Kang, Seungbum; Choi, Hyunsu; Rho, Chang Rae
2016-12-01
This study compared the effects of 3 antivascular endothelial growth factor (VEGF) agents (bevacizumab, ranibizumab, and aflibercept) on corneal epithelial cell viability and wound healing using human corneal epithelial cells (HCECs). To determine the cytotoxic effects of anti-VEGF agents on HCECs, HCEC viability was determined at various concentrations of these agents. An in vitro migration assay was used to investigate the migration of HCECs treated with 3 anti-VEGF agents. The protein level of extracellular signal-regulated kinase was used to evaluate the effect of anti-VEGF treatment on cell proliferation. The protein levels of p38 mitogen-activated protein kinase (MAPK) were analyzed by Western blotting to investigate cell migration. After 24 or 48 h of exposure, aflibercept treatment showed no apparent effect on cell viability; however, bevacizumab and ranibizumab treatment decreased cell viability at high concentrations (1 and 2 mg/mL). A migration assay showed that HCEC migration was different among the 3 anti-VEGF treatment groups. Bevacizumab significantly delayed HCEC migration. Western blotting showed that bevacizumab treatment decreased the expression levels of phosphorylated p38 MAPK. Bevacizumab, the most widely used and investigated anti-VEGF agent, decreased epithelial cell migration and viability. Anti-VEGF agents other than bevacizumab might therefore be better for treating corneal neovascularization complicated with epithelial defects.
Pleiotropic Models of Polygenic Variation, Stabilizing Selection, and Epistasis
Gavrilets, S.; de-Jong, G.
1993-01-01
We show that in polymorphic populations many polygenic traits pleiotropically related to fitness are expected to be under apparent ``stabilizing selection'' independently of the real selection acting on the population. This occurs, for example, if the genetic system is at a stable polymorphic equilibrium determined by selection and the nonadditive contributions of the loci to the trait value either are absent, or are random and independent of those to fitness. Stabilizing selection is also observed if the polygenic system is at an equilibrium determined by a balance between selection and mutation (or migration) when both additive and nonadditive contributions of the loci to the trait value are random and independent of those to fitness. We also compare different viability models that can maintain genetic variability at many loci with respect to their ability to account for the strong stabilizing selection on an additive trait. Let V(m) be the genetic variance supplied by mutation (or migration) each generation, V(g) be the genotypic variance maintained in the population, and n be the number of the loci influencing fitness. We demonstrate that in mutation (migration)-selection balance models the strength of apparent stabilizing selection is order V(m)/V(g). In the overdominant model and in the symmetric viability model the strength of apparent stabilizing selection is approximately 1/(2n) that of total selection on the whole phenotype. We show that a selection system that involves pairwise additive by additive epistasis in maintaining variability can lead to a lower genetic load and genetic variance in fitness (approximately 1/(2n) times) than an equivalent selection system that involves overdominance. We show that, in the epistatic model, the apparent stabilizing selection on an additive trait can be as strong as the total selection on the whole phenotype. PMID:8325491
Oliveira, Karen A; Dal-Cim, Tharine; Lopes, Flávia G; Ludka, Fabiana K; Nedel, Cláudia B; Tasca, Carla I
2018-02-01
Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.
Crowley, Peter D; Stuttgen, Vivian; O'Carroll, Emma; Ash, Simon A; Buggy, Donal J; Gallagher, Helen C
2017-01-01
Peri-operative factors, including anaesthetic drugs and techniques, may affect cancer cell biology and clinical recurrence. In breast cancer cells, we demonstrated that sevoflurane promotes migration and angiogenesis in high fractional oxygen but not in air. Follow-up analysis of the peri-operative oxygen fraction trial found an association between high inspired oxygen during cancer surgery and reduced tumor-free survival. Here we evaluated effects of acute, high oxygen exposure on breast cancer cell viability, migration and secretion of angiogenesis factors in vitro . MDA-MB-231 and MCF-7 breast cancer cells were exposed to 21%, 30%, 60%, or 80% v/v O 2 for 3 hours. Cell viability at 24 hours was determined by MTT and migration at 24 hours with the Oris™ Cell Migration Assay. Secretion of angiogenesis factors at 24 hours was measured via membrane-based immunoarray. Exposure to 30%, 60% or 80% oxygen did not affect cell viability. Migration of MDA-MB-231 and MCF-7 cells was increased by 60% oxygen ( P = 0.012 and P = 0.007, respectively) while 30% oxygen increased migration in MCF-7 cells ( P = 0.011). These effects were reversed by dimethyloxaloylglycine. In MDA-MB-231 cells high fractional oxygen increased secretion of angiogenesis factors monocyte chemotactic protein 1, regulated on activation normal T-cell expressed and vascular endothelial growth factor. In MCF-7 cells, interleukin-8, angiogenin and vascular endothelial growth factor secretion was significantly increased by high fractional oxygen. High oxygen exposure stimulates migration and secretion of angiogenesis factors in breast cancer cells in vitro .
Han, Qingfang; Zhang, Wenke; Meng, Jinlai; Ma, Li; Li, Aihua
2018-04-01
Polycystic ovary syndrome (PCOS) is a common endocrine disease characterized by hyperandrogenism, irregular menses, and polycystic ovaries. Several long non-coding RNAs (lncRNAs) are aberrantly expressed in PCOS patients; however, little is known about the effects of the lncRNA-low expression in tumor (lncRNA-LET) on PCOS. We aimed to explore the effects of lncRNA-LET on human granulosa-like tumor cell line, KGN. Expression of lncRNA-LET in normal IOSE80 cells and granulosa cells was determined by qRT-PCR. KGN cell viability, apoptosis and migration were measured by trypan blue exclusion method, flow cytometry assay and wound healing assay, respectively. TGF-β1 was used to induce epithelial-mesenchymal transition (EMT) process. LncRNA-LET expression and mRNA expressions of TIMP2 and EMT-related proteins were measured by qRT-PCR. Western blot analysis was used to measure the protein expression of apoptosis-related proteins, EMT-related proteins, TIMP2, and the proteins in the Wnt/β-catenin and Notch signaling pathways. lncRNA-LET was down-regulated in KGN cells, and its overexpression inhibited cell viability and migration, and promoted apoptosis in KGN cells. Overexpression of lncRNA-LET increased the expression of E-cadherin and decreased the expressions of N-cadherin and vimentin in KGN cells. These effects of lncRNA-LET on KGN cells were reversed by TIMP2 suppression. Overexpression of TIMP2 inhibited cell viability, migration and EMT process, and increased apoptosis by activating the Wnt/β-catenin and Notch pathways. Overexpression of lncRNA-LET inhibits cell viability, migration and EMT process, and increases apoptosis in KGN cells by up-regulating the expression of TIMP2 and activating the Wnt/β-catenin and notch signaling pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Wang, Peng; Xu, Weimin; Liu, Haixia; Bu, Qingao; Sun, Diwen
2017-01-01
Thyroid cancer is a common endocrine gland malignancy which exhibited rapid increased incidence worldwide in recent decades. This study was aimed to investigate the role of long noncoding RNA H19 in thyroid cancer. Long noncoding RNA H19 was overexpressed or knockdown in thyroid cancer cells SW579 and TPC-1, and the expression of long noncoding RNA H19 was detected by real-time polymerase chain reaction. The cell viability, migration, and invasion were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, Transwell assay, and wound healing assay, respectively. Furthermore, cell apoptosis was analyzed by flow cytometry, and expressions of some factors that were related to phosphatidyl inositide 3-kinases/protein kinase B and nuclear factor κB signal pathway were measured by Western blotting. This study revealed that cell viability and migration/invasion of SW579 and TPC-1 were significantly decreased by long noncoding RNA H19 overexpression compared with the control group (P < .05), whereas cell apoptosis was statistically increased (P < .001). Meanwhile, cell viability and migration/invasion were significantly increased after long noncoding RNA H19 knockdown (P < .05). Furthermore, long noncoding RNA H19 negatively regulated the expression of insulin receptor substrate 1 and thus effect on cell proliferation and apoptosis. Insulin receptor substrate 1 regulated the activation of phosphatidyl inositide 3-kinases/AKT and nuclear factor κB signal pathways. In conclusion, long noncoding RNA H19 could suppress cell viability, migration, and invasion via downregulation of insulin receptor substrate 1 in SW579 and TPC-1 cells. These results suggested the important role of long noncoding RNA H19 in thyroid cancer, and long noncoding RNA H19 might be a potential target of thyroid cancer treatment. PMID:29332545
Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin
2017-01-01
Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing
NASA Astrophysics Data System (ADS)
Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam
2016-02-01
Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250-1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore, NTAAPPJ for gingival tissue healing is a promising method for health and aesthetic outcomes.
Hsu, Ren-Jun; Hsu, Yao-Chin; Chen, Shu-Pin; Fu, Chia-Lynn; Yu, Jyh-Cherng; Chang, Fung-Wei; Chen, Ying-Hsin; Liu, Jui-Ming; Ho, Jar-Yi; Yu, Cheng-Ping
2015-03-14
Breast cancer-related mortality increases annually. The efficacy of current breast cancer treatments is limited, and they have numerous side effects and permit high recurrence. Patients with estrogen receptor (ER)-negative or triple-negative breast cancer are particularly difficult to treat. Treatment for this type of cancer is lacking, and its prognosis is poor, necessitating the search for alternative treatments. This study screened Chinese herb Hibiscus syriacus extracts and identified a novel anti-cancer drug for patients with ER-negative breast cancer. The inhibitory effects on cell viability and migration were evaluated for each compound, and the molecular regulatory effects were evaluated on both mRNA and protein levels. We found several triterpenoids including betulin (K02) and its derivatives (K03, K04, and K06) from H. syriacus inhibited human triple-negative breast cancer cell viability and migration but revealed smaller cytotoxic effects on normal mammalian epithelial cells. Betulin and its derivatives induced apoptosis by activating apoptosis-related genes. In addition, they activated p21 expression, which induced cell cycle arrest in breast cancer cells. Betulin (K02) and betulinic acid (K06) had stronger inhibitory effects on cell viability and migration than K03 and K04. H. syriacus extracts might inhibit breast cancer cell viability and induce apoptosis by activating p53 family regulated pathways and inhibiting AKT activation. H. syriacus extracts may provide important insight into the development of novel alternative therapies for breast cancer.
Araújo, Leandro Borges; Cosme-Silva, Leopoldo; Fernandes, Ana Paula; Oliveira, Thais Marchini de; Cavalcanti, Bruno das Neves; Gomes Filho, João Eduardo; Sakai, Vivien Thiemy
2018-02-01
The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA), calcium hydroxide (CH) and BiodentineTM (BD) on stem cells from human exfoliated deciduous teeth (SHED) in vitro. SHED were cultured for 1 - 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL), and tested for viability (MTT assay) and proliferation (SRB assay). Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1) was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning) and culture medium supplemented with 20% FBS were used as controls. MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA) (p<0.05). In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH) (p<0.05). A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population.
Tectonic-1 contributes to the growth and migration of prostate cancer cells in vitro
WANG, ZHIJUN; GAO, YI; LIU, YUSHAN; CHEN, JIE; WANG, JUNKAI; GAN, SISHUN; XU, DANFENG; CUI, XINGANG
2015-01-01
Tectonic-1 (TCTN1) is an upstream gene involved in embryonic development. The aim of the present study was to investigate the effect of the TCTN1 gene on the viability and migration of prostate cancer cells. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to silence the expression of TCTN1 in PC-3 and DU145 prostate cancer cells. Cell viability and proliferation were measured using MTT and colony formation assays, and the distribution of cells in phases of the cell cycle was determined using flow cytometry. Cell migration was detected using a Transwell assay. The results demonstrated that TCTN1 was widely expressed in several human prostate cancer cell lines. Knockdown of the TCTN1 gene by RNA interference markedly suppressed cell viability and colony formation in the PC-3 and DU145 cell lines. Cell cycle progression was also arrested by TCTN1 silencing. In addition, knockdown of the TCTN1 gene led to the inhibition of cell migration in the two cell lines. These findings confirmed the direct association between the TCTN1 gene and prostate cancer growth in vitro. With further understanding and clinical investigation, this indicates the potential for future development of a novel marker for early detection and gene therapy for prostate cancer. PMID:26310786
Araújo, Leandro Borges; Cosme-Silva, Leopoldo; Fernandes, Ana Paula; de Oliveira, Thais Marchini; Cavalcanti, Bruno das Neves; Gomes, João Eduardo; Sakai, Vivien Thiemy
2018-01-01
Abstract Objective The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA), calcium hydroxide (CH) and BiodentineTM (BD) on stem cells from human exfoliated deciduous teeth (SHED) in vitro. Material and Methods SHED were cultured for 1 – 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL), and tested for viability (MTT assay) and proliferation (SRB assay). Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1) was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning) and culture medium supplemented with 20% FBS were used as controls. Results MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA) (p<0.05). In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH) (p<0.05). A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Conclusion Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population. PMID:29412365
Biological Function of Ribosomal Protein L10 on Cell Behavior in Human Epithelial Ovarian Cancer
Shi, Jimin; Zhang, Lingyun; Zhou, Daibing; Zhang, Jinguo; Lin, Qunbo; Guan, Wencai; Zhang, Jihong; Ren, Weimin; Xu, Guoxiong
2018-01-01
Ribosomal protein L10 (RPL10) is one of large ribosomal proteins and plays a role in Wilms' tumor and premature ovarian failure. However, the function of RPL10 in human epithelial ovarian cancer (EOC) remains unknown. The purpose of this study was to examine the expression level and function of RPL10 in EOC. RPL10 protein expression was detected by immunohistochemistry and Western blot. The association RPL10 expression with clinical features was analyzed. Loss-of-function and gain-of-function approaches were applied in cellular assays, including cell viability, migration, invasion, and apoptosis. Our study demonstrated for the first time that RPL10 was upregulated in human EOC compared with normal ovarian tissues. Knockdown of RPL10 inhibited cell viability, migration, and invasion, and increased cell apoptosis. On the contrary, upregulation of RPL10 increased cell viability, migration, invasion, and decreased cell apoptosis. Furthermore, miR-143-3p regulated RPL10 expression. Our data indicate that RPL10 is a potential tissue biomarker of patients with EOC and may be a therapeutic target of ovarian cancer. PMID:29556332
Duan, Liang; Wu, Rui; Ye, Liwei; Wang, Haiyan; Yang, Xia; Zhang, Yunyuan; Chen, Xian; Zuo, Guowei; Zhang, Yan; Weng, Yaguang; Luo, Jinyong; Tang, Min; Shi, Qiong; He, Tongchuan; Zhou, Lan
2013-01-01
Background and Objective S100A8 and S100A9, two members of the S100 protein family, have been reported in association with the tumor cell differentiation and tumor progression. Previous study has showed that their expression in stromal cells of colorectal carcinoma (CRC) is associated with tumor size. Here, we investigated the clinical significances of S100A8 and S100A9 in tumor cells of CRC and their underlying molecular mechanisms. Methods Expression of S100A8 and S100A9 in colorectal carcinoma and matching distal normal tissues were measured by reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry and western blot. CRC cell lines treated with the recombinant S100A8 and S100A9 proteins were used to analyze the roles and molecular mechanisms of the two proteins in CRC in vitro. Results S100A8 and S100A9 were elevated in more than 50% of CRC tissues and their expression in tumor cells was associated with differentiation, Dukes stage and lymph node metastasis. The CRC cell lines treatment with recombinant S100A8 and S100A9 proteins promoted the viability and migration of CRC cells. Furthermore, the two recombinant proteins also resulted in the increased levels of β-catenin and its target genes c-myc and MMP7. β-catenin over-expression in CRC cells by Adβ-catenin increased cell viability and migration. β-catenin knock-down by Adsiβ-catenin reduced cell viability and migration. Furthermore, β-catenin knockdown also partially abolished the promotive effects of recombinant S100A8 and S100A9 proteins on the viability and migration of CRC cells. Conclusions Our work demonstrated that S100A8 and S100A9 are linked to the CRC progression, and one of the underlying molecular mechanisms is that extracellular S100A8 and S100A9 proteins contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway. PMID:23637971
ERIC Educational Resources Information Center
Kim, Yun; And Others
The first phase of a longitudinal research project, "Assessing Rural Communities' Viability and Associated Factors Under Conditions of Population Change," was conducted in 1975 in eight Utah communities (Panguitch, Richfield, Salina, Delta, Moab, Duchesne, Roosevelt, and Vernal) to provide useful information for planners, researchers,…
Cellular behavior controlled by bio-inspired and geometry-tunable nanohairs.
Heo, Chaejeong; Jeong, Chanho; Im, Hyeon Seong; Kim, Jong Uk; Woo, Juhyun; Lee, Ji Yeon; Park, Byeonghak; Suh, Minah; Kim, Tae-Il
2017-11-23
A cicada wing has a biocidal feature of rupturing the membrane of cells, while the cactus spine can transmit a water drop to the stem of the plant. Both of these properties have evolved from their respective unique structures. Here, we endeavor to develop geometry-controllable nanohairs that mimic the cicada's wing-like vertical hairs and the cactus spine-like stooped hairs, and to quantitatively characterize the cell migration behavior of the hairy structures. It was found that the neuroblastoma cells are highly sensitive to the variation of surfaces: flat, vertical, and stooped nanohairs (100 nm diameter and 900 nm height). The cells on the vertical hairs showed significantly decreased proliferation. It was found that the behavior of cells cultured on stooped nanohairs is strongly influenced by the direction of the stooped pattern of hairs when we quantitatively measured the migration of cells on flat, vertical, and stooped structures. However, the cells on the flat structures showed random movement and the cells on the vertical nanohairs restricted the nanohair movement. Cells on the stooped structure showed higher forward migration preference compared to that of the other structures. Furthermore, we found that these cellular behaviors on the different patterns of nanohairs were affected by intracellular actin flament change. Consistent with these results, the vertical and stooped structures can facilitate the control of cell viability and guide directional migration for biomedical applications such as organogenesis.
Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio; Párraga, Mario; Villena, Joan
2018-01-01
Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions . These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells.
Anthropogenic Impacts on Mortality and Population Viability of the Monarch Butterfly.
Malcolm, Stephen B
2018-01-07
Monarch butterflies (Danaus plexippus) are familiar herbivores of milkweeds of the genus Asclepias, and most monarchs migrate each year to locate these host plants across North American ecosystems now dominated by agriculture. Eastern migrants overwinter in high-elevation forests in Mexico, and western monarchs overwinter in trees on the coast of California. Both populations face three primary threats to their viability: (a) loss of milkweed resources for larvae due to genetically modified crops, pesticides, and fertilizers; (b) loss of nectar resources from flowering plants; and (c) degraded overwintering forest habitats due to commercially motivated deforestation and other economic activities. Secondary threats to population viability include (d) climate change effects on milkweed host plants and the dynamics of breeding, overwintering, and migration; (e) the influence of invasive plants and natural enemies; (f) habitat fragmentation and coalescence that promote homogeneous, species-depleted landscapes; and (g) deliberate culture and release of monarchs and invasive milkweeds.
Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio
2018-01-01
Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions. These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells. PMID:29552079
AlGhamdi, Khalid M; Kumar, Ashok; Ashour, Abdelkader E; AlGhamdi, Attieh A
2015-07-01
The aim of this study was to investigate the effects of different low-level laser therapies (LLLTs) of various wavelengths and energies on normal cultured human melanocytes. Various studies have shown the effects of LLLs on various types of cultured cells. Presently, little is known about the biological effects of LLLTs on melanocytes. Melanocytes were exposed to LLLT at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, or 5.0 J/cm(2) using a blue (457 nm), red (635 nm), or ultraviolet (UV) (355 nm) laser. Melanocyte viability, proliferation, and migration were monitored at 72 h after irradiation. The blue (P < 0.001) and red (P < 0.001 and P < 0.01) lasers significantly enhanced viability at 0.5 to 2.0 J/cm(2), whereas the UV laser (P < 0.001) could significantly enhance viability only at 0.5 and 1.0 J/cm(2) compared with controls. The blue and red lasers also significantly enhanced the proliferation of the melanocytes at 0.5 to 2.0 J/cm(2) (P < 0.001), and the UV laser significantly enhanced proliferation at 0.5 to 1.5 J/cm(2) (P < 0.001 and P < 0.01) compared with controls. The blue laser significantly enhanced melanocyte migration at 0.5 to 4.0 J/cm(2) (P < 0.001 to P < 0.05), but the red (P < 0.001 and P < 0.01) and UV (P < 0.001 to P < 0.05) lasers could significantly enhance such migration at 0.5 to 1.0 J/cm(2) and 0.5 to 2.0 J/cm(2), respectively, compared with controls. LLLT at low energy densities is able to significantly increase melanocyte viability, proliferation, and migration in vitro, and at higher energy densities, it gives non-stimulatory results. Additionally, the blue laser was the best among the three lasers. These findings might have potential application in vitiligo treatment in future.
Yao, Li; Flynn, Nikol
2018-06-01
Advances in the development of biomaterials and stem cell therapy provide a promising approach to regenerating degenerated discs. The normal nucleus pulposus (NP) cells exhibit similar phenotype to chondrocytes. Because dental pulp stem cells (DPSCs) can be differentiated into chondrogenic cells, the DPSCs and DPSCs-derived chondrogenic cells encapsulated in type I and type II collagen hydrogels can potentially be transplanted into degenerated NP to repair damaged tissue. The motility of transplanted cells is critical because the cells need to migrate away from the hydrogels containing the cells of high density and disperse through the NP tissue after implantation. The purpose of this study was to determine the motility of DPSC and DPSC-derived chondrogenic cells in type I and type II collagen hydrogels. The time lapse imaging that recorded cell migration was analyzed to quantify the cell migration velocity and distance. The cell viability of DPSCs in native or poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-StarPEG)-crosslinked type I and type II collagen hydrogels was determined using LIVE/DEAD cell viability assay and AlamarBlue assay. DPSCs were differentiated into chondrogenic cells. The migration of DPSCs and DPSC-derived chondrogenic cells in these hydrogels was recorded using a time lapse imaging system. This study was funded by the Regional Institute on Aging and Wichita Medical Research and Education Foundation, and the authors declare no competing interest. DPSCs showed high cell viability in non-crosslinked and crosslinked collagen hydrogels. DPSCs migrated in collagen hydrogels, and the cell migration speed was not significantly different in either type I collagen or type II collagen hydrogels. The migration speed of DPSC-derived chondrogenic cells was higher in type I collagen hydrogel than in type II collagen hydrogel. Crosslinking of type I collagen with 4S-StarPEG significantly reduced the cell migration speed of DPSC-derived chondrogenic cells. After implantation of collagen hydrogels encapsulating DPSCs or DPSC-derived chondrogenic cells, the cells can potentially migrate from the hydrogels and migrate into the NP tissue. This study also explored the differential cell motility of DPSCs and DPSC-derived chondrogenic cells in these collagen hydrogels. Copyright © 2018 Elsevier Inc. All rights reserved.
Nyffeler, Johanna; Karreman, Christiaan; Leisner, Heidrun; Kim, Yong Jun; Lee, Gabsang; Waldmann, Tanja; Leist, Marcel
2017-01-01
Migration of neural crest cells (NCCs) is one of the pivotal processes of human fetal development. Malformations arise if NCC migration and differentiation are impaired genetically or by toxicants. In the currently available test systems for migration inhibition of NCC (MINC), the manual generation of a cell-free space results in extreme operator dependencies, and limits throughput. Here a new test format was established. The assay avoids scratching by plating cells around a commercially available circular stopper. Removal of the stopper barrier after cell attachment initiates migration. This microwell-based circular migration zone NCC function assay (cMINC) was further optimized for toxicological testing of human pluripotent stem cell (hPSC)-derived NCCs. The challenge of obtaining data on viability and migration by automated image processing was addressed by developing a freeware. Data on cell proliferation were obtained by labelling replicating cells, and by careful assessment of cell viability for each experimental sample. The role of cell proliferation as an experimental confounder was tested experimentally by performing the cMINC in the presence of the proliferation-inhibiting drug cytosine arabinoside (AraC), and by a careful evaluation of mitotic events over time. Data from these studies led to an adaptation of the test protocol, so that toxicant exposure was limited to 24 h. Under these conditions, a prediction model was developed that allows classification of toxicants as either inactive, leading to unspecific cytotoxicity, or specifically inhibiting NC migration at non-cytotoxic concentrations.
Overexpression of Selenoprotein SelK in BGC-823 Cells Inhibits Cell Adhesion and Migration.
Ben, S B; Peng, B; Wang, G C; Li, C; Gu, H F; Jiang, H; Meng, X L; Lee, B J; Chen, C L
2015-10-01
Effects of human selenoprotein SelK on the adhesion and migration ability of human gastric cancer BGC-823 cells using Matrigel adhesion and transwell migration assays, respectively, were investigated in this study. The Matrigel adhesion ability of BGC-823 cells that overexpressed SelK declined extremely significantly (p < 0.01) compared with that of the cells not expressing the protein. The migration ability of BGC-823 cells that overexpressed SelK also declined extremely significantly (p < 0.01). On the other hand, the Matrigel adhesion ability and migration ability of the cells that overexpressed C-terminally truncated SelK did not decline significantly. The Matrigel adhesion ability and migration ability of human embryonic kidney HEK-293 cells that overexpressed SelK did not show significant change (p > 0.05) with the cells that overexpressed the C-terminally truncated protein. In addition to the effect on Matrigel adhesion and migration, the overexpression of SelK also caused a loss in cell viability (as measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) colorimetric assay) and induced apoptosis as shown by confocal microscopy and flow cytometry. The cytosolic free Ca2+ level of these cells was significantly increased as detected by flow cytometry. But the overexpression of SelK in HEK-293 cells caused neither significant loss in cell viability nor apoptosis induction. Only the elevation of cytosolic free Ca2+ level in these cells was significant. Taken together, the results suggest that the overexpression of SelK can inhibit human cancer cell Matrigel adhesion and migration and cause both the loss in cell viability and induction of apoptosis. The release of intracellular Ca2+ from the endoplasmic reticulum might be a mechanism whereby the protein exerted its impact. Furthermore, only the full-length protein, but not C-terminally truncated form, was capable of producing such impact. The embryonic cells were not influenced by the elevation of free Ca2+ level in cytosol, probably due to their much greater tolerance to the variation.
Sun, T; Chen, Q Y; Wu, L J; Yao, X M; Sun, X J
2012-10-01
Treatment modalities are not effective once breast cancer metastasis has occurred. Dietary botanicals may have a better protective effect. We therefore investigated the effects of grape skin polyphenols on a highly metastatic mouse mammary carcinoma cell line. In vitro treatment of 4T1 cells, with grape skin polyphenols resulted in inhibition of the migration and viability in a dose-dependent manner. The migration of 4T1 cells was significantly inhibited by grape skin polyphenols, even at a very low concentration (5 μg/ml), and was totally inhibited when the concentration was 20 μg/ml. However, 20 μg/ml of grape skin polyphenols inhibited cell viability by only 11.4%. The inhibition of migration is independent of decreased cell viability or apoptosis induction. Further analysis indicated that the inhibition of migration by grape skin polyphenols is involved in blocking the PI3k/Akt and MAPK pathways. The effects of dietary grape skin polyphenols were then examined using an in vivo model in which 4T1 cells were implanted subcutaneously in Balb/c mice. The metastasis of tumor cells to the lungs was inhibited significantly by dietary grape skin extracts (0.5 and 1.0 mg/ml in drinking water) and the survival of the mice enhanced. These data suggest that grape skin polyphenols possess chemotherapeutic efficacy against breast cancer with metastases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Unified reduction principle for the evolution of mutation, migration, and recombination
Altenberg, Lee; Liberman, Uri; Feldman, Marcus W.
2017-01-01
Modifier-gene models for the evolution of genetic information transmission between generations of organisms exhibit the reduction principle: Selection favors reduction in the rate of variation production in populations near equilibrium under a balance of constant viability selection and variation production. Whereas this outcome has been proven for a variety of genetic models, it has not been proven in general for multiallelic genetic models of mutation, migration, and recombination modification with arbitrary linkage between the modifier and major genes under viability selection. We show that the reduction principle holds for all of these cases by developing a unifying mathematical framework that characterizes all of these evolutionary models. PMID:28265103
Simulation modeling of population viability for the leopard darter (Percidae: Percina pantherina)
Williams, L.R.; Echelle, A.A.; Toepfer, C.S.; Williams, M.G.; Fisher, W.L.
1999-01-01
We used the computer program RAMAS to perform a population viability analysis for the leopard darter, Percina pantherina. This percid fish is a threatened species confined to five isolated rivers in the Ouachita Mountains of Oklahoma and Arkansas. A base model created from life history data indicated a 6% probability that the leopard darter would go extinct in 50 years. We performed sensitivity analyses to determine the effects of initial population size, variation in age structure, variation in severity and probability of catastrophe, and migration rate. Catastrophe (modeled as the probability and severity of drought) and migration had the greatest effects on persistence. Results of these simulations have implications for management of this species.
Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André
2012-01-01
Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101
Wang, Jing; Yang, Yangfan; Xu, Jiangang; Lin, Xianchai; Wu, Kaili
2013-01-01
Purpose To investigate the effects of pirfenidone (PFD) on the migration, differentiation, and proliferation of retinal pigment epithelial (RPE) cells and demonstrate whether the drug induces cytotoxicity. Methods Human RPE cells (line D407) were treated with various concentrations of PFD. Cell migration was measured with scratch assay. The protein levels of fibronectin (FN), connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), transforming growth factor beta (TGFβS), and Smads were assessed with western blot analyses. Levels of mRNA of TGFβS, FN, and Snail1 were analyzed using reverse transcriptase–polymerase chain reaction. Cell apoptosis was detected with flow cytometry using the Annexin V/PI apoptosis kit, and the percentages of cells labeled in different apoptotic stage were compared. A Trypan Blue assay was used to assess cell viability. Results PFD inhibited RPE cell migration. Western blot analyses showed that PFD inhibited the expression of FN, α-SMA, CTGF, TGFβ1, TGFβ2, Smad2/3, and Smad4. Similarly, PFD also downregulated mRNA levels of Snail1, FN, TGFβ1, and TGFβ2. No significant differences in cell apoptosis or viability were observed between the control and PFD-treated groups. Conclusions PFD inhibited RPE cell migration, differentiation, and proliferation in vitro and caused no significant cytotoxicity. PMID:24415895
Rubattu, Speranza; Marchitti, Simona; Bianchi, Franca; Di Castro, Sara; Stanzione, Rosita; Cotugno, Maria; Bozzao, Cristina; Sciarretta, Sebastiano; Volpe, Massimo
2014-01-01
Abnormalities of vascular smooth muscle cells (VSMCs) contribute to development of vascular disease. Atrial natriuretic peptide (ANP) exerts important effects on VSMCs. A common ANP molecular variant (T2238C/αANP) has recently emerged as a novel vascular risk factor. We aimed at identifying effects of CC2238/αANP on viability, migration and motility in coronary artery SMCs, and the underlying signaling pathways. Cells were exposed to either TT2238/αANP or CC2238/αANP. At the end of treatment, cell viability, migration and motility were evaluated, along with changes in oxidative stress pathway (ROS levels, NADPH and eNOS expression), on Akt phosphorylation and miR21 expression levels. CC2238/αANP reduced cell vitality, increased apoptosis and necrosis, increased oxidative stress levels, suppressed miR21 expression along with consistent changes of its molecular targets (PDCD4, PTEN, Bcl2) and of phosphorylated Akt levels. As a result of increased oxidative stress, CC2238/αANP markedly stimulated cell migration and increased cell contraction. NPR-C gene silencing with specific siRNAs restored cell viability, miR21 expression, and reduced oxidative stress induced by CC2238/αANP. The cAMP/PKA/CREB pathway, driven by NPR-C activation, significantly contributed to both miR21 and phosphoAkt reduction upon CC2238/αANP. miR21 overexpression by mimic-hsa-miR21 rescued the cellular damage dependent on CC2238/αANP. CC2238/αANP negatively modulates viability through NPR-C/cAMP/PKA/CREB/miR21 signaling pathway, and it augments oxidative stress leading to increased migratory and vasoconstrictor effects in coronary artery SMCs. These novel findings further support a damaging role of this common αANP variant on vessel wall and its potential contribution to acute coronary events.
Ly, Christina; Ferrier, Jonathan; Gaudet, Jeremiah; Yockell-Lelièvre, Julien; Arnason, John Thor; Gruslin, Andrée; Bainbridge, Shannon
2018-04-01
Perturbations to extravillous trophoblast (EVT) cell migration and invasion are associated with the development of placenta-mediated diseases. Phytochemicals found in the lowbush blueberry plant (Vaccinium angustifolium) have been shown to influence cell migration and invasion in models of tumorigenesis and noncancerous, healthy cells, however never in EVT cells. We hypothesized that the phenolic compounds present in V. angustifolium leaf extract promote trophoblast migration and invasion. Using the HTR-8/SVneo human EVT cell line and Boyden chamber assays, the influence of V. angustifolium leaf extract (0 to 2 × 10 4 ng/ml) on trophoblast cell migration (n = 4) and invasion (n = 4) was determined. Cellular proliferation and viability were assessed using immunoreactivity to Ki67 (n = 3) and trypan blue exclusion assays (n = 3), respectively. At 20 ng/ml, V. angustifolium leaf extract increased HTR-8/SVneo cell migration and invasion (p < .01) and did not affect cell proliferation or viability. Chlorogenic acid was identified as a major phenolic compound of the leaf extract and the most active compound. Evidence from Western blot analysis (n = 3) suggests that the effects of the leaf extract and chlorogenic acid on trophoblast migration and invasion are mediated through an adenosine monophosphate-activated protein (AMP) kinase-dependent mechanism. Further investigations examining the potential therapeutic applications of this natural health product extract and its major chemical compounds in the context of placenta-mediated diseases are warranted. Copyright © 2018 John Wiley & Sons, Ltd.
Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen; Hsieh, Yi-Hsien; Yang, Shun-Fa
2017-01-01
Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)-induced cell migration and the underlying mechanisms remain unclear. Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription-PCR (RT-PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1-dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases.
Zhang, Ying; Miao, Ju-Mei
2018-05-19
Ischemic stroke is the leading cause of death around the world. Ginkgolide K (GK) has been used to treat ischemic stroke due to its neuroprotective potential. However, the molecular mechanism underlying the neuroprotective effect of GK in ischemic stroke is still almost blank. In this study, astrocytes were divided into four groups: control group, oxygen-glucose deprivation (OGD) group, OGD + GK group and OGD + GK + Compound C (CC) group. The viability and proliferation of astrocytes were examined by Cell Counting Kit-8 assay and 5-ethynyl-20-deoxyuridine (EdU) assay, respectively. Transwell migration and wound scratch assays were conducted to evaluate astrocyte migration. The protein expression in astrocytes were determined by western blot assay. We found that GK pretreatment promoted astrocyte proliferation and migration after OGD as shown by the increase in the viability of astrocytes, glial fibrillary acidic protein level, the number of EdU positive cells and migrated cells, and the migration distance. GK pretreatment induced autophagy after OGD, as indicated by upregulation of autophagy-related protein 7, Beclin-1 protein and increase of microtubule-associated protein 1 light chain 3 (LC3)-II/LC3-I, and downregulation of p62 protein. Moreover, GK pretreatment activated the AMP activated protein kinase (AMPK)/mammalian target of rapamycin (m-TOR)/ULK1 pathway in astrocytes following OGD. Notably, CC treatment blocked the promotory effect of GK on astrocyte proliferation and migration after OGD. Collectively, GK promoted astrocyte proliferation and migration after OGD via inducing protective autophagy through the AMPK/mTOR/ULK1 signaling pathway. Our findings suggested that GK might be a potential agent for cerebral ischemia/reperfusion injury. Copyright © 2018. Published by Elsevier B.V.
Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen
2017-01-01
Purpose Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)–induced cell migration and the underlying mechanisms remain unclear. Methods Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription–PCR (RT–PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Results Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Conclusions Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1–dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases. PMID:29296070
Wang, Xin-Yue; Li, Yan-Li; Wang, Hai-Yun; Zhu, Min; Guo, Di; Wang, Guo-Lin; Gao, Ying-Tang; Yang, Zhuo; Li, Tang; Yang, Chen-Yi; Chen, Yi-Meng
2017-10-01
Anesthetics are documented to affect tumors; therefore, we studied the antiglioma effect of propofol on proliferation and invasiveness of glioma cells and explored the underlying mechanism. C6 glioma cells were cultured and treated with propofol, and cell viability, invasiveness, and migration were measured. Glutamate release was measured using an enzyme-catalyzed kinetic reaction. xCT protein and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR2 subunit protein expression was assessed with Western blot analysis and immunofluorescent staining. We observed that propofol significantly inhibited C6 glioma cell viability, invasiveness, and migration and decreased glutamate release. An agonist of the cystine/glutamate antiporter system (system x c - ), N-acetylcysteine (NAC), reversed propofol's effects, and propofol could inhibit C6 glioma cell proliferation by adding excess exogenous glutamate (100μM). Finally, propofol increased the surface expression of GluR2, but decreased surface expression of xCT. The effects of propofol on surface expression of GluR2 and xCT could be rescued by (R, S)-AMPA, an agonist of Ca 2+ permeable AMPA receptor (CPAR). Thus, propofol can inhibit cell viability, invasiveness, and migration of C6 glioma cells, and the CPAR-system x c - pathway contributes to these events. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Ji Ping; Liu, Dan; Gu, Jun Fei; Zhu, Mao Mao; Cui, Li
2015-08-01
Shikonin is an active naphthoquinone pigment isolated from the root of Lithospermum erythrorhizon. This study was designed to explore the inhibition of Shikonin on cell viability, adhesion, migration and invasion ability of gastric cancer (GC) and its possible mechanism. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for cell viability and adhesion ability of MGC-803 cells. Cell scratch repair experiments were conducted for the determination of migration ability while transwell assay for cell invasion ability. Western blot analysis and real-time polymerase chain reaction assay were used for the detection of protein and mRNA expressions. Fifty per cent inhibitory concentration of Shikonin on MGC-803 cells was 1.854 μm. Shikonin (1 μm) inhibited significantly the adhesion, invasion and migratory ability of MGC-803 cells. Interestingly, Shikonin in the presence or absence of anti-Toll-like receptor 2 (TLR2) antibody (2 μg) and nuclear factor-kappa B (NF-κB) inhibitor MG-132 (10 μm) could decrease these ability of MGC-803 cells markedly, as well as the expression levels of matrix metalloproteinases (MMP)-2, MMP-7, TLR2 and p65 NF-κB. In addition, the co-incubation of Shikonin and anti-TLR2/MG-132 has a significant stronger activity than anti-TLR2 or MG-132 alone. The results indicated that Shikonin could suppress the cell viability, adhesion, invasion and migratory ability of MGC-803 cells through TLR2- or NF-κB-mediated pathway. Our findings provide novel information for the treatment of Shikonin on GC. © 2015 Royal Pharmaceutical Society.
Qu, Rongfeng; Sun, Yan; Li, Yarong; Hu, Chunmei; Shi, Guang; Tang, Yan; Guo, Dongrui
2017-01-01
Incidence of nasopharyngeal carcinoma (NPC) has remained high worldwide, posing a serious health problem. MicroRNAs (miRNAs) are a family of about 20-23 nucleotides small non-coding molecules, which play a significant role in NPC. In this study, we explored the molecular mechanisms of miR-130a-3p in inhibiting viability, proliferation, migration and invasion of NPC cells by suppressing CXCL12 . The relative expression of miR-130a-3p and CXCL12 mRNA expression in tissues and cells was measured by qRT-PCR. NPC cell line CNE-2Z was transfected with miR-130a-3p mimics, CXCL12 siRNA, cDNA- CXCL12 and negative control. Western Blot was performed to detect CXCL12 expression. The MTT assay was performed to study cell viability. The colony formation assay was done to test cell growth. Flow cytometry was conducted to analyze cell cycle and apoptosis. The Transwell assay was used to investigate cell migration and invasion. The results found that the up-regulation of miR-130a-3p or down-regulation of CXCL12 could inhibit viability, proliferation, migration and invasion of CNE-2Z cells. Luciferase-reporting system assay was performed to investigate miR-130a-3p could bind to the 3'UTR region of CXCL12 and the overexpression of miR-130a-3p could suppress CXCL12 expression. Collectively, our finding suggested demonstrated that miR-130a-3p could prohibit the progression of NPC by suppressing CXCL12 , which might serve as potential therapeutic targets for NPC.
Karthikeyan, Aparna; Gupta, Neelima; Tang, Carol; Mallilankaraman, Karthik; Silambarasan, Maskomani; Shi, Meng; Lu, Lei; Ang, Beng Ti; Ling, Eng-Ang; Dheen, S. Thameem
2018-01-01
Glioma tumors constitute a significant portion of microglial cells, which are known to support tumor progression. The present study demonstrates that transforming growth factor-β (TGFβ) signaling pathway in microglia in a glioma environment is involved in tumor progression and pathogenesis. It has been shown that the TGFβ level is elevated in higher grades of gliomas and its signaling pathway regulates tumor progression through phosphorylation of SMAD2 and SMAD3, which form a complex with SMAD4 to regulate target gene transcription. In an in vitro cell line-based model increased protein levels of pSMAD2/3, total SMAD2/3 and SMAD4 were observed in murine BV2 microglia cultured in glioma conditioned medium (GCM), indicative of the activated TGFβ signaling pathway in microglia associated with glioma environment. Immunofluorescence labeling further revealed the expression of SMAD4 in microglial and non-microglial cells of human glioblastomas tissue in vivo. Functional analysis through shRNA-mediated stable knockdown of SMAD4 in microglia revealed the downregulation of the expression of matrix metalloproteinase 9 (MMP9), which has been shown to be involved in tumor progression and cell migration. Further, knockdown of SMAD4 in microglia decreased the migration of microglial cells towards GCM, indicating that SMAD4 promotes microglial migration in glioma environment. In addition, SMAD4 has been shown to be post-transcriptionally regulated by microRNA-146a, which was downregulated in microglia treated with GCM. Overexpression of miR-146a resulted in decreased expression of SMAD4 together with tumor supportive gene MMP9 in microglia, and subsequently suppressed microglial migration towards GCM, possibly through regulation of SMAD4. On the other hand, the cell viability assay revealed decreased viability of glioma cells when they were treated with conditioned medium derived from SMAD4 knockdown microglia or miR-146a overexpressed microglia as compared to glioma cells treated with the medium from control microglial cells. Taken together, the present study suggests that microglial SMAD4 which is epigenetically regulated by miR-146a promotes microglial migration in gliomas and glioma cell viability.
Zhao, Li-Ping; Xu, Tian-Min; Kan, Mu-Jie; Xiao, Ye-Chen; Cui, Man-Hua
2016-05-01
Urokinase-type plasminogen activator (uPA) acts by breaking down the basement membrane and is involved in cell proliferation, migration and invasion. These actions are mediated by binding to the uPA receptor (uPAR) via its growth factor domain (GFD). The present study evaluated the effects of uPAg-KPI, a fusion protein of uPA-GFD and a kunitz protease inhibitor (KPI) domain that is present in the amyloid β-protein precursor. Using SKOV-3 cells, an ovarian cancer cell line, we examined cell viability, migration, invasion and also protein expression. Furthermore, we examined wound healing, and migration and invasion using a Transwell assay. Our data showed that uPAg-KPI treatment reduced the viability of ovarian cancer SKOV-3 cells in both a concentration and time-dependent manner by arresting tumor cells at G1/G0 phase of the cell cycle. The IC50 of uPAg-KPI was 0.5 µg/µl after 48 h treatment. At this concentration, uPAg-KPI also inhibited tumor cell colony formation, wound closure, as well as cell migration and invasion capacity. At the protein level, western blot analysis demonstrated that uPAg-KPI exerted no significant effect on the expression of total extracellular signal-regulated kinase (ERK)1/ERK2 and AKT, whereas it suppressed levels of phosphorylated ERK1/ERK2 and AKT. Thus, we suggest that this novel uPAg-KPI fusion protein reduced cell viability, colony formation, wound healing and the invasive ability of human ovarian cancer SKOV-3 cells in vitro by regulating ERK and AKT signaling. Further studies using other cell lines will confirm these findings.
ZHAO, LI-PING; XU, TIAN-MIN; KAN, MU-JIE; XIAO, YE-CHEN; CUI, MAN-HUA
2016-01-01
Urokinase-type plasminogen activator (uPA) acts by breaking down the basement membrane and is involved in cell proliferation, migration and invasion. These actions are mediated by binding to the uPA receptor (uPAR) via its growth factor domain (GFD). The present study evaluated the effects of uPAg-KPI, a fusion protein of uPA-GFD and a kunitz protease inhibitor (KPI) domain that is present in the amyloid β-protein precursor. Using SKOV-3 cells, an ovarian cancer cell line, we examined cell viability, migration, invasion and also protein expression. Furthermore, we examined wound healing, and migration and invasion using a Transwell assay. Our data showed that uPAg-KPI treatment reduced the viability of ovarian cancer SKOV-3 cells in both a concentration and time-dependent manner by arresting tumor cells at G1/G0 phase of the cell cycle. The IC50 of uPAg-KPI was 0.5 µg/µl after 48 h treatment. At this concentration, uPAg-KPI also inhibited tumor cell colony formation, wound closure, as well as cell migration and invasion capacity. At the protein level, western blot analysis demonstrated that uPAg-KPI exerted no significant effect on the expression of total extracellular signal-regulated kinase (ERK)1/ERK2 and AKT, whereas it suppressed levels of phosphorylated ERK1/ERK2 and AKT. Thus, we suggest that this novel uPAg-KPI fusion protein reduced cell viability, colony formation, wound healing and the invasive ability of human ovarian cancer SKOV-3 cells in vitro by regulating ERK and AKT signaling. Further studies using other cell lines will confirm these findings. PMID:27035617
Shi, Pujiang; Laude, Augustinus; Yeong, Wai Yee
2017-04-01
In this article, mouse fibroblast cells (L929) were seeded on 2%, 5%, and 10% alginate hydrogels, and they were also bio-printed with 2%, 5%, and 10% alginate solutions individually to form constructs. The elastic and viscous moduli of alginate solutions, their interior structure and stiffness, interactions of cells and alginate, cell viability, migration and morphology were investigated by rheometer, MTT assay, scanning electron microscope (SEM), and fluorescent microscopy. The three types of bio-printed scaffolds of distinctive stiffness were prepared, and the seeded cells showed robust viability either on the alginate hydrogel surfaces or in the 3D bio-printed constructs. Majority of the proliferated cells in the 3D bio-printed constructs weakly attached to the surrounding alginate matrix. The concentration of alginate solution and hydrogel stiffness influenced cell migration and morphology, moreover the cells formed spheroids in the bio-printed 10% alginate hydrogel construct. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1009-1018, 2017. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Xuefeng, E-mail: dengxfdoctor@hotmail.com; Department of Cardio-thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences; Ma, Qunfeng
Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level ofmore » MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.« less
Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.
Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo
2018-01-01
Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.
Galler, K M; Widbiller, M; Buchalla, W; Eidt, A; Hiller, K-A; Hoffer, P C; Schmalz, G
2016-06-01
To evaluate the effect of dentine conditioning on migration, adhesion and differentiation of dental pulp stem cells. Dentine discs prepared from extracted human molars were pre-treated with EDTA (10%), NaOCl (5.25%) or H2 O. Migration of dental pulp stem cells towards pre-treated dentine after 24 and 48 h was assessed in a modified Boyden chamber assay. Cell adhesion was evaluated indirectly by measuring cell viability. Expression of mineralization-associated genes (COL1A1, ALP, BSP, DSPP, RUNX2) in cells cultured on pre-treated dentine for 7 days was determined by RT-qPCR. Nonparametric statistical analysis was performed for cell migration and cell viability data to compare different groups and time-points (Mann-Whitney U-test, α = 0.05). Treatment of dentine with H2 O or EDTA allowed for cell attachment, which was prohibited by NaOCl with statistical significance (P = 0.000). Furthermore, EDTA conditioning induced cell migration towards dentine. The expression of mineralization-associated genes was increased in dental pulp cells cultured on dentine after EDTA conditioning compared to H2 O-pre-treated dentine discs. EDTA conditioning of dentine promoted the adhesion, migration and differentiation of dental pulp stem cells towards or onto dentine. A pre-treatment with EDTA as the final step of an irrigation protocol for regenerative endodontic procedures has the potential to act favourably on new tissue formation within the root canal. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Haque, Inamul; Ghosh, Arnab; Acup, Seth; Banerjee, Snigdha; Dhar, Kakali; Ray, Amitabha; Sarkar, Sandipto; Kambhampati, Suman; Banerjee, Sushanta K
2018-01-25
In menopausal women, one of the critical risk factors for breast cancer is obesity/adiposity. It is evident from various studies that leptin, a 16 kDa protein hormone overproduced in obese people, plays the critical role in neovascularization and tumorigenesis in breast and other organs. However, the mechanisms by which obesity influences the breast carcinogenesis remained unclear. In this study, by analyzing different estrogen receptor-α (ER-α)-positive and ER-α-negative BC cell lines, we defined the role of CCN5 in the leptin-mediated regulation of growth and invasive capacity. We analyzed the effect of leptin on cell viability of ER-α-positive MCF-7 and ZR-75-1 cell lines and ER-α-negative MDA-MB-231 cell line. Additionally, we also determined the effect of leptin on the epithelial-mesenchymal transition (EMT) bio-markers, in vitro invasion and sphere-formation of MCF-7 and ZR-75-1 cell lines. To understand the mechanism, we determined the impact of leptin on CCN5 expression and the functional role of CCN5 in these cells by the treatment of human recombinant CCN5 protein(hrCCN5). Moreover, we also determined the role of JAK-STAT and AKT in the regulation of leptin-induced suppression of CCN5 in BC cells. Present studies demonstrate that leptin can induce cell viability, EMT, sphere-forming ability and migration of MCF-7 and ZR-75-1 cell lines. Furthermore, these studies found that leptin suppresses the expression of CCN5 at the transcriptional level. Although the CCN5 suppression has no impact on the constitutive proliferation of MCF-7 and ZR-75-1 cells, it is critical for leptin-induced viability and necessary for EMT, induction of in vitro migration and sphere formation, as the hrCCN5 treatment significantly inhibits the leptin-induced viability, EMT, migration and sphere-forming ability of these cells. Mechanistically, CCN5-suppression by leptin is mediated via activating JAK/AKT/STAT-signaling pathways. These studies suggest that CCN5 serves as a gatekeeper for leptin-dependent growth and progression of luminal-type (ER-positive) BC cells. Leptin may thus need to destroy the CCN5-barrier to promote BC growth and progression via activating JAK/AKT/STAT signaling. Therefore, these observations suggest a therapeutic potency of CCN5 by restoration or treatment in obese-related luminal-type BC growth and progression.
Drosophila hemocyte migration: an in vivo assay for directional cell migration.
Moreira, Carolina G A; Regan, Jennifer C; Zaidman-Rémy, Anna; Jacinto, Antonio; Prag, Soren
2011-01-01
This protocol describes an in vivo assay for random and directed hemocyte migration in Drosophila. Drosophila is becoming an increasingly powerful model system for in vivo cell migration analysis, combining unique genetic tools with translucency of the embryo and pupa, which allows direct imaging and traceability of different cell types. In the assay we present here, we make use of the hemocyte response to epithelium wounding to experimentally induce a transition from random to directed migration. Time-lapse confocal microscopy of hemocyte migration in untreated conditions provides a random cell migration assay that allows identification of molecular mechanisms involved in this complex process. Upon laser-induced wounding of the thorax epithelium, a rapid chemotactic response changes hemocyte migratory behavior into a directed migration toward the wound site. This protocol provides a direct comparison of cells during both types of migration in vivo, and combined with recently developed resources such as transgenic RNAi, is ideal for forward genetic screens.
Exploring Inflammatory Disease Drug Effects on Neutrophil Function
Wu, Xiaojie; Kim, Donghyuk; Young, Ashlyn T.; Haynes, Christy L.
2014-01-01
Neutrophils are critical inflammatory cells; thus, it is important to characterize the effects of drugs on neutrophil function in the context of inflammatory diseases. Herein, chemically guided neutrophil migration, known as chemotaxis, is studied in the context of drug treatment at the single cell level using a microfluidic platform, complemented by cell viability assays and calcium imaging. Three representative drugs known to inhibit surface receptor expression, signaling enzyme activity, and the elevation of intracellular Ca2+ levels, each playing a significant role in neutrophil chemotactic pathways, are used to examine the in vitro drug effects on cellular behaviors. The microfluidic device establishes a stable concentration gradient of chemokines across a cell culture chamber so that neutrophil migration can be monitored under various drug-exposure conditions. Different time- and concentration-dependent regulatory effects were observed by comparing the motility, polarization, and effectiveness of neutrophil chemotaxis in response to the three drugs. Viability assays revealed distinct drug capabilities in reducing neutrophil viability while calcium imaging clarified the role of Ca2+ in the neutrophil chemotactic pathway. This study provides mechanistic insight into the drug effects on neutrophil function, facilitating comparison of current and potential pharmaceutical approaches. PMID:24946254
Migration of lymphocytes on fibronectin-coated surfaces: temporal evolution of migratory parameters
NASA Technical Reports Server (NTRS)
Bergman, A. J.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)
1999-01-01
Lymphocytes typically interact with implanted biomaterials through adsorbed exogenous proteins. To provide a more complete characterization of these interactions, analysis of lymphocyte migration on adsorbed extracellular matrix proteins must accompany the commonly performed adhesion studies. We report here a comparison of the migratory and adhesion behavior of Jurkat cells (a T lymphoblastoid cell line) on tissue culture treated and untreated polystyrene surfaces coated with various concentrations of fibronectin. The average speed of cell locomotion showed a biphasic response to substrate adhesiveness for cells migrating on untreated polystyrene and a monotonic decrease for cells migrating on tissue culture-treated polystyrene. A modified approach to the persistent random walk model was implemented to determine the time dependence of cell migration parameters. The random motility coefficient showed significant increases with time when cells migrated on tissue culture-treated polystyrene surfaces, while it remained relatively constant for experiments with untreated polystyrene plates. Finally, a cell migration computer model was developed to verify our modified persistent random walk analysis. Simulation results suggest that our experimental data were consistent with temporally increasing random motility coefficients.
Zha, He; Sun, Hui; Li, Xueru; Duan, Liang; Li, Aifang; Gu, Yue; Zeng, Zongyue; Zhao, Jiali; Xie, Jiaqing; Yuan, Shimei; Li, Huan; Zhou, Lan
2016-07-01
Previous studies have shown that S100 calcium-binding protein A8 (S100A8) contributes to the survival and migration of colorectal cancer (CRC) cells. However, whether S100A8 participates in the progression and metastasis of CRC via the regulation of macrophages in the tumor inflammatory microenvironment remains unknown. In this study, phorbol myristate acetate (PMA) was used to induce the differentiation of THP-1 monocytes to macrophages. MTT assay, western blot analysis, immunofluorescence staining, semi-quantitative RT-PCR (semi-PCR), quantitative real-time PCR (qPCR), Gaussia luciferase activity assay and ELISA were performed to analyze the roles and molecular mechanisms of S100A8 in the modulation of macrophages. MTT assay, flow cytometric analysis, Hoechst staining, wound healing and Transwell migration assay were used to test the effect of S100A8 on the viability and migration of CRC cells co-cultured with macrophages in the inflammatory microenvironment. We found that THP-1 monocytes were induced by PMA and differentiated to macrophages. S100A8 activated the NF-κB pathway in the macrophages and promoted the expression of miR-155 and inflammatory cytokines IL-1β and TNF-α in the inflammatory microenvironment mimicked by lipopolysaccharides (LPS). Furthermore, S100A8 contributed to augment the migration but not the viability of the CRC cells co-cultured with the macrophages in the inflammatory microenvironment. Altogether, our study demonstrated that S100A8 facilitated the migration of CRC cells in the inflammatory microenvironment, and the underlying molecular mechanisms may be partially attributed to the overexpression of miR-155, IL-1β and TNF-α through activation of the NF-κB pathway in macrophages.
Kim, Hye-Sun; Yi, Bo-Rim; Hwang, Kyung-A; Kim, Seung U; Choi, Kyung-Chul
2013-10-01
The aim of the present study was to investigate the therapeutic efficacy of genetically engineered stem cells (GESTECs) expressing bacterial cytosine deaminase (CD) and/or human interferon-beta (IFN-β) gene against HeLa cervical cancer and the migration factors of the GESTECs toward the cancer cells. Anticancer effect of GESTECs was examined in a co-culture with HeLa cells using MTT assay to measure cell viability. A transwell migration assay was performed so as to assess the migration capability of the stem cells to cervical cancer cells. Next, several chemoattractant ligands and their receptors related to a selective migration of the stem cells toward HeLa cells were determined by real-time PCR. The cell viability of HeLa cells was decreased in response to 5-fluorocytosine (5-FC), a prodrug, indicating that 5-fluorouracil (5-FU), a toxic metabolite, was converted from 5-FC by CD gene and it caused the cell death in a co-culture system. When IFN-β was additionally expressed with CD gene by these GESTECs, the anticancer activity was significantly increased. In the migration assay, the GESTECs selectively migrated to HeLa cervical cancer cells. As results of real-time PCR, chemoattractant ligands such as MCP-1, SCF, and VEGF were expressed in HeLa cells, and several receptors such as uPAR, VEGFR2, and c-kit were produced by the GESTECs. These GESTECs transduced with CD gene and IFN-β may provide a potential of a novel gene therapy for anticervical cancer treatments via their selective tumor tropism derived from VEGF and VEGFR2 expressions between HeLa cells and the GESTECs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Weihua; Zhang, Weikai; Li, Feng
Osteoarthritis (OA) is one of the most progressive articular cartilage erosions. microRNAs (miRNAs) play pivotal roles in OA modulation, but the role of miR-139 in OA remains elusive. This study aims to reveal the effects and possible mechanism of miR-139 in OA and chondrocytes. The levels of miR-139 and its possible targets eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) and insulin-like growth factor 1 receptor (IGF1R) were detected by qRT-PCR in the articular cartilages of 20 OA patients and 20 non-OA patients. Human chondrocyte CHON-001 cells were transfected with miR-139 mimic or inhibitor, as well as the siRNAs of EIF4G2more » and IGF1R. Cell viability by MTT assay, proliferation by colony formation assay and migration by Transwell assay were performed. Results showed that miR-139 was up-regulated, while EIF4G2 and IGF1R mRNAs down-regulated in OA cartilages (P < 0.001), and negative correlations existed between the level of miR-139 and EIF4G2 or IGF1R. Overexpression of miR-139 in CHON-001 cells suppressed both mRNA and protein levels of EIF4G2 and IGF1R, and inhibited cell viability, colony formation number and cell migration, while miR-139 inhibitor induced the opposite effects. Knockdown of EIF4G2 or IGF1R in CHON-001 cells reversed the effects of miR-139 inhibitor on cell viability, colony formation and cell migration. These results indicate that miR-139 is capable of inhibiting chondrocyte proliferation and migration, thus being a possible therapeutic target for OA. The mechanism of miR-139 in chondrocytes may be related to its regulation on EIF4G2 and IGF1R.« less
In vitro evaluation of wound healing and antimicrobial potential of ozone therapy.
Borges, Gabriel Álvares; Elias, Silvia Taveira; da Silva, Sandra Márcia Mazutti; Magalhães, Pérola Oliveira; Macedo, Sergio Bruzadelli; Ribeiro, Ana Paula Dias; Guerra, Eliete Neves Silva
2017-03-01
Although ozone therapy is extensively applied when wound repair and antimicrobial effect are necessary, little is known about cellular mechanisms regarding this process. Thus, this study aimed to evaluate ozone cytotoxicity in fibroblasts (L929) and keratinocytes (HaCaT) cell lines, its effects on cell migration and its antimicrobial activity. Cells were treated with ozonated phosphate-buffered saline (8, 4, 2, 1, 0.5 and 0.25 μg/mL ozone), chlorhexidine 0.2% or buffered-solution, and cell viability was determined through MTT assay. The effect of ozone on cell migration was evaluated through scratch wound healing and transwell migration assays. The minimum inhibitory concentrations for Candida albicans and Staphylococcus aureus were determined. Ozone showed no cytotoxicity for the cell lines, while chlorhexidine markedly reduced cell viability. Although no significant difference between control and ozone-treated cells was observed in the scratch assay, a considerable increase in fibroblasts migration was noticed on cells treated with 8 μg/mL ozonated solution. Ozone alone did not inhibit growth of microorganisms; however, its association with chlorhexidine resulted in antimicrobial activity. This study confirms the wound healing and antimicrobial potential of ozone therapy and presents the need for studies to elucidate the molecular mechanisms through which it exerts such biological effects. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
MiR-217 promoted the proliferation and invasion of glioblastoma by repressing YWHAG.
Wang, Hongbin; Zhi, Hua; Ma, Dongzhou; Li, Tao
2017-04-01
To study the effects of miR-217 on glioblastoma cell proliferation, migration and invasion and its regulation on YWHAG. QRT-PCR was used to detect the expression of related mRNAs and miRNA in both glioblastoma tissues and cells. Western blot was used to determine the protein expression of related genes. The transfection was performed using lipo2000. MTT assay, colony formation assay, wound healing assay, Transwell assay as well as flow cytometry were employed to determine the viability, proliferation, migration, invasion and mitosis of UG87 MG cell line. Besides, the dual luciferase reporter gene assay was used to determine the direct targeting relationship between miR-217 and YWHAG. Xenograft models were also constructed and the effect of miR-217 on tumor growth was studied in vivo. MiR-217 was up-regulated, whereas YWHAG was down-regulated in glioblastoma tissues and cells. The down-regulation of miR-217 or the up-regulation of YWHAG suppressed the viability, proliferation, migration, invasion and mitosis of U87 MG cells in vitro. In addition, MiR-217 directly targeted 3'UTR of YWHAG and suppressed the expression of YWHAG. Up-regulation of miR-217 could efficiently attenuate the inhibitory effects of YWHAG overexpression on the proliferation and metastasis of U87 MG cells. YWHAG was able to accelerate the phosphorylation of MDM4 and lead to the degradation of P53, which provides a potential mechanism for the tumor-promoting role of miR-217 in glioblastoma cells. By constructing xenograft models, it was also confirmed that miR-217 could promote tumor growth in vivo. MiR-217 could promote the viability, proliferation, migration, invasion and mitosis of glioblastoma cells both in vitro and in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.
Copper supplementation amplifies the anti-tumor effect of curcumin in oral cancer cells.
Lee, Hui-Mei; Patel, Vyomesh; Shyur, Lie-Fen; Lee, Wai-Leng
2016-11-15
Oral cancer is the sixth most common cancer worldwide and 90% of oral malignancies are caused by oral squamous cell carcinoma (OSCC). Curcumin, a phytocompound derived from turmeric (Curcuma longa) was observed to have anti-cancer activity which can be developed as an alternative treatment option for OSCC. However, OSCC cells with various clinical-pathological features respond differentially to curcumin treatment. Intracellular copper levels have been reported to correlate with tumor pathogenesis and affect the sensitivity of cancer cells to cytotoxic chemotherapy. We hypothesized that intracellular copper levels may affect the sensitivity of oral cancer cells to curcumin. We analysed the correlation between intracellular copper levels and response to curcumin treatment in a panel of OSCC cell lines derived from oral cancer patients. Exogenous copper was supplemented in curcumin insensitive cell lines to observe the effect of copper on curcumin-mediated inhibition of cell viability and migration, as well as induction of oxidative stress and apoptosis. Protein markers of cell migration and oxidative stress were also analysed using Western blotting. Concentrations of curcumin which inhibited 50% OSCC cell viability (IC 50 ) was reduced up to 5 times in the presence of 250 µM copper. Increased copper level in curcumin-treated OSCC cells was accompanied by the induction of intracellular ROS and increased level of Nrf2 which regulates oxidative stress responses in cells. Supplemental copper also inhibited migration of curcumin-treated cells with enhanced level of E-cadherin and decreased vimentin, indications of suppressed epithelial-mesenchymal transition. Early apoptosis was observed in combined treatment but not in treatment with curcumin or copper alone. Supplement of copper significantly enhanced the inhibitory effect of curcumin treatment on migration and viability of oral cancer cells. Together, these findings provide molecular insight into the role of copper in overcoming insensitivity of oral cancer cells to curcumin treatment, suggesting a new strategy for cancer therapy. Copyright © 2016 Elsevier GmbH. All rights reserved.
Carvalho, Eunice B; Maga, Elizabeth A; Quetz, Josiane S; Lima, Ila F N; Magalhães, Hemerson Y F; Rodrigues, Felipe A R; Silva, Antônio V A; Prata, Mara M G; Cavalcante, Paloma A; Havt, Alexandre; Bertolini, Marcelo; Bertolini, Luciana R; Lima, Aldo A M
2012-08-11
Enteroaggregative Escherichia coli (EAEC) causes diarrhea, malnutrition and poor growth in children. Human breast milk decreases disease-causing bacteria by supplying nutrients and antimicrobial factors such as lysozyme. Goat milk with and without human lysozyme (HLZ) may improve the repair of intestinal barrier function damage induced by EAEC. This work investigates the effect of the milks on intestinal barrier function repair, bacterial adherence in Caco-2 and HEp-2 cells, intestinal cell proliferation, migration, viability and apoptosis in IEC-6 cells in the absence or presence of EAEC. Rat intestinal epithelial cells (IEC-6, ATCC, Rockville, MD) were used for proliferation, migration and viability assays and human colon adenocarcinoma (Caco-2, ATCC, Rockville, MD) and human larynx carcinoma (HEp-2, ATCC, Rockville, MD) cells were used for bacterial adhesion assays. Goats expressing HLZ in their milk were generated and express HLZ in milk at concentration of 270 μg/ml. Cells were incubated with pasteurized milk from either transgenic goats expressing HLZ or non-transgenic control goats in the presence and absence of EAEC strain 042 (O44:H18). Cellular proliferation was significantly greater in the presence of both HLZ transgenic and control goat milk compared to cells with no milk. Cellular migration was significantly decreased in the presence of EAEC alone but was restored in the presence of milk. Milk from HLZ transgenic goats had significantly more migration compared to control milk. Both milks significantly reduced EAEC adhesion to Caco-2 cells and transgenic milk resulted in less colonization than control milk using a HEp-2 assay. Both milks had significantly increased cellular viability as well as less apoptosis in both the absence and presence of EAEC. These data demonstrated that goat milk is able to repair intestinal barrier function damage induced by EAEC and that goat milk with a higher concentration of lysozyme offers additional protection.
Ash, S A; Valchev, G I; Looney, M; Ni Mhathuna, A; Crowley, P D; Gallagher, H C; Buggy, D J
2014-07-01
While volatile agents have been implicated in metastasis-enhancing effects on cancer cells, the effects of xenon are unknown. We investigated xenon- and sevoflurane-mediated effects on migration and expression of angiogenesis biomarkers in human breast adenocarcinoma cells. MDA-MB-231 and MCF-7 cells were exposed to xenon 70% with O2 25%, CO2 5%; control gas containing O2 25%, CO2 5%, N2 70%; or sevoflurane 2.5 vol% administered in O2 60%, N2 37%, or control gas. Cell viability was determined by the MTT assay. Migration at 24 h was determined using the Oris™ Cell Migration Assay. Secretion of angiogenesis factors was measured using a membrane-based immunoassay array. Xenon reduced MDA-MB-231 migration to 59 (13%) after 1-h exposure (P=0.02), 64 (10%) after 3 h (P=0.01), and 71 (9%) after 5 h (P=0.04) compared with control gas, without affecting viability. Similarly, MCF-7 migration was significantly reduced at all timepoints [to 58 (12%) at 1 h, 65 (12%) at 3 h, and 65% (12%) at 5 h]. Sevoflurane did not affect migration when delivered in control gas. Glycine, an N-methyl-d-aspartate receptor co-agonist, antagonized the effects of xenon on migration. Expression of the pro-angiogenesis factor regulated on activation, normal T cell expressed and secreted (RANTES) was reduced in conditioned medium from xenon-exposed MDA-MB-231 cells compared with cells exposed to either control gas or sevoflurane [mean dot density 2.0 (0.2) compared with 3.0 (0.1) and 3.1 (0.3), respectively (P=0.02)]. Xenon, but not sevoflurane, inhibited migration in both oestrogen receptor positive and negative breast adenocarcinoma cells. Furthermore, xenon decreased release of the pro-angiogenic factor RANTES from MDA-MB-231 cells. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Density gradient electrophoresis of cultured human embryonic kidney cells
NASA Technical Reports Server (NTRS)
Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.
1985-01-01
Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.
Modular control of endothelial sheet migration
Vitorino, Philip; Meyer, Tobias
2008-01-01
Growth factor-induced migration of endothelial cell monolayers enables embryonic development, wound healing, and angiogenesis. Although collective migration is widespread and therapeutically relevant, the underlying mechanism by which cell monolayers respond to growth factor, sense directional signals, induce motility, and coordinate individual cell movements is only partially understood. Here we used RNAi to identify 100 regulatory proteins that enhance or suppress endothelial sheet migration into cell-free space. We measured multiple live-cell migration parameters for all siRNA perturbations and found that each targeted protein primarily regulates one of four functional outputs: cell motility, directed migration, cell–cell coordination, or cell density. We demonstrate that cell motility regulators drive random, growth factor-independent motility in the presence or absence of open space. In contrast, directed migration regulators selectively transduce growth factor signals to direct cells along the monolayer boundary toward open space. Lastly, we found that regulators of cell–cell coordination are growth factor-independent and reorient randomly migrating cells inside the sheet when boundary cells begin to migrate. Thus, cells transition from random to collective migration through a modular control system, whereby growth factor signals convert boundary cells into pioneers, while cells inside the monolayer reorient and follow pioneers through growth factor-independent migration and cell–cell coordination. PMID:19056882
Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C
2013-01-01
Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. PMID:23593935
Füller, J; Müller-Goymann, C C
2018-05-01
Hyperforin (HYP), one of the main bioactive compounds in extracts of Hypericum perforatum, is a potential drug candidate for the treatment of skin diseases. Since extracts have proven to support wound healing, in the present study effects of HYP on human dermal fibroblasts (HDF) were evaluated in 2D and 3D in vitro dermal constructs. Viability and cytotoxicity assays as well as a live-dead cell staining were performed to test at which concentration HYP reduces viability and/or shows cytotoxicity. Furthermore a differentiation between cytotoxic, anti-proliferative and anti-migratory effects was done. For the latter purpose a 2D migration assay was performed. HDF-induced contraction of a 3D artificial dermal (AD) construct was determined at given HYP concentration. Induction of apoptosis was examined by determination of caspase 3/7 activities. HYP reduced viability of HDF down to 70% at concentrations of 5-10µM. This decrease was not due to cytotoxicity but to a reduction in proliferation as shown from both the proliferation assay and the cytotoxicity assay as well as from live-dead cell staining. The 2D migration assay showed that HYP reduced migration activity of HDF cells at a concentration of 10µM. At this concentration HYP also reduced the HDF-induced contraction of collagen gels as 3D AD constructs. Apoptotic effects of HYP were excluded performing a caspase 3/7 activity detecting assay. The results show for the first time that HYP may be rather a potential candidate for treatment of hypertrophic scars than promoting effects which are understood as important in wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.
Zafar, S; Coates, D E; Cullinan, M P; Drummond, B K; Milne, T; Seymour, G J
2016-11-01
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious complication of bisphosphonate therapy. The mechanism underlying BRONJ pathogenesis is poorly understood. To determine the effects of zoledronic acid (ZA) and geranylgeraniol (GGOH) on the mevalonate pathway (MVP) in osteoblasts generated from the human mandibular alveolar bone in terms of cell viability/proliferation, migration, apoptosis and gene expression. Primary human osteoblasts (HOBs) isolated from the mandibular alveolar bone were phenotyped. HOBs were cultured with or without ZA and GGOH for up to 72 h. Cellular behaviour was examined using a CellTiter-Blue® viability assay, an Ibidi culture-insert migration assay, an Apo-ONE® Homogeneous Caspase-3/7 apoptosis assay and transmission electron microscopy (TEM). Quantitative real-time reverse transcriptase polymerase chain reaction (qRT 2 -PCR) was used to determine the simultaneous expression of 168 osteogenic and angiogenic genes modulated in the presence of ZA and GGOH. ZA decreased cell viability and migration and induced apoptosis in HOBs. TEM revealed signs of apoptosis in ZA-treated HOBs. However, the co-addition of GGOH ameliorated the effect of ZA and partially restored the cells to the control state. Twenty-eight genes in the osteogenic array and 27 genes in the angiogenic array were significantly regulated in the presence of ZA compared with those in the controls at one or more time points. The cytotoxic effect of ZA on HOBs and its reversal by the addition of GGOH suggests that the effect of ZA on HOBs is mediated via the MVP. The results suggest that GGOH could be used as a possible therapeutic/preventive strategy for BRONJ.
Pinkernelle, Josephine; Fansa, Hisham; Ebmeyer, Uwe; Keilhoff, Gerburg
2013-01-01
Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients. PMID:23967343
Macrophages as Drug Delivery Carriers for Acoustic Phase-Change Droplets.
Fan, Ching-Hsiang; Lee, Ya-Hsuan; Ho, Yi-Ju; Wang, Chung-Hsin; Kang, Shih-Tsung; Yeh, Chih-Kuang
2018-07-01
The major challenges in treating malignant tumors are transport of therapeutic agents to hypoxic regions and real-time assessment of successful drug release via medical imaging modalities. In this study, we propose the use of macrophages (RAW 264.7 cells) as carriers of drug-loaded phase-change droplets to penetrate ischemic or hypoxic regions within tumors. The droplets consist of perfluoropentane, lipid and the chemotherapeutic drug doxorubicin (DOX, DOX-droplets). The efficiency of DOX-droplet uptake, migration mobility and viability of DOX-droplet-loaded macrophages (DLMs) were measured using a transmembrane cell migration assay, the alamarBlue assay and flow cytometric analysis, respectively. Our results indicate the feasibility of utilizing macrophages as DOX-droplet carriers (DOX payload of DOX-droplets: 459.3 ± 35.8 µg/mL, efficiency of cell uptake DOX-droplets: 88.8 ± 3.5%). The migration mobility (total number of migrated microphages) of DLMs decreased to 32.3% compared with that of healthy macrophages, but the DLMs provided contrast-enhanced ultrasound imaging (1.7-fold enhancement) and anti-tumor effect (70.9% cell viability) after acoustic droplet vaporization, suggesting the potential theranostic applications of DLMs. Future work will assess the tumor penetration ability of DLMs, mechanical effect of droplet vaporization on in vivo anti-tumor therapy and the release of the carried drug by ultrasound-triggered vaporization. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Caiyan; Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi; Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia
The elucidation of the functional mechanisms of extracellular acidification stimulating intracellular signaling pathway is of great importance for developing new targets of treatment for solid tumors, and inflammatory disorders characterized by extracellular acidification. In the present study, we focus on the regulation of extracellular acidification on intracellular signaling pathways in mouse embryo fibroblasts (MEFs). We found extracellular acidification was at least partly involved in stimulating p38MAPK pathway through PTX-sensitive behavior to enhance cell migration in the presence or absence of platelet-derived growth factor (PDGF). Statistical analysis showed that the actions of extracellular acidic pH and PDGF on inducing enhancement ofmore » cell migration were not an additive effect. However, we also found extracellular acidic pH did inhibit the viability and proliferation of MEFs, suggesting that extracellular acidification stimulates cell migration probably through proton-sensing mechanisms within MEFs. Using OGR1-, GPR4-, and TDAG8-gene knock out technology, and real-time qPCR, we found known proton-sensing G protein-coupled receptors (GPCRs), transient receptor potential vanilloid subtype 1 (TRPV1), and acid-sensing ion channels (ASICs) were unlikely to be involved in the regulation of acidification on cell migration. In conclusion, our present study validates that extracellular acidification stimulates chemotactic migration of MEFs through activation of p38MAPK with a PTX-sensitive mechanism either by itself, or synergistically with PDGF, which was not regulated by the known proton-sensing GPCRs, TRPV1, or ASICs. Our results suggested that others proton-sensing GPCRs or ion channels might exist in MEFs, which mediates cell migration induced by extracellular acidification in the presence or absence of PDGF. - Highlights: • Acidic pH and PDGF synergize to stimulate MEFs migration via Gi/p38MAPK pathway. • Extracellular acidification inhibits the viability and proliferation of MEFs. • MEFs sense acidic pH was not regulated by known proton-sensing GPCRs, TRPV1 or ASICs.« less
2015-01-01
Material composition and topography of the cell-contacting material interface are important considerations in the design of biomaterials at the nano and micro scales. This study is one of the first to have assessed the osteoblastic response to micropatterned polymer–ceramic composite surfaces. In particular, the effect of topographic variations of composite poly(ε-caprolactone)/hydroxyapatite (PCL/HAp) films on viability, proliferation, migration and osteogenesis of fibroblastic and osteoblastic MC3T3-E1 cells was evaluated. To that end, three different micropatterned PCL/HAp films were compared: flat and textured, the latter of which included films comprising periodically arranged and randomly distributed oval topographic features 10 μm in diameter, 20 μm in separation and 10 μm in height, comparable to the dimensions of MC3T3-E1 cells. PCL/HAp films were fabricated by the combination of a bottom-up, soft chemical synthesis of the ceramic, nanoparticulate phase and a top-down, photolithographic technique for imprinting fine, microscale features on them. X-ray diffraction analysis indicated an isotropic orientation of both the polymeric chains and HAp crystallites in the composite samples. Biocompatibility tests indicated no significant decrease in their viability when grown on PCL/HAp films. Fibroblast proliferation and migration onto PCL/HAp films proceeded slower than on the control borosilicate glass, with the flat composite film fostering more cell migration activity than the films containing topographic features. The gene expression of seven analyzed osteogenic markers, including procollagen type I, osteocalcin, osteopontin, alkaline phosphatase, and the transcription factors Runx2 and TGFβ-1, was, however, consistently upregulated in cells grown on PCL/HAp films comprising periodically ordered topographic features, suggesting that the higher levels of symmetry of the topographic ordering impose a moderate mechanochemical stress on the adherent cells and thus promote a more favorable osteogenic response. The obtained results suggest that topography can be a more important determinant of the cell/surface interaction than the surface chemistry and/or stiffness as well as that the regularity of the distribution of topographic features can be a more important variable than the topographic features per se. PMID:25014232
Differential Effect of Zoledronic Acid on Human Vascular Smooth Muscle Cells
Albadawi, Hassan; Haurani, Mounir J.; Oklu, Rahmi; Trubiano, Jordan P.; Laub, Peter J.; Yoo, Hyung-Jin; Watkins, Michael T.
2012-01-01
Introduction The activation of human vascular smooth muscle cell proliferation, adhesion and migration is essential for intimal hyperplasia formation. These experiments were designed to test whether Zoledronic Acid (ZA) would modulate indices of human smooth muscle cell activation, exert differential effects on proliferating vs. quiescent cells and determine whether these effects were dependent on GTPase binding proteins prenylation. ZA was chosen for testing in these experiments because it is clinically used in humans with cancer, and has been shown to modulate rat smooth muscle cell proliferation and migration. Methods Human aortic smooth muscle cells (HASMC) were cultured under either proliferating or growth arrest (quiescent) conditions in the presence or absence of ZA for 48 hours, whereupon the effect of ZA on HASMC proliferation, cellular viability, metabolic activity and membrane integrity were compared. In addition, the effect of ZA on adhesion and migration were assessed in proliferating cells. The effect of increased concentration of ZA on the mevalonate pathway and genomic/cellular stress related poly ADP Ribose polymerase (PARP) enzyme activity were assessed using the relative prenylation of Rap-1A/B protein and the formation of poly ADP- ribosylated proteins (PAR) respectively. Results There was a dose dependent inhibition of cellular proliferation, adhesion and migration following ZA treatment. ZA treatment decreased indices of cellular viability and significantly increased membrane injury in proliferating vs. quiescent cells. This was correlated with the appearance of unprenylated Rap-1A protein and dose dependent down regulation of PARP activity. Conclusions These data suggest that ZA is effective in inhibiting HASMC proliferation, adhesion and migration which coincide with the appearance of unprenylated RAP-1A/B protein, thereby suggesting that the mevalonate pathway may play a role in the inhibition of HASMC activation. PMID:23164362
An, Shaofeng; Gong, Qimei; Huang, Yihua
2017-01-01
Zinc is an essential trace element for proper cellular function and bone formation. However, its exact role in the osteogenic differentiation of human dental pulp cells (hDPCs) has not been fully clarified before. Here, we speculated that zinc may be effective to regulate their growth and osteogenic differentiation properties. To test this hypothesis, different concentrations (1 × 10 -5 , 4 × 10 -5 , and 8 × 10 -5 M) of zinc ions (Zn 2+ ) were added to the basic growth culture medium and osteogenic inductive medium. Cell viability and migration were measured by cell counting kit-8 (CCK-8) and transwell migration assay in the basic growth culture medium, respectively. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expression levels of selective osteogenic differentiation markers and zinc transporters. Alkaline phosphatase (ALP) activity analysis and alizarin red S staining were used to investigate the mineralization of hDPCs. Exposure of hDPCs to Zn 2+ stimulated their viability and migration capacity in a dose- and time-dependent manner. RT-qPCR assay revealed elevated expression levels of osteogenic differentiation-related genes and zinc transporters genes in various degrees. ALP activity was also increased with elevated Zn 2+ concentrations and extended culture periods, but enhanced matrix nodules formation were observed only in 4 × 10 -5 and 8 × 10 -5 M Zn 2+ groups. These findings suggest that specific concentrations of Zn 2+ could potentiate the vitality, migration, and osteogenic differentiation of hDPCs. We may combine optimum zinc element into pulp capping materials to improve their biological performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Ling-Feng; Yao, Jin; Wang, Xiao-Qun
Ocular angiogenesis is an important pathologic character of several ocular diseases, such as retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration (AMD). Inhibition of ocular angiogenesis has great therapeutic value for treating these dieses. Here we show that lenalidomide, an anti-tumor drug, has great anti-angiogenic potential in ocular diseases. Lenalidomide inhibits retinal endothelial cell viability in normal and pathological condition, and inhibits VEGF-induced endothelial cell migration and tube formation in vitro. Moreover, lenalidomide inhibits ocular angiogenesis in vivo through the reduction of angiogenesis- and inflammation-related protein expression. Collectively, lenalidomide is a promising drug for treating ocular angiogenesis through its anti-proliferative andmore » anti-inflammatory property. - Highlights: • Lenalidomide inhibits retinal endothelial cell viability in vitro. • Lenalidomide inhibits retinal endothelial cell migration and tube formation. • Lenalidomide inhibits pathological ocular angiogenesis in vivo. • Lenalidomide inhibits angiogenesis- and inflammation-related protein expression.« less
The novel kinase inhibitor ponatinib is an effective anti-angiogenic agent against neuroblastoma.
Whittle, Sarah B; Patel, Kalyani; Zhang, Linna; Woodfield, Sarah E; Du, Michael; Smith, Valeria; Zage, Peter E
2016-12-01
Background High-risk neuroblastoma has poor outcomes with high rates of relapse despite aggressive treatment, and novel therapies are needed to improve these outcomes. Ponatinib is a multi-tyrosine kinase inhibitor that targets many pathways implicated in neuroblastoma pathogenesis. We hypothesized that ponatinib would be effective against neuroblastoma in preclinical models. Methods We evaluated the effects of ponatinib on survival and migration of human neuroblastoma cells in vitro. Using orthotopic xenograft mouse models of human neuroblastoma, we analyzed tumors treated with ponatinib for growth, gross and histologic appearance, and vascularity. Results Ponatinib treatment of neuroblastoma cells resulted in decreased cell viability and migration in vitro. In mice with orthotopic xenograft neuroblastoma tumors, treatment with ponatinib resulted in decreased growth and vascularity. Conclusions Ponatinib reduces neuroblastoma cell viability in vitro and reduces tumor growth and vascularity in vivo. The antitumor effects of ponatinib suggest its potential as a novel therapeutic agent for neuroblastoma, and further preclinical testing is warranted.
Quantitative analysis of random migration of cells using time-lapse video microscopy.
Jain, Prachi; Worthylake, Rebecca A; Alahari, Suresh K
2012-05-13
Cell migration is a dynamic process, which is important for embryonic development, tissue repair, immune system function, and tumor invasion (1, 2). During directional migration, cells move rapidly in response to an extracellular chemotactic signal, or in response to intrinsic cues (3) provided by the basic motility machinery. Random migration occurs when a cell possesses low intrinsic directionality, allowing the cells to explore their local environment. Cell migration is a complex process, in the initial response cell undergoes polarization and extends protrusions in the direction of migration (2). Traditional methods to measure migration such as the Boyden chamber migration assay is an easy method to measure chemotaxis in vitro, which allows measuring migration as an end point result. However, this approach neither allows measurement of individual migration parameters, nor does it allow to visualization of morphological changes that cell undergoes during migration. Here, we present a method that allows us to monitor migrating cells in real time using video - time lapse microscopy. Since cell migration and invasion are hallmarks of cancer, this method will be applicable in studying cancer cell migration and invasion in vitro. Random migration of platelets has been considered as one of the parameters of platelet function (4), hence this method could also be helpful in studying platelet functions. This assay has the advantage of being rapid, reliable, reproