Assessment of autophagosome formation by transmission electron microscopy
USDA-ARS?s Scientific Manuscript database
Autophagy is a complex degradative process by which cytosolic material, including organelles, is randomly sequestered within double-membrane bound vesicles termed autophagosomes and targeted for degradation. Initially described as a nutrient stress adaptation response, the process of autophagy is n...
Neufeld, Thomas P.
2017-01-01
Autophagy plays an essential role in the cellular homeostasis of neurons, facilitating the clearance of cellular debris. This clearance process is orchestrated through the assembly, transport, and fusion of autophagosomes with lysosomes for degradation. The motor protein dynein drives autophagosome motility from distal sites of assembly to sites of lysosomal fusion. In this study, we identify the scaffold protein CKA (connector of kinase to AP-1) as essential for autophagosome transport in neurons. Together with other core components of the striatin-interacting phosphatase and kinase (STRIPAK) complex, we show that CKA associates with dynein and directly binds Atg8a, an autophagosomal protein. CKA is a regulatory subunit of PP2A, a component of the STRIPAK complex. We propose that the STRIPAK complex modulates dynein activity. Consistent with this hypothesis, we provide evidence that CKA facilitates axonal transport of dense core vesicles and autophagosomes in a PP2A-dependent fashion. In addition, CKA-deficient flies exhibit PP2A-dependent motor coordination defects. CKA function within the STRIPAK complex is crucial to prevent transport defects that may contribute to neurodegeneration. PMID:28100687
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Yoshiyuki, E-mail: yishii@nih.go.jp
2013-04-19
Highlights: •HPV16 pseudovirions (16PsVs) infection induces an autophagy response. •The autophagy was analyzed by transmission electron microscope (TEM). •TEM showed the double-membrane vesicles in HeLa cells inoculated with 16PsVs. •These vesicles incorporated 16PsVs particles in the lumen. •These results imply that autophagosomes are generated from the plasma membrane. -- Abstract: Autophagy is a bulk degradation process for subcellular proteins and organelles to manage cell starvation. Autophagy is associated with the formation of autophagosomes and further functions as a defense mechanism against infection by various pathogens. Human papillomavirus (HPV) infection induces an autophagy response, such as up-regulation of marker proteins formore » autophagy, in host keratinocytes. However, direct microscopic evidence for autophagy induction by HPV infection is still lacking. Here, I report an electron microscopic analysis of autophagosomes elicited by the entry of HPV pseudovirions (PsVs). HeLa cells showed enhanced infectivity for PsVs of HPV type 16 (16PsVs) when treated with an autophagy inhibitor, suggesting the involvement of autophagy in HPV infection. In HeLa cells inoculated with 16PsVs, transmission electron microscopy showed the presence of cup-shaped, double-membrane vesicles (phagophores) and double-membrane-bound vesicles, which are typical structures of autophagosomes. These double-membrane vesicles displayed a large lumen volume and incorporated 10–50 16PsVs particles in the lumen. These results demonstrate that autophagy is indeed induced during the HPV16 entry process and imply that autophagosomes are generated from the plasma membrane by HPV infection.« less
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes.
Diao, Jiajie; Liu, Rong; Rong, Yueguang; Zhao, Minglei; Zhang, Jing; Lai, Ying; Zhou, Qiangjun; Wilz, Livia M; Li, Jianxu; Vivona, Sandro; Pfuetzner, Richard A; Brunger, Axel T; Zhong, Qing
2015-04-23
Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.
Hepatitis C Virus Induces the Localization of Lipid Rafts to Autophagosomes for Its RNA Replication
Kim, Ja Yeon; Wang, Linya; Lee, Jiyoung
2017-01-01
ABSTRACT Autophagy plays important roles in maintaining cellular homeostasis. It uses double- or multiple-membrane vesicles termed autophagosomes to remove protein aggregates and damaged organelles from the cytoplasm for recycling. Hepatitis C virus (HCV) has been shown to induce autophagy to enhance its own replication. Here we describe a procedure that combines membrane flotation and affinity chromatography for the purification of autophagosomes from cells that harbor an HCV subgenomic RNA replicon. The purified autophagosomes had double- or multiple-membrane structures with a diameter ranging from 200 nm to 600 nm. The analysis of proteins associated with HCV-induced autophagosomes by proteomics led to the identification of HCV nonstructural proteins as well as proteins involved in membrane trafficking. Notably, caveolin-1, caveolin-2, and annexin A2, which are proteins associated with lipid rafts, were also identified. The association of lipid rafts with HCV-induced autophagosomes was confirmed by Western blotting, immunofluorescence microscopy, and immunoelectron microscopy. Their association with autophagosomes was also confirmed in HCV-infected cells. The association of lipid rafts with autophagosomes was specific to HCV, as it was not detected in autophagosomes induced by nutrient starvation. Further analysis indicated that the autophagosomes purified from HCV replicon cells could mediate HCV RNA replication in a lipid raft-dependent manner, as the depletion of cholesterol, a major component of lipid rafts, from autophagosomes abolished HCV RNA replication. Our studies thus demonstrated that HCV could specifically induce the association of lipid rafts with autophagosomes for its RNA replication. IMPORTANCE HCV can cause severe liver diseases, including cirrhosis and hepatocellular carcinoma, and is one of the most important human pathogens. Infection with HCV can lead to the reorganization of membrane structures in its host cells, including the induction of
Karanasios, Eleftherios; Ktistakis, Nicholas T
2015-03-01
Autophagy is a cytosolic degradative pathway, which through a series of complicated membrane rearrangements leads to the formation of a unique double membrane vesicle, the autophagosome. The use of fluorescent proteins has allowed visualizing the autophagosome formation in live cells and in real time, almost 40 years after electron microscopy studies observed these structures for the first time. In the last decade, live-cell imaging has been extensively used to study the dynamics of autophagosome formation in cultured mammalian cells. Hereby we will discuss how the live-cell imaging studies have tried to settle the debate about the origin of the autophagosome membrane and how they have described the way different autophagy proteins coordinate in space and time in order to drive autophagosome formation. Copyright © 2014 Elsevier Inc. All rights reserved.
The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy
NASA Astrophysics Data System (ADS)
Rao, Yijian; Perna, Marco G.; Hofmann, Benjamin; Beier, Viola; Wollert, Thomas
2016-01-01
Autophagosomes are double-membrane vesicles that sequester cytoplasmic material for lysosomal degradation. Their biogenesis is initiated by recruitment of Atg9-vesicles to the phagophore assembly site. This process depends on the regulated activation of the Atg1-kinase complex. However, the underlying molecular mechanism remains unclear. Here we reconstitute this early step in autophagy from purified components in vitro. We find that on assembly from its cytoplasmic subcomplexes, the Atg1-kinase complex becomes activated, enabling it to recruit and tether Atg9-vesicles. The scaffolding protein Atg17 targets the Atg1-kinase complex to autophagic membranes by specifically recognizing the membrane protein Atg9. This interaction is inhibited by the two regulatory subunits Atg31 and Atg29. Engagement of the Atg1-Atg13 subcomplex restores the Atg9-binding and membrane-tethering activity of Atg17. Our data help to unravel the mechanism that controls Atg17-mediated tethering of Atg9-vesicles, providing the molecular basis to understand initiation of autophagosome-biogenesis.
The Journey of the Autophagosome through Mammalian Cell Organelles and Membranes.
Molino, Diana; Zemirli, Naïma; Codogno, Patrice; Morel, Etienne
2017-02-17
Autophagy is an intracellular degradation process carried out by a double-membrane organelle, termed the autophagosome, which sequesters cytoplasmic material destined for lysosomal degradation and recycling. Autophagy and autophagosome biogenesis are highly conserved processes in eukaryotes and are essential for cell survival, stress responses, and homeostasis. Autophagosomes are dynamic and complex organelles that can originate from several different membrane compartments. Autophagosomes traffic through the cell to fuse with lysosomes or other compartments. Despite identification of key proteins necessary for autophagosome assembly and transport, such as those encoded by the autophagy-related genes, the relationship and interdependence of the autophagosome with other intracellular endo-membranes, including those of organelles involved in exocytosis and endocytic trafficking pathways, are still poorly understood. Here we discuss formation of autophagosomes, the journey of these organelles through the cell, and their close interplay with other mammalian organelles from points of view of signalization platforms and membrane dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Albanesi, Joseph; Wang, Hanzhi; Sun, Hui-Qiao; Levine, Beth; Yin, Helen
2015-11-02
For decades, phosphatidylinositol 4-phosphate (PtdIns4P) was considered primarily as a precursor in the synthesis of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P 2 ). More recently, specific functions for PtdIns4P itself have been identified, particularly in the regulation of intracellular membrane trafficking. PI4K2A/PI4KIIα (phosphatidylinositol 4-kinase type 2 α), one of the 4 enzymes that catalyze PtdIns4P production in mammalian cells, promotes vesicle formation from the trans-Golgi network (TGN) and endosomes. We recently identified a novel function for PI4K2A-derived PtdIns4P, as a facilitator of autophagosome-lysosome (A-L) fusion. We further showed that that this function requires the presence of the autophagic adaptor protein GABARAP (GABA[A] receptor-associated protein), which binds to PI4K2A and recruits it to autophagosomes. The mechanism whereby GABARAP-PI4K2A-PtdIns4P promotes A-L fusion remains to be defined. Based on other examples of phosphoinositide involvement in membrane trafficking, we speculate that it acts by recruiting elements of the membrane docking and fusion machinery.
Suzuki, K; Kirisako, T; Kamada, Y; Mizushima, N; Noda, T; Ohsumi, Y
2001-11-01
Macroautophagy is a bulk degradation process induced by starvation in eukaryotic cells. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Several key reactions performed by these proteins have been described, but a comprehensive understanding of the overall network is still lacking. Based on Apg protein localization, we have identified a novel structure that functions in autophagosome formation. This pre-autophagosomal structure, containing at least five Apg proteins, i.e. Apg1p, Apg2p, Apg5p, Aut7p/Apg8p and Apg16p, is localized in the vicinity of the vacuole. Analysis of apg mutants revealed that the formation of both a phosphatidylethanolamine-conjugated Aut7p and an Apg12p- Apg5p conjugate is essential for the localization of Aut7p to the pre-autophagosomal structure. Vps30p/Apg6p and Apg14p, components of an autophagy- specific phosphatidylinositol 3-kinase complex, Apg9p and Apg16p are all required for the localization of Apg5p and Aut7p to the structure. The Apg1p protein kinase complex functions in the late stage of autophagosome formation. Here, we present the classification of Apg proteins into three groups that reflect each step of autophagosome formation.
Suzuki, Kuninori; Kirisako, Takayoshi; Kamada, Yoshiaki; Mizushima, Noboru; Noda, Takeshi; Ohsumi, Yoshinori
2001-01-01
Macroautophagy is a bulk degradation process induced by starvation in eukaryotic cells. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Several key reactions performed by these proteins have been described, but a comprehensive understanding of the overall network is still lacking. Based on Apg protein localization, we have identified a novel structure that functions in autophagosome formation. This pre-autophagosomal structure, containing at least five Apg proteins, i.e. Apg1p, Apg2p, Apg5p, Aut7p/Apg8p and Apg16p, is localized in the vicinity of the vacuole. Analysis of apg mutants revealed that the formation of both a phosphatidylethanolamine-conjugated Aut7p and an Apg12p– Apg5p conjugate is essential for the localization of Aut7p to the pre-autophagosomal structure. Vps30p/Apg6p and Apg14p, components of an autophagy- specific phosphatidylinositol 3-kinase complex, Apg9p and Apg16p are all required for the localization of Apg5p and Aut7p to the structure. The Apg1p protein kinase complex functions in the late stage of autophagosome formation. Here, we present the classification of Apg proteins into three groups that reflect each step of autophagosome formation. PMID:11689437
Wang, Zheng; Miao, Guangyan; Xue, Xue; Guo, Xiangyang; Yuan, Chongzhen; Wang, Zhaoyu; Zhang, Gangming; Chen, Yingyu; Feng, Du; Hu, Junjie; Zhang, Hong
2016-09-01
Mutations in the human autophagy gene EPG5 cause the multisystem disorder Vici syndrome. Here we demonstrated that EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. EPG5 is recruited to late endosomes/lysosomes by direct interaction with Rab7 and the late endosomal/lysosomal R-SNARE VAMP7/8. EPG5 also binds to LC3/LGG-1 (mammalian and C. elegans Atg8 homolog, respectively) and to assembled STX17-SNAP29 Qabc SNARE complexes on autophagosomes. EPG5 stabilizes and facilitates the assembly of STX17-SNAP29-VAMP7/8 trans-SNARE complexes, and promotes STX17-SNAP29-VAMP7-mediated fusion of reconstituted proteoliposomes. Loss of EPG5 activity causes abnormal fusion of autophagosomes with various endocytic vesicles, in part due to elevated assembly of STX17-SNAP25-VAMP8 complexes. SNAP25 knockdown partially suppresses the autophagy defect caused by EPG5 depletion. Our study reveals that EPG5 is a Rab7 effector involved in autophagosome maturation, providing insight into the molecular mechanism underlying Vici syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.
Deretic, Vojo
2008-01-01
Autophagy and phagocytosis are evolutionarily ancient processes functioning in capture and digestion of material found in the cellular interior and exterior, respectively. In their most primordial form, both processes are involved in cellular metabolism and feeding, supplying cells with externally obtained particulate nutrients or using portions of cell's own cytoplasm to generate essential nutrients and energy at times of starvation. Although autophagy and phagocytosis are commonly treated as completely separate biological phenomena, they are topologically similar and can be, at least morphologically, viewed as different manifestations of a spectrum of related processes. Autophagy is the process of sequestering portions of cellular interior (cytosol and intracellular organelles) into a membranous organelle (autophagosome), whereas phagocystosis is its topological equivalent engaged in sequestering cellular exterior. Both autophagosomes and phagosomes mature into acidified, degradative organelles, termed autolysosomes and phagolysosomes, respectively. The basic role of autophagy as a nutritional process, and that of phagocytosis where applicable, has survived in present-day organisms ranging from yeast to man. It has in addition evolved into a variety of specialized processes in metazoans, with a major role in cellular/cytoplasmic homeostasis. In humans, autophagy has been implicated in many health and disease states, including cancer, neurodegeneration, aging and immunity, while phagocytosis plays a role in immunity and tissue homeostasis. Autophagy and phagocytosis cooperate in the latter two processes. In this chapter, we briefly review the regulatory and execution stages of both autophagy and phagocytosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Xia, E-mail: zhai_xia_cool@126.com; Qin, Ying, E-mail: qinyinggaofeng@163.com; Chen, Yang, E-mail: cy_hmu@126.com
Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were alsomore » detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection. - Highlights: • CVB3 replication induced autophagosome assembly in primary cardiac fibroblasts. • Both IL-6 and TNF-α in cardiac fibroblasts infected by CVB3 were increased. • IL-6 and TNF-α were reduced in cardiac fibroblasts when autophagy was inhibited. • Autophagosome assembly in cardiac fibroblasts of CVB-infected mice was increased.« less
Storage vesicles in neurons are related to Golgi complex alterations in mucopolysaccharidosis IIIB.
Vitry, Sandrine; Bruyère, Julie; Hocquemiller, Michaël; Bigou, Stéphanie; Ausseil, Jérôme; Colle, Marie-Anne; Prévost, Marie-Christine; Heard, Jean Michel
2010-12-01
The accumulation of intracellular storage vesicles is a hallmark of lysosomal storage diseases. Neither the identity nor origin of these implicated storage vesicles have yet been established. The vesicles are often considered as lysosomes, endosomes, and/or autophagosomes that are engorged with undigested materials. Our studies in the mouse model of mucopolysaccharidosis type IIIB, a lysosomal storage disease that induces neurodegeneration, showed that large storage vesicles in cortical neurons did not receive material from either the endocytic or autophagy pathway, which functioned normally. Storage vesicles expressed GM130, a Golgi matrix protein, which mediates vesicle tethering in both pre- and cis-Golgi compartments. However, other components of the tethering/fusion complex were not associated with GM130 on storage vesicles, likely accounting for both the resistance of the vesicles to brefeldin A and the alteration of Golgi ribbon architecture, which comprised distended cisterna connected to LAMP1-positive storage vesicles. We propose that alteration in the GM130-mediated control of vesicle trafficking in pre-Golgi and Golgi compartments affects Golgi biogenesis and gives rise to a dead-end storage compartment. Vesicle accumulation, Golgi disorganization, and alterations of other GM130 functions may account for neuron dysfunction and death.
PI(5)P Regulates Autophagosome Biogenesis
Vicinanza, Mariella; Korolchuk, Viktor I.; Ashkenazi, Avraham; Puri, Claudia; Menzies, Fiona M.; Clarke, Jonathan H.; Rubinsztein, David C.
2015-01-01
Summary Phosphatidylinositol 3-phosphate (PI(3)P), the product of class III PI3K VPS34, recruits specific autophagic effectors, like WIPI2, during the initial steps of autophagosome biogenesis and thereby regulates canonical autophagy. However, mammalian cells can produce autophagosomes through enigmatic noncanonical VPS34-independent pathways. Here we show that PI(5)P can regulate autophagy via PI(3)P effectors and thereby identify a mechanistic explanation for forms of noncanonical autophagy. PI(5)P synthesis by the phosphatidylinositol 5-kinase PIKfyve was required for autophagosome biogenesis, and it increased levels of PI(5)P, stimulated autophagy, and reduced the levels of autophagic substrates. Inactivation of VPS34 impaired recruitment of WIPI2 and DFCP1 to autophagic precursors, reduced ATG5-ATG12 conjugation, and compromised autophagosome formation. However, these phenotypes were rescued by PI(5)P in VPS34-inactivated cells. These findings provide a mechanistic framework for alternative VPS34-independent autophagy-initiating pathways, like glucose starvation, and unravel a cytoplasmic function for PI(5)P, which previously has been linked predominantly to nuclear roles. PMID:25578879
ATG14 controls SNARE-mediated autophagosome fusion with a lysosome.
Liu, Rong; Zhi, Xiaoyong; Zhong, Qing
2015-01-01
Autophagosome fusion with a lysosome constitutes the last barrier for autophagic degradation. It is speculated that this fusion process is precisely and tightly regulated. Recent genetic evidence suggests that a set of SNARE proteins, including STX17, SNAP29, and VAMP8, are essential for the fusion between autophagosomes and lysosomes. However, it remains unclear whether these SNAREs are fusion competent and how their fusogenic activity is specifically regulated during autophagy. Using a combination of biochemical, cell biology, and genetic approaches, we demonstrated that fusogenic activity of the autophagic SNARE complex is temporally and spatially controlled by ATG14/Barkor/Atg14L, an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex (PtdIns3K). ATG14 directly binds to the STX17-SNAP29 binary complex on autophagosomes and promotes STX17-SNAP29-VAMP8-mediated autophagosome fusion with lysosomes. ATG14 homo-oligomerization is required for SNARE binding and fusion promotion, but is dispensable for PtdIns3K stimulation and autophagosome biogenesis. Consequently, ATG14 homo-oligomerization is required for autophagosome fusion with a lysosome, but is dispensable for autophagosome biogenesis. These data support a key role of ATG14 in controlling autophagosome fusion with a lysosome.
Acetylated microtubules are required for fusion of autophagosomes with lysosomes.
Xie, Rui; Nguyen, Susan; McKeehan, Wallace L; Liu, Leyuan
2010-11-22
Autophagy is a dynamic process during which isolation membranes package substrates to form autophagosomes that are fused with lysosomes to form autolysosomes for degradation. Although it is agreed that the LC3II-associated mature autophagosomes move along microtubular tracks, it is still in dispute if the conversion of LC3I to LC3II before autophagosomes are fully mature and subsequent fusion of mature autophagosomes with lysosomes require microtubules. We use biochemical markers of autophagy and a collection of microtubule interfering reagents to test the question. Results show that interruption of microtubules with either microtubule stabilizing paclitaxel or destabilizing nocodazole similarly impairs the conversion of LC3I to LC3II, but does not block the degradation of LC3II-associated autophagosomes. Acetylation of microtubules renders them resistant to nocodazole treatment. Treatment with vinblastine that causes depolymerization of both non-acetylated and acetylated microtubules results in impairment of both LC3I-LC3II conversion and LC3II-associated autophagosome fusion with lysosomes. Acetylated microtubules are required for fusion of autophagosomes with lysosomes to form autolysosomes.
GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion.
Wang, Hanzhi; Sun, Hui-Qiao; Zhu, Xiaohui; Zhang, Li; Albanesi, Joseph; Levine, Beth; Yin, Helen
2015-06-02
The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs' previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through "PI4P shuttling." Importantly, PI4KIIα's role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP2) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome's fusion machinery.
Brivaracetam augments short-term depression and slows vesicle recycling.
Yang, Xiaofeng; Bognar, Joseph; He, Tianyu; Mohammed, Mouhari; Niespodziany, Isabelle; Wolff, Christian; Esguerra, Manuel; Rothman, Steven M; Dubinsky, Janet M
2015-12-01
Brivaracetam (BRV) decreases seizure activity in a number of epilepsy models and binds to the synaptic vesicle glycoprotein 2A (SV2A) with a higher affinity than the antiepileptic drug levetiracetam (LEV). Experiments were performed to determine if BRV acted similarly to LEV to induce or augment short-term depression (STD) under high-frequency neuronal stimulation and slow synaptic vesicle recycling. Electrophysiologic field excitatory postsynaptic potential (fEPSP) recordings were made from CA1 synapses in rat hippocampal slices loaded with BRV or LEV during intrinsic activity or with BRV actively loaded during hypertonic stimulation. STD was examined in response to 5 or 40 Hz stimulus trains. Presynaptic release of FM1-43 was visualized using two-photon microscopy to assess drug effects upon synaptic vesicle mobilization. When hippocampal slices were incubated in 0.1-30 μm BRV or 30 μm-1 mm LEV for 3 h, the relative CA1 field EPSPs decreased over the course of a high-frequency train of stimuli more than for control slices. This STD was frequency- and concentration-dependent, with BRV being 100-fold more potent than LEV. The extent of STD depended on the length of the incubation time for both drugs. Pretreatment with LEV occluded the effects of BRV. Repeated hypertonic sucrose treatments and train stimulation successfully unloaded BRV from recycling vesicles and reversed BRVs effects on STD, as previously reported for LEV. At their maximal concentrations, BRV slowed FM1-43 release to a greater extent than in slices loaded with LEV during prolonged stimulation. BRV, similar to LEV, entered into recycling synaptic vesicles and produced a frequency-dependent decrement of synaptic transmission at 100-fold lower concentrations than LEV. In addition, BRV slowed synaptic vesicle mobilization more effectively than LEV, suggesting that these drugs may modify multiple functions of the synaptic vesicle protein SV2A to curb synaptic transmission and limit epileptic activity
TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion.
Xia, Qin; Wang, Hongfeng; Hao, Zongbing; Fu, Cheng; Hu, Qingsong; Gao, Feng; Ren, Haigang; Chen, Dong; Han, Junhai; Ying, Zheng; Wang, Guanghui
2016-01-18
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA-binding protein 43 (TDP-43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP-43 is a multi-functional protein involved in RNA processing and a large number of TDP-43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP-43-linked neurodegeneration remain elusive. In this study, we found that loss of TDP-43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy-lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP-43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP-43-depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP-43-mediated neurodegeneration. © 2015 The Authors.
Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway.
Maday, Sandra; Holzbaur, Erika L F
2014-07-14
Autophagy is an essential degradative pathway in neurons, yet little is known about mechanisms driving autophagy in highly polarized cells. Here, we use dual-color live-cell imaging to investigate the neuron-specific mechanisms of constitutive autophagosome biogenesis in primary dorsal root ganglion (DRG) and hippocampal cultures. Under basal conditions, autophagosomes are continuously generated in the axon tip. There is an ordered assembly of proteins recruited with stereotypical kinetics onto the developing autophagosome. Plasma- or mitochondrial-derived membranes were not incorporated into nascent autophagosomes in the distal axon. Rather, autophagosomes are generated at double FYVE-containing protein 1 (DFCP1)-positive subdomains of the endoplasmic reticulum (ER), distinct from ER exit sites. Biogenesis events are enriched distally; autophagosomes form infrequently in dendrites, the soma, or midaxon, consistent with a compartmentalized pathway for constitutive autophagy in primary neurons. Distal biogenesis may facilitate degradation of damaged mitochondria and long-lived cytoplasmic proteins reaching the axon tip via slow axonal transport. Copyright © 2014 Elsevier Inc. All rights reserved.
Loss of Drosophila Vps16A enhances autophagosome formation through reduced Tor activity.
Takáts, Szabolcs; Varga, Ágnes; Pircs, Karolina; Juhász, Gábor
2015-01-01
The HOPS tethering complex facilitates autophagosome-lysosome fusion by binding to Syx17 (Syntaxin 17), the autophagosomal SNARE. Here we show that loss of the core HOPS complex subunit Vps16A enhances autophagosome formation and slows down Drosophila development. Mechanistically, Tor kinase is less active in Vps16A mutants likely due to impaired endocytic and biosynthetic transport to the lysosome, a site of its activation. Tor reactivation by overexpression of Rheb suppresses autophagosome formation and restores growth and developmental timing in these animals. Thus, Vps16A reduces autophagosome numbers both by indirectly restricting their formation rate and by directly promoting their clearance. In contrast, the loss of Syx17 blocks autophagic flux without affecting the induction step in Drosophila.
The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability
Reich, Steven
2014-01-01
Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this process of vesicle release and recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability of the postsynaptic response. We use continuous time Markov chain methods to analyze a model of short term synaptic depression with stochastic vesicle dynamics coupled with three different models of presynaptic spiking: one model in which the timing of presynaptic action potentials are modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). We use this analysis to investigate how variability in a presynaptic spike train is transformed by short term depression and stochastic vesicle dynamics to determine the variability of the postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at which vesicles are released, that the number of vesicles released over a time window is more variable for smaller time windows than larger time windows and that fast presynaptic spiking gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike times are non-Poisson. Our results complement and extend previously reported theoretical results and provide possible explanations for some trends observed in recorded data. PMID:23354693
Dengjel, Jörn; Høyer-Hansen, Maria; Nielsen, Maria O.; Eisenberg, Tobias; Harder, Lea M.; Schandorff, Søren; Farkas, Thomas; Kirkegaard, Thomas; Becker, Andrea C.; Schroeder, Sabrina; Vanselow, Katja; Lundberg, Emma; Nielsen, Mogens M.; Kristensen, Anders R.; Akimov, Vyacheslav; Bunkenborg, Jakob; Madeo, Frank; Jäättelä, Marja; Andersen, Jens S.
2012-01-01
Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid deprivation or rapamycin or concanamycin A treatment. The autophagosome-associated proteins were dependent on stimulus, but a core set of proteins was stimulus-independent. Remarkably, proteasomal proteins were abundant among the stimulus-independent common autophagosome-associated proteins, and the activation of autophagy significantly decreased the cellular proteasome level and activity supporting interplay between the two degradation pathways. A screen of yeast strains defective in the orthologs of the human genes encoding for a common set of autophagosome-associated proteins revealed several regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection. PMID:22311637
Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg
2017-10-01
Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inami, Yoshihiro; Yamashina, Shunhei, E-mail: syamashi@juntendo.ac.jp; Izumi, Kousuke
2011-09-09
Highlights: {yields} Acidification of autophagosome was blunted in steatotic hepatocytes. {yields} Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. {yields} Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. {yields} Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmentedmore » in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.« less
Two Pore Channel 2 (TPC2) Inhibits Autophagosomal-Lysosomal Fusion by Alkalinizing Lysosomal pH*
Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W. M.; Wu, Wu-Tian; Yue, Jianbo
2013-01-01
Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca2+ mobilizing messengers, elicits Ca2+ release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca2+ signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression. PMID:23836916
Jiang, Lijuan; Liang, Xin; Liu, Gan; Zhou, Yun; Ye, Xinyu; Chen, Xiuli; Miao, Qianwei; Gao, Li; Zhang, Xudong; Mei, Lin
2018-11-01
Protein nanocapsules have exhibited promising potential applications in the field of protein drug delivery. A major issue with various promising nano-sized biotherapeutics including protein nanocapsules is that owing to their particle size they are subject to cellular uptake via endocytosis, and become entrapped and then degraded within endolysosomes, which can significantly impair their therapeutic efficacy. In addition, many nano-sized biotherapeutics could be also sequestered by autophagosomes and degraded through the autolysosomal pathway. Thus, a limiting step in achieving an effective protein therapy is to facilitate the endosomal escape and auto-lysosomal escape to ensure cytosolic delivery of the protein drugs. Here, we prepared a protein nanocapsule based on BSA (nBSA) and the BSA nanocapsules modified with a bilayer of lauric acid (LA-nBSA) to investigate the escape effects from the endosome and autophagosome. The size distribution of nBSA and LA-nBSA analyzed using DLS presents a uniform diameter centered at 10 nm and 16 nm. The data also showed that FITC-labeled nBSA and LA-nBSA were taken up by the cells mainly through Arf-6-dependent endocytosis and Rab34-mediated macropinocytosis. In addition, LA-nBSA could efficiently escape from endosomal before the degradation in endo-lysosomes. Autophagy could also sequester the LA-nBSA through p62 autophagosome vesicles. These two types of nanocapsules underwent different intracellular destinies and lauric acid (LA) coating played a vital role in intracellular particle retention. In conclusion, the protein nanocapsules modified with LA could enhance the protein nanocapsules escape from intercellular trafficking vesicles, and protect the protein from degradation by the lysosomes.
p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding.
Itakura, Eisuke; Mizushima, Noboru
2011-01-10
Autophagy is an intracellular degradation process by which cytoplasmic contents are degraded in the lysosome. In addition to nonselective engulfment of cytoplasmic materials, the autophagosomal membrane can selectively recognize specific proteins and organelles. It is generally believed that the major selective substrate (or cargo receptor) p62 is recruited to the autophagosomal membrane through interaction with LC3. In this study, we analyzed loading of p62 and its related protein NBR1 and found that they localize to the endoplasmic reticulum (ER)-associated autophagosome formation site independently of LC3 localization to membranes. p62 colocalizes with upstream autophagy factors such as ULK1 and VMP1 even when autophagosome formation is blocked by wortmannin or FIP200 knockout. Self-oligomerization of p62 is essential for its localization to the autophagosome formation site. These results suggest that p62 localizes to the autophagosome formation site on the ER, where autophagosomes are nucleated. This process is similar to the yeast cytoplasm to vacuole targeting pathway.
Regulation of dynein-mediated autophagosomes trafficking by ASM in CASMCs.
Xu, Ming; Zhang, Qiufang; Li, Pin-Lan; Nguyen, Thaison; Li, Xiang; Zhang, Yang
2016-01-01
Acid sphingomyelinase (ASM; gene symbol Smpd1) has been shown to play a crucial role in autophagy maturation by controlling lysosomal fusion with autophagosomes in coronary arterial smooth muscle cells (CASMCs). However, the underlying molecular mechanism by which ASM controls autophagolysosomal fusion remains unknown. In primary cultured CASMCs, lysosomal Ca2+ induced by 7-ketocholesterol (7-Ket, an atherogenic stimulus and autophagy inducer) was markedly attenuated by ASM deficiency or TRPML1 gene silencing suggesting that ASM signaling is required for TRPML1 channel activity and subsequent lysosomal Ca(2+) release. In these CASMCs, ASM deficiency or TRPML1 gene silencing markedly inhibited 7-Ket-induced dynein activation. In addition, 7-Ket-induced autophagosome trafficking, an event associated with lysosomal Ca(2+) release and dynein activity, was significantly inhibited in ASM-deficient (Smpd1(-/-)) CASMCs compared to that in Smpd1(+/+) CASMCs. Finally, overexpression of TRPML1 proteins restored 7-Ket-induced lysosomal Ca(2+) release and autophagosome trafficking in Smpd1-/- CASMCs. Collectively, these results suggest that ASM plays a critical role in regulating lysosomal TRPML1-Ca(2+) signaling and subsequent dynein-mediated autophagosome trafficking, which leads its role in controlling autophagy maturation in CASMCs under atherogenic stimulation.
p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding
Itakura, Eisuke
2011-01-01
Autophagy is an intracellular degradation process by which cytoplasmic contents are degraded in the lysosome. In addition to nonselective engulfment of cytoplasmic materials, the autophagosomal membrane can selectively recognize specific proteins and organelles. It is generally believed that the major selective substrate (or cargo receptor) p62 is recruited to the autophagosomal membrane through interaction with LC3. In this study, we analyzed loading of p62 and its related protein NBR1 and found that they localize to the endoplasmic reticulum (ER)–associated autophagosome formation site independently of LC3 localization to membranes. p62 colocalizes with upstream autophagy factors such as ULK1 and VMP1 even when autophagosome formation is blocked by wortmannin or FIP200 knockout. Self-oligomerization of p62 is essential for its localization to the autophagosome formation site. These results suggest that p62 localizes to the autophagosome formation site on the ER, where autophagosomes are nucleated. This process is similar to the yeast cytoplasm to vacuole targeting pathway. PMID:21220506
Fu, Meng-Meng; Nirschl, Jeffrey J; Holzbaur, Erika L F
2014-06-09
Autophagy is essential for maintaining cellular homeostasis in neurons, where autophagosomes undergo robust unidirectional retrograde transport along axons. We find that the motor scaffolding protein JIP1 binds directly to the autophagosome adaptor LC3 via a conserved LIR motif. This interaction is required for the initial exit of autophagosomes from the distal axon, for sustained retrograde transport along the midaxon, and for autophagosomal maturation in the proximal axon. JIP1 binds directly to the dynein activator dynactin but also binds to and activates kinesin-1 in a phosphorylation-dependent manner. Following JIP1 depletion, phosphodeficient JIP1-S421A rescues retrograde transport, while phosphomimetic JIP1-S421D aberrantly activates anterograde transport. During normal autophagosome transport, residue S421 of JIP1 may be maintained in a dephosphorylated state by autophagosome-associated MKP1 phosphatase. Moreover, binding of LC3 to JIP1 competitively disrupts JIP1-mediated activation of kinesin. Thus, dual mechanisms prevent aberrant activation of kinesin to ensure robust retrograde transport of autophagosomes along the axon. Copyright © 2014 Elsevier Inc. All rights reserved.
The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes.
Shvets, Elena; Fass, Ephraim; Scherz-Shouval, Ruthie; Elazar, Zvulun
2008-08-15
LC3 belongs to a novel ubiquitin-like protein family that is involved in different intracellular trafficking processes, including autophagy. All members of this family share a unique three-dimensional structure composed of a C-terminal ubiquitin core and two N-terminal alpha-helices. Here, we focus on the specific contribution of these regions to autophagy induced by amino acid deprivation. We show that the ubiquitin core by itself is sufficient for LC3 processing through the conjugation machinery and for its consequent targeting to the autophagosomal membrane. The N-terminal region was found to be important for interaction between LC3 and p62/SQSTM1 (hereafter termed p62). This interaction is dependent on the first 10 amino acids of LC3 and on specific residues located within the ubiquitin core. Knockdown of LC3 isoforms and overexpression of LC3 mutants that fail to interact with p62 blocked the incorporation of p62 into autophagosomes. The accumulation of p62 was accompanied by elevated levels of polyubiquitylated detergent-insoluble structures. p62, however, is not required for LC3 lipidation, autophagosome formation and targeting to lysosomes. Our results support the proposal that LC3 is responsible for recruiting p62 into autophagosomes, a process mediated by phenylalanine 52, located within the ubiquitin core, and the N-terminal region of the protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Donnell, Tanya B.; Hyde, Jennifer L.; Mintern, Justine D.
Autophagy is a cellular process used to eliminate intracellular pathogens. Many viruses however are able to manipulate this cellular process for their own advantage. Here we demonstrate that Mouse Norovirus (MNV) infection induces autophagy but does not appear to utilise the autophagosomal membrane for establishment and formation of the viral replication complex. We have observed that MNV infection results in lipidation and recruitment of LC3 to the autophagosome membrane but prevents subsequent fusion of the autophagosomes with lysosomes, as SQSTM1 (an autophagy receptor) accumulates and Lysosome-Associated Membrane Protein1 is sequestered to the MNV replication complex (RC) rather than to autophagosomes.more » We have additionally observed that chemical modulation of autophagy differentially affects MNV replication. From this study we can conclude that MNV infection induces autophagy, however suppresses the final maturation step of this response, indicating that autophagy induction contributes to MNV replication independently of RC biogenesis. - Highlights: • MNV induces autophagy in infected murine macrophages. • MNV does not utilise autophagosomal membranes for replication. • The MNV-induced autophagosomes do not fuse with lysosomes. • MNV sequesters SQSTM1 to prevent autophagy degradation and turnover. • Chemical modulation of autophagy enhances MNV replication.« less
Pierzyńska-Mach, Agnieszka; Janowski, Paweł A; Dobrucki, Jurek W
2014-08-01
Acidic vesicles can be imaged and tracked in live cells after staining with several low molecular weight fluorescent probes, or with fluorescently labeled proteins. Three fluorescent dyes, acridine orange, LysoTracker Red DND-99, and quinacrine, were evaluated as acidic vesicle tracers for confocal fluorescence imaging and quantitative analysis. The stability of fluorescent signals, achievable image contrast, and phototoxicity were taken into consideration. The three tested tracers exhibit different advantages and pose different problems in imaging experiments. Acridine orange makes it possible to distinguish acidic vesicles with different internal pH but is fairly phototoxic and can cause spectacular bursts of the dye-loaded vesicles. LysoTracker Red is less phototoxic but its rapid photobleaching limits the range of useful applications considerably. We demonstrate that quinacrine is most suitable for long-term imaging when a high number of frames is required. This capacity made it possible to trace acidic vesicles for several hours, during a process of drug-induced apoptosis. An ability to record the behavior of acidic vesicles over such long periods opens a possibility to study processes like autophagy or long-term effects of drugs on endocytosis and exocytosis. © 2014 International Society for Advancement of Cytometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Dong, E-mail: austhudong@126.com; Wu, Jing, E-mail: wujing8008@126.com; Wang, Wan
The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domainmore » and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.« less
Chen, Guang-Chao; Lee, Janice Y; Tang, Hong-Wen; Debnath, Jayanta; Thomas, Sheila M; Settleman, Jeffrey
2008-01-01
Autophagy is a conserved cellular process of macromolecule recycling that involves vesicle-mediated degradation of cytoplasmic components. Autophagy plays essential roles in normal cell homeostasis and development, the response to stresses such as nutrient starvation, and contributes to disease processes including cancer and neurodegeneration. Although many of the autophagy components identified from genetic screens in yeast are well conserved in higher organisms, the mechanisms by which this process is regulated in any species are just beginning to be elucidated. In a genetic screen in Drosophila melanogaster, we have identified a link between the focal adhesion protein paxillin and the Atg1 kinase, which has been previously implicated in autophagy. In mammalian cells, we find that paxillin is redistributed from focal adhesions during nutrient deprivation, and paxillin-deficient cells exhibit defects in autophagosome formation. Together, these findings reveal a novel evolutionarily conserved role for paxillin in autophagy.
GRASP55 Senses Glucose Deprivation through O-GlcNAcylation to Promote Autophagosome-Lysosome Fusion.
Zhang, Xiaoyan; Wang, Leibin; Lak, Behnam; Li, Jie; Jokitalo, Eija; Wang, Yanzhuang
2018-04-23
The Golgi apparatus is the central hub for protein trafficking and glycosylation in the secretory pathway. However, how the Golgi responds to glucose deprivation is so far unknown. Here, we report that GRASP55, the Golgi stacking protein located in medial- and trans-Golgi cisternae, is O-GlcNAcylated by the O-GlcNAc transferase OGT under growth conditions. Glucose deprivation reduces GRASP55 O-GlcNAcylation. De-O-GlcNAcylated GRASP55 forms puncta outside of the Golgi area, which co-localize with autophagosomes and late endosomes/lysosomes. GRASP55 depletion reduces autophagic flux and results in autophagosome accumulation, while expression of an O-GlcNAcylation-deficient mutant of GRASP55 accelerates autophagic flux. Biochemically, GRASP55 interacts with LC3-II on the autophagosomes and LAMP2 on late endosomes/lysosomes and functions as a bridge between LC3-II and LAMP2 for autophagosome and lysosome fusion; this function is negatively regulated by GRASP55 O-GlcNAcylation. Therefore, GRASP55 senses glucose levels through O-GlcNAcylation and acts as a tether to facilitate autophagosome maturation. Copyright © 2018 Elsevier Inc. All rights reserved.
Golgi-Resident GTPase Rab30 Promotes the Biogenesis of Pathogen-Containing Autophagosomes
Oda, Seiichiro; Nozawa, Takashi; Nozawa-Minowa, Atsuko; Tanaka, Misako; Aikawa, Chihiro; Harada, Hiroyuki; Nakagawa, Ichiro
2016-01-01
Autophagy acts as a host-defense system against pathogenic microorganisms such as Group A Streptococcus (GAS). Autophagy is a membrane-mediated degradation system that is regulated by intracellular membrane trafficking regulators, including small GTPase Rab proteins. Here, we identified Rab30 as a novel regulator of GAS-containing autophagosome-like vacuoles (GcAVs). We found that Rab30, a Golgi-resident Rab, was recruited to GcAVs in response to autophagy induction by GAS infection in epithelial cells. Rab30 recruitment was dependent upon its GTPase activity. In addition, the knockdown of Rab30 expression significantly reduced GcAV formation efficiency and impaired intracellular GAS degradation. Rab30 normally functions to maintain the structural integrity of the Golgi complex, but GcAV formation occurred even when the Golgi apparatus was disrupted. Although Rab30 also colocalized with a starvation-induced autophagosome, Rab30 was not required for autophagosome formation during starvation. These results suggest that Rab30 mediates autophagy against GAS independently of its normal cellular role in the structural maintenance of the Golgi apparatus, and autophagosome biogenesis during bacterial infection involves specific Rab GTPases. PMID:26771875
Peschel, Andrea; Langer, Brigitte; Gröger, Marion; Rees, Andrew; Kain, Renate
2016-01-01
ABSTRACT Autophagy is an evolutionarily conserved process used for removing surplus and damaged proteins and organelles from the cytoplasm. The unwanted material is incorporated into autophagosomes that eventually fuse with lysosomes, leading to the degradation of their cargo. The fusion event is mediated by the interaction between the Qa-SNARE syntaxin-17 (STX17) on autophagosomes and the R-SNARE VAMP8 on lysosomes. Cells deficient in lysosome membrane-associated protein-2 (LAMP-2) have increased numbers of autophagosomes but the underlying mechanism is poorly understood. By transfecting LAMP-2-deficient and LAMP-1/2-double-deficient mouse embryonic fibroblasts (MEFs) with a tandem fluorescent-tagged LC3 we observed a failure of fusion between the autophagosomes and the lysosomes that could be rescued by complementation with LAMP-2A. Although we observed no change in expression and localization of VAMP8, its interacting partner STX17 was absent from autophagosomes of LAMP-2-deficient cells. Thus, LAMP-2 is essential for STX17 expression by the autophagosomes and this absence is sufficient to explain their failure to fuse with lysosomes. The results have clear implications for situations associated with a reduction of LAMP-2 expression. PMID:27628032
Hubert, Virginie; Peschel, Andrea; Langer, Brigitte; Gröger, Marion; Rees, Andrew; Kain, Renate
2016-10-15
Autophagy is an evolutionarily conserved process used for removing surplus and damaged proteins and organelles from the cytoplasm. The unwanted material is incorporated into autophagosomes that eventually fuse with lysosomes, leading to the degradation of their cargo. The fusion event is mediated by the interaction between the Qa-SNARE syntaxin-17 (STX17) on autophagosomes and the R-SNARE VAMP8 on lysosomes. Cells deficient in lysosome membrane-associated protein-2 (LAMP-2) have increased numbers of autophagosomes but the underlying mechanism is poorly understood. By transfecting LAMP-2-deficient and LAMP-1/2--double-deficient mouse embryonic fibroblasts (MEFs) with a tandem fluorescent-tagged LC3 we observed a failure of fusion between the autophagosomes and the lysosomes that could be rescued by complementation with LAMP-2A. Although we observed no change in expression and localization of VAMP8, its interacting partner STX17 was absent from autophagosomes of LAMP-2-deficient cells. Thus, LAMP-2 is essential for STX17 expression by the autophagosomes and this absence is sufficient to explain their failure to fuse with lysosomes. The results have clear implications for situations associated with a reduction of LAMP-2 expression. © 2016. Published by The Company of Biologists Ltd.
Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion
Takáts, Szabolcs; Glatz, Gábor; Szenci, Győző; Boda, Attila; Horváth, Gábor V.; Hegedűs, Krisztina; Kovács, Attila L.
2018-01-01
The autophagosomal SNARE Syntaxin17 (Syx17) forms a complex with Snap29 and Vamp7/8 to promote autophagosome-lysosome fusion via multiple interactions with the tethering complex HOPS. Here we demonstrate that, unexpectedly, one more SNARE (Ykt6) is also required for autophagosome clearance in Drosophila. We find that loss of Ykt6 leads to large-scale accumulation of autophagosomes that are unable to fuse with lysosomes to form autolysosomes. Of note, loss of Syx5, the partner of Ykt6 in ER-Golgi trafficking does not prevent autolysosome formation, pointing to a more direct role of Ykt6 in fusion. Indeed, Ykt6 localizes to lysosomes and autolysosomes, and forms a SNARE complex with Syx17 and Snap29. Interestingly, Ykt6 can be outcompeted from this SNARE complex by Vamp7, and we demonstrate that overexpression of Vamp7 rescues the fusion defect of ykt6 loss of function cells. Finally, a point mutant form with an RQ amino acid change in the zero ionic layer of Ykt6 protein that is thought to be important for fusion-competent SNARE complex assembly retains normal autophagic activity and restores full viability in mutant animals, unlike palmitoylation or farnesylation site mutant Ykt6 forms. As Ykt6 and Vamp7 are both required for autophagosome-lysosome fusion and are mutually exclusive subunits in a Syx17-Snap29 complex, these data suggest that Vamp7 is directly involved in membrane fusion and Ykt6 acts as a non-conventional, regulatory SNARE in this process. PMID:29694367
Yamashita, Shun-Ichi; Kanki, Tomotake
2017-05-04
Mitochondrial autophagy (mitophagy) is thought to be a multi-step pathway wherein mitochondria are first divided into small fragments, which are subsequently recognized by the phagophore. DNM1L (dynamin 1 like) plays a pivotal role in mitochondrial division; however, its role in mitophagy remains controversial. In our recent study, we examined the contribution of DNM1L to mitophagy and showed that mitophagy and mitochondrial division occur even in DNM1L-defective cells. Furthermore, time-lapse imaging of mitophagy showed that DNM1L-independent mitochondrial division occurs concomitantly with autophagosome formation. Upstream factors of autophagosome formation, i.e., RB1CC1/FIP200, ATG14, and WIPIs, are required for mitochondrial division, whereas ATG5 and ATG3 are dispensable. These results indicate that a portion of the tubular mitochondria is first recognized and then divided into small fragments by a phagophore-mediated event, independently of DNM1L. This autophagic process suggests that autophagy has the potential to degrade substrates larger than autophagosomes.
Zhao, Yan G; Liu, Nan; Miao, Guangyan; Chen, Yong; Zhao, Hongyu; Zhang, Hong
2018-04-23
The endoplasmic reticulum (ER) is the site of biogenesis of the isolation membrane (IM, autophagosome precursor) and forms extensive contacts with IMs during their expansion into double-membrane autophagosomes. Little is known about the molecular mechanism underlying the formation and/or maintenance of the ER/IM contact. The integral ER proteins VAPA and VAPB (VAPs) participate in establishing ER contacts with multiple membranes by interacting with different tethers. Here, we demonstrate that VAPs also modulate ER/IM contact formation. Depletion of VAPs impairs progression of IMs into autophagosomes. Upon autophagy induction, VAPs are recruited to autophagosome formation sites on the ER, a process mediated by their interactions with FIP200 and PI(3)P. VAPs directly interact with FIP200 and ULK1 through their conserved FFAT motifs and stabilize the ULK1/FIP200 complex at the autophagosome formation sites on the ER. The formation of ULK1 puncta is significantly reduced by VAPA/B depletion. VAPs also interact with WIPI2 and enhance the formation of the WIPI2/FIP200 ER/IM tethering complex. Depletion of VMP1, which increases the ER/IM contact, greatly elevates the interaction of VAPs with these autophagy proteins. The VAPB P56S mutation, which is associated with amyotrophic lateral sclerosis, reduces the ULK1/FIP200 interaction and impairs autophagy at an early step, similar to the effect seen in VAPA/B-depleted cells. Our study reveals that VAPs directly interact with multiple ATG proteins, thereby contributing to ER/IM contact formation for autophagosome biogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes
Cheng, Xiu-Tang; Zhou, Bing; Lin, Mei-Yao; Cai, Qian
2015-01-01
Efficient degradation of autophagic vacuoles (AVs) via lysosomes is an important cellular homeostatic process. This is particularly challenging for neurons because mature acidic lysosomes are relatively enriched in the soma. Although dynein-driven retrograde transport of AVs was suggested, a fundamental question remains how autophagosomes generated at distal axons acquire dynein motors for retrograde transport toward the soma. In this paper, we demonstrate that late endosome (LE)–loaded dynein–snapin complexes drive AV retrograde transport in axons upon fusion of autophagosomes with LEs into amphisomes. Blocking the fusion with syntaxin17 knockdown reduced recruitment of dynein motors to AVs, thus immobilizing them in axons. Deficiency in dynein–snapin coupling impaired AV transport, resulting in AV accumulation in neurites and synaptic terminals. Altogether, our study provides the first evidence that autophagosomes recruit dynein through fusion with LEs and reveals a new motor–adaptor sharing mechanism by which neurons may remove distal AVs engulfing aggregated proteins and dysfunctional organelles for efficient degradation in the soma. PMID:25940348
Ikenaka, Kensuke; Kawai, Kaori; Katsuno, Masahisa; Huang, Zhe; Jiang, Yue-Mei; Iguchi, Yohei; Kobayashi, Kyogo; Kimata, Tsubasa; Waza, Masahiro; Tanaka, Fumiaki; Mori, Ikue; Sobue, Gen
2013-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. We previously showed that the expression of dynactin 1, an axon motor protein regulating retrograde transport, is markedly reduced in spinal motor neurons of sporadic ALS patients, although the mechanisms by which decreased dynactin 1 levels cause neurodegeneration have yet to be elucidated. The accumulation of autophagosomes in degenerated motor neurons is another key pathological feature of sporadic ALS. Since autophagosomes are cargo of dynein/dynactin complexes and play a crucial role in the turnover of several organelles and proteins, we hypothesized that the quantitative loss of dynactin 1 disrupts the transport of autophagosomes and induces the degeneration of motor neuron. In the present study, we generated a Caenorhabditis elegans model in which the expression of DNC-1, the homolog of dynactin 1, is specifically knocked down in motor neurons. This model exhibited severe motor defects together with axonal and neuronal degeneration. We also observed impaired movement and increased number of autophagosomes in the degenerated neurons. Furthermore, the combination of rapamycin, an activator of autophagy, and trichostatin which facilitates axonal transport dramatically ameliorated the motor phenotype and axonal degeneration of this model. Thus, our results suggest that decreased expression of dynactin 1 induces motor neuron degeneration and that the transport of autophagosomes is a novel and substantial therapeutic target for motor neuron degeneration. PMID:23408943
Nwadike, Chinwendu; Williamson, Leon E; Gallagher, Laura E; Guan, Jun-Lin; Chan, Edmond Y W
2018-05-15
Autophagy maintains metabolism in response to starvation, but each nutrient is sensed distinctly. Amino acid deficiency suppresses mechanistic target of rapamycin complex 1 (MTORC1), while glucose deficiency promotes AMP-activated protein kinase (AMPK). The MTORC1 and AMPK signaling pathways converge onto the ULK1/2 autophagy initiation complex. Here, we show that amino acid starvation promoted formation of ULK1- and sequestosome 1/p62-positive early autophagosomes. Autophagosome initiation was controlled by MTORC1 sensing glutamine, leucine, and arginine levels together. In contrast, glucose starvation promoted AMPK activity, phosphorylation of ULK1 Ser555, and LC3-II accumulation, but with dynamics consistent with a block in autophagy flux. We studied the flux pathway and found that starvation of amino acid but not of glucose activated lysosomal acidification, which occurred independently of autophagy and ULK1. In addition to lack of activation, glucose starvation inhibited the ability of amino acid starvation to activate both autophagosome formation and the lysosome. Activation of AMPK and phosphorylation of ULK1 were determined to specifically inhibit autophagosome formation. AMPK activation also was sufficient to prevent lysosome acidification. These results indicate concerted but distinct AMPK-dependent mechanisms to suppress early and late phases of autophagy. Copyright © 2018 Nwadike et al.
Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes.
Shvets, Elena; Abada, Adi; Weidberg, Hilla; Elazar, Zvulun
2011-07-01
Autophagy is a major intracellular trafficking pathway that delivers proteins and organelles from the cytoplasm into lysosomes for consequential degradation and recycling. Mammalian Atg8s are key autophagic factors that undergo a unique ubiquitin-like conjugation to the lipid phase of the autophagosomal membrane. In addition to their activity in autophagosome formation, several Atg8s directly bind p62/SQSTM1. Here we show that LC3 and GATE-16 differ in their mode of p62 binding. While the soluble form of both LC3 and GATE-16 bind p62, only the lipidated form of LC3 is directly involved in p62 recruitment into autophagosomes. Moreover, by utilizing chimeras of LC3 and GATE-16 where their N-terminus was swapped, we determined the regions responsible for this differential binding. Accordingly, we found that the chimera of GATE-16 containing the LC3 N-terminal region acts similarly to wild-type LC3 in recruiting p62 into autophagosomes. We therefore propose that LC3 is responsible for the final stages of p62 incorporation into autophagosomes, a process selectively mediated by its N-terminus.
Regulators of Autophagosome Formation in Drosophila Muscles
Zirin, Jonathan; Nieuwenhuis, Joppe; Samsonova, Anastasia; Tao, Rong; Perrimon, Norbert
2015-01-01
Given the diversity of autophagy targets and regulation, it is important to characterize autophagy in various cell types and conditions. We used a primary myocyte cell culture system to assay the role of putative autophagy regulators in the specific context of skeletal muscle. By treating the cultures with rapamycin (Rap) and chloroquine (CQ) we induced an autophagic response, fully suppressible by knockdown of core ATG genes. We screened D. melanogaster orthologs of a previously reported mammalian autophagy protein-protein interaction network, identifying several proteins required for autophagosome formation in muscle cells, including orthologs of the Rab regulators RabGap1 and Rab3Gap1. The screen also highlighted the critical roles of the proteasome and glycogen metabolism in regulating autophagy. Specifically, sustained proteasome inhibition inhibited autophagosome formation both in primary culture and larval skeletal muscle, even though autophagy normally acts to suppress ubiquitin aggregate formation in these tissues. In addition, analyses of glycogen metabolic genes in both primary cultured and larval muscles indicated that glycogen storage enhances the autophagic response to starvation, an important insight given the link between glycogen storage disorders, autophagy, and muscle function. PMID:25692684
Nascimbeni, Anna Chiara; Giordano, Francesca; Dupont, Nicolas; Grasso, Daniel; Vaccaro, Maria I; Codogno, Patrice; Morel, Etienne
2017-07-14
The double-membrane-bound autophagosome is formed by the closure of a structure called the phagophore, origin of which is still unclear. The endoplasmic reticulum (ER) is clearly implicated in autophagosome biogenesis due to the presence of the omegasome subdomain positive for DFCP1, a phosphatidyl-inositol-3-phosphate (PI3P) binding protein. Contribution of other membrane sources, like the plasma membrane (PM), is still difficult to integrate in a global picture. Here we show that ER-plasma membrane contact sites are mobilized for autophagosome biogenesis, by direct implication of the tethering extended synaptotagmins (E-Syts) proteins. Imaging data revealed that early autophagic markers are recruited to E-Syt-containing domains during autophagy and that inhibition of E-Syts expression leads to a reduction in autophagosome biogenesis. Furthermore, we demonstrate that E-Syts are essential for autophagy-associated PI3P synthesis at the cortical ER membrane via the recruitment of VMP1, the stabilizing ER partner of the PI3KC3 complex. These results highlight the contribution of ER-plasma membrane tethers to autophagosome biogenesis regulation and support the importance of membrane contact sites in autophagy. © 2017 The Authors.
Autophagosomal membranes assemble at ER-plasma membrane contact sites.
Nascimbeni, Anna Chiara; Codogno, Patrice; Morel, Etienne
2017-01-01
The biogenesis of autophagosome, the double membrane bound organelle related to macro-autophagy, is a complex event requiring numerous key-proteins and membrane remodeling events. Our recent findings identify the extended synaptotagmins, crucial tethers of Endoplasmic Reticulum-plasma membrane contact sites, as key-regulators of this molecular sequence.
Nucleocytoplasmic Distribution and Dynamics of the Autophagosome Marker EGFP-LC3
Drake, Kimberly R.; Kang, Minchul; Kenworthy, Anne K.
