed by a membrane fusion between the virus membrane and the vesicle membrane.
Annexins in plasma membrane repair.
Boye, Theresa Louise; Nylandsted, Jesper
2016-10-01
Disruption of the plasma membrane poses deadly threat to eukaryotic cells and survival requires a rapid membrane repair system. Recent evidence reveal various plasma membrane repair mechanisms, which are required for cells to cope with membrane lesions including membrane fusion and replacement strategies, remodeling of cortical actin cytoskeleton and vesicle wound patching. Members of the annexin protein family, which are Ca2+-triggered phospholipid-binding proteins emerge as important components of the plasma membrane repair system. Here, we discuss the mechanisms of plasma membrane repair involving annexins spanning from yeast to human cancer cells.
Molecular Mechanisms for the Coupling of Endocytosis to Exocytosis in Neurons
Xie, Zhenli; Long, Jiangang; Liu, Jiankang; Chai, Zuying; Kang, Xinjiang; Wang, Changhe
2017-01-01
Neuronal communication and brain function mainly depend on the fundamental biological events of neurotransmission, including the exocytosis of presynaptic vesicles (SVs) for neurotransmitter release and the subsequent endocytosis for SV retrieval. Neurotransmitters are released through the Ca2+- and SNARE-dependent fusion of SVs with the presynaptic plasma membrane. Following exocytosis, endocytosis occurs immediately to retrieve SV membrane and fusion machinery for local recycling and thus maintain the homeostasis of synaptic structure and sustained neurotransmission. Apart from the general endocytic machinery, recent studies have also revealed the involvement of SNARE proteins (synaptobrevin, SNAP25 and syntaxin), synaptophysin, Ca2+/calmodulin, and members of the synaptotagmin protein family (Syt1, Syt4, Syt7 and Syt11) in the balance and tight coupling of exo-endocytosis in neurons. Here, we provide an overview of recent progress in understanding how these neuron-specific adaptors coordinate to ensure precise and efficient endocytosis during neurotransmission. PMID:28348516
Yonezawa, Akihito; Cavrois, Marielle; Greene, Warner C.
2005-01-01
The Ebola filoviruses are aggressive pathogens that cause severe and often lethal hemorrhagic fever syndromes in humans and nonhuman primates. To date, no effective therapies have been identified. To analyze the entry and fusion properties of Ebola virus, we adapted a human immunodeficiency virus type 1 (HIV-1) virion-based fusion assay by substituting Ebola virus glycoprotein (GP) for the HIV-1 envelope. Fusion was detected by cleavage of the fluorogenic substrate CCF2 by β-lactamase-Vpr incorporated into virions and released as a result of virion fusion. Entry and fusion induced by the Ebola virus GP occurred with much slower kinetics than with vesicular stomatitis virus G protein (VSV-G) and were blocked by depletion of membrane cholesterol and by inhibition of vesicular acidification with bafilomycin A1. These properties confirmed earlier studies and validated the assay for exploring other properties of Ebola virus GP-mediated entry and fusion. Entry and fusion of Ebola virus GP pseudotypes, but not VSV-G or HIV-1 Env pseudotypes, were impaired in the presence of the microtubule-disrupting agent nocodazole but were enhanced in the presence of the microtubule-stabilizing agent paclitaxel (Taxol). Agents that impaired microfilament function, including cytochalasin B, cytochalasin D, latrunculin A, and jasplakinolide, also inhibited Ebola virus GP-mediated entry and fusion. Together, these findings suggest that both microtubules and microfilaments may play a role in the effective trafficking of vesicles containing Ebola virions from the cell surface to the appropriate acidified vesicular compartment where fusion occurs. In terms of Ebola virus GP-mediated entry and fusion to various target cells, primary macrophages proved highly sensitive, while monocytes from the same donors displayed greatly reduced levels of entry and fusion. We further observed that tumor necrosis factor alpha, which is released by Ebola virus-infected monocytes/macrophages, enhanced Ebola virus GP-mediated entry and fusion to human umbilical vein endothelial cells. Thus, Ebola virus infection of one target cell may induce biological changes that facilitate infection of secondary target cells that play a key role in filovirus pathogenesis. Finally, these studies indicate that pseudotyping in the HIV-1 virion-based fusion assay may be a valuable approach to the study of entry and fusion properties mediated through the envelopes of other viral pathogens. PMID:15613320
Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils.
Carmo, Lívia A S; Dias, Felipe F; Malta, Kássia K; Amaral, Kátia B; Shamri, Revital; Weller, Peter F; Melo, Rossana C N
2015-10-01
SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood. Flow cytometry and a pre-embedding immunonanogold electron microscopy (EM) technique that combines optimal epitope preservation and secondary Fab-fragments of antibodies linked to 1.4 nm gold particles for optimal access to microdomains, were used to investigate STX17. STX17 was detected within unstimulated eosinophils. Immunogold EM revealed STX17 on secretory granules and on granule-derived vesiculotubular transport carriers (Eosinophil Sombrero Vesicles-EoSVs). Quantitative EM analyses showed that 77.7% of the granules were positive for STX17 with a mean±SEM of 3.9±0.2 gold particles/granule. Labeling was present on both granule outer membranes and matrices while EoSVs showed clear membrane-associated labeling. STX17 was also present in secretory granules in eosinophils stimulated with the cytokine tumor necrosis factor alpha (TNF-α) or the CC-chemokine ligand 11 CCL11 (eotaxin-1), stimuli that induce eosinophil degranulation. The number of secretory granules labeled for STX17 was significantly higher in CCL11 compared with the unstimulated group. The level of cell labeling did not change when unstimulated cells were compared with TNF-α-stimulated eosinophils. The present study clearly shows by immunanonogold EM that STX17 is localized in eosinophil secretory granules and transport vesicles and might be involved in the transport of granule-derived cargos. Copyright © 2015 Elsevier Inc. All rights reserved.
2009-01-01
Background Subcellular trafficking is a hallmark of eukaryotic cells. Because of their pivotal role in the process, a great deal of attention has been paid to the SNARE proteins. Most R-SNAREs, or "longins", however, also possess a highly conserved, N-terminal fold. This "longin domain" is known to play multiple roles in regulating SNARE activity and targeting via interaction with other trafficking proteins. However, the diversity and complement of longins in eukaryotes is poorly understood. Results Our comparative genome survey identified a novel family of longin-related proteins, dubbed the "Phytolongins" because they are specific to land plants. Phytolongins share with longins the N-terminal longin domain and the C-terminal transmembrane domain; however, in the central region, the SNARE motif is replaced by a novel region. Phylogenetic analysis pinpoints the Phytolongins as a derivative of the plant specific VAMP72 longin sub-family and allows elucidation of Phytolongin evolution. Conclusion "Longins" have been defined as R-SNAREs composed of both a longin domain and a SNARE motif. However, expressed gene isoforms and splice variants of longins are examples of non-SNARE motif containing longins. The discovery of Phytolongins, a family of non-SNARE longin domain proteins, together with recent evidence on the conservation of the longin-like fold in proteins involved in both vesicle fusion (e.g. the Trs20 tether) and vesicle formation (e.g. σ and μ adaptin) highlight the importance of the longin-like domain in protein trafficking and suggest that it was one of the primordial building blocks of the eukaryotic membrane-trafficking machinery. PMID:19889231
The C. elegans rab family: identification, classification and toolkit construction.
Gallegos, Maria E; Balakrishnan, Sanjeev; Chandramouli, Priya; Arora, Shaily; Azameera, Aruna; Babushekar, Anitha; Bargoma, Emilee; Bokhari, Abdulmalik; Chava, Siva Kumari; Das, Pranti; Desai, Meetali; Decena, Darlene; Saramma, Sonia Dev Devadas; Dey, Bodhidipra; Doss, Anna-Louise; Gor, Nilang; Gudiputi, Lakshmi; Guo, Chunyuan; Hande, Sonali; Jensen, Megan; Jones, Samantha; Jones, Norman; Jorgens, Danielle; Karamchedu, Padma; Kamrani, Kambiz; Kolora, Lakshmi Divya; Kristensen, Line; Kwan, Kelly; Lau, Henry; Maharaj, Pranesh; Mander, Navneet; Mangipudi, Kalyani; Menakuru, Himabindu; Mody, Vaishali; Mohanty, Sandeepa; Mukkamala, Sridevi; Mundra, Sheena A; Nagaraju, Sudharani; Narayanaswamy, Rajhalutshimi; Ndungu-Case, Catherine; Noorbakhsh, Mersedeh; Patel, Jigna; Patel, Puja; Pendem, Swetha Vandana; Ponakala, Anusha; Rath, Madhusikta; Robles, Michael C; Rokkam, Deepti; Roth, Caroline; Sasidharan, Preeti; Shah, Sapana; Tandon, Shweta; Suprai, Jagdip; Truong, Tina Quynh Nhu; Uthayaruban, Rubatharshini; Varma, Ajitha; Ved, Urvi; Wang, Zeran; Yu, Zhe
2012-01-01
Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).
The C. elegans Rab Family: Identification, Classification and Toolkit Construction
Gallegos, Maria E.; Balakrishnan, Sanjeev; Chandramouli, Priya
2012-01-01
Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB). PMID:23185324
Glavinovíc, M I
1999-02-01
The release of vesicular glutamate, spatiotemporal changes in glutamate concentration in the synaptic cleft and the subsequent generation of fast excitatory postsynaptic currents at a hippocampal synapse were modeled using the Monte Carlo method. It is assumed that glutamate is released from a spherical vesicle through a cylindrical fusion pore into the synaptic cleft and that S-alpha-amino-3-hydroxy -5-methyl-4-isoxazolepropionic acid (AMPA) receptors are uniformly distributed postsynaptically. The time course of change in vesicular concentration can be described by a single exponential, but a slow tail is also observed though only following the release of most of the glutamate. The time constant of decay increases with vesicular size and a lower diffusion constant, and is independent of the initial concentration, becoming markedly shorter for wider fusion pores. The cleft concentration at the fusion pore mouth is not negligible compared to vesicular concentration, especially for wider fusion pores. Lateral equilibration of glutamate is rapid, and within approximately 50 micros all AMPA receptors on average see the same concentration of glutamate. Nevertheless the single-channel current and the number of channels estimated from mean-variance plots are unreliable and different when estimated from rise- and decay-current segments. Greater saturation of AMPA receptor channels provides higher but not more accurate estimates. Two factors contribute to the variability of postsynaptic currents and render the mean-variance nonstationary analysis unreliable, even when all receptors see on average the same glutamate concentration. Firstly, the variability of the instantaneous cleft concentration of glutamate, unlike the mean concentration, first rapidly decreases before slowly increasing; the variability is greater for fewer molecules in the cleft and is spatially nonuniform. Secondly, the efficacy with which glutamate produces a response changes with time. Understanding the factors that determine the time course of vesicular content release as well as the spatiotemporal changes of glutamate concentration in the cleft is crucial for understanding the mechanism that generates postsynaptic currents.
Dianat, Seyed Saeid; Carter, H Ballentine; Schaeffer, Edward M; Hamper, Ulrik M; Epstein, Jonathan I; Macura, Katarzyna J
2015-10-01
Purpose of this pilot study was to correlate quantitative parameters derived from the multiparametric magnetic resonance imaging (MP-MRI) of the prostate with results from MRI guided transrectal ultrasound (MRI/TRUS) fusion prostate biopsy in men with suspected prostate cancer. Thirty-nine consecutive patients who had 3.0T MP-MRI and subsequent MRI/TRUS fusion prostate biopsy were included and 73 MRI-identified targets were sampled by 177 cores. The pre-biopsy MP-MRI consisted of T2-weighted, diffusion weighted (DWI), and dynamic contrast enhanced (DCE) images. The association of quantitative MRI measurements with biopsy histopathology findings was assessed by Mann-Whitney U- test and Kruskal-Wallis test. Of 73 targets, biopsy showed benign prostate tissue in 46 (63%), cancer in 23 (31.5%), and atypia/high grade prostatic intraepithelial neoplasia in four (5.5%) targets. The median volume of cancer-positive targets was 1.3 cm3. The cancer-positive targets were located in the peripheral zone (56.5%), transition zone (39.1%), and seminal vesicle (4.3%). Nine of 23 (39.1%) cancer-positive targets were higher grade cancer (Gleason grade > 6). Higher grade targets and cancer-positive targets compared to benign lesions exhibited lower mean apparent diffusion coefficient (ADC) value (952.7 < 1167.9 < 1278.9), and lower minimal extracellular volume fraction (ECF) (0.13 < 0.185 < 0.213), respectively. The difference in parameters was more pronounced between higher grade cancer and benign lesions. Our findings from a pilot study indicate that quantitative MRI parameters can predict malignant histology on MRI/TRUS fusion prostate biopsy, which is a valuable technique to ensure adequate sampling of MRI-visible suspicious lesions under TRUS guidance and may impact patient management. The DWI-based quantitative measurement exhibits a stronger association with biopsy findings than the other MRI parameters.
Riquelme, Meritxell; Aguirre, Jesús; Bartnicki-García, Salomon; Braus, Gerhard H; Feldbrügge, Michael; Fleig, Ursula; Hansberg, Wilhelm; Herrera-Estrella, Alfredo; Kämper, Jörg; Kück, Ulrich; Mouriño-Pérez, Rosa R; Takeshita, Norio; Fischer, Reinhard
2018-06-01
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established. Copyright © 2018 American Society for Microbiology.
Zhang, Ben; Karnik, Rucha; Wang, Yizhou; Wallmeroth, Niklas; Blatt, Michael R; Grefen, Christopher
2015-06-01
SNARE (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) proteins drive vesicle traffic, delivering membrane and cargo to target sites within the cell and at its surface. They contribute to cell homeostasis, morphogenesis, and pathogen defense. A subset of SNAREs, including the Arabidopsis thaliana SNARE SYP121, are known also to coordinate solute uptake via physical interactions with K(+) channels and to moderate their gating at the plasma membrane. Here, we identify a second subset of SNAREs that interact to control these K(+) channels, but with opposing actions on gating. We show that VAMPs (vesicle-associated membrane proteins), which target vesicles to the plasma membrane, also interact with and suppress the activities of the inward-rectifying K(+) channels KAT1 and KC1. Interactions were evident in yeast split-ubiquitin assays, they were recovered in vivo by ratiometric bimolecular fluorescence complementation, and they were sensitive to mutation of a single residue, Tyr-57, within the longin domain of VAMP721. Interaction was also recovered on exchange of the residue at this site in the homolog VAMP723, which normally localizes to the endoplasmic reticulum and otherwise did not interact. Functional analysis showed reduced channel activity and alterations in voltage sensitivity that are best explained by a physical interaction with the channel gates. These actions complement those of SYP121, a cognate SNARE partner of VAMP721, and lead us to propose that the channel interactions reflect a "hand-off" in channel control between the two SNARE proteins that is woven together with vesicle fusion. © 2015 American Society of Plant Biologists. All rights reserved.
De Craene, Johan-Owen; Courte, Fanny; Rinaldi, Bruno; Fitterer, Chantal; Herranz, Mari Carmen; Schmitt-Keichinger, Corinne; Ritzenthaler, Christophe; Friant, Sylvie
2014-01-01
The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor) Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.
Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta
2011-11-18
Highlights: Black-Right-Pointing-Pointer Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. Black-Right-Pointing-Pointer Dysferlin interacts with key signaling proteins for transcytosis in EC. Black-Right-Pointing-Pointer Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, suchmore » as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.« less
Rab proteins: The key regulators of intracellular vesicle transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuin, Tanmay; Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in
2014-10-15
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied bymore » cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.« less
ELKS active zone proteins as multitasking scaffolds for secretion
Held, Richard G.
2018-01-01
Synaptic vesicle exocytosis relies on the tethering of release ready vesicles close to voltage-gated Ca2+ channels and specific lipids at the future site of fusion. This enables rapid and efficient neurotransmitter secretion during presynaptic depolarization by an action potential. Extensive research has revealed that this tethering is mediated by an active zone, a protein dense structure that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Although roles of individual active zone proteins in exocytosis are in part understood, the molecular mechanisms that hold the protein scaffold at the active zone together and link it to the presynaptic plasma membrane have remained unknown. This is largely due to redundancy within and across scaffolding protein families at the active zone. Recent studies, however, have uncovered that ELKS proteins, also called ERC, Rab6IP2 or CAST, act as active zone scaffolds redundant with RIMs. This redundancy has led to diverse synaptic phenotypes in studies of ELKS knockout mice, perhaps because different synapses rely to a variable extent on scaffolding redundancy. In this review, we first evaluate the need for presynaptic scaffolding, and we then discuss how the diverse synaptic and non-synaptic functional roles of ELKS support the hypothesis that ELKS provides molecular scaffolding for organizing vesicle traffic at the presynaptic active zone and in other cellular compartments. PMID:29491150
The zebrafish mutant vps18 as a model for vesicle-traffic related hypopigmentation diseases.
Maldonado, Ernesto; Hernandez, Fabiola; Lozano, Carlos; Castro, Marta E; Navarro, Rosa E
2006-08-01
Hypopigmentation is a characteristic of several diseases associated with vesicle traffic defects, like the Hermansky-Pudlak, Chediak-Higashi, and Griscelli syndromes. Hypopigmentation is also a characteristic of the zebrafish mutant vps18(hi2499A), which is affected in the gene vps18, a component of the homotypic fusion and protein sorting complex that is involved in tethering during vesicular traffic. Vps18, as part of this complex, participates in the formation of early endosomes, late endosomes, and lysosomes. Here, we show that Vps18 is also involved in the formation of melanosomes. In the zebrafish mutant vps18(hi2499A) the retroviral insertion located at exon 4 of vps18, leads to the formation of two abnormal splicing variants lacking the coding sequence for the clathrin repeat and the RING finger conserved domains. A deficiency of Vps18 in zebrafish larvae results in hepatomegaly and skin hypopigmentation. We also observed a drastic reduction in the number of melanosomes in the eye's retinal pigmented epithelium along with the accumulation of immature melanosomes. A significant reduction in the vps18(hi2499A) larvae visual system capacity was found using the optokinetic response assay. We propose that the insertional mutant vps18(hi2499A) can be used as a model for studying hypopigmentation diseases in which vesicle traffic problems exist.
An Arf-GAP promotes endocytosis and hyphal growth of Ashbya gossypii.
Oscarsson, Therese; Walther, Andrea; Lengeler, Klaus B; Wendland, Jürgen
2017-12-29
The ADP-ribosylation factor (ARF) family of GTPases are highly conserved from yeast to human and regulate vesicle budding. Sec7 domain containing proteins stimulate the guanine nucleotide exchange on Arf proteins, while ARF-GTPase activating proteins stimulate the hydrolysis of GTP. Since vesicle trafficking is important for hyphal growth, we studied the Ashbya gossypii homolog of Saccharomyces cerevisiae ARF3 along with its putative GEF and GTPase-activating protein (GAP) encoded by YEL1 and GTS1, respectively. Deletion of YEL1 had no discernible phenotype and deletion of ARF3 had only a minor defect in vacuolar fusion. In contrast, deletion of GTS1 severely impaired hyphal growth, and mutants showed defects in the maintenance of polarity and the localization of cortical actin patches. The uptake of the lipophilic dye FM4-64 was delayed in gts1 hyphae, indicating a defect in endocytosis. Gts1 has several protein domains, of which the Arf-GAP domain is required for complementation of the gts1 mutant phenotype. GFP-tagged GTS1 under control of its endogenous promoter localized to the plasma membrane but was enriched at hyphal tips and septal sites corresponding to a role in polarized vesicle trafficking. Our results indicate that this ARF-GTPase module plays an important role for filamentous hyphal growth. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Imaging Large Cohorts of Single Ion Channels and Their Activity
Hiersemenzel, Katia; Brown, Euan R.; Duncan, Rory R.
2013-01-01
As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the subtypes of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nano-scale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein–protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviors, interactions, and conductance activities of many thousands of channel molecules and vesicles in living cells. PMID:24027557
Loss of the Na+/H+ exchanger NHE8 causes male infertility in mice by disrupting acrosome formation.
Oberheide, Karina; Puchkov, Dmytro; Jentsch, Thomas J
2017-06-30
Mammalian sperm feature a specialized secretory organelle on the anterior part of the sperm nucleus, the acrosome, which is essential for male fertility. It is formed by a fusion of Golgi-derived vesicles. We show here that the predominantly Golgi-resident Na + /H + exchanger NHE8 localizes to the developing acrosome of spermatids. Similar to wild-type mice, Nhe8 -/- mice generated Golgi-derived vesicles positive for acrosomal markers and attached to nuclei, but these vesicles failed to form large acrosomal granules and the acrosomal cap. Spermatozoa from Nhe8 -/- mice completely lacked acrosomes, were round-headed, exhibited abnormal mitochondrial distribution, and displayed decreased motility, resulting in selective male infertility. Of note, similar features are also found in globozoospermia, one of the causes of male infertility in humans. Germ cell-specific, but not Sertoli cell-specific Nhe8 disruption recapitulated the globozoospermia phenotype, demonstrating that NHE8's role in spermiogenesis is germ cell-intrinsic. Our work has uncovered a crucial role of NHE8 in acrosome biogenesis and suggests that some forms of human globozoospermia might be caused by a loss of function of this Na + /H + exchanger. It points to NHE8 as a candidate gene for human globozoospermia and a possible drug target for male contraception. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Salomone, Fabrizio; Cardarelli, Francesco; Di Luca, Mariagrazia; Boccardi, Claudia; Nifosì, Riccardo; Bardi, Giuseppe; Di Bari, Lorenzo; Serresi, Michela; Beltram, Fabio
2012-11-10
Efficient endocytosis into a wide range of target cells and low toxicity make the arginine-rich Tat peptide (Tat(11): YGRKKRRQRRR, residues 47-57 of HIV-1 Tat protein) an excellent transporter for delivery purposes. Unfortunately, molecules taken up by endocytosis undergo endosomal entrapment and possible metabolic degradation. Escape from the endosome is therefore actively researched. In this context, antimicrobial peptides (AMPs) provide viable templates for the design of new membrane-disruptive motifs. In particular the Cecropin-A and Melittin hybrids (CMs) are among the smallest and most effective peptides with membrane-perturbing abilities. Here we present a novel chimeric peptide in which the Tat(11) motif is fused to the CM(18) hybrid (KWKLFKKIGAVLKVLTTG, residues 1-7 of Cecropin-A and 2-12 of Melittin). When administered to cells, CM(18)-Tat(11) combines the two desired functionalities: efficient uptake and destabilization of endocytotic-vesicle membranes. We show that this chimeric peptide effectively increases cargo-molecule cytoplasm availability and allows the subsequent intracellular localization of diverse membrane-impermeable molecules (i.e. Tat(11)-EGFP fusion protein, calcein, dextrans, and plasmidic DNA) with no detectable cytotoxicity. The present results open the way to the rational engineering of "modular" cell-penetrating peptides (CPPs) that combine (i) efficient translocation from the extracellular milieu into vesicles and (ii) efficient release of molecules from vesicles into the cytoplasm. Copyright © 2012 Elsevier B.V. All rights reserved.
Verma, Preeti; Prajapati, Sunil K; Yadav, Rajbharan; Senyschyn, Danielle; Shea, Peter R; Trevaskis, Natalie L
2016-11-07
Vesicular and colloidal delivery systems can be designed to control drug release spatially and temporally to improve drug efficacy and side effect profiles. Niosomes (vesicles prepared from nonionic surfactants in aqueous media) are gaining interest as an alternative vesicular delivery system as they offer advantages such as biocompatibility, chemical stability, low cost, high purity, and versatility. However, the physical stability of niosomes, like other vesicular systems, is limited by vesicle fusion, aggregation, and leakage. Proniosomes (dehydrated powder or gel formulations that spontaneously form niosomes on hydration with aqueous media) can overcome these physical stability problems and are more convenient for sterilization, storage, transport, distribution, and dosing. Proniosomes have mostly been explored for their potential to enhance transdermal and oral absorption. In this study we assess, for the first time, the potential for hydrated proniosomes to sustain systemic exposure and therapeutic effect after intravenous delivery. Proniosomes carrying the anti-inflammatory drug, flurbiprofen, were prepared by spraying different nonionic surfactants (span 20, span 40, and span 60 in varying ratios with span 80) and cholesterol onto a sorbitol carrier. The proniosome powders were characterized for surface morphology and flow properties. Niosome formation was assessed at three different hydration temperatures (25, 37, and 45 °C), and the niosomes were assessed for vesicle size, entrapment efficiency, and sterility. OLP proniosomes prepared with a high ratio of span 80 to span 20 were found to spontaneously form vesicles of small size and high drug loading on hydration with aqueous media. The OLP derived niosomes successfully sustained in vitro drug release, in vivo pharmacokinetics, and the anti-inflammatory effect of flurbiprofen in an acute (rat paw edema) model of inflammation when compared to a control solution formulation. The study demonstrates that hydrated proniosomes can prolong systemic drug exposure over 3 days and provide a sustained therapeutic effect. The developed proniosomes represent a novel approach to treat acute pain and inflammation with the potential to be administered as a single intravenous dose by a clinician at the time of injury or surgery that provides adequate relief for several days and reduces fluctuations in therapy. Similar systems loaded with different drugs have potential for broader application in anesthesia, anti-infective, antiemetic, and cancer therapy.
Kolesinska, Beata; Eyer, Klaus; Robinson, Tom; Dittrich, Petra S; Beck, Albert K; Seebach, Dieter; Walde, Peter
2015-05-01
Many years ago, β(2) /β(3) -peptides, consisting of alternatively arranged β(2) - and β(3) h-amino-acid residues, have been found to undergo folding to a unique type of helix, the 10/12-helix, and to exhibit non-polar, lipophilic properties (Helv. Chim. Acta 1997, 80, 2033). We have now synthesized such 'mixed' hexa-, nona-, dodeca-, and octadecapeptides, consisting of Val-Ala-Leu triads, with N-terminal fluorescein (FAM) labels, i.e., 1-4, and studied their interactions with POPC (=1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) giant unilamellar vesicles (GUVs) and with human white blood cancer cells U937. The methods used were microfluidic technology, fluorescence correlation spectroscopy (FCS), a flow-cytometry assay, a membrane-toxicity assay with the dehydrogenase G6PDH as enzymatic reporter, and visual microscopy observations. All β(3) /β(2) -peptide derivatives penetrate the GUVs and/or the cells. As shown with the isomeric β(3) /β(2) -, β(3) -, and β(2) -nonamers, 2, 5, and 6, respectively, the derivatives 5 and 6 consisting exclusively of β(3) - or β(2) -amino-acid residues, respectively, interact neither with the vesicles nor with the cells. Depending on the method of investigation and on the pretreatment of the cells, the β(3) /β(2) -nonamer and/or the β(3) /β(2) -dodecamer derivative, 2 and/or 3, respectively, cause a surprising disintegration or lysis of the GUVs and cells, comparable with the action of tensides, viral fusion peptides, and host-defense antimicrobial peptides. Possible sources of the chain-length-dependent destructive potential of the β(3) /β(2) -nona- and β(3) /β(2) -dodecapeptide derivatives, and a possible relationship with the phosphate-to-phosphate and hydrocarbon thicknesses of GUVs, and eukaryotic cells are discussed. Further investigations with other types of GUVs and of eukaryotic or prokaryotic cells will be necessary to elucidate the mechanism(s) of interaction of 'mixed' β(3) /β(2) -peptides with membranes and to evaluate possible biomedical applications. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Ma, Yufan; Wang, Zhao; Zhao, Wen; Lu, Tingli; Wang, Rutao; Mei, Qibing; Chen, Tao
2013-01-01
Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG), 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS), 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion. Furthermore, the fluid liposomal encapsulated tobramycin was prepared, and the bactericidal effect occurred more quickly when bacteria were cultured with liposomal encapsulated tobramycin. The bactericidal potency of fluid liposomes is dramatically enhanced with respect to fusion ability when the fusogenic lipid, DOPE, is included. Regardless of changes in liposome composition, fluid liposomes-bacterium fusion is universally enhanced by calcium ions. The information obtained in this study will increase our understanding of fluid liposomal action mechanisms, and help in optimizing the new generation of fluid liposomal formulations for the treatment of pulmonary bacterial infections.
Ma, Yufan; Wang, Zhao; Zhao, Wen; Lu, Tingli; Wang, Rutao; Mei, Qibing; Chen, Tao
2013-01-01
Background Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG), 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS), 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion. Furthermore, the fluid liposomal encapsulated tobramycin was prepared, and the bactericidal effect occurred more quickly when bacteria were cultured with liposomal encapsulated tobramycin. Conclusion The bactericidal potency of fluid liposomes is dramatically enhanced with respect to fusion ability when the fusogenic lipid, DOPE, is included. Regardless of changes in liposome composition, fluid liposomes-bacterium fusion is universally enhanced by calcium ions. The information obtained in this study will increase our understanding of fluid liposomal action mechanisms, and help in optimizing the new generation of fluid liposomal formulations for the treatment of pulmonary bacterial infections. PMID:23847417
The motion of a train of vesicles in channel flow
NASA Astrophysics Data System (ADS)
Barakat, Joseph; Shaqfeh, Eric
2017-11-01
The inertialess motion of a train of lipid-bilayer vesicles flowing through a channel is simulated using a 3D boundary integral equation method. Steady-state results are reported for vesicles positioned concentrically inside cylindrical channels of circular, square, and rectangular cross sections. The vesicle translational velocity U and excess channel pressure drop Δp+ depend strongly on the ratio of the vesicle radius to the hydraulic radius λ and the vesicle reduced volume υ. ``Deflated vesicles'' of lower reduced volume υ are more streamlined and translate with greater velocity U relative to the mean flow velocity V. Increasing the vesicle size (λ) increases the wall friction force and extra pressure drop Δp+, which in turn reduces the vesicle velocity U. Hydrodynamic interactions between vesicles in a periodic train are largely screened by the channel walls, in accordance with previous results for spheres and drops. The hydraulic resistance is compared across different cross sections, and a simple correction factor is proposed to unify the results. Nonlinear effects are observed when β - the ratio of membrane bending elasticity to viscous traction - is changed. The simulation results show excellent agreement with available experimental measurements as well as a previously reported ``small-gap theory'' valid for large values of λ. NSF CBET 1066263/1066334.
Single-step isolation of extracellular vesicles by size-exclusion chromatography
Böing, Anita N.; van der Pol, Edwin; Grootemaat, Anita E.; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk
2014-01-01
Background Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively. Aim To develop a single-step protocol to isolate vesicles from human body fluids. Methods Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3). Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL) and protein were measured in each fraction. Results Fractions 9–12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively), but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively). HDL was present mainly in fractions 18–20 (32%±2 of total), and protein in fractions 19–21 (36%±2 of total). Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9–12, with an 8-fold and 70-fold enrichment compared to HDL and protein. Conclusions SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles. PMID:25279113
Plasma membrane aquaporins mediates vesicle stability in broccoli
Martínez-Ballesta, Maria del Carmen; García-Gomez, Pablo; Yepes-Molina, Lucía; Guarnizo, Angel L.; Teruel, José A.
2018-01-01
The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability. PMID:29420651
MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W
2015-04-24
The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity.
Jin, Rongsheng; Rummel, Andreas; Binz, Thomas; Brunger, Axel T
2006-12-21
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.
Huarte, Nerea; Lorizate, Maier; Maeso, Rubén; Kunert, Renate; Arranz, Rocio; Valpuesta, José M; Nieva, José L
2008-09-01
The broadly neutralizing 2F5 and 4E10 monoclonal antibodies (MAbs) recognize epitopes within the membrane-proximal external region (MPER) that connects the human immunodeficiency virus type 1 (HIV-1) envelope gp41 ectodomain with the transmembrane anchor. By adopting different conformations that stably insert into the virion external membrane interface, such as helical structures, a conserved aromatic-rich sequence within the MPER is thought to participate in HIV-1-cell fusion. Recent experimental evidence suggests that the neutralizing activity of 2F5 and 4E10 might correlate with the MAbs' capacity to recognize epitopes inserted into the viral membrane, thereby impairing MPER fusogenic activity. To gain new insights into the molecular mechanism underlying viral neutralization by these antibodies, we have compared the capacities of 2F5 and 4E10 to block the membrane-disorganizing activity of MPER peptides inserted into the surface bilayer of solution-diffusing unilamellar vesicles. Both MAbs inhibited leakage of vesicular aqueous contents (membrane permeabilization) and intervesicular lipid mixing (membrane fusion) promoted by MPER-derived peptides. Thus, our data support the idea that antibody binding to a membrane-inserted epitope may interfere with the function of the MPER during gp41-induced fusion. Antibody insertion into a cholesterol-containing, uncharged virion-like membrane is mediated by specific epitope recognition, and moreover, partitioning-coupled folding into a helix reduces the efficiency of 2F5 MAb binding to its epitope in the membrane. We conclude that the capacity to interfere with the membrane activity of conserved MPER sequences is best correlated with the broad neutralization of the 4E10 MAb.
Bentley, Marvin; Decker, Helena; Luisi, Julie
2015-01-01
Identifying the proteins that regulate vesicle trafficking is a fundamental problem in cell biology. In this paper, we introduce a new assay that involves the expression of an FKBP12-rapamycin–binding domain–tagged candidate vesicle-binding protein, which can be inducibly linked to dynein or kinesin. Vesicles can be labeled by any convenient method. If the candidate protein binds the labeled vesicles, addition of the linker drug results in a predictable, highly distinctive change in vesicle localization. This assay generates robust and easily interpretable results that provide direct experimental evidence of binding between a candidate protein and the vesicle population of interest. We used this approach to compare the binding of Kinesin-3 family members with different endosomal populations. We found that KIF13A and KIF13B bind preferentially to early endosomes and that KIF1A and KIF1Bβ bind preferentially to late endosomes and lysosomes. This assay may have broad utility for identifying the trafficking proteins that bind to different vesicle populations. PMID:25624392
The use of specific antibodies to mediate fusion between Sendai virus envelopes and living cells.
Loyter, A; Tomasi, M; Gitman, A G; Etinger, L; Nussbaum, O
1984-01-01
Incubation of Sendai virus particles with non-ionic detergents such as Triton X-100 completely solubilizes the viral envelopes. Removal of the detergent from the supernatant (which contains the two main viral glycoproteins) leads to the formation of fusogenic, reconstituted viral envelopes. Soluble macromolecules such as DNA or proteins can be enclosed within the reconstituted vesicles, while membrane components can be inserted into the viral envelopes. Fusion of such loaded or 'hybrid' reconstituted envelopes with living cells in culture results in either microinjection or transfer of the viral components to the recipient cells. Thus such reconstituted envelopes can serve as efficient carriers for the introduction of macromolecules of biological interest into living cells in culture. A more specific vehicle has been constructed by chemically coupling anti-cell membrane antibodies (anti-human erythrocyte antibody) to the viral envelope. Such antibody-bearing intact virus particles or reconstituted envelopes bound to and fused with virus receptor-depleted cells. In addition, anti-Sendai virus antibodies were coupled to neuraminidase-treated human erythrocytes. Such antibodies mediated the binding and fusion of intact Sendai virus particles and their reconstituted envelopes to virus receptor-depleted cells.
Rajaram, Murugesan V S; Arnett, Eusondia; Azad, Abul K; Guirado, Evelyn; Ni, Bin; Gerberick, Abigail D; He, Li-Zhen; Keler, Tibor; Thomas, Lawrence J; Lafuse, William P; Schlesinger, Larry S
2017-10-03
Despite its prominent role as a C-type lectin (CTL) pattern recognition receptor, mannose receptor (MR, CD206)-specific signaling molecules and pathways are unknown. The MR is highly expressed on human macrophages, regulating endocytosis, phagocytosis, and immune responses and mediating Mycobacterium tuberculosis (M.tb) phagocytosis by human macrophages, thereby limiting phagosome-lysosome (P-L) fusion. We identified human MR-associated proteins using phosphorylated and non-phosphorylated MR cytoplasmic tail peptides. We found that MR binds FcRγ-chain, which is required for MR plasma membrane localization and M.tb cell association. Additionally, we discovered that MR-mediated M.tb association triggers immediate MR tyrosine residue phosphorylation and Grb2 recruitment, activating the Rac/Pak/Cdc-42 signaling cascade important for M.tb uptake. MR activation subsequently recruits SHP-1 to the M.tb-containing phagosome, where its activity limits PI(3)P generation at the phagosome and M.tb P-L fusion and promotes M.tb growth. In sum, we identify human MR signaling pathways that temporally regulate phagocytosis and P-L fusion during M.tb infection. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Interaction of cord factor (alpha, alpha'-trehalose-6,6'-dimycolate) with phospholipids.
Crowe, L M; Spargo, B J; Ioneda, T; Beaman, B L; Crowe, J H
1994-08-24
We previously reported that cord factor (alpha,alpha'-trehalose-6,6'-dimycolate) isolated from Nocardia asteroides strain GUH-2 strongly inhibits fusion between unilamellar vesicles containing acidic phospholipid. We chose to study the effects of this molecule on liposome fusion since the presence of N. asteroides GUH-2 in the phagosomes of mouse macrophages had been shown to prevent phagosomal acidification and inhibit phagosome-lysosome fusion. A virtually non-virulent strain, N. asteroides 10905, does not prevent acidification or phagosome-lysosome fusion and, further, contains only trace amounts of cord factor. In the present paper, we have investigated the effects of cord factor on phospholipid bilayers that could be responsible for the inhibition of fusion. We show that cord factor increases molecular area, measured by isothermal compression of a monolayer film, in a mixed monolayer more than would be expected based in its individual contribution to molecular area. Cord factor, as well as other glycolipids investigated, increased the overall hydration of bilayers of dipalmitoylphosphatidylcholine by 50%, as estimated from the unfrozen water fraction measured by differential scanning calorimetry. The effect of calcium on this increased molecular area and headgroup hydration was measured by fluorescence anisotropy and FTIR spectroscopy of phosphatidylserine liposomes. Both techniques showed that cord factor, incorporated at 10 mol%, increased acyl chain disorder over controls in the presence of Ca2+. However, FTIR showed that cord factor did not prevent headgroup dehydration by the Ca2+. The other glycolipids tested did not prevent either the Ca(2+)-induced chain crystallization or headgroup dehydration of phosphatidylserine bilayers. These data point to a possible role of the bulky mycolic acids of cord factor in preventing Ca(2+)-induced fusion of liposomes containing acidic phospholipids.
Vesicle solubilization by bile salts: comparison of macroscopic theory and simulation.
Haustein, M; Wahab, M; Mögel, H-J; Schiller, P
2015-04-14
Lipid metabolism is accompanied by the solubilization of lipid bilayer membranes by bile salts. We use Brownian dynamics simulations to study the solubilization of model membranes and vesicles by sodium cholate. The solubilization pathways of small and large vesicles are found to be different. Both results for small and large vesicles can be compared with predictions of a macroscopic theoretical description. The line tension of bilayer edges is an important parameter in the solubilization process. We propose a simple method to determine the line tension by analyzing the shape fluctuations of planar membrane patches. Macroscopic mechanical models provide a reasonable explanation for processes observed when a spherical vesicle consisting of lipids and adsorbed bile salt molecules is transformed into mixed lipid-bile salt micelles.
Campoy, Irene; Lanau, Lucia; Altadill, Tatiana; Sequeiros, Tamara; Cabrera, Silvia; Cubo-Abert, Montserrat; Pérez-Benavente, Assumpción; Garcia, Angel; Borrós, Salvador; Santamaria, Anna; Ponce, Jordi; Matias-Guiu, Xavier; Reventós, Jaume; Gil-Moreno, Antonio; Rigau, Marina; Colas, Eva
2016-06-18
Uterine aspirates are used in the diagnostic process of endometrial disorders, yet further applications could emerge if its complex milieu was simplified. Exosome-like vesicles isolated from uterine aspirates could become an attractive source of biomarkers, but there is a need to standardize isolation protocols. The objective of the study was to determine whether exosome-like vesicles exist in the fluid fraction of uterine aspirates and to compare protocols for their isolation, characterization, and analysis. We collected uterine aspirates from 39 pre-menopausal women suffering from benign gynecological diseases. The fluid fraction of 27 of those aspirates were pooled and split into equal volumes to evaluate three differential centrifugation-based procedures: (1) a standard protocol, (2) a filtration protocol, and (3) a sucrose cushion protocol. Characterization of isolated vesicles was assessed by electron microscopy, nanoparticle tracking analysis and immunoblot. Specifically for RNA material, we evaluate the effect of sonication and RNase A treatment at different steps of the protocol. We finally confirmed the efficiency of the selected methods in non-pooled samples. All protocols were useful to isolate exosome-like vesicles. However, the Standard procedure was the best performing protocol to isolate exosome-like vesicles from uterine aspirates: nanoparticle tracking analysis revealed a higher concentration of vesicles with a mode of 135 ± 5 nm, and immunoblot showed a higher expression of exosome-related markers (CD9, CD63, and CD81) thus verifying an enrichment in this type of vesicles. RNA contained in exosome-like vesicles was successfully extracted with no sonication treatment and exogenous nucleic acids digestion with RNaseA, allowing the analysis of the specific inner cargo by Real-Time qPCR. We confirmed the existence of exosome-like vesicles in the fluid fraction of uterine aspirates. They were successfully isolated by differential centrifugation giving sufficient proteomic and transcriptomic material for further analyses. The Standard protocol was the best performing procedure since the other two tested protocols did not ameliorate neither yield nor purity of exosome-like vesicles. This study contributes to establishing the basis for future comparative studies to foster the field of biomarker research in gynecology.
Brand, A P; Greenwood, S L; Glazier, J D; Bennett, E J; Godfrey, K M; Sibley, C P; Hanson, M A; Lewis, R M
2010-05-01
Both syncytiotrophoblast microvillous plasma membrane vesicles (MVM) and placental villous fragments are used to characterize the placental uptake of maternal substrate and to investigate changes in uptake associated with pathological conditions. However, the two techniques have not been directly compared. In this study uptake of (14)C-L-serine was compared in placental villous fragments and in MVM prepared from the same placentas. (14)C-L-serine uptake into MVM vesicles was mediated by System L and System A and smaller unidentified Na(+)-dependent and Na(+)-independent components. In villous fragments an unidentified Na(+)-dependent component mediated the majority of (14)C-L-serine uptake followed by System A and System L. The unidentified Na(+)-independent component of L-serine uptake was not detected in villous fragments. The ratio of System A activity to System L activity was similar in villous fragments and MVM vesicles. However, the unidentified Na(+)-dependent component in villous fragments was significantly higher than that in MVM vesicles. This indicates that the main differences in serine uptake mechanisms identified using the two techniques were not due to differences in System A and System L activity but to differences in the unidentified Na(+)-dependent component. This study suggests that uptake of L-serine into MVM vesicles and villous fragments via Systems A and L is comparable, but that this is not true for all components of L-serine uptake. (c) 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polacci, M.; Baker, D.R.; Bai, L.
Volcanic degassing is directly linked to magma dynamics and controls the style of eruptive activity. To better understand how gas is transported within basaltic magma we perform a 3D investigation of vesicles preserved in scoria from the 2005 activity at Stromboli volcano (Italy). We find that clasts are characterized by the ubiquitous occurrence of one to a few large vesicles, exhibiting mostly irregular, tortuous, channel-like textures, orders of magnitude greater in volume than all the other vesicles in the sample. We compare observations on natural samples with results from numerical simulations and experimental investigations of vesicle size distributions and demonstratemore » that this type of vesicle invariably forms in magmas with vesicularities > 0.30 (and possibly > 0.10). We suggest that large vesicles represent pathways used by gas to flow non-explosively to the surface and that they indicate the development of an efficient system that sustains persistent degassing in basaltic systems.« less
NASA Technical Reports Server (NTRS)
McKay, David S., Jr.; Westall, F.; Wentworth, S. W.; Thomas-Keptra, K.
1999-01-01
Mars Agueous Alteration Nakhla contains alteration products in an extensive network of which fill cracks, veins, and void spaces, composed of smectite, although in some cases they are amorphous and gel-like. Strong evidence presented show that these alteration products developed on Mars: some veins are offset by impact faulting of olivine followed by annealing of the olivine, and veins near the fusion crust show partial vesicle development suggesting heating and volatile liberation. The smectite-containing cracks and veins are interpreted as low temperature aqueous alteration on Mars. We have been studying these veins with optical microscopy and high resolution SEM.
Autophagy modulation as a potential therapeutic target for diverse diseases
Rubinsztein, David C.; Codogno, Patrice; Levine, Beth
2012-01-01
Autophagy is an essential, conserved lysosomal degradation pathway that controls the quality of the cytoplasm by eliminating protein aggregates and damaged organelles. It begins when double-membraned autophagosomes engulf portions of the cytoplasm, which is followed by fusion of these vesicles with lysosomes and degradation of the autophagic contents. In addition to its vital homeostatic role, this degradation pathway is involved in various human disorders, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. This article provides an overview of the mechanisms and regulation of autophagy, the role of this pathway in disease and strategies for therapeutic modulation. PMID:22935804
The Bretherton Problem for a Vesicle
NASA Astrophysics Data System (ADS)
Barakat, Joseph; Spann, Andrew; Shaqfeh, Eric
2016-11-01
The motion of a lipid bilayer vesicle through a circular tube is investigated by singular perturbation theory in the limit of vanishing clearance. The vesicle is treated as a sac of fluid enclosed by a thin, elastic sheet that admits a bending stiffness. It is assumed that the vesicle is axisymmetric and swollen to a near-critical volume such that the clearance "e" between the membrane and the tube wall is very small. In this limit, bending resistance is of negligible importance compared to the isotropic tension, allowing the vesicle to be treated as a "no-slip bubble." The effective membrane tension is found to scale inversely with "e" raised to the 3/2 power with a comparatively weak Marangoni gradient. The extra pressure drop is found to have a leading contribution due to the cylindrical midsection, which scales inversely with "e," as well as a correction due to the end caps, which scales inversely with the square root of "e." The apparent viscosity is predicted as a unique function of the geometry. The theory exhibits excellent agreement with a simplified, "quasi-parallel" theory and with direct numerical simulations using the boundary element method. The results of this work are compared to those for bubbles, rigid particles, and red blood cells in confined flows.
Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers.
Zhang, Yongli
2017-07-01
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins. © 2017 The Protein Society.
Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg
2017-10-01
Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.
Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin
2017-01-01
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans. Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. PMID:28283540
Exosome function: from tumor immunology to pathogen biology.
Schorey, Jeffrey S; Bhatnagar, Sanchita
2008-06-01
Exosomes are the newest family member of 'bioactive vesicles' that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell-to-cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii, have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.
Synaptotagmin-Like Proteins Control Formation of a Single Apical Membrane Domain in Epithelial Cells
Gálvez-Santisteban, Manuel; Rodriguez-Fraticelli, Alejo E.; Bryant, David M.; Vergarajauregui, Silvia; Yasuda, Takao; Bañón-Rodríguez, Inmaculada; Bernascone, Ilenia; Datta, Anirban; Spivak, Natalie; Young, Kitty; Slim, Christiaan L.; Brakeman, Paul R.; Fukuda, Mitsunori; Mostov, Keith E.; Martín-Belmonte, Fernando
2012-01-01
SUMMARY The formation of epithelial tissues requires both the generation of apical-basal polarity and the co-ordination of this polarity between neighboring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to formation of a singular apical membrane, resulting in contribution of each cell to only a single lumen. Here, from a functional screen for genes required for 3D epithelial architecture we identify key roles for Synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PI(4,5)P2-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE Syntaxin-3. Together, Slp2-a/4-a co-ordinate the spatiotemporal organization of vectorial apical transport to ensure only a single apical surface, and thus formation of a single lumen, occurs per cell. PMID:22820376
Integration of Synaptic Vesicle Cargo Retrieval with Endocytosis at Central Nerve Terminals
Cousin, Michael A.
2017-01-01
Central nerve terminals contain a limited number of synaptic vesicles (SVs) which mediate the essential process of neurotransmitter release during their activity-dependent fusion. The rapid and accurate formation of new SVs with the appropriate cargo is essential to maintain neurotransmission in mammalian brain. Generating SVs containing the correct SV cargo with the appropriate stoichiometry is a significant challenge, especially when multiple modes of endocytosis exist in central nerve terminals, which occur at different locations within the nerve terminals. These endocytosis modes include ultrafast endocytosis, clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) which are triggered by specific patterns of neuronal activity. This review article will assess the evidence for the role of classical adaptor protein complexes in SV retrieval, discuss the role of monomeric adaptors and how interactions between specific SV cargoes can facilitate retrieval. In addition it will consider the evidence for preassembled plasma membrane cargo complexes and their role in facilitating these endocytosis modes. Finally it will present a unifying model for cargo retrieval at the presynapse, which integrates endocytosis modes in time and space. PMID:28824381
New Molecular Targets for Antiepileptic Drugs: α2δ, SV2A, and Kv7/KCNQ/M Potassium Channels
Rogawski, Michael A.; Bazil, Carl W.
2008-01-01
Many currently prescribed antiepileptic drugs (AEDs) act via voltage-gated sodium channels, through effects on γ-aminobutyric acid–mediated inhibition, or via voltage-gated calcium channels. Some newer AEDs do not act via these traditional mechanisms. The molecular targets for several of these nontraditional AEDs have been defined using cellular electrophysiology and molecular approaches. Here, we describe three of these targets: α2δ, auxiliary subunits of voltage-gated calcium channels through which the gabapentinoids gabapentin and pregabalin exert their anticonvulsant and analgesic actions; SV2A, a ubiquitous synaptic vesicle glycoprotein that may prepare vesicles for fusion and serves as the target for levetiracetam and its analog brivaracetam (which is currently in late-stage clinical development); and Kv7/KCNQ/M potassium channels that mediate the M-current, which acts a brake on repetitive firing and burst generation and serves as the target for the investigational AEDs retigabine and ICA-105665. Functionally, all of the new targets modulate neurotransmitter output at synapses, focusing attention on presynaptic terminals as critical sites of action for AEDs. PMID:18590620
Rogawski, Michael A; Bazil, Carl W
2008-07-01
Many currently prescribed antiepileptic drugs (AEDs) act via voltage-gated sodium channels, through effects on gamma-aminobutyric acid-mediated inhibition, or via voltage-gated calcium channels. Some newer AEDs do not act via these traditional mechanisms. The molecular targets for several of these nontraditional AEDs have been defined using cellular electrophysiology and molecular approaches. Here, we describe three of these targets: alpha(2)delta, auxiliary subunits of voltage-gated calcium channels through which the gabapentinoids gabapentin and pregabalin exert their anticonvulsant and analgesic actions; SV2A, a ubiquitous synaptic vesicle glycoprotein that may prepare vesicles for fusion and serves as the target for levetiracetam and its analog brivaracetam (which is currently in late-stage clinical development); and K(v)7/KCNQ/M potassium channels that mediate the M-current, which acts a brake on repetitive firing and burst generation and serves as the target for the investigational AEDs retigabine and ICA-105665. Functionally, all of the new targets modulate neurotransmitter output at synapses, focusing attention on presynaptic terminals as critical sites of action for AEDs.
Morton, Mary C; Neckles, Victoria N; Seluzicki, Caitlin M; Holmberg, Jennie C; Feliciano, David M
2018-04-03
Subventricular zone (SVZ) neural stem cells (NSCs) are the cornerstone of the perinatal neurogenic niche. Microglia are immune cells of the nervous system that are enriched in the neonatal SVZ. Although microglia regulate NSCs, the extent to which this interaction is bi-directional is unclear. Extracellular vesicles (EVs) are cell-derived particles that encase miRNA and proteins. Here, we demonstrate that SVZ NSCs generate and release EVs. Neonatal electroporated fluorescent EV fusion proteins were released by NSCs and subsequently cleared from the SVZ. EVs were preferentially targeted to microglia. Small RNA sequencing identified miRNAs within the EVs that regulate microglia physiology and morphology. EVs induced a transition to a CD11b/Iba1 non-stellate microglial morphology. The transition accompanied a microglial transcriptional state characterized by Let-7-regulated cytokine release and a negative feedback loop that controlled NSC proliferation. These findings implicate an NSC-EV-microglia axis and provide insight to normal and pathophysiological brain development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Characterization, stabilization and activity of uricase loaded in lipid vesicles.
Tan, Q Y; Wang, N; Yang, H; Zhang, L K; Liu, S; Chen, L; Liu, J; Zhang, L; Hu, N N; Zhao, C J; Zhang, J Q
2010-01-15
Uricase-containing lipid vesicles (UOXLVs) were prepared by reverse-phase evaporation method with high efficiency and the characteristics of UOXLVs were described. The average size and zeta potential of UOXLVs obtained by the optimized formulation were 205.47 nm and -37.33 mV, respectively. Uricase was encapsulated in the alkaline aqueous phase of the lipid vesicle and the stability of its tetrameric structure was thus improved and its activity preserved. The storage stability of uricase in lipid vesicles was significantly increased compared to that of free uricase at 4 degrees C in borate buffer of pH 8.5. At 55 degrees C, free uricase was deactivated much more quickly especially at lower concentration predominantly due to enhanced dissociation of uricase into subunits. An intrinsic tryptophan of uricase recovered from the lipid vesicle thermally treated at 55 degrees C revealed that a partially denatured uricase molecule was stabilized through its hydrophobic interaction with lipid vesicle membrane. This interaction was depressed mainly by dissociation of uricase into subunits. At the physiological pH, significant increase of enzyme activity was found for the uricase entrapped in the lipid vesicles (1.8 times that of free uricase) at their respective optimum pH. The shift of optimum pH and increased uricolytic activity suggested the conformation change of the uricase during the entrapment process. The stability to proteolytic digestion was increased obviously by entrapping the uricase in the lipid vesicles. UOXLVs also showed relatively slower loss in activity compared with free uricase when treated with some chemical reagents. Lastly, in vitro study explicitly indicated that the uricase entrapped by UOXLVs possessed higher uricolytic activity than that of native uricase solution.
Development and characterization of nanopore system for nano-vesicle analysis
NASA Astrophysics Data System (ADS)
Goyal, Gaurav
Nano-vesicles have recently attracted a lot of attention in research and medical communities and are very promising next-generation drug delivery vehicles. This is due to their biocompatibility, biodegradability and their ability to protect drug cargo and deliver it to site-specific locations, while maintaining the desired pharmacokinetic profile. The interaction of these drug loaded vesicles with the recipient cells via adsorption, endocytosis or receptor mediated internalization involve significant bending and deformation and is governed by mechanical properties of the nano-vesicles. Currently, the mechanical characteristics of nano-vesicles are left unexplored because of the difficulties associated with vesicle analysis at sub-100 nm length scale. The need for a complete understanding of nano-vesicle interaction with each other and the recipient cells warrants development of an analytical tool capable of mechanical investigation of individual vesicles at sub-100 nm scale. This dissertation presents investigation of nano-vesicle deformability using resistive pulse sensing and solid-state nanopore devices. The dissertation is divided into four chapters. Chapter 1 discusses the motivation, specific aims and presents an overview of nanoparticle characterization techniques, resistive pulse sensing background and principles, techniques for fabricating solid-state nanopores, as well the deformation behavior of giant vesicles when placed in electric field. Chapter 2 is dedicated to understanding of the scientific principles governing transport of sub-100 nm particles in dilute solutions. We investigated the translocation of rigid nanoparticles through nanopores at salt concentrations < 50 mM. When using low electrolyte strength, surface effects become predominant and resulted in unconventional current signatures in our experiments. It prompted us to explore the effects of different experimental parameters using Multiphysics simulations, in order to optimize our system for nano-vesicle detection and analysis. Chapter 3, discusses translocation of ~85 nm DOPC liposomes through the nanopore and their co-translocational deformation due to high field strength and confinement/ flow induced strain inside the nanopore. The behavior of liposomes was compared to the rigid polystyrene particles which maintained their shape and did not exhibit any deformation. Chapter 4 extends the vesicle deformation analysis to exosomes derived from human breast cancer cell line. Exosomes also exhibit co-translocational deformation behavior; however, they appear to be less affected by the deforming force inside the nanopore compared to the DOPC liposomes. We believe, the results of this research will bring about a novel nano-bioanalytical platform that can be used to capture comprehensive size and deformability data on nano-vesicles with high temporal resolution.
McDonald, G G; Vanderkooi, J M
1975-05-20
A pulsed-gradient Fourier transform nuclear magnetic resonance (NMR) technique was appplied to the study of diffusion of phospholipid vesicles. The diffusion coefficient of dimyristoyllecithin vesicles (DML) in a D2O-phospahte buffer at 37 degrees is D = 1.9 TIMES 10(-6) cm2/sec. In a solution made viscous by DNA addition, the diffusion coefficient of DML vesicles was 3.5 times 10(-7) cm2/sec. These values compare favorably with the diffusion rate for liposomes as determined by ultracentrifugation and by Stokes law calculation. The data suggest that DML diffusion is controlled primarily by whole liposome migration as opposed to movement of individual molecules within the liposome, liposome rotation, or fast exchange between lecithin molecules in solution and in vesicles.
Metal Sorbing Vesicles: Light Scattering Characterization and Metal Sorbtion Behavior.
NASA Astrophysics Data System (ADS)
van Zanten, John Hollis
1992-01-01
The research described herein consisted of two parts: light scattering characterization of vesicles and kinetic investigations of metal sorbing vesicles. Static light scattering techniques can be used to determine the geometric size, shape and apparent molecular weight of phosphatidylcholine vesicles in aqueous suspension. A Rayleigh-Gans-Debye (RGD) approximation analysis of multiangle scattered light intensity data yields the size and degree of polydispersity of the vesicles in solution, while the Zimm plot technique provides the radius of gyration and apparent weight-average molecular weight. Together the RGD approximation and Zimm plots can be used to confirm the geometric shape of vesicles and can give a good estimate of the vesicle wall thickness in some cases. Vesicles varying from 40 to 115 nm in diameter have been characterized effectively. The static light scattering measurements indicate that, as expected, phosphatidylcholine vesicles in this size range scatter light as isotropic hollow spheres. Additionally, static and dynamic light scattering measurements have been made and compared with one another. The values for geometric radii determined by static light scattering typically agree with those estimated by dynamic light scattering to within a few percent. Interestingly however, dynamic measurements suggest that there is a significant degree of polydispersity present in the vesicle dispersions, while static measurements indicate near size monodisperse dispersions. Metal sorbing vesicles which harbor ionophores, such as antibiotic A23187 and synthetic carriers, in their bilayer membranes have been produced. These vesicles also encapsulate the chelating compound, nitrilotriacetate, to provide the driving force for metal ion uptake. Very dilute dispersions (on the order of 0.03% w/v) of these metal sorbing vesicles were capable of removing Cd ^{2+} and Pb^{2+ } from dilute aqueous solution (5 ppm and less) and concentrating these metal ions several hundred to more than a thousand fold in the vesicle interior in a few minutes time. Synthetic ionophores were found to preferentially transport Pb^{2+} over Cd^{2+}, thus suggesting that engineered vesicle dispersions can be used as selective separations media. The effect of ionophore concentration, solution pH, solution ionic strength, initial metal ion concentration and vesicle concentration have been investigated.
Polymer Vesicle Sensor for Visual and Sensitive Detection of SO2 in Water.
Huang, Tong; Hou, Zhilin; Xu, Qingsong; Huang, Lei; Li, Chuanlong; Zhou, Yongfeng
2017-01-10
This study reports the first polymer vesicle sensor for the visual detection of SO 2 and its derivatives in water. A strong binding ability between tertiary alkanolamines and SO 2 has been used as the driving force for the detection by the graft of tertiary amine alcohol (TAA) groups onto an amphiphilic hyperbranched multiarm polymer, which can self-assemble into vesicles with enriched TAA groups on the surface. The polymer vesicles will undergo proton exchange with cresol red (CR) to produce CR-immobilized vesicles (CR@vesicles). Subsequently, through competitive binding with the TAA groups between CR and SO 2 or HSO 3 - , the CR@vesicles (purple) can quickly change into SO 2 @vesicles (colorless) with the release of protonated CR (yellow). Such a fast purple to yellow transition in the solution allows the visual detection of SO 2 or its derivatives in water by the naked eye. A visual test paper for SO 2 gas has also been demonstrated by the adsorption of CR@vesicles onto paper. Meanwhile, the detection limit of CR@vesicles for HSO 3 - is approximately 25 nM, which is improved by approximately 30 times when compared with that of small molecule-based sensors with a similar structure (0.83 μM). Such an enhanced detection sensitivity should be related to the enrichment of TAA groups as well as the CR in CR@vesicles. In addition, the CR@vesicle sensors also show selectivity and specificity for the detection of SO 2 or HSO 3 - among anions such as F - , Br - , Cl - , SO 4 2- , NO 2 - , C 2 O 4 2- , S 2 O 3 2- , SCN - , AcO - , SO 3 2- , S 2- , and HCO 3 - .
Effects of exosome-like vesicles on cumulus expansion in pigs in vitro.
Matsuno, Yuta; Onuma, Asuka; Fujioka, Yoshie A; Yasuhara, Kazuma; Fujii, Wataru; Naito, Kunihiko; Sugiura, Koji
2017-02-16
Cell-secreted vesicles, such as exosomes, have recently been recognized as mediators of cell communication. A recent study in cattle showed the involvement of exosome-like vesicles in the control of cumulus expansion, a prerequisite process for normal ovulation; however, whether this is the case in other mammalian species is not known. Therefore, this study aimed to examine the presence of exosome-like vesicles in ovarian follicles and their effects on cumulus expansion in vitro in pigs. The presence of exosome-like vesicles in porcine follicular fluid (pFF) was confirmed by transmission electron microscopic observation, the detection of marker proteins, and RNA profiles specific to exosomes. Fluorescently labeled exosome-like vesicles isolated from pFF were incorporated into both cumulus and mural granulosa cells in vitro. Exosome-like vesicles were not capable of inducing cumulus expansion to a degree comparable to that induced by follicle-stimulating hormone (FSH). Moreover, exosome-like vesicles had no significant effects on the expression levels of transcripts required for the normal expansion process (HAS2, TNFAIP6, and PTGS2). Interestingly, FSH-induced expression of HAS2 and TNFAIP6 mRNA, but not of PTGS2 mRNA, was significantly increased by the presence of exosome-like vesicles; however, the degree of FSH-induced expansion was not affected. In addition, porcine exosome-like vesicles had no significant effects on the expansion of mouse cumulus-oocyte complexes. Collectively, the present results suggest that exosome-like vesicles are present in pFF, but they are not efficient in inducing cumulus expansion in pigs.
Effects of exosome-like vesicles on cumulus expansion in pigs in vitro
MATSUNO, Yuta; ONUMA, Asuka; FUJIOKA, Yoshie A; YASUHARA, Kazuma; FUJII, Wataru; NAITO, Kunihiko; SUGIURA, Koji
2017-01-01
Cell-secreted vesicles, such as exosomes, have recently been recognized as mediators of cell communication. A recent study in cattle showed the involvement of exosome-like vesicles in the control of cumulus expansion, a prerequisite process for normal ovulation; however, whether this is the case in other mammalian species is not known. Therefore, this study aimed to examine the presence of exosome-like vesicles in ovarian follicles and their effects on cumulus expansion in vitro in pigs. The presence of exosome-like vesicles in porcine follicular fluid (pFF) was confirmed by transmission electron microscopic observation, the detection of marker proteins, and RNA profiles specific to exosomes. Fluorescently labeled exosome-like vesicles isolated from pFF were incorporated into both cumulus and mural granulosa cells in vitro. Exosome-like vesicles were not capable of inducing cumulus expansion to a degree comparable to that induced by follicle-stimulating hormone (FSH). Moreover, exosome-like vesicles had no significant effects on the expression levels of transcripts required for the normal expansion process (HAS2, TNFAIP6, and PTGS2). Interestingly, FSH-induced expression of HAS2 and TNFAIP6 mRNA, but not of PTGS2 mRNA, was significantly increased by the presence of exosome-like vesicles; however, the degree of FSH-induced expansion was not affected. In addition, porcine exosome-like vesicles had no significant effects on the expansion of mouse cumulus-oocyte complexes. Collectively, the present results suggest that exosome-like vesicles are present in pFF, but they are not efficient in inducing cumulus expansion in pigs. PMID:28163264
Strzelecka-Kiliszek, Agnieszka; Bozycki, Lukasz; Mebarek, Saida; Buchet, Rene; Pikula, Slawomir
2017-06-01
Bone cells control initial steps of mineralization by producing extracellular matrix (ECM) proteins and releasing vesicles that trigger apatite nucleation. Using transmission electron microscopy with energy dispersive X-ray microanalysis (TEM-EDX) we compared the quality of minerals in vesicles produced by two distinct human cell lines: fetal osteoblastic hFOB 1.19 and osteosarcoma Saos-2. Both cell lines, subjected to osteogenic medium with ascorbic acid (AA) and β-glycerophosphate (β-GP), undergo the entire osteoblastic differentiation program from proliferation to mineralization, produce the ECM and spontaneously release vesicles. We observed that Saos-2 cells mineralized better than hFOB 1.19, as probed by Alizarin Red-S (AR-S) staining, tissue nonspecific alkaline phosphatase (TNAP) activity and by analyzing the composition of minerals in vesicles. Vesicles released from Saos-2 cells contained and were surrounded by more minerals than vesicles released from hFOB 1.19. In addition, there were more F and Cl substituted apatites in vesicles from hFOB 1.19 than in those from Saos-2 cells as determined by ion ratios. Saos-2 and h-FOB 1.19 cells revealed distinct mineralization profiles, indicating that the process of mineralization may proceed differently in various types of cells. Our findings suggest that TNAP activity is correlated with the relative proportions of mineral-filled vesicles and mineral-surrounded vesicles. The origin of vesicles and their properties predetermine the onset of mineralization at the cellular level. Copyright © 2017 Elsevier Inc. All rights reserved.
Kusinski, L.C.; Jones, C.J.P.; Baker, P.N.; Sibley, C.P.; Glazier, J.D.
2010-01-01
Placental amino acid transport is essential for optimal fetal growth and development, with a reduced fetal provision of amino acids being implicated as a potential cause of fetal growth restriction (FGR). Understanding placental insufficiency related FGR has been aided by the development of mouse models that have features of the human disease. However, to take maximal advantage of these, methods are required to study placental function in the mouse. Here, we report a method to isolate plasma membrane vesicles from mouse placenta near-term and have used these to investigate two amino acid transporters, systems A and β, the activities of which are reduced in human placental microvillous plasma membrane (MVM) vesicles from FGR pregnancies. Plasma membrane vesicles were isolated at embryonic day 18 by a protocol involving homogenisation, MgCl2 precipitation and centrifugation. Vesicles were enriched 11.3 ± 0.5-fold in alkaline phosphatase activity as compared to initial homogenate, with minimal intracellular organelle contamination as judged by marker analyses. Cytochemistry revealed alkaline phosphatase was localised between trophoblast layers I and II, with intense reaction product deposited on the maternal-facing plasma membrane of layer II, suggesting that vesicles were derived from this trophoblast membrane. System A and system β activity in mouse placental vesicles, measured as Na+-dependent uptake of 14C-methylaminoisobutyric acid (MeAIB) and 3H-taurine respectively confirmed localisation of these transporters to the maternal-facing plasma membrane of layer II. Comparison to human placental MVM showed that system A activity was comparable at initial rate between species whilst system β activity was significantly lower in mouse. This mirrored the lower expression of TAUT observed in mouse placental vesicles. We conclude that syncytiotrophoblast layer II-derived plasma membrane vesicles can be isolated and used to examine transporter function. PMID:19954844
Adhesive interactions of biologically inspired soft condensed matter
NASA Astrophysics Data System (ADS)
Anderson, Travers Heath
Improving our fundamental understanding of the surface interactions between complex materials is needed to improve existing materials and products as well as develop new ones. The object of this research was to apply the measurements of fundamental surface interactions to real world problems facing chemical engineers and materials scientists. I focus on three systems of biologically inspired soft condensed matter, with an emphasis on the adhesive interactions between them. The formation of phospholipid bilayers of the neutral lipid, dimyristoyl-phosphatidylcholine (DMPC) on silica surfaces from vesicles in aqueous solutions was investigated. The process involves five stages: vesicle adhesion to the substrate surfaces, steric interactions with neighboring vesicles, rupture, spreading via hydrophobic fusion of bilayer edges, and ejection of excess lipid, trapped water and ions into the solution. The forces between DMPC bilayers and silica were measured in the Surface Forces Apparatus (SFA) in phosphate buffered saline. The adhesion energy was found to be much stronger than the expected adhesion predicted by van der Waals interactions, likely due to an attractive electrostatic interaction. The effects of non-adsorbing cationic polyelectrolytes on the interactions between supported cationic surfactant bilayers were studied using the SFA. Addition of polyelectrolyte has a number of effects on the interactions including the induction of a depletion-attraction and screening of the double-layer repulsion. Calculations are made that allow for the conversion of the adhesion energy measured in the SFA to the overall interaction energy between vesicles in solution, which determines the stability behavior of vesicle dispersions. Mussels use a variety of dihydroxyphenyl-alanine (DOPA) rich proteins specifically tailored to adhering to wet surfaces. The SFA was used to study the role of DOPA on the adhesive properties of these proteins to TiO 2 and mica using both real mussel foot proteins (mfp) and a synthetic polypeptide analogue of mfp-3. Adhesion increased with DOPA concentration, although oxidation of DOPA reduces the adhesive capabilities of the proteins. Comparison of the two shows that DOPA is responsible for at least 80% of the adhesion energy of mfp-3 and can be attributed to DOPA groups favorably oriented within or at the interface of these films.
LC3/GABARAP family proteins: autophagy-(un)related functions.
Schaaf, Marco B E; Keulers, Tom G; Vooijs, Marc A; Rouschop, Kasper M A
2016-12-01
From yeast to mammals, autophagy is an important mechanism for sustaining cellular homeostasis through facilitating the degradation and recycling of aged and cytotoxic components. During autophagy, cargo is captured in double-membraned vesicles, the autophagosomes, and degraded through lysosomal fusion. In yeast, autophagy initiation, cargo recognition, cargo engulfment, and vesicle closure is Atg8 dependent. In higher eukaryotes, Atg8 has evolved into the LC3/GABARAP protein family, consisting of 7 family proteins [LC3A (2 splice variants), LC3B, LC3C, GABARAP, GABARAPL1, and GABARAPL2]. LC3B, the most studied family protein, is associated with autophagosome development and maturation and is used to monitor autophagic activity. Given the high homology, the other LC3/GABARAP family proteins are often presumed to fulfill similar functions. Nevertheless, substantial evidence shows that the LC3/GABARAP family proteins are unique in function and important in autophagy-independent mechanisms. In this review, we discuss the current knowledge and functions of the LC3/GABARAP family proteins. We focus on processing of the individual family proteins and their role in autophagy initiation, cargo recognition, vesicle closure, and trafficking, a complex and tightly regulated process that requires selective presentation and recruitment of these family proteins. In addition, functions unrelated to autophagy of the LC3/GABARAP protein family members are discussed.-Schaaf, M. B. E., Keulers, T. G, Vooijs, M. A., Rouschop, K. M. A. LC3/GABARAP family proteins: autophagy-(un)related functions. © FASEB.
Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B
2016-01-01
HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.
Stanley, Elise F
2015-01-01
At fast-transmitting presynaptic terminals Ca2+ enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca2+ that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular junction (NMJ), the SV sensors are located sufficiently close to individual CaVs to be gated by single nanodomains. However, at others, such as the mature rodent calyx of Held (calyx of Held), the physiology is more complex with evidence that CaVs that are both close and distant from the SV sensor and it is argued that release is gated primarily by the overlapping Ca2+ nanodomains from many CaVs. We devised a 'graphic modeling' method to sum Ca2+ from individual CaVs located at varying distances from the SV-sensor to determine the SV release probability and also the fraction of that probability that can be attributed to single domain gating. This method was applied first to simplified, low and high CaV density model release sites and then to published data on the contrasting frog NMJ and the rodent calyx of Held native synapses. We report 3 main predictions: the SV-sensor is positioned very close to the point at which the SV fuses with the membrane; single domain-release gating predominates even at synapses where the SV abuts a large cluster of CaVs, and even relatively remote CaVs can contribute significantly to single domain-based gating. PMID:26457441
Batelli, Giorgia; Verslues, Paul E.; Agius, Fernanda; Qiu, Quansheng; Fujii, Hiroaki; Pan, Songqin; Schumaker, Karen S.; Grillo, Stefania; Zhu, Jian-Kang
2007-01-01
The salt overly sensitive (SOS) pathway is critical for plant salt stress tolerance and has a key role in regulating ion transport under salt stress. To further investigate salt tolerance factors regulated by the SOS pathway, we expressed an N-terminal fusion of the improved tandem affinity purification tag to SOS2 (NTAP-SOS2) in sos2-2 mutant plants. Expression of NTAP-SOS2 rescued the salt tolerance defect of sos2-2 plants, indicating that the fusion protein was functional in vivo. Tandem affinity purification of NTAP-SOS2-containing protein complexes and subsequent liquid chromatography-tandem mass spectrometry analysis indicated that subunits A, B, C, E, and G of the peripheral cytoplasmic domain of the vacuolar H+-ATPase (V-ATPase) were present in a SOS2-containing protein complex. Parallel purification of samples from control and salt-stressed NTAP-SOS2/sos2-2 plants demonstrated that each of these V-ATPase subunits was more abundant in NTAP-SOS2 complexes isolated from salt-stressed plants, suggesting that the interaction may be enhanced by salt stress. Yeast two-hybrid analysis showed that SOS2 interacted directly with V-ATPase regulatory subunits B1 and B2. The importance of the SOS2 interaction with the V-ATPase was shown at the cellular level by reduced H+ transport activity of tonoplast vesicles isolated from sos2-2 cells relative to vesicles from wild-type cells. In addition, seedlings of the det3 mutant, which has reduced V-ATPase activity, were found to be severely salt sensitive. Our results suggest that regulation of V-ATPase activity is an additional key function of SOS2 in coordinating changes in ion transport during salt stress and in promoting salt tolerance. PMID:17875927
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenoien, David L.; Knyushko, Tatyana V.; Londono, Monica P.
2007-06-01
The sarco/endoplasmic reticulum Ca-ATPase (SERCA) family members are transmembrane proteins that play an essential role in regulating intracellular calcium levels. Phospholamban (PLB), a 52 amino acid phosphoprotein, regulates SERCA activity in adult heart and skeletal muscle. Using the C2C12 myocyte cell line, we find endogenous PLB constitutively expressed in both myoblasts and myotubes, whereas SERCA expression coincides with activation of the differentiation program. PLB has a punctuate distribution in myoblasts changing to a reticular distribution in myotubes where it colocalizes with SERCAs. To examine the distribution and dynamics of PLB and SERCA, we expressed fluorescent fusion proteins (GFP, CFP, andmore » YFP) of PLB and SERCA in myoblasts. Coexpressed PLB and SERCA localize to distinct cellular compartments in myoblasts but begin to colocalize as cells differentiate. Fluorescence Recovery After Photobleaching (FRAP) studies show different recovery patterns for each protein in myoblasts confirming their localization to distinct compartments. To extend these studies, we created stable cell lines expressing O6-alkylguanine-DNA alkyltransferase (AGT) fusions with PLB or SERCA to track their localization as myocytes differentiate. These experiments demonstrate that PLB localizes to punctate vesicles in myoblasts and adopts a reticular distribution that coincides with SERCA distribution after differentiation. Colocalization experiments indicate that a subset of PLB in myoblasts colocalizes with endosomes, Golgi, and the plasma membrane however PLB also localizes to other, as yet unidentified vesicles. Our results indicate that differentiation plays a critical role in regulating PLB distribution to ensure its colocalization within the same cellular compartment as SERCA in differentiated cells. The presence and altered distribution of PLB in undifferentiated myoblasts raises the possibility that this protein has additional functions distinct from SERCA regulation.« less
Striz, Anneliese C.; Tuma, Pamela L.
2016-01-01
A major focus for our laboratory is identifying the molecules and mechanisms that regulate polarized apical protein sorting in hepatocytes, the major epithelial cells of the liver. These trafficking pathways are regulated, in part, by small molecular weight rab GTPases. We chose to investigate rab17, whose expression is restricted to polarized epithelial cells, is enriched in liver, and has been implicated in regulating basolateral to apical transcytosis. To initiate our studies, we generated three recombinant adenoviruses expressing wild type, constitutively active (GTP bound), or dominant-negative (GDP bound) rab17. Immunoblotting revealed rab17 immunoreactive species at 25 kDa (the predicted rab17 molecular mass) and 40 kDa. We determined that mono-sumoylation of the 25-kDa rab17 is responsible for the shift in molecular mass, and that rab17 prenylation is required for sumoylation. We further determined that sumoylation selectively promotes interactions with syntaxin 2 (but not syntaxins 3 or 4) and that these interactions are nucleotide dependent. Furthermore, a K68R-mutated rab17 led to the redistribution of syntaxin 2 and 5′ nucleotidase from the apical membrane to subapical puncta, whereas multidrug resistance protein 2 distributions were not changed. Together these data are consistent with the proposed role of rab17 in vesicle fusion with the apical plasma membrane and further implicate sumoylation as an important mediator of protein-protein interactions. The selectivity in syntaxin binding and apical protein redistribution further suggests that rab17 and syntaxin 2 mediate fusion of transcytotic vesicles at the apical surface. PMID:26957544
Abascal-Palacios, Guillermo; Schindler, Christina; Rojas, Adriana L; Bonifacino, Juan S.; Hierro, Aitor
2016-01-01
Summary The Golgi-Associated Retrograde Protein (GARP) is a tethering complex involved in the fusion of endosome-derived transport vesicles to the trans-Golgi network through interaction with components of the Syntaxin 6/Syntaxin 16/Vti1a/VAMP4 SNARE complex. The mechanisms by which GARP and other tethering factors engage the SNARE fusion machinery are poorly understood. Herein we report the structural basis for the interaction of the human Ang2 subunit of GARP with Syntaxin 6 and the closely related Syntaxin 10. The crystal structure of Syntaxin 6 Habc domain in complex with a peptide from the N terminus of Ang2 shows a novel binding mode in which a di-tyrosine motif of Ang2 interacts with a highly conserved groove in Syntaxin 6. Structure-based mutational analyses validate the crystal structure and support the phylogenetic conservation of this interaction. The same binding determinants are found in other tethering proteins and syntaxins, suggesting a general interaction mechanism. PMID:23932592
Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis.
Ma, Lu; Rebane, Aleksander A; Yang, Guangcan; Xi, Zhiqun; Kang, Yuhao; Gao, Ying; Zhang, Yongli
2015-12-23
Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins couple their stage-wise folding/assembly to rapid exocytosis of neurotransmitters in a Munc18-1-dependent manner. The functions of the different assembly stages in exocytosis and the role of Munc18-1 in SNARE assembly are not well understood. Using optical tweezers, we observed four distinct stages of assembly in SNARE N-terminal, middle, C-terminal, and linker domains (or NTD, MD, CTD, and LD, respectively). We found that SNARE layer mutations differentially affect SNARE assembly. Comparison of their effects on SNARE assembly and on exocytosis reveals that NTD and CTD are responsible for vesicle docking and fusion, respectively, whereas MD regulates SNARE assembly and fusion. Munc18-1 initiates SNARE assembly and structures t-SNARE C-terminus independent of syntaxin N-terminal regulatory domain (NRD) and stabilizes the half-zippered SNARE complex dependent upon the NRD. Our observations demonstrate distinct functions of SNARE domains whose assembly is intimately chaperoned by Munc18-1.
Tenorio, María J.; Luchsinger, Charlotte; Mardones, Gonzalo A.
2015-01-01
It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity. PMID:26258546
Quantal basis of vesicle growth and information content, a unified approach.
Nitzany, Eyal; Hammel, Ilan; Meilijson, Isaac
2010-09-07
Secretory vesicles express a periodic multimodal size distribution. The successive modes are integral multiples of the smallest mode (G(1)). The vesicle content ranges from macromolecules (proteins, mucopolysaccharides and hormones) to low molecular weight molecules (neurotransmitters). A steady-state model has been developed to emulate a mechanism for the introduction of vesicles of monomer size, which grow by a unit addition mechanism, G(1)+G(n)-->G(n+1) which, at a later stage are eliminated from the system. We describe a model of growth and elimination transition rates which adequately illustrates the distributions of vesicle population size at steady-state and upon elimination. Consequently, prediction of normal behavior and pathological perturbations is feasible. Careful analysis of spontaneous secretion, as compared to short burst-induced secretion, suggests that the basic character-code for reliable communication should be within a range of only 8-10 vesicles' burst which may serve as a yes/no message. Copyright 2010 Elsevier Ltd. All rights reserved.
Sacconi, Alessio; Moncelli, Maria Rosa; Margheri, Giancarlo; Tadini-Buoninsegni, Francesco
2013-11-12
A convenient model system for a biological membrane is a solid-supported membrane (SSM), which consists of a gold-supported alkanethiol|phospholipid bilayer. In combination with a concentration jump method, SSMs have been used for the investigation of several membrane transporters. Vesicles incorporating sarcoplasmic reticulum Ca-ATPase (SERCA) were adsorbed on a negatively charged SSM (octadecanethiol|phosphatidylserine bilayer). The current signal generated by the adsorbed vesicles following an ATP concentration jump was compared to that produced by SERCA-containing vesicles adsorbed on a conventional SSM (octadecanethiol|phosphatidylcholine bilayer). A significantly higher current amplitude was recorded on the serine-based SSM. The adsorption of SERCA-incorporating vesicles on the SSM was then characterized by surface plasmon resonance (SPR). The SPR measurements clearly indicate that in the presence of Ca(2+) and Mg(2+), the amount of adsorbed vesicles on the serine-based SSM is about twice that obtained using the conventional SSM, thereby demonstrating that the higher current amplitude recorded on the negatively charged SSM is correlated with a greater quantity of adsorbed vesicles. The enhanced adsorption of membrane vesicles on the PS-based SSM may be useful to study membrane preparations with a low concentration of transport protein generating small current signals, as in the case of various recombinantly expressed proteins.