2010-01-01
The process of autophagy involves the formation of autophagosomes, double-membrane structures that encapsulate cytosol. Microtubule-associated protein light chain 3 (LC3) was the first protein shown to specifically label autophagosomal membranes in mammalian cells, and subsequently EGFP-LC3 has become one of the most widely utilized reporters of autophagy. Although LC3 is currently thought to function primarily in the cytosol, the site of autophagosome formation, EGFP-LC3 often appears to be enriched in the nucleoplasm relative to the cytoplasm in published fluorescence images. However, the nuclear pool of EGFP-LC3 has not been specifically studied in previous reports, and mechanisms by which LC3 shuttles between the cytoplasm and nucleoplasm are currently unknown. In this study, we therefore investigated the regulation of the nucleo-cytoplasmic distribution of EGFP-LC3 in living cells. By quantitative fluorescence microscopy analysis, we demonstrate that soluble EGFP-LC3 is indeed enriched in the nucleus relative to the cytoplasm in two commonly studied cell lines, COS-7 and HeLa. Although LC3 contains a putative nuclear export signal (NES), inhibition of active nuclear export or mutation of the NES had no effect on the nucleo-cytoplasmic distribution of EGFP-LC3. Furthermore, FRAP analysis indicates that EGFP-LC3 undergoes limited passive nucleo-cytoplasmic transport under steady state conditions, and that the diffusional mobility of EGFP-LC3 was substantially slower in the nucleus and cytoplasm than predicted for a freely diffusing monomer. Induction of autophagy led to a visible decrease in levels of soluble EGFP-LC3 relative to autophagosome-bound protein, but had only modest effects on the nucleo-cytoplasmic ratio or diffusional mobility of the remaining soluble pools of EGFP-LC3. We conclude that the enrichment of soluble EGFP-LC3 in the nucleus is maintained independently of active nuclear export or induction of autophagy. Instead, incorporation of soluble
Extravasation of adhering vesicles
NASA Astrophysics Data System (ADS)
Tordeux, C.; Fournier, J.-B.
2002-12-01
We study how the passage of lipid vesicles through a small pore can be induced by the difference in non-specific adhesion energy between the two sides of the substrate bearing the pore. This process is inspired from the extravasation of cells or liposomes from blood vessels, which involves adhesion binders. We study the adhesion-dominated regime and we show that the passage of a vesicle of volume V and area A is selective in terms of the reduced volume v ~ V/A3/2. Extravasation occurs for adhesion ratios of order unity. We also consider the possibility of pressure-induced extravasation in the presence of adhesion. Finally, we propose a micro-device based on adhesion-induced extravasation, which is designed to sort vesicles according to their deflatedness.
Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission
Kavalali, Ege T
2007-01-01
Short-term synaptic depression during repetitive activity is a common property of most synapses. Multiple mechanisms contribute to this rapid depression in neurotransmission including a decrease in vesicle fusion probability, inactivation of voltage-gated Ca2+ channels or use-dependent inhibition of release machinery by presynaptic receptors. In addition, synaptic depression can arise from a rapid reduction in the number of vesicles available for release. This reduction can be countered by two sources. One source is replenishment from a set of reserve vesicles. The second source is the reuse of vesicles that have undergone exocytosis and endocytosis. If the synaptic vesicle reuse is fast enough then it can replenish vesicles during a brief burst of action potentials and play a substantial role in regulating the rate of synaptic depression. In the last 5 years, we have examined the impact of synaptic vesicle reuse on neurotransmission using fluorescence imaging of synaptic vesicle trafficking in combination with electrophysiological detection of short-term synaptic plasticity. These studies have revealed that synaptic vesicle reuse shapes the kinetics of short-term synaptic depression in a frequency-dependent manner. In addition, synaptic vesicle recycling helps maintain the level of neurotransmission at steady state. Moreover, our studies showed that synaptic vesicle reuse is a highly plastic process as it varies widely among synapses and can adapt to changes in chronic activity levels. PMID:17690145
Mathiowetz, Alyssa J.; Baple, Emma; Russo, Ashley J.; Coulter, Alyssa M.; Carrano, Eric; Brown, Judith D.; Jinks, Robert N.; Crosby, Andrew H.; Campellone, Kenneth G.
2017-01-01
Actin nucleation factors function to organize, shape, and move membrane-bound organelles, yet they remain poorly defined in relation to disease. Galloway-Mowat syndrome (GMS) is an inherited disorder characterized by microcephaly and nephrosis resulting from mutations in the WDR73 gene. This core clinical phenotype appears frequently in the Amish, where virtually all affected individuals harbor homozygous founder mutations in WDR73 as well as the closely linked WHAMM gene, which encodes a nucleation factor. Here we show that patient cells with both mutations exhibit cytoskeletal irregularities and severe defects in autophagy. Reintroduction of wild-type WHAMM restored autophagosomal biogenesis to patient cells, while inactivation of WHAMM in healthy cell lines inhibited lipidation of the autophagosomal protein LC3 and clearance of ubiquitinated protein aggregates. Normal WHAMM function involved binding to the phospholipid PI(3)P and promoting actin nucleation at nascent autophagosomes. These results reveal a cytoskeletal pathway controlling autophagosomal remodeling and illustrate several molecular processes that are perturbed in Amish GMS patients. PMID:28720660
Akizu, Naiara; Cantagrel, Vincent; Zaki, Maha S.; Al-Gazali, Lihadh; Wang, Xin; Rosti, Rasim Ozgur; Dikoglu, Esra; Gelot, Antoinette Bernabe; Rosti, Basak; Vaux, Keith K.; Scott, Eric M.; Silhavy, Jennifer L.; Schroth, Jana; Copeland, Brett; Schaffer, Ashleigh E.; Gordts, Philip; Esko, Jeffrey D.; Buschman, Matthew D.; Fields, Seth J.; Napolitano, Gennaro; Ozgul, R. Koksal; Sagiroglu, Mahmut Samil; Azam, Matloob; Ismail, Samira; Aglan, Mona; Selim, Laila; Gamal, Iman; Hadi, Sawsan Abdel; El Badawy, Amera; Sadek, Abdelrahim A.; Mojahedi, Faezeh; Kayserili, Hulya; Masri, Amira; Bastaki, Laila; Temtamy, Samia; Müller, Ulrich; Desguerre, Isabelle; Casanova, Jean-Laurent; Dursun, Ali; Gunel, Murat; Gabriel, Stacey B.; de Lonlay, Pascale; Gleeson, Joseph G.
2015-01-01
Pediatric-onset ataxias often present clinically with developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a novel clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in sorting nexin 14 (SNX14), encoding a ubiquitously expressed modular PX-domain-containing sorting factor. We found SNX14 localized to lysosomes, and associated with phosphatidyl-inositol (3,5)P2, a key component of late endosomes/lysosomes. Patient cells showed engorged lysosomes and slower autophagosome clearance rate upon starvation induction. Zebrafish morphants showed dramatic loss of cerebellar parenchyma, accumulated autophagosomes, and activation of apoptosis. Our results suggest a unique ataxia syndrome due to biallelic SNX14 mutations, leading to lysosome-autophagosome dysfunction. PMID:25848753
Spontaneous vesicle formation at lipid bilayer membranes.
Edwards, D A; Schneck, F; Zhang, I; Davis, A M; Chen, H; Langer, R
1996-09-01
Unilamellar vesicles are observed to form spontaneously at planar lipid bilayers agitated by exothermic chemical reactions. The membrane-binding reaction between biotin and streptavidin, two strong transmembrane neutralization reactions, and a weak neutralization reaction involving an "antacid" buffer, all lead to spontaneous vesicle formation. This formation is most dramatic when a viscosity differential exists between the two phases bounding the membrane, in which case vesicles appear exclusively in the more viscous phase. A hydrodynamic analysis explains the phenomenon in terms of a membrane flow driven by liberated reaction energy, leading to vesicle formation. These results suggest that energy liberated by intra- and extracellular chemical reactions near or at cell and internal organelle membranes can play an important role in vesicle formation, membrane agitation, or enhanced transmembrane mass transfer.
Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase
Papinski, Daniel; Schuschnig, Martina; Reiter, Wolfgang; Wilhelm, Larissa; Barnes, Christopher A.; Maiolica, Alessio; Hansmann, Isabella; Pfaffenwimmer, Thaddaeus; Kijanska, Monika; Stoffel, Ingrid; Lee, Sung Sik; Brezovich, Andrea; Lou, Jane Hua; Turk, Benjamin E.; Aebersold, Ruedi; Ammerer, Gustav; Peter, Matthias; Kraft, Claudine
2014-01-01
Summary Bulk degradation of cytoplasmic material is mediated by a highly conserved intracellular trafficking pathway termed autophagy. This pathway is characterized by the formation of double-membrane vesicles termed autophagosomes engulfing the substrate and transporting it to the vacuole/lysosome for breakdown and recycling. The Atg1/ULK1 kinase is essential for this process; however, little is known about its targets and the means by which it controls autophagy. Here we have screened for Atg1 kinase substrates using consensus peptide arrays and identified three components of the autophagy machinery. The multimembrane-spanning protein Atg9 is a direct target of this kinase essential for autophagy. Phosphorylated Atg9 is then required for the efficient recruitment of Atg8 and Atg18 to the site of autophagosome formation and subsequent expansion of the isolation membrane, a prerequisite for a functioning autophagy pathway. These findings show that the Atg1 kinase acts early in autophagy by regulating the outgrowth of autophagosomal membranes. PMID:24440502
The pressure-dependence of the size of extruded vesicles.
Patty, Philipus J; Frisken, Barbara J
2003-08-01
Variations in the size of vesicles formed by extrusion through small pores are discussed in terms of a simple model. Our model predicts that the radius should decrease as the square root of the applied pressure, consistent with data for vesicles extruded under various conditions. The model also predicts dependencies on the pore size used and on the lysis tension of the vesicles being extruded that are consistent with our data. The pore size was varied by using track-etched polycarbonate membranes with average pore diameters ranging from 50 to 200 nm. To vary the lysis tension, vesicles made from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine), mixtures of POPC and cholesterol, and mixtures of POPC and C(16)-ceramide were studied. The lysis tension, as measured by an extrusion-based technique, of POPC:cholesterol vesicles is higher than that of pure POPC vesicles whereas POPC:ceramide vesicles have lower lysis tensions than POPC vesicles.
The Pressure-Dependence of the Size of Extruded Vesicles
Patty, Philipus J.; Frisken, Barbara J.
2003-01-01
Variations in the size of vesicles formed by extrusion through small pores are discussed in terms of a simple model. Our model predicts that the radius should decrease as the square root of the applied pressure, consistent with data for vesicles extruded under various conditions. The model also predicts dependencies on the pore size used and on the lysis tension of the vesicles being extruded that are consistent with our data. The pore size was varied by using track-etched polycarbonate membranes with average pore diameters ranging from 50 to 200 nm. To vary the lysis tension, vesicles made from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine), mixtures of POPC and cholesterol, and mixtures of POPC and C16-ceramide were studied. The lysis tension, as measured by an extrusion-based technique, of POPC:cholesterol vesicles is higher than that of pure POPC vesicles whereas POPC:ceramide vesicles have lower lysis tensions than POPC vesicles. PMID:12885646
Pant, Kishor; Yadav, Ajay K.; Gupta, Parul; Rathore, Abhishek Singh; Nayak, Baibaswata; Venugopal, Senthil K.
2016-01-01
Hepatitis B Virus (HBV) utilizes several mechanisms to survive in the host cells and one of the main pathways being autophagosome formation. Humic acid (HA), one of the major components of Mineral pitch, is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. We hypothesized that HA could induce cell death and inhibit HBV-induced autophagy in hepatic cells. Incubation of Hep G2.2.1.5 cells (HepG2 cells stably expressing HBV) with HA (100 μM) inhibited both cell proliferation and autophagosome formation significantly, while apoptosis induction was enhanced. Western blot results showed that HA incubation resulted in decreased levels of beclin-1, SIRT-1 and c-myc, while caspase-3 and β-catenin expression were up-regulated. Western blot results showed that HA significantly inhibited the expression of HBx (3-fold with 50 μM and 5-fold with 100 μM) compared to control cells. When HA was incubated with HBx-transfected Hep G2 cells, HBx-induced autophagosome formation and beclin-1 levels were decreased. These data showed that HA induced apoptosis and inhibited HBV-induced autophagosome formation and proliferation in hepatoma cells. PMID:27708347
Fujikawa, Shelly M.; Chen, Irene A.; Szostak, Jack W.
2008-01-01
We describe a simple approach to the controlled removal of molecules from the membrane of large unilamellar vesicles made of fatty acids. Such vesicles shrink dramatically upon mixing with micelles composed of a mixture of fatty acid and phospholipid (POPC), as fatty acid molecules leave the vesicle membrane and accumulate within the mixed micelles. Vesicle shrinkage was confirmed by dynamic light scattering, fluorescence recovery after photobleaching of labeled vesicles, and fluorescence resonance energy transfer between lipid dyes incorporated into the vesicle membrane. Most of the encapsulated impermeable solute is retained during shrinkage, becoming concentrated by a factor of at least 50-fold in the final small vesicles. This unprecedented combination of vesicle shrinkage with retention of contents allows for the preparation of small vesicles containing high solute concentrations, and may find applications in liposomal drug delivery. PMID:16342983
Tarnow, Eugen
2009-09-01
The Tagging/Retagging model of short term memory was introduced earlier (Tarnow in Cogn Neurodyn 2(4):347-353, 2008) to explain the linear relationship between response time and correct response probability for word recall and recognition: At the initial stimulus presentation the words displayed tag the corresponding long term memory locations. The tagging process is linear in time and takes about one second to reach a tagging level of 100%. After stimulus presentation the tagging level decays logarithmically with time to 50% after 14 s and to 20% after 220 s. If a probe word is reintroduced the tagging level has to return to 100% for the word to be properly identified, which leads to a delay in response time. This delay is proportional to the tagging loss. The tagging level is directly related to the probability of correct word recall and recognition. Evidence presented suggests that the tagging level is the level of depletion of the Readily Releasable Pool (RRP) of neurotransmitter vesicles at presynaptic terminals. The evidence includes the initial linear relationship between tagging level and time as well as the subsequent logarithmic decay of the tagging level. The activation of a short term memory may thus be the depletion of RRP (exocytosis) and short term memory decay may be the ensuing recycling of the neurotransmitter vesicles (endocytosis). The pattern of depleted presynaptic terminals corresponds to the long term memory trace.
Walsby, A E
1994-01-01
The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173
Resident CAPS on dense-core vesicles docks and primes vesicles for fusion
Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.
2016-01-01
The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF microscopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319
Kusinski, L.C.; Jones, C.J.P.; Baker, P.N.; Sibley, C.P.; Glazier, J.D.
2010-01-01
Placental amino acid transport is essential for optimal fetal growth and development, with a reduced fetal provision of amino acids being implicated as a potential cause of fetal growth restriction (FGR). Understanding placental insufficiency related FGR has been aided by the development of mouse models that have features of the human disease. However, to take maximal advantage of these, methods are required to study placental function in the mouse. Here, we report a method to isolate plasma membrane vesicles from mouse placenta near-term and have used these to investigate two amino acid transporters, systems A and β, the activities of which are reduced in human placental microvillous plasma membrane (MVM) vesicles from FGR pregnancies. Plasma membrane vesicles were isolated at embryonic day 18 by a protocol involving homogenisation, MgCl2 precipitation and centrifugation. Vesicles were enriched 11.3 ± 0.5-fold in alkaline phosphatase activity as compared to initial homogenate, with minimal intracellular organelle contamination as judged by marker analyses. Cytochemistry revealed alkaline phosphatase was localised between trophoblast layers I and II, with intense reaction product deposited on the maternal-facing plasma membrane of layer II, suggesting that vesicles were derived from this trophoblast membrane. System A and system β activity in mouse placental vesicles, measured as Na+-dependent uptake of 14C-methylaminoisobutyric acid (MeAIB) and 3H-taurine respectively confirmed localisation of these transporters to the maternal-facing plasma membrane of layer II. Comparison to human placental MVM showed that system A activity was comparable at initial rate between species whilst system β activity was significantly lower in mouse. This mirrored the lower expression of TAUT observed in mouse placental vesicles. We conclude that syncytiotrophoblast layer II-derived plasma membrane vesicles can be isolated and used to examine transporter function. PMID:19954844
Emergence and stability of intermediate open vesicles in disk-to-vesicle transitions.
Li, Jianfeng; Zhang, Hongdong; Qiu, Feng; Shi, An-Chang
2013-07-01
The transition between two basic structures, a disk and an enclosed vesicle, of a finite membrane is studied by examining the minimum energy path (MEP) connecting these two states. The MEP is constructed using the string method applied to continuum elastic membrane models. The results reveal that, besides the commonly observed disk and vesicle, open vesicles (bowl-shaped vesicles or vesicles with a pore) can become stable or metastable shapes. The emergence, stability, and probability distribution of these open vesicles are analyzed. It is demonstrated that open vesicles can be stabilized by higher-order elastic energies. The estimated probability distribution of the different structures is in good agreement with available experiments.
Mathiowetz, Alyssa J; Baple, Emma; Russo, Ashley J; Coulter, Alyssa M; Carrano, Eric; Brown, Judith D; Jinks, Robert N; Crosby, Andrew H; Campellone, Kenneth G
2017-09-15
Actin nucleation factors function to organize, shape, and move membrane-bound organelles, yet they remain poorly defined in relation to disease. Galloway-Mowat syndrome (GMS) is an inherited disorder characterized by microcephaly and nephrosis resulting from mutations in the WDR73 gene. This core clinical phenotype appears frequently in the Amish, where virtually all affected individuals harbor homozygous founder mutations in WDR73 as well as the closely linked WHAMM gene, which encodes a nucleation factor. Here we show that patient cells with both mutations exhibit cytoskeletal irregularities and severe defects in autophagy. Reintroduction of wild-type WHAMM restored autophagosomal biogenesis to patient cells, while inactivation of WHAMM in healthy cell lines inhibited lipidation of the autophagosomal protein LC3 and clearance of ubiquitinated protein aggregates. Normal WHAMM function involved binding to the phospholipid PI(3)P and promoting actin nucleation at nascent autophagosomes. These results reveal a cytoskeletal pathway controlling autophagosomal remodeling and illustrate several molecular processes that are perturbed in Amish GMS patients. © 2017 Mathiowetz, Baple, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Resident CAPS on dense-core vesicles docks and primes vesicles for fusion.
Kabachinski, Greg; Kielar-Grevstad, D Michelle; Zhang, Xingmin; James, Declan J; Martin, Thomas F J
2016-02-15
The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. © 2016 Kabachinski, Kielar-Grevstad, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
de Pablo-Latorre, Raquel; Saide, Assunta; Polishhuck, Elena V.; Nusco, Edoardo; Fraldi, Alessandro; Ballabio, Andrea
2012-01-01
Dysfunctional mitochondria are a well-known disease hallmark. The accumulation of aberrant mitochondria can alter cell homeostasis, thus resulting in tissue degeneration. Lysosomal storage disorders (LSDs) are a group of inherited diseases characterized by the buildup of undegraded material inside the lysosomes that leads to autophagic-lysosomal dysfunction. In LSDs, autophagic stress has been associated to mitochondrial accumulation and dysfunction. However, the mechanisms underlying mitochondrial aberrations and how these are involved in tissue pathogenesis remain largely unexplored. In normal conditions, mitochondrial clearance occurs by mitophagy, a selective form of autophagy, which relies on a parkin-mediated mitochondrial priming and subsequent sequestration by autophagosomes. Here, we performed a detailed analysis of key steps of mitophagy in a mouse model of multiple sulfatase deficiency (MSD), a severe type of LSD characterized by both neurological and systemic involvement. We demonstrated that in MSD liver reduced parkin levels resulted in inefficient mitochondrial priming, thus contributing to the accumulation of giant mitochondria that are located outside autophagic vesicles ultimately leading to cytochrome c release and apoptotic cell death. Morphological and functional changes were also observed in mitochondria from MSD brain but these were not directly associated with neuronal cell loss, suggesting a secondary contribution of mitochondria to neurodegeneration. Together, these data shed new light on the mechanisms underlying mitochondrial dysfunction in LSDs and on their tissue-specific differential contribution to the pathogenesis of this group of metabolic disorders. PMID:22215441
Loss of a membrane trafficking protein αSNAP induces non-canonical autophagy in human epithelia
Naydenov, Nayden G.; Harris, Gianni; Morales, Victor; Ivanov, Andrei I.
2012-01-01
Autophagy is a catabolic process that sequesters intracellular proteins and organelles within membrane vesicles called autophagosomes with their subsequent delivery to lyzosomes for degradation. This process involves multiple fusions of autophagosomal membranes with different vesicular compartments; however, the role of vesicle fusion in autophagosomal biogenesis remains poorly understood. This study addresses the role of a key vesicle fusion regulator, soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP), in autophagy. Small interfering RNA-mediated downregulation of αSNAP expression in cultured epithelial cells stimulated the autophagic flux, which was manifested by increased conjugation of microtubule-associated protein light chain 3 (LC3-II) and accumulation of LC3-positive autophagosomes. This enhanced autophagy developed via a non-canonical mechanism that did not require beclin1-p150-dependent nucleation, but involved Atg5 and Atg7-mediated elongation of autophagosomal membranes. Induction of autophagy in αSNAP-depleted cells was accompanied by decreased mTOR signaling but appeared to be independent of αSNAP-binding partners, N-ethylmaleimide-sensitive factor and BNIP1. Loss of αSNAP caused fragmentation of the Golgi and downregulation of the Golgi-specific GTP exchange factors, GBF1, BIG1 and BIG2. Pharmacological disruption of the Golgi and genetic inhibition of GBF1 recreated the effects of αSNAP depletion on the autophagic flux. Our study revealed a novel role for αSNAP as a negative regulator of autophagy that acts by enhancing mTOR signaling and regulating the integrity of the Golgi complex. PMID:23187805
Schwalbe, Jonathan T; Vlahovska, Petia M; Miksis, Michael J
2011-04-01
A small amplitude perturbation analysis is developed to describe the effect of a uniform electric field on the dynamics of a lipid bilayer vesicle in a simple shear flow. All media are treated as leaky dielectrics and fluid motion is described by the Stokes equations. The instantaneous vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. We find that in the absence of ambient shear flow, it is possible that an applied stepwise uniform dc electric field could cause the vesicle shape to evolve from oblate to prolate over time if the encapsulated fluid is less conducting than the suspending fluid. For a vesicle in ambient shear flow, the electric field damps the tumbling motion, leading to a stable tank-treading state.
Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion.
Mauthe, Mario; Orhon, Idil; Rocchi, Cecilia; Zhou, Xingdong; Luhr, Morten; Hijlkema, Kerst-Jan; Coppes, Robert P; Engedal, Nikolai; Mari, Muriel; Reggiori, Fulvio
2018-06-25
Macroautophagy/autophagy is a conserved transport pathway where targeted structures are sequestered by phagophores, which mature into autophagosomes, and then delivered into lysosomes for degradation. Autophagy is involved in the pathophysiology of numerous diseases and its modulation is beneficial for the outcome of numerous specific diseases. Several lysosomal inhibitors such as bafilomycin A 1 (BafA 1 ), protease inhibitors and chloroquine (CQ), have been used interchangeably to block autophagy in in vitro experiments assuming that they all primarily block lysosomal degradation. Among them, only CQ and its derivate hydroxychloroquine (HCQ) are FDA-approved drugs and are thus currently the principal compounds used in clinical trials aimed to treat tumors through autophagy inhibition. However, the precise mechanism of how CQ blocks autophagy remains to be firmly demonstrated. In this study, we focus on how CQ inhibits autophagy and directly compare its effects to those of BafA 1 . We show that CQ mainly inhibits autophagy by impairing autophagosome fusion with lysosomes rather than by affecting the acidity and/or degradative activity of this organelle. Furthermore, CQ induces an autophagy-independent severe disorganization of the Golgi and endo-lysosomal systems, which might contribute to the fusion impairment. Strikingly, HCQ-treated mice also show a Golgi disorganization in kidney and intestinal tissues. Altogether, our data reveal that CQ and HCQ are not bona fide surrogates for other types of late stage lysosomal inhibitors for in vivo experiments. Moreover, the multiple cellular alterations caused by CQ and HCQ call for caution when interpreting results obtained by blocking autophagy with this drug.
SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages
Shi, Bo; Huang, Qi-Quan; Birkett, Robert; Doyle, Renee; Dorfleutner, Andrea; Stehlik, Christian; He, Congcong; Pope, Richard M.
2017-01-01
ABSTRACT We previously observed that SNAPIN, which is an adaptor protein in the SNARE core complex, was highly expressed in rheumatoid arthritis synovial tissue macrophages, but its role in macrophages and autoimmunity is unknown. To identify SNAPIN's role in these cells, we employed siRNA to silence the expression of SNAPIN in primary human macrophages. Silencing SNAPIN resulted in swollen lysosomes with impaired CTSD (cathepsin D) activation, although total CTSD was not reduced. Neither endosome cargo delivery nor lysosomal fusion with endosomes or autophagosomes was inhibited following the forced silencing of SNAPIN. The acidification of lysosomes and accumulation of autolysosomes in SNAPIN-silenced cells was inhibited, resulting in incomplete lysosomal hydrolysis and impaired macroautophagy/autophagy flux. Mechanistic studies employing ratiometric color fluorescence on living cells demonstrated that the reduction of SNAPIN resulted in a modest reduction of H+ pump activity; however, the more critical mechanism was a lysosomal proton leak. Overall, our results demonstrate that SNAPIN is critical in the maintenance of healthy lysosomes and autophagy through its role in lysosome acidification and autophagosome maturation in macrophages largely through preventing proton leak. These observations suggest an important role for SNAPIN and autophagy in the homeostasis of macrophages, particularly long-lived tissue resident macrophages. PMID:27929705
Saheki, Yasunori; De Camilli, Pietro
2012-01-01
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746
Ma, Ting; Zhang, Yi; Zhang, Chao; Luo, Jian-Guang; Kong, Ling-Yi
2017-11-01
Physapubenolide (PB) is a cytotoxic withanolide isolated from Physalis angulata that was used as a traditional Chinese medicine. In this study, we investigated the role of TIGAR and ROS in PB-induced apoptosis and autophagosome formation in human breast carcinoma MDA-MB-231 and MCF-7 cells. PB induced apoptosis by decreasing mitochondrial membrane potential and elevating the Bax/Bcl-2 protein expression ratio in MDA-MB-231 and MCF-7 cells. Caspase inhibitor Z-VAD-FMK treatment partly blocked PB induced cytotoxicity, suggesting that apoptosis serves as an important role in the anti-proliferative effect of PB. Meanwhile, PB induced autophagosome formation, as characterized by increased acridine orange-stained positive cells, accumulation of punctate LC3B fluorescence and a greater number of autophagic vacuoles under electron microscopy. Furthermore, PB inhibited autophagic flux as reflected by the overlapping of mCherry and GFP fluorescence when MDA-MB-231 cells were transfected with GFP-mCherry-LC3 plasmid. Depletion of LC3B, ATG5 or ATG7 reduced PB-induced cytotoxicity, indicating that autophagosome associated cell death participated in the anti-cancer effect of PB. Moreover, PB-induced apoptosis and autophagosome formation were linked to the generation of intracellular ROS, and pre-treatment with the antioxidant NAC obviously mitigated the effects. Interestingly, PB treatment slightly increased TIGAR expression at low concentrations but decreased TIGAR expression drastically at high concentrations. Downregulation of TIGAR by small interfering RNA augmented low concentrations of PB-induced apoptosis and autophagosome formation, which contributed to the observed anti-cancer effect of PB and were reversed by NAC pre-treatment. Consistently, in MDA-MB-231 or MCF-7 xenograft mouse model, PB suppressed tumor growth through ROS induced apoptosis and autophagosome associated cell death accompanied with the downregulation of TIGAR. Taken together, these results indicate
Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field
NASA Astrophysics Data System (ADS)
Nganguia, H.; Young, Y.-N.
2013-11-01
In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.
Imaging synaptic vesicle recycling by staining and destaining vesicles with FM dyes.
Hoopmann, Peer; Rizzoli, Silvio O; Betz, William J
2012-01-01
The synaptic vesicle is the essential organelle of the synapse. Many approaches for studying synaptic vesicle recycling have been devised, one of which, the styryl (FM) dye, is well suited for this purpose. FM dyes reversibly stain, but do not permeate, membranes; hence they can specifically label membrane-bound organelles. Their quantum yield is drastically higher when bound to membranes than when in aqueous solution. This protocol describes the imaging of synaptic vesicle recycling by staining and destaining vesicles with FM dyes. Nerve terminals are stimulated (electrically or by depolarization with high K(+)) in the presence of dye, their vesicles are then allowed to recycle, and finally dye is washed from the chamber. In neuromuscular junction (NMJ) preparations, movements of the muscle must be inhibited if imaging during stimulation is desired (e.g., by application of curare, a potent acetylcholine receptor inhibitor). The main characteristics of FM dyes are also reviewed here, as are recent FM dye monitoring techniques that have been used to investigate the kinetics of synaptic vesicle fusion.
Activity-Dependence of Synaptic Vesicle Dynamics
Forte, Luca A.
2017-01-01
The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release. SIGNIFICANCE STATEMENT Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in
Fusion competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking
Wang, Shan Shan H.; Held, Richard G.; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S.
2016-01-01
In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483
Monitoring changes of paramagnetically-shifted 31P signals in phospholipid vesicles
NASA Astrophysics Data System (ADS)
Joyce, Rebecca E.; Williams, Thomas L.; Serpell, Louise C.; Day, Iain J.
2016-03-01
Phospholipid vesicles are commonly used as biomimetics in the investigation of the interaction of various species with cell membranes. In this letter we present a 31P NMR investigation of a simple vesicle system using a paramagnetic shift reagent to probe the inner and outer layers of the lipid bilayer. Time-dependent changes in the 31P NMR signal are observed, which differ whether the paramagnetic species is inside or outside the vesicle, and on the choice of buffer solution used. An interpretation of these results is given in terms of the interaction of the paramagnetic shift reagent with the lipids.
Kast, David J; Zajac, Allison L; Holzbaur, Erika L F; Ostap, E Michael; Dominguez, Roberto
2015-06-29
Nucleation-promoting factors (NPFs) control the spatio-temporal activity of Arp2/3 complex in cells]. Thus, WASP and the WAVE complex direct the formation of branched actin networks at the leading edge during cell motility and endo/exocytosis, whereas the WASH complex is involved in endosomal transport. Less understood are WHAMM and JMY, two NPFs with similar domain architecture. JMY is found in the nucleus and the cytosol and is involved in transcriptional regulation, cell motility, and trans-Golgi transport. WHAMM was reported to bind microtubules and to be involved in ER to cis-Golgi transport. Here, we show that WHAMM directs the activity of Arp2/3 complex for autophagosome biogenesis through an actin-comet tail motility mechanism. Macroautophagy--the process by which cytosolic material is engulfed into autophagosomes for degradation and/or recycling--was recently shown to involve actin, but the mechanism is unknown. We found that WHAMM forms puncta that colocalize and comigrate with the autophagy markers LC3, DFCP1, and p62 through a WHAMM-dependent actin-comet tail mechanism. Under starvation, WHAMM and actin are observed at the interface between neighboring autophagosomes, whose number and size increase with WHAMM expression. Interfering with actin polymerization, inhibiting Arp2/3 complex, knocking down WHAMM, or blocking its interaction with Arp2/3 complex through mutagenesis all inhibit comet tail formation and reduce the size and number of autophagosomes. Finally, JMY shows similar localization to WHAMM and could be involved in similar processes. These results reveal a link between Arp2/3-complex-dependent actin assembly and autophagy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming
2013-01-01
Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion. PMID:23337583
Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming
2013-04-01
Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.
Wang, Liang; Chen, Min; Yang, Jie; Zhang, Zhihong
2013-01-01
LC3 is a marker protein that is involved in the formation of autophagosomes and autolysosomes, which are usually characterized and monitored by fluorescence microscopy using fluorescent protein-tagged LC3 probes (FP-LC3). FP-LC3 and even endogenous LC3 can also be incorporated into intracellular protein aggregates in an autophagy-independent manner. However, the dynamic process of LC3 associated with autophagosomes and autolysosomes or protein aggregates in living cells remains unclear. Here, we explored the dynamic properties of the two types of FP-LC3-containing puncta using fluorescence microscopy techniques, including fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET). The FRAP data revealed that the fluorescent signals of FP-LC3 attached to phagophores or in mature autolysosomes showed either minimal or no recovery after photobleaching, indicating that the dissociation of LC3 from the autophagosome membranes may be very slow. In contrast, FP-LC3 in the protein aggregates exhibited nearly complete recovery (more than 80%) and rapid kinetics of association and dissociation (half-time < 1 sec), indicating a rapid exchange occurs between the aggregates and cytoplasmic pool, which is mainly due to the transient interaction of LC3 and SQSTM1/p62. Based on the distinct dynamic properties of FP-LC3 in the two types of punctate structures, we provide a convenient and useful FRAP approach to distinguish autophagosomes from LC3-involved protein aggregates in living cells. Using this approach, we find the FP-LC3 puncta that adjacently localized to the phagophore marker ATG16L1 were protein aggregate-associated LC3 puncta, which exhibited different kinetics compared with that of autophagic structures. PMID:23482084
McDade, Joel R.; Michele, Daniel E.
2014-01-01
Mutations in the dysferlin gene resulting in dysferlin-deficiency lead to limb-girdle muscular dystrophy 2B and Myoshi myopathy in humans. Dysferlin has been proposed as a critical regulator of vesicle-mediated membrane resealing in muscle fibers, and localizes to muscle fiber wounds following sarcolemma damage. Studies in fibroblasts and urchin eggs suggest that trafficking and fusion of intracellular vesicles with the plasma membrane during resealing requires the intracellular cytoskeleton. However, the contribution of dysferlin-containing vesicles to resealing in muscle and the role of the cytoskeleton in regulating dysferlin-containing vesicle biology is unclear. Here, we use live-cell imaging to examine the behavior of dysferlin-containing vesicles following cellular wounding in muscle cells and examine the role of microtubules and kinesin in dysferlin-containing vesicle behavior following wounding. Our data indicate that dysferlin-containing vesicles move along microtubules via the kinesin motor KIF5B in muscle cells. Membrane wounding induces dysferlin-containing vesicle–vesicle fusion and the formation of extremely large cytoplasmic vesicles, and this response depends on both microtubules and functional KIF5B. In non-muscle cell types, lysosomes are critical mediators of membrane resealing, and our data indicate that dysferlin-containing vesicles are capable of fusing with lysosomes following wounding which may contribute to formation of large wound sealing vesicles in muscle cells. Overall, our data provide mechanistic evidence that microtubule-based transport of dysferlin-containing vesicles may be critical for resealing, and highlight a critical role for dysferlin-containing vesicle–vesicle and vesicle–organelle fusion in response to wounding in muscle cells. PMID:24203699
Uda, Ryoko M; Yoshikawa, Yuki; Kitaba, Moe; Nishimoto, Noriko
2018-07-01
Light-initiated fusion between vesicles has attracted much attention in the research community. In particular, fusion between photoresponsive and non-photoresponsive vesicles has been of much interest in the development of systems for the delivery of therapeutic agents to cells. We have performed fusion between giant vesicles (GVs) and photoresponsive smaller vesicles containing malachite green (MG) derivative, which undergoes ionization to afford a positive charge on the molecule by irradiation. The fusion proceeds as the concentration of GV lipid increases toward equimolarity with the lipid of the smaller vesicle. It is also dependent on the molar percentage of photoionized MG in the lipid of the smaller vesicle. On the other hand, the fusion is hardly affected by the anionic component of the GV. The photoinduced fusion was characterized by two methods, involving the mixing of lipid membranes and of aqueous contents. Fluorescence microscopy revealed that irradiation triggered the fusion of a single GV with the smaller vesicles containing MG. Copyright © 2018 Elsevier B.V. All rights reserved.
Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer
Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M.; Carracedo, Arkaitz
2016-01-01
Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. PMID:27366992
Lysosomes, autophagosomes and Alzheimer pathology in dementia with Lewy body disease.
Gurney, Rowan; Davidson, Yvonne S; Robinson, Andrew C; Richardson, Anna; Jones, Matthew; Snowden, Julie S; Mann, David M A
2018-05-10
A failure of protein degradation may underpin Lewy body disease (LBD) where α-synuclein is assimilated into the pathognomic Lewy bodies and Lewy neurites. We investigated histological alterations in lysosomes and autophagosomes in the substantia nigra (SN) and cingulate gyrus (CG) in 34 patients with LBD employing antibodies against phosphorylated α-synuclein and lysosomal (lysosomal associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2), cathepsin D (CTSD)) and autophagosomal (microtubule-associated protein light chain 3α (LC3A)) proteins. Immunostained sections were qualitatively and semi-quantitatively assessed for the appearance, distribution and intensity of staining. Four LBD patients had mutations in GBA1. There was significantly less LAMP-1, LAMP-2 and CTSD immunostaining in neurons of the SN in LBD cases compared to control cases and marginally less LAMP-1 in patients with GBA1 mutations compared to those without. Loss of LAMP-1 and CTSD immunoreactivity correlated with cell loss from the SN. There were no changes in LC3A immunoreactivity in the SN, nor any major changes in the CG, or glial cell activity in the SN and CG, for any of the markers. A proportion of amyloid plaques in both the LBD and control cases was immunoreactive for LAMP-1 and LAMP-2, but not CTSD or LC3A proteins. These immunohisochemical features were seen in glial cells, which were negative for amyloid-β. Alterations in lysosomal structure or function, but not macroautophagy, may underpin the pathogenesis of LBD. © 2018 Japanese Society of Neuropathology.
Rupert, Déborah L M; Claudio, Virginia; Lässer, Cecilia; Bally, Marta
2017-01-01
Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks. Copyright © 2016 Elsevier B.V. All rights reserved.
Transcutol containing vesicles for topical delivery of minoxidil.
Mura, Simona; Manconi, Maria; Valenti, Donatella; Sinico, Chiara; Vila, Amparo Ofelia; Fadda, Anna Maria
2011-04-01
The aim of this work was to evaluate the ability of Transcutol (Trc) to produce elastic vesicles with soy lecithin (SL) and study the influence of the obtained vesicles on in vitro (trans)dermal delivery of minoxidil. To this purpose, so-called penetration enhancer-containing vesicles (PEVs) were prepared using Trc aqueous solutions (5-10-20-30% v/v) as hydrophilic phase. SL liposomes, without Trc, were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, deformability, and rheological behavior. The influence of the obtained PEVs on (trans)dermal delivery of minoxidil was studied by in vitro diffusion experiments through pig skin. Results showed that all prepared PEVs were able to give good entrapment efficiency (E%≈67) similar to that of conventional liposomes. Trc-containing PEVs showed to be more deformable than liposomes only when minoxidil was loaded in 5 and 10% Trc-containing vesicles. Rheological studies showed that PEVs have higher fluidity than conventional liposomes. All PEVs showed a higher stability than liposomes as shown by studying zeta potential and size distribution during three months. Results of in vitro diffusion experiments showed that Trc-containing PEVs are able to deliver minoxidil to deep skin layers without any transdermal permeation.
Vasileva, Mariya; Renden, Robert; Horstmann, Heinz; Gitler, Daniel; Kuner, Thomas
2013-01-01
Synapsins are synaptic vesicle (SV) proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the SV pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa—known to sustain repetitive transmission in glutamatergic terminals—was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ) alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs. PMID:24391547
Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew
2016-02-26
Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. Copyright © 2016, American Association for the Advancement of Science.
Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.
Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz
2016-08-01
Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Zhenzhen; Wei, Yanna; Liu, Beibei; Wu, Yuzi; Wang, Haiyan; Xie, Xing; Feng, Zhixin; Shao, Guoqing; Xiong, Qiyan
2018-06-20
Interleukin-1β (IL-1β) is a critical inflammatory regulator in response to Mycoplasma hyopneumoniae infection. However, the mechanism involved in the secretion of IL-1β during Mycoplasma hyopneumoniae infection is unclear. In this study, we demonstrated that Mycoplasma hyopneumoniae infection increased the secretion of mature-IL-1β (m-IL-1β), but not pro-IL-1β, in porcine alveolar macrophages. Moreover, Mycoplasma hyopneumoniae infection promoted the generation of autophagosomes, which attributed to the unconventional secretion of m-IL-1β. Further results revealed that Hsp90 was required for the entry of m-IL-1β into autophagosomes during Mycoplasma hyopneumoniae infection. The fusion of m-IL-1β-containing autophagosome and plasma membranes was regulated by Sec22b and independent of lysosomal dysfunction. In conclusion, we provide evidence that Hsp90/Sec22b promotes the unconventional secretion of IL-1β through an autophagosomal carrier during Mycoplasma hyopneumoniae infection. The elucidation of the molecular and cellular machinery in Mycoplasma hyopneumoniae infected mammalian cells in this study suggests avenues for further study and applications and paves the way for novel therapeutic strategies to prevent tissue damage in mycoplasma-associated diseases. Copyright © 2018. Published by Elsevier Ltd.
Mechanics and stability of vesicles and droplets in confined spaces
Benet, Eduard; Vernerey, Franck J.
2017-01-01
The permeation and trapping of soft colloidal particles in the confined space of porous media are of critical importance in cell migration studies, design of drug delivery vehicles, and colloid separation devices. Our current understanding of these processes is however limited by the lack of quantitative models that can relate how the elasticity, size, and adhesion properties of the vesicle-pore complex affect colloid transport. We address this shortcoming by introducing a semianalytical model that predicts the equilibrium shapes of a soft vesicle driven by pressure in a narrow pore. Using this approach, the problem is recast in terms of pressure and energy diagrams that characterize the vesicle stability and permeation pressures in different conditions. We particularly show that the critical permeation pressure for a vesicle arises from a compromise between the critical entry pressure and exit pressure, both of which are sensitive to geometrical features, mechanics, and adhesion. We further find that these results can be leveraged to rationally design microfluidic devices and diodes that can help characterize, select, and separate colloids based on physical properties. PMID:28085314
Dynamics of small unilamellar vesicles
NASA Astrophysics Data System (ADS)
Hoffmann, Ingo; Hoffmann, Claudia; Farago, Bela; Prévost, Sylvain; Gradzielski, Michael
2018-03-01
In this paper, we investigate the dynamics of small unilamellar vesicles with the aid of neutron spin-echo spectroscopy. The purpose of this investigation is twofold. On the one hand, we investigate the influence of solubilised cosurfactant on the dynamics of the vesicle's surfactant bilayer. On the other hand, the small unilamellar vesicles used here have a size between larger vesicles, with dynamics being well described by the Zilman-Granek model and smaller microemulsion droplets which can be described by the Milner-Safran model. Therefore, we want to elucidate the question, which model is more suitable for the description of the membrane dynamics of small vesicles, where the finite curvature of the bilayer is felt by the contained amphiphilic molecules. This question is of substantial relevance for our understanding of membranes and how their dynamics is affected by curvature, a problem that is also of key importance in a number of biological questions. Our results indicate the even down to vesicle radii of 20 nm the Zilman-Granek model appears to be the more suitable one.
NASA Astrophysics Data System (ADS)
Shinozaki, Youichi; Siitonen, Ari M.; Sumitomo, Koji; Furukawa, Kazuaki; Torimitsu, Keiichi
2008-07-01
Lipid vesicle fusion is an important reaction in the cell. Calcium ions (Ca2+) participate in various important biological events including the fusion of vesicles with cell membranes in cells. We studied the effect of Ca2+ on the fusion of egg yolk phosphatidylcholine/brain phosphatidylserine (eggPC/brainPS) lipid vesicles on a mica substrate with fast scanning atomic force microscopy (AFM). When unattached and unfused lipid vesicles on mica were rinsed away, discrete patches of fused vesicles were observed under high Ca2+ concentrations. At 0 mM Ca2+, lipid vesicles were fused on mica and formed continuous supported lipid bilayers (SLBs) covering almost the entire mica surface. The effect of Ca2+ on SLB formation was offset by a Ca2+ chelating agent. When lipid vesicles were added during AFM observation, vesicles fused on mica and covered almost all areas even under high Ca2+ concentrations. These results indicate that force between AFM tip and vesicles overcomes the Ca2+-reduced fusion of lipid vesicles.
Interaction of phospholipid vesicles with cultured mammalial cells. I. Characteristics of uptake
1975-01-01
The interaction of monolayer cultures of Chinese hamster V79 cells with artificially generated, unilamellar lipid vesicles (approximately 500 A diameter) was examined. Vesicles prepared from a variety of natural and synthetic radiolabeled phosphatidyl cholines (lecithins) were incubated with V79 cells bathed in a simple balanced salt solution. After incubation, the cells were analyzed for exogenous lipid incorporation. Large quantities (approximately 10(8) molecules/cell/h) of lecithin became cell associated without affecting cell viability. The effects of pH, charged lipids, and the influence of the vesicle lipid phase transition on the uptake process were examined. Glutaraldehyde fixation of cells before vesicle treatment, or incubation in the presence of metabolic inhibitors, failed to reduce the lecithin uptake by more than 25-50%, suggesting that the lipid uptake is largely energy independent. Cells in sparse culture took up about ten times more lipid than dense cultures. Prolonged incubation (greater than 15 h) of sparse cell cultures with lecithin vesicles resulted in significant cell death while no deleterious effect was found in dense cultures, or with 1:1 lecithin/cholesterol vesicles. When vesicle-treated cells were homogenized and fractionated, about 20-30% of the exogenous lipid was found in the plasma membrane fraction, with the remainder being distributed into intracellular fractions. Electron microscope radioautography further demonstrated that most of the internalized lipid was present in the cytoplasm, with little in the nucleus. These results are discussed in terms of possible modification of cell behavior by lipid vesicle treatment. PMID:240860
Ca2+ Dependence of Synaptic Vesicle Endocytosis.
Leitz, Jeremy; Kavalali, Ege T
2016-10-01
Ca(2+)-dependent synaptic vesicle recycling is essential for structural homeostasis of synapses and maintenance of neurotransmission. Although, the executive role of intrasynaptic Ca(2+) transients in synaptic vesicle exocytosis is well established, identifying the exact role of Ca(2+) in endocytosis has been difficult. In some studies, Ca(2+) has been suggested as an essential trigger required to initiate synaptic vesicle retrieval, whereas others manipulating synaptic Ca(2+) concentrations reported a modulatory role for Ca(2+) leading to inhibition or acceleration of endocytosis. Molecular studies of synaptic vesicle endocytosis, on the other hand, have consistently focused on the roles of Ca(2+)-calmodulin dependent phosphatase calcineurin and synaptic vesicle protein synaptotagmin as potential Ca(2+) sensors for endocytosis. Most studies probing the role of Ca(2+) in endocytosis have relied on measurements of synaptic vesicle retrieval after strong stimulation. Strong stimulation paradigms elicit fusion and retrieval of multiple synaptic vesicles and therefore can be affected by several factors besides the kinetics and duration of Ca(2+) signals that include the number of exocytosed vesicles and accumulation of released neurotransmitters thus altering fusion and retrieval processes indirectly via retrograde signaling. Studies monitoring single synaptic vesicle endocytosis may help resolve this conundrum as in these settings the impact of Ca(2+) on synaptic fusion probability can be uncoupled from its putative role on synaptic vesicle retrieval. Future experiments using these single vesicle approaches will help dissect the specific role(s) of Ca(2+) and its sensors in synaptic vesicle endocytosis. © The Author(s) 2015.
Martyniszyn, L; Szulc-Dąbrowska, L; Boratyńska-Jasińska, A; Niemiałtowski, M
2013-01-01
Induction of autophagy by ectromelia virus (ECTV) in primary cultures of bone marrow-derived macrophages (BMDMs) was investigated. The results showed that ECTV infection of BMDMs resulted in increased formation of autophagosomes, increased level of LC3-II protein present in aggregates and extensive cytoplasmic vacuolization. These data indicate an increased autophagic activity in BMDMs during ECTV infection.
Ford, W E; Otvos, J W; Calvin, M
1979-01-01
An amphiphilic tris(2,2'-bipyridine)ruthenium(2+) derivative that is incorporated into the walls of phosphatidylcholine vesicles photosensitizes the irreversible oxidation of ethylenediaminetetraacetate(3-) dissolved in the inner aqueous compartments of the vesicle suspension and the one-electron reduction of heptylviologen(2+) dissolved in the continuous aqueous phase. The quantum yield of viologen radical production depends on the phospholipid-to-ruthenium complex mole ratios. A kinetic model is used to derive an order-of-magnitude estimate for the rate constant of electron transport across the vesicle walls. The results are inconsistent with a diffusional mechanism for electron transport and are interpreted in terms of electron exchange. PMID:291027
Spontaneous charged lipid transfer between lipid vesicles.
Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul
2017-10-03
An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.
Ying, Chong T; Wang, Juntian; Lamm, Robert J; Kamei, Daniel T
2013-02-01
Vesicles have been studied for several years in their ability to deliver drugs. Mathematical models have much potential in reducing time and resources required to engineer optimal vesicles, and this review article summarizes these models that aid in understanding the ability of targeted vesicles to bind and internalize into cancer cells, diffuse into tumors, and distribute in the body. With regard to binding and internalization, radiolabeling and surface plasmon resonance experiments can be performed to determine optimal vesicle size and the number and type of ligands conjugated. Binding and internalization properties are also inputs into a mathematical model of vesicle diffusion into tumor spheroids, which highlights the importance of the vesicle diffusion coefficient and the binding affinity of the targeting ligand. Biodistribution of vesicles in the body, along with their half-life, can be predicted with compartmental models for pharmacokinetics that include the effect of targeting ligands, and these predictions can be used in conjunction with in vivo models to aid in the design of drug carriers. Mathematical models can prove to be very useful in drug carrier design, and our hope is that this review will encourage more investigators to combine modeling with quantitative experimentation in the field of vesicle-based drug delivery.
Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33AD251E mutation
Zhen, Yuanli; Li, Wei
2015-01-01
The HOPS (homotypic fusion and protein sorting) complex functions in endocytic and autophagic pathways in both lower eukaryotes and mammalian cells through its involvement in fusion events between endosomes and lysosomes or autophagosomes and lysosomes. However, the differential molecular mechanisms underlying these fusion processes are largely unknown. Buff (bf) is a mouse mutant that carries an Asp251-to-Glu point mutation (D251E) in the VPS33A protein, a tethering protein and a core subunit of the HOPS complex. Bf mice showed impaired spontaneous locomotor activity, motor learning, and autophagic activity. Although the gross anatomy of the brain was apparently normal, the number of Purkinje cells was significantly reduced. Furthermore, we found that fusion between autophagosomes and lysosomes was defective in bf cells without compromising the endocytic pathway. The direct association of mutant VPS33AD251E with the autophagic SNARE complex, STX17 (syntaxin 17)-VAMP8-SNAP29, was enhanced. In addition, the VPS33AD251E mutation enhanced interactions with other HOPS subunits, namely VPS41, VPS39, VPS18, and VPS11, except for VPS16. Reduction of the interactions between VPS33AY440D and several other HOPS subunits led to decreased association with STX17. These results suggest that the VPS33AD251E mutation plays dual roles by increasing the HOPS complex assembly and its association with the autophagic SNARE complex, which selectively affects the autophagosome-lysosome fusion that impairs basal autophagic activity and induces Purkinje cell loss. PMID:26259518
... herpetiformis Chickenpox Contact dermatitis (may be caused by poison ivy) Herpes simplex (cold sores, genital herpes ) Herpes zoster ( ... available for certain conditions that cause vesicles, including poison ivy and cold sores. When to Contact a Medical ...
Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil.
Mura, Simona; Manconi, Maria; Sinico, Chiara; Valenti, Donatella; Fadda, Anna Maria
2009-10-01
The aim of this work was to evaluate the ability of a few different penetration enhancers to produce elastic vesicles with soy lecithin and the influence of the obtained vesicles on in vitro (trans)dermal delivery of minoxidil. To this purpose, so-called Penetration Enhancer-containing Vesicles (PEVs) were prepared as dehydrated-rehydrated vesicles by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy)ethanol (Transcutol), capryl-caproyl macrogol 8-glyceride (Labrasol), and cineole. Soy lecithin liposomes, without penetration enhancers, were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, and vesicle deformability. The influence of PEVs on (trans)dermal delivery of minoxidil was studied by in vitro diffusion experiments through newborn pig skin in comparison with traditional liposomes and ethanolic solutions of the drug also containing each penetration enhancer. A skin pre-treatment study using empty PEVs and conventional liposomes was also carried out. Results showed that all the used penetration enhancers were able to give more deformable vesicles than conventional liposomes with a good drug entrapment efficiency and stability. In vitro skin penetration data showed that PEVs were able to give a statistically significant improvement of minoxidil deposition in the skin in comparison with classic liposomes and penetration enhancer-containing drug ethanolic solutions without any transdermal delivery. Moreover, the most deformable PEVs, prepared with Labrasol and cineole, were also able to deliver to the skin a higher total amount of minoxidil than the PE alcoholic solutions thus suggesting that minoxidil delivery to the skin was strictly correlated to vesicle deformability, and therefore to vesicle composition.
Defective Autophagosome Formation in p53-Null Colorectal Cancer Reinforces Crocin-Induced Apoptosis
Amin, Amr; Bajbouj, Khuloud; Koch, Adrian; Gandesiri, Muktheshwar; Schneider-Stock, Regine
2015-01-01
Crocin, a bioactive molecule of saffron, inhibited proliferation of both HCT116 wild-type and HCT116 p53−/− cell lines at a concentration of 10 mM. Flow cytometric analysis of cell cycle distribution revealed that there was an accumulation of HCT116 wild-type cells in G1 (55.9%, 56.1%) compared to the control (30.4%) after 24 and 48 h of crocin treatment, respectively. However, crocin induced only mild G2 arrest in HCT116 p53−/− after 24 h. Crocin induced inefficient autophagy in HCT116 p53−/− cells, where crocin induced the formation of LC3-II, which was combined with a decrease in the protein levels of Beclin 1 and Atg7 and no clear p62 degradation. Autophagosome formation was not detected in HCT116 p53−/− after crocin treatment predicting a nonfunctional autophagosome formation. There was a significant increase of p62 after treating the cells with Bafilomycin A1 (Baf) and crocin compared to crocin exposure alone. Annexin V staining showed that Baf-pretreatment enhanced the induction of apoptosis in HCT116 wild-type cells. Baf-exposed HCT116 p53−/− cells did not, however, show any enhancement of apoptosis induction despite an increase in the DNA damage-sensor accumulation, γH2AX indicating that crocin induced an autophagy-independent classical programmed cell death. PMID:25584615
2017-11-01
autophagosomes (mitophagy) imparts anti-androgen resistance. Method: Effects of the anti-androgen enzalutamide on the autophagy and mitophagy of androgen...They often use some of the autophagic signaling pathways such as mTOR or FoxO that are switched on by nutrient deficiency and oxidative stress for...survival or self-destruction depending on the magnitude of the stress conditions. Androgens as well as anti- androgens such as bicalutamide
Amyloglucosidase enzymatic reactivity inside lipid vesicles
Li, Mian; Hanford, Michael J; Kim, Jin-Woo; Peeples, Tonya L
2007-01-01
Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG) (EC 3.2.1.3) from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC) multilamellar vesicles (MLVs) and large unilamellar vesicles (LUVs) was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose) formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations. PMID:18271982
Methods for the Detection of Autophagy in Mammalian Cells
Zhang, Ziyan; Singh, Rajat; Aschner, Michael
2016-01-01
Macroautophagy (hereafter referred to as autophagy) is a degradation pathway that delivers cytoplasmic materials to lysosomes via double-membraned vesicles designated autophagosomes. Cytoplasmic constituents are sequestered into autophagosomes, which subsequently fuse with lysosomes, where the cargo is degraded. Autophagy is a crucial mechanism involved in many aspects of cell function, including cellular metabolism and energy balance; and alterations in autophagy have been linked to various human pathological processes. Thus, methods that accurately measure autophagic activity are necessary. In this unit, we introduce several approaches to analyze autophagy in mammalian cells, including immunoblotting analysis of LC3 and p62, detection of autophagosome formation by fluorescence microscopy, and monitoring autophagosome maturation by tandem mRFP-GFP fluorescence microscopy. Overall, we recommend a combined use of multiple methods to accurately assess the autophagic activity in any given biological setting. PMID:27479363
Functionalized Vesicles by Microfluidic Device.
Vallejo, Derek; Lee, Shih-Hui; Lee, Abraham
2017-01-01
In recent years, lipid vesicles have become popular vehicles for the creation of biosensors. Vesicles can hold reaction components within a selective permeable membrane that provides an ideal environment for membrane protein biosensing elements. The lipid bilayer allows a protein to retain its native structure and function, and the membrane fluidity can allow for conformational changes and physiological interactions with target analytes. Here, we present two methods for the production of giant unilamellar vesicles (GUVs) within a microfluidic device that can be used as the basis for a biosensor. The vesicles are produced from water-in-oil-in-water (W/O/W) double emulsion templates using a nonvolatile oil phase. To create the GUVs, the oil can be removed via extraction with ethanol, or by altering the interfacial tension between the oil and carrier solution causing the oil to retract into a cap on one side of the structure, leaving behind an exposed lipid bilayer. Methods to integrate sensing elements and membrane protein pores onto the vesicles are also introduced in this work.
Jiang, Ke; Liu, Min; Lin, Guibin; Mao, Beibei; Cheng, Wei; Liu, Han; Gal, Jozsef; Zhu, Haining; Yuan, Zengqiang; Deng, Wuguo; Liu, Quentin; Gong, Peng; Bi, Xiaolin; Meng, Songshu
2016-05-03
The tumor suppressor Spred2 (Sprouty-related EVH1 domain-2) induces cell death in a variety of cancers. However, the underlying mechanism remains to be elucidated. Here we show that Spred2 induces caspase-independent but autophagy-dependent cell death in human cervical carcinoma HeLa and lung cancer A549 cells. We demonstrate that ectopic Spred2 increased both the conversion of microtubule-associated protein 1 light chain 3 (LC3), GFP-LC3 puncta formation and p62/SQSTM1 degradation in A549 and HeLa cells. Conversely, knockdown of Spred2 in tumor cells inhibited upregulation of autophagosome maturation induced by the autophagy inducer Rapamycin, which could be reversed by the rescue Spred2. These data suggest that Spred2 promotes autophagy in tumor cells. Mechanistically, Spred2 co-localized and interacted with LC3 via the LC3-interacting region (LIR) motifs in its SPR domain. Mutations in the LIR motifs or deletion of the SPR domain impaired Spred2-mediated autophagosome maturation and tumor cell death, indicating that functional LIR is required for Spred2 to trigger tumor cell death. Additionally, Spred2 interacted and co-localized with p62/SQSTM1 through its SPR domain. Furthermore, the co-localization of Spred2, p62 and LAMP2 in HeLa cells indicates that p62 may be involved in Spred2-mediated autophagosome maturation. Inhibition of autophagy using the lysosomal inhibitor chloroquine, reduced Spred2-mediated HeLa cell death. Silencing the expression of autophagy-related genes ATG5, LC3 or p62 in HeLa and A549 cells gave similar results, suggesting that autophagy is required for Spred2-induced tumor cell death. Collectively, these data indicate that Spred2 induces tumor cell death in an autophagy-dependent manner.
Lin, Guibin; Mao, Beibei; Cheng, Wei; Liu, Han; Gal, Jozsef; Zhu, Haining; Yuan, Zengqiang; Deng, Wuguo; Liu, Quentin; Gong, Peng; Bi, Xiaolin; Meng, Songshu
2016-01-01
The tumor suppressor Spred2 (Sprouty-related EVH1 domain-2) induces cell death in a variety of cancers. However, the underlying mechanism remains to be elucidated. Here we show that Spred2 induces caspase-independent but autophagy-dependent cell death in human cervical carcinoma HeLa and lung cancer A549 cells. We demonstrate that ectopic Spred2 increased both the conversion of microtubule-associated protein 1 light chain 3 (LC3), GFP-LC3 puncta formation and p62/SQSTM1 degradation in A549 and HeLa cells. Conversely, knockdown of Spred2 in tumor cells inhibited upregulation of autophagosome maturation induced by the autophagy inducer Rapamycin, which could be reversed by the rescue Spred2. These data suggest that Spred2 promotes autophagy in tumor cells. Mechanistically, Spred2 co-localized and interacted with LC3 via the LC3-interacting region (LIR) motifs in its SPR domain. Mutations in the LIR motifs or deletion of the SPR domain impaired Spred2-mediated autophagosome maturation and tumor cell death, indicating that functional LIR is required for Spred2 to trigger tumor cell death. Additionally, Spred2 interacted and co-localized with p62/SQSTM1 through its SPR domain. Furthermore, the co-localization of Spred2, p62 and LAMP2 in HeLa cells indicates that p62 may be involved in Spred2-mediated autophagosome maturation. Inhibition of autophagy using the lysosomal inhibitor chloroquine, reduced Spred2-mediated HeLa cell death. Silencing the expression of autophagy-related genes ATG5, LC3 or p62 in HeLa and A549 cells gave similar results, suggesting that autophagy is required for Spred2-induced tumor cell death. Collectively, these data indicate that Spred2 induces tumor cell death in an autophagy-dependent manner. PMID:27028858
DNA-mediated self-assembly of artificial vesicles.
Hadorn, Maik; Eggenberger Hotz, Peter
2010-03-26
Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time. In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts. This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i) Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii) Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment bioreactors in versatility and productivity. (iii) Personalized medicine. Transport and
Optogenetic Acidification of Synaptic Vesicles and Lysosomes
Grauel, M. Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J.; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian
2016-01-01
Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes. PMID:26551543
Optogenetic acidification of synaptic vesicles and lysosomes.
Rost, Benjamin R; Schneider, Franziska; Grauel, M Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian
2015-12-01
Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakadera, Eisuke; Yamashina, Shunhei, E-mail: syamashi@juntendo.ac.jp; Izumi, Kousuke
Recent investigations revealed that dysfunction of autophagy involved in the progression of chronic liver diseases such as alcoholic and nonalcoholic steatohepatitis and hepatocellular neoplasia. Previously, it was reported that hepatic steatosis disturbs autophagic proteolysis via suppression of both autophagic induction and lysosomal function. Here, we demonstrate that autophagic acidification was altered by a decrease in lysosomal proton pump vacuolar-ATPase (V-ATPase) in steatohepatitis. The number of autophagic vesicles was increased in hepatocytes from obese KKAy mice as compared to control. Similarly, autophagic membrane protein LC3-II and lysosomal protein LAMP-2 expression were enhanced in KKAy mice liver. Nevertheless, both phospho-mTOR and p62more » expression were augmented in KKAy mice liver. More than 70% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, the percentage of acidic autolysosomes was decreased in hepatocytes from KKAy mice significantly (40.1 ± 3.48%). Both protein and RNA level of V-ATPase subunits ATP6v1a, ATP6v1b, ATP6v1d in isolated lysosomes were suppressed in KKAy mice as compared to control. Interestingly, incubation with mTOR inhibitor rapamycin increased in the rate of LTR-positive autolysosomes in hepatocytes from KKAy mice and suppressed p62 accumulation in the liver from KKAy mice which correlated to an increase in the V-ATPase subunits expression. These results indicate that down-regulation of V-ATPase due to hepatic steatosis causes autophagic dysfunction via disruption of lysosomal and autophagic acidification. Moreover, activation of mTOR plays a pivotal role on dysregulation of lysosomal and autophagic acidification by modulation of V-ATPase expression and could therefore be a useful therapeutic target to ameliorate dysfunction of autophagy in NAFLD. - Highlights: • Hepatic steatosis causes accumulation of autophagic vesicles in hepatocytes. • Hepatic steatosis
Cha-Molstad, Hyunjoo; Yu, Ji Eun; Feng, Zhiwei; Lee, Su Hyun; Kim, Jung Gi; Yang, Peng; Han, Bitnara; Sung, Ki Woon; Yoo, Young Dong; Hwang, Joonsung; McGuire, Terry; Shim, Sang Mi; Song, Hyun Dong; Ganipisetti, Srinivasrao; Wang, Nuozhou; Jang, Jun Min; Lee, Min Jae; Kim, Seung Jun; Lee, Kyung Ho; Hong, Jin Tae; Ciechanover, Aaron; Mook-Jung, Inhee; Kim, Kwang Pyo; Xie, Xiang-Qun; Kwon, Yong Tae; Kim, Bo Yeon
2017-07-24
Macroautophagy mediates the selective degradation of proteins and non-proteinaceous cellular constituents. Here, we show that the N-end rule pathway modulates macroautophagy. In this mechanism, the autophagic adapter p62/SQSTM1/Sequestosome-1 is an N-recognin that binds type-1 and type-2 N-terminal degrons (N-degrons), including arginine (Nt-Arg). Both types of N-degrons bind its ZZ domain. By employing three-dimensional modeling, we developed synthetic ligands to p62 ZZ domain. The binding of Nt-Arg and synthetic ligands to ZZ domain facilitates disulfide bond-linked aggregation of p62 and p62 interaction with LC3, leading to the delivery of p62 and its cargoes to the autophagosome. Upon binding to its ligand, p62 acts as a modulator of macroautophagy, inducing autophagosome biogenesis. Through these dual functions, cells can activate p62 and induce selective autophagy upon the accumulation of autophagic cargoes. We also propose that p62 mediates the crosstalk between the ubiquitin-proteasome system and autophagy through its binding Nt-Arg and other N-degrons.Soluble misfolded proteins that fail to be degraded by the ubiquitin proteasome system (UPS) are redirected to autophagy via specific adaptors, such as p62. Here the authors show that p62 recognises N-degrons in these proteins, acting as a N-recognin from the proteolytic N-end rule pathway, and targets these cargos to autophagosomal degradation.
Breton, Marie; Amirkavei, Mooud; Mir, Lluis M
2015-10-01
Giant unilamellar vesicles (GUV) are widely used cell membrane models. GUVs have a cell-like diameter and contain the same phospholipids that constitute cell membranes. The most frequently used protocol to obtain these vesicles is termed electroformation, since key steps of this protocol consist in the application of an electric field to a phospholipid deposit. The potential oxidation of unsaturated phospholipids due to the application of an electric field has not yet been considered even though the presence of oxidized lipids in the membrane of GUVs could impact their permeability and their mechanical properties. Thanks to mass spectrometry analyses, we demonstrated that the electroformation technique can cause the oxidation of polyunsaturated phospholipids constituting the vesicles. Then, using flow cytometry, we showed that the amplitude and the duration of the electric field impact the number and the size of the vesicles. According to our results, the oxidation level of the phospholipids increases with their level of unsaturation as well as with the amplitude and the duration of the electric field. However, when the level of lipid oxidation exceeds 25 %, the diameter of the vesicles is decreased and when the level of lipid oxidation reaches 40 %, the vesicles burst or reorganize and their rate of production is reduced. In conclusion, the classical electroformation method should always be optimized, as a function of the phospholipid used, especially for producing giant liposomes of polyunsaturated phospholipids to be used as a cell membrane model.
Trafficking of astrocytic vesicles in hippocampal slices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potokar, Maja; Kreft, Marko; Celica Biomedical Center, Technology Park 24, 1000 Ljubljana
2009-12-25
The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing livemore » cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.« less
Exosome-like vesicles in Gloydius blomhoffii blomhoffii venom.
Ogawa, Yuko; Kanai-Azuma, Masami; Akimoto, Yoshihiro; Kawakami, Hayato; Yanoshita, Ryohei
2008-05-01
Exosomes are small membrane vesicles (30-100 nm) with an endosome-derived limiting membrane that are secreted by a diverse range of cell types. We provide here the first evidence for the presence of exosome-like vesicles in snake venom. We isolated vesicles from fresh venom from Gloydius blomhoffii blomhoffii by gel-filtration. We found that the vesicles showed a typical exosome-like size and morphology as analyzed by electron microscopy. We observed that the vesicles contained dipeptidyl peptidase IV, aminopeptidase A, ecto-5'-nucleotidase and actin. Vesicle preparations truncated bioactive peptides such as angiotensin II, substance P, cholecystokinin-octapeptide, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1. The role of these vesicles is still unknown, but they may affect blood pressure and glucose homeostasis following envenomation.
Tian, Xuejun; Gala, Upasana; Zhang, Yongping; Shang, Weina; Nagarkar Jaiswal, Sonal; di Ronza, Alberto; Jaiswal, Manish; Yamamoto, Shinya; Sandoval, Hector; Duraine, Lita; Sardiello, Marco; Sillitoe, Roy V; Venkatachalam, Kartik; Fan, Hengyu; Bellen, Hugo J; Tong, Chao
2015-03-01
Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.
Thermodynamics and kinetics of vesicles formation processes.
Guida, Vincenzo
2010-12-15
Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.
Bioengineering anembryonic human trophoblast vesicles.
Robins, Jared C; Morgan, Jeffrey R; Krueger, Paula; Carson, Sandra A
2011-02-01
Trophoblast cells in vivo form a 3-dimensional structure that promotes complex cell-to-cell interactions that cannot be studied with traditional monolayer culture. We describe a 3-dimensional trophoblast bioreactor to study cellular interactions. Nonadhesive agarose hydrogels were cast from molds using computer-assisted prototyping. Trophoblast cells were seeded into the gels for 10 days. Morphology, viability, and vesicle behavior were assessed. Trophoblast cells formed uniform spheroids. Serial sectioning on days 3, 7, and 10 revealed central vacuolization with a consistent outer rim 12.3-μ thick. The vesicle configuration has been confirmed with confocal imaging. Electron Microscopic (EM) imaging revealed its ultrastructure. The vesicles migrate across a fibronectin-coated surface and invaded basement membrane. Trophoblast cells cultured in a novel substrate-free 3-dimensional system form trophoblast vesicles. This new cell culture technique allows us to better study placental cell-to-cell interactions with the potential of forming microtissues.
van der Aa, E M; Copius Peereboom-Stegeman, J H; Russel, F G
1995-09-01
The initial step in placental uptake of nutrients occurs across the syncytial microvillous membrane of the trophoblast. This study was designed to isolate syncytial microvillous membrane vesicles (SMMV) of human term placenta, to validate their purity and viability, and to investigate the interaction of several commonly used drugs with the transport of two essential nutrients: alanine and choline. SMMV were isolated according to an established procedure, but instead of homogenization the initial preparation step was replaced by mincing of placental tissue followed by gently stirring to loosen the microvilli. These modifications doubled the protein recovery and increased the enrichment in alkaline phosphatase, whereas no substantial contamination with basal membranes nor interfering subcellular organelles was found. The functional viability of the vesicles was evaluated through the transport of alanine. In accordance with literature, uptake was sodium-dependent, inhibitable by structural analogues, and saturable. A number of cationic drugs were were able to able to inhibit choline uptake, whereas no effect on alanine transport was observed. Anionic drugs, drugs of abuse, and catecholamines did not interfere with alanine transport either. In conclusion, our isolated SMMV provide a suitable tool for screening drug-nutrient interactions at the level of membrane transport. In view of the very low susceptibility of the alanine transporter to drug inhibition and the relatively high drug concentrations necessary to inhibit choline transport, it seems unlikely that clinically important drug interactions may occur with these nutrients.
On the Computing Potential of Intracellular Vesicles
Mayne, Richard; Adamatzky, Andrew
2015-01-01
Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal ‘circuitry’ and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a ‘vesicle modification’ of the archetypal CBC ‘billiard ball model’ of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle ‘programming’ in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435
Simulation of self-assembly of polyzwitterions into vesicles
Mahalik, Jyoti P.; Muthukumar, Murugappan
2016-08-19
Using the Langevin dynamics method and a coarse-grained model, we have researched the formation of vesicles by hydrophobic polymers consisting of periodically placed zwitterion side groups in dilute salt-free aqueous solutions. The zwitterions, being permanent charge dipoles, provide long-range electrostatic correlations which are interfered by the conformational entropy of the polymer. Our simulations are geared towards gaining conceptual understanding in these correlated dipolar systems, where theoretical calculations are at present formidable. A competition between hydrophobic interactions and dipole-dipole interactions leads to a series of self-assembled structures. As the spacing d between the successive zwitterion side groups decreases, single chains undergomore » globule → disk → worm-like structures. We have calculated the Flory-Huggins χ parameter for these systems in terms of d and monitored the radius of gyration, hydrodynamic radius, spatial correlations among hydrophobic and dipole monomers, and dipole-dipole orientational correlation functions. During the subsequent stages of self-assembly, these structures lead to larger globules and vesicles as d is decreased up to a threshold value, below which no large scale morphology forms. Finally the vesicles form via a polynucleation mechanism whereby disk-like structures form first, followed by their subsequent merger.« less
Elastic energy of polyhedral bilayer vesicles
Haselwandter, Christoph A.; Phillips, Rob
2011-01-01
In recent experiments the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron. PMID:21797397
Autophagosomes contribute to intracellular lipid distribution in enterocytes
Khaldoun, Salem Ait; Emond-Boisjoly, Marc-Alexandre; Chateau, Danielle; Carrière, Véronique; Lacasa, Michel; Rousset, Monique; Demignot, Sylvie; Morel, Etienne
2014-01-01
Enterocytes, the intestinal absorptive cells, have to deal with massive alimentary lipids upon food consumption. They orchestrate complex lipid-trafficking events that lead to the secretion of triglyceride-rich lipoproteins and/or the intracellular transient storage of lipids as lipid droplets (LDs). LDs originate from the endoplasmic reticulum (ER) membrane and are mainly composed of a triglyceride (TG) and cholesterol-ester core surrounded by a phospholipid and cholesterol monolayer and specific coat proteins. The pivotal role of LDs in cellular lipid homeostasis is clearly established, but processes regulating LD dynamics in enterocytes are poorly understood. Here we show that delivery of alimentary lipid micelles to polarized human enterocytes induces an immediate autophagic response, accompanied by phosphatidylinositol-3-phosphate appearance at the ER membrane. We observe a specific and rapid capture of newly synthesized LD at the ER membrane by nascent autophagosomal structures. By combining pharmacological and genetic approaches, we demonstrate that autophagy is a key player in TG targeting to lysosomes. Our results highlight the yet-unraveled role of autophagy in the regulation of TG distribution, trafficking, and turnover in human enterocytes. PMID:24173715
Gugliotti, M; Chaimovich, H; Politi, M J
2000-02-15
Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.
Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles
Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong; Hamid, Edaeni; Sheng, Jiansong; Baydyuk, Maryna; Wen, Peter J.; Jin, Albert; Momboisse, Fanny; Wu, Ling-Gang
2014-01-01
Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and STED imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1–30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size, or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles. PMID:24561832
Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?
Bobryshev, Yuri V; Killingsworth, Murray C; Huynh, Thuan G; Lord, Reginald S A; Grabs, Anthony J; Valenzuela, Stella M
2007-03-01
Over recent years, the role of matrix vesicles in the initial stages of arterial calcification has been recognized. Matrix calcifying vesicles have been isolated from atherosclerotic arteries and the biochemical composition of calcified vesicles has been studied. No studies have yet been carried out to examine the fine structure of matrix vesicles in order to visualize the features of the consequent stages of their calcification in arteries. In the present work, a high resolution ultrastructural analysis has been employed and the study revealed that matrix vesicles in human atherosclerotic lesions are heterogeneous with two main types which we classified. Type I calcified vesicles were presented by vesicles surrounded by two electron-dense layers and these vesicles were found to be resistant to the calcification process in atherosclerotic lesions in situ. Type II matrix vesicles were presented by vesicles surrounded by several electron-dense layers and these vesicles were found to represent calcifying vesicles in atherosclerotic lesions. To test the hypothesis that calcification of matrix vesicles surrounded by multilayer sheets may occur simply as a physicochemical process, independently from the cell regulation, we produced multilamellar liposomes and induced their calcification in vitro in a manner similar to that occurring in matrix vesicles in atherosclerotic lesions in situ.
Vesicles Are Persistent Features of Different Plastids.
Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik
2016-10-01
Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kinetic regulation of coated vesicle secretion
Foret, Lionel; Sens, Pierre
2008-01-01
The secretion of vesicles for intracellular transport often relies on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the endoplasmic reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behavior, also triggered by factors, such as the presence of cargo and variation of the membrane mechanical tension, allows for efficient regulation of vesicle secretion. We propose a model, supported by different experimental observations, in which vesiculation of secretory membranes is impaired by the energy-consuming desorption of coat proteins, until the presence of cargo or other factors triggers a dynamical switch into a vesicle producing state. PMID:18824695
Membrane vesicles shed by oligodendroglioma cells induce neuronal apoptosis.
D'Agostino, Stefania; Salamone, Monica; Di Liegro, Italia; Vittorelli, M Letizia
2006-11-01
In order to investigate the mechanism by which oligodendrogliomas cause neuronal damage, media conditioned by G26/24 oligodendroglioma cells, were fractionated into shed vesicles and vesicle-free supernatants, and added to primary cultures of rat fetal cortical neurons. After one night treatment with vesicles, a reproducible, dose-dependent, inhibitory effect on neurite outgrowth was already induced and, after 48-72 h of incubation, neuronal apoptosis was evident. Vesicle-free supernatants and vesicles shed by NIH-3T3 cells had no inhibitory effects on neurons. Western blot analyses showed that treated neurons expressed a decreased amount of neurofilament (NF), growth-associated protein (GAP-43) and microtubule-associated protein (MAP-2). Moreover procaspase-3 and -8 were activated while Bcl-2 expression was reduced. Vesicles were found positive for the proapoptotic molecule, Fas-ligand (Fas-L), and for the B isoform of Nogo protein, a myelin component with inhibitory effects on neurons. Nogo B involvement in the vesicle effects was analyzed both by testing the neutralizing capability of anti-Nogo antibodies and by removing the Nogo receptor from neurons by phospholipase C digestion. These treatments did not revert the vesicle effects. To test the role of Fas-L, vesicles were treated with functional anti-Fas-L monoclonals. Vesicle inhibitory and proapoptotic effects were reduced. Vesicles shed by ovarian carcinoma cells (OvCa), which are known to vehicle biologically active Fas-L, had similar effects on neurons to those of oligodendroglioma vesicles, and their inhibitory effects were also reduced by anti Fas-L antibodies. We therefore conclude that vesicles shed by G26/24 cells induce neuronal apoptosis at least partially by a Fas-L mediated mechanism.
Glycine uptake by microvillous and basal plasma membrane vesicles from term human placentae.
Dicke, J M; Verges, D; Kelley, L K; Smith, C H
1993-01-01
Like most amino acids, glycine is present in higher concentrations in the fetus than in the mother. Unlike most amino acids, animal studies suggest fetal concentrations of glycine are minimally in excess of those required for protein synthesis. Abnormal glycine utilization has also been demonstrated in small-for-gestational age human fetuses. The mechanism(s) of glycine uptake in the human placenta are unknown. In other mammalian cells glycine is a substrate for the A, ASC and Gly amino acid transport systems. In this study human placental glycine uptake was characterized using microvillous and basal plasma membrane vesicles each prepared from the same placenta. In both membranes glycine uptake was mediated predominantly by the sodium-dependent A system. Competitive inhibition studies suggest that in microvillous vesicles the small percentage of sodium-dependent glycine uptake not inhibited by methylaminoisobutyric acid (MeAIB) shares a transport system with glycine methyl ester and sarcosine, substrates of the Gly system in other tissues. In addition there are mediated sodium-independent and non-selective transport mechanisms in both plasma membranes. If fetal glycine availability is primarily contingent upon the common and highly regulated A system, glycine must compete with many other substrates potentially resulting in marginal fetal reserves, abnormal utilization and impaired growth.
Kibra and aPKC regulate starvation-induced autophagy in Drosophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ahrum; Neufeld, Thomas P.; Choe, Joonho, E-mail: jchoe@kaist.ac.kr
Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apicalmore » membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.« less
Cross-over endocytosis of claudins is mediated by interactions via their extracellular loops.
Gehne, Nora; Lamik, Agathe; Lehmann, Martin; Haseloff, Reiner F; Andjelkovic, Anuska V; Blasig, Ingolf E
2017-01-01
Claudins (Cldns) are transmembrane tight junction (TJ) proteins that paracellularly seal endo- and epithelial barriers by their interactions within the TJs. However, the mechanisms allowing TJ remodeling while maintaining barrier integrity are largely unknown. Cldns and occludin are heterophilically and homophilically cross-over endocytosed into neighboring cells in large, double membrane vesicles. Super-resolution microscopy confirmed the presence of Cldns in these vesicles and revealed a distinct separation of Cldns derived from opposing cells within cross-over endocytosed vesicles. Colocalization of cross-over endocytosed Cldn with the autophagosome markers as well as inhibition of autophagosome biogenesis verified involvement of the autophagosomal pathway. Accordingly, cross-over endocytosed Cldns underwent lysosomal degradation as indicated by lysosome markers. Cross-over endocytosis of Cldn5 depended on clathrin and caveolin pathways but not on dynamin. Cross-over endocytosis also depended on Cldn-Cldn-interactions. Amino acid substitutions in the second extracellular loop of Cldn5 (F147A, Q156E) caused impaired cis- and trans-interaction, as well as diminished cross-over endocytosis. Moreover, F147A exhibited an increased mobility in the membrane, while Q156E was not as mobile but enhanced the paracellular permeability. In conclusion, the endocytosis of TJ proteins depends on their ability to interact strongly with each other in cis and trans, and the mobility of Cldns in the membrane is not necessarily an indicator of barrier permeability. TJ-remodeling via cross-over endocytosis represents a general mechanism for the degradation of transmembrane proteins in cell-cell contacts and directly links junctional membrane turnover to autophagy.
Electrohydrodynamics of a compound vesicle under an AC electric field
NASA Astrophysics Data System (ADS)
Priti Sinha, Kumari; Thaokar, Rochish M.
2017-07-01
Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.
Studies of matrix vesicle-induced mineralization in a gelatin gel
NASA Technical Reports Server (NTRS)
Boskey, A. L.; Boyan, B. D.; Doty, S. B.; Feliciano, A.; Greer, K.; Weiland, D.; Swain, L. D.; Schwartz, Z.
1992-01-01
Matrix vesicles isolated from fourth-passage cultures of chondrocytes were tested for their ability to induce hydroxyapatite formation in a gelatin gel in order to gain insight into the function of matrix vesicles in in situ mineralization. These matrix vesicles did not appear to be hydroxyapatite nucleators per se since the extent of mineral accumulation in the gel diffusion system was not altered by the presence of matrix vesicles alone, and in the vesicle containing gels, mineral crystals were formed whether associated with vesicles or not. In gels with these matrix vesicles and beta-glycerophosphate, despite the presence of alkaline phosphatase activity, there was no increase in mineral deposition. This suggested that in the gel system these culture-derived vesicles did not increase local phosphate concentrations. However, when known inhibitors of mineral crystal formation and growth (proteoglycan aggregates [4 mg/ml], or ATP [1 mM], or both proteoglycan and ATP) were included in the gel, more mineral was deposited in gels with the vesicles than in comparable gels without vesicles, indicating that enzymes within these vesicles were functioning to remove the inhibition. These data support the suggestion that one function of the extracellular matrix vesicles is to transport enzymes for matrix modification.
Synaptic vesicle recycling: steps and principles.
Rizzoli, Silvio O
2014-04-16
Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle.
Synaptic vesicle recycling: steps and principles
Rizzoli, Silvio O
2014-01-01
Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle. PMID:24596248
Osmotic shrinkage of giant egg-lecithin vesicles.
Boroske, E; Elwenspoek, M; Helfrich, W
1981-01-01
Osmotic shrinkage of giant egg-lecithin vesicles was observed by phase-contrast microscopy. The vesicles remained or became spherical when shrinking. Small and thick-walled vesicles formed visible fingers attached to the sphere. The water permeability of the single bilayer was found to be 41 micrometers/s. A variety of observations indicate that osmosis induces a parallel lipid flow between the monolayers of the bilayer, leading to a strong positive spontaneous curvature. They also suggest the formation of mostly submicroscopic daughter vesicles. The estimated coupling constant, 2 . 10(-6) mol/mol, is large enough to be biologically significant. Images FIGURE 1 FIGURE 3 FIGURE 4 PMID:7213933
Network organization of the human autophagy system.
Behrends, Christian; Sowa, Mathew E; Gygi, Steven P; Harper, J Wade
2010-07-01
Autophagy, the process by which proteins and organelles are sequestered in autophagosomal vesicles and delivered to the lysosome/vacuole for degradation, provides a primary route for turnover of stable and defective cellular proteins. Defects in this system are linked with numerous human diseases. Although conserved protein kinase, lipid kinase and ubiquitin-like protein conjugation subnetworks controlling autophagosome formation and cargo recruitment have been defined, our understanding of the global organization of this system is limited. Here we report a proteomic analysis of the autophagy interaction network in human cells under conditions of ongoing (basal) autophagy, revealing a network of 751 interactions among 409 candidate interacting proteins with extensive connectivity among subnetworks. Many new autophagy interaction network components have roles in vesicle trafficking, protein or lipid phosphorylation and protein ubiquitination, and affect autophagosome number or flux when depleted by RNA interference. The six ATG8 orthologues in humans (MAP1LC3/GABARAP proteins) interact with a cohort of 67 proteins, with extensive binding partner overlap between family members, and frequent involvement of a conserved surface on ATG8 proteins known to interact with LC3-interacting regions in partner proteins. These studies provide a global view of the mammalian autophagy interaction landscape and a resource for mechanistic analysis of this critical protein homeostasis pathway.
Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles
Ellis, Terri N.; Kuehn, Meta J.
2010-01-01
Summary: Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens. PMID:20197500
Bubble-induced microstreaming: guiding and destroying lipid vesicles
NASA Astrophysics Data System (ADS)
Marmottant, Philippe; Hilgenfeldt, Sascha
2002-11-01
Micron-sized bubbles respond with strong oscillations when submitted to ultrasound. This has led to their use as echographic contrast enhancers. The large energy and force densities generated by the collapsing bubbles also make them non-invasive mechanical tools: Recently, it has been reported that the interaction of cavitating bubbles with nearby cells can render the latter permeable to large molecules (sonoporation), suggesting prospects for drug delivery and gene transfection. We have developed a laboratory setup that allows for a controlled study of the interaction of single microbubbles with single lipid bilayer vesicles. Substituting vesicles for cell membranes is advantageous because the mechanical properties of vesicles are well-known. Microscopic observations reveal that vesicles near a bubble follow the vivid streaming motion set up by the bubble. The vesicles "bounce" off the bubble, being periodically accelerated towards and away from it, and undergo well-defined shape deformations along their trajectory in accordance with fluid-dynamical theory. Break-up of vesicles could also be observed.
Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eicher, Barbara; Heberle, Frederick A.; Marquardt, Drew T.
2017-02-28
Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effortmore » but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ~120 nm diameter palmitoyloleoyl phosphatidylcholine (POPC) vesicles, compared to the inner leaflet. Here, analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K, i.e.above the melting transition temperature of the two lipids.« less
ABC Triblock Copolymer Vesicles with Mesh-like Morphology
NASA Astrophysics Data System (ADS)
Zhao, Wei; Russell, Thomas; Grason, Gregory
2010-03-01
Polymer vesicles can be made from poly(isoprene-b-styrene-b-2-vinylpyridene) (PI-b-PS-b-P2VP) triblock copolymer under the confinement of anodic aluminum oxide (AAO) membrane. It was found that these vesicles have well-defined, nanoscopic size and a microphase-separated hydrophobic core, comprised of PS and PI blocks. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the core at a well-defined composition of three blocks. Confinement played an important role in generating these vesicles with such an unusual morphology.
Nonionic surfactant vesicles for delivery of RNAi therapeutics
Paecharoenchai, Orapan; Teng, Lesheng; Yung, Bryant C; Teng, Lirong; Opanasopit, Praneet; Lee, Robert J
2014-01-01
RNAi is a promising potential therapeutic approach for many diseases. A major barrier to its clinical translation is the lack of efficient delivery systems for siRNA. Among nonviral vectors, nonionic surfactant vesicles (niosomes) have shown a great deal of promise in terms of their efficacy and toxicity profiles. Nonionic surfactants have been shown to be a superior alternative to phospholipids in several studies. There is a large selection of surfactants with various properties that have been incorporated into niosomes. Therefore, there is great potential for innovation in terms of nisome composition. This article summarizes recent advancements in niosome technology for the delivery of siRNA. PMID:24156490
Dynamics of vesicles in electric fields
NASA Astrophysics Data System (ADS)
Vlahovska, Petia; Gracia, Ruben
2007-11-01
Electromechanical forces are widely used for cell manipulation. Knowledge of the physical mechanisms underlying the interaction of cells and external fields is essential for practical applications. Vesicles are model cells made of a lipid bilayer membrane. They are examples of ``soft'' particles, i.e., their shape when subjected to flow or electric field is not given a priori but it is governed by the balance of membrane, fluid and electrical stresses. This generic ``softness'' gives rise to a very complex vesicle dynamics in external fields. In an AC electric field, as the frequency is increased, vesicles filled with a fluid less conducting than the surrounding fluid undergo shape transition from prolate to oblate ellipsoids. The opposite effect is observed with drops. We present an electro- hydrodynamic theory based on the leaky dielectric model that quantitatively describes experimental observations. We compare drops and vesicles, and show how their distinct behavior stems from different interfacial properties.
AC-electric field dependent electroformation of giant lipid vesicles.
Politano, Timothy J; Froude, Victoria E; Jing, Benxin; Zhu, Yingxi
2010-08-01
Giant vesicles of larger than 5 microm, which have been of intense interest for their potential as drug delivery vehicles and as a model system for cell membranes, can be rapidly formed from a spin-coated lipid thin film under an electric field. In this work, we explore the AC-field dependent electroformation of giant lipid vesicles in aqueous media over a wide range of AC-frequency from 1 Hz to 1 MHz and peak-to-peak field strength from 0.212 V/mm to 40 V/mm between two parallel conducting electrode surfaces. By using fluorescence microscopy, we perform in-situ microscopic observations of the structural evolution of giant vesicles formed from spin-coated lipid films under varied uniform AC-electric fields. The real-time observation of bilayer bulging from the lipid film, vesicle growth and fusing further examine the critical role of AC-induced electroosmotic flow of surrounding fluids for giant vesicle formation. A rich AC-frequency and field strength phase diagram is obtained experimentally to predict the AC-electroformation of giant unilamellar vesicles (GUVs) of l-alpha-phosphatidylcholine, where a weak dependence of vesicle size on AC-frequency is observed at low AC-field voltages, showing decreased vesicle size with a narrowed size distribution with increased AC-frequency. Formation of vesicles was shown to be constrained by an upper field strength of 10 V/mm and an upper AC-frequency of 10 kHz. Within these parameters, giant lipid vesicles were formed predominantly unilamellar and prevalent across the entire electrode surfaces. Copyright 2010 Elsevier B.V. All rights reserved.
Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures
Tattoli, Ivan; Sorbara, Matthew T; Yang, Chloe; Tooze, Sharon A; Philpott, Dana J; Girardin, Stephen E
2013-01-01
Listeria can escape host autophagy defense pathways through mechanisms that remain poorly understood. We show here that in epithelial cells, Listeriolysin (LLO)-dependent cytosolic escape of Listeria triggered a transient amino-acid starvation host response characterized by GCN2 phosphorylation, ATF3 induction and mTOR inhibition, the latter favouring a pro-autophagic cellular environment. Surprisingly, rapid recovery of mTOR signalling was neither sufficient nor necessary for Listeria avoidance of autophagic targeting. Instead, we observed that Listeria phospholipases PlcA and PlcB reduced autophagic flux and phosphatidylinositol 3-phosphate (PI3P) levels, causing pre-autophagosomal structure stalling and preventing efficient targeting of cytosolic bacteria. In co-infection experiments, wild-type Listeria protected PlcA/B-deficient bacteria from autophagy-mediated clearance. Thus, our results uncover a critical role for Listeria phospholipases C in the inhibition of autophagic flux, favouring bacterial escape from host autophagic defense. PMID:24162724
Synaptic vesicle distribution by conveyor belt.
Moughamian, Armen J; Holzbaur, Erika L F
2012-03-02
The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. Copyright © 2012 Elsevier Inc. All rights reserved.
Ultrastructure and biological function of matrix vesicles in bone mineralization.
Hasegawa, Tomoka
2018-04-01
Bone mineralization is initiated by matrix vesicles, small extracellular vesicles secreted by osteoblasts, inducing the nucleation and subsequent growth of calcium phosphate crystals inside. Although calcium ions (Ca 2+ ) are abundant throughout the tissue fluid close to the matrix vesicles, the influx of phosphate ions (PO4 3- ) into matrix vesicles is a critical process mediated by several enzymes and transporters such as ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), ankylosis (ANK), and tissue nonspecific alkaline phosphatase (TNSALP). The catalytic activity of ENPP1 in osteoblasts generates inorganic pyrophosphate (PPi) intracellularly and extracellularly, and ANK may allow the intracellular PPi to pass through the plasma membrane to the outside of the osteoblasts. Although the extracellular PPi binds to growing hydroxyapatite crystals to prevent crystal overgrowth, TNSALP on the osteoblasts and matrix vesicles hydrolyzes PPi into PO4 3- monomers: the prevention of crystal growth is blocked, and PO4 3- monomers are supplied to matrix vesicles. In addition, PHOSPHO1 is thought to function inside matrix vesicles to catalyze phosphocoline, a constituent of the plasma membrane, consequently increasing PO4 3- in the vesicles. Accumulation of Ca 2+ and PO4 3- inside the matrix vesicles then initiates crystalline nucleation associated with the inner leaflet of the matrix vesicles. Calcium phosphate crystals elongate radially, penetrate the matrix vesicle's membrane, and finally grow out of the vesicles to form calcifying nodules, globular assemblies of needle-shaped mineral crystals retaining some of those transporters and enzymes. The subsequent growth of calcifying nodules appears to be regulated by surrounding organic compounds, finally leading to collagen mineralization.
Jørgensen, Malene; Bæk, Rikke; Pedersen, Shona; Søndergaard, Evo K L; Kristensen, Søren R; Varming, Kim
2013-01-01
Exosomes are one of the several types of cell-derived vesicles with a diameter of 30-100 nm. These extracellular vesicles are recognized as potential markers of human diseases such as cancer. However, their use in diagnostic tests requires an objective and high-throughput method to define their phenotype and determine their concentration in biological fluids. To identify circulating as well as cell culture-derived vesicles, the current standard is immunoblotting or a flow cytometrical analysis for specific proteins, both of which requires large amounts of purified vesicles. Based on the technology of protein microarray, we hereby present a highly sensitive Extracellular Vesicle (EV) Array capable of detecting and phenotyping exosomes and other extracellular vesicles from unpurified starting material in a high-throughput manner. To only detect the exosomes captured on the EV Array, a cocktail of antibodies against the tetraspanins CD9, CD63 and CD81 was used. These antibodies were selected to ensure that all exosomes captured are detected, and concomitantly excluding the detection of other types of microvesicles. The limit of detection (LOD) was determined on exosomes derived from the colon cancer cell line LS180. It clarified that supernatant from only approximately 10(4) cells was needed to obtain signals or that only 2.5×10(4) exosomes were required for each microarray spot (~1 nL). Phenotyping was performed on plasma (1-10 µL) from 7 healthy donors, which were applied to the EV Array with a panel of antibodies against 21 different cellular surface antigens and cancer antigens. For each donor, there was considerable heterogeneity in the expression levels of individual markers. The protein profiles of the exosomes (defined as positive for CD9, CD63 and CD81) revealed that only the expression level of CD9 and CD81 was approximately equal in the 7 donors. This implies questioning the use of CD63 as a standard exosomal marker since the expression level of this
Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation.
Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S; Tang, Hui; McGurren, Kelly A; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O
2017-07-01
Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Topological defects and shapes of triatic liquid crystal vesicles
NASA Astrophysics Data System (ADS)
Serafin, Francesco; Manyuhina, Oksana; Bowick, Mark
Is shape the manifestation of function, or does shape determine function? Since the time of Aristotle, the study of shape has proven to be a fruitful way to understand the behavior of physical systems, from atomic to biological systems scales. Two dimensional soft membranes are a perfect setting to understand the emergence of shape. An interesting possibility is to control and design new self-assemblable supramolecular shapes by coating the surface of soft closed vesicles with liquid crystals (LC) of various symmetries. The microscopic geometry of the liquid crystal molecules, in particular the structure of topological defects, when combined with the topology of the vesicle's surface, ultimately determines the vesicle's shape. Recent work has shown that the minimal energy shapes of smectic and nematic vesicles are faceted polyhedra. A very soft smectic vesicle develops sharp creases and forms a faceted tetrahedron. When the coating LC has the symmetries of the square, the vesicle forms a cube. In this work we extend these results to a 3-fold symmetric LC, proving that the vesicle's ground state is an octahedron. This gives a systematic way of predicting vesicle's shapes as we change the liquid crystal's symmetry. Soft Matter Program of Syracuse University.
Mody, Karishma T.; Mahony, Donna; Cavallaro, Antonino S.; Zhang, Jun; Zhang, Bing; Mahony, Timothy J.; Yu, Chengzhong; Mitter, Neena
2015-01-01
Bovine Viral Diarrhoea Virus (BVDV) is one of the most serious pathogen, which causes tremendous economic loss to the cattle industry worldwide, meriting the development of improved subunit vaccines. Structural glycoprotein E2 is reported to be a major immunogenic determinant of BVDV virion. We have developed a novel hollow silica vesicles (SV) based platform to administer BVDV-1 Escherichia coli-expressed optimised E2 (oE2) antigen as a nanovaccine formulation. The SV-140 vesicles (diameter 50 nm, wall thickness 6 nm, perforated by pores of entrance size 16 nm and total pore volume of 0.934 cm3g-1) have proven to be ideal candidates to load oE2 antigen and generate immune response. The current study for the first time demonstrates the ability of freeze-dried (FD) as well as non-FD oE2/SV140 nanovaccine formulation to induce long-term balanced antibody and cell mediated memory responses for at least 6 months with a shortened dosing regimen of two doses in small animal model. The in vivo ability of oE2 (100 μg)/SV-140 (500 μg) and FD oE2 (100 μg)/SV-140 (500 μg) to induce long-term immunity was compared to immunisation with oE2 (100 μg) together with the conventional adjuvant Quil-A from the Quillaja saponira (10 μg) in mice. The oE2/SV-140 as well as the FD oE2/SV-140 nanovaccine generated oE2-specific antibody and cell mediated responses for up to six months post the final second immunisation. Significantly, the cell-mediated responses were consistently high in mice immunised with oE2/SV-140 (1,500 SFU/million cells) at the six-month time point. Histopathology studies showed no morphological changes at the site of injection or in the different organs harvested from the mice immunised with 500 μg SV-140 nanovaccine compared to the unimmunised control. The platform has the potential for developing single dose vaccines without the requirement of cold chain storage for veterinary and human applications. PMID:26630001
Metal Sorbing Vesicles: Light Scattering Characterization and Metal Sorbtion Behavior.
NASA Astrophysics Data System (ADS)
van Zanten, John Hollis
1992-01-01
The research described herein consisted of two parts: light scattering characterization of vesicles and kinetic investigations of metal sorbing vesicles. Static light scattering techniques can be used to determine the geometric size, shape and apparent molecular weight of phosphatidylcholine vesicles in aqueous suspension. A Rayleigh-Gans-Debye (RGD) approximation analysis of multiangle scattered light intensity data yields the size and degree of polydispersity of the vesicles in solution, while the Zimm plot technique provides the radius of gyration and apparent weight-average molecular weight. Together the RGD approximation and Zimm plots can be used to confirm the geometric shape of vesicles and can give a good estimate of the vesicle wall thickness in some cases. Vesicles varying from 40 to 115 nm in diameter have been characterized effectively. The static light scattering measurements indicate that, as expected, phosphatidylcholine vesicles in this size range scatter light as isotropic hollow spheres. Additionally, static and dynamic light scattering measurements have been made and compared with one another. The values for geometric radii determined by static light scattering typically agree with those estimated by dynamic light scattering to within a few percent. Interestingly however, dynamic measurements suggest that there is a significant degree of polydispersity present in the vesicle dispersions, while static measurements indicate near size monodisperse dispersions. Metal sorbing vesicles which harbor ionophores, such as antibiotic A23187 and synthetic carriers, in their bilayer membranes have been produced. These vesicles also encapsulate the chelating compound, nitrilotriacetate, to provide the driving force for metal ion uptake. Very dilute dispersions (on the order of 0.03% w/v) of these metal sorbing vesicles were capable of removing Cd ^{2+} and Pb^{2+ } from dilute aqueous solution (5 ppm and less) and concentrating these metal ions several
Formation and size distribution of self-assembled vesicles
Huang, Changjin; Quinn, David; Suresh, Subra
2017-01-01
When detergents and phospholipid membranes are dispersed in aqueous solutions, they tend to self-assemble into vesicles of various shapes and sizes by virtue of their hydrophobic and hydrophilic segments. A clearer understanding of such vesiculation processes holds promise for better elucidation of human physiology and disease, and paves the way to improved diagnostics, drug development, and drug delivery. Here we present a detailed analysis of the energetics and thermodynamics of vesiculation by recourse to nonlinear elasticity, taking into account large deformation that may arise during the vesiculation process. The effects of membrane size, spontaneous curvature, and membrane stiffness on vesiculation and vesicle size distribution were investigated, and the critical size for vesicle formation was determined and found to compare favorably with available experimental evidence. Our analysis also showed that the critical membrane size for spontaneous vesiculation was correlated with membrane thickness, and further illustrated how the combined effects of membrane thickness and physical properties influenced the size, shape, and distribution of vesicles. These findings shed light on the formation of physiological extracellular vesicles, such as exosomes. The findings also suggest pathways for manipulating the size, shape, distribution, and physical properties of synthetic vesicles, with potential applications in vesicle physiology, the pathobiology of cancer and other diseases, diagnostics using in vivo liquid biopsy, and drug delivery methods. PMID:28265065
Liu, Rong; Colby, Aaron H; Gilmore, Denis; Schulz, Morgan; Zeng, Jialiu; Padera, Robert F; Shirihai, Orian; Grinstaff, Mark W; Colson, Yolonda L
2016-09-01
The treatment outcomes for malignant peritoneal mesothelioma are poor and associated with high co-morbidities due to suboptimal drug delivery. Thus, there is an unmet need for new approaches that concentrate drug at the tumor for a prolonged period of time yielding enhanced antitumor efficacy and improved metrics of treatment success. A paclitaxel-loaded pH-responsive expansile nanoparticle (PTX-eNP) system is described that addresses two unique challenges to improve the outcomes for peritoneal mesothelioma. First, following intraperitoneal administration, eNPs rapidly and specifically localize to tumors. The rate of eNP uptake by tumors is an order of magnitude faster than the rate of uptake in non-malignant cells; and, subsequent accumulation in autophagosomes and disruption of autophagosomal trafficking leads to prolonged intracellular retention of eNPs. The net effect of these combined mechanisms manifests as rapid localization to intraperitoneal tumors within 4 h of injection and persistent intratumoral retention for >14 days. Second, the high tumor-specificity of PTX-eNPs leads to delivery of greater than 100 times higher concentrations of drug in tumors compared to PTX alone and this is maintained for at least seven days following administration. As a result, overall survival of animals with established mesothelioma more than doubled when animals were treated with multiple doses of PTX-eNPs compared to equivalent dosing with PTX or non-responsive PTX-loaded nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barreto, Carla Joana S.; de Lima, Evandro F.; Goldberg, Karin
2017-04-01
This study focuses on a volcanic succession of pāhoehoe to rubbly lavas of the Paraná-Etendeka Province exposed in a single road profile in southernmost Brazil. This work provides an integrated approach for examining primary vesicles and vesicle-rich segregation structures at the mesoscopic scale. In addition, this study provides a quantitative analysis of pore types in thin section. We documented distinct distribution patterns of vesicle and vesicle-rich segregation structures according to lava thickness. In compound pāhoehoe lavas, the cooling allows only vesicles (<1 cm size) and pipe vesicles to be frozen into place. In inflated pāhoehoe lavas, vesicles of different sizes are common, including pipe vesicles, and also segregation structures such as proto-cylinders, cylinders, cylinder sheets, vesicle sheets, and pods. In rubbly lavas, only vesicles of varying sizes occur. Gas release from melt caused the formation of primary porosity, while hydrothermal alteration and tectonic fracturing are the main processes that generated secondary porosity. Although several forms of porosity were created in the basaltic lava flows, the precipitation of secondary minerals within the pores has tended to reduce the original porosities. Late-stage fractures could create efficient channel networks for possible hydrocarbon/groundwater migration and entrapment owing to their ability to connect single pores. Quantitative permeability data should be gathered in future studies to confirm the potential of these lavas for store hydrocarbons or groundwater.
Okamura, Yosuke; Katsuno, Shunsuke; Suzuki, Hidenori; Maruyama, Hitomi; Handa, Makoto; Ikeda, Yasuo; Takeoka, Shinji
2010-12-20
We have constructed phospholipid vesicles with hemostatic activity as a platelet substitute. The vesicles were conjugated with a dodecapeptide (HHLGGAKQAGDV, H12), which is a fibrinogen γ-chain carboxy-terminal sequence (γ400-411). We have recently exploited these vesicles as a potential drug delivery system by encapsulation of adenosine 5'-diphosphate (ADP) (H12-(ADP)-vesicles). Here we explore the relationship between the ADP release from H12-(ADP)-vesicles with different membrane properties and their hemostatic effects. In total, we prepared five kinds of H12-(ADP)-vesicles with different lamellarities and membrane flexibilities. By radioisotope-labeling, we directly show that H12-(ADP)-vesicles were capable of augmenting platelet aggregation by releasing ADP in an aggregation-dependent manner. The amount of ADP released from the vesicles was dependent on their membrane properties. Specifically, the amount of ADP released increased with decreasing lamellarity and tended to increase with increasing membrane flexibility. Our in vivo results clearly demonstrated that H12-(ADP)-vesicles with the ability to release ADP exert considerable hemostatic action in terms of correcting prolonged bleeding time in a busulphan-induced thrombocytopenic rat model. We propose a recipe to control the hemostatic abilities of H12-(ADP)-vesicles by modulating ADP release based on membrane properties. We believe that this concept will be invaluable to the development of platelet substitutes and other drug carriers. Copyright © 2010 Elsevier B.V. All rights reserved.
Deformation of phospholipid vesicles in an optical stretcher.
Delabre, Ulysse; Feld, Kasper; Crespo, Eleonore; Whyte, Graeme; Sykes, Cecile; Seifert, Udo; Guck, Jochen
2015-08-14
Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelengths, optically induced mechanical stresses and temperature increase can be tuned fairly independently with a single setup. The phase transition temperature of vesicles can be clearly identified by an increase in deformation. In the case of no heating effects, a minimal model for drop deformation in an optical stretcher and a more specific model for vesicle deformation that takes explicitly into account the angular dependence of the optical stress are presented to account for the experimental results. Elastic constants are extracted from the fitting procedures, which agree with literature data. This study demonstrates the utility of optical stretching, which is easily combined with microfluidic delivery, for the future serial, high-throughput study of the mechanical and thermodynamic properties of phospholipid vesicles.
Low-resolution simulations of vesicle suspensions in 2D
NASA Astrophysics Data System (ADS)
Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George
2018-03-01
Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.
Membrane Transport in Isolated Vesicles from Sugarbeet Taproot 1
Briskin, Donald P.; Thornley, W. Robert; Wyse, Roger E.
1985-01-01
Sealed membrane vesicles were isolated from homogenates of sugarbeet (Beta vulgaris L.) taproot by a combination of differential centrifugation, extraction with KI, and dextran gradient centrifugation. Relative to the KI-extracted microsomes, the content of plasma membranes, mitochondrial membranes, and Golgi membranes was much reduced in the final vesicle fraction. A component of ATPase activity that was inhibited by nitrate co-enriched with the capacity of the vesicles to form a steady state pH gradient during the purification procedure. This suggests that the nitrate-sensitive ATPase may be involved in driving H+-transport, and this is consistent with the observation that H+-transport, in the final vesicle fraction was inhibited by nitrate. Proton transport in the sugarbeet vesicles was substrate specific for ATP, insensitive to sodium vanadate and oligomycin but was inhibited by diethylstilbestrol and N,N′-dicyclohexylcarbodiimide. The formation of a pH gradient in the vesicles was enhanced by halide ions in the sequence I− > Br− > Cl− while F− was inhibitory. These stimulatory effects occur from both a direct stimulation of the ATPase by anions and a reduction in the vesicle membrane potential. In the presence of Cl−, alkali cations reduce the pH gradient relative to that observed with bis-tris-propane, possibly by H+/alkali cation exchange. Based upon the properties of the H+-transporting vesicles, it is proposed that they are most likely derived from the tonoplast so that this vesicle preparation would represent a convenient system for studying the mechanism of transport at this membrane boundary. PMID:16664342
Couto, Narciso; Schooling, Sarah R; Dutcher, John R; Barber, Jill
2015-10-02
In the present work, two different proteomic platforms, gel-based and gel-free, were used to map the matrix and outer membrane vesicle exoproteomes of Pseudomonas aeruginosa PAO1 biofilms. These two proteomic strategies allowed us a confident identification of 207 and 327 proteins from enriched outer membrane vesicles and whole matrix isolated from biofilms. Because of the physicochemical characteristics of these subproteomes, the two strategies showed complementarity, and thus, the most comprehensive analysis of P. aeruginosa exoproteome to date was achieved. Under our conditions, outer membrane vesicles contribute approximately 20% of the whole matrix proteome, demonstrating that membrane vesicles are an important component of the matrix. The proteomic profiles were analyzed in terms of their biological context, namely, a biofilm. Accordingly relevant metabolic processes involved in cellular adaptation to the biofilm lifestyle as well as those related to P. aeruginosa virulence capabilities were a key feature of the analyses. The diversity of the matrix proteome corroborates the idea of high heterogeneity within the biofilm; cells can display different levels of metabolism and can adapt to local microenvironments making this proteomic analysis challenging. In addition to analyzing our own primary data, we extend the analysis to published data by other groups in order to deepen our understanding of the complexity inherent within biofilm populations.
AP-1/σ1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory
Glyvuk, Nataliya; Tsytsyura, Yaroslav; Geumann, Constanze; D'Hooge, Rudi; Hüve, Jana; Kratzke, Manuel; Baltes, Jennifer; Böning, Daniel; Klingauf, Jürgen; Schu, Peter
2010-01-01
Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1–σ1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1–σ1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three σ1 subunit isoforms: A, B and C. The expressions of σ1A and σ1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from σ1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The σ1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation. PMID:20203623
Haloarchaea and the Formation of Gas Vesicles
Pfeifer, Felicitas
2015-01-01
Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes. PMID:25648404
Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan
2016-01-01
The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.
The motion of a train of vesicles in channel flow
NASA Astrophysics Data System (ADS)
Barakat, Joseph; Shaqfeh, Eric
2017-11-01
The inertialess motion of a train of lipid-bilayer vesicles flowing through a channel is simulated using a 3D boundary integral equation method. Steady-state results are reported for vesicles positioned concentrically inside cylindrical channels of circular, square, and rectangular cross sections. The vesicle translational velocity U and excess channel pressure drop Δp+ depend strongly on the ratio of the vesicle radius to the hydraulic radius λ and the vesicle reduced volume υ. ``Deflated vesicles'' of lower reduced volume υ are more streamlined and translate with greater velocity U relative to the mean flow velocity V. Increasing the vesicle size (λ) increases the wall friction force and extra pressure drop Δp+, which in turn reduces the vesicle velocity U. Hydrodynamic interactions between vesicles in a periodic train are largely screened by the channel walls, in accordance with previous results for spheres and drops. The hydraulic resistance is compared across different cross sections, and a simple correction factor is proposed to unify the results. Nonlinear effects are observed when β - the ratio of membrane bending elasticity to viscous traction - is changed. The simulation results show excellent agreement with available experimental measurements as well as a previously reported ``small-gap theory'' valid for large values of λ. NSF CBET 1066263/1066334.
Diffusion behavior of lipid vesicles in entangled polymer solutions.
Cao, X; Bansil, R; Gantz, D; Moore, E W; Niu, N; Afdhal, N H
1997-01-01
Dynamic light scattering was used to follow the tracer diffusion of phospholipid/cholesterol vesicles in aqueous polyacrylamide solutions and compared with the diffusive behavior of polystyrene (PS) latex spheres of comparable diameters. Over the range of the matrix concentration examined (Cp = 0.1-10 mg/ml), the diffusivities of the PS spheres and the large multilamellar vesicles exhibited the Stokes-Einstein (SE) relation, while the diffusivity of the unilamellar vesicles did not follow the increase of the solution's viscosity caused by the presence of the matrix molecules. The difference between the diffusion behaviors of unilamellar vesicles and hard PS spheres of similar size is possibly due to the flexibility of the lipid bilayer of the vesicles. The unilamellar vesicles are capable of changing their shape to move through the entangled polymer solution so that the hindrance to their diffusion due to the presence of the polymer chains is reduced, while the rigid PS spheres have little flexibility and they encounter greater resistance. The multilamellar vesicles are less flexible, thus their diffusion is similar to the hard PS spheres of similar diameter. Images FIGURE 2 PMID:9336189
Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles.
Dufes, Christine; Muller, Jean-Marc; Couet, William; Olivier, Jean-Christophe; Uchegbu, Ijeoma F; Schätzlein, Andreas G
2004-01-01
The study reports the initial biological evaluation of targeted polymeric glycol chitosan vesicles as carrier systems for doxorubicin (Dox). Transferrin (Tf) was covalently bound to the Dox-loaded palmitoylated glycol chitosan (GCP) vesicles using dimethylsuberimidate (DMSI). For comparison, glucose targeted niosomes were prepared using N-palmitoyl glucosamine. Biological properties were studied using confocal microscopy, flow cytometry, and cytotoxicity assays as well as a mouse xenograft model. Tf vesicles were taken up rapidly with a plateau after 1-2 h and Dox reached the nucleus after 60-90 min. Uptake was not increased with the use of glucose ligands, but higher uptake and increased cytotoxicity were observed for Tf targeted as compared to GCP Dox alone. In the drug-resistant A2780AD cells and in A431 cells, the relative increase in activity was significantly higher for the Tf-GCP vesicles than would have been expected from the uptake studies. All vesicle formulations had a superior in vivo safety profile compared to the free drug. The in vitro advantage of targeted Tf vesicles did not translate into a therapeutic advantage in vivo. All vesicles reduced tumor size on day 2 but were overall less active than the free drug.
Non-canonical autophagy: an exception or an underestimated form of autophagy?
Scarlatti, Francesca; Maffei, Roberta; Beau, Isabelle; Ghidoni, Riccardo; Codogno, Patrice
2008-11-01
Macroautophagy (hereafter called autophagy) is a dynamic and evolutionarily conserved process used to sequester and degrade cytoplasm and entire organelles in a sequestering vesicle with a double membrane, known as the autophagosome, which ultimately fuses with a lysosome to degrade its autophagic cargo. Recently, we have unraveled two distinct forms of autophagy in cancer cells, which we term canonical and non-canonical autophagy. In contrast to classical or canonical autophagy, non-canonical autophagy is a process that does not require the entire set of autophagy-related (Atg) proteins in particular Beclin 1, to form the autophagosome. Non-canonical autophagy is therefore not blocked by the knockdown of Beclin 1 or of its binding partner hVps34. Moreover overexpression of Bcl-2, which is known to block canonical starvation-induced autophagy by binding to Beclin 1, is unable to reverse the non-canonical autophagy triggered by the polyphenol resveratrol in the breast cancer MCF-7 cell line. In MCF-7 cells, at least, non-canonical autophagy is involved in the caspase-independent cell death induced by resveratrol.
Sculpting and fusing biomimetic vesicle networks using optical tweezers.
Bolognesi, Guido; Friddin, Mark S; Salehi-Reyhani, Ali; Barlow, Nathan E; Brooks, Nicholas J; Ces, Oscar; Elani, Yuval
2018-05-14
Constructing higher-order vesicle assemblies has discipline-spanning potential from responsive soft-matter materials to artificial cell networks in synthetic biology. This potential is ultimately derived from the ability to compartmentalise and order chemical species in space. To unlock such applications, spatial organisation of vesicles in relation to one another must be controlled, and techniques to deliver cargo to compartments developed. Herein, we use optical tweezers to assemble, reconfigure and dismantle networks of cell-sized vesicles that, in different experimental scenarios, we engineer to exhibit several interesting properties. Vesicles are connected through double-bilayer junctions formed via electrostatically controlled adhesion. Chemically distinct vesicles are linked across length scales, from several nanometres to hundreds of micrometres, by axon-like tethers. In the former regime, patterning membranes with proteins and nanoparticles facilitates material exchange between compartments and enables laser-triggered vesicle merging. This allows us to mix and dilute content, and to initiate protein expression by delivering biomolecular reaction components.
Lötvall, Jan; Hill, Andrew F; Hochberg, Fred; Buzás, Edit I; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H; Witwer, Kenneth W; Théry, Clotilde
2014-01-01
Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.
Autophagy in Human Embryonic Stem Cells
Tra, Thien; Gong, Lan; Kao, Lin-Pin; Li, Xue-Lei; Grandela, Catarina; Devenish, Rodney J.; Wolvetang, Ernst; Prescott, Mark
2011-01-01
Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC. PMID:22110659
Associative polymers bridging between layers of multilamellar vesicles.
NASA Astrophysics Data System (ADS)
Choi, Seo; Bhatia, Surita
2006-03-01
Multilamellar vesicles can be found in a variety of pharmaceutical formulations, personal care products, and home care products. Hydrophobically modified associative polymers are often used to stabilize the vesicles or to control the rheological properties of these formulations. The hydrophobic groups are expected to insert themselves into the vesicle bilayers. Recent experimental work shows that hydrophobically modified polymers may from bridges between vesicles or may bridge between layers of a single vesicle. The latter configuration forces an interlayer spacing roughly equal to the radius of gyration of the backbone between associative groups. We have performed simple mean-field calculations on ideal telechelic associative polymers between concentric spherical surfaces. We find that the free energy per chain has an attractive minimum when the layer spacing is approximately N^1/2l, which is consistent with experimental results. The depth of the minimum depends on both chain length and curvature, and as expected when the curvature becomes small, the result for telechelic chains between flat surfaces is recovered.
Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian; Sørensen, Jakob Balslev; Verhage, Matthijs; Cornelisse, Lennart Niels
2015-04-14
The energy required to fuse synaptic vesicles with the plasma membrane ('activation energy') is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca(2+)-dependent release.
Vesicle Pool Size at the Salamander Cone Ribbon Synapse
Bartoletti, Theodore M.; Babai, Norbert
2010-01-01
Cone light responses are transmitted to postsynaptic neurons by changes in the rate of synaptic vesicle release. Vesicle pool size at the cone synapse constrains the amount of release and can thus shape contrast detection. We measured the number of vesicles in the rapidly releasable and reserve pools at cone ribbon synapses by performing simultaneous whole cell recording from cones and horizontal or off bipolar cells in the salamander retinal slice preparation. We found that properties of spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs) are representative of mEPSCs evoked by depolarizing presynaptic stimulation. Strong, brief depolarization of the cone stimulated release of the entire rapidly releasable pool (RRP) of vesicles. Comparing charge transfer of the EPSC with mEPSC charge transfer, we determined that the fast component of the EPSC reflects release of ∼40 vesicles. Comparing EPSCs with simultaneous presynaptic capacitance measurements, we found that horizontal cell EPSCs constitute 14% of the total number of vesicles released from a cone terminal. Using a fluorescent ribeye-binding peptide, we counted ∼13 ribbons per cone. Together, these results suggest each cone contacts a single horizontal cell at ∼2 ribbons. The size of discrete components in the EPSC amplitude histogram also suggested ∼2 ribbon contacts per cell pair. We therefore conclude there are ∼20 vesicles per ribbon in the RRP, similar to the number of vesicles contacting the plasma membrane at the ribbon base. EPSCs evoked by lengthy depolarization suggest a reserve pool of ∼90 vesicles per ribbon, similar to the number of additional docking sites further up the ribbon. PMID:19923246
Release of outer membrane vesicles from Bordetella pertussis.
Hozbor, D; Rodriguez, M E; Fernández, J; Lagares, A; Guiso, N; Yantorno, O
1999-05-01
The aim of the study reported here was to investigate the production of Bordetella pertussis outer membrane vesicles (OMVs). Numerous vesicles released from cells grown in Stainer-Scholte liquid medium were observed. The formation of similar vesicle-like structures could also be artificially induced by sonication of concentrated bacterial suspensions. Immunoblot analysis showed that OMVs contain adenylate cyclase-hemolysin (AC-Hly), among other polypeptides, as well as the lipopolysaccharide (LPS). Experiments carried out employing purified AC-Hly and OMVs isolated from B. pertussis AC-Hly- showed that AC-Hly is an integral component of the vesicles. OMVs reported here contain several protective immunogens and might be considered a possible basic material for the development of acellular pertussis vaccines.
Yeast Membrane Vesicles: Isolation and General Characteristics1
Christensen, Michael S.; Cirillo, Vincent P.
1972-01-01
Yeast membrane vesicles are formed when packed yeast are ground manually in a porcelain mortar and pestle with glass beads (0.2 mm diameter). These vesicles can be separated from the other components of the grinding mixture by a combination of centrifugation steps and elution from a column of the same glass beads (0.2 mm diameter). Isolated vesicles are osmotically sensitive, contain cytoplasmic components, and have energy-independent transport function. They are unable to metabolize glucose, but have respiratory function which is thought to be associated with intravesicular mitochondria. Invertase and oligomycin-insensitive adenosine triphosphatase are present in lysed vesicle preparations, and the appropriateness of these enzyme activities as membrane markers is discussed. Images PMID:4337848
Plasma membrane aquaporins mediates vesicle stability in broccoli
Martínez-Ballesta, Maria del Carmen; García-Gomez, Pablo; Yepes-Molina, Lucía; Guarnizo, Angel L.; Teruel, José A.
2018-01-01
The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability. PMID:29420651
Ultrastructural and functional fate of recycled vesicles in hippocampal synapses
Rey, Stephanie A.; Smith, Catherine A.; Fowler, Milena W.; Crawford, Freya; Burden, Jemima J.; Staras, Kevin
2015-01-01
Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution. PMID:26292808
Magnetic vesicles as MRI-trackable biogenic nanovectors
NASA Astrophysics Data System (ADS)
Andriola Silva, Amanda K.; Luciani, Nathalie; Gazeau, Florence; Wilhelm, Claire
2012-03-01
Magnetic labeling renders cells MRI-detectable which provides attractive solutions for tracking the fate of a transplanted cell population. Understanding the interplay of magnetic nanoparticles and cells is then an important point that should not be neglected. Here we show that in the condition of food starvation, macrophage cells emit vesicles containing nanoparticles. First, we inferred the intracellular iron oxide load from the magnetophoretic velocity of cells at a calibrated magnetic field gradient. After magnetic labeling and culture in stress conditions, the intracellular iron oxide load was once more determined and a detectable difference was observed before and after stress. Moreover, we identified in the stress conditioned medium membrane vesicle structures carrying magnetic particles. Besides pointing out the role of cell-derived vesicles in the sequestration of the intracellular magnetic label, experiments also demonstrated that vesicles were able to chaperone the magnetic cargo into naïve cells.
CO2-filled vesicles in mid-ocean basalt
Moore, J.G.; Batchelder, J.N.; Cunningham, C.G.
1977-01-01
Volatile-filled vesicles are present in minor amounts in all samples of mid-ocean basalt yet collected (and presumably erupted) down to depths of 4.8 km. When such vesicles are pierced in liquid under standard conditions, the volume expansion of the gas is 0.2 ?? 0.05 times the eruption pressure in bars or 20 ?? 5 times the eruption depth in km. Such expansion could be used as a measure of eruption depth. A variety of techniques: (1) vacuum crushing and gas chromatographic, freezing separation, and mass spectrographic analyses; (2) measurements of phase changes on a freezing microscope stage; (3) microscopic chemical and solubility observations; and (4) volume change measurements, all indicate that CO2 comprises more than 95% by volume of the vesicle gas in several submarine basalt samples from the Atlantic and Pacific. The CO2 held in vesicles is present in quantities about equal to or greater than that presumed to be dissolved in the glass (melt) and amounts to 400-900 ppm of the rock. The rigid temperature of the glass is 800-1000??C and increases for shallower samples. A sulfur gas was originally present in subordinate amounts in the vesicles, but has largely reacted with iron in the vesicle walls to produce sulfide spherules. ?? 1977.
Studies of vesicle distribution patterns in Hawaiian lavas
NASA Technical Reports Server (NTRS)
Walker, George P. L.
1987-01-01
Basaltic lava flows are generally vesicular, and the broader facts relating to vesicle distribution have long been established; few studies have yet been made with a view to determining how and when vesicles form in the cooling history of the lava, explaining vesicle shape and size distribution, and gaining enough understanding to employ vesicles as a geological tool. Various avenues of approach exist by which one may seek to gain a better understanding of these ubiquitous structures and make a start towards developing a general theory, and three such avenues have recently been explored. One avenue involves the study of pipe vesicles; these are a well known feature of lava flows and are narrow pipes which occur near the base of many pahoehoe flow units. Another avenue of approach is that presented by the distinctive spongy pahoehoe facies of lava that is common in distal locations on Hawaiian volcanoes. A third avenue of approach is that of the study of gas blisters in lava. Gas blisters are voids, which can be as much as tens of meters wide, where the lava split along a vesicle-rich layer and the roof up-arched by gas pressure. These three avenues are briefly discussed.
Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons.
Villarreal, Seth; Lee, Sung Hoon; Wu, Ling-Gang
2017-09-04
During endocytosis, fused synaptic vesicles are retrieved at nerve terminals, allowing for vesicle recycling and thus the maintenance of synaptic transmission during repetitive nerve firing. Impaired endocytosis in pathological conditions leads to decreases in synaptic strength and brain functions. Here, we describe methods used to measure synaptic vesicle endocytosis at the mammalian hippocampal synapse in neuronal culture. We monitored synaptic vesicle protein endocytosis by fusing a synaptic vesicular membrane protein, including synaptophysin and VAMP2/synaptobrevin, at the vesicular lumenal side, with pHluorin, a pH-sensitive green fluorescent protein that increases its fluorescence intensity as the pH increases. During exocytosis, vesicular lumen pH increases, whereas during endocytosis vesicular lumen pH is re-acidified. Thus, an increase of pHluorin fluorescence intensity indicates fusion, whereas a decrease indicates endocytosis of the labelled synaptic vesicle protein. In addition to using the pHluorin imaging method to record endocytosis, we monitored vesicular membrane endocytosis by electron microscopy (EM) measurements of Horseradish peroxidase (HRP) uptake by vesicles. Finally, we monitored the formation of nerve terminal membrane pits at various times after high potassium-induced depolarization. The time course of HRP uptake and membrane pit formation indicates the time course of endocytosis.
Active elastohydrodynamics of vesicles in narrow blind constrictions
NASA Astrophysics Data System (ADS)
Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.
2017-11-01
Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.
Physical determinants of vesicle mobility and supply at a central synapse
Rothman, Jason Seth; Kocsis, Laszlo; Herzog, Etienne; Nusser, Zoltan; Silver, Robin Angus
2016-01-01
Encoding continuous sensory variables requires sustained synaptic signalling. At several sensory synapses, rapid vesicle supply is achieved via highly mobile vesicles and specialized ribbon structures, but how this is achieved at central synapses without ribbons is unclear. Here we examine vesicle mobility at excitatory cerebellar mossy fibre synapses which sustain transmission over a broad frequency bandwidth. Fluorescent recovery after photobleaching in slices from VGLUT1Venus knock-in mice reveal 75% of VGLUT1-containing vesicles have a high mobility, comparable to that at ribbon synapses. Experimentally constrained models establish hydrodynamic interactions and vesicle collisions are major determinants of vesicle mobility in crowded presynaptic terminals. Moreover, models incorporating 3D reconstructions of vesicle clouds near active zones (AZs) predict the measured releasable pool size and replenishment rate from the reserve pool. They also show that while vesicle reloading at AZs is not diffusion-limited at the onset of release, diffusion limits vesicle reloading during sustained high-frequency signalling. DOI: http://dx.doi.org/10.7554/eLife.15133.001 PMID:27542193
Taneva, Svetla G; Patty, Philipus J; Frisken, Barbara J; Cornell, Rosemary B
2005-07-05
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the rate-limiting step in phosphatidylcholine (PC) synthesis, and its activity is regulated by reversible association with membranes, mediated by an amphipathic helical domain M. Here we describe a new feature of the CCTalpha isoform, vesicle tethering. We show, using dynamic light scattering and transmission electron microscopy, that dimers of CCTalpha can cross-bridge separate vesicles to promote vesicle aggregation. The vesicles contained either class I activators (anionic phospholipids) or the less potent class II activators, which favor nonlamellar phase formation. CCT increased the apparent hydrodynamic radius and polydispersity of anionic phospholipid vesicles even at low CCT concentrations corresponding to only one or two dimers per vesicle. Electron micrographs of negatively stained phosphatidylglycerol (PG) vesicles confirmed CCT-mediated vesicle aggregation. CCT conjugated to colloidal gold accumulated on the vesicle surfaces and in areas of vesicle-vesicle contact. PG vesicle aggregation required both the membrane-binding domain and the intact CCT dimer, suggesting binding of CCT to apposed membranes via the two M domains situated on opposite sides of the dimerization domain. In contrast to the effects on anionic phospholipid vesicles, CCT did not induce aggregation of PC vesicles containing the class II lipids, oleic acid, diacylglycerol, or phosphatidylethanolamine. The different behavior of the two lipid classes reflected differences in measured binding affinity, with only strongly binding phospholipid vesicles being susceptible to CCT-induced aggregation. Our findings suggest a new model for CCTalpha domain organization and membrane interaction, and a potential involvement of the enzyme in cellular events that implicate close apposition of membranes.
Controlling Two-dimensional Tethered Vesicle Motion Using an Electric Field
Yoshina-Ishii, Chiaki; Boxer, Steven G.
2008-01-01
We recently introduced methods to tether phospholipid vesicles or proteoliposomes onto a fluid supported lipid bilayer using DNA hybridization. These intact tethered vesicles diffuse in two dimensions parallel to the supporting membrane surface. In this paper, we report the dynamic response of individual tethered vesicles to an electric field applied parallel to the bilayer surface. Vesicles respond to the field by moving in the direction of electro-osmotic flow, and this can be used to reversibly concentrate tethered vesicles against a barrier. By adding increasing amounts of negatively charged phosphatidylserine to the supporting bilayer to increase electro-osmosis, the electrophoretic mobility of the tethered vesicles can be increased. The electro-osmotic contribution can be modeled well by a sphere connected to a cylindrical anchor in a viscous membrane with charged head groups. The electrophoretic force on the negatively charged tethered vesicles opposes the electro-osmotic force. By increasing the amount of negative charge on the tethered vesicle, drift in the direction of electro-osmotic flow can be slowed; at high negative charge on the tethered vesicle, motion can be forced in the direction of electrophoresis. The balance between these forces can be visualized on a patterned supporting bilayer containing negatively charged lipids which themselves reorganize in an externally applied electric field to create a gradient of charge within a corralled region. The charge gradient at the surface creates a gradient of electro-osmotic flow, and vesicles carrying similar amounts of negative charge can be focused to a region perpendicular to the applied field where electrophoresis is balanced by electro-osmosis, away from the corral boundary. Electric fields are effective tools to direct tethered vesicles, concentrate them and to measure the tethered vesicle’s electrostatic properties. PMID:16489833
Caddeo, Carla; Valenti, Donatella; Nácher, Amparo; Manconi, Maria; Fadda, Anna Maria
2015-07-01
The present study was aimed at targeting the skin to deliver lidocaine loaded in surfactant/phospholipid vesicles tailored for improved local delivery. The influence of different formulation parameters was explored to maximise drug efficacy. The vesicles were prepared using a mixture of soy lipids (Phospholipon 50) and a surfactant with penetration-enhancing properties (Oramix CG110, Labrasol, Labrafac PG or Labrafac CC), and loaded with lidocaine. The formulations were analysed in detail by cryo-TEM, SAXS, Turbiscan Lab, and tested in permeation experiments through new born pig skin, as a function of the chemical form and concentration of lidocaine (i.e. free base or salt, 12.5 or 25 mg/ml). Small, spherical vesicles with good entrapment efficiency and exceptional long-term stability were produced. The lamellar organisation was affected by either the surfactant or the lidocaine form used. Permeation studies highlighted that the co-incorporation of lidocaine base + hydrochloride allowed the achievement of a superior deposition in the skin layers, especially when surfactant vesicles were used, as their content was presumably saturated with the maximum amount of loadable anaesthetic. The proposed systems based on surfactant/phospholipid vesicles co-loaded with both lidocaine forms are an effective approach for improving its local delivery. © 2015 Royal Pharmaceutical Society.
Feruloyl Dioleoyglycerol Antioxidant Capacity in Phospholipid Vesicles
USDA-ARS?s Scientific Manuscript database
Ferulic acid and its esters are known to be effective antioxidants. Feruloyl dioleoylglycerol was assessed for its ability to serve as an antioxidant in model membrane phospholipid vesicles. The molecule was incorporated into single-lamellar vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine at ...
Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria
Tashiro, Yosuke; Monson, Rita E.; Ramsay, Joshua P.
2016-01-01
Summary Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, S erratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon H alobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in E scherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E . coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain. PMID:26743231
Early steps of supported bilayer formation probed by single vesicle fluorescence assays.
Johnson, Joseph M; Ha, Taekjip; Chu, Steve; Boxer, Steven G
2002-01-01
We have developed a single vesicle assay to study the mechanisms of supported bilayer formation. Fluorescently labeled, unilamellar vesicles (30-100 nm diameter) were first adsorbed to a quartz surface at low enough surface concentrations to visualize single vesicles. Fusion and rupture events during the bilayer formation, induced by the subsequent addition of unlabeled vesicles, were detected by measuring two-color fluorescence signals simultaneously. Lipid-conjugated dyes monitored the membrane fusion while encapsulated dyes reported on the vesicle rupture. Four dominant pathways were observed, each exhibiting characteristic two-color fluorescence signatures: 1) primary fusion, in which an unlabeled vesicle fuses with a labeled vesicle on the surface, is signified by the dequenching of the lipid-conjugated dyes followed by rupture and final merging into the bilayer; 2) simultaneous fusion and rupture, in which a labeled vesicle on the surface ruptures simultaneously upon fusion with an unlabeled vesicle; 3) no dequenching, in which loss of fluorescence signal from both dyes occur simultaneously with the final merger into the bilayer; and 4) isolated rupture (pre-ruptured vesicles), in which a labeled vesicle on the surface spontaneously undergoes content loss, a process that occurs with high efficiency in the presence of a high concentration of Texas Red-labeled lipids. Vesicles that have undergone content loss appear to be more fusogenic than intact vesicles. PMID:12496104
Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan
2016-01-01
The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge. PMID:27989272
ABC triblock copolymer vesicles with mesh-like morphology.
Zhao, Wei; Chen, Dian; Hu, Yunxia; Grason, Gregory M; Russell, Thomas P
2011-01-25
Polymer vesicles made from poly(isoprene-b-styrene-b-2-vinyl pyridine) (PI-b-PS-b-P2VP) triblock copolymer confined within the nanopores of an anodic aluminum oxide (AAO) membrane are studied. It was found that these vesicles have well-defined, nanoscopic size, and complex microphase-separated hydrophobic membranes, comprised of the PS and PI blocks, while the coronas are formed by the P2VP block. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the membrane at a well-defined composition of the three blocks that can be tuned by changing the copolymer composition. The nanoscale confinement, copolymer composition, and subtle molecular interactions contribute to the generation of these vesicles with such unusual morphologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Suzy; Kim, Hyun Jin, E-mail: kimhyunjin@skku.edu
2014-01-03
Highlights: •Split-ubiquitin MY2H screen identified GATE16 as an interacting protein of TRPML3. •TRPML3 specifically binds to a mammalian ATG8 homologue GATE16, not to LC3B. •The interaction of TRPML3 with GATE16 facilitates autophagosome formation. •GATE16 is expressed in both autophagosome and extra-autophagosomal compartments. -- Abstract: TRPML3 is a Ca{sup 2+} permeable cation channel expressed in multiple intracellular compartments. Although TRPML3 is implicated in autophagy, how TRPML3 can regulate autophagy is not understood. To search interacting proteins with TRPML3 in autophagy, we performed split-ubiquitin membrane yeast two-hybrid (MY2H) screening with TRPML3-loop as a bait and identified GATE16, a mammalian ATG8 homologue. GSTmore » pull-down assay revealed that TRPML3 and TRPML3-loop specifically bind to GATE16, not to LC3B. Co-immunoprecipitation (co-IP) experiments showed that TRPML3 and TRPML3-loop pull down only the lipidated form of GATE16, indicating that the interaction occurs exclusively at the organellar membrane. The interaction of TRPML3 with GATE16 and GATE16-positive vesicle formation were increased in starvation induced autophagy, suggesting that the interaction facilitates the function of GATE16 in autophagosome formation. However, GATE16 was not required for TRPML3 trafficking to autophagosomes. Experiments using dominant-negative (DN) TRPML3(D458K) showed that GATE16 is localized not only in autophagosomes but also in extra-autophagosomal compartments, by contrast with LC3B. Since GATE16 acts at a later stage of the autophagosome biogenesis, our results suggest that TRPML3 plays a role in autophagosome maturation through the interaction with GATE16, by providing Ca{sup 2+} in the fusion process.« less
NASA Astrophysics Data System (ADS)
Sakuragi, Mina; Koiwai, Kazunori; Nakamura, Kouji; Masunaga, Hiroyasu; Ogawa, Hiroki; Sakurai, Kazuo
2011-01-01
PEGylated liposomes composed of a benzamidine derivative (TRX), hydrogenated soybean phosphatidylcholine (HSPC), and N-(monomethoxy-polyethyleneglycolcarbamyl) distearoyl phosphatidylethanolamine (PEG-PE) were examined in terms of how the addition of TRX affects their structures with small angle x-ray scattering (SAXS) as well as transmission electron microscopy (TEM). TEM images showed the presence of unilamella vesicles for both with and without TRX, though a small amount of multilamella vesicles were observed in absence of TRX. We analyzed SAXS profiles at contained TRX composition combined with contrast variation technique by adding PEG solution and unilamella vesicle model could be reproduced. Subsequently, we analyzed SAXS profiles at no TRX composition. The mixture model of unilamella and multilamella vesicle was reconstructed and we estimated about 10 % multilamella vesicles from a fitting parameter.
Dynamic Properties of the Alkaline Vesicle Population at Hippocampal Synapses
Röther, Mareike; Brauner, Jan M.; Ebert, Katrin; Welzel, Oliver; Jung, Jasmin; Bauereiss, Anna; Kornhuber, Johannes; Groemer, Teja W.
2014-01-01
In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval. PMID:25079223
Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis
Dragovic, Rebecca A.; Gardiner, Christopher; Brooks, Alexandra S.; Tannetta, Dionne S.; Ferguson, David J.P.; Hole, Patrick; Carr, Bob; Redman, Christopher W.G.; Harris, Adrian L.; Dobson, Peter J.; Harrison, Paul; Sargent, Ian L.
2011-01-01
Cellular microvesicles and nanovesicles (exosomes) are involved in many disease processes and have major potential as biomarkers. However, developments in this area are constrained by limitations in the technology available for their measurement. Here we report on the use of fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles. In this system vesicles are visualized by light scattering using a light microscope. A video is taken, and the NTA software tracks the brownian motion of individual vesicles and calculates their size and total concentration. Using human placental vesicles and plasma, we have demonstrated that NTA can measure cellular vesicles as small as ∼50 nm and is far more sensitive than conventional flow cytometry (lower limit ∼300 nm). By combining NTA with fluorescence measurement we have demonstrated that vesicles can be labeled with specific antibody-conjugated quantum dots, allowing their phenotype to be determined. From the Clinical Editor The authors of this study utilized fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles, demonstrating that NTA is far more sensitive than conventional flow cytometry. PMID:21601655
Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian
2015-01-01
The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846
Pieters, Bartijn C H; Arntz, Onno J; Bennink, Miranda B; Broeren, Mathijs G A; van Caam, Arjan P M; Koenders, Marije I; van Lent, Peter L E M; van den Berg, Wim B; de Vries, Marieke; van der Kraan, Peter M; van de Loo, Fons A J
2015-01-01
Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells. Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-β, and that anti-TGF-β antibodies blocked Th17 differentiation. Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect.
El Zaafarany, Ghada M; Awad, Gehanne A S; Holayel, Samar M; Mortada, Nahed D
2010-09-15
Transfersomes are highly efficient edge activator (EA)-based ultraflexible vesicles capable of, non-invasively, trespassing skin by virtue of their high, self-optimizing deformability. This investigation presents different approaches for the optimization of Transfersomes for enhanced transepidermal delivery of Diclofenac sodium (DS). Different methods of preparation, drug and lipid concentrations and vesicle compositions were employed, resulting in ultraflexible vesicles with diverse membrane characteristics. Evaluation of Transfersomes was implemented in terms of their shapes, sizes, entrapment efficiencies (EE%), relative deformabilities and in vitro skin permeation. Transfersomes prepared with 95:5% (w/w) (PC:EA) ratio showed highest EE% (Span 85>Span 80>Na cholate>Na deoxycholate>Tween 80). Whereas, those prepared using 85:15% (w/w) ratio showed highest deformability (Tween 80 was superior to bile salts and spans). Transfersomes were proved significantly superior in terms of, the amount of drug deposited in the skin and the amount permeated, with an enhancement ratio of 2.45, when compared to a marketed product. The study proved that the type and concentration of EA, as well as, the method of preparation had great influences on the properties of Transfersomes. Hence, optimized Transfersomes can significantly increase transepidermal flux and prolong the release of DS, when applied non-occlusively. Copyright 2010 Elsevier B.V. All rights reserved.
Fusion of small unilamellar vesicles induced by bovine serum albumin fragments.
Garcia, L A; Schenkman, S; Araujo, P S; Chaimovich, H
1983-07-01
The limited pepsin proteolysis products of bovine serum albumin, fragment A (residues 307-586) and fragment B (residues 1-306), induced the fusion of small unilamellar vesicles of egg phosphatidyl choline at concentrations near 5 microM. Fusion was demonstrated and analyzed on the basis of: a) time-dependent changes in absorbance; b) dilution of the fluorescent label 2-(10-(1-pyrene)decanoyl) phosphatidyl choline, incorporated into a small percentage of the vesicles, as measured by the decrease in the excimer to monomer (E/M) ratio; c) increase of the average hydrodynamic radius of the liposomes, estimated by Sepharose 4B filtration, and d) the strict inverse relationship between the size of the liposomes and their E/M ratios. Albumin fragment B, like albumin, induced the formation of large aggregates in which rapid cooperative fusion produced vesicles having a large hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius smaller than those obtained with fragment B. Albumin and fragments A and B are fusogenic only at pH below 4.0. These data discussed in terms of a general model for a signal-dependent protein-induced membrane fusion.
Regulated Production of Mineralization-competent Matrix Vesicles in Hypertrophic Chondrocytes
Kirsch, Thorsten; Nah, Hyun-Duck; Shapiro, Irving M.; Pacifici, Maurizio
1997-01-01
Matrix vesicles have a critical role in the initiation of mineral deposition in skeletal tissues, but the ways in which they exert this key function remain poorly understood. This issue is made even more intriguing by the fact that matrix vesicles are also present in nonmineralizing tissues. Thus, we tested the novel hypothesis that matrix vesicles produced and released by mineralizing cells are structurally and functionally different from those released by nonmineralizing cells. To test this hypothesis, we made use of cultures of chick embryonic hypertrophic chondrocytes in which mineralization was triggered by treatment with vitamin C and phosphate. Ultrastructural analysis revealed that both control nonmineralizing and vitamin C/phosphatetreated mineralizing chondrocytes produced and released matrix vesicles that exhibited similar round shape, smooth contour, and average size. However, unlike control vesicles, those produced by mineralizing chondrocytes had very strong alkaline phosphatase activity and contained annexin V, a membrane-associated protein known to mediate Ca2+ influx into matrix vesicles. Strikingly, these vesicles also formed numerous apatite-like crystals upon incubation with synthetic cartilage lymph, while control vesicles failed to do so. Northern blot and immunohistochemical analyses showed that the production and release of annexin V-rich matrix vesicles by mineralizing chondrocytes were accompanied by a marked increase in annexin V expression and, interestingly, were followed by increased expression of type I collagen. Studies on embryonic cartilages demonstrated a similar sequence of phenotypic changes during the mineralization process in vivo. Thus, chondrocytes located in the hypertrophic zone of chick embryo tibial growth plate were characterized by strong annexin V expression, and those located at the chondro–osseous mineralizing border exhibited expression of both annexin V and type I collagen. These findings reveal that
Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan
2016-01-01
The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila. We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. SIGNIFICANCE STATEMENT Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for
Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT
Aguilar, Jenny I.; Dunn, Matthew; Mingote, Susana; Karam, Caline S.; Farino, Zachary J.; Sonders, Mark S.; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J.; McCabe, Brian D.; Mosharov, Eugene V.; Krantz, David E.; Javitch, Jonathan A.; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary
2017-01-01
SUMMARY The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. PMID:28823729
Activation of calcineurin by phosphotidylserine containing vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Politino, M.; King, M.M.
1986-05-01
Calcineurin (CaN) is a Ca/sup 2 +/- and calmodulin-regulated phosphatase. Recent findings suggested an association of CaN with biological membranes and prompted the present investigation into the interactions of the phosphatase with phospholipids in vitro. In the absence of calmodulin, sonicated preparations of phosphatidylserine (PS) provided a five-fold activation of the Ni- and Mn-supported activities of CaN towards (/sup 32/P) histone Hl; activation in the presence of calmodulin was much less pronounced. Half-maximal activation in the absence of calmodulin required approximately 0.1 mg/ml of PS. Activation of CaN was also observed with mixed vesicles of phosphatidylcholine (PC) containing 20% PSmore » but not with PC alone, or with phosphatidylethanolamine (PE). Molecular sieve chromatography on Ultrogel AcA 34 provided further evidence that CaN associates with phospholipid vesicles composed of PS, or PC containing 20% PS, but not with vesicles of PC or PE. Complete association with medium sized vesicles of PS and PC/PS required Ca/sup 2 +/ ions; in the absence of the metal ion at least 60% of the enzyme failed to interact with the lipids while the remainder preferentially migrated with larger vesicles. These results suggest a role for Ca/sup 2 +/ in regulating CaN's interaction with phospholipids.« less
Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes
NASA Astrophysics Data System (ADS)
Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji
2016-09-01
Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions.
Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field
2010-01-01
A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342
Falk, Matthias M; Baker, Susan M; Gumpert, Anna M; Segretain, Dominique; Buckheit, Robert W
2009-07-01
Double-membrane-spanning gap junction (GJ) channels cluster into two-dimensional arrays, termed plaques, to provide direct cell-to-cell communication. GJ plaques often contain circular, channel-free domains ( approximately 0.05-0.5 mum in diameter) identified >30 y ago and termed nonjunctional membrane (NM) domains. We show, by expressing the GJ protein connexin43 (Cx43) tagged with green fluorescent protein, or the novel photoconvertible fluorescent protein Dendra2, that NM domains appear to be remnants generated by the internalization of small GJ channel clusters that bud over time from central plaque areas. Channel clusters internalized within seconds forming endocytic double-membrane GJ vesicles ( approximately 0.18-0.27 mum in diameter) that were degraded by lysosomal pathways. Surprisingly, NM domains were not repopulated by surrounding channels and instead remained mobile, fused with each other, and were expelled at plaque edges. Quantification of internalized, photoconverted Cx43-Dendra2 vesicles indicated a GJ half-life of 2.6 h that falls within the estimated half-life of 1-5 h reported for GJs. Together with previous publications that revealed continuous accrual of newly synthesized channels along plaque edges and simultaneous removal of channels from plaque centers, our data suggest how the known dynamic channel replenishment of functional GJ plaques can be achieved. Our observations may have implications for the process of endocytic vesicle budding in general.
Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B
2017-12-01
Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.
Compartmentalization and Transport in Synthetic Vesicles
Schmitt, Christine; Lippert, Anna H.; Bonakdar, Navid; Sandoghdar, Vahid; Voll, Lars M.
2016-01-01
Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins. PMID:26973834
The Bretherton Problem for a Vesicle
NASA Astrophysics Data System (ADS)
Barakat, Joseph; Spann, Andrew; Shaqfeh, Eric
2016-11-01
The motion of a lipid bilayer vesicle through a circular tube is investigated by singular perturbation theory in the limit of vanishing clearance. The vesicle is treated as a sac of fluid enclosed by a thin, elastic sheet that admits a bending stiffness. It is assumed that the vesicle is axisymmetric and swollen to a near-critical volume such that the clearance "e" between the membrane and the tube wall is very small. In this limit, bending resistance is of negligible importance compared to the isotropic tension, allowing the vesicle to be treated as a "no-slip bubble." The effective membrane tension is found to scale inversely with "e" raised to the 3/2 power with a comparatively weak Marangoni gradient. The extra pressure drop is found to have a leading contribution due to the cylindrical midsection, which scales inversely with "e," as well as a correction due to the end caps, which scales inversely with the square root of "e." The apparent viscosity is predicted as a unique function of the geometry. The theory exhibits excellent agreement with a simplified, "quasi-parallel" theory and with direct numerical simulations using the boundary element method. The results of this work are compared to those for bubbles, rigid particles, and red blood cells in confined flows.
Prominin-1-containing membrane vesicles: origins, formation, and utility.
Marzesco, Anne-Marie
2013-01-01
The stem cell antigen prominin-1 (CD133) is associated with two major types (small and large) of extracellular membrane vesicles in addition to its selective concentration in various kinds of plasma membrane protrusion. During development of the mammalian central nervous system, differentiating neuroepithelial stem cells release these vesicles into the embryonic cerebrospinal fluid. In glioblastoma patients, an increase of such vesicles, particularly the smaller ones, have been also observed in cerebrospinal fluid. Similarly, hematopoietic stem and progenitor cells release small ones concomitantly with their differentiation. Although the functional significance of these prominin-1-containing membrane vesicles is poorly understood, a link between differentiation of stem (and cancer stem) cells and their release is emerging. In this chapter, I will summarize our knowledge about prominin-1-containing membrane vesicles including a potential role in cell-cell communication and highlight their prospective value as a new biomarker for tumorigenesis diagnostics.
How neurosecretory vesicles release their cargo.
Scalettar, Bethe A
2006-04-01
Neurons and related cell types often contain two major classes of neurosecretory vesicles, synaptic vesicles (SVs) and dense-core granules (DCGs), which store and release distinct cargo. SVs store and release classic neurotransmitters, which facilitate propagation of action potentials across the synaptic cleft, whereas DCGs transport, store, and release hormones, proteins, and neuropeptides, which facilitate neuronal survival, synaptic transmission, and learning. Over the past few years, there has been a major surge in our understanding of many of the key molecular mechanisms underlying cargo release from SVs and DCGs. This surge has been driven largely by the use of fluorescence microscopy (especially total internal reflection fluorescence microscopy) to visualize SVs or DCGs in living cells. This review highlights some of the recent insights into cargo release from neurosecretory vesicles provided by fluorescence microscopy, with emphasis on DCGs.
From Vesicles to Protocells: The Roles of Amphiphilic Molecules
Sakuma, Yuka; Imai, Masayuki
2015-01-01
It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures) and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life. PMID:25738256
Sulfur vesicles from Thermococcales: A possible role in sulfur detoxifying mechanisms
Gorlas, A.; Marguet, E.; Gill, S.; Geslin, C.; Guigner, J.-M.; Guyot, F.; Forterre, P.
2015-01-01
The euryarchaeon Thermococcus prieurii inhabits deep-sea hydrothermal vents, one of the most extreme environments on Earth, which is reduced and enriched with heavy metals. Transmission electron microscopy and cryo-electron microscopy imaging of T. prieurii revealed the production of a plethora of diverse membrane vesicles (MVs) (from 50 nm to 400 nm), as is the case for other Thermococcales. T. prieurii also produces particularly long nanopods/nanotubes, some of them containing more than 35 vesicles encased in a S-layer coat. Notably, cryo-electron microscopy of T. prieurii cells revealed the presence of numerous intracellular dark vesicles that bud from the host cells via interaction with the cytoplasmic membrane. These dark vesicles are exclusively found in conjunction with T. prieurii cells and never observed in the purified membrane vesicles preparations. Energy-Dispersive-X-Ray analyses revealed that these dark vesicles are filled with sulfur. Furthermore, the presence of these sulfur vesicles (SVs) is exclusively observed when elemental sulfur was added into the growth medium. In this report, we suggest that these atypical vesicles sequester the excess sulfur not used for growth, thus preventing the accumulation of toxic levels of sulfur in the host's cytoplasm. These SVs transport elemental sulfur out of the cell where they are rapidly degraded. Intriguingly, closely related archaeal species, Thermococcus nautili and Thermococcus kodakaraensis, show some differences about the production of sulfur vesicles. Whereas T. kodakaraensis produces less sulfur vesicles than T. prieurii, T. nautili does not produce such sulfur vesicles, suggesting that Thermococcales species exhibit significant differences in their sulfur metabolic pathways. PMID:26234734
Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation†
Stachowiak, Jeanne C.; Richmond, David L.; Li, Thomas H.; Brochard-Wyart, Françoise
2010-01-01
Encapsulation of macromolecules within lipid vesicles has the potential to drive biological discovery and enable development of novel, cell-like therapeutics and sensors. However, rapid and reliable production of large numbers of unilamellar vesicles loaded with unrestricted and precisely-controlled contents requires new technologies that overcome size, uniformity, and throughput limitations of existing approaches. Here we present a high-throughput microfluidic method for vesicle formation and encapsulation using an inkjet printer at rates up to 200 Hz. We show how multiple high-frequency pulses of the inkjet’s piezoelectric actuator create a microfluidic jet that deforms a bilayer lipid membrane, controlling formation of individual vesicles. Variations in pulse number, pulse voltage, and solution viscosity are used to control the vesicle size. As a first step toward cell-like reconstitution using this method, we encapsulate the cytoskeletal protein actin and use co-encapsulated microspheres to track its polymerization into a densely entangled cytoskeletal network upon vesicle formation. PMID:19568667
Exosome-like vesicles with dipeptidyl peptidase IV in human saliva.
Ogawa, Yuko; Kanai-Azuma, Masami; Akimoto, Yoshihiro; Kawakami, Hayato; Yanoshita, Ryohei
2008-06-01
Saliva contains a large number of proteins that participate in the protection of oral tissue. We found, for the first time, small vesicles (30-130 nm in diameter) in human whole saliva. Vesicles from saliva were identified by electron microscopy after isolation by gel-filtration on Sepharose CL-4B. They resemble exosomes, which are vesicles with an endosome-derived limiting membrane that are secreted by a diverse range of cell types. We performed a biochemical characterization of these vesicles by amino acid sequence analysis and Western blot analysis. We found that they contain dipeptidyl peptidase IV (DPP IV), galectin-3 and immunoglobulin A, which have potential to influence immune response. The DPP IV in the vesicles was metabolically active in cleaving substance P and glucose-dependent insulinotropic polypeptide to release N-terminal dipeptides. Our results demonstrate that human whole saliva contains exosome-like vesicles; they might participate in the catabolism of bioactive peptides and play a regulatory role in local immune defense in the oral cavity.
Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.
Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary
2017-08-30
The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.
Asymmetric osmotic water permeation through a vesicle membrane
NASA Astrophysics Data System (ADS)
Su, Jiaye; Zhao, Yunzhen; Fang, Chang; Shi, Yue
2017-05-01
Understanding the water permeation through a cell membrane is of primary importance for biological activities and a key step to capture its shape transformation in salt solution. In this work, we reveal the dynamical behaviors of osmotically driven transport of water molecules across a vesicle membrane by molecular dynamics simulations. Of particular interest is that the water transport in and out of vesicles is highly distinguishable given the osmotic force are the same, suggesting an asymmetric osmotic transportation. This asymmetric phenomenon exists in a broad range of parameter space such as the salt concentration, temperature, and vesicle size and can be ascribed to the similar asymmetric potential energy of lipid-ion, lipid-water, lipid-solution, lipid-lipid, and the lipid-lipid energy fluctuation. Specifically, the water flux has a linear increase with the salt concentration, similar to the prediction by Nernst-Planck equation or Fick's first law. Furthermore, due to the Arrhenius relation between the membrane permeability and temperature, the water flux also exhibits excellent Arrhenius dependence on the temperature. Meanwhile, the water flux shows a linear increase with the vesicle surface area since the flux amount across a unit membrane area should be a constant. Finally, we also present the anonymous diffusion behaviors for the vesicle itself, where transitions from normal diffusion at short times to subdiffusion at long times are identified. Our results provide significant new physical insights for the osmotic water permeation through a vesicle membrane and are helpful for future experimental studies.
Overall energy conversion efficiency of a photosynthetic vesicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek
The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in amore » quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.« less
Overall energy conversion efficiency of a photosynthetic vesicle
Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; ...
2016-08-26
The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in amore » quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.« less
Ca{sup 2+}-dependent mobility of vesicles capturing anti-VGLUT1 antibodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenovec, Matjaz; Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana; Kreft, Marko
2007-11-01
Several aspects of secretory vesicle cycle have been studied in the past, but vesicle trafficking in relation to the fusion site is less well understood. In particular, the mobility of recaptured vesicles that traffic back toward the central cytoplasm is still poorly defined. We exposed astrocytes to antibodies against the vesicular glutamate transporter 1 (VGLUT1), a marker of glutamatergic vesicles, to fluorescently label vesicles undergoing Ca{sup 2+}-dependent exocytosis and examined their number, fluorescence intensity, and mobility by confocal microscopy. In nonstimulated cells, immunolabeling revealed discrete fluorescent puncta, indicating that VGLUT1 vesicles, which are approximately 50 nm in diameter, cycle slowlymore » between the plasma membrane and the cytoplasm. When the cytosolic Ca{sup 2+} level was raised with ionomycin, the number and fluorescence intensity of the puncta increased, likely because the VGLUT1 epitopes were more accessible to the extracellularly applied antibodies following Ca{sup 2+}-triggered exocytosis. In nonstimulated cells, the mobility of labeled vesicles was limited. In stimulated cells, many vesicles exhibited directional mobility that was abolished by cytoskeleton-disrupting agents, indicating dependence on intact cytoskeleton. Our findings show that postfusion vesicle mobility is regulated and may likely play a role in synaptic vesicle cycle, and also more generally in the genesis and removal of endocytic vesicles.« less
Isolation of Tonoplast Vesicles from Tomato Fruit Pericarp
Snowden, Christopher J.; Thomas, Benjamin; Baxter, Charles J.; Smith, J. Andrew C.; Sweetlove, Lee J.
2017-01-01
This protocol describes the isolation of tonoplast vesicles from tomato fruit. The vesicles isolated using this procedure are of sufficiently high purity for downstream proteomic analysis whilst remaining transport competent for functional assays. The methodology was used to study the transport of amino acids during tomato fruit ripening (Snowden et al., 2015) and based on the procedure used by Betty and Smith (Bettey and Smith, 1993). Such vesicles may be useful in further studies into the dynamic transfer of metabolites across the tonoplast for storage and metabolism during tomato fruit development. PMID:29085859
Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan; Chang, Karen T
2016-08-24
The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in
Selective flow-induced vesicle rupture to sort by membrane mechanical properties
NASA Astrophysics Data System (ADS)
Pommella, Angelo; Brooks, Nicholas J.; Seddon, John M.; Garbin, Valeria
2015-08-01
Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells.
Selective flow-induced vesicle rupture to sort by membrane mechanical properties
Pommella, Angelo; Brooks, Nicholas J.; Seddon, John M.; Garbin, Valeria
2015-01-01
Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells. PMID:26302783
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Yeongseon; Choi, Won Tae; Heller, William T.
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
Jang, Yeongseon; Choi, Won Tae; Heller, William T.; ...
2017-07-27
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Passive Diffusion as a Mechanism Underlying Ribbon Synapse Vesicle Release and Resupply
Graydon, Cole W.; Zhang, Jun; Oesch, Nicholas W.; Sousa, Alioscka A.; Leapman, Richard D.
2014-01-01
Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, “analog” sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon–vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. PMID:24990916
How cancer cells dictate their microenvironment: present roles of extracellular vesicles.
Naito, Yutaka; Yoshioka, Yusuke; Yamamoto, Yusuke; Ochiya, Takahiro
2017-02-01
Intercellular communication plays an important role in cancer initiation and progression through secretory molecules, including growth factors and cytokines. Recent advances have revealed that small membrane vesicles, termed extracellular vesicles (EVs), served as a regulatory agent in the intercellular communication of cancer. EVs enable the transfer of functional molecules, including proteins, mRNA and microRNAs (miRNAs), into recipient cells. Cancer cells utilize EVs to dictate the unique phenotype of surrounding cells, thereby promoting cancer progression. Against such "education" by cancer cells, non-tumoral cells suppress cancer initiation and progression via EVs. Therefore, researchers consider EVs to be important cues to clarify the molecular mechanisms of cancer biology. Understanding the functions of EVs in cancer progression is an important aspect of cancer biology that has not been previously elucidated. In this review, we summarize experimental data that indicate the pivotal roles of EVs in cancer progression.
Mover Is a Homomeric Phospho-Protein Present on Synaptic Vesicles
Kremer, Thomas; Hoeber, Jan; Kiran Akula, Asha; Urlaub, Henning; Islinger, Markus; Kirsch, Joachim; Dean, Camin; Dresbach, Thomas
2013-01-01
With remarkably few exceptions, the molecules mediating synaptic vesicle exocytosis at active zones are structurally and functionally conserved between vertebrates and invertebrates. Mover was found in a yeast-2-hybrid assay using the vertebrate-specific active zone scaffolding protein bassoon as a bait. Peptides of Mover have been reported in proteomics screens for self-interacting proteins, phosphorylated proteins, and synaptic vesicle proteins, respectively. Here, we tested the predictions arising from these screens. Using flotation assays, carbonate stripping of peripheral membrane proteins, mass spectrometry, immunogold labelling of purified synaptic vesicles, and immuno-organelle isolation, we found that Mover is indeed a peripheral synaptic vesicle membrane protein. In addition, by generating an antibody against phosphorylated Mover and Western blot analysis of fractionated rat brain, we found that Mover is a bona fide phospho-protein. The localization of Mover to synaptic vesicles is phosphorylation dependent; treatment with a phosphatase caused Mover to dissociate from synaptic vesicles. A yeast-2-hybrid screen, co-immunoprecipitation and cell-based optical assays of homomerization revealed that Mover undergoes homophilic interaction, and regions within both the N- and C- terminus of the protein are required for this interaction. Deleting a region required for homomeric interaction abolished presynaptic targeting of recombinant Mover in cultured neurons. Together, these data prove that Mover is associated with synaptic vesicles, and implicate phosphorylation and multimerization in targeting of Mover to synaptic vesicles and presynaptic sites. PMID:23723986
Smith, Heather L; Bourne, Jennifer N; Cao, Guan; Chirillo, Michael A; Ostroff, Linnaea E; Watson, Deborah J; Harris, Kristen M
2016-01-01
Mitochondria support synaptic transmission through production of ATP, sequestration of calcium, synthesis of glutamate, and other vital functions. Surprisingly, less than 50% of hippocampal CA1 presynaptic boutons contain mitochondria, raising the question of whether synapses without mitochondria can sustain changes in efficacy. To address this question, we analyzed synapses from postnatal day 15 (P15) and adult rat hippocampus that had undergone theta-burst stimulation to produce long-term potentiation (TBS-LTP) and compared them to control or no stimulation. At 30 and 120 min after TBS-LTP, vesicles were decreased only in presynaptic boutons that contained mitochondria at P15, and vesicle decrement was greatest in adult boutons containing mitochondria. Presynaptic mitochondrial cristae were widened, suggesting a sustained energy demand. Thus, mitochondrial proximity reflected enhanced vesicle mobilization well after potentiation reached asymptote, in parallel with the apparently silent addition of new dendritic spines at P15 or the silent enlargement of synapses in adults. DOI: http://dx.doi.org/10.7554/eLife.15275.001 PMID:27991850
Functional transferred DNA within extracellular vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Jin; Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province; Wu, Gengze
Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmicmore » macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.« less
Passive diffusion as a mechanism underlying ribbon synapse vesicle release and resupply.
Graydon, Cole W; Zhang, Jun; Oesch, Nicholas W; Sousa, Alioscka A; Leapman, Richard D; Diamond, Jeffrey S
2014-07-02
Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, "analog" sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon-vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. Copyright © 2014 the authors 0270-6474/14/348948-15$15.00/0.
The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network
2017-01-01
Many intracellular pathogens subvert host membrane trafficking pathways to promote their replication. Toxoplasma multiplies in a membrane-bound parasitophorous vacuole (PV) that interacts with mammalian host organelles and intercepts Golgi Rab vesicles to acquire sphingolipids. The mechanisms of host vesicle internalization and processing within the PV remain undefined. We demonstrate that Toxoplasma sequesters a broad range of Rab vesicles into the PV. Correlative light and electron microscopy analysis of infected cells illustrates that intravacuolar Rab1A vesicles are surrounded by the PV membrane, suggesting a phagocytic-like process for vesicle engulfment. Rab11A vesicles concentrate to an intravacuolar network (IVN), but this is reduced in Δgra2 and Δgra2Δgra6 parasites, suggesting that tubules stabilized by the TgGRA2 and TgGRA6 proteins secreted by the parasite within the PV contribute to host vesicle sequestration. Overexpression of a phospholipase TgLCAT, which is localized to the IVN, results in a decrease in the number of intravacuolar GFP-Rab11A vesicles, suggesting that TgLCAT controls lipolytic degradation of Rab vesicles for cargo release. PMID:29070609
Royal Society Scientific Meeting: Extracellular vesicles in the tumour microenvironment.
Pink, Ryan Charles; Elmusrati, Areeg A; Lambert, Daniel; Carter, David Raul Francisco
2018-01-05
Cancer cells do not grow as an isolated homogeneous mass; tumours are, in fact, complex and heterogeneous collections of cancer and surrounding stromal cells, collectively termed the tumour microenvironment. The interaction between cancer cells and stromal cells in the tumour microenvironment has emerged as a key concept in the regulation of cancer progression. Understanding the intercellular dialogue in the tumour microenvironment is therefore an important goal. One aspect of this dialogue that has not been appreciated until recently is the role of extracellular vesicles (EVs). EVs are small vesicles released by cells under both normal and pathological conditions; they can transfer biological molecules between cells leading to changes in phenotype. EVs have emerged as important regulators of biological processes and can be dysregulated in diseases such as cancer; rapidly growing interest in their biology and therapeutic potential led to the Royal Society hosting a Scientific Meeting to explore the roles of EVs in the tumour microenvironment. This cross-disciplinary meeting explored examples of how aberrant crosstalk between tumour and stromal cells can promote cancer progression, and how such signalling can be targeted for diagnostic, prognostic and therapeutic benefit. In this review, and the special edition of Philosophical Transactions of the Royal Society B that follows, we will provide an overview of the content and outcomes of this exciting meeting.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'. © 2017 The Author(s).
Chromatic response of polydiacetylene vesicle induced by the permeation of methotrexate.
Shin, Min Jae; Kim, Ye Jin; Kim, Jong-Duk
2015-07-07
The noble vesicular system of polydiacetylene showed a red shift using two types of detecting systems. One of the systems involves the absorption of target materials from the outer side of the vesicle, and the other system involves the permeation through the vesicular layers from within the vesicle. The chromatic mixed vesicles of N-(2-aminoethyl)pentacosa-10,12-diynamide (AEPCDA) and dimethyldioctadecylammonium chloride (DODAC) were fabricated by sonication, followed by polymerization by UV irradiation. The stability of monomeric vesicles was observed to increase with the polymerization of the vesicles. Methotrexate was used as a target material. The polymerized mixed vesicles having a blue color were exposed to a concentration gradient of methotrexate, and a red shift was observed indicating the adsorption of methotrexate on the polydiacetylene bilayer. In order to check the chromatic change by the permeation of methotrexate, we separated the vesicle portion, which contained methotrexate inside the vesicle, and checked chromatic change during the permeation of methotrexate through the vesicle. The red shift apparently indicates the disturbance in the bilayer induced by the permeation of methotrexate. The maximum contrast of color appeared at the equal molar ratio of AEPCDA and DODAC, indicating that the formation of flexible and deformable vesicular layers is important for red shift. Therefore, it is hypothesized that the system can be applicable for the chromatic detection of the permeation of methotrexate through the polydiacetylene layer.
Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly
Cho, Nam-Joon; Hwang, Lisa Y.; Solandt, Johan J.R.; Frank, Curtis W.
2013-01-01
Lipid vesicles are an important class of biomaterials that have a wide range of applications, including drug delivery, cosmetic formulations and model membrane platforms on solid supports. Depending on the application, properties of a vesicle population such as size distribution, charge and permeability need to be optimized. Preparation methods such as mechanical extrusion and sonication play a key role in controlling these properties, and yet the effects of vesicle preparation method on vesicular properties and integrity (e.g., shape, size, distribution and tension) remain incompletely understood. In this study, we prepared vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid by either extrusion or sonication, and investigated the effects on vesicle size distribution over time as well as the concomitant effects on the self-assembly of solid-supported planar lipid bilayers. Dynamic light scattering (DLS), quartz crystal microbalance with dissipation (QCM-D) monitoring, fluorescence recovery after photobleaching (FRAP) and atomic force microscopy (AFM) experiments were performed to characterize vesicles in solution as well as their interactions with silicon oxide substrates. Collectively, the data support that sonicated vesicles offer more robust control over the self-assembly of homogenous planar lipid bilayers, whereas extruded vesicles are vulnerable to aging and must be used soon after preparation. PMID:28811437
Overall energy conversion efficiency of a photosynthetic vesicle
Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus
2016-01-01
The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI: http://dx.doi.org/10.7554/eLife.09541.001 PMID:27564854
Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform
Barroso, M Fátima; Luna, M Alejandra; Tabares, Juan S Flores; Delerue-Matos, Cristina; Correa, N Mariano
2016-01-01
Summary In this contribution a strategy is shown to covalently immobilize gold nanoparticles (AuNPs) onto vesicle bilayers with the aim of using this nanomaterial as platform for the future design of immunosensors. A novel methodology for the self-assembly of AuNPs onto large unilamellar vesicle structures is described. The vesicles were formed with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-undecanethiol (SH). After, the AuNPs photochemically synthesized in pure glycerol were mixed and anchored onto SH–DOPC vesicles. The data provided by voltammetry, spectrometry and microscopy techniques indicated that the AuNPs were successfully covalently anchored onto the vesicle bilayer and decorated vesicles exhibit a spherical shape with a size of 190 ± 10 nm. The developed procedure is easy, rapid and reproducible to start designing a possible immunosensor by using environmentally friendly procedures. PMID:27335755
Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons
Kwon, Sung E.; Chapman, Edwin R.
2011-01-01
Summary Despite being the most abundant synaptic vesicle membrane protein, the function of synaptophysin remains enigmatic. For example, synaptic transmission was reported to be completely normal in synaptophysin knockout mice; however, direct experiments to monitor the synaptic vesicle cycle have not been carried out. Here, using optical imaging and electrophysiological experiments, we demonstrate that synaptophysin is required for kinetically efficient endocytosis of synaptic vesicles in cultured hippocampal neurons. Truncation analysis revealed that distinct structural elements of synaptophysin differentially regulate vesicle retrieval during and after stimulation. Thus, synaptophysin regulates at least two phases of endocytosis to ensure vesicle availability during and after sustained neuronal activity. PMID:21658579
Interaction and rheology of vesicle suspensions in confined shear flow
NASA Astrophysics Data System (ADS)
Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi
2017-10-01
Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.
The Cytoskeleton-Autophagy Connection.
Kast, David J; Dominguez, Roberto
2017-04-24
Actin cytoskeleton dynamics play vital roles in most forms of intracellular trafficking by promoting the biogenesis and transport of vesicular cargoes. Mounting evidence indicates that actin dynamics and membrane-cytoskeleton scaffolds also have essential roles in macroautophagy, the process by which cellular waste is isolated inside specialized vesicles called autophagosomes for recycling and degradation. Branched actin polymerization is necessary for the biogenesis of autophagosomes from the endoplasmic reticulum (ER) membrane. Actomyosin-based transport is then used to feed the growing phagophore with pre-selected cargoes and debris derived from different membranous organelles inside the cell. Finally, mature autophagosomes detach from the ER membrane by an as yet unknown mechanism, undergo intracellular transport and then fuse with lysosomes, endosomes and multivesicular bodies through mechanisms that involve actin- and microtubule-mediated motility, cytoskeleton-membrane scaffolds and signaling proteins. In this review, we highlight the considerable progress made recently towards understanding the diverse roles of the cytoskeleton in autophagy. Published by Elsevier Ltd.
The Cytoskeleton-Autophagy Connection
Kast, David J.; Dominguez, Roberto
2017-01-01
Summary Actin cytoskeleton dynamics plays vital roles in most forms of intracellular trafficking by promoting the biogenesis and transport of vesicular cargoes. Mounting evidence indicates that actin dynamics and membrane-cytoskeleton scaffolds also play essential roles in macroautophagy, the process by which cellular waste is isolated inside specialized vesicles called autophagosomes for recycling and degradation. Thus, branched-actin polymerization is necessary for the biogenesis of autophagosomes from the endoplasmic reticulum (ER) membrane. Actomyosin-based transport is then used to feed the growing phagophore with pre-selected cargoes and debris derived from different membranous organelles inside the cell. Mature autophagosomes then detach from the ER membrane by an unknown mechanism, and are transported and fused with lysosomes, endosomes and multi-vesicular bodies through mechanisms that involve actin- and microtubule-based motility, cytoskeleton-membrane scaffolds and signaling proteins. In this minireview, we highlight the considerable progress made recently towards understanding the diverse roles of the cytoskeleton in autophagy. PMID:28441569
Development and characterization of nanopore system for nano-vesicle analysis
NASA Astrophysics Data System (ADS)
Goyal, Gaurav
Nano-vesicles have recently attracted a lot of attention in research and medical communities and are very promising next-generation drug delivery vehicles. This is due to their biocompatibility, biodegradability and their ability to protect drug cargo and deliver it to site-specific locations, while maintaining the desired pharmacokinetic profile. The interaction of these drug loaded vesicles with the recipient cells via adsorption, endocytosis or receptor mediated internalization involve significant bending and deformation and is governed by mechanical properties of the nano-vesicles. Currently, the mechanical characteristics of nano-vesicles are left unexplored because of the difficulties associated with vesicle analysis at sub-100 nm length scale. The need for a complete understanding of nano-vesicle interaction with each other and the recipient cells warrants development of an analytical tool capable of mechanical investigation of individual vesicles at sub-100 nm scale. This dissertation presents investigation of nano-vesicle deformability using resistive pulse sensing and solid-state nanopore devices. The dissertation is divided into four chapters. Chapter 1 discusses the motivation, specific aims and presents an overview of nanoparticle characterization techniques, resistive pulse sensing background and principles, techniques for fabricating solid-state nanopores, as well the deformation behavior of giant vesicles when placed in electric field. Chapter 2 is dedicated to understanding of the scientific principles governing transport of sub-100 nm particles in dilute solutions. We investigated the translocation of rigid nanoparticles through nanopores at salt concentrations < 50 mM. When using low electrolyte strength, surface effects become predominant and resulted in unconventional current signatures in our experiments. It prompted us to explore the effects of different experimental parameters using Multiphysics simulations, in order to optimize our system
Adhesion signals of phospholipid vesicles at an electrified interface.
DeNardis, Nadica Ivošević; Žutić, Vera; Svetličić, Vesna; Frkanec, Ruža
2012-09-01
General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.
v-SNAREs control exocytosis of vesicles from priming to fusion.
Borisovska, Maria; Zhao, Ying; Tsytsyura, Yaroslav; Glyvuk, Nataliya; Takamori, Shigeo; Matti, Ulf; Rettig, Jens; Südhof, Thomas; Bruns, Dieter
2005-06-15
SNARE proteins (soluble NSF-attachment protein receptors) are thought to be central components of the exocytotic mechanism in neurosecretory cells, but their precise function remained unclear. Here, we show that each of the vesicle-associated SNARE proteins (v-SNARE) of a chromaffin granule, synaptobrevin II or cellubrevin, is sufficient to support Ca(2+)-dependent exocytosis and to establish a pool of primed, readily releasable vesicles. In the absence of both proteins, secretion is abolished, without affecting biogenesis or docking of granules indicating that v-SNAREs are absolutely required for granule exocytosis. We find that synaptobrevin II and cellubrevin differentially control the pool of readily releasable vesicles and show that the v-SNARE's amino terminus regulates the vesicle's primed state. We demonstrate that dynamics of fusion pore dilation are regulated by v-SNAREs, indicating their action throughout exocytosis from priming to fusion of vesicles.
Kibra and aPKC regulate starvation-induced autophagy in Drosophila.
Jin, Ahrum; Neufeld, Thomas P; Choe, Joonho
Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Vesicle biomechanics in a time-varying magnetic field.
Ye, Hui; Curcuru, Austen
2015-01-01
Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (<200 KHz), including the frequency used in TMS, the computed radial pressure and translational forces on the vesicle were both negligible. This work
Quantification of mixing in vesicle suspensions using numerical simulations in two dimensions.
Kabacaoğlu, G; Quaife, B; Biros, G
2017-02-01
We study mixing in Stokesian vesicle suspensions in two dimensions on a cylindrical Couette apparatus using numerical simulations. The vesicle flow simulation is done using a boundary integral method, and the advection-diffusion equation for the mixing of the solute is solved using a pseudo-spectral scheme. We study the effect of the area fraction, the viscosity contrast between the inside (the vesicles) and the outside (the bulk) fluid, the initial condition of the solute, and the mixing metric. We compare mixing in the suspension with mixing in the Couette apparatus without vesicles. On the one hand, the presence of vesicles in most cases slightly suppresses mixing. This is because the solute can be only diffused across the vesicle interface and not advected. On the other hand, there exist spatial distributions of the solute for which the unperturbed Couette flow completely fails to mix whereas the presence of vesicles enables mixing. We derive a simple condition that relates the velocity and solute and can be used to characterize the cases in which the presence of vesicles promotes mixing.
Quantification of mixing in vesicle suspensions using numerical simulations in two dimensions
Quaife, B.; Biros, G.
2017-01-01
We study mixing in Stokesian vesicle suspensions in two dimensions on a cylindrical Couette apparatus using numerical simulations. The vesicle flow simulation is done using a boundary integral method, and the advection-diffusion equation for the mixing of the solute is solved using a pseudo-spectral scheme. We study the effect of the area fraction, the viscosity contrast between the inside (the vesicles) and the outside (the bulk) fluid, the initial condition of the solute, and the mixing metric. We compare mixing in the suspension with mixing in the Couette apparatus without vesicles. On the one hand, the presence of vesicles in most cases slightly suppresses mixing. This is because the solute can be only diffused across the vesicle interface and not advected. On the other hand, there exist spatial distributions of the solute for which the unperturbed Couette flow completely fails to mix whereas the presence of vesicles enables mixing. We derive a simple condition that relates the velocity and solute and can be used to characterize the cases in which the presence of vesicles promotes mixing. PMID:28344432
Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties
NASA Astrophysics Data System (ADS)
Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.
2014-04-01
Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.
Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase.
Imura, Tomohiro; Yanagishita, Hiroshi; Ohira, Junko; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai
2005-06-25
Thermodynamically stable vesicle (L(alpha1)) formation from glycolipid biosurfactant sponge phase (L(3)) and its mechanism were investigated using a "natural" biocompatible mannosyl-erythritol lipid-A (MEL-A)/L-alpha-dilauroylphosphatidylcholine (DLPC) mixture by varying the composition. The trapping efficiency for calcein and turbidity measurements clearly indicated the existence of three regions: while the trapping efficiencies of the mixed MEL-A/DLPC assemblies at the compositions with X(DLPC)< or =0.1 or X(DLPC)> or =0.8 were almost zero, the mixed assemblies at the compositions with 0.1
Hypoxia and H2O2 Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery.
Yu, Jicheng; Qian, Chenggen; Zhang, Yuqi; Cui, Zheng; Zhu, Yong; Shen, Qundong; Ligler, Frances S; Buse, John B; Gu, Zhen
2017-02-08
A glucose-responsive closed-loop insulin delivery system mimicking pancreas activity without long-term side effect has the potential to improve diabetic patients' health and quality of life. Here, we developed a novel glucose-responsive insulin delivery device using a painless microneedle-array patch containing insulin-loaded vesicles. Formed by self-assembly of hypoxia and H 2 O 2 dual-sensitive diblock copolymer, the glucose-responsive polymersome-based vesicles (d-GRPs) can disassociate and subsequently release insulin triggered by H 2 O 2 and hypoxia generated during glucose oxidation catalyzed by glucose specific enzyme. Moreover, the d-GRPs were able to eliminate the excess H 2 O 2 , which may lead to free radical-induced damage to skin tissue during the long-term usage and reduce the activity of GOx. In vivo experiments indicated that this smart insulin patch could efficiently regulate the blood glucose in the chemically induced type 1 diabetic mice for 10 h.
Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E
2017-01-01
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (Otof Ala515,Ala517/Ala515,Ala517) with lower Ca2+-binding affinity of the C2C domain. The IHC ribbon synapse structure, synaptic Ca2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca2+ concentration, by varying Ca2+ influx through voltage-gated Ca2+-channels or Ca2+ uncaging. Otoferlin thus functions as a Ca2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone. PMID:29111973
NASA Astrophysics Data System (ADS)
Antonova, K.; Vitkova, V.; Mitov, M. D.
2010-02-01
The electrodeformation of giant vesicles is studied as a function of their radii and the frequency of the applied AC field. At low frequency the shape is prolate, at sufficiently high frequency it is oblate and at some frequency, fc, the shape changes from prolate to oblate. A linear dependence of the prolate-to-oblate transition inverse frequency, 1/fc, on the vesicle radius is found. The nature of this phenomenon does not change with the variation of both the solution conductivity, σ, and the type of the fluid enclosed by the lipid membrane (water, sucrose or glucose aqueous solution). When σ increases, the value of fc increases while the slope of the line 1/fc(r) decreases. For vesicles in symmetrical conditions (the same conductivity of the inner and the outer solution) a linear dependence between σ and the critical frequency, fc, is obtained for conductivities up to σ=114 μS/cm. For vesicles with sizes below a certain minimum radius, depending on the solution conductivity, no shape transition could be observed.
Michalski, Nicolas; Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E; Dulon, Didier; Safieddine, Saaid; Petit, Christine
2017-11-07
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C 2 -domain, Ca 2+ -binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice ( Otof Ala515,Ala517/Ala515,Ala517 ) with lower Ca 2+ -binding affinity of the C 2 C domain. The IHC ribbon synapse structure, synaptic Ca 2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca 2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca 2+ concentration, by varying Ca 2+ influx through voltage-gated Ca 2+ -channels or Ca 2+ uncaging. Otoferlin thus functions as a Ca 2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone.
Origins of microstructural transformations in charged vesicle suspensions: the crowding hypothesis.
Seth, Mansi; Ramachandran, Arun; Murch, Bruce P; Leal, L Gary
2014-09-02
It is observed that charged unilamellar vesicles in a suspension can spontaneously deflate and subsequently transition to form bilamellar vesicles, even in the absence of externally applied triggers such as salt or temperature gradients. We provide strong evidence that the driving force for this deflation-induced transition is the repulsive electrostatic pressure between charged vesicles in concentrated suspensions, above a critical effective volume fraction. We use volume fraction measurements and cryogenic transmission electron microscopy imaging to quantitatively follow both the macroscopic and microstructural time-evolution of cationic diC18:1 DEEDMAC vesicle suspensions at different surfactant and salt concentrations. A simple model is developed to estimate the extent of deflation of unilamellar vesicles caused by electrostatic interactions with neighboring vesicles. It is determined that when the effective volume fraction of the suspension exceeds a critical value, charged vesicles in a suspension can experience "crowding" due to overlap of their electrical double layers, which can result in deflation and subsequent microstructural transformations to reduce the effective volume fraction of the suspension. Ordinarily in polydisperse colloidal suspensions, particles interacting via a repulsive potential transform into a glassy state above a critical volume fraction. The behavior of charged vesicle suspensions reported in this paper thus represents a new mechanism for the relaxation of repulsive interactions in crowded situations.
Integral equation methods for vesicle electrohydrodynamics in three dimensions
NASA Astrophysics Data System (ADS)
Veerapaneni, Shravan
2016-12-01
In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.
Single-step isolation of extracellular vesicles by size-exclusion chromatography
Böing, Anita N.; van der Pol, Edwin; Grootemaat, Anita E.; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk
2014-01-01
Background Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively. Aim To develop a single-step protocol to isolate vesicles from human body fluids. Methods Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3). Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL) and protein were measured in each fraction. Results Fractions 9–12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively), but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively). HDL was present mainly in fractions 18–20 (32%±2 of total), and protein in fractions 19–21 (36%±2 of total). Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9–12, with an 8-fold and 70-fold enrichment compared to HDL and protein. Conclusions SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles. PMID:25279113
Acoustic Enrichment of Extracellular Vesicles from Biological Fluids.
Ku, Anson; Lim, Hooi Ching; Evander, Mikael; Lilja, Hans; Laurell, Thomas; Scheding, Stefan; Ceder, Yvonne
2018-06-11
Extracellular vesicles (EVs) have emerged as a rich source of biomarkers providing diagnostic and prognostic information in diseases such as cancer. Large-scale investigations into the contents of EVs in clinical cohorts are warranted, but a major obstacle is the lack of a rapid, reproducible, efficient, and low-cost methodology to enrich EVs. Here, we demonstrate the applicability of an automated acoustic-based technique to enrich EVs, termed acoustic trapping. Using this technology, we have successfully enriched EVs from cell culture conditioned media and urine and blood plasma from healthy volunteers. The acoustically trapped samples contained EVs ranging from exosomes to microvesicles in size and contained detectable levels of intravesicular microRNAs. Importantly, this method showed high reproducibility and yielded sufficient quantities of vesicles for downstream analysis. The enrichment could be obtained from a sample volume of 300 μL or less, an equivalent to 30 min of enrichment time, depending on the sensitivity of downstream analysis. Taken together, acoustic trapping provides a rapid, automated, low-volume compatible, and robust method to enrich EVs from biofluids. Thus, it may serve as a novel tool for EV enrichment from large number of samples in a clinical setting with minimum sample preparation.
Theory of Disk-to-Vesicle Transformation
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Shi, An-Chang
2009-03-01
Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.
Vesicle Stability and Dynamics: An Undergraduate Biochemistry Laboratory
ERIC Educational Resources Information Center
Del Bianco, Cristina; Torino, Domenica; Mansy, Sheref S.
2014-01-01
A laboratory exercise is described that helps students learn about lipid self-assembly by making vesicles under different solution conditions. Concepts covering the chemical properties of different lipids, the dynamics of lipids, and vesicle stability are explored. Further, the described protocol is easy and cheap to implement. One to two…
Deformation analysis of vesicles in an alternating-current electric field.
Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao
2014-08-01
In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields.
Chen, Qi; Yue, Fei; Li, Wenjiao; Zou, Jing; Xu, Tao; Huang, Cheng; Zhang, Ye; Song, Kun; Huang, Guanqun; Xu, Guibin; Huang, Hai; Li, Jun; Liu, Leyuan
2015-10-23
Autophagy is a cellular process that controls and executes the turnover of dysfunctional organelles and misfolded or abnormally aggregated proteins. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) activates the initiation of autophagy. Autophagosomes migrate along acetylated microtubules to fuse with lysosomes to execute the degradation of the engulfed substrates that usually bind with sequestosome 1 (SQSTM1, p62). Microtubule-associated protein 1 light chain 3 (LC3) traces the autophagy process by converting from the LC3-I to the LC3-II isoform and serves as a major marker of autophagy flux. Potassium bisperoxo(1,10-phenanthroline)oxovanadate (bpV(phen)) is an insulin mimic and a PTEN inhibitor and has the potential to treat different diseases. Here we show that bpV(phen) enhances the ubiquitination of p62, reduces the stability of p62, disrupts the interaction between p62 and histone deacetylase 6 (HDAC6), activates the deacetylase activity of HDAC6 on α-tubulin, and impairs stable acetylated microtubules. Microtubular destabilization leads to the blockade of autophagosome-lysosome fusion and accumulation of autophagosomes. Autophagy defects lead to oxidative stress and lysosomal rupture, which trigger different types of cell death, including apoptosis and pyroptosis. The consistent results from multiple systems, including mouse and different types of mammalian cells, are different from the predicted function of bpV(phen) as a PTEN inhibitor to activate autophagy flux. In addition, levels of p62 are reduced but not elevated when autophagosomal degradation is blocked, revealing a novel function of p62 in autophagy regulation. Therefore, it is necessary to pay attention to the roles of bpV(phen) in autophagy, apoptosis, and pyroptosis when it is developed as a drug. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Case report: endoscopic management of seminal vesicle stones with cutaneous fistula.
Modi, Pranjal R
2006-06-01
Stones in the seminal vesicle are rare. Open surgery to remove either the seminal vesicle or the stone usually is required. We report a case of seminal-vesicle stones compounded by cutaneous fistula that was treated by ureteroscopy, intracorporeal lithotripsy, and fulguration of the fistulous tract.
Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.
Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi
2014-09-01
Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.
Autophagic activity in BC3H1 cells exposed to yessotoxin.
Korsnes, Mónica Suárez; Kolstad, Hilde; Kleiveland, Charlotte Ramstad; Korsnes, Reinert; Ørmen, Elin
2016-04-01
The marine toxin yessotoxin (YTX) can induce programmed cell death through both caspase-dependent and -independent pathways in various cellular systems. It appears to stimulate different forms of cellular stress causing instability among cell death mechanisms and making them overlap and cross-talk. Autophagy is one of the key pathways that can be stimulated by multiple forms of cellular stress which may determine cell survival or death. The present work evaluates a plausible link between ribotoxic stress and autophagic activity in BC3H1 cells treated with YTX. Such treatment produces massive cytoplasmic compartments as well as double-membrane vesicles termed autophagosomes which are typically observed in cells undergoing autophagy. The observed autophagosomes contain a large amount of ribosomes associated with the endoplasmic reticulum (ER). Western blotting analysis of Atg proteins and detection of the autophagic markers LC3-II and SQSTM1/p62 by flow cytometry and immunofluorescence verified autophagic activity during YTX-treatment. The present work supports the idea that autophagic activity upon YTX exposure may represent a response to ribotoxic stress. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Transfer of Oleic Acid between Albumin and Phospholipid Vesicles
NASA Astrophysics Data System (ADS)
Hamilton, James A.; Cistola, David P.
1986-01-01
The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by 13C NMR spectroscopy and 90% isotopically substituted [1-13C]oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles (vesicles or albumin with oleic acid) and acceptor particles (fatty acid-free albumin or vesicles), the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with >= 80% of the oleic acid associated with albumin at pH 7.4; association was >= 90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin; at pH 5.4, <= 10% of the oleic acid was bound to albumin and >90% was associated with vesicles. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The 13C NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data.
Effects of exosome-like vesicles on cumulus expansion in pigs in vitro.
Matsuno, Yuta; Onuma, Asuka; Fujioka, Yoshie A; Yasuhara, Kazuma; Fujii, Wataru; Naito, Kunihiko; Sugiura, Koji
2017-02-16
Cell-secreted vesicles, such as exosomes, have recently been recognized as mediators of cell communication. A recent study in cattle showed the involvement of exosome-like vesicles in the control of cumulus expansion, a prerequisite process for normal ovulation; however, whether this is the case in other mammalian species is not known. Therefore, this study aimed to examine the presence of exosome-like vesicles in ovarian follicles and their effects on cumulus expansion in vitro in pigs. The presence of exosome-like vesicles in porcine follicular fluid (pFF) was confirmed by transmission electron microscopic observation, the detection of marker proteins, and RNA profiles specific to exosomes. Fluorescently labeled exosome-like vesicles isolated from pFF were incorporated into both cumulus and mural granulosa cells in vitro. Exosome-like vesicles were not capable of inducing cumulus expansion to a degree comparable to that induced by follicle-stimulating hormone (FSH). Moreover, exosome-like vesicles had no significant effects on the expression levels of transcripts required for the normal expansion process (HAS2, TNFAIP6, and PTGS2). Interestingly, FSH-induced expression of HAS2 and TNFAIP6 mRNA, but not of PTGS2 mRNA, was significantly increased by the presence of exosome-like vesicles; however, the degree of FSH-induced expansion was not affected. In addition, porcine exosome-like vesicles had no significant effects on the expansion of mouse cumulus-oocyte complexes. Collectively, the present results suggest that exosome-like vesicles are present in pFF, but they are not efficient in inducing cumulus expansion in pigs.
Effects of exosome-like vesicles on cumulus expansion in pigs in vitro
MATSUNO, Yuta; ONUMA, Asuka; FUJIOKA, Yoshie A; YASUHARA, Kazuma; FUJII, Wataru; NAITO, Kunihiko; SUGIURA, Koji
2017-01-01
Cell-secreted vesicles, such as exosomes, have recently been recognized as mediators of cell communication. A recent study in cattle showed the involvement of exosome-like vesicles in the control of cumulus expansion, a prerequisite process for normal ovulation; however, whether this is the case in other mammalian species is not known. Therefore, this study aimed to examine the presence of exosome-like vesicles in ovarian follicles and their effects on cumulus expansion in vitro in pigs. The presence of exosome-like vesicles in porcine follicular fluid (pFF) was confirmed by transmission electron microscopic observation, the detection of marker proteins, and RNA profiles specific to exosomes. Fluorescently labeled exosome-like vesicles isolated from pFF were incorporated into both cumulus and mural granulosa cells in vitro. Exosome-like vesicles were not capable of inducing cumulus expansion to a degree comparable to that induced by follicle-stimulating hormone (FSH). Moreover, exosome-like vesicles had no significant effects on the expression levels of transcripts required for the normal expansion process (HAS2, TNFAIP6, and PTGS2). Interestingly, FSH-induced expression of HAS2 and TNFAIP6 mRNA, but not of PTGS2 mRNA, was significantly increased by the presence of exosome-like vesicles; however, the degree of FSH-induced expansion was not affected. In addition, porcine exosome-like vesicles had no significant effects on the expansion of mouse cumulus-oocyte complexes. Collectively, the present results suggest that exosome-like vesicles are present in pFF, but they are not efficient in inducing cumulus expansion in pigs. PMID:28163264
Revisiting synaptic vesicle pool localization in the Drosophila neuromuscular junction
Denker, Annette; Kröhnert, Katharina; Rizzoli, Silvio O
2009-01-01
The synaptic vesicles are organized in distinct populations or ‘pools’: the readily releasable pool (the first vesicles released upon stimulation), the recycling pool (which maintains release under moderate stimulation) and the reserve pool (which is called into action only upon strong, often unphysiological stimulation). A major question in the field is whether the pools consist of biochemically different vesicles or whether the pool tag is a spatial one (with the recycling vesicles found next to the release sites, and the reserve ones farther away). A strong and stable spatial segregation has been proposed in the last decade in the Drosophila larval neuromuscular junction – albeit based solely on light microscopy experiments. We have tested here this hypothesis using electron microscopy (EM) photoconversion. We found the recycling and reserve pools to be thoroughly intermixed at the EM level, indicating that spatial location is irrelevant for the functional properties of the vesicle. PMID:19403600
Shape fluctuations of nearly spherical lipid vesicles and emulsion droplets.
Bivas, Isak
2010-06-01
It is known that the relaxation of the shape fluctuations of nearly spherical lipid vesicles is accompanied by a lateral displacement of the monolayers, comprising their bilayers. In this work a dissipation mechanism of the mechanical energy stored in the fluctuation is revealed that concerns the viscous friction of the flow in the liquid around the vesicle caused by this displacement. The time correlation functions of each of the vesicle's fluctuation modes are calculated as a function of the mechanical and rheological properties of the system which are the tension of the vesicle bilayer, its bending elasticities at free and blocked flip-flop, the viscosities of the liquids bathing the bilayer, the friction coefficient between the two monolayers, as well as the vesicle's dimensions: its bilayer thickness and radius. The correlations of the shape fluctuations of nearly spherical emulsion droplets are also calculated for different viscosities of the liquid inside and outside the droplet.
Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation
Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.
2014-01-01
Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274
Lipid vesicles chaperone an encapsulated RNA aptamer.
Saha, Ranajay; Verbanic, Samuel; Chen, Irene A
2018-06-13
The organization of molecules into cells is believed to have been critical for the emergence of living systems. Early protocells likely consisted of RNA functioning inside vesicles made of simple lipids. However, little is known about how encapsulation would affect the activity and folding of RNA. Here we find that confinement of the malachite green RNA aptamer inside fatty acid vesicles increases binding affinity and locally stabilizes the bound conformation of the RNA. The vesicle effectively 'chaperones' the aptamer, consistent with an excluded volume mechanism due to confinement. Protocellular organization thereby leads to a direct benefit for the RNA. Coupled with previously described mechanisms by which encapsulated RNA aids membrane growth, this effect illustrates how the membrane and RNA might cooperate for mutual benefit. Encapsulation could thus increase RNA fitness and the likelihood that functional sequences would emerge during the origin of life.
Involvement of vesicle coat material in casein secretion and surface regeneration
1976-01-01
The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces. PMID:1254641
Bogen, I L; Jensen, V; Hvalby, O; Walaas, S I
2009-01-12
Inactivation of the genes encoding the neuronal, synaptic vesicle-associated proteins synapsin I and II leads to severe reductions in the number of synaptic vesicles in the CNS. We here define the postnatal developmental period during which the synapsin I and/or II proteins modulate synaptic vesicle number and function in excitatory glutamatergic synapses in mouse brain. In wild-type mice, brain levels of both synapsin I and synapsin IIb showed developmental increases during synaptogenesis from postnatal days 5-20, while synapsin IIa showed a protracted increase during postnatal days 20-30. The vesicular glutamate transporters (VGLUT) 1 and VGLUT2 showed synapsin-independent development during postnatal days 5-10, following which significant reductions were seen when synapsin-deficient brains were compared with wild-type brains following postnatal day 20. A similar, synapsin-dependent developmental profile of vesicular glutamate uptake occurred during the same age periods. Physiological analysis of the development of excitatory glutamatergic synapses, performed in the CA1 stratum radiatum of the hippocampus from the two genotypes, showed that both the synapsin-dependent part of the frequency facilitation and the synapsin-dependent delayed response enhancement were restricted to the period after postnatal day 10. Our data demonstrate that while both synaptic vesicle number and presynaptic short-term plasticity are essentially independent of synapsin I and II prior to postnatal day 10, maturation and function of excitatory synapses appear to be strongly dependent on synapsin I and II from postnatal day 20.
Membrane trafficking: decoding vesicle identity with contrasting chemistries.
Frost, Adam
2011-10-11
Proteins involved in membrane traffic must distinguish between different classes of vesicles. New work now shows that α-synuclein and ALPS motifs represent two extreme types of amphipathic helix that are tuned to detect both the curvature of transport vesicles as well as their bulk lipid content. Copyright © 2011 Elsevier Ltd. All rights reserved.
Calcium transport in vesicles energized by cytochrome oxidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosier, Randy N.
1979-01-01
Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K + selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K + flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interactionmore » with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.« less
Freeze-thaw and high-voltage discharge allow macromolecule uptake into ileal brush-border vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donowitz, M.; Emmer, E.; McCullen, J.
1987-06-01
High-voltage discharge or one cycle of freeze-thawing are shown to transiently permeabilize rabbit ileal brush-border membrane vesicles to macromolecules. Uptake of the radiolabeled macromolecule dextran, mol wt 70,000, used as a marker for vesicle permeability, was determined by a rapid filtration technique, with uptake defined as substrate associated with the vesicle and releasable after incubation of vesicles with 0.1% saponin. Dextran added immediately after electric shock (2000 V) or at the beginning of one cycle of freeze-thawing was taken up approximately eightfold compared with control. ATP also was taken up into freeze-thawed vesicles, whereas there was no significant uptake intomore » control vesicles. The increase in vesicle permeability was reversible, based on Na-dependent D-glucose uptake being decreased when studied 5 but not 15 min after electric shock, and was not significantly decreased after completion of one cycle of freeze-thawing. In addition, adenosine 3',5'-cyclic monophosphate and Ca/sup 2 +/-calmodulin-dependent protein kinase activity were similar in control vesicles and vesicles exposed to high-voltage discharge or freeze-thawing. Also, vesicles freeze-thawed with (/sup 32/P)ATP demonstrated increased phosphorylation compared with nonfrozen vesicles, while freeze-thawing did not alter vesicle protein as judged by Coomassie blue staining. These techniques should allow intestinal membrane vesicles to be used for studies of intracellular control of transport processes, for instance, studies of protein kinase regulation of transport.« less
An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaojun; Department of Biotechnology, Nanchang University, Nanchang, Jiangxi 330031; Chen, Yuan
2014-03-28
Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM)more » has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.« less
Jackson, Wallen; Yamada, Masaki; Moninger, Thomas; Grose, Charles
2013-10-01
Varicella-zoster virus (VZV) is a human herpesvirus. Primary infection causes varicella (chickenpox), a viremic illness typified by an exanthem consisting of several hundred vesicles. When VZV reactivates from latency in the spinal ganglia during late adulthood, the emerging virus causes a vesicular dermatomal rash (herpes zoster or shingles). To expand investigations of autophagy during varicella and zoster, newer 3D imaging technology was combined with laser scanning confocal microscopy to provide animations of autophagosomes in the vesicular rash. First, the cells were immunolabeled with antibodies against VZV proteins and the LC3 protein, an integral autophagosomal protein. Antibody reagents lacking activity against the human blood group A1 antigen were selected. After laser excitation of the samples, optimized emission detection bandwidths were configured by Zeiss Zen control software. Confocal Z-stacks comprising up to 40 optical slices were reconstructed into 3D animations with the aid of Imaris software. With this imaging technology, individual autophagosomes were clearly detectable as spheres within each vesicular cell. To enumerate the number of autophagosomes, data sets from 50 cells were reconstructed as 3D fluorescence images and analyzed with MeasurementPro software. The mean number of autophagosomes per infected vesicular cell was >100, although over 200 autophagosomes were seen in a few cells. In summary, macroautophagy was easily quantitated within VZV-infected cells after immunolabeling and imaging by 3D confocal animation technology. These same 3D imaging techniques will be applicable for investigations of autophagy in other virus-infected cells. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Olaya-Abril, Alfonso; Prados-Rosales, Rafael; McConnell, Michael J; Martín-Peña, Reyes; González-Reyes, José Antonio; Jiménez-Munguía, Irene; Gómez-Gascón, Lidia; Fernández, Javier; Luque-García, José L; García-Lidón, Carlos; Estévez, Héctor; Pachón, Jerónimo; Obando, Ignacio; Casadevall, Arturo; Pirofski, Liise-Anne; Rodríguez-Ortega, Manuel J
2014-06-25
Extracellular vesicles are produced by many pathogenic microorganisms and have varied functions that include secretion and release of microbial factors, which contribute to virulence. Very little is known about vesicle production by Gram-positive bacteria, as well as their biogenesis and release mechanisms. In this work, we demonstrate the active production of vesicles by Streptococcus pneumoniae from the plasma membrane, rather than being a product from cell lysis. We biochemically characterized them by proteomics and fatty acid analysis, showing that these vesicles and the plasma membrane resemble in essential aspects, but have some differences: vesicles are more enriched in lipoproteins and short-chain fatty acids. We also demonstrate that these vesicles act as carriers of surface proteins and virulence factors. They are also highly immunoreactive against human sera and induce immune responses that protect against infection. Overall, this work provides insights into the biology of this important Gram-positive human pathogen and the role of extracellular vesicles in clinical applications. Pneumococcus is one of the leading causes of bacterial pneumonia worldwide in children and the elderly, being responsible for high morbidity and mortality rates in developing countries. The augment of pneumococcal disease in developed countries has raised major public health concern, since the difficulties to treat these infections due to increasing antibiotic resistance. Vaccination is still the best way to combat pneumococcal infections. One of the mechanisms that bacterial pathogens use to combat the defense responses of invaded hosts is the production and release of extracellular vesicles derived from the outer surface. Little is known about this phenomenon in Gram-positives. We show that pneumococcus produces membrane-derived vesicles particularly enriched in lipoproteins. We also show the utility of pneumococcal vesicles as a new type of vaccine, as they induce protection
Heuser, J E; Reese, T S
1973-05-01
When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane
Heuser, J. E.; Reese, T. S.
1973-01-01
When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane
NASA Astrophysics Data System (ADS)
van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.
2016-03-01
Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.
Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers
Chan, Yee-Hung M.; Lenz, Peter; Boxer, Steven G.
2007-01-01
Membrane–membrane recognition and binding are crucial in many biological processes. We report an approach to studying the dynamics of such reactions by using DNA-tethered vesicles as a general scaffold for displaying membrane components. This system was used to characterize the docking reaction between two populations of tethered vesicles that display complementary DNA. Deposition of vesicles onto a supported lipid bilayer was performed by using a microfluidic device to prevent mixing of the vesicles in bulk during sample preparation. Once tethered onto the surface, vesicles mixed via two-dimensional diffusion. DNA-mediated docking of two reacting vesicles results in their colocalization after collision and their subsequent tandem motion. Individual docking events and population kinetics were observed via epifluorescence microscopy. A lattice-diffusion simulation was implemented to extract from experimental data the probability, Pdock, that a collision leads to docking. For individual vesicles displaying small numbers of docking DNA, Pdock shows a first-order relationship with copy number as well as a strong dependence on the DNA sequence. Both trends are explained by a model that includes both tethered vesicle diffusion on the supported bilayer and docking DNA diffusion over each vesicle's surface. These results provide the basis for the application of tethered vesicles to study other membrane reactions including protein-mediated docking and fusion. PMID:18025472
Calmodulin stimulation of calcium transport in carrot microsomal vesicles. [Daucus carota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, W.S.; Sze, H.
1987-04-01
ATP-dependent /sup 45/Ca/sup 2 +/ uptake into microsomal vesicles isolated from cultured carrot cells (Daucus carota Danvers) was stimulated 2-3 fold by 5 ug/ml calmodulin (CaM). Microsomal vesicles separated with a linear sucrose gradient showed two peaks with CaM-stimulated Ca/sup 2 +/ uptake activities. One peak (at 1.12 g/cc) comigrated with the activity of the antimycin A-insensitive NADH-dependent cytochrome c reductase. This transport activity was enhanced 10-20 fold by 10 mM oxalate and appeared to be associates with vesicles derived primarily from the ER. The other peak of CaM-stimulated Ca/sup 2 +/ uptake (at 1.17 g/cc) was not affected bymore » oxalate. These vesicles are probably derived from the plasma membrane. Preliminary experiments with the low-density vesicles (ER) vesicles, indicate that inositol-1,4,5-trisphosphate caused a transient reduction in intravesicular Ca/sup 2 +/. These results are consistent with the ER being an important site of intracellular Ca/sup 2 +/ regulation.« less
Diagnosis and management of symptomatic seminal vesicle calculi.
Christodoulidou, Michelle; Parnham, Arie; Nigam, Raj
2017-08-01
The aim of this study was to review the management of patients with symptomatic seminal vesicle calculi, from presentation and diagnosis to postoperative outcomes. A systematic review of the English literature in MEDLINE and Embase was performed, based on the following model: patients with a diagnosis of seminal vesicle calculi; all interventions considered with or without control groups with single and comparator interventions; outcomes considered were incidence, presentation, diagnostic methods and treatment. A narrative synthesis of the data was performed according to PRISMA 2009 guidelines. The study protocol was registered on PROSPERO (CRD42016032971). In total, 213 cases of seminal vesicle calculi from 37 studies were identified between 1928 and 2016. Published articles included cohort studies (16), case-control studies (two) and case reports (19). The most likely aetiology was stasis of ejaculate secondary to impaired drainage of secretions from the seminal vesicles. Transrectal ultrasound remains the primary investigation for haematospermia and painful ejaculation; however, magnetic resonance imaging seems to play an increasingly important role, especially when considering surgery. Transurethral seminal vesiculoscopy and lithotripsy is the ideal procedure for small calculi but requires surgical expertise. For larger calculi a transperitoneal laparoscopic approach is safe in the hands of experienced laparoscopic surgeons. Modern imaging techniques and cross-sectional imaging are leading to an increased number of diagnosed cases of seminal vesicle calculi. Optimal treatment depends on the stone size and burden, and centralization of services will assist in the development of specialized centres.
Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina
Van Hook, Matthew J.; Thoreson, Wallace B.
2013-01-01
Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (<100 ms) to cones evoked exocytosis followed by rapid endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726
A novel assay to identify the trafficking proteins that bind to specific vesicle populations
Bentley, Marvin; Banker, Gary
2016-01-01
Here we describe a method capable of identifying interactions between candidate trafficking proteins and a defined vesicle population in intact cells. The assay involves the expression of an FKBP12-rapamycin–binding domain (FRB)–tagged candidate vesicle-binding protein that can be inducibly linked to an FKBP-tagged molecular motor. If the FRB-tagged candidate protein binds the labeled vesicles, then linking the FRB and FKBP domains recruits motors to the vesicles and causes a predictable, highly distinctive change in vesicle trafficking. We describe two versions of the assay: a general protocol for use in cells with a typical microtubule-organizing center and a specialized protocol designed to detect protein-vesicle interactions in cultured neurons. We have successfully used this assay to identify kinesins and Rabs that bind to a variety of different vesicle populations. In principle, this assay could be used to investigate interactions between any category of vesicle trafficking proteins and any vesicle population that can be specifically labeled. PMID:26621371
Understanding crumpling lipid vesicles at the gel phase transition
NASA Astrophysics Data System (ADS)
Hirst, Linda; Ossowski, Adam; Fraser, Matthew
2011-03-01
Wrinkling and crumpling transitions in different membrane types have been studied extensively in recent years both theoretically and computationally. There has also been very interesting recent work on defects in liquid crystalline shells. Lipid bilayer vesicles, widely used in biophysical research can be considered as a single layer smectic shell in the liquid crystalline phase. On cooling the lipid vesicle a transition to the gel phase may take place in which the lipid chains tilt and assume a more ordered packing arrangement. We observe large scale morphological changes in vesicles close to this transition point using fluorescence microscopy and investigate the possible mechanisms for this transition. Confocal microscopy is used to map 3D vesicle shape and crumpling length-scales. We also employ the molecular tilt sensitive dye, Laurdan to investigate the role of tilt domain formation on macroscopic structure. Funded by NSF CAREER award (DMR - BMAT #0852791).
Biller, Steven J; McDaniel, Lauren D; Breitbart, Mya; Rogers, Everett; Paul, John H; Chisholm, Sallie W
2017-01-01
Diverse microbes release membrane-bound extracellular vesicles from their outer surfaces into the surrounding environment. Vesicles are found in numerous habitats including the oceans, where they likely have a variety of functional roles in microbial ecosystems. Extracellular vesicles are known to contain a range of biomolecules including DNA, but the frequency with which DNA is packaged in vesicles is unknown. Here, we examine the quantity and distribution of DNA associated with vesicles released from five different bacteria. The average quantity of double-stranded DNA and size distribution of DNA fragments released within vesicles varies among different taxa. Although some vesicles contain sufficient DNA to be visible following staining with the SYBR fluorescent DNA dyes typically used to enumerate viruses, this represents only a small proportion (<0.01–1%) of vesicles. Thus DNA is packaged heterogeneously within vesicle populations, and it appears that vesicles are likely to be a minor component of SYBR-visible particles in natural sea water compared with viruses. Consistent with this hypothesis, chloroform treatment of coastal and offshore seawater samples reveals that vesicles increase epifluorescence-based particle (viral) counts by less than an order of magnitude and their impact is variable in space and time. PMID:27824343
Abdelkader, Hamdy; Alani, Adam W G; Alany, Raid G
2014-03-01
Non-ionic surfactant vesicles, simply known as niosomes are synthetic vesicles with potential technological applications. Niosomes have the same potential advantages of phospholipid vesicles (liposomes) of being able to accommodate both water soluble and lipid soluble drug molecules control their release and as such serve as versatile drug delivery devices of numerous applications. Additionally, niosomes can be considered as more economically, chemically, and occasionally physically stable alternatives to liposomes. Niosomes can be fabricated using simple methods of preparations and from widely used surfactants in pharmaceutical technology. Many reports have discussed niosomes in terms of physicochemical properties and their applications as drug delivery systems. In this report, a brief and simplified summary of different theories of self-assembly will be given. Furthermore manufacturing methods, physical characterization techniques, bilayer membrane additives, unconventional niosomes (discomes, proniosomes, elastic and polyhedral niosomes), their recent applications as drug delivery systems, limitations and directions for future research will be discussed.
Development of Targeted Nonionic Surfactant Vesicles for Treatment of Vascular Injury
2008-12-01
antibody and containing drug atorvastatin (test substance-low drug concentration) Test (high) 2. Surfactant vesicle coated with antibody and...containing atorvastatin (test substance-high drug concentration) Control (targeted no drug) 3. Surfactant vesicle coated with antibody and containing...buffered saline solution Control (non targeted with drug) 4. Surfactant vesicle without antibody containing atorvastatin Control (free drug
Ji, Chen; Fan, Fan; Lou, Xuelin
2017-08-08
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P 2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence microscopy, we examined individual vesicle-trafficking steps. Unlike long-term PI(4,5)P 2 perturbations, rapid and cell-wide PI(4,5)P 2 reduction in the plasma membrane (PM) strongly inhibits secretion and intracellular Ca 2+ concentration ([Ca 2+ ] i ) responses, but not sytaxin1a clustering. Interestingly, local PI(4,5)P 2 reduction selectively at vesicle docking sites causes remarkable vesicle undocking from the PM without affecting [Ca 2+ ] i . These results highlight a key role of local PI(4,5)P 2 in vesicle tethering and docking, coordinated with its role in priming and fusion. Thus, different spatiotemporal PI(4,5)P 2 signaling regulates distinct steps of vesicle trafficking, and vesicle docking may be a key target of local PI(4,5)P 2 signaling in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Growth and instability of a phospholipid vesicle in a bath of fatty acids
NASA Astrophysics Data System (ADS)
Dervaux, J.; Noireaux, V.; Libchaber, A. J.
2017-06-01
Using a microfluidic trap, we study the behavior of individual phospholipid vesicles in contact with fatty acids. We show that spontaneous fatty acids insertion inside the bilayer is controlled by the vesicle size, osmotic pressure difference across the membrane and fatty acids concentration in the external bath. Depending on these parameters, vesicles can grow spherically or become unstable and fragment into several daughter vesicles. We establish the phase diagram for vesicle growth and we derive a simple thermodynamic model that reproduces the time evolution of the vesicle volume. Finally, we show that stable growth can be achieved on an artificial cell expressing a simple set of bacterial cytoskeletal proteins, paving the way toward artificial cell reproduction.
Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets
Li, Ying C.
2017-01-01
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle—such as exocytosis and endocytosis—require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders. PMID:28265000
Lipid Vesicle Shape Analysis from Populations Using Light Video Microscopy and Computer Vision
Zupanc, Jernej; Drašler, Barbara; Boljte, Sabina; Kralj-Iglič, Veronika; Iglič, Aleš; Erdogmus, Deniz; Drobne, Damjana
2014-01-01
We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1–50 µm in diameter). For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness). This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected. PMID:25426933
Penetration enhancer containing vesicles as carriers for dermal delivery of tretinoin.
Manconi, Maria; Sinico, Chiara; Caddeo, Carla; Vila, Amparo Ofelia; Valenti, Donatella; Fadda, Anna Maria
2011-06-30
The ability of a recently developed novel class of liposomes to promote dermal delivery of tretinoin (TRA) was evaluated. New penetration enhancer-containing vesicles (PEVs) were prepared adding to conventional phosphatidylcholine vesicles (control liposomes) different hydrophilic penetration enhancers: Oramix NS10 (OrNS10), Labrasol (Lab), Transcutol P (Trc), and propylene glycol (PG). Vesicles were characterized by morphology, size distribution, zeta potential, incorporation efficiency, stability, rheological behaviour, and deformability. Small, negatively charged, non-deformable, multilamellar vesicles were obtained. Rheological studies showed that PEVs had fluidity higher than conventional liposomes. The influence of the obtained PEVs on (trans)dermal delivery of tretinoin was studied by ex vivo diffusion experiments through new born pig skin using formulations having the drug both inside and outside the vesicles, having TRA only inside, in comparison with non-incorporated drug dispersions of the same composition used to produce the studied vesicles. Main result of these experiments was an improved cutaneous drug accumulation and a reduced transdermal TRA delivery (except for PG-PEVs). TRA deposition provided by PEVs was higher for dialysed than for non-dialysed vesicles. Further, the accumulation increased in the order: control liposomes
A role for microtubules in sorting endocytic vesicles in rat hepatocytes.
Goltz, J S; Wolkoff, A W; Novikoff, P M; Stockert, R J; Satir, P
1992-01-01
The vectorial nature of hepatocyte receptor-mediated endocytosis (RME) and its susceptibility to cytoskeletal disruptors has suggested that a polarized network of microtubules plays a vital role in directed movement during sorting. Using as markers a well-known ligand, asialoorosomucoid, and its receptor, we have isolated endocytic vesicles that bind directly to and interact with stabilized endogenous hepatocyte microtubules at specific times during a synchronous, experimentally initiated, single wave of RME. Both ligand- and receptor-containing vesicles copelleted with microtubules in the absence of ATP but did not pellet under similar conditions when microtubules were not polymerized. When 5 mM ATP was added to preparations of microtubule-bound vesicles, ligand-containing vesicles were released into the supernatant, while receptor-containing vesicles remained immobilized on the microtubules. Release of ligand-containing vesicles from microtubules was prevented by monensin treatment during the endocytic wave. Several proteins, including the microtubule motor protein cytoplasmic dynein, were present in these preparations and were released from microtubule pellets by ATP addition concomitantly with ligand. These results suggest that receptor domains within the endosome can be immobilized by attachment to microtubules so that, following monensin-sensitive dissociation of ligand from receptor, ligand-containing vesicles can be pulled along microtubules away from the receptor domains by a motor molecule, such as cytoplasmic dynein, thereby delineating sorting. Images PMID:1353884
The effect of spontaneous curvature on a two-phase vesicle
Cox, Geoffrey; Lowengrub, John
2015-01-01
Vesicles are membrane-bound structures commonly known for their roles in cellular transport and the shape of a vesicle is determined by its surrounding membrane (lipid bilayer). When the membrane is composed of different lipids, it is natural for the lipids of similar molecular structure to migrate towards one another (via spinodal decomposition), creating a multi-phase vesicle. In this article, we consider a two-phase vesicle model which is driven by nature’s propensity to maintain a minimal state of elastic energy. The model assumes a continuum limit, thereby treating the membrane as a closed three-dimensional surface. The main purpose of this study is to reveal the complexity of the Helfrich two-phase vesicle model with non-zero spontaneous curvature and provide further evidence to support the relevance of spontaneous curvature as a modelling parameter. In this paper, we illustrate the complexity of the Helfrich two-phase model by providing multiple examples of undocumented solutions and energy hysteresis. We also investigate the influence of spontaneous curvature on morphological effects and membrane phenomena such as budding and fusion. PMID:26097287
Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins.
Flavin, William P; Bousset, Luc; Green, Zachary C; Chu, Yaping; Skarpathiotis, Stratos; Chaney, Michael J; Kordower, Jeffrey H; Melki, Ronald; Campbell, Edward M
2017-10-01
Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from WT or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to induce vesicle rupture was not specific to α-syn, as amyloid assemblies of tau and huntingtin Exon1 with pathologic polyglutamine repeats also exhibited the ability to induce vesicle rupture. We also observe that vesicles ruptured by α-syn are positive for the autophagic marker LC3 and can accumulate and fuse into large, intracellular structures resembling Lewy bodies in vitro. Finally, we show that the same markers of vesicle rupture surround Lewy bodies in brain sections from PD patients. These data underscore the importance of this conserved endocytic vesicle rupture event as a damaging mechanism of cellular invasion by amyloid assemblies of multiple neurodegenerative disease-associated proteins, and suggest that proteinaceous inclusions such as Lewy bodies form as a consequence of continued fusion of autophagic vesicles in cells unable to degrade ruptured vesicles and their amyloid contents.
Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange.
Loi, Pasqualino; Galli, Cesare; Lazzari, Giovanna; Matsukawa, Kazutsugu; Fulka, Josef; Goeritz, Frank; Hildebrandt, Thomas B
2018-04-13
Here we report in vitro and term development of sheep embryos after the inner cell mass (ICM) from one set of sheep blastocysts were injected into the trophoblast vesicles of another set. We also observed successful in vitro development of chimeric blastocysts made from sheep trophoblast vesicles injected with bovine ICM. First, we dissected ICMs from 35 sheep blastocysts using a stainless steel microblade and injected them into 29 re-expanded sheep trophoblastic vesicles. Of the 25 successfully micromanipulated trophoblastic vesicles, 15 (51.7%) re-expanded normally and showed proper ICM integration. The seven most well reconstructed embryos were transferred for development to term. Three ewes receiving manipulated blastocysts were pregnant at day 45 (42.8%), and all delivered normal offspring (singletons, two females and one male, average weight: 3.54 ± 0.358 kg). Next, we monitored in vitro development of sheep trophoblasts injected with bovine ICMs. Of 17 injected trophoblastic vesicles, 10 (58.8%) re-expanded after 4 h in culture, and four (40%) exhibited integrated bovine ICM. Our results indicate that ICM/trophoblast exchange is feasible, allowing full term development with satisfactory lambing rate. Therefore, ICM exchange is a promising approach for endangered species conservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osawa, Sho; Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511; Kurachi, Masashi
We previously reported transplantation of brain microvascular endothelial cells (MVECs) into cerebral white matter infarction model improved the animal's behavioral outcome by increasing the number of oligodendrocyte precursor cells (OPCs). We also revealed extracellular vesicles (EVs) derived from MVECs promoted survival and proliferation of OPCs in vitro. In this study, we investigated the mechanism how EVs derived from MVECs contribute to OPC survival and proliferation. Protein mass spectrometry and enzyme-linked immunosorbent assay revealed fibronectin was abundant on the surface of EVs from MVECs. As fibronectin has been reported to promote OPC survival and proliferation via integrin signaling pathway, we blocked themore » binding between fibronectin and integrins using RGD sequence mimics. Blocking the binding, however, did not attenuate the survival and proliferation promoting effect of EVs on OPCs. Flow cytometric and imaging analyses revealed fibronectin on EVs mediates their internalization into OPCs by its binding to heparan sulfate proteoglycan on OPCs. OPC survival and proliferation promoted by EVs were attenuated by blocking the internalization of EVs into OPCs. These lines of evidence suggest that fibronectin on EVs mediates their internalization into OPCs, and the cargo of EVs promotes survival and proliferation of OPCs, independent of integrin signaling pathway. - Highlights: • Fibronectin exists on the surface of extracellular vesicles from endothelial cells. • Integrin signaling is not involved in effects of extracellular vesicles on OPCs. • Fibronectin on the surface of extracellular vesicles mediates their uptake into OPCs.« less
Characterization, stabilization and activity of uricase loaded in lipid vesicles.
Tan, Q Y; Wang, N; Yang, H; Zhang, L K; Liu, S; Chen, L; Liu, J; Zhang, L; Hu, N N; Zhao, C J; Zhang, J Q
2010-01-15
Uricase-containing lipid vesicles (UOXLVs) were prepared by reverse-phase evaporation method with high efficiency and the characteristics of UOXLVs were described. The average size and zeta potential of UOXLVs obtained by the optimized formulation were 205.47 nm and -37.33 mV, respectively. Uricase was encapsulated in the alkaline aqueous phase of the lipid vesicle and the stability of its tetrameric structure was thus improved and its activity preserved. The storage stability of uricase in lipid vesicles was significantly increased compared to that of free uricase at 4 degrees C in borate buffer of pH 8.5. At 55 degrees C, free uricase was deactivated much more quickly especially at lower concentration predominantly due to enhanced dissociation of uricase into subunits. An intrinsic tryptophan of uricase recovered from the lipid vesicle thermally treated at 55 degrees C revealed that a partially denatured uricase molecule was stabilized through its hydrophobic interaction with lipid vesicle membrane. This interaction was depressed mainly by dissociation of uricase into subunits. At the physiological pH, significant increase of enzyme activity was found for the uricase entrapped in the lipid vesicles (1.8 times that of free uricase) at their respective optimum pH. The shift of optimum pH and increased uricolytic activity suggested the conformation change of the uricase during the entrapment process. The stability to proteolytic digestion was increased obviously by entrapping the uricase in the lipid vesicles. UOXLVs also showed relatively slower loss in activity compared with free uricase when treated with some chemical reagents. Lastly, in vitro study explicitly indicated that the uricase entrapped by UOXLVs possessed higher uricolytic activity than that of native uricase solution.
Shape and Displacement Fluctuations in Soft Vesicles Filled by Active Particles
Paoluzzi, Matteo; Di Leonardo, Roberto; Marchetti, M. Cristina; Angelani, Luca
2016-01-01
We investigate numerically the dynamics of shape and displacement fluctuations of two-dimensional flexible vesicles filled with active particles. At low concentration most of the active particles accumulate at the boundary of the vesicle where positive particle number fluctuations are amplified by trapping, leading to the formation of pinched spots of high density, curvature and pressure. At high concentration the active particles cover the vesicle boundary almost uniformly, resulting in fairly homogeneous pressure and curvature, and nearly circular vesicle shape. The change between polarized and spherical shapes is driven by the number of active particles. The center-of-mass of the vesicle performs a persistent random walk with a long time diffusivity that is strongly enhanced for elongated active particles due to orientational correlations in their direction of propulsive motion. In our model shape-shifting induces directional sensing and the cell spontaneously migrate along the polarization direction. PMID:27678166
Vesicle Fusion Observed by Content Transfer across a Tethered Lipid Bilayer
Rawle, Robert J.; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G.
2011-01-01
Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. PMID:22004762
Huang, Shengbing; Okamoto, Koichi; Yu, Chunrong; Sinicrope, Frank A
2013-11-22
Autophagy and apoptosis regulate cancer cell viability in response to cytotoxic stress; however, their functional relationship remains unclear. p62/sequestosome 1 is a multifunctional protein and a signaling hub that shuttles ubiquitinated proteins to the lysosome during autophagy. Autophagy inhibition up-regulates p62, and prior data suggest that p62 may mediate apoptosis. Here, we demonstrate that p62 can regulate a caspase-8-dependent apoptosis in response to the BH3 mimetic agent, ABT-263. Up-regulation of p62 was shown to enhance ABT-263-induced caspase-8 activation that was Bax-dependent and resulted from mitochondrial amplification. Dependence upon caspase-8 was confirmed using caspase-8-deficient cells and by caspase-8 siRNA. Ectopic wild-type p62, but not p62 mutants with loss of ability to promote apoptosis, was shown to co-localize with caspase-8 and to promote its self-aggregation in ABT-263-treated cells, shown using a bimolecular fluorescence complementation assay. Endogenous p62 co-localized with caspase-8 in the presence of ABT-263 plus an autophagy inhibitor. Caspase-8 was shown to interact and co-localize with the autophagosome marker, LC3II. Knockdown of p62 attenuated binding between caspase-8 and LC3II, whereas p62 overexpression enhanced the co-localization of caspase-8 aggregates with LC3. LC3 knockdown did not affect interaction between caspase-8 and p62, suggesting that p62 may facilitate caspase-8 translocation to the autophagosomal membrane. A direct activator of caspase-8, i.e., TRAIL, alone or combined with ABT-263, induced caspase-8 aggregation and co-localization with p62 that was associated with a synergistic drug interaction. Together, these results demonstrate that up-regulation of p62 can mediate apoptosis via caspase-8 in the setting of autophagy inhibition.
Huang, Shengbing; Okamoto, Koichi; Yu, Chunrong; Sinicrope, Frank A.
2013-01-01
Autophagy and apoptosis regulate cancer cell viability in response to cytotoxic stress; however, their functional relationship remains unclear. p62/sequestosome 1 is a multifunctional protein and a signaling hub that shuttles ubiquitinated proteins to the lysosome during autophagy. Autophagy inhibition up-regulates p62, and prior data suggest that p62 may mediate apoptosis. Here, we demonstrate that p62 can regulate a caspase-8-dependent apoptosis in response to the BH3 mimetic agent, ABT-263. Up-regulation of p62 was shown to enhance ABT-263-induced caspase-8 activation that was Bax-dependent and resulted from mitochondrial amplification. Dependence upon caspase-8 was confirmed using caspase-8-deficient cells and by caspase-8 siRNA. Ectopic wild-type p62, but not p62 mutants with loss of ability to promote apoptosis, was shown to co-localize with caspase-8 and to promote its self-aggregation in ABT-263-treated cells, shown using a bimolecular fluorescence complementation assay. Endogenous p62 co-localized with caspase-8 in the presence of ABT-263 plus an autophagy inhibitor. Caspase-8 was shown to interact and co-localize with the autophagosome marker, LC3II. Knockdown of p62 attenuated binding between caspase-8 and LC3II, whereas p62 overexpression enhanced the co-localization of caspase-8 aggregates with LC3. LC3 knockdown did not affect interaction between caspase-8 and p62, suggesting that p62 may facilitate caspase-8 translocation to the autophagosomal membrane. A direct activator of caspase-8, i.e., TRAIL, alone or combined with ABT-263, induced caspase-8 aggregation and co-localization with p62 that was associated with a synergistic drug interaction. Together, these results demonstrate that up-regulation of p62 can mediate apoptosis via caspase-8 in the setting of autophagy inhibition. PMID:24121507
Viscoelastic deformation of lipid bilayer vesicles.
Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah
2015-10-07
Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.
Kinetics of phloretin binding to phosphatidylcholine vesicle membranes
1980-01-01
The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812
Duke, Elizabeth M.H.; Razi, Minoo; Weston, Anne; Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Tooze, Sharon A.; Collinson, Lucy M.
2014-01-01
Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. PMID:24238600
A role for autophagy in long-term spatial memory formation in male rodents.
Hylin, Michael J; Zhao, Jing; Tangavelou, Karthikeyan; Rozas, Natalia S; Hood, Kimberly N; MacGowan, Jacalyn S; Moore, Anthony N; Dash, Pramod K
2018-03-01
A hallmark of long-term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long-term memory formation without influencing short-term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long-term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc-51-like autophagy activating kinase-1 (Ulk-1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long-term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long-term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP-LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3-methyladenine (3-MA) or Spautin-1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT-Beclin-1) improved long-term memory. These results indicate that autophagy is not necessary for learning, but is required for long-term memory formation. © 2017 Wiley Periodicals, Inc.
Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L.; Casadevall, Arturo
2014-01-01
Summary Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harboring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. PMID:24826903
Polymer Vesicle Sensor for Visual and Sensitive Detection of SO2 in Water.
Huang, Tong; Hou, Zhilin; Xu, Qingsong; Huang, Lei; Li, Chuanlong; Zhou, Yongfeng
2017-01-10
This study reports the first polymer vesicle sensor for the visual detection of SO 2 and its derivatives in water. A strong binding ability between tertiary alkanolamines and SO 2 has been used as the driving force for the detection by the graft of tertiary amine alcohol (TAA) groups onto an amphiphilic hyperbranched multiarm polymer, which can self-assemble into vesicles with enriched TAA groups on the surface. The polymer vesicles will undergo proton exchange with cresol red (CR) to produce CR-immobilized vesicles (CR@vesicles). Subsequently, through competitive binding with the TAA groups between CR and SO 2 or HSO 3 - , the CR@vesicles (purple) can quickly change into SO 2 @vesicles (colorless) with the release of protonated CR (yellow). Such a fast purple to yellow transition in the solution allows the visual detection of SO 2 or its derivatives in water by the naked eye. A visual test paper for SO 2 gas has also been demonstrated by the adsorption of CR@vesicles onto paper. Meanwhile, the detection limit of CR@vesicles for HSO 3 - is approximately 25 nM, which is improved by approximately 30 times when compared with that of small molecule-based sensors with a similar structure (0.83 μM). Such an enhanced detection sensitivity should be related to the enrichment of TAA groups as well as the CR in CR@vesicles. In addition, the CR@vesicle sensors also show selectivity and specificity for the detection of SO 2 or HSO 3 - among anions such as F - , Br - , Cl - , SO 4 2- , NO 2 - , C 2 O 4 2- , S 2 O 3 2- , SCN - , AcO - , SO 3 2- , S 2- , and HCO 3 - .
Exosomes and other extracellular vesicles in host–pathogen interactions
Schorey, Jeffrey S; Cheng, Yong; Singh, Prachi P; Smith, Victoria L
2015-01-01
An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes—which are extracellular vesicles that function in intercellular communication—may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity. PMID:25488940
Packing of flexible 2D materials in vesicles
NASA Astrophysics Data System (ADS)
Zou, Guijin; Yi, Xin; Zhu, Wenpeng; Gao, Huajian
2018-06-01
To understand the mechanics of cellular packing of two-dimensional (2D) materials, we perform systematic molecular dynamics simulations and theoretical analysis to investigate the packing of a flexible circular sheet in a spherical vesicle and the 2D packing problem of a strip in a cylindrical vesicle. Depending on the system dimensions and the bending rigidity ratio between the confined sheet and the vesicle membrane, a variety of packing morphologies are observed, including a conical shape, a shape of three-fold symmetry, a cylindrically curved shape, an axisymmetrically buckled shape, as well as the initial circular shape. A set of buckling analyses lead to phase diagrams of the packing morphologies of the encapsulated sheets. These results may have important implications on the mechanism of intracellular packing and toxicity of 2D materials.
Dynamic light scattering study on vesicles of Netaine-Cholesterol system
NASA Astrophysics Data System (ADS)
Alenaizi, R.; Radiman, S.; Mohamed, F.; Rahman, I. Abdul
2014-09-01
The morphology of vesicles system with defined particle size and shape is one of interest in our technical applications. Here we have used dynamic light scattering technique and transmission electron microscopy for structural characterization of N-dimethylglycine Betaine with 5-cholesten-3β-ol vesicles in aqueous solutions. An isotropic one phase region is found in the very diluted regions depending on Betaine/Cholesterol ratio. The isotropic region was stable for more than 3 months at room temperature, with monodispersed unilamellar vesicles ˜ 300nm.
Analytical progress in the theory of vesicles under linear flow
NASA Astrophysics Data System (ADS)
Farutin, Alexander; Biben, Thierry; Misbah, Chaouqi
2010-06-01
Vesicles are becoming a quite popular model for the study of red blood cells. This is a free boundary problem which is rather difficult to handle theoretically. Quantitative computational approaches constitute also a challenge. In addition, with numerical studies, it is not easy to scan within a reasonable time the whole parameter space. Therefore, having quantitative analytical results is an essential advance that provides deeper understanding of observed features and can be used to accompany and possibly guide further numerical development. In this paper, shape evolution equations for a vesicle in a shear flow are derived analytically with precision being cubic (which is quadratic in previous theories) with regard to the deformation of the vesicle relative to a spherical shape. The phase diagram distinguishing regions of parameters where different types of motion (tank treading, tumbling, and vacillating breathing) are manifested is presented. This theory reveals unsuspected features: including higher order terms and harmonics (even if they are not directly excited by the shear flow) is necessary, whatever the shape is close to a sphere. Not only does this theory cure a quite large quantitative discrepancy between previous theories and recent experiments and numerical studies, but also it reveals a phenomenon: the VB mode band in parameter space, which is believed to saturate after a moderate shear rate, exhibits a striking widening beyond a critical shear rate. The widening results from excitation of fourth-order harmonic. The obtained phase diagram is in a remarkably good agreement with recent three-dimensional numerical simulations based on the boundary integral formulation. Comparison of our results with experiments is systematically made.
Conductive choline transport by alveolar epithelial plasma membrane vesicles.
Oelberg, D G; Xu, F
1998-11-01
Choline is an important substrate in alveolar epithelia for both surfactant production and cellular maintenance. The underlying mechanisms of uptake and sites of membrane transport remain uncertain. To test the hypothesis that choline transport occurs at the basolateral side of alveolar epithelia by both Na+-independent and -dependent mechanisms, plasma membrane vesicles were prepared from the apical and basolateral membranes of mature porcine type II pneumocytes. Choline+ transport was assayed by uptake of [3H]choline+ by enriched apical or basolateral vesicles. In the presence of imposed, inside-negative charge gradients, basolateral vesicles exhibited early overshoot of [3H]choline+ uptake unaffected by the presence or absence of external Na+ (541 +/- 53 vs 564 +/- 79 pmol/mg protein (NS)). High sensitivity to hemicholinium-3 was observed in the presence or absence of Na+. In the absence of inside-negative charge gradients, uptake was reduced 12-fold in the presence or absence of Na+, and external choline+ induced internal alkalization of acidified basolateral vesicles. Accumulative [3H]choline+ uptakes by apical vesicles in the presence or absence of inside-negative charge gradients and Na+ were insignificant. We conclude that predominant choline+ uptake by type II pneumocytes occurs at the basolateral membrane by Na+-independent, electrogenic choline+ conductance. The presence of electroneutral choline+/H+ exchange is suggested. Copyright 1998 Academic Press.
Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae.
Gómez-Sánchez, R; Sánchez-Wandelmer, J; Reggiori, F
2017-01-01
The budding yeast Saccharomyces cerevisiae is a powerful and versatile model organism for studying multiple aspects of the biology of eukaryotic cells, including the molecular principles underlying autophagy. One of the unique advantages of this unicellular system is its amenability to genetic and biochemical approaches, which had a pivotal role in the discovery and characterization of most of the autophagy-related (Atg) proteins, the central players of autophagy. The relevance of investigating autophagy in this cell model lies in the high conservation of this pathway among eukaryotes, i.e., most of the yeast Atg proteins possess one or more mammalian orthologs. In addition to the experimental advantages, a very large collection of reagents keeps S. cerevisiae in a leading position for the study of the molecular mechanism and regulation of autophagy. In this chapter, we describe fluorescence microscopy and biochemical methods that allow to monitor in vivo the assembly the of Atg machinery, a key step of autophagy. These approaches can be very useful to those researchers that would like to assess the progression of the autophagosomal precursor structure formation under various conditions, in the presence of specific Atg protein mutants or in the absence of other factors. © 2017 Elsevier Inc. All rights reserved.
Secin, Fernando P; Bianco, Fernando J; Cronin, Angel; Eastham, James A; Scardino, Peter T; Guillonneau, Bertrand; Vickers, Andrew J
2009-02-01
A publication on behalf of the European Society of Urological Oncology questioned the need for removing the seminal vesicles during radical prostatectomy in patients with prostate specific antigen less than 10 ng/ml except when biopsy Gleason score is greater than 6 or there are greater than 50% positive biopsy cores. We applied the European Society of Urological Oncology algorithm to an independent data set to determine its predictive value. Data on 1,406 men who underwent radical prostatectomy and seminal vesicle removal between 1998 and 2004 were analyzed. Patients with and without seminal vesicle invasion were classified as positive or negative according to the European Society of Urological Oncology algorithm. Of 90 cases with seminal vesicle invasion 81 (6.4%) were positive for 90% sensitivity, while 656 of 1,316 without seminal vesicle invasion were negative for 50% specificity. The negative predictive value was 98.6%. In decision analytic terms if the loss in health when seminal vesicles are invaded and not completely removed is considered at least 75 times greater than when removing them unnecessarily, the algorithm proposed by the European Society of Urological Oncology should not be used. Whether to use the European Society of Urological Oncology algorithm depends not only on its accuracy, but also on the relative clinical consequences of false-positive and false-negative results. Our threshold of 75 is an intermediate value that is difficult to interpret, given uncertainties about the benefit of seminal vesicle sparing and harm associated with untreated seminal vesicle invasion. We recommend more formal decision analysis to determine the clinical value of the European Society of Urological Oncology algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matos Baltazar, Ludmila; Nakayasu, Ernesto S.; Sobreira, Tiago J. P.
ABSTRACT Histoplasma capsulatumproduces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment ofH. capsulatumcells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bindH. capsulatumheat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. Wemore » identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCEDiverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However
Method for loading lipid like vesicles with drugs of other chemicals
Mehlhorn, R.J.
1998-06-09
A method for accumulating drugs or other chemicals within synthetic, lipid-like vesicles by means of a pH gradient imposed on the vesicles just prior to use is described. The method is suited for accumulating molecules with basic or acid moieties which are permeable to the vesicles membranes in their uncharged form and for molecules that contain charge moieties that are hydrophobic ions and can therefore cross the vesicle membranes in their charged form. The method is advantageous over prior art methods for encapsulating biologically active materials within vesicles in that is achieves very high degrees of loading with simple procedures that are economical and require little technical expertise, furthermore kits which can be stored for prolonged periods prior to use without impairment of the capacity to achieve drug accumulation are described. A related application of the method consists of using this technology to detoxify animals that have been exposed to poisons with basic, weak acid or hydrophobic charge groups within their molecular structures. 2 figs.
Method for loading lipid like vesicles with drugs of other chemicals
Mehlhorn, Rolf Joachim
1998-01-01
A method for accumulating drugs or other chemicals within synthetic, lipid-like vesicles by means of a pH gradient imposed on the vesicles just prior to use is described. The method is suited for accumulating molecules with basic or acid moieties which are permeable to the vesicles membranes in their uncharged form and for molecules that contain charge moieties that are hydrophobic ions and can therefore cross the vesicle membranes in their charged form. The method is advantageous over prior art methods for encapsulating biologically active materials within vesicles in that is achieves very high degrees of loading with simple procedures that are economical and require little technical expertise, furthermore kits which can be stored for prolonged periods prior to use without impairment of the capacity to achieve drug accumulation are described. A related application of the method consists of using this technology to detoxify animals that have been exposed to poisons with basic, weak acid or hydrophobic charge groups within their molecular structures.
Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity
Farsi, Zohreh; Rammner, Burkhard; Woehler, Andrew; Lafer, Eileen M; Mim, Carsten; Jahn, Reinhard
2018-01-01
Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling. PMID:29652249
Quantal basis of vesicle growth and information content, a unified approach.
Nitzany, Eyal; Hammel, Ilan; Meilijson, Isaac
2010-09-07
Secretory vesicles express a periodic multimodal size distribution. The successive modes are integral multiples of the smallest mode (G(1)). The vesicle content ranges from macromolecules (proteins, mucopolysaccharides and hormones) to low molecular weight molecules (neurotransmitters). A steady-state model has been developed to emulate a mechanism for the introduction of vesicles of monomer size, which grow by a unit addition mechanism, G(1)+G(n)-->G(n+1) which, at a later stage are eliminated from the system. We describe a model of growth and elimination transition rates which adequately illustrates the distributions of vesicle population size at steady-state and upon elimination. Consequently, prediction of normal behavior and pathological perturbations is feasible. Careful analysis of spontaneous secretion, as compared to short burst-induced secretion, suggests that the basic character-code for reliable communication should be within a range of only 8-10 vesicles' burst which may serve as a yes/no message. Copyright 2010 Elsevier Ltd. All rights reserved.
Monitoring Extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry.
Ofir-Birin, Yifat; Abou Karam, Paula; Rudik, Ariel; Giladi, Tal; Porat, Ziv; Regev-Rudzki, Neta
2018-01-01
Extracellular vesicles are essential for long distance cell-cell communication. They function as carriers of different compounds, including proteins, lipids and nucleic acids. Pathogens, like malaria parasites ( Plasmodium falciparum, Pf ), excel in employing vesicle release to mediate cell communication in diverse processes, particularly in manipulating the host response. Establishing research tools to study the interface between pathogen-derived vesicles and their host recipient cells will greatly benefit the scientific community. Here, we present an imaging flow cytometry (IFC) method for monitoring the uptake of malaria-derived vesicles by host immune cells. By staining different cargo components, we were able to directly track the cargo's internalization over time and measure the kinetics of its delivery. Impressively, we demonstrate that this method can be used to specifically monitor the translocation of a specific protein within the cellular milieu upon internalization of parasitic cargo; namely, we were able to visually observe how uptaken parasitic Pf -DNA cargo leads to translocation of transcription factor IRF3 from the cytosol to the nucleus within the recipient immune cell. Our findings demonstrate that our method can be used to study cellular dynamics upon vesicle uptake in different host-pathogen and pathogen-pathogen systems.
Endothelial cell membrane vesicles in the study of organ preference of metastasis.
Johnson, R C; Augustin-Voss, H G; Zhu, D Z; Pauli, B U
1991-01-01
Many malignancies exhibit distinct patterns of metastasis that appear to be mediated by receptor/ligand-like interactions between tumor cells and organ-specific vascular endothelium. In order to study endothelial cell surface molecules involved in the binding of metastatic cells, we developed a perfusion method to isolate outside-out membrane vesicles from the lumenal surface of rat lung microvascular endothelium. Lungs were perfused in situ for 4 h at 37 degrees C with a solution of 100 mM formaldehyde, 2 mM dithiothreitol in phosphate-buffered saline to induce endothelial cell vesiculation. Radioiodinated rat lung endothelial cell membrane vesicles bound lung-metastatic tumor cells (B16F10, R323OAC-MET) in significantly higher numbers than their low or nonmetastatic counterparts (B16F0, R323OAC-LR). In contrast, leg endothelial membrane vesicle showed no binding preference for either cell line. Neuraminidase treatment of vesicles abolished specificity of adhesion of lung-derived vesicles to lung metastatic tumor cells. These results demonstrate that in situ perfusion is an appropriate technique to obtain pure endothelial cell membrane vesicles containing functionally active adhesion molecules. The preferential binding of lung-derived endothelial cell membrane vesicles by lung metastatic tumor cells is evidence of the importance of endothelial cell adhesion molecules in the formation of metastases.
Vesicle sizing by static light scattering: a Fourier cosine transform approach
NASA Astrophysics Data System (ADS)
Wang, Jianhong; Hallett, F. Ross
1995-08-01
A Fourier cosine transform method, based on the Rayleigh-Gans-Debye thin-shell approximation, was developed to retrieve vesicle size distribution directly from the angular dependence of scattered light intensity. Its feasibility for real vesicles was partially tested on scattering data generated by the exact Mie solutions for isotropic vesicles. The noise tolerance of the method in recovering unimodal and biomodal distributions was studied with the simulated data. Applicability of this approach to vesicles with weak anisotropy was examined using Mie theory for anisotropic hollow spheres. A primitive theory about the first four moments of the radius distribution about the origin, excluding the mean radius, was obtained as an alternative to the direct retrieval of size distributions.
Vesicle fusion observed by content transfer across a tethered lipid bilayer.
Rawle, Robert J; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G
2011-10-19
Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Phase diagram of single vesicle dynamical states in shear flow.
Deschamps, J; Kantsler, V; Steinberg, V
2009-03-20
We report the first experimental phase diagram of vesicle dynamical states in a shear flow presented in a space of two dimensionless parameters suggested recently by V. Lebedev et al. To reduce errors in the control parameters, 3D geometrical reconstruction and determination of the viscosity contrast of a vesicle in situ in a plane Couette flow device prior to the experiment are developed. Our results are in accord with the theory predicting three distinctly separating regions of vesicle dynamical states in the plane of just two self-similar parameters.
Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.
Noguchi, Hiroshi
2013-01-14
Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation.
PI(4,5)P2-binding effector proteins for vesicle exocytosis
Martin, Thomas F. J.
2014-01-01
PI(4,5)P2 participates directly in priming and possibly fusion steps of Ca2+-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P2 reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P2 domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P2 directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P2-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P2 effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P2, which promotes clustering, but an activating role for PI(4,5)P2 in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P2-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P2-binding proteins. PMID:25280637
Three-dimensional visualization of coated vesicle formation in fibroblasts
1980-01-01
Fibroblasts apparently ingest low density lipoproteins (LDL) by a selective mechanism of receptor-mediated endocytosis involving the formation of coated vesicles from the plasma membrane. However, it is not known exactly how coated vesicles collect LDL receptors and pinch off from the plasma membrane. In this report, the quick-freeze, deep- etch, rotary-replication method has been applied to fibroblasts; it displays with unusual clarity the coats that appear under the plasma membrane at the start of receptor-mediated endocytosis. These coats appear to be polygonal networks of 7-nm strands or struts arranged into 30-nm polygons, most of which are hexagons but some of which are 5- and 7-sided rings. The proportion of pentagons in each network increases as the coated area of the plasma membrane puckers up from its planar configuration (where the network is mostly hexagons) to its most sharply curved condition as a pinched-off coated vesicle. Coats around the smallest vesicles (which are icosahedrons of hexagons and pentagons) appear only slightly different from "empty coats" purified from homogenized brain, which are less symmetrical baskets containing more pentagons than hexagons. A search for structural intermediates in this coat transformation allows a test of T. Kanaseki and K. Kadota's (1969. J. Cell Biol. 42:202--220.) original idea that an internal rearrangement in this basketwork from hexagons to pentagons could "power" coated vesicle formation. The most noteworthy variations in the typical hexagonal honeycomb are focal juxtapositions of 5- and 7-sided polygons at points of partial contraction and curvature in the basketwork. These appear to precede complete contraction into individual pentagons completely surrounded by hexagons, which is the pattern that characterizes the final spherical baskets around coated vesicles. PMID:6987244
Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons.
Li, Lin; Wu, Xiaomei; Yue, Hai-Yuan; Zhu, Yong-Chuan; Xu, Jianhua
2016-07-01
At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as
Annexin A1 Complex Mediates Oxytocin Vesicle Transport
Makani, Vishruti; Sultana, Rukhsana; Sie, Khin Sander; Orjiako, Doris; Tatangelo, Marco; Dowling, Abigail; Cai, Jian; Pierce, William; Butterfield, D. Allan; Hill, Jennifer; Park, Joshua
2013-01-01
Oxytocin is a major neuropeptide that modulates the brain functions involved in social behavior and interaction. Despite of the importance of oxytocin for neural control of social behavior, little is known about the molecular mechanism(s) by which oxytocin secretion in the brain is regulated. Pro-oxytocin is synthesized in the cell bodies of hypothalamic neurons in the supraoptic and paraventricular nuclei and processed to a 9-amino-acid mature form during post-Golgi transport to the secretion sites at the axon terminals and somatodendritic regions. Oxytocin secreted from the somatodendritic regions diffuses throughout the hypothalamus and its neighboring brain regions. Some oxytocin-positive axons innervate and secrete oxytocin to the brain regions distal to the hypothalamus. Brain oxytocin binds to its receptors in the brain regions involved in social behavior. Oxytocin is also secreted from the axon terminal at the posterior pituitary gland into the blood circulation. We have discovered a new molecular complex consisting of annexin A1 (ANXA1), A-kinase anchor protein 150 (AKAP150), and microtubule motor, that controls the distribution of oxytocin vesicles between the axon and the cell body in a protein kinase A (PKA)- and protein kinase C (PKC)-sensitive manner. ANXA1 showed significant co-localization with oxytocin vesicles. Activation of PKA enhanced the association of kinesin-2 with ANXA1, thus increasing the axon-localization of oxytocin vesicles. Conversely, activation of PKC decreased the binding of kinesin-2 to ANXA1, thus attenuating the axon-localization of oxytocin vesicles. Our study suggests that ANXA1 complex coordinates the actions of PKA and PKC to control the distribution of oxytocin vesicles between the axon and the cell body. PMID:24118254
Synaptic-like vesicles and candidate transduction channels in mechanosensory terminals
Bewick, Guy S
2015-01-01
This article summarises progress to date over an exciting and very enjoyable first 15 years of collaboration with Bob Banks. Our collaboration began when I contacted him with (to me) an unexpected observation that a dye used to mark recycling synaptic vesicle membrane at efferent terminals also labelled muscle spindle afferent terminals. This observation led to the re-discovery of a system of small clear vesicles present in all vertebrate primary mechanosensory nerve terminals. These synaptic-like vesicles (SLVs) have been, and continue to be, the major focus of our work. This article describes our characterisation of the properties and functional significance of these SLVs, combining our complementary skills: Bob’s technical expertise and encyclopaedic knowledge of mechanosensation with my experience of synaptic vesicles and the development of the styryl pyridinium dyes, of which the most widely used is FM1-43. On the way we have found that SLVs seem to be part of a constitutive glutamate secretory system necessary to maintain the stretch-sensitivity of spindle endings. The glutamate activates a highly unusual glutamate receptor linked to phospholipase D activation, which we have termed the PLD-mGluR. It has a totally distinct pharmacology first described in the hippocampus nearly 20 years ago but, like the SLVs that were first described over 50 years ago, has since been little researched. Yet, our evidence and literature searches suggest this glutamate/SLV/PLD-mGluR system is a ubiquitous feature of mechanosensory endings and, at least for spindles, is essential for maintaining mechanosensory function. This article summarises how this system integrates with the classical model of mechanosensitive channels in spindles and other mechanosensory nerve terminals, including hair follicle afferents and baroreceptors controlling blood pressure. Finally, in this time when there is an imperative to show translational relevance, I describe how this fascinating system
Shear-stress sensitive lenticular vesicles for targeted drug delivery.
Holme, Margaret N; Fedotenko, Illya A; Abegg, Daniel; Althaus, Jasmin; Babel, Lucille; Favarger, France; Reiter, Renate; Tanasescu, Radu; Zaffalon, Pierre-Léonard; Ziegler, André; Müller, Bert; Saxer, Till; Zumbuehl, Andreas
2012-08-01
Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.
Shear-stress sensitive lenticular vesicles for targeted drug delivery
NASA Astrophysics Data System (ADS)
Holme, Margaret N.; Fedotenko, Illya A.; Abegg, Daniel; Althaus, Jasmin; Babel, Lucille; Favarger, France; Reiter, Renate; Tanasescu, Radu; Zaffalon, Pierre-Léonard; Ziegler, André; Müller, Bert; Saxer, Till; Zumbuehl, Andreas
2012-08-01
Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.
Rodriguez, April R; Choe, Uh-Joo; Kamei, Daniel T; Deming, Timothy J
2015-01-01
We prepared dual hydrophilic triblock copolypeptide vesicles that form both micron and nanometer scale vesicles in aqueous media. The incorporation of terminal homoarginine segments into methionine sulfoxide-based vesicles was found to significantly enhance their cellular uptake compared to a non-ionic control. We also demonstrated that diblock and triblock copolypeptides with similar hydrophobic domains were found to mix well and form vesicle populations with uniform compositions. Blending of amphiphiles in vesicle nanocarriers was found to impart these materials with many advantageous properties, including good cellular uptake while maintaining minimal toxicity, as well as biological responsiveness to promote vesicle disruption and release of encapsulated cargos. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pick, Joseph E; Khatri, Latika; Sathler, Matheus F; Ziff, Edward B
2017-01-17
mGluR long-term depression (mGluR-LTD) is a form of synaptic plasticity induced at excitatory synapses by metabotropic glutamate receptors (mGluRs). mGluR-LTD reduces synaptic strength and is relevant to learning and memory, autism, and sensitization to cocaine; however, the mechanism is not known. Here we show that activation of Group I mGluRs in medium spiny neurons induces trafficking of GluA2 from the endoplasmic reticulum (ER) to the synapse by enhancing GluA2 binding to essential COPII vesicle proteins, Sec23 and Sec13. GluA2 exit from the ER further depends on IP3 and Ryanodine receptor-controlled Ca 2+ release as well as active translation. Synaptic insertion of GluA2 is coupled to removal of high-conducting Ca 2+ -permeable AMPA receptors from synapses, resulting in synaptic depression. This work demonstrates a novel mechanism in which mGluR signals release AMPA receptors rapidly from the ER and couple ER release to GluA2 synaptic insertion and GluA1 removal. © 2016 The Authors.
Dobson, Katharine L.; Jackson, Claire; Balakrishnan, Saju; Bellamy, Tomas C.
2015-01-01
Background Cerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites—a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission. Methods Whole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20) Wistar rats. Key Results Caffeine caused complex changes in transmission at both synaptic and ectopic sites. The amplitude of postsynaptic currents in Purkinje neurons and extrasynaptic currents in Bergmann glia were increased 2-fold and 4-fold respectively, but paired pulse ratio was substantially reduced, reversing the short-term facilitation observed under control conditions. Caffeine treatment also caused synaptic sites to depress during 1 Hz stimulation, consistent with inhibition of the usual mechanisms for replenishing vesicles at the active zone. Unexpectedly, pharmacological intervention at known targets for caffeine—intracellular calcium release, and cAMP signalling—had no impact on these effects. Conclusions We conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections. PMID:25933382
Dahl, Joanna B; Narsimhan, Vivek; Gouveia, Bernardo; Kumar, Sanjay; Shaqfeh, Eric S G; Muller, Susan J
2016-04-20
Vesicles provide an attractive model system to understand the deformation of living cells in response to mechanical forces. These simple, enclosed lipid bilayer membranes are suitable for complementary theoretical, numerical, and experimental analysis. A recent study [Narsimhan, Spann, Shaqfeh, J. Fluid Mech., 2014, 750, 144] predicted that intermediate-aspect-ratio vesicles extend asymmetrically in extensional flow. Upon infinitesimal perturbation to the vesicle shape, the vesicle stretches into an asymmetric dumbbell with a cylindrical thread separating the two ends. While the symmetric stretching of high-aspect-ratio vesicles in extensional flow has been observed and characterized [Kantsler, Segre, Steinberg, Phys. Rev. Lett., 2008, 101, 048101] as well as recapitulated in numerical simulations by Narsimhan et al., experimental observation of the asymmetric stretching has not been reported. In this work, we present results from microfluidic cross-slot experiments observing this instability, along with careful characterization of the flow field, vesicle shape, and vesicle bending modulus. The onset of this shape transition depends on two non-dimensional parameters: reduced volume (a measure of vesicle asphericity) and capillary number (ratio of viscous to bending forces). We observed that every intermediate-reduced-volume vesicle that extends forms a dumbbell shape that is indeed asymmetric. For the subset of the intermediate-reduced-volume regime we could capture experimentally, we present an experimental phase diagram for asymmetric vesicle stretching that is consistent with the predictions of Narsimhan et al.
1985-01-01
Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the
Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange
LOI, Pasqualino; GALLI, Cesare; LAZZARI, Giovanna; MATSUKAWA, Kazutsugu; FULKA, Josef; GOERITZ, Frank; HILDEBRANDT, Thomas B.
2018-01-01
Here we report in vitro and term development of sheep embryos after the inner cell mass (ICM) from one set of sheep blastocysts were injected into the trophoblast vesicles of another set. We also observed successful in vitro development of chimeric blastocysts made from sheep trophoblast vesicles injected with bovine ICM. First, we dissected ICMs from 35 sheep blastocysts using a stainless steel microblade and injected them into 29 re-expanded sheep trophoblastic vesicles. Of the 25 successfully micromanipulated trophoblastic vesicles, 15 (51.7%) re-expanded normally and showed proper ICM integration. The seven most well reconstructed embryos were transferred for development to term. Three ewes receiving manipulated blastocysts were pregnant at day 45 (42.8%), and all delivered normal offspring (singletons, two females and one male, average weight: 3.54 ± 0.358 kg). Next, we monitored in vitro development of sheep trophoblasts injected with bovine ICMs. Of 17 injected trophoblastic vesicles, 10 (58.8%) re-expanded after 4 h in culture, and four (40%) exhibited integrated bovine ICM. Our results indicate that ICM/trophoblast exchange is feasible, allowing full term development with satisfactory lambing rate. Therefore, ICM exchange is a promising approach for endangered species conservation. PMID:29445070
Energy transduction inside vesicles, photocatalysis by titanium dioxide and formation of NADH
NASA Astrophysics Data System (ADS)
Summers, David; Noveron, Juan; Rodoni, David; Basa, Ranor
A number of theories on the origin and early evolution of life have focused on the role of lipid bilayer membrane structures (vesicles). These vesicles are similar to modern cellular membranes , and have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth to provide compartments for early cellular life. They can contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy to drive metabolism (ie. energy transduction) is also one of the central issues in our attempts to understand the origin and evolution of life. When did energy transduction and photosynthesis begin? What was the original system for capturing photochemical energy? How simple can such a system be? It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has been shown that pH gradients can be photo-chemically created, but it has been found difficult to couple these to drive chemical reactions. Minerals can introduce a number of properties to a vesicle system. The incorporation of clay particles into vesicles can provide catalytic activity that mediates both vesicle assembly and RNA oligomerization. It is known that colloidal semiconducting mineral particles can act as photocatalysts and drive redox chemistry. We show that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry and represent a model system for early photosynthesis. TiO2 particles can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to be able concentrate species inside a vesicle. It is shown that these can be used to produce biochemical species such as enzymatically active NADH in such structures. This system demonstrates a simple energy source inside vesicles
Harnessing extracellular vesicles to direct endochondral repair of large bone defects
Ferreira, E.
2018-01-01
Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation. Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006. PMID:29922444
Models for randomly distributed nanoscopic domains on spherical vesicles
NASA Astrophysics Data System (ADS)
Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John
2018-06-01
The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.
Vesicle solubilization by bile salts: comparison of macroscopic theory and simulation.
Haustein, M; Wahab, M; Mögel, H-J; Schiller, P
2015-04-14
Lipid metabolism is accompanied by the solubilization of lipid bilayer membranes by bile salts. We use Brownian dynamics simulations to study the solubilization of model membranes and vesicles by sodium cholate. The solubilization pathways of small and large vesicles are found to be different. Both results for small and large vesicles can be compared with predictions of a macroscopic theoretical description. The line tension of bilayer edges is an important parameter in the solubilization process. We propose a simple method to determine the line tension by analyzing the shape fluctuations of planar membrane patches. Macroscopic mechanical models provide a reasonable explanation for processes observed when a spherical vesicle consisting of lipids and adsorbed bile salt molecules is transformed into mixed lipid-bile salt micelles.
Visualizing the effect of dynamin inhibition on annular gap vesicle formation and fission
Nickel, Beth; Boller, Marie; Schneider, Kimberly; Shakespeare, Teresa; Gay, Vernon; Murray, Sandra A.
2013-01-01
Summary Although gap junction plaque assembly has been extensively studied, mechanisms involved in plaque disassembly are not well understood. Disassembly involves an internalization process in which annular gap junction vesicles are formed. These vesicles undergo fission, but the molecular machinery needed for these fissions has not been described. The mechanoenzyme dynamin has been previously demonstrated to play a role in gap junction plaque internalization. To investigate the role of dynamin in annular gap junction vesicle fission, immunocytochemical, time-lapse and transmission electron microscopy were used to analyze SW-13 adrenocortical cells in culture. Dynamin was demonstrated to colocalize with gap junction plaques and vesicles. Dynamin inhibition, by siRNA knockdown or treatment with the dynamin GTPase inhibitor dynasore, increased the number and size of gap junction ‘buds’ suspended from the gap junction plaques. Buds, in control populations, were frequently released to form annular gap junction vesicles. In dynamin-inhibited populations, the buds were larger and infrequently released and thus fewer annular gap junction vesicles were formed. In addition, the number of annular gap junction vesicle fissions per hour was reduced in the dynamin-inhibited populations. We believe this to be the first report addressing the details of annular gap junction vesicle fissions and demonstrating a role of dynamin in this process. This information is crucial for elucidating the relationship between gap junctions, membrane regulation and cell behavior. PMID:23591819
Visualizing the effect of dynamin inhibition on annular gap vesicle formation and fission.
Nickel, Beth; Boller, Marie; Schneider, Kimberly; Shakespeare, Teresa; Gay, Vernon; Murray, Sandra A
2013-06-15
Although gap junction plaque assembly has been extensively studied, mechanisms involved in plaque disassembly are not well understood. Disassembly involves an internalization process in which annular gap junction vesicles are formed. These vesicles undergo fission, but the molecular machinery needed for these fissions has not been described. The mechanoenzyme dynamin has been previously demonstrated to play a role in gap junction plaque internalization. To investigate the role of dynamin in annular gap junction vesicle fission, immunocytochemical, time-lapse and transmission electron microscopy were used to analyze SW-13 adrenocortical cells in culture. Dynamin was demonstrated to colocalize with gap junction plaques and vesicles. Dynamin inhibition, by siRNA knockdown or treatment with the dynamin GTPase inhibitor dynasore, increased the number and size of gap junction 'buds' suspended from the gap junction plaques. Buds, in control populations, were frequently released to form annular gap junction vesicles. In dynamin-inhibited populations, the buds were larger and infrequently released and thus fewer annular gap junction vesicles were formed. In addition, the number of annular gap junction vesicle fissions per hour was reduced in the dynamin-inhibited populations. We believe this to be the first report addressing the details of annular gap junction vesicle fissions and demonstrating a role of dynamin in this process. This information is crucial for elucidating the relationship between gap junctions, membrane regulation and cell behavior.
A Novel Pulse-Chase Paradigm to Visualize the Trafficking of Transport Vesicles in Neurons
NASA Astrophysics Data System (ADS)
Al-Bassam, Sarmad
In neurons transmembrane proteins are targeted to dendrites in vesicles that traffic solely within the somatodendritic compartment. How these vesicles are retained within the somatodendritic domain is unknown. Here we adapt a novel pulse chase system that allows synchronous release of exogenous transmembrane proteins from the endoplasmic reticulum using FKBP12 and Rapamycin. We demonstrate proof-of-concept and establish protein trafficking controls in incremental steps. We demonstrate the utility of this approach in studying protein trafficking and establish parameters for analysis of time-lapse images. We implement this novel pulse-chase strategy to track the movements of post-Golgi transport vesicles. Surprisingly, we found that post-Golgi vesicles carrying dendritic proteins were equally likely to enter axons and dendrites. However, once such vesicles entered the axon they very rarely moved beyond the axon initial segment, but instead either halted or reversed direction in an actin and Myosin Va-dependent manner. In contrast, vesicles carrying either an axonal or a nonspecifically localized protein only rarely halted or reversed and instead generally proceeded to the distal axon. Thus, our results are consistent with the axon initial segment behaving as a vesicle filter that mediates the differential trafficking of transport vesicles.
Defects in optineurin- and myosin VI-mediated cellular trafficking in amyotrophic lateral sclerosis.
Sundaramoorthy, Vinod; Walker, Adam K; Tan, Vanessa; Fifita, Jennifer A; Mccann, Emily P; Williams, Kelly L; Blair, Ian P; Guillemin, Gilles J; Farg, Manal A; Atkin, Julie D
2015-07-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder primarily affecting motor neurons. Mutations in optineurin cause a small proportion of familial ALS cases, and wild-type (WT) optineurin is misfolded and forms inclusions in sporadic ALS patient motor neurons. However, it is unknown how optineurin mutation or misfolding leads to ALS. Optineurin acts an adaptor protein connecting the molecular motor myosin VI to secretory vesicles and autophagosomes. Here, we demonstrate that ALS-linked mutations p.Q398X and p.E478G disrupt the association of optineurin with myosin VI, leading to an abnormal diffuse cytoplasmic distribution, inhibition of secretory protein trafficking, endoplasmic reticulum (ER) stress and Golgi fragmentation in motor neuron-like NSC-34 cells. We also provide further insight into the role of optineurin as an autophagy receptor. WT optineurin associated with lysosomes and promoted autophagosome fusion to lysosomes in neuronal cells, implying that it mediates trafficking of lysosomes during autophagy in association with myosin VI. However, either expression of ALS mutant optineurin or small interfering RNA-mediated knockdown of endogenous optineurin blocked lysosome fusion to autophagosomes, resulting in autophagosome accumulation. Together these results indicate that ALS-linked mutations in optineurin disrupt myosin VI-mediated intracellular trafficking processes. In addition, in control human patient tissues, optineurin displayed its normal vesicular localization, but in sporadic ALS patient tissues, vesicles were present in a significantly decreased proportion of motor neurons. Optineurin binding to myosin VI was also decreased in tissue lysates from sporadic ALS spinal cords. This study therefore links several previously described pathological mechanisms in ALS, including defects in autophagy, fragmentation of the Golgi and induction of ER stress, to disruption of optineurin function. These findings also indicate that
Iraci, Nunzio; Leonardi, Tommaso; Gessler, Florian; Vega, Beatriz; Pluchino, Stefano
2016-01-01
Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain. PMID:26861302
Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release
Nelson, Jessica; Richmond, Janet E; Colón-Ramos, Daniel A; Shen, Kang
2017-01-01
Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens, we isolated a novel Caenorhabditis elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes three isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release. PMID:29160205
Export of Virulence Genes and Shiga Toxin by Membrane Vesicles of Escherichia coli O157:H7
Kolling, Glynis L.; Matthews, Karl R.
1999-01-01
Membrane vesicles released by Escherichia coli O157:H7 into culture medium were purified and analyzed for protein and DNA content. Electron micrographs revealed vesicles that are spherical, range in size from 20 to 100 nm, and have a complete bilayer. Analysis of vesicle protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrates vesicles that contain many proteins with molecular sizes similar to outer membrane proteins and a number of cellular proteins. Immunoblot (Western) analysis of vesicles suggests the presence of cell antigens. Treatment of vesicles with exogenous DNase hydrolyzed surface-associated DNA; PCR demonstrated that vesicles contain DNA encoding the virulence genes eae, stx1 and stx2, and uidA, which encodes for β-galactosidase. Immunoblot analysis of intact and lysed, proteinase K-treated vesicles demonstrate that Shiga toxins 1 and 2 are contained within vesicles. These results suggest that vesicles contain toxic material and transfer experiments demonstrate that vesicles can deliver genetic material to other gram-negative organisms. PMID:10223967
Differential Regulation of Synaptic Vesicle Tethering and Docking by UNC-18 and TOM-1.
Gracheva, Elena O; Maryon, Ed B; Berthelot-Grosjean, Martine; Richmond, Janet E
2010-01-01
The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18), unc-64(syntaxin) and tom-1(tomosyn). We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25 nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin.
Enzyme-triggered cargo release from methionine sulfoxide containing copolypeptide vesicles.
Rodriguez, April R; Kramer, Jessica R; Deming, Timothy J
2013-10-14
We have developed a facile, scalable method for preparation of enzyme-responsive copolypeptide vesicles that requires no protecting groups or expensive components. We designed amphiphilic copolypeptides containing segments of water-soluble methionine sulfoxide, M(O), residues that were prepared by synthesis of a fully hydrophobic precursor diblock copolypeptide, poly(l-methionine)65-b-poly(L-leucine0.5-stat-L-phenylalanine0.5)20, M65(L0.5/F0.5)20, followed by its direct oxidation in water to give the amphiphilic M(O) derivative, M(O)65(L0.5/F0.5)20. Assembly of M(O)65(L0.5/F0.5)20 in water gave vesicles with average diameters of a few micrometers that could then be extruded to nanoscale diameters. The M(O) segments in the vesicles were found to be substrates for reductase enzymes, which regenerated hydrophobic M segments and resulted in a change in supramolecular morphology that caused vesicle disruption and release of cargos.
Hydrodynamic interaction between two vesicles in a linear shear flow: asymptotic study.
Gires, P Y; Danker, G; Misbah, C
2012-07-01
Interactions between two vesicles in an imposed linear shear flow are studied theoretically, in the limit of almost spherical vesicles, with a large intervesicle distance, in a strong flow, with a large inner to outer viscosity ratio. This allows to derive a system of ordinary equations describing the dynamics of the two vesicles. We provide an analytic expression for the interaction law. We find that when the vesicles are in the same shear plane, the hydrodynamic interaction leads to a repulsion. When they are not, the interaction may turn into attraction instead. The interaction law is discussed and analyzed as a function of relevant parameters.
Placental Nano-vesicles Target to Specific Organs and Modulate Vascular Tone In Vivo.
Tong, Mancy; Stanley, Joanna L; Chen, Q; James, Joanna L; Stone, Peter R; Chamley, Larry W
2017-11-01
How do nano-vesicles extruded from normal first trimester human placentae affect maternal vascular function? Placental nano-vesicles affect the ability of systemic mesenteric arteries to undergo endothelium- and nitric oxide- (NO-) dependent vasodilation in vivo in pregnant mice. Dramatic cardiovascular adaptations occur during human pregnancy, including a substantial decrease in total peripheral resistance in the first trimester. The human placenta constantly extrudes extracellular vesicles that can enter the maternal circulation and these vesicles may play an important role in feto-maternal communication. Human placental nano-vesicles were administered into CD1 mice via a tail vein and their localization and vascular effects at 30 min and 24 h post-injection were investigated. Nano-vesicles from normal first trimester human placentae were collected and administered into pregnant (D12.5) or non-pregnant female mice. After either 30 min or 24 h of exposure, all major organs were dissected for imaging (n = 7 at each time point) while uterine and mesenteric arteries were dissected for wire myography (n = 6 at each time point). Additional in vitro studies using HMEC-1 endothelial cells were also conducted to investigate the kinetics of interaction between placental nano-vesicles and endothelial cells. Nano-vesicles from first trimester human placentae localized to the lungs, liver and kidneys 24 h after injection into pregnant mice (n = 7). Exposure of pregnant mice to placental nano-vesicles for 30 min in vivo increased the vasodilatory response of mesenteric arteries to acetylcholine, while exposure for 24 h had the opposite effect (P < 0.05, n = 6). These responses were prevented by L-NAME, an NO synthase inhibitor. Placental nano-vesicles did not affect the function of uterine arteries or mesenteric arteries from non-pregnant mice. Placental nano-vesicles rapidly interacted with endothelial cells via a combination of phagocytosis, endocytosis and cell surface
Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E
2015-01-01
Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that
Takikita, Shoichi; Schreiner, Cynthia; Baum, Rebecca; Xie, Tao; Ralston, Evelyn; Plotz, Paul H; Raben, Nina
2010-12-13
PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA) which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT) has only a partial effect in skeletal muscle. In our Pompe mouse model (KO), the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO). The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy.
Cackovic, Juliana; Gutierrez-Luke, Susana; Call, Gerald B; Juba, Amber; O'Brien, Stephanie; Jun, Charles H; Buhlman, Lori M
2018-01-01
Selective degeneration of substantia nigra dopaminergic (DA) neurons is a hallmark pathology of familial Parkinson's disease (PD). While the mechanism of degeneration is elusive, abnormalities in mitochondrial function and turnover are strongly implicated. An Autosomal Recessive-Juvenile Parkinsonism (AR-JP) Drosophila melanogaster model exhibits DA neurodegeneration as well as aberrant mitochondrial dynamics and function. Disruptions in mitophagy have been observed in parkin loss-of-function models, and changes in mitochondrial respiration have been reported in patient fibroblasts. Whether loss of parkin causes selective DA neurodegeneration in vivo as a result of lost or decreased mitophagy is unknown. This study employs the use of fluorescent constructs expressed in Drosophila DA neurons that are functionally homologous to those of the mammalian substantia nigra. We provide evidence that degenerating DA neurons in parkin loss-of-function mutant flies have advanced mitochondrial aging, and that mitochondrial networks are fragmented and contain swollen organelles. We also found that mitophagy initiation is decreased in park ( Drosophila parkin/PARK2 ortholog) homozygous mutants, but autophagosome formation is unaffected, and mitochondrial network volumes are decreased. As the fly ages, autophagosome recruitment becomes similar to control, while mitochondria continue to show signs of damage, and climbing deficits persist. Interestingly, aberrant mitochondrial morphology, aging and mitophagy initiation were not observed in DA neurons that do not degenerate. Our results suggest that parkin is important for mitochondrial homeostasis in vulnerable Drosophila DA neurons, and that loss of parkin-mediated mitophagy may play a role in degeneration of relevant DA neurons or motor deficits in this model.
Thin film drainage between pre-inflated capsules or vesicles
NASA Astrophysics Data System (ADS)
Keh, Martin; Walter, Johann; Leal, Gary
2013-11-01
Capsules and vesicles are often used as vehicles to carry active ingredients or fragrance in drug delivery and consumer products and oftentimes in these applications the particles may be pre-inflated due to the existence of a small osmotic pressure difference between the interior and exterior fluid. We study the dynamics of thin film drainage between capsules and vesicles in flow as it is crucial to fusion and deposition of the particles and, therefore, the stability and effectiveness of the products. Simulations are conducted using a numerical model coupling the boundary integral method for the motion of the fluids and a finite element method for the membrane mechanics. For low capillary numbers, the drainage behavior of vesicles and capsules are approximately the same, and also similar to that of drops as the flow-independent and uniform tension due to pre-inflation dominates. The tension due to deformation caused by flow will become more important as the strength of the external flow (i.e. the capillary number) increases. In this case, the shapes of the thin film region are fundamentally different for capsules and vesicles, and the drainage behavior in both cases differs from a drop. Funded by P&G.
Thermally assisted acoustofluidic separation of extracellular vesicles from cells
NASA Astrophysics Data System (ADS)
Mirtaheri, Elnaz; Dolatmoradi, Ata; Pimentel, Krystine; Bhansali, Shekhar; El-Zahab, Bilal
2018-02-01
Extracellular vesicles (EVs) have been gaining increasing attention given their role in communicating information between cells. Composition-based isolation of EVs is particularly of high significance as the proteomic and lipidomic characterization of their cargo could provide valuable clues to the role of EVs in mediating the biology of various conditions. This has, however, proved to be challenging as EVs, despite their abundance, are very small and difficult to be differentiated from the other constituents of host media. In addition, currently available methods like ultracentrifugation and filtration are cumbersome and capable of achieving mostly size-based separations. In this work, we demonstrate the possibility of separating submicron EV-like vesicles from cancer cells using a thermally-assisted acoustophoretic device. In a system composed of MCF-7 breast cancer cells spiked with two different types of same-size vesicles, composition-based isolation of vesicles was shown to be realizable through opposite focusing of the system's components at the node and antinodes of the overlaid ultrasonic standing wave. By proper choice of temperature in the microchannel, we were able to achieve separations with purities exceeding 93%. Furthermore, cells recovered from the channel were shown to be viable after the separation.
Afuwape, Olusoji A. T.; Wasser, Catherine R.; Schikorski, Thomas
2016-01-01
Key points Synaptic transmission is mediated by the release of neurotransmitters from synaptic vesicles in response to stimulation or through the spontaneous fusion of a synaptic vesicle with the presynaptic plasma membrane.There is growing evidence that synaptic vesicles undergoing spontaneous fusion versus those fusing in response to stimuli are functionally distinct.In this study, we acutely probe the effects of intravesicular free radical generation on synaptic vesicles that fuse spontaneously or in response to stimuli.By targeting vesicles that preferentially release spontaneously, we can dissociate the effects of intravesicular free radical generation on spontaneous neurotransmission from evoked neurotransmission and vice versa.Taken together, these results further advance our knowledge of the synapse and the nature of the different synaptic vesicle pools mediating neurotransmission. Abstract Earlier studies suggest that spontaneous and evoked neurotransmitter release processes are maintained by synaptic vesicles which are segregated into functionally distinct pools. However, direct interrogation of the link between this putative synaptic vesicle pool heterogeneity and neurotransmission has been difficult. To examine this link, we tagged vesicles with horseradish peroxidase (HRP) – a haem‐containing plant enzyme – or antibodies against synaptotagmin‐1 (syt1). Filling recycling vesicles in hippocampal neurons with HRP and subsequent treatment with hydrogen peroxide (H2O2) modified the properties of neurotransmitter release depending on the route of HRP uptake. While strong depolarization‐induced uptake of HRP suppressed evoked release and augmented spontaneous release, HRP uptake during mild activity selectively impaired evoked release, whereas HRP uptake at rest solely potentiated spontaneous release. Expression of a luminal HRP‐tagged syt1 construct and subsequent H2O2 application resulted in a similar increase in spontaneous release and
Arrhenius, Thomas S.; Blanchard-Desce, Mireille; Dvolaitzky, Maya; Lehn, Jean-Marie; Malthete, Jacques
1986-01-01
Molecular wires, which would allow electron flow to take place between different components, are important elements in the design of molecular devices. An approach to such species would be molecules possessing an electron-conducting conjugated chain, terminal electroactive polar groups, and a length sufficient to span a lipid membrane. To this end, bispyridinium polyenes of different lengths have been synthesized and their incorporation into the bilayer membrane of sodium dihexadecyl phosphate vesicles has been studied. Since they combine the features of carotenoids and of viologens, they may be termed caroviologens. Vesicles containing the caroviologen whose length approximately corresponds to the thickness of the sodium dihexadecyl phosphate bilayer display temperature-dependent changes of its absorption spectrum reflecting the gel → liquid-crystal phase transition of the membrane. The data agree with a structural model in which the caroviologens of sufficient length span the bilayer membrane, the pyridinium sites being close to the negatively charged outer and inner surfaces of the sodium dihexadecyl phosphate vesicles and the polyene chain crossing the lipidic interior of the membrane. These membranes may now be tested in processes in which the caroviologen would function as a continuous, transmembrane electron channel—i.e., as a molecular wire. Various further developments may be envisaged along these lines. PMID:16593731
Trapping of vesicles on patterned surfaces by physisorption for potential biosensing applications.
Bera, L K; Ong, Kian Soo; Wong, Zheng Zheng; Fu, Zhikang; Nallani, Madhavan; Shea, Sean O'
2012-01-01
The pre-defined selective positioning of a controlled number of vesicles on a rigid substrate is crucial in many potential applications such as diagnostics, biosensors, lab-on-a chip, microanalyses and reaction chambers. In this paper, the vesicles made up of block copolymer using Poly [-(2-methyloxazoline) -poly- (dimethylsiloxane)-poly- (2-methyloxazoline)] (ABA) with dimensions of 100-200 nm are trapped by physisorption on hydrophilic surfaces. We discuss the protocols established for vesicle trapping. The optimum conditions obtained for physisorption is 15 minutes incubation followed by one cycle of DI water rinse. Trapping of 1-10 vesicles in lobe shape micro-wells fabricated by photo lithography using photoresist on UltraStick(™) slides was demonstrated. To overcome the issue of amalgamation of emitted light from optically sensitive photoresist and fluorescently tagged vesicles, an alternative approach of Si/SiO(2) microwell array coupled with APTES (3-AminoPropylTriEthoxySilane) treated bottom surfaces was developed.
NASA Astrophysics Data System (ADS)
Yang, Boqian; He, Tao; Grauffel, Cédric; Reuter, Nathalie; Roberts, Mary; Gershenson, Anne
2013-03-01
Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes transiently interact with target membranes. Previous fluorescence correlation spectroscopy (FCS) experiments showed that Bacillus thuringiensis PI-PLC specifically binds to phosphatidylcholine (PC)-rich membranes and preferentially interacts with unilamellar vesicles that show larger curvature. Mutagenesis studies combined with FCS measurements of binding affinity highlighted the importance of interfacial PI-PLC tyrosines in the PC specificity. All-atom molecular dynamics simulations of PI-PLC performed in the presence of a PC membrane indicate these tyrosines are involved in specific cation-pi interactions with choline headgroups. To further understand those transient interactions between PI-PLC and PC-rich vesicles, we monitor single fluorescently labeled PI-PLC proteins as they cycle on and off surface-tethered small unilamellar vesicles using total internal reflection fluorescent microscopy. The residence times on vesicles along with vesicle size information, based on vesicle fluorescence intensity, reveal the time scales of PI-PLC membrane interactions as well as the curvature dependence. The PC specificity and the vesicle curvature dependence of this PI-PLC/membrane interaction provide insight into how the interface modulates protein-membrane interactions. This work was supported by the National Institute of General Medical Science of the National Institutes of Health (R01GM060418).
Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.
Prada, Ilaria; Meldolesi, Jacopo
2016-08-09
Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.
Functional advantages conferred by extracellular prokaryotic membrane vesicles.
Manning, Andrew J; Kuehn, Meta J
2013-01-01
The absence of subcellular organelles is a characteristic typically used to distinguish prokaryotic from eukaryotic cells. But recent discoveries do not support this dogma. Over the past 50 years, researchers have begun to appreciate and characterize Gram-negative bacterial outer membrane-derived vesicles and Gram-positive and archaeal membrane vesicles. These extracellular, membrane-bound organelles can perform a variety of functions, including binding and delivery of DNA, transport of virulence factors, protection of the cell from outer membrane targeting antimicrobials and ridding the cell of toxic envelope proteins. Here, we review the contributions of these extracellular organelles to prokaryotic physiology and compare these with the contributions of the bacterial interior membrane-bound organelles responsible for harvesting light energy and for generating magnetic crystals of heavy metals. Understanding the roles of these multifunctional extracellular vesicle organelles as microbial tools will help us to better realize the diverse interactions that occur in our polymicrobial world. Copyright © 2013 S. Karger AG, Basel.
Chebotar, Igor' V; Konchakova, Evgenia D; Maianskii, Andrey N
2013-08-01
Staphylococcus aureus, a major opportunistic pathogen, is a leading cause of biofilm-related infections in clinical practice. Staphylococcal biofilms are highly resistant to antibacterial medicines and immune effector cells. The main result of our work is the discovery of nano-vesicles in the supernatant of the human neutrophil-S. aureus biofilm system. We also found that phospholipase C treatment causes complete destruction of these vesicles. While the addition of proteinase K led to a partial structural disorganization of the vesicles, DNase treatment did not influence the vesicle structure. These observations allowed us to conclude that phospholipids and proteins play a structure-forming role in the formation of these nano-vesicles. The vesicles demonstrated anti-biofilm activities when tested against Staphylococcus epidermidis (strains 178M and 328/5) biofilms, but were ineffective for S. aureus (strains 5983/2, 5663 and 18A) biofilms.
Tan, Kok Hian; Tan, Soon Sim; Sze, Siu Kwan; Lee, Wai Kheong Ryan; Ng, Mor Jack; Lim, Sai Kiang
2014-10-01
To circumvent the complex protein milieu of plasma and discover robust predictive biomarkers for preeclampsia (PE), we investigate if phospholipid-binding ligands can reduce the milieu complexity by extracting plasma extracellular vesicles for biomarker discovery. Cholera toxin B chain (CTB) and annexin V (AV) which respectively binds GM1 ganglioside and phosphatidylserine were used to isolate extracellular vesicles from plasma of PE patients and healthy pregnant women. The proteins in the vesicles were identified using enzyme-linked immunosorbent assay, antibody array, and mass spectrometry. CTB and AV were found to bind 2 distinct groups of extracellular vesicles. Antibody array and enzyme-linked immunosorbent assay revealed that PE patients had elevated levels of CD105, interleukin-6, placental growth factor, tissue inhibitor of metallopeptidase 1, and atrial natriuretic peptide in cholera toxin B- but not AV-vesicles, and elevated levels of plasminogen activator inhibitor-1, pro-calcitonin, S100b, tumor growth factor β, vascular endothelial growth factor receptor 1, brain natriuretic peptide, and placental growth factor in both cholera toxin B- and AV-vesicles. CD9 level was elevated in cholera toxin B-vesicles but reduced in AV vesicles of PE patients. Proteome analysis revealed that in cholera toxin B-vesicles, 87 and 222 proteins were present only in PE patients and healthy pregnant women respectively while in AV-vesicles, 104 and 157 proteins were present only in PE and healthy pregnant women, respectively. This study demonstrated for the first time that CTB and AV bind unique extracellular vesicles, and their protein cargo reflects the disease state of the patient. The successful use of these 2 ligands to isolate circulating plasma extracellular vesicles for biomarker discovery in PE represents a novel technology for biomarker discovery that can be applied to other specialties. Copyright © 2014 Elsevier Inc. All rights reserved.
Topical delivery of roxithromycin solid-state forms entrapped in vesicles.
Csongradi, Candice; du Plessis, Jeanetta; Aucamp, Marique Elizabeth; Gerber, Minja
2017-05-01
Recently, considerable interest developed in using newer/improved antibiotics for the treatment of Acne vulgaris. During this study, different roxithromycin solid-state forms (i.e. crystalline and amorphous) were encapsulated into vesicle systems (niosomes, proniosomes, ufosomes and pro-ufosomes) for dermis targeted delivery. Characterization of the vesicles was done with transmission electron microscopy, light microscopy, droplet size, droplet size distribution, pH, zeta-potential and entrapment efficiency percentage. Finally, comparative release and topical diffusion studies were performed, to evaluate if targeted topical delivery was obtained and if the roxithromycin solid-state amorphous forms resulted in improved topical delivery. Vesicle systems containing different roxithromycin (2%) solid-state forms were successfully prepared and characterized. The vesicles showed optimal properties for topical delivery. All carrier systems had topical delivery to the epidermis-dermis, whilst no roxithromycin was found in the receptor compartment or stratum corneum-epidermis. The niosomes were the leading formulation and the two amorphous forms had better topical delivery than the crystalline form. Successful targeted delivery of roxithromycin was obtained in the dermis, where the activity against Propionibacterium acnes is needed. The amorphous forms seemed to have held their solid-state form during formulation and in the vesicles, showing improved topical delivery in comparison to the crystalline form. Copyright © 2017 Elsevier B.V. All rights reserved.
Preparation of giant myelin vesicles and proteoliposomes to register ionic channels.
Regueiro, P; Monreal, J; Díaz, R S; Sierra, F
1996-11-01
Myelin vesicles, reconstituted liposomes with proteolipid protein (PLP), the main protein component of myelin, and electrophysiological patch-clamp are potentially powerful tools to study the role of myelin in functional ionic channels. However, technical difficulties in the vesiculation of myelin and the small size of the vesicles obtained do not permit the application of micropipettes for current recordings. From a suspension of purified myelin we have prepared oligolamellar vesicles (mean diameter of 144 nm) using the so-called French pressure system. From this preparation we obtained giant myelin vesicles approximately 10 microns in mean diameter, using a dehydration-rehydration procedure. Qualitative analysis of proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed no significant loss of any component in these vesicles due to pressure, in comparison with non-vesiculated myelin. A way of preparing giant liposomes of approximately 80-100 microns and proteoliposomes of approximately 30 microns in mean diameter, using the same dehydration-rehydration procedure, is also reported. Reconstitution of purified PLP in giant liposomes was confirmed by fluorescent labeling of PLP and by fluorescence microscopy. The current recordings from these vesicles prove the validity of these methods and provide significant evidence of the existence of ionic channels in myelin membranes and the possibility that PLP functions as a channel. The physiological significance and characterization of these channels remain yet unresolved. These results have a special significance for elucidating the molecular role of myelin in the regulation of neural activity and in the brain ion microenvironment.
An immersed boundary method for simulating vesicle dynamics in three dimensions
NASA Astrophysics Data System (ADS)
Seol, Yunchang; Hu, Wei-Fan; Kim, Yongsam; Lai, Ming-Chih
2016-10-01
We extend our previous immersed boundary (IB) method for 3D axisymmetric inextensible vesicle in Navier-Stokes flows (Hu et al., 2014 [17]) to general three dimensions. Despite a similar spirit in numerical algorithms to the axisymmetric case, the fully 3D numerical implementation is much more complicated and is far from straightforward. A vesicle membrane surface is known to be incompressible and exhibits bending resistance. As in 3D axisymmetric case, instead of keeping the vesicle locally incompressible, we adopt a modified elastic tension energy to make the vesicle surface patch nearly incompressible so that solving the unknown tension (Lagrange multiplier for the incompressible constraint) can be avoided. Nevertheless, the new elastic force derived from the modified tension energy has exactly the same mathematical form as the original one except the different definitions of tension. The vesicle surface is discretized on a triangular mesh where the elastic tension and bending force are calculated on each vertex (Lagrangian marker in the IB method) of the triangulation. A series of numerical tests on the present scheme are conducted to illustrate the robustness and applicability of the method. We perform the convergence study for the immersed boundary forces and the fluid velocity field. We then study the vesicle dynamics in various flows such as quiescent, simple shear, and gravitational flows. Our numerical results show good agreements with those obtained in previous theoretical, experimental and numerical studies.
Gabriel, Gregory J; Pool, Joanna G; Som, Abhigyan; Dabkowski, Jeffrey M; Coughlin, E Bryan; Muthukumar, M; Tew, Gregory N
2008-11-04
Antimicrobial polynorbornenes composed of facially amphiphilic monomers have been previously reported to accurately emulate the antimicrobial activity of natural host-defense peptides (HDPs). The lethal mechanism of most HDPs involves binding to the membrane surface of bacteria leading to compromised phospholipid bilayers. In this paper, the interactions between biomimetic vesicle membranes and these cationic antimicrobial polynorbornenes are reported. Vesicle dye-leakage experiments were consistent with previous biological assays and corroborated a mode of action involving membrane disruption. Dynamic light scattering (DLS) showed that these antimicrobial polymers cause extensive aggregation of vesicles without complete bilayer disintegration as observed with surfactants that efficiently solubilize the membrane. Fluorescence microscopy on vesicles and bacterial cells also showed polymer-induced aggregation of both synthetic vesicles and bacterial cells. Isothermal titration calorimetry (ITC) afforded free energy of binding values (Delta G) and polymer to lipid binding ratios, plus revealed that the interaction is entropically favorable (Delta S>0, Delta H>0). It was observed that the strength of vesicle binding was similar between the active polymers while the binding stoichiometries were dramatically different.
Light-induced DELTApH and DELTApsi in halobacterial vesicles related to sodium transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamo, N.; Racanclli, T.; Packer, L.
1986-01-01
Membranes of Halobacterium halobium contain two retinoproteins, baceteriorhodopsin (BR/sub 568nm/) and halorhodopsin (HR/sub 588nm/). We have investigated the light- and sodium-dependent activities in vesicles from the HR containing R/sub 1/mR strain, and the BR + HR containing S/sub 9/ strain to study energy conversion and ion flow mechanisms. Simultaneous ..delta..pH and ..delta..psi measurements have been made with electrodes. In R/sub 1/mR vesicles, -..delta..psi and H/sup +/ uptake occurs in NaCl but not in KCl medium. In S/sub 9/ vesicles, net H/sup +/ extrusion is reduced at high light intensity in NaCl but not KCl medium. Such results indicate Na/sup +//H/supmore » +/ exchange in vesicles from both strains. As S/sub 9/ contains BR + HR, it is unclear whether the Na/sup +/ extrusion is due to a Na/sup +//H/sup +/ antiporter and/or HR which has been proposed to be a light driven Na/sup +/ pump. To evaluate these concepts for Na/sup +/ transport, the light intensity dependence and action of several membrane transport active agents have been compared. Digitoxin, electro-neutral exchangers (triphenyltin and monensin), and phloretin yielded similar results for HR (R/sub 1/mR) and HR + BR (S/sub 9/) vesicles. Moreover treatment of vesicles with carboxyl reacting reagents inhibited Na/sup +/ dependent activity in both types of vesicles. Thus, common mechanisms of Na/sup +/ transport are indicated in S/sub 9/ and R/sub 1/mR vesicles. 22 refs., 9 figs., 1 tab.« less
Xu, Lu; Chen, Jingfei; Feng, Lei; Dong, Shuli; Hao, Jingcheng
2014-12-07
Cationic and anionic (catanionic) vesicles were constructed from the mixtures of sodium laurate (SL) and alkyltrimethylammonium bromide (CnTAB, n = 12, 14, and 16) and were used to control the loading capacity of DNA. The binding saturation point (BSP) of DNA to catanionic vesicles increases with the chain length of cationic surfactants, which is at 1.0, 1.3 and 1.5 for CnTAB with n = 12, 14, and 16, respectively. Our measurements showed that the loading capacity and affinity of DNA can be controlled by catanionic vesicles. It increases with the chain length of cationic surfactants. Because of a large reduction in surface charge density, catanionic vesicles are prone to undergo re-aggregation or fusion with the addition of DNA. DNA molecules can still maintain original coil state during the interaction with catanionic CnTAL vesicles. (1)H NMR data reveals that the obvious dissociation of anionic ions, L(-), from catanionic C14TAL vesicles is due to the interaction with DNA; however, this phenomenon cannot be observed in C12TAB-SL vesicles. Agarose gel electrophoresis (AGE) results demonstrate that the electrostatic interaction between the two oppositely charged cationic and anionic surfactants is stronger than that between DNA and cationic surfactant, CnTAB (n = 12, 14, and 16). Not only is the dissociation of L(-) simply determined by the charge competition, but it also depends largely on the variations in the surface charge density as well as the cationic and anionic surfactant competing ability in geometry configuration of catanionic vesicles. The complicated interaction between DNA and catanionic vesicles induces the deformation of cationic vesicles. Our results should provide clear guidance for choosing more proper vectors for DNA delivery and gene therapy in cell experiments.
Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles
Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.
2012-01-01
Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443
Cholesterol-dependent balance between evoked and spontaneous synaptic vesicle recycling
Wasser, Catherine R; Ertunc, Mert; Liu, Xinran; Kavalali, Ege T
2007-01-01
Cholesterol is a prominent component of nerve terminals. To examine cholesterol's role in central neurotransmission, we treated hippocampal cultures with methyl-β-cyclodextrin, which reversibly binds cholesterol, or mevastatin, an inhibitor of cholesterol biosynthesis, to deplete cholesterol. We also used hippocampal cultures from Niemann-Pick type C1-deficient mice defective in intracellular cholesterol trafficking. These conditions revealed an augmentation in spontaneous neurotransmission detected electrically and an increase in spontaneous vesicle endocytosis judged by horseradish peroxidase uptake after cholesterol depletion by methyl-β-cyclodextrin. In contrast, responses evoked by action potentials and hypertonicity were severely impaired after the same treatments. The increase in spontaneous vesicle recycling and the decrease in evoked neurotransmission were reversible upon cholesterol addition. Cholesterol removal did not impact on the low level of evoked neurotransmission seen in the absence of synaptic vesicle SNARE protein synaptobrevin-2 whereas the increase in spontaneous fusion remained. These results suggest that synaptic cholesterol balances evoked and spontaneous neurotransmission by hindering spontaneous synaptic vesicle turnover and sustaining evoked exo-endocytosis. PMID:17170046
Irregular bilayer structure in vesicles prepared from Halobacterium cutirubrum lipids
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1974-01-01
Fluorescent probes were used to study the structure of the cell envelope of Halobacterium cutirubrum, and, in particular, to explore the effect of the heterogeneity of the lipids in this organism on the structure of the bilayers. The fluorescence polarization of perylene was followed in vesicles of unfractionated lipids and polar lipids as a function of temperature in 3.4 M solutions of NaCl, NaNO3, and KSCN, and it was found that vesicles of unfractionated lipids were more perturbed by chaotropic agents than polar lipids. The dependence of the relaxation times of perylene on temperature was studied in cell envelopes and in vesicles prepared from polar lipids, unfractionated lipids, and mixtures of polar and neutral lipids.
Chung, ChiHye; Barlyko, Barbara; Leitz, Jeremy; Liu, Xinran; Kavalali, Ege T.
2010-01-01
Synapses maintain synchronous, asynchronous and spontaneous forms of neurotransmission that are distinguished by their Ca2+-dependence and time course. Despite recent advances in our understanding of the mechanisms that underlie these three forms of release, it remains unclear whether they originate from the same vesicle population or arise from distinct vesicle pools with diverse propensities for release. Here, we used a reversible inhibitor of dynamin, dynasore, to dissect the vesicle pool dynamics underlying the three forms of neurotransmitter release in hippocampal GABAergic inhibitory synapses. In dynasore, evoked synchronous release and asynchronous neurotransmission detected after activity showed marked and unrecoverable depression within seconds. In contrast, spontaneous release remained intact after intense stimulation in dynasore or during prolonged (~1 hour) application of dynasore at rest, suggesting that separate recycling pathways maintain evoked and spontaneous synaptic vesicle trafficking. In addition, simultaneous imaging of spectrally separable styryl dyes revealed that in a given synapse vesicles that recycle spontaneously and in response to activity do not mix. These findings suggest that evoked synchronous and asynchronous release originate from the same vesicle pool that recycles rapidly in a dynamin-dependent manner, while a distinct vesicle pool sustains spontaneous release independent of dynamin activation. This result lends further support to the notion that synapses harbor distinct vesicle populations with divergent release properties that maintain independent forms of neurotransmission. PMID:20107062
Xing, Pengyao; Wang, Yajie; Yang, Minmin; Zhang, Yimeng; Wang, Bo; Hao, Aiyou
2016-07-13
Vesicles with dynamic membranes provide an ideal model system for investigating biological membrane activities, whereby vesicle aggregation behaviors including adhesion, fusion, fission, and membrane contraction/extension have attracted much attention. In this work we utilize an aromatic amino acid (pyrene-appended glutamic acid, PGlu) to prepare nanovesicles that aggregate to form vesicle clusters selectively induced by Fe(3+) or Cu(2+), and the vesicles transform into irregular nano-objects when interacting with Al(3+). Vesicle clusters have better stability than pristine vesicles, which hinders the spontaneous morphological transformation from vesicles into lamellar nanosheets with long incubation period. The difference between complexation of Fe(3+) and Al(3+) with vesicles was studied by various techniques. On the basis of metal ion-vesicle interactions, this self-assembled nanovesicle system also behaves as an effective fluorescent sensor for Fe(3+) and Al(3+), which cause fluorescence quenching and enhanced excimer emission, respectively.
NASA Astrophysics Data System (ADS)
Pi, Fengmei; Binzel, Daniel W.; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M.; Guo, Bin; Evers, B. Mark; Guo, Peixuan
2018-01-01
Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.
LC3/GABARAP family proteins: autophagy-(un)related functions.
Schaaf, Marco B E; Keulers, Tom G; Vooijs, Marc A; Rouschop, Kasper M A
2016-12-01
From yeast to mammals, autophagy is an important mechanism for sustaining cellular homeostasis through facilitating the degradation and recycling of aged and cytotoxic components. During autophagy, cargo is captured in double-membraned vesicles, the autophagosomes, and degraded through lysosomal fusion. In yeast, autophagy initiation, cargo recognition, cargo engulfment, and vesicle closure is Atg8 dependent. In higher eukaryotes, Atg8 has evolved into the LC3/GABARAP protein family, consisting of 7 family proteins [LC3A (2 splice variants), LC3B, LC3C, GABARAP, GABARAPL1, and GABARAPL2]. LC3B, the most studied family protein, is associated with autophagosome development and maturation and is used to monitor autophagic activity. Given the high homology, the other LC3/GABARAP family proteins are often presumed to fulfill similar functions. Nevertheless, substantial evidence shows that the LC3/GABARAP family proteins are unique in function and important in autophagy-independent mechanisms. In this review, we discuss the current knowledge and functions of the LC3/GABARAP family proteins. We focus on processing of the individual family proteins and their role in autophagy initiation, cargo recognition, vesicle closure, and trafficking, a complex and tightly regulated process that requires selective presentation and recruitment of these family proteins. In addition, functions unrelated to autophagy of the LC3/GABARAP protein family members are discussed.-Schaaf, M. B. E., Keulers, T. G, Vooijs, M. A., Rouschop, K. M. A. LC3/GABARAP family proteins: autophagy-(un)related functions. © FASEB.
NASA Astrophysics Data System (ADS)
Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.
2011-03-01
Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.
Hadis, Mohammed; Alderwick, Luke
2017-01-01
Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our findings highlight the composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections. PMID:29186191
Campoy, Irene; Lanau, Lucia; Altadill, Tatiana; Sequeiros, Tamara; Cabrera, Silvia; Cubo-Abert, Montserrat; Pérez-Benavente, Assumpción; Garcia, Angel; Borrós, Salvador; Santamaria, Anna; Ponce, Jordi; Matias-Guiu, Xavier; Reventós, Jaume; Gil-Moreno, Antonio; Rigau, Marina; Colas, Eva
2016-06-18
Uterine aspirates are used in the diagnostic process of endometrial disorders, yet further applications could emerge if its complex milieu was simplified. Exosome-like vesicles isolated from uterine aspirates could become an attractive source of biomarkers, but there is a need to standardize isolation protocols. The objective of the study was to determine whether exosome-like vesicles exist in the fluid fraction of uterine aspirates and to compare protocols for their isolation, characterization, and analysis. We collected uterine aspirates from 39 pre-menopausal women suffering from benign gynecological diseases. The fluid fraction of 27 of those aspirates were pooled and split into equal volumes to evaluate three differential centrifugation-based procedures: (1) a standard protocol, (2) a filtration protocol, and (3) a sucrose cushion protocol. Characterization of isolated vesicles was assessed by electron microscopy, nanoparticle tracking analysis and immunoblot. Specifically for RNA material, we evaluate the effect of sonication and RNase A treatment at different steps of the protocol. We finally confirmed the efficiency of the selected methods in non-pooled samples. All protocols were useful to isolate exosome-like vesicles. However, the Standard procedure was the best performing protocol to isolate exosome-like vesicles from uterine aspirates: nanoparticle tracking analysis revealed a higher concentration of vesicles with a mode of 135 ± 5 nm, and immunoblot showed a higher expression of exosome-related markers (CD9, CD63, and CD81) thus verifying an enrichment in this type of vesicles. RNA contained in exosome-like vesicles was successfully extracted with no sonication treatment and exogenous nucleic acids digestion with RNaseA, allowing the analysis of the specific inner cargo by Real-Time qPCR. We confirmed the existence of exosome-like vesicles in the fluid fraction of uterine aspirates. They were successfully isolated by differential centrifugation
Structures and mechanisms of vesicle coat components and multisubunit tethering complexes
Jackson, Lauren P; Kümmel, Daniel; Reinisch, Karin M; Owen, David J
2012-01-01
Eukaryotic cells face a logistical challenge in ensuring prompt and precise delivery of vesicular cargo to specific organelles within the cell. Coat protein complexes select cargo and initiate vesicle formation, while multisubunit tethering complexes participate in the delivery of vesicles to target membranes. Understanding these macromolecular assemblies has greatly benefited from their structural characterization. Recent structural data highlight principles in coat recruitment and uncoating in both the endocytic and retrograde pathways, and studies on the architecture of tethering complexes provide a framework for how they might link vesicles to the respective acceptor compartments and the fusion machinery. PMID:22728063
Unconditionally energy stable numerical schemes for phase-field vesicle membrane model
NASA Astrophysics Data System (ADS)
Guillén-González, F.; Tierra, G.
2018-02-01
Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.
Sorting by COP I-coated vesicles under interphase and mitotic conditions
1996-01-01
COP I-coated vesicles were analyzed for their content of resident Golgi enzymes (N-acetylgalactosaminyltransferase; N- acetylglucosaminyltransferase I; mannosidase II; galactosyltransferase), cargo (rat serum albumin; polyimmunoglobulin receptor), and recycling proteins (-KDEL receptor; ERGIC-53/p58) using biochemical and morphological techniques. The levels of these proteins were similar when the vesicles were prepared under interphase or mitotic conditions showing that sorting was unaffected. The average density relative to starting membranes for resident enzymes (14-30%), cargo (16-23%), and recycling proteins (81-125%) provides clues to the function of COP I vesicles in transport through the Golgi apparatus. PMID:8830771
Investigating Degassing in Felsic and Mafic Magmas by 3-D Imaging of Vesicle Pathways
NASA Astrophysics Data System (ADS)
Polacci, M.; Baker, D. R.; Piochi, M.; Mancini, L.
2009-12-01
Volatiles are the motor of volcanic eruptions. Studies of vesiculation in erupted products can provide information on how volatiles exsolve, grow and are lost from magmas as lava and tephra fragments bear the fingerprints of such processes in vesicle and crystal textures. We summarize here the results of a series of X-ray computed microtomographic experiments that were performed on about 70 volcanic specimens of mainly basaltic and trachytic compositions. A first sample suite comprises samples collected from explosive activity at persistently degassing basaltic volcanoes, namely Stromboli (Aeolian Islands), Etna (Eastern Sicily) and Ambrym (Vanuatu Islands); a second suite consists of pumice and scoria clasts from Plinian to Subplinian to Vulcanian eruptions that occurred in the Campi Flegrei caldera (Southern Italy). The tomographic images provide us with a complete 3-D view of our sampled material through which it is possible to reconstruct the geometry of the vesicle network and explore how gas was transported in the investigated magmas. We find that basaltic scoriae exhibit two types of vesicles: large (~ mm^3), coalescing vesicles with complex, convoluted shapes and small-to-intermediate sized (<~1x10^-3 mm^3), spherical to sub-spherical, poorly connected or isolated vesicles. The former vesicles were interpreted as percolation pathways for gas to flow non-explosively to the volcano crater and thought to sustain the persistent passive gas release that characterizes these volcanoes. The fact that such vesicles were found in products erupted from active basaltic volcanoes located in different tectonic settings and characterized by different explosivity strongly suggests that basaltic systems appear to follow a common degassing pathway. However, not all explosive basaltic rocks contain large, coalescing vesicles. Pumice clasts from the much more violent, dangerous and less frequent paroxysmal explosions at Stromboli do not have this type of vesicles
Liu, Nijuan; He, Qun; Bu, Weifeng
2015-03-03
Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.
Gremião, M P; Celli, C M; Chaimovich, H
1996-04-01
Anticardiolipin antibodies from sera of patients with systemic lupus erythematosus or syphilis induced leakage of entrapped carboxyfluorescein (CF) from cardiolipin (CL)/phosphatidylcholine(PC) vesicles prepared by sonication of equimolar mixtures of CL:PC. The sera dilution used here was 1:7500. IgG (5-20 micrograms/ml) from the same sera, not containing beta 2GPI, also produced a concentration-dependent leak. Vesicle leakage was inhibited by salt and was not detected with vesicles prepared exclusively with phosphatidylcholine. The demonstration of antibody-induced vesicle leakage offers a convenient system to investigate the mechanism of antibody-lipid binding as well as a potential diagnostic tool.
Dynamic modes of quasispherical vesicles: exact analytical solutions.
Guedda, M; Abaidi, M; Benlahsen, M; Misbah, C
2012-11-01
In this paper we introduce a simple mathematical analysis to reexamine vesicle dynamics in the quasispherical limit (small deformation) under a shear flow. In this context, a recent paper [Misbah, Phys. Rev. Lett. 96, 028104 (2006)] revealed a dynamic referred to as the vacillating-breathing (VB) mode where the vesicle main axis oscillates about the flow direction and the shape undergoes a breathinglike motion, as well as the tank-treading and tumbling (TB) regimes. Our goal here is to identify these three modes by obtaining explicit analytical expressions of the vesicle inclination angle and the shape deformation. In particular, the VB regime is put in evidence and the transition dynamics is discussed. Not surprisingly, our finding confirms the Keller-Skalak solutions (for rigid particles) and shows that the VB and TB modes coexist, and whether one prevails over the other depends on the initial conditions. An interesting additional element in the discussion is the prediction of the TB and VB modes as functions of a control parameter Γ, which can be identified as a TB-VB parameter.
Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.
NASA Astrophysics Data System (ADS)
Krueger, Susan Takacs
Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamo, N.; Racanelli, T.; Packer, L.
1982-01-01
Bacteriorhodopsin and Halorhodopsin present in Halobacterium halobium strains have been investigated in relation to Na/sup +//H/sup +/ exchange in isolated cell envelope vesicles. Upon illumination, these retinal proteins result in extrusion of sodium ions by either an electrogenic Na/sup +//Ha/sup +/ antiporter and/or a direct sodium pump. Since a molecular characterization of these mechanism(s) of sodium extrusion has not yet been realized, it was of interest to measure directly the light- and sodium-dependent changes in delta pH and membrane potential under nearly identical conditions in S9 and R1mR cell membrane vesicles to gain information on the relation of these retinalmore » proteins to sodium extrusion. These activities were evaluated in terms of their dependence on light intensity, and on the inhibitory effect of chemical modifiers of carboxyl groups (carbodiimides); electroneutral exchanges (monensin and triphenyltin); digitoxin and some analogues; and phloretin. Under most of the conditions and treatments employed, light- and sodium-dependent delta pH led to similar effects in both membrane vesicle types. Hence, it is concluded that the delta pH and delta psi which arise from sodium transport occur by either a single mechanism or by one which shares common features.« less
Therapeutic application of extracellular vesicles in acute and chronic renal injury.
Rovira, Jordi; Diekmann, Fritz; Campistol, Josep M; Ramírez-Bajo, María José
A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs) are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation. Copyright © 2016. Published by Elsevier España, S.L.U.
EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research.
Kim, Dae-Kyum; Lee, Jaewook; Simpson, Richard J; Lötvall, Jan; Gho, Yong Song
2015-04-01
For cell-to-cell communication, all living cells including archaea, bacteria, and eukaryotes secrete nano-sized membrane vesicles into the extracellular space. These extracellular vesicles harbor specific subsets of proteins, mRNAs, miRNAs, lipids, and metabolites that represent their cellular status. These vesicle-specific cargos are considered as novel diagnostic biomarkers as well as therapeutic targets. With the advancement in high-throughput technologies on multiomics studies and improvements in bioinformatics approaches, a huge number of vesicular proteins, mRNAs, miRNAs, lipids, and metabolites have been identified, and our understanding of these complex extracellular organelles has considerably increased during these past years. In this review, we highlight EVpedia (http://evpedia.info), a community web portal for systematic analyses of prokaryotic and eukaryotic extracellular vesicles research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carmona-Ribeiro, A M; Chaimovich, H
1986-01-01
Small dioctadecyldimethylammonium chloride (DODAC) vesicles prepared by sonication fuse upon addition of NaCl as detected by several methods (electron microscopy, trapped volume determinations, temperature-dependent phase transition curves, and osmometer behavior. In contrast, small sodium dihexadecyl phosphate (DHP) vesicles mainly aggregate upon NaCl addition as shown by electron microscopy and the lack of osmometer behavior. Scatter-derived absorbance changes of small and large DODAC or DHP vesicles as a function of time after salt addition were obtained for a range of NaCl or amphiphile concentration. These changes were interpreted in accordance with a phenomenological model based upon fundamental light-scattering laws and simple geometrical considerations. Short-range hydration repulsion between DODAC (or DHP) vesicles is possibly the main energy barrier for the fusion process. Images FIGURE 2 FIGURE 9 PMID:3779002
Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E.
2015-01-01
Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that
Liu, Dong; Chai, Wenting; Gong, Qingqiu; Wang, Ning Ning
2012-01-01
Nitrogen is an essential element for plant growth and yield. Improving Nitrogen Use Efficiency (NUE) of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. To identify new NUE genes is therefore an important task in molecular breeding. Macroautophagy (autophagy) is an intracellular process in which damaged or obsolete cytoplasmic components are encapsulated in double membraned vesicles termed autophagosomes, then delivered to the vacuole for degradation and nutrient recycling. One of the core components of autophagosome formation, ATG8, has been shown to directly mediate autophagosome expansion, and the transcript of which is highly inducible upon starvation. Therefore, we postulated that certain homologs of Saccharomyces cerevisiae ATG8 (ScATG8) from crop species could have potential for NUE crop breeding. A soybean (Glycine max, cv. Zhonghuang-13) ATG8, GmATG8c, was selected from the 11 family members based on transcript analysis upon nitrogen deprivation. GmATG8c could partially complement the yeast atg8 mutant. Constitutive expression of GmATG8c in soybean callus cells not only enhanced nitrogen starvation tolerance of the cells but accelerated the growth of the calli. Transgenic Arabidopsis over-expressing GmATG8c performed better under extended nitrogen and carbon starvation conditions. Meanwhile, under optimum growth conditions, the transgenic plants grew faster, bolted earlier, produced larger primary and axillary inflorescences, eventually produced more seeds than the wild-type. In average, the yield was improved by 12.9%. We conclude that GmATG8c may serve as an excellent candidate for breeding crops with enhanced NUE and better yield. PMID:22629371
Extracellular vesicle-mediated export of fungal RNA
Peres da Silva, Roberta; Puccia, Rosana; Rodrigues, Marcio L.; Oliveira, Débora L.; Joffe, Luna S.; César, Gabriele V.; Nimrichter, Leonardo; Goldenberg, Samuel; Alves, Lysangela R.
2015-01-01
Extracellular vesicles (EVs) play an important role in the biology of various organisms, including fungi, in which they are required for the trafficking of molecules across the cell wall. Fungal EVs contain a complex combination of macromolecules, including proteins, lipids and glycans. In this work, we aimed to describe and characterize RNA in EV preparations from the human pathogens Cryptococcus neoformans, Paracoccidiodes brasiliensis and Candida albicans, and from the model yeast Saccharomyces cerevisiae. The EV RNA content consisted mostly of molecules less than 250 nt long and the reads obtained aligned with intergenic and intronic regions or specific positions within the mRNA. We identified 114 ncRNAs, among them, six small nucleolar (snoRNA), two small nuclear (snRNA), two ribosomal (rRNA) and one transfer (tRNA) common to all the species considered, together with 20 sequences with features consistent with miRNAs. We also observed some copurified mRNAs, as suggested by reads covering entire transcripts, including those involved in vesicle-mediated transport and metabolic pathways. We characterized for the first time RNA molecules present in EVs produced by fungi. Our results suggest that RNA-containing vesicles may be determinant for various biological processes, including cell communication and pathogenesis. PMID:25586039
Liao, S B; Cheung, K H; O, W S; Tang, Fai
2014-08-01
Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility. © 2014 by the Society for the Study of Reproduction, Inc.
Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles*
Haurat, M. Florencia; Aduse-Opoku, Joseph; Rangarajan, Minnie; Dorobantu, Loredana; Gray, Murray R.; Curtis, Michael A.; Feldman, Mario F.
2011-01-01
In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions. PMID:21056982
Kurihara, Kensuke; Tamura, Mieko; Shohda, Koh-Ichiroh; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi
2011-09-04
The construction of a protocell from a materials point of view is important in understanding the origin of life. Both self-reproduction of a compartment and self-replication of an informational substance have been studied extensively, but these processes have typically been carried out independently, rather than linked to one another. Here, we demonstrate the amplification of DNA (encapsulated guest) within a self-reproducible cationic giant vesicle (host). With the addition of a vesicular membrane precursor, we observe the growth and spontaneous division of the giant vesicles, accompanied by distribution of the DNA to the daughter giant vesicles. In particular, amplification of the DNA accelerated the division of the giant vesicles. This means that self-replication of an informational substance has been linked to self-reproduction of a compartment through the interplay between polyanionic DNA and the cationic vesicular membrane. Our self-reproducing giant vesicle system therefore represents a step forward in the construction of an advanced model protocell.
Permeation of superoxide anion through the bilayer of vesicles of a synthetic amphiphile.
Gomes, L F; Cuccovia, I M; Chaimovich, H; Barbieri, D H; Politi, M J
1993-10-10
Large unilamellar vesicles, prepared with dioctadecyldimethylammonium chloride, entrap nitroblue tetrazolium. Addition of solid KO2, or production of superoxide anion by riboflavin photolysis, to nitroblue tetrazolium-containing dioctadecyldimethylammonium vesicles results in the formation of monoformazan above the phase-transition temperature of the bilayer. Below the phase-transition temperature the yield of monoformazan is negligible. These results demonstrate that superoxide anion permeates vesicles above the phase-transition temperature of the bilayer.
Sharing is Caring: The Role of Actin/Myosin-V in Synaptic Vesicle Transport between Synapses in vivo
NASA Astrophysics Data System (ADS)
Gramlich, Michael
Inter-synaptic vesicle sharing is an important but not well understood process of pre-synaptic function. Further, the molecular mechanisms that underlie this inter-synaptic exchange are not well known, and whether this inter-synaptic vesicle sharing is regulated by neural activity remains largely unexplored. I address these questions by studying CA1/CA3 Hippocampal neurons at the single synaptic vesicle level. Using high-resolution tracking of individual vesicles that have recently undergone endocytosis, I observe long-distance axonal transport of synaptic vesicles is partly mediated by the actin network. Further, the actin-dependent transport is predominantly carried out by Myosin-V. I develop a correlated-motion analysis to characterize the mechanics of how actin and Myosin-V affect vesicle transport. Lastly, I also observe that vesicle exit rates from the synapse to the axon and long-distance vesicle transport are both regulated by activity, but Myosin-V does not appear to mediate the activity dependence. These observations highlight the roles of the axonal actin network, and Myosin-V in particular, in regulating inter-synaptic vesicle exchange.
Erythrocyte-derived optical nano-vesicles as theranostic agents
NASA Astrophysics Data System (ADS)
Mac, Jenny T.; Nunez, Vicente; Bahmani, Baharak; Guerrero, Yadir; Tang, Jack; Vullev, Valentine I.; Anvari, Bahman
2015-07-01
We have engineered nano-vesicles, derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETS) since in response to NIR photo-excitation they can generate heat or emit fluorescent light. Using biochemical methods based on reduction amination, we have functionalized the surface of NET with antibodies to target specific biomolecules. We present results that demonstrate the effectiveness of NETs in targeted imaging of cancer cells that over-express the human epidermal growth factor receptor-2 (HER2).
Vesicle Size Distribution as a Novel Nuclear Forensics Tool
Donohue, Patrick H.; Simonetti, Antonio
2016-09-22
The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40'38.28"N, 106°28'31.44"W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. In this study, we report the first quantitative textural analysis of vesicles in Trinitite to constrain theirmore » physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Finally, defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment.« less
Intrinsic Curvature-Mediated Transbilayer Coupling in Asymmetric Lipid Vesicles
Eicher, Barbara; Marquardt, Drew; Heberle, Frederick A.; ...
2018-01-09
We measured the effect of intrinsic lipid curvature, J 0, on structural properties of asymmetric vesicles made of palmitoyl-oleoyl-phosphatidylethanolamine (POPE; J 0 < 0) and palmitoyl-oleoyl-phosphatidylcholine (POPC; J 0 ~ 0). Electron microscopy and dynamic light scattering were used to determine vesicle size and morphology, and x-ray and neutron scattering, combined with calorimetric experiments and solution NMR, yielded insights into leaflet-specific lipid packing and melting processes. Below the lipid melting temperature we observed strong interleaflet coupling in asymmetric vesicles with POPE inner bilayer leaflets and outer leaflets enriched in POPC. This lipid arrangement manifested itself by lipids melting cooperatively inmore » both leaflets, and a rearrangement of lipid packing in both monolayers. On the other hand, no coupling was observed in vesicles with POPC inner bilayer leaflets and outer leaflets enriched in POPE. In this case, the leaflets melted independently and did not affect each other’s acyl chain packing. Furthermore, we found no evidence for transbilayer structural coupling above the melting temperature of either sample preparation. Our results are consistent with the energetically preferred location of POPE residing in the inner leaflet, where it also resides in natural membranes, most likely causing the coupling of both leaflets. The loss of this coupling in the fluid bilayers is most likely the result of entropic contributions.« less
Extracellular Vesicles in Cardiovascular Theranostics
Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S.; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro, Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie
2017-01-01
Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells play essential roles in pathophysiological processes such as cardiac hypertrophy, cardiomyocyte survival and apoptosis, cardiac fibrosis, and angiogenesis in relation to CVDs. In this review, we will first outline the current knowledge about the physical characteristics, biological contents, and isolation methods of EVs. We will then focus on the functional roles of cardiovascular EVs and their pathophysiological effects in CVDs, as well as summarize the potential of EVs as therapeutic agents and biomarkers for CVDs. Finally, we will discuss the specific application of EVs as a novel drug delivery system and the utility of EVs in the field of regenerative medicine. PMID:29158817
Surface degassing and modifications to vesicle size distributions in active basalt flows
Cashman, K.V.; Mangan, M.T.; Newman, S.
1994-01-01
The character of the vesicle population in lava flows includes several measurable parameters that may provide important constraints on lava flow dynamics and rheology. Interpretation of vesicle size distributions (VSDs), however, requires an understanding of vesiculation processes in feeder conduits, and of post-eruption modifications to VSDs during transport and emplacement. To this end we collected samples from active basalt flows at Kilauea Volcano: (1) near the effusive Kupaianaha vent; (2) through skylights in the approximately isothermal Wahaula and Kamoamoa tube systems transporting lava to the coast; (3) from surface breakouts at different locations along the lava tubes; and (4) from different locations in a single breakout from a lava tube 1 km from the 51 vent at Pu'u 'O'o. Near-vent samples are characterized by VSDs that show exponentially decreasing numbers of vesicles with increasing vesicle size. These size distributions suggest that nucleation and growth of bubbles were continuous during ascent in the conduit, with minor associated bubble coalescence resulting from differential bubble rise. The entire vesicle population can be attributed to shallow exsolution of H2O-dominated gases at rates consistent with those predicted by simple diffusion models. Measurements of H2O, CO2 and S in the matrix glass show that the melt equilibrated rapidly at atmospheric pressure. Down-tube samples maintain similar VSD forms but show a progressive decrease in both overall vesicularity and mean vesicle size. We attribute this change to open system, "passive" rise and escape of larger bubbles to the surface. Such gas loss from the tube system results in the output of 1.2 ?? 106 g/day SO2, an output representing an addition of approximately 1% to overall volatile budget calculations. A steady increase in bubble number density with downstream distance is best explained by continued bubble nucleation at rates of 7-8/cm3s. Rates are ???25% of those estimated from the vent
Mammalian autophagy and the plasma membrane.
Pavel, Mariana; Rubinsztein, David C
2017-03-01
Autophagy (literally 'self-eating') is an evolutionarily conserved degradation process where cytoplasmic components are engulfed by vesicles called autophagosomes, which are then delivered to lysosomes, where their contents are degraded. Under stress conditions, such as starvation or oxidative stress, autophagy is upregulated in order to degrade macromolecules and restore the nutrient balance. The source of membranes that participate in the initial formation of phagophores is still incompletely understood and many intracellular structures have been shown to act as lipid donors, including the endoplasmic reticulum, Golgi, nucleus, mitochondria and the plasma membrane. Here, we focus on the contributions of the plasma membrane to autophagosome biogenesis governed by ATG16L1 and ATG9A trafficking, and summarize the physiological and pathological implications of this macroautophagy route, from development and stem cell fate to neurodegeneration and cancer. © 2016 Federation of European Biochemical Societies.
Walter, A; Kuehl, G; Barnes, K; VanderWaerdt, G
2000-11-23
The vesicle-to-micelle transition of egg phosphatidylcholine LUVs induced by octylglucoside was studied in buffers with 0-4 M sodium chloride, sucrose or urea. We used both light scattering and fluorescent probes to follow the lipid-detergent complexes in these buffers. The vesicle-to-micelle transition process was fundamentally the same in each solute. However, the detergent-to-lipid ratio required for micelle formation shifted in ways that depended on the aqueous solute. The partitioning of octylglucoside between the vesicles and the aqueous phase was primarily determined by the change in its critical micelle concentration (cmc) induced by each solute. Specifically, the cmc decreased in high salt and sucrose buffers but increased in high concentrations of urea. Cmc for two additional nonionic detergents, decyl- and dodecyl-maltoside, and three zwittergents (3-12, 3-14 and 3-16) were determined as a function of concentration for each of the solutes. In all cases NaCl and sucrose decreased the solubility of the detergents, whereas urea increased their solubilities. The effects clearly depended on acyl chain length in urea-containing solutions, but this dependence was less clear with increasing NaCl and sucrose concentrations. The contributions of these solutes to solubility and to interfacial interactions in the bilayers, pure and mixed micelles are considered.
NASA Astrophysics Data System (ADS)
Summers, David P.; Noveron, Juan; Basa, Ranor C. B.
2009-04-01
Amphiphilic bilayer membrane structures (vesicles) have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth, providing compartmentalization for the origin of life. These vesicles are similar to modern cellular membranes and can serve to contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy in metabolism (i.e. energy transduction) is one of the central issues in the origin of life. This includes such questions as how energy transduction may have occurred before complex enzymatic systems, such as required by contemporary photosynthesis, had developed and how simple a photochemical system is possible. It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has also been shown that pH gradients across the membrane surface can be photochemically created, but coupling these to drive chemical reactions has been difficult. Colloidal semiconducting mineral particles are known to photochemically drive redox chemistry. We propose that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry, and represents a model system for early photosynthesis. In our experiments we show that TiO2 particles, in the ~20 nm size range, can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to concentrate species inside a vesicle.
Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria.
Briers, Yves; Staubli, Titu; Schmid, Markus C; Wagner, Michael; Schuppler, Markus; Loessner, Martin J
2012-01-01
Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells.
Intracellular Vesicles as Reproduction Elements in Cell Wall-Deficient L-Form Bacteria
Briers, Yves; Staubli, Titu; Schmid, Markus C.; Wagner, Michael; Schuppler, Markus; Loessner, Martin J.
2012-01-01
Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells. PMID:22701656
Summers, David P; Noveron, Juan; Basa, Ranor C B
2009-04-01
Amphiphilic bilayer membrane structures (vesicles) have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth, providing compartmentalization for the origin of life. These vesicles are similar to modern cellular membranes and can serve to contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy in metabolism (i.e. energy transduction) is one of the central issues in the origin of life. This includes such questions as how energy transduction may have occurred before complex enzymatic systems, such as required by contemporary photosynthesis, had developed and how simple a photochemical system is possible. It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has also been shown that pH gradients across the membrane surface can be photochemically created, but coupling these to drive chemical reactions has been difficult. Colloidal semiconducting mineral particles are known to photochemically drive redox chemistry. We propose that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry, and represents a model system for early photosynthesis. In our experiments we show that TiO2 particles, in the approximately 20 nm size range, can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to concentrate species inside a vesicle.
Pugsley, Haley R
2017-07-21
Autophagy is a catabolic pathway in which normal or dysfunctional cellular components that accumulate during growth and differentiation are degraded via the lysosome and are recycled. During autophagy, cytoplasmic LC3 protein is lipidated and recruited to the autophagosomal membranes. The autophagosome then fuses with the lysosome to form the autolysosome, where the breakdown of the autophagosome vesicle and its contents occurs. The ubiquitin-associated protein p62, which binds to LC3, is also used to monitor autophagic flux. Cells undergoing autophagy should demonstrate the co-localization of p62, LC3, and lysosomal markers. Immunofluorescence microscopy has been used to visually identify LC3 puncta, p62, and/or lysosomes on a per-cell basis. However, an objective and statistically rigorous assessment can be difficult to obtain. To overcome these problems, multispectral imaging flow cytometry was used along with an analytical feature that compares the bright detail images from three autophagy markers (LC3, p62 and lysosomal LAMP1) and quantifies their co-localization, in combination with LC3 spot counting to measure autophagy in an objective, quantitative, and statistically robust manner.
Pugsley, Haley R.
2017-01-01
Autophagy is a catabolic pathway in which normal or dysfunctional cellular components that accumulate during growth and differentiation are degraded via the lysosome and are recycled. During autophagy, cytoplasmic LC3 protein is lipidated and recruited to the autophagosomal membranes. The autophagosome then fuses with the lysosome to form the autolysosome, where the breakdown of the autophagosome vesicle and its contents occurs. The ubiquitin-associated protein p62, which binds to LC3, is also used to monitor autophagic flux. Cells undergoing autophagy should demonstrate the co-localization of p62, LC3, and lysosomal markers. Immunofluorescence microscopy has been used to visually identify LC3 puncta, p62, and/or lysosomes on a per-cell basis. However, an objective and statistically rigorous assessment can be difficult to obtain. To overcome these problems, multispectral imaging flow cytometry was used along with an analytical feature that compares the bright detail images from three autophagy markers (LC3, p62 and lysosomal LAMP1) and quantifies their co-localization, in combination with LC3 spot counting to measure autophagy in an objective, quantitative, and statistically robust manner. PMID:28784946
Musante, Luca; Tataruch-Weinert, Dorota; Kerjaschki, Dontscho; Henry, Michael; Meleady, Paula; Holthofer, Harry
2017-01-01
Urinary extracellular vesicles (UEVs) appear an ideal source of biomarkers for kidney and urogenital diseases. The majority of protocols designed for their isolation are based on differential centrifugation steps. However, little is still known of the type and amount of vesicles left in the supernatant. Here we used an isolation protocol for UEVs which uses hydrostatic filtration dialysis as first pre-enrichment step, followed by differential centrifugation. Transmission electron microscopy (TEM), mass spectrometry (MS), western blot, ELISA assays and tuneable resistive pulse sensing (TRPS) were used to characterise and quantify UEVs in the ultracentrifugation supernatant. TEM showed the presence of a variety of small size vesicles in the supernatant while protein identification by MS matched accurately with the protein list available in Vesiclepedia. Screening and relative quantification for specific vesicle markers showed that the supernatant was preferentially positive for CD9 and TSG101. ELISA tests for quantification of exosome revealed that 14%, was left in the supernatant with a particle diameter of 110 nm and concentration of 1.54 × 10 10 /ml. Here we show a comprehensive characterisation of exosomes and other small size urinary vesicles which the conventional differential centrifugation protocol may lose.
Musante, Luca; Tataruch-Weinert, Dorota; Kerjaschki, Dontscho; Henry, Michael; Meleady, Paula; Holthofer, Harry
2017-01-01
ABSTRACT Urinary extracellular vesicles (UEVs) appear an ideal source of biomarkers for kidney and urogenital diseases. The majority of protocols designed for their isolation are based on differential centrifugation steps. However, little is still known of the type and amount of vesicles left in the supernatant. Here we used an isolation protocol for UEVs which uses hydrostatic filtration dialysis as first pre-enrichment step, followed by differential centrifugation. Transmission electron microscopy (TEM), mass spectrometry (MS), western blot, ELISA assays and tuneable resistive pulse sensing (TRPS) were used to characterise and quantify UEVs in the ultracentrifugation supernatant. TEM showed the presence of a variety of small size vesicles in the supernatant while protein identification by MS matched accurately with the protein list available in Vesiclepedia. Screening and relative quantification for specific vesicle markers showed that the supernatant was preferentially positive for CD9 and TSG101. ELISA tests for quantification of exosome revealed that 14%, was left in the supernatant with a particle diameter of 110 nm and concentration of 1.54 × 1010/ml. Here we show a comprehensive characterisation of exosomes and other small size urinary vesicles which the conventional differential centrifugation protocol may lose. PMID:28326167
Organization of organelles within hyphae of Ashbya gossypii revealed by electron tomography.
Gibeaux, Romain; Hoepfner, Dominic; Schlatter, Ivan; Antony, Claude; Philippsen, Peter
2013-11-01
Ashbya gossypii grows as multinucleated and constantly elongating hyphae. Nuclei are in continuous forward and backward motion, also move during mitosis, and frequently bypass each other. Whereas these nuclear movements are well documented, comparatively little is known about the density and morphology of organelles which very likely influence these movements. To understand the three-dimensional subcellular organization of hyphae at high resolution, we performed large-scale electron tomography of the tip regions in A. gossypii. Here, we present a comprehensive space-filling model in which most membrane-limited organelles including nuclei, mitochondria, endosomes, multivesicular bodies, vacuoles, autophagosomes, peroxisomes, and vesicles are modeled. Nuclei revealed different morphologies and protrusions filled by the nucleolus. Mitochondria are very abundant and form a tubular network with a polarized spherical fraction. The organelles of the degradative pathways show a clustered organization. By analyzing vesicle-like bodies, we identified three size classes of electron-dense vesicles (∼200, ∼150, and ∼100 nm) homogeneously distributed in the cytoplasm which most likely represent peroxisomes. Finally, coated and uncoated vesicles with approximately 40-nm diameters show a polarized distribution toward the hyphal tip with the coated vesicles preferentially localizing at the hyphal periphery.
Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions.
Falk, Matthias M; Bell, Cheryl L; Kells Andrews, Rachael M; Murray, Sandra A
2016-05-24
Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.
PKCzeta is required for microtubule-based motility of vesicles containing the ntcp transporter.
Sarkar, Souvik; Bananis, Eustratios; Nath, Sangeeta; Anwer, M Sawkat; Wolkoff, Allan W; Murray, John W
2006-08-01
Intracellular trafficking regulates the abundance and therefore activity of transporters present at the plasma membrane. The transporter, Na+-taurocholate co-transporting polypeptide (ntcp), is increased at the plasma membrane upon treatment of cells with cAMP, for which microtubules (MTs) are required and the PI3K pathway and PKCzeta have been implicated. However, trafficking of ntcp on MTs has not been demonstrated directly and the regulation and intracellular localization of ntcp is not well understood. Here, we utilize in vitro and whole-cell immunofluorescence microscopy assays to demonstrate that ntcp is present on intracellular vesicles that bind MTs and move bidirectionally, using kinesin-1 and dynein. These vesicles co-localize with markers for recycling endosomes and early but not late endosomes. They frequently undergo fission, providing a mechanism for the exclusion of ntcp from late endosomes. PI(3,4,5)P3 activates PKCzeta and enhances motility of the ntcp vesicles and overcomes the partial inhibition produced by a PI3-kinase inhibitor. Specific inhibition of PKCzeta blocks the motility of ntcp-containing vesicles but has no effect on late vesicles as shown both in vitro and in living cells transfected with ntcp-GFP. These data indicate that PKCzeta is required specifically for the intracellular movement of vesicles that contain the ntcp transporter.
A simplified method to recover urinary vesicles for clinical applications, and sample banking.
Musante, Luca; Tataruch, Dorota; Gu, Dongfeng; Benito-Martin, Alberto; Calzaferri, Giulio; Aherne, Sinead; Holthofer, Harry
2014-12-23
Urinary extracellular vesicles provide a novel source for valuable biomarkers for kidney and urogenital diseases: Current isolation protocols include laborious, sequential centrifugation steps which hampers their widespread research and clinical use. Furthermore, large individual urine sample volumes or sizable target cohorts are to be processed (e.g. for biobanking), the storage capacity is an additional problem. Thus, alternative methods are necessary to overcome such limitations. We have developed a practical vesicle isolation technique to yield easily manageable sample volumes in an exceptionally cost efficient way to facilitate their full utilization in less privileged environments and maximize the benefit of biobanking. Urinary vesicles were isolated by hydrostatic dialysis with minimal interference of soluble proteins or vesicle loss. Large volumes of urine were concentrated up to 1/100 of original volume and the dialysis step allowed equalization of urine physico-chemical characteristics. Vesicle fractions were found suitable to any applications, including RNA analysis. In the yield, our hydrostatic filtration dialysis system outperforms the conventional ultracentrifugation-based methods and the labour intensive and potentially hazardous step of ultracentrifugations are eliminated. Likewise, the need for trained laboratory personnel and heavy initial investment is avoided. Thus, our method qualifies as a method for laboratories working with urinary vesicles and biobanking.
The Function of Gas Vesicles in Halophilic Archaeaand Bacteria: Theories and Experimental Evidence
Oren, Aharon
2012-01-01
A few extremely halophilic Archaea (Halobacterium salinarum, Haloquadratum walsbyi, Haloferax mediterranei, Halorubrum vacuolatum, Halogeometricum borinquense, Haloplanus spp.) possess gas vesicles that bestow buoyancy on the cells. Gas vesicles are also produced by the anaerobic endospore-forming halophilic Bacteria Sporohalobacter lortetii and Orenia sivashensis. We have extensive information on the properties of gas vesicles in Hbt. salinarum and Hfx. mediterranei and the regulation of their formation. Different functions were suggested for gas vesicle synthesis: buoying cells towards oxygen-rich surface layers in hypersaline water bodies to prevent oxygen limitation, reaching higher light intensities for the light-driven proton pump bacteriorhodopsin, positioning the cells optimally for light absorption, light shielding, reducing the cytoplasmic volume leading to a higher surface-area-to-volume ratio (for the Archaea) and dispersal of endospores (for the anaerobic spore-forming Bacteria). Except for Hqr. walsbyi which abounds in saltern crystallizer brines, gas-vacuolate halophiles are not among the dominant life forms in hypersaline environments. There only has been little research on gas vesicles in natural communities of halophilic microorganisms, and the few existing studies failed to provide clear evidence for their possible function. This paper summarizes the current status of the different theories why gas vesicles may provide a selective advantage to some halophilic microorganisms. PMID:25371329
A Simplified Method to Recover Urinary Vesicles for Clinical Applications, and Sample Banking
Musante, Luca; Tataruch, Dorota; Gu, Dongfeng; Benito-Martin, Alberto; Calzaferri, Giulio; Aherne, Sinead; Holthofer, Harry
2014-01-01
Urinary extracellular vesicles provide a novel source for valuable biomarkers for kidney and urogenital diseases: Current isolation protocols include laborious, sequential centrifugation steps which hampers their widespread research and clinical use. Furthermore, large individual urine sample volumes or sizable target cohorts are to be processed (e.g. for biobanking), the storage capacity is an additional problem. Thus, alternative methods are necessary to overcome such limitations. We have developed a practical vesicle isolation technique to yield easily manageable sample volumes in an exceptionally cost efficient way to facilitate their full utilization in less privileged environments and maximize the benefit of biobanking. Urinary vesicles were isolated by hydrostatic dialysis with minimal interference of soluble proteins or vesicle loss. Large volumes of urine were concentrated up to 1/100 of original volume and the dialysis step allowed equalization of urine physico-chemical characteristics. Vesicle fractions were found suitable to any applications, including RNA analysis. In the yield, our hydrostatic filtration dialysis system outperforms the conventional ultracentrifugation-based methods and the labour intensive and potentially hazardous step of ultracentrifugations are eliminated. Likewise, the need for trained laboratory personnel and heavy initial investment is avoided. Thus, our method qualifies as a method for laboratories working with urinary vesicles and biobanking. PMID:25532487
Zampighi, G A; Fisher, R S
1997-08-01
In an effort to elucidate the interactions between synaptic vesicles and the membrane of the active zone, we have investigated the structure of interneuronal asymmetric synapses in the neocortex of adult rats using thin-sectioning, freeze-fracture, and negative staining electron microscopy. We identified three subtypes of spherical synaptic vesicles. Type I were agranular vesicles of 47.5 +/- 3.8 nm (mean SD, n = 24) in diameter usually seen aggregated in clusters in the presynaptic bouton. Type II synaptic vesicles were composed of a approximately 45-nm-diameter lipid bilayer sphere encased in a cage 77 +/- 4.6 nm (mean SD, n = 42) in diameter. The cage was composed of open-faced pentamers 20-22 nm/side arranged as a regular polyhedron. Type II caged vesicles were found in clusters at the boutons, adhered to the active zone, and were also present in axons. Type III synaptic vesicles appeared as electron-dense spheres 60-75 nm in diameter abutted to the membrane of the active zone. Clathrin-coated vesicles and pits of 116.6 +/- 9 nm (mean SD, n = 14) in diameter were also present in both the pre- and postsynaptic sides. Freeze-fracture showed that some intrinsic membrane proteins in the active zone were arranged as pentamers exhibiting the same dimension of those forming cages (approximately 22 nm/side). From these data, we concluded that: (a) the presynaptic bouton contains a heterogeneous population of "caged" and "plain" synaptic vesicles and (b) type II synaptic vesicles bind to receptors in the active zone. Therefore, current models of transmitter release should take into account the substantial heterogeneity of the vesicle population and the binding of vesicular cages to the membrane of the active zone.
Specific stimulated uptake of acetylcholine by Torpedo electric organ synaptic vesicles.
Parsons, S M; Koenigsberger, R
1980-01-01
The specificity of acetylcholine uptake by synaptic vesicles isolated from the electric organ of Torpedo californica was studied. In the absence of cofactors, [3H]acetylcholine was taken up identically to[14C]choline in the same solution (passive uptake), and the equilibrium concentration achieved inside the vesicles was equal to the concentration outside. In the presence of MgATP, [3H]acetylcholine and [14C]choline in the same solution were taken up identically, except only about half as much of each was taken up (suppressed uptake). [3H]Acetylcholine uptake was stimulated by MgATP and HCO3- about 4-fold relative to suppressed uptake, for a net concentrative uptake of about 2:1 (stimulated uptake). Uptake of [14C]choline in the same solution remained at the suppressed level. [3H]Acetylcholine taken up under stimulated conditions migrated with vesicles containing [14C]mannitol on analytical glycerol density gradients during centrifugation. Vesicle were treated with nine protein modification reagents under mild conditions. Two reagents had no effect on, dithiothreitol potentiated, and six reagents strongly inhibited subsequent stimulated uptake of [3H]acetylcholine. The results indicate that uptake of acetylcholine is conditionally specific for the transported substrate, is carried out by the synaptic vesicles rather than a contaminant of the preparation, and requires a functional protein system containing a critical sulfhydryl group. PMID:6934549
Site-directed decapsulation of bolaamphiphilic vesicles with enzymatic cleavable surface groups.
Popov, Mary; Grinberg, Sarina; Linder, Charles; Waner, Tal; Levi-Hevroni, Bosmat; Deckelbaum, Richard J; Heldman, Eliahu
2012-06-10
Stable nano-sized vesicles with a monolayer encapsulating membrane were prepared from novel bolaamphiphiles with choline ester head groups. The head groups were covalently bound to the alkyl chain of the bolaamphiphiles either via the nitrogen atom of the choline moiety, or via the choline ester's methyl group. Both types of bolaamphiphiles competed with acetylthiocholine for binding to acetylcholine esterase (AChE), yet, only the choline ester head groups bound to the alkyl chain via the nitrogen atom of the choline moiety were hydrolyzed by the enzyme. Likewise, only vesicles composed of bolaamphiphiles with head groups that were hydrolyzed by AChE released their encapsulated material upon exposure to the enzyme. Injection of carboxyfluorescein (CF)-loaded vesicles with cleavable choline ester head groups into mice resulted in the accumulation of CF in tissues that express high AChE activity, including the brain. By comparison, when vesicles with choline ester head groups that are not hydrolyzed by AChE were injected into mice, there was no accumulation of CF in tissues that highly express the enzyme. These results imply that bolaamphiphilic vesicles with surface groups that are substrates to enzymes which are highly expressed in target organs may potentially be used as a drug delivery system with controlled site-directed drug release. Copyright © 2011 Elsevier B.V. All rights reserved.
Suzuki, Kentaro; Machida, Kotaro; Yamaguchi, Kazuo; Sugawara, Tadashi
2018-01-01
Here, we used centrifugal precipitation to construct a giant vesicle (GV) encapsulating smaller giant vesicles (GV-in-GV) which comprises a photo-resistant outer GV and a photo-pierceable inner GV; the outer GV contained a fluorescent probe (SYBR Green I) in its inner water pool, and the inner GV contained double-stranded DNA (dsDNA) in its inner water pool. The phospholipid membrane of the inner GV was made photo-pierceable by inclusion of ca. 15mol% of a caged phospholipid in its membrane. Immediately after exposure of the GV-in-GVs to UV irradiation, strong fluorescence was detected in the inner water pool of the outer GV, indicating that dsDNA had been released from the inner GV and had complexed with the fluorescent probe. These dynamics can be recognized as a macroscopic representation of the molecular level function of a caged compound. Copyright © 2017 Elsevier B.V. All rights reserved.
A Rab5 GTPase module is important for autophagosome closure
Lipatova, Zhanna; Sun, Dan; Zhu, Xiaolong; Li, Rui; Wu, Zulin; You, Weiming; Cong, Xiaoxia; Zhou, Yiting; Gyurkovska, Valeriya; Liu, Yutao; Li, Qunli; Li, Wenjing; Cheng, Jie; Segev, Nava
2017-01-01
In the conserved autophagy pathway, the double-membrane autophagosome (AP) engulfs cellular components to be delivered for degradation in the lysosome. While only sealed AP can productively fuse with the lysosome, the molecular mechanism of AP closure is currently unknown. Rab GTPases, which regulate all intracellular trafficking pathways in eukaryotes, also regulate autophagy. Rabs function in GTPase modules together with their activators and downstream effectors. In yeast, an autophagy-specific Ypt1 GTPase module, together with a set of autophagy-related proteins (Atgs) and a phosphatidylinositol-3-phosphate (PI3P) kinase, regulates AP formation. Fusion of APs and endosomes with the vacuole (the yeast lysosome) requires the Ypt7 GTPase module. We have previously shown that the Rab5-related Vps21, within its endocytic GTPase module, regulates autophagy. However, it was not clear which autophagy step it regulates. Here, we show that this module, which includes the Vps9 activator, the Rab5-related Vps21, the CORVET tethering complex, and the Pep12 SNARE, functions after AP expansion and before AP closure. Whereas APs are not formed in mutant cells depleted for Atgs, sealed APs accumulate in cells depleted for the Ypt7 GTPase module members. Importantly, depletion of individual members of the Vps21 module results in a novel phenotype: accumulation of unsealed APs. In addition, we show that Vps21-regulated AP closure precedes another AP maturation step, the previously reported PI3P phosphatase-dependent Atg dissociation. Our results delineate three successive steps in the autophagy pathway regulated by Rabs, Ypt1, Vps21 and Ypt7, and provide the first insight into the upstream regulation of AP closure. PMID:28934205
The 17 beta-oestradiol dehydrogenase of pig endometrial cells is localized in specialized vesicles.
Adamski, J; Husen, B; Marks, F; Jungblut, P W
1993-01-01
Two monoclonal antibodies against the 17 beta-oestradiol dehydrogenase of pig endometrial cells have been used in localization studies with immunogold electron microscopy. The antibodies attach both to a fraction of dehydrogenase-rich cytoplasmic vesicles isolated from homogenates and to vesicles of similar appearance in cells. The vesicles are filled with electron-dense material. Their tagging intensity indicates a high degree of specialization. Endometrial cells from mature animals contain a host of dehydrogenase vesicles, and cells from prepubertal animals only a few. Functional aspects of the novel organelle are discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8457206
Light-activated amino acid transport in Halobacterium halobium envelope vesicles
NASA Technical Reports Server (NTRS)
Macdonald, R. E.; Lanyi, J. K.
1977-01-01
Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.
Durable vesicles for reconstitution of membrane proteins in biotechnology.
Beales, Paul A; Khan, Sanobar; Muench, Stephen P; Jeuken, Lars J C
2017-02-08
The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with. © 2017 The Author(s).
Liu, Linying; Mao, Zheng; Zhang, Jianhua; Liu, Na; Liu, Qing Huo
2016-01-01
The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles) with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV) and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments. PMID:27391692
Bieberich, Erhard
2011-04-26
The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane
Effects of lectins on calcification by vesicles isolated from aortas of cholesterol-fed rabbits.
Hsu, H H; Tawfik, O; Sun, F
2000-04-05
Advanced vascular calcification in atherosclerosis weakens arterial walls, thereby imposing a serious rupturing effect. However, the mechanism of dystrophic calcification remains unknown. Although accumulating morphological and biochemical evidence reveals a role for calcifiable vesicles in plaque calcification, the mechanism of vesicle-mediated calcification has not been fully explored. To study whether vesicles' membrane components, such as carbohydrates, may have a role in vesicle-mediated calcification, the effect of sugar-binding lectins on calcification was investigated. Atherosclerosis was developed by feeding rabbits with a diet supplemented with 0.5% cholesterol and 2% peanut oil for 4 months. Calcifiable vesicles were then isolated from thoracic aortas by collagenase digestion. The histological examination of aortas with hematoxylin counter-staining indicated abnormal formation of large plaques enriched with macrophage-derived foam cells. Fourier transform spectroscopy revealed mild calcification in aortas indicating that advanced stages of heavy calcification have yet to be reached. However, vesicles isolated from the aortas were capable of calcification in the presence of physiological levels of Ca(2+), Pi, and ATP. Thus, at this stage of atherosclerosis, aortas may start to produce calcifiable vesicles, but at a level insufficient for substantial formation of mineral in aortas. The assessments by FT-IR analysis and Alizarin red staining indicated that concanavalin A (Con A) substantially increased mineral formation by isolated vesicles. Con A also exerted a marked stimulatory effect on (45)Ca and (32)Pi deposition in a dose-dependent fashion with a half-maximal effect at 6-10 microg/ml. Either alpha-methylmannoside or alpha-methylglucoside, but not mannitol, at 10 mM abolished the stimulation. Con A stimulation was abolished after Con A was removed from calcifying media, suggesting that covalent binding may not be involved in the effect. Galactosides
Genomic and physical analysis of Rnr1-containing autophagosomes during environmental stress
NASA Astrophysics Data System (ADS)
Danon, Tamir
The Ribonucleotide Reductase Complex (RNR), a tetramer composed of 2 large (Rnr1-Rnr1 or Rnr1-Rnr3) and 2 small (Rnr2-Rnr4) subunits, is a key regulatory node in cell growth because it controls the rate-limiting step in the synthesis of DNA. Using Green Fluorescent tagged proteins and high content imaging we show that only Rnr1-GFP will form 700-800 nm2 foci under normal growth conditions, with the number of foci increasing in response to environmental stress. Rnr1-GFP foci formation is dependent on functional autophagy pathway and we hypothesized that a key lysine residue only found in Rnr1 (K853) is used together with the post-translational modification acetylation to regulate Rnr1 targeting into the autophagosome. Using the genetically engineered mutants Rnr1-K853A-GFP and Rnr1-K853Q-GFP, which mimic constitutive de-acetylation and constitutive acetylation, respectively, we show that K853 is a key residue in Rnr1 for regulating foci size, basal levels and stress-induced numbers. Further, data from phenotypic studies support the idea that K853 is a key regulatory point for both the DNA damage and nutrient stress responses. Autophagy pathways are disrupted during cancer development and our mechanistic information provides insights into its control of the therapeutically important DNA damage response.
Marra, Vincenzo; Burden, Jemima J.; Thorpe, Julian R.; Smith, Ikuko T.; Smith, Spencer L.; Häusser, Michael; Branco, Tiago; Staras, Kevin
2012-01-01
Summary At small central synapses, efficient turnover of vesicles is crucial for stimulus-driven transmission, but how the structure of this recycling pool relates to its functional role remains unclear. Here we characterize the organizational principles of functional vesicles at native hippocampal synapses with nanoscale resolution using fluorescent dye labeling and electron microscopy. We show that the recycling pool broadly scales with the magnitude of the total vesicle pool, but its average size is small (∼45 vesicles), highly variable, and regulated by CDK5/calcineurin activity. Spatial analysis demonstrates that recycling vesicles are preferentially arranged near the active zone and this segregation is abolished by actin stabilization, slowing the rate of activity-driven exocytosis. Our approach reveals a similarly biased recycling pool distribution at synapses in visual cortex activated by sensory stimulation in vivo. We suggest that in small native central synapses, efficient release of a limited pool of vesicles relies on their favored spatial positioning within the terminal. PMID:23141069
Velocity and Drag Forces on motor-protein-driven Vesicles in Cells
NASA Astrophysics Data System (ADS)
Hill, David; Holzwarth, George; Bonin, Keith
2002-10-01
In cells, vesicle transport is driven by motor proteins such as kinesin and dynein, which use the chemical energy of ATP to overcome drag. Using video-enhanced DIC microscopy at 8 frames/s, we find that vesicles in PC12 neurites move with an average velocity of 1.52 0.66 μm/s. The drag force and work required for such steady movement, calculated from Stokes' Law and the zero-frequency viscosity of the cytoplasm, suggest that multiple motors are required to move one vesicle. In buffer, single kinesin molecules move beads in 8-nm steps, each step taking only 50 μs [1]. The effects of such quick steps in cytoplasm, using viscoelastic moduli of COS7 cells, are small [2]. To measure drag forces more directly, we are using B-field-driven magnetic beads in PC12 cells to mimic kinesin-driven vesicles. [1] Nishiyama, M. et al., Nat. Cell Bio. 3, 425-428 (2001). [2] Holzwarth, Bonin, and Hill, Biophys J 82, 1784-1790 (2002).
Onsager's variational principle for the dynamics of a vesicle in a Poiseuille flow
NASA Astrophysics Data System (ADS)
Oya, Yutaka; Kawakatsu, Toshihiro
2018-03-01
We propose a systematic formulation of the migration behaviors of a vesicle in a Poiseuille flow based on Onsager's variational principle, which can be used to determine the most stable steady state. Our model is described by a combination of the phase field theory for the vesicle and the hydrodynamics for the flow field. The dynamics is governed by the bending elastic energy and the dissipation functional, the latter being composed of viscous dissipation of the flow field, dissipation of the bending energy of the vesicle, and the friction between the vesicle and the flow field. We performed a series of simulations on 2-dimensional systems by changing the bending elasticity of the membrane and observed 3 types of steady states, i.e., those with slipper shape, bullet shape, and snaking motion, and a quasi-steady state with zig-zag motion. We show that the transitions among these steady states can be quantitatively explained by evaluating the dissipation functional, which is determined by the competition between the friction on the vesicle surface and the viscous dissipation in the bulk flow.
Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane
NASA Astrophysics Data System (ADS)
Zhdanov, Vladimir P.
2017-07-01
The ligand-receptor-mediated contacts of small sub-100-nm-sized lipid vesicles (or nanoparticles) with the cellular membrane are of interest in the contexts of cell-to-cell communication, endocytosis of membrane-coated virions, and drug (RNA) delivery. In all these cases, the interior of vesicles is filled by biologically relevant content. Despite the diversity of such systems, the corresponding ligand-receptor interaction possesses universal features. One of them is that the vesicle-membrane contacts can be accompanied by the redistribution of ligands and receptors between the contact and contact-free regions. In particular, the concentrations of ligands and receptors may become appreciably higher in the contact regions and their composition may there be different compared to that in the suspended state in the solution. A statistical model presented herein describes the corresponding distribution of various ligands and receptors and allows one to calculate the related change of the free energy with variation of the vesicle-engulfment extent. The results obtained are used to clarify the necessary conditions for the vesicle-assisted pathway of drug delivery.
Druckmann, S; Ottolenghi, M; Korenstein, R
1985-01-01
The direction of the accessibility to protons of the binding site in bacteriorhodopsin is of primary importance in elucidating the proton-pump mechanism. The problem is approached via the pH-dependent equilibrium bR560 in equilibrium bR605 in vesicles with preferentially oriented purple membranes. Fast acidification (stopped-flow) experiments with inside-out, monomeric, bR vesicles were carried out with and without a buffer enclosed in the vesicle interior. The results, showing a buffer-induced delay in the formation of bR605, indicate that the binding site is accessible to protons from the inside of the vesicles. We arrive at this conclusion also by working with inside-out trimeric vesicles in the presence and in the absence of H+ (and K+) ionophores. The results suggest that in Halobacterium halobium, the binding site and thus the retinal Schiff base are exposed to the outside of the cell. This conclusion is consistent with a pumping mechanism based on a light-induced pK change. PMID:3978185
Dale, W E; Tsai, Y S; Jung, C Y; Hale, C C; Rovetto, M J; Kim, H D; Yung, C Y
1988-08-18
Stereospecific glucose transport was assayed and characterized in bovine cardiac sarcolemmal vesicles. Sarcolemmal vesicles were incubated with D-[3H]glucose or L-[3H]glucose at 25 degrees C. The reaction was terminated by rapid addition of 4 mM HgCl2 and vesicles were immediately collected on glass fiber filters for quantification of accumulated [3H]glucose. Non-specific diffusion of L-[3H]glucose was never more than 11% of total D-[3H]glucose transport into the vesicles. Stereospecific uptake of D-[3H]glucose reached a maximum level by 20 s. Cytochalasin B (50 microM) inhibited specific transport of D-[3H]glucose to the level of that for non-specific diffusion. The vesicles exhibited saturable transport (Km = 9.3 mM; Vmax = 2.6 nmol/mg per s) and the transporter turnover number was 197 glucose molecules per transporter per s. The molecular sizes of the cytochalasin B binding protein and the D-glucose transport protein in sarcolemmal vesicles were estimated by radiation inactivation. These values were 77 and 101 kDa, respectively, and by the Wilcoxen Rank Sum Test were not significantly different from each other.
Takeda, Miyoko; Yamagami, Kanako; Tanaka, Kazuma
2014-03-01
Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying mechanisms are largely unknown. We show here that overexpression of the phosphatidylserine synthase gene CHO1 suppresses defects in the endocytic recycling pathway in flippase mutants. This suppression seems to be mediated by increased cellular phosphatidylserine. Two models can be envisioned for the suppression mechanism: (i) phosphatidylserine in the cytoplasmic leaflet recruits proteins for vesicle formation with its negative charge, and (ii) phosphatidylserine flipping to the cytoplasmic leaflet induces membrane curvature that supports vesicle formation. In a mutant depleted for flippases, a phosphatidylserine probe GFP-Lact-C2 was still localized to endosomal membranes, suggesting that the mere presence of phosphatidylserine in the cytoplasmic leaflet is not enough for vesicle formation. The CHO1 overexpression did not suppress the growth defect in a mutant depleted or mutated for all flippases, suggesting that the suppression was dependent on flippase-mediated phospholipid flipping. Endocytic recycling was not blocked in a mutant lacking phosphatidylserine or depleted in phosphatidylethanolamine, suggesting that a specific phospholipid is not required for vesicle formation. These results suggest that flippase-dependent vesicle formation is mediated by phospholipid flipping, not by flipped phospholipids.
CAPS and Munc13: CATCHRs that SNARE Vesicles.
James, Declan J; Martin, Thomas F J
2013-12-04
CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mammalian Unc-13) proteins function to prime vesicles for Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes (MTCs) have been reported. MTCs coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.
Transmembrane topology of the acetylcholine receptor examined in reconstituted vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrea, P.D.
1987-01-01
Each of the five acetylcholine receptor (AChR) subunits, ..cap alpha../sub 2/..beta..-..gamma..delta, is believed to have the same number of transmembrane crossing and to share the same general folding pattern. AChR isolated from the electric organ of electric fish is predominantly dimeric. We have used this bridge as a marker for the C-terminus of the delta subunit, and presumably that of the other subunits in addition. The disulfide's accessibility to hydrophilic reductants, principally glutathione (GSH), was tested in a reconstituted vesicle system. The reduction of the delta-delta desulfide, as evidenced by the transition of AChrR dimers to monomers, was quantitatively monitoredmore » on velocity sedimentation sucrose gradients. Alternatively, the reduction of delta/sub 2/ to delta was followed by employing non-reducing SDS-PAGE. Reductants such as GSH were able to access the bridge in intact right-side-out vesicles. No acceleration of this process was evident when the vesicles were disrupted by freeze-thaw or by detergents. Control experiments which determined the rate of reduction of entrapped diphtheria toxin, or that of /sup 3/H-GSH efflux, demonstrated that intact reconstituted vesicles provide an adequate permeability barrier to GSH access of their intravesicular space.« less
Single Vesicle Analysis of Endocytic Fission on Microtubules In Vitro
Wolkoff, Allan W.
2016-01-01
Following endocytosis, internalized molecules are found within intracellular vesicles and tubules that move along the cytoskeleton and undergo fission, as demonstrated here using primary cultured rat hepatocytes. Although the use of depolymerizing drugs has shown that the cytoskeleton is not required to segregate endocytic protein, many studies suggest that the cytoskeleton is involved in the segregation of protein in normal cells. To investigate whether cytoskeletal-based movement results in the segregation of protein, we tracked the contents of vesicles during in vitro microscopy assays. These studies showed that the addition of ATP causes fission of endocytic contents along microtubules, resulting in the segregation of proteins that are targeted for different cellular compartments. The plasma membrane proteins, sodium (Na+) taurocholate cotransporting polypeptide (ntcp) and transferrin receptor, segregated from asialoorosomucoid (ASOR), an endocytic ligand that is targeted for degradation. Epidermal growth factor receptor, which is degraded, and the asialoglycoprotein receptor, which remains partially bound to ASOR, segregated less efficiently from ASOR. Vesicles containing ntcp and transferrin receptor had reduced fission in the absence of ASOR, suggesting that fission is regulated to allow proteins to segregate. A single round of fission resulted in 6.5-fold purification of ntcp from ASOR, and 25% of the resulting vesicles were completely depleted of the endocytic ligand. PMID:18284582
Photowala, Huzefa; Blackmer, Trillium; Schwartz, Eric; Hamm, Heidi E; Alford, Simon
2006-03-14
Neurotransmitters are thought to be released as quanta, where synaptic vesicles deliver packets of neurotransmitter to the synaptic cleft by fusion with the plasma membrane. However, synaptic vesicles may undergo incomplete fusion. We provide evidence that G protein-coupled receptors inhibit release by causing such incomplete fusion. 5-hydroxytryptamine (5-HT) receptor signaling potently inhibits excitatory postsynaptic currents (EPSCs) between lamprey reticulospinal axons and their postsynaptic targets by a direct action on the vesicle fusion machinery. We show that 5-HT receptor-mediated presynaptic inhibition, at this synapse, involves a reduction in EPSC quantal size. Quantal size was measured directly by comparing unitary quantal amplitudes of paired EPSCs before and during 5-HT application and indirectly by determining the effect of 5-HT on the relationship between mean-evoked EPSC amplitude and variance. Results from FM dye-labeling experiments indicate that 5-HT prevents full fusion of vesicles. 5-HT reduces FM1-43 staining of vesicles with a similar efficacy to its effect on the EPSC. However, destaining of FM1-43-labeled vesicles is abolished by lower concentrations of 5-HT that leave a substantial EPSC. The use of a water-soluble membrane impermeant quenching agent in the extracellular space reduced FM1-43 fluorescence during stimulation in 5-HT. Thus vesicles contact the extracellular space during inhibition of synaptic transmission by 5-HT. We conclude that 5-HT, via free Gbetagamma, prevents the collapse of synaptic vesicles into the presynaptic membrane.
Fast vesicle transport is required for the slow axonal transport of synapsin.
Tang, Yong; Scott, David; Das, Utpal; Gitler, Daniel; Ganguly, Archan; Roy, Subhojit
2013-09-25
Although it is known that cytosolic/soluble proteins synthesized in cell bodies are transported at much lower overall velocities than vesicles in fast axonal transport, the fundamental basis for this slow movement is unknown. Recently, we found that cytosolic proteins in axons of mouse cultured neurons are conveyed in a manner that superficially resembles diffusion, but with a slow anterograde bias that is energy- and motor-dependent (Scott et al., 2011). Here we show that slow axonal transport of synapsin, a prototypical member of this rate class, is dependent upon fast vesicle transport. Despite the distinct overall dynamics of slow and fast transport, experimentally induced and intrinsic variations in vesicle transport have analogous effects on slow transport of synapsin as well. Dynamic cotransport of vesicles and synapsin particles is also seen in axons, consistent with a model where higher-order assemblies of synapsin are conveyed by transient and probabilistic associations with vesicles moving in fast axonal transport. We posit that such dynamic associations generate the slow overall anterogradely biased flow of the population ("dynamic-recruitment model"). Our studies uncover the underlying kinetic basis for a classic cytosolic/soluble protein moving in slow axonal transport and reveal previously unknown links between slow and fast transport, offering a clearer conceptual picture of this curious phenomenon.
Potentials and capabilities of the Extracellular Vesicle (EV) Array.
Jørgensen, Malene Møller; Bæk, Rikke; Varming, Kim
2015-01-01
Extracellular vesicles (EVs) and exosomes are difficult to enrich or purify from biofluids, hence quantification and phenotyping of these are tedious and inaccurate. The multiplexed, highly sensitive and high-throughput platform of the EV Array presented by Jørgensen et al., (J Extracell Vesicles, 2013; 2: 10) has been refined regarding the capabilities of the method for characterization and molecular profiling of EV surface markers. Here, we present an extended microarray platform to detect and phenotype plasma-derived EVs (optimized for exosomes) for up to 60 antigens without any enrichment or purification prior to analysis.
Menezes, Ana Catarina; Campos, Patrícia Mazureki; Euletério, Carla; Simões, Sandra; Praça, Fabíola Silva Garcia; Bentley, Maria Vitória Lopes Badra; Ascenso, Andreia
2016-07-01
1-(1-Naphthyl)piperazine (1-NPZ) has shown promising effects by inhibiting UV radiation-induced immunosuppression. Ultradeformable vesicles are recent advantageous systems capable of improving the (trans)dermal drug delivery. The aim of this study was to investigate 1-NPZ-loaded transethosomes (NPZ-TE) and 1-NPZ-loaded vesicles containing dimethyl sulfoxide (NPZ-DM) as novel delivery nanosystems, and to uncover their chemopreventive effect against UV-induced acute inflammation. Their physicochemical properties were evaluated as follows: vesicles size and zeta potential by dynamic and electrophoretic light scattering, respectively; vesicle deformability by pressure driven transport; rheological behavior by measuring viscosity and I-NPZ entrapment yield by HPLC. In vitro topical delivery studies were performed in order to evaluate the permeation profile of both formulations, whereas in vivo studies sought to assess the photoprotective effect of the selected formulation on irradiated hairless mice by measuring myeloperoxidase activity and the secretion of proinflammatory cytokines. Either NPZ-TE or NPZ-DM exhibited positive results in terms of physicochemical properties. In vitro data revealed an improved permeation of 1-NPZ across pig ear skin, especially by NPZ-DM. In vivo studies demonstrated that NPZ-DM exposure was capable of preventing UVB-induced inflammation and blocking mediators of inflammation in mouse skin. The successful results here obtained encourage us to continue these studies for the management of inflammatory skin conditions that may lead to the development of skin cancers. Copyright © 2016 Elsevier B.V. All rights reserved.
Advantages of statistical analysis of giant vesicle flickering for bending elasticity measurements.
Méléard, P; Pott, T; Bouvrais, H; Ipsen, J H
2011-10-01
We show how to greatly improve precision when determining bending elasticity of giant unilamellar vesicles. Taking advantage of the well-known quasi-spherical model of liposome flickering, we analyze the full probability distributions of the configurational fluctuations instead of limiting the analysis to the second moment measurements only as usually done in previously published works. This leads to objective criteria to reject vesicles that do not behave according to the model. As a result, the confidence in the bending elasticity determination of individual vesicles that fit the model is improved and, consequently, the reproducibility of this measurement for a given membrane system. This approach uncovers new possibilities for bending elasticity studies like detection of minute influences by solutes in the buffer or into the membrane. In the same way, we are now able to detect the inhomogeneous behavior of giant vesicle systems such as the hazardous production of peroxide in bilayers containing fluorescent dyes. © EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2011
Love, Sara A; Haynes, Christy L
2010-09-01
Using two of the most commonly synthesized noble metal nanoparticle preparations, citrate-reduced Au and Ag, the impacts of short-term accidental nanoparticle exposure are examined in primary culture murine adrenal medullary chromaffin cells. Transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Alamar Blue viability studies revealed that nanoparticles are taken up by cells but do not decrease cell viability within 48 hours of exposure. Carbon-fiber microelectrode amperometry (CFMA) examination of exocytosis in nanoparticle-exposed cells revealed that nanoparticle exposure does lead to decreased secretion of chemical messenger molecules, of up to 32.5% at 48 hours of Au exposure. The kinetics of intravesicular species liberation also slows after nanoparticle exposure, between 30 and 50% for Au and Ag, respectively. Repeated stimulation of exocytosis demonstrated that these effects persisted during subsequent stimulations, meaning that nanoparticles do not interfere directly with the vesicle recycling machinery but also that cellular function is unable to recover following vesicle content expulsion. By comparing these trends with parallel studies done using mast cells, it is clear that similar exocytosis perturbations occur across cell types following noble metal nanoparticle exposure, supporting a generalizable effect of nanoparticle-vesicle interactions.
Maucort, Guillaume; Kasula, Ravikiran; Papadopulos, Andreas; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Meunier, Frederic A
2014-01-01
How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.
Extracellular Vesicles as Biomarkers and Therapeutics in Dermatology: A Focus on Exosomes.
McBride, Jeffrey D; Rodriguez-Menocal, Luis; Badiavas, Evangelos V
2017-08-01
Extracellular vesicles (exosomes, microvesicles, and apoptotic bodies) are ubiquitous in human tissues, circulation, and body fluids. Of these vesicles, exosomes are of growing interest among investigators across multiple fields, including dermatology. The characteristics of exosomes, their associated cargo (nucleic acids, proteins, and lipids), and downstream functions are vastly different, depending on the cell origin. Here, we review concepts in extracellular vesicle biology, with a focus on exosomes, highlighting recent studies in the field of dermatology. Furthermore, we highlight emerging technical issues associated with isolating and measuring exosomes. Extracellular vesicles, including exosomes, have immediate potential for serving as biomarkers and therapeutics in dermatology over the next decade. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Kassem, Mohammed A; Megahed, Mohamed A; Abu Elyazid, Sherif K; Abd-Allah, Fathy I; Abdelghany, Tamer M; Al-Abd, Ahmed M; El-Say, Khalid M
2018-05-01
Serious adverse effects and low selectivity to cancer cells are the main obstacles of long term therapy with Tamoxifen (Tmx). This study aimed to develop Tmx-loaded span-based nano-vesicles for delivery to malignant tissues with maximum efficacy. The effect of three variables on vesicle size (Y 1 ), zeta potential (Y 2 ), entrapment efficiency (Y 3 ) and the cumulative percent release after 24 h (Y 4 ) were optimized using Box-Behnken design. The optimized formula was prepared and tested for its stability in different storage conditions. The observed values for the optimized formula were 310.2 nm, - 42.09 mV, 75.45 and 71.70% for Y 1 , Y 2 , Y 3 , and Y 4 , respectively. The examination using electron microscopy confirmed the formation of rounded vesicles with distinctive bilayer structure. Moreover, the cytotoxic activity of the optimized formula on both breast cancer cells (MCF-7) and normal cells (BHK) showed enhanced selectivity (9.4 folds) on cancerous cells with IC 50 values 4.7 ± 1.5 and 44.3 ± 1.3 μg/ml on cancer and normal cells, respectively. While, free Tmx exhibited lower selectivity (2.5 folds) than optimized nano-vesicles on cancer cells with IC 50 values of 9.0 ± 1.1 μg/ml and 22.5 ± 5.3 μg/ml on MCF-7 and BHK cells, respectively. The promising prepared vesicular system, with greater efficacy and selectivity, provides a marvelous tool to overcome breast cancer treatment challenges.
Experiments on the rheology of vesicle-bearing magmas
NASA Astrophysics Data System (ADS)
Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia
2016-04-01
We present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. Starting materials having variable vesicularity (φ = 0 - 66%) were synthesized by high-temperature foaming (T = 900 - 1050 ° C and P = 1 bar) of cores of natural rhyolitic obsidian from Hrafntinnuhryggur, Krafla, Iceland. These cores were subsequently deformed using a high-temperature uniaxial press at dry atmospheric conditions. Each experiment involved deforming vesicle-bearing cores isothermally (T = 750 ° C), at constant displacement rates (strain rates between 0.5-1 x 10-4 s-1), and to total strains (ɛ) of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods and establishes a baseline for comparing data derived from experiments on vesicle rich cores. At the experimental conditions, the presence of vesicles has a major impact on the rheological response, producing a marked decrease of bulk viscosity (maximum decrease of 2 log units Pa s) that is best described by a two-parameter empirical equation: log ηBulk = log η0 - 1.47 * [φ/(1-φ)]0.48. Our model provides a means to compare the diverse behaviour of vesicle-bearing melts reported in the literature and reflecting material properties (e.g., analogue vs. natural), geometry and distribution of pores (e.g. foamed/natural vs. unconsolidated/sintered materials), and flow regime. Lastly, we apply principles of Maxwell relaxation theory, combined with our parameterization of bubble-melt rheology, to map the potential onset of non-Newtonian behaviour (strain localization) in vesiculated magmas and lavas as a function of melt viscosity, vesicularity, strain rate, and geological condition. Increasing vesicularity in magmas can initiate non-Newtonian behaviour at constant strain rates. Lower melt viscosity sustains homogeneous Newtonian flow in vesiculated magmas even at relatively high strain rates.
Origin of life: LUCA and extracellular membrane vesicles (EMVs)
NASA Astrophysics Data System (ADS)
Gill, S.; Forterre, P.
2016-01-01
Cells from the three domains of life produce extracellular membrane vesicles (EMVs), suggesting that EMV production is an important aspect of cellular physiology. EMVs have been implicated in many aspects of cellular life in all domains, including stress response, toxicity against competing strains, pathogenicity, detoxification and resistance against viral attack. These EMVs represent an important mode of inter-cellular communication by serving as vehicles for transfer of DNA, RNA, proteins and lipids between cells. Here, we review recent progress in the understanding of EMV biology and their various roles. We focus on the role of membrane vesicles in early cellular evolution and how they would have helped shape the nature of the last universal common ancestor. A membrane-protected micro-environment would have been a key to the survival of spontaneous molecular systems and efficient metabolic reactions. Interestingly, the morphology of EMVs is strongly reminiscent of the morphology of some virions. It is thus tempting to make a link between the origin of the first protocell via the formation of vesicles and the origin of viruses.
NASA Astrophysics Data System (ADS)
Noguchi, Hiroshi
2013-02-01
We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.
A histological study of the seminal vesicle of the armoured catfish Corydoras aeneus.
Franceschini-Vicentini, I B; Papa, L P; Bombonato, M T S; Vicentini, C A; Ribeiro, K; Orsi, A M
2007-04-01
Most species of Corydoras exhibited a reproductive behaviour called 'T-position', and exhibited an accessory gland in the male genital tract, called the seminal vesicle. It appeared that both the structure and the composition of the fluid varied considerably between the species investigated. Consequently, different opinions were proposed regarding the possible role of seminal vesicle on this particular reproductive behaviour. Male adults of Corydoras aeneus were collected, anaesthetized, and samples of seminal vesicle were fixed in Bouin's solution. The sections were stained with haematoxylin-eosin and periodic acid Schiff. The seminal vesicle showed a system of anastomosed secretory tubules, forming a vesicular collective network, which gave rise to the vesicular ducts. The latter fused with the testicular efferent ducts and formed the spermatic ducts. Considering this fusion, when the sperm cells reached the spermatic ducts, the fluid produced at the seminal vesicle covered them. Histochemical studies evidenced the presence of neutral and acid glycosaminoglycans in the seminal fluid. Considering the reproductive behaviour of C. aeneus, it is believed that the protection associated with the immobilization of the sperm cells assures the sperm integrity during the passage through female's intestine until fertilization.
Gaspard, Jeffery; Casey, Liam M.; Rozin, Matt; Munoz-Pinto, Dany J.; Silas, James A.; Hahn, Mariah S.
2016-01-01
Poly(dimethylsiloxane-ethylene oxide) (PDMS-PEO) and poly(butadiene-b-ethylene oxide) (PBd-PEO) are two block copolymers which separately form vesicles with disparate membrane permeabilities and fluidities. Thus, hybrid vesicles formed from both PDMS-PEO and PBd-PEO may ultimately allow for systematic, application-specific tuning of vesicle membrane fluidity and permeability. However, given the relatively low strength previously noted for comb-type PDMS-PEO vesicles, the mechanical robustness of the resulting hybrid vesicles must first be confirmed. Toward this end, we have characterized the mechanical behavior of vesicles formed from mixtures of linear PDMS-PEO and linear PBd-PEO using micropipette aspiration. Tension versus strain plots of pure PDMS12-PEO46 vesicles revealed a non-linear response in the high tension regime, in contrast to the approximately linear response of pure PBd33-PEO20 vesicles. Remarkably, the area expansion modulus, critical tension, and cohesive energy density of PDMS12-PEO46 vesicles were each significantly greater than for PBd33-PEO20 vesicles, although critical strain was not significantly different between these vesicle types. PDMS12-PEO46/PBd33-PEO20 hybrid vesicles generally displayed graded responses in between that of the pure component vesicles. Thus, the PDMS12-PEO46/PBd33-PEO20 hybrid vesicles retained or exceeded the strength and toughness characteristic of pure PBd-PEO vesicles, indicating that future assessment of the membrane permeability and fluidity of these hybrid vesicles may be warranted. PMID:26999148
NASA Astrophysics Data System (ADS)
Courbin, L.; Panizza, P.
2004-02-01
Multilamellar vesicles can be formed upon shearing lamellar phases (Lα) and phase-separated lamellar-sponge (Lα/L3) mixtures. In the first case, the vesicle volume fraction is always 100% and the vesicle size is monitored by elasticity (“onion textures”). In the second system the vesicle volume fraction can be tuned from 0 to 100% and the mean size results from a balance between capillary and viscous forces (“Taylor droplets”). However, despite these differences, in both systems we show that the formation of vesicles is a strain-controlled process monitored by a universal primary buckling instability of the lamellae.
Diffuse interface models of locally inextensible vesicles in a viscous fluid
Aland, Sebastian; Egerer, Sabine; Lowengrub, John; Voigt, Axel
2014-01-01
We present a new diffuse interface model for the dynamics of inextensible vesicles in a viscous fluid with inertial forces. A new feature of this work is the implementation of the local inextensibility condition in the diffuse interface context. Local inextensibility is enforced by using a local Lagrange multiplier, which provides the necessary tension force at the interface. We introduce a new equation for the local Lagrange multiplier whose solution essentially provides a harmonic extension of the multiplier off the interface while maintaining the local inextensibility constraint near the interface. We also develop a local relaxation scheme that dynamically corrects local stretching/compression errors thereby preventing their accumulation. Asymptotic analysis is presented that shows that our new system converges to a relaxed version of the inextensible sharp interface model. This is also verified numerically. To solve the equations, we use an adaptive finite element method with implicit coupling between the Navier-Stokes and the diffuse interface inextensibility equations. Numerical simulations of a single vesicle in a shear flow at different Reynolds numbers demonstrate that errors in enforcing local inextensibility may accumulate and lead to large differences in the dynamics in the tumbling regime and smaller differences in the inclination angle of vesicles in the tank-treading regime. The local relaxation algorithm is shown to prevent the accumulation of stretching and compression errors very effectively. Simulations of two vesicles in an extensional flow show that local inextensibility plays an important role when vesicles are in close proximity by inhibiting fluid drainage in the near contact region. PMID:25246712
Freeze-thaw cycles induce content exchange between cell-sized lipid vesicles
NASA Astrophysics Data System (ADS)
Litschel, Thomas; Ganzinger, Kristina A.; Movinkel, Torgeir; Heymann, Michael; Robinson, Tom; Mutschler, Hannes; Schwille, Petra
2018-05-01
Early protocells are commonly assumed to consist of an amphiphilic membrane enclosing an RNA-based self-replicating genetic system and a primitive metabolism without protein enzymes. Thus, protocell evolution must have relied on simple physicochemical self-organization processes within and across such vesicular structures. We investigate freeze-thaw (FT) cycling as a potential environmental driver for the necessary content exchange between vesicles. To this end, we developed a conceptually simple yet statistically powerful high-throughput procedure based on nucleic acid-containing giant unilamellar vesicles (GUVs) as model protocells. GUVs are formed by emulsion transfer in glass bottom microtiter plates and hence can be manipulated and monitored by fluorescence microscopy without additional pipetting and sample handling steps. This new protocol greatly minimizes artefacts, such as unintended GUV rupture or fusion by shear forces. Using DNA-encapsulating phospholipid GUVs fabricated by this method, we quantified the extent of content mixing between GUVs under different FT conditions. We found evidence of nucleic acid exchange in all detected vesicles if fast freezing of GUVs at ‑80 °C is followed by slow thawing at room temperature. In contrast, slow freezing and fast thawing both adversely affected content mixing. Surprisingly, and in contrast to previous reports for FT-induced content mixing, we found that the content is not exchanged through vesicle fusion and fission, but that vesicles largely maintain their membrane identity and even large molecules are exchanged via diffusion across the membranes. Our approach supports efficient screening of prebiotically plausible molecules and environmental conditions, to yield universal mechanistic insights into how cellular life may have emerged.
Uda, Ryoko M; Hiraishi, Eri; Ohnishi, Ryo; Nakahara, Yoshio; Kimura, Keiichi
2010-04-20
Photoinduced morphological changes in phosphatidylcholine vesicles are triggered by a Malachite Green leuconitrile derivative dissolved in the lipidic membrane, and are observed at Malachite Green derivative/lipid ratios <5 mol %. This Malachite Green derivative is a photoresponsive compound that undergoes ionization to afford a positive charge on the molecule by UV irradiation. The Malachite Green derivative exhibits amphiphilicity when ionized photochemically, whereas it behaves as a lipophilic compound under dark conditions. Cryo-transmission electron microscopy was used to determine vesicle morphology. The effects of the Malachite Green derivative on vesicles were studied by dynamic light scattering and fluorescence resonance energy transfer. Irradiation of vesicles containing the Malachite Green derivative induces nonspherical vesicle morphology, fusion of vesicles, and membrane solubilization, depending on conditions. Furthermore, irradiation of the Malachite Green derivative induces the release of a vesicle-encapsulated compound.
Lipid Bilayer Vesicles with Numbers of Membrane-Linking Pores
NASA Astrophysics Data System (ADS)
Ken-ichirou Akashi,; Hidetake Miyata,
2010-06-01
We report that phospholipid membranes spontaneously formed in aqueous medium giant unilamellar vesicles (GUVs) possessing many membranous wormhole-like structures (membrane-linking pores, MLPs). By phase contract microscopy and confocal fluorescence microscopy, the structures of the MLPs, consisting of lipid bilayer, were resolvable, and a variety of vesicular shapes having many MLPs (a high genus topology) were found. These vesicles were stable but easily deformed by micromanipulation with a microneedle. We also observed the size reduction of the MLPs with the increase in membrane tension, which was qualitatively consistent with a prediction from a simple dynamical model.
Feruloyl glycerol and 1,3-diferuloyl glycerol antioxidant behavior in phospholipid vesicles
USDA-ARS?s Scientific Manuscript database
Enzymatically synthesized feruloyl¬-sn¬-glycerol (FG) and 1,3-diferuloyl-sn-glycerol (F2G) were both found to partition and incorporate well into 1,2-dioleoylphosphocholine vesicles. Incorporation resulted in vesicles that were as or slightly more stable than the unloaded ones. FG and F2G both demon...
3D imaging of vesicles in hyaloclastic fragments - clues to syn-eruptive shear conditions
NASA Astrophysics Data System (ADS)
Helo, C.; Flaws, A.; Hess, K.; Franz, A.; Clague, D. A.; Dingwell, D. B.
2011-12-01
3D imaging of stretched vesicles in hyaloclastic fragments has been used to investigate the shear environment of mild pyroclastic eruptions at mid-ocean ridges. X-ray computed tomography offers an attractive non-invasive method to investigate geomaterials at a high resolution for the geometry of the different phases. In this study, we have imaged vesicles within two types of basaltic glass fragments. Stretched, ellipsoid-shaped vesicles in thin limu o Pele and tubular vesicles in a pumiceous fragment. Both types originate from pyroclastic activity on Axial Seamount, Juan de Fuca ridge. Rapid quenching of the glass has prevented extensive bubble relaxation and information about syn-eruptive shear and differential stress conditions is stored, as the dimensions of a stretched bubble directly relates to the extent and mode of shearing. The X-ray tomography data was processed using a set of codes based on edge detection and ellipsoid fitting to acquire quantitative information on the shape of the stretched vesicles. Preliminary results demonstrate, that the geometry of the stretched vesicles, e.g., the elongation of the vesicle with respect to the calculated undeformed radius, is in accordance with simple shear scenarios. Stored differential stress ranges from 5 kPa to 90 kPa with shear rates between 3.2x102 s-1 and 5.7x3 s-1 within a single limu o Pele fragment. This range may be explained by either variable time available for relaxation as the cooling front proceeds through the fragment, complex interplay in space and time between fragmentation and quenching, bubble clusters mutually inhibiting each others extend of deformation, or any combination of these. Bubble relaxation time scales are less then 0.005 s providing constraints on the timeframe for cooling to the glass transition. Qualitative analyses of the tube pumice indicates that the tubular structures grow in length by coalescence of vertically aligned ellipsoid-shaped vesicles, and in width by coalescence of
Santin, Yohan; Sicard, Pierre; Vigneron, François; Guilbeau-Frugier, Céline; Dutaur, Marianne; Lairez, Olivier; Couderc, Bettina; Manni, Diego; Korolchuk, Viktor I; Lezoualc'h, Frank; Parini, Angelo; Mialet-Perez, Jeanne
2016-07-01
In heart failure (HF), mitochondrial quality control and autophagy are progressively impaired, but the role of oxidative stress in this process and its underlying mechanism remain to be defined. By degrading norepinephrine and serotonin, the mitochondrial enzyme, monoamine oxidase-A (MAO-A), is a potent source of reactive oxygen species (ROS) in the heart and its activation leads to the persistence of mitochondrial damage. In this study, we analyzed the consequences of ROS generation by MAO-A on the autophagy-lysosome pathway in the heart. Cardiomyocyte-driven expression of MAO-A in mice led to mitochondrial fission and translocation of Drp1 and Parkin in the mitochondrial compartment. Ventricles from MAO-A transgenic mice displayed accumulation of LC3-positive autophagosomes, together with p62 and ubiquitylated proteins, indicating impairment of autophagy. In vitro adenoviral delivery of MAO-A in cardiomyocytes and the consequent generation of ROS blocked autophagic flux with accumulation of LC3II, p62, and ubiquitylated proteins, leading to mitochondrial fission and cell necrosis. In addition, MAO-A activation induced accumulation of lysosomal proteins, cathepsin D and Lamp1, reduced lysosomal acidification, and blocked the nuclear translocation of transcription factor-EB (TFEB), a master regulator of autophagy and lysosome biogenesis. Most interestingly, overexpression of TFEB attenuated autophagosome buildup, mitochondrial fission, cardiomyocyte death, and HF associated with MAO-A activation. This study unravels a new link between MAO-dependent H2O2 production and lysosomal dysfunction. Altogether, our findings demonstrate that the MAO-A/H2O2 axis has a negative impact on the elimination and recycling of mitochondria through the autophagy-lysosome pathway, which participates in cardiomyocyte death and HF. Antioxid. Redox Signal. 25, 10-27.
Phase separation in artificial vesicles driven by light and curvature
NASA Astrophysics Data System (ADS)
Rinaldin, Melissa; Pomp, Wim; Schmidt, Thomas; Giomi, Luca; Kraft, Daniela; Physics of Life Processes Team; Soft; Bio Mechanics Collaboration; Self-Assembly in Soft Matter Systems Collaboration
The role of phase-demixing in living cells, leading to the lipid-raft hypothesis, has been extensively studied. Lipid domains of higher lipid chain order are proposed to regulate protein spatial organization. Giant Unilamellar Vesicles provide an artificial model to study phase separation. So far temperature was used to initiate the process. Here we introduce a new methodology based on the induction of phase separation by light. To this aim, the composition of the lipid membrane is varied by photo-oxidation of lipids. The control of the process gained by using light allowed us to observe vesicle shape fluctuations during phase-demixing. The presence of fluctuations near the critical mixing point resembles features of a critical process. We quantitatively analyze these fluctuations using a 2d elastic model, from which we can estimate the material parameters such as bending rigidity and surface tension, demonstrating the non-equilibrium critical behaviour. Finally, I will describe recent attempts toward tuning the membrane composition by controlling the vesicle curvature.
The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles
Topalidou, Irini; Cattin-Ortolá, Jérôme; MacCoss, Michael J.
2016-01-01
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. PMID:27191843
A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis
Li, Hongmei; Alavian, Kambiz N.; Lazrove, Emma; Mehta, Nabil; Jones, Adrienne; Zhang, Ping; Licznerski, Pawel; Graham, Morven; Uo, Takuma; Guo, Junhua; Rahner, Christoph; Duman, Ronald S.; Morrison, Richard S.; Jonas, Elizabeth A.
2013-01-01
Following exocytosis, the rate of recovery of neurotransmitter release is determined by vesicle retrieval from the plasma membrane and by recruitment of vesicles from reserve pools within the synapse, the latter of which is dependent on mitochondrial ATP. The Bcl-2 family protein Bcl-xL, in addition to its role in cell death, regulates neurotransmitter release and recovery in part by increasing ATP availability from mitochondria. We now find, however, that, Bcl-xL directly regulates endocytotic vesicle retrieval in hippocampal neurons through protein/protein interaction with components of the clathrin complex. Our evidence suggests that, during synaptic stimulation, Bcl-xL translocates to clathrin-coated pits in a calmodulin-dependent manner and forms a complex of proteins with the GTPase Drp1, Mff and clathrin. Depletion of Drp1 produces misformed endocytotic vesicles. Mutagenesis studies suggest that formation of the Bcl-xL-Drp1 complex is necessary for the enhanced rate of vesicle endocytosis produced by Bcl-xL, thus providing a mechanism for presynaptic plasticity. PMID:23792689
Primary leiomyosarcoma of the seminal vesicle: case report and review of the literature.
Cauvin, Cécile; Moureau-Zabotto, Laurence; Chetaille, Bruno; Hilgers, Werner; Denoux, Yves; Jacquemier, Jocelyne; Guiramand, Jérôme; Sarran, Anthony; Bertucci, François
2011-07-29
Primary leiomyosarcoma of the seminal vesicle is exceedingly rare. We report a case of a 59-year-old man with tumour detected by rectal symptoms and ultrasonography. Computed tomography and magnetic resonance imaging suggested an origin in the right seminal vesicle. Transperineal biopsy of the tumour revealed leiomyosarcoma. A radical vesiculo-prostactectomy with bilateral pelvic lymphadenectomy was performed. Pathological examination showed a grade 2 leiomyosarcoma of the seminal vesicle. The patient received adjuvant radiotherapy. He developed distant metastases 29 months after diagnosis, and received chemotherapy. Metastatic disease was controlled by second-line gemcitabine-docetaxel combination. Fifty-one months after diagnosis of the primary tumour, and 22 months after the first metastases, the patient is alive with excellent performance status, and multiple asymptomatic stable lung and liver lesions. We report the eighth case of primary leiomyosarcoma of the seminal vesicle and the first one with a so long follow-up.
Goldenring, James R.
2014-01-01
Epithelial cell carcinogenesis involves the loss of polarity, alteration of polarized protein presentation, dynamic cell morphology changes, increased proliferation and increased cell motility and invasion. Elements of membrane vesicle trafficking underlie all of these processes. Specific membrane trafficking regulators, including Rab small GTPases, through the coordinated dynamics of intracellular trafficking along cytoskeletal pathways, determine cell surface presentation of proteins and overall function of both differentiated and neoplastic cells. While mutations in vesicle trafficking proteins may not be direct drivers of transformation, elements of the machinery of vesicle movement play critical roles in the phenotypes of neoplastic cells. Therefore, the regulators of membrane vesicle trafficking decisions are critical mediators of the full spectrum of cell physiologies driving cancer cell biology, including initial loss of polarity, invasion and metastasis. Targeting of these fundamental intracellular processes may provide important points for manipulation of cancer cell behaviour. PMID:24108097
Nanodesign of olein vesicles for the topical delivery of the antioxidant resveratrol.
Pando, Daniel; Caddeo, Carla; Manconi, Maria; Fadda, Anna Maria; Pazos, Carmen
2013-08-01
The ex-vivo percutaneous absorption of the natural antioxidant resveratrol in liposomes and niosomes was investigated. The influence of vesicle composition on their physicochemical properties and stability was evaluated. Liposomes containing resveratrol were formulated using soy phosphatidylcholine (Phospholipon90G). Innovative niosomes were formulated using mono- or diglycerides: glycerol monooleate (Peceol) and polyglyceryl-3 dioleate (Plurol OleiqueCC), respectively, two suitable skin-compatible oleins used in pharmaceutical formulations as penetration enhancers. Small, negatively charged vesicles with a mean size of approximately 200 nm were prepared. The accelerated stability of vesicles was evaluated using Turbiscan Lab Expert, and the bilayer deformability was also assessed. Ex-vivo transdermal experiments were carried out in Franz diffusion cells, on newborn pig skin, to study the influence of the different vesicle formulations on resveratrol skin delivery. Results indicated a high cutaneous accumulation and a low transdermal delivery of resveratrol, especially when Peceol niosomes were used. Overall, niosomes formulated with Plurol oleique or Peceol showed a better behaviour than liposomes in the cutaneous delivery of resveratrol. © 2013 Royal Pharmaceutical Society.
Reversible Chromatic Response of Polydiacetylene Derivative Vesicles in D2O Solvent.
Shin, Min Jae; Kim, Jong-Duk
2016-01-26
The thermal chromatic sensitivity of polydiacetylenes (PDAs) with 10,12-pentacosadiynoic acid (PCDA) derivatives, which have a hydroxyl group (HEEPCDA) and an amine group (APPCDA), were investigated using D2O and H2O as solvents. The vesicle solution with polymerized HEEPCDA exhibited a reversible chromatic response during the heating and cooling cycle in D2O, but not in H2O. On the other hand, the vesicle solution with the polymerized APPCDA exhibited a reversible chromatic response in H2O during the heating and cooling cycle, but the color of the solution did not change much in D2O. The critical vesicle concentration of HEEPCDA was lower in D2O than in H2O, and the chromatic sensitivity of the polymerized vesicles to temperature was slower in D2O than in H2O. We think that it is due to D2O being a more highly structured solvent than H2O with the hydrogen bonding in D2O stronger than that in H2O.
The effect of protein on phase separation in giant unilamellar lipid vesicles.
NASA Astrophysics Data System (ADS)
Hutchison, J. B.; Weis, R. M.; Dinsmore, A. D.
2009-03-01
We explore the coarsening and out of plane curvature (budding) of domains in lipid bilayer vesicles composed of DOPC (unsaturated), PSM (saturated), and cholesterol. Green fluorescent protein (GFP) was added to the membrane in controlled amounts by binding to the Ni-chelating lipid, Ni-DOGS. Vesicles with diameters between 10 and 50 microns were prepared via a standard electroformation procedure. As a sample is lowered through temperature Tmix, a previously homogeneous vesicle phase separates into two fluid phases with distinct compositions. Phase-separated domains have a line tension (energy/length) at the boundary with the major phase which competes with bending energy and lateral tension to determine the overall configuration of the vesicle. Domain budding and coarsening were observed and recorded using both bright field and fluorescence microscopy during temperature scans and with varying concentrations of GFP. The addition of a model protein into our system allows for a broader understanding of the effect of protein, which are ubiquitous in cell membranes, on phase separation, budding, and coarsening.
Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts.
Gadras, C; Santaella, C; Vierling, P
1999-01-04
The stability of fluorinated phospholipid-based vesicles in terms of detergent-induced release of encapsulated carboxyfluorescein has been evaluated. The fluorinated liposomes are substantially more resistant towards the lytic action of sodium taurocholate than conventional DSPC or even DSPC/CH 1/1 liposomes. Concerning structure/permeability relationships, the larger the fluorination degree of the membrane, the higher the resistance of the fluorinated liposomes to their destruction by the detergent. These results show that fluorinated liposomes have a promising potential as drug carrier and delivery systems for oral administration.
Marianecci, Carlotta; Paolino, Donatella; Celia, Christian; Fresta, Massimo; Carafa, Maria; Alhaique, Franco
2010-10-01
Non-ionic surfactant vesicles (NSVs) were proposed for the pulmonary delivery of glucocorticoids such as beclomethasone dipropionate (BDP) for the treatment of inflammatory lung diseases, e.g. asthma, chronic obstructive pulmonary disease and various type of pulmonary fibrosis. The thin layer evaporation method followed by sonication was used to prepare small non-ionic surfactant vesicles containing beclomethasone dipropionate. Light scattering experiments showed that beclomethasone dipropionate-loaded non-ionic surfactant vesicles were larger than unloaded ones and showed a significant (P<0.001) decrease of the zeta potential. The morphological analysis, by freeze-fracture transmission electron microscopy, showed the maintenance of a vesicular structure in the presence of the drug. The colloidal and storage stability were evaluated by Turbiscan Lab Expert, which evidenced the good stability of BDP-loaded non-ionic surfactant vesicles, thus showing no significant variations of mean size and no colloidal phase segregation. Primary human lung fibroblast (HLF) cells were used for in vitro investigation of vesicle tolerability, carrier-cell interaction, intracellular drug uptake and drug-loaded vesicle anti-inflammatory activity. The investigated NSVs did not show a significant cytotoxic activity at all incubation times for concentrations ranging from 0.01 to 1 μM. Confocal laser scanning microscopy showed vesicular carrier localization at the level of the cytoplasm compartment, where the glucocorticoid receptor (target site) is localized. BDP-loaded non-ionic surfactant vesicles elicited a significant improvement of the HLF intracellular uptake of the drug with respect to the free drug solution, drug/surfactant mixtures and empty vesicles used as references. The treatment of HLF cells with BDP-loaded non-ionic surfactant vesicles determined a noticeable increase of the drug anti-inflammatory activity by reducing the secretion of both constitutive and interleukin-1
A Novel Synaptic Vesicle Fusion Path in the Rat Cerebral Cortex: The “Saddle” Point Hypothesis
Zampighi, Guido A.; Serrano, Raul; Vergara, Julio L.
2014-01-01
We improved freeze-fracture electron microscopy to study synapses in the neuropil of the rat cerebral cortex at ∼2 nm resolution and in three-dimensions. In the pre-synaptic axon, we found that “rods” assembled from short filaments protruding from the vesicle and the plasma membrane connects synaptic vesicles to the membrane of the active zone. We equated these “connector rods” to protein complexes involved in “docking” and “priming” vesicles to the active zone. Depending on their orientation, the “rods” define two synaptic vesicle-fusion paths: When parallel to the plasma membrane, the vesicles hemi-fuse anywhere (“randomly”) in the active zone following the conventional path anticipated by the SNARE hypothesis. When perpendicular to the plasma membrane, the vesicles hemi-fuse at the base of sharp crooks, called “indentations,” that are spaced 75–85 nm center-to-center, arranged in files and contained within gutters. They result from primary and secondary membrane curvatures that intersect at stationary inflection (“saddle”) points. Computer simulations indicate that this novel vesicle-fusion path evokes neurotransmitter concentration domains on the post-synaptic spine that are wider, shallower, and that reach higher average concentrations than the more conventional vesicle fusion path. In the post-synaptic spine, large (∼9× ∼15 nm) rectangular particles at densities of 72±10/ µm2 (170–240/spine) match the envelopes of the homotetrameric GluR2 AMPA-sensitive receptor. While these putative receptors join clusters, called the “post-synaptic domains,” the overwhelming majority of the rectangular particles formed bands in the “non-synaptic” plasma membrane of the spine. In conclusion, in the neuropil of the rat cerebral cortex, curvatures of the plasma membrane define a novel vesicle-fusion path that preconditions specific regions of the active zone for neurotransmitter release. We hypothesize that a change in the
Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan
2015-06-28
Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant
A Phase of Liposomes with Entangled Tubular Vesicles
NASA Astrophysics Data System (ADS)
Chiruvolu, Shivkumar; Warriner, Heidi E.; Naranjo, Edward; Idziak, Stefan H. J.; Radler, Joachim O.; Plano, Robert J.; Zasadzinski, Joseph A.; Safinya, Cyrus R.
1994-11-01
An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L_4 phase of spherical vesicles and a bulk L_α phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure.
Heparin affinity purification of extracellular vesicles
Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.
2015-01-01
Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity. PMID:25988257
A Monte Carlo Simulation of Vesicle Exocytosis in the Buffered Diffusion of Calcium Channel Currents
NASA Astrophysics Data System (ADS)
Dimcovic, Z.; Eagan, T. P.; Brown, R. W.; Petschek, R. G.; Eppell, S. J.; Yunker, A. M. R.; Sharp, A. H.; McEnery, M. W.
2001-04-01
The voltage-dependent opening of calcium channels results in an influx of calcium ions that leads to the fusion of synaptic vesicles with the cell membrane, resulting in the release of neurotransmitters. This allows nerve impulses to be transmitted from one neuron to another. A Monte Carlo model of the three-dimensional diffusion of calcium following a channel opening is employed to estimate the space and time dependence of the calcium density. The effects of fixed and mobile calcium buffers are included, and a tethered nearby vesicle is considered. The importance of the size and location of the vesicle is studied. When the vesicle is ignored, these results are compared with the analytical calculations of Naraghi and Neher and the Monte Carlo calculations of Bennett et al. The finite-vesicle-size analysis offers new insights into the process of neurosecretion. Support: NIH MH55747, AHA 96001250, NSF 0086643, and CWRU Presidential Research Initiative grants.
Visualization of the post-Golgi vesicle-mediated transportation of TGF-β receptor II by quasi-TIRFM.
Luo, Wangxi; Xia, Tie; Xu, Li; Chen, Ye-Guang; Fang, Xiaohong
2014-10-01
Transforming growth factor β receptor II (Tβ RII) is synthesized in the cytoplasm and then transported to the plasma membrane of cells to fulfil its signalling duty. Here, we applied live-cell fluorescence imaging techniques, in particular quasi-total internal reflection fluorescence microscopy, to imaging fluorescent protein-tagged Tβ RII and monitoring its secretion process. We observed punctuate-like Tβ RII-containing post-Golgi vesicles formed in MCF7 cells. Single-particle tracking showed that these vesicles travelled along the microtubules at an average speed of 0.51 μm/s. When stimulated by TGF-β ligand, these receptor-containing vesicles intended to move towards the plasma membrane. We also identified several factors that could inhibit the formation of such post-Golgi vesicles. Although the inhibitory mechanisms still remain unknown, the observed characteristics of Tβ RII-containing vesicles provide new information on intracellular Tβ RII transportation. It also renders Tβ RII a good model system for studying post-Golgi vesicle-trafficking and protein transportation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The two Dictyostelium discoideum autophagy 8 proteins have distinct autophagic functions.
Meßling, Susanne; Matthias, Jan; Xiong, Qiuhong; Fischer, Sarah; Eichinger, Ludwig
2017-06-01
Autophagy is a highly conserved cellular degradation pathway which is crucial for various cellular processes. The autophagic process is subdivided in the initiation, autophagosome maturation and lysosomal degradation phases and involves more than forty core and accessory autophagy-related (ATG) proteins. Autophagy 8 (ATG8, in mammals LC3) is a well-established marker of autophagy and is linked to the autophagic membrane from initiation until fusion with the lysosome. We generated single and double knock-out mutants of the two Dictyostelium paralogues, ATG8a and ATG8b, as well as strains that expressed RFP-ATG8a and/or GFP-ATG8b, RFP-ATG8b, RFP-GFP-ATG8a or RFP-GFP-ATG8b in different knock-out mutants. The ATG8b¯ mutant displayed only subtle phenotypic changes in comparison to AX2 wild-type cells. In contrast, deletion of ATG8a resulted in a complex phenotype with delayed development, reduced growth, phagocytosis and cell viability, an increase in ubiquitinylated proteins and a concomitant decrease in proteasomal activity. The phenotype of the ATG8a¯/b¯ strain was, except for cell viability, in all aforementioned aspects more severe, showing that both proteins function in parallel during most analysed cellular processes. Immunofluorescence analysis of knock-out strains expressing either RFP-GFP-ATG8a or RFP-GFP-ATG8b suggests a crucial function for ATG8b in autophagosome-lysosome fusion. Quantitative analysis of strains expressing RFP-ATG8a, RFP-ATG8b, or RFP-ATG8a and GFP-ATG8b revealed that ATG8b generally localised to small and large vesicles, whereas ATG8a preferentially co-localised with ATG8b on large vesicles, indicating that ATG8b associated with nascent autophagosomes before ATG8a, which is supported by previous results (Matthias et al., 2016). Deconvoluted confocal fluorescence images showed that ATG8b localised around ATG8a and was presumably mainly present on the outer membrane of the autophagosome while ATG8a appears to be mainly associated with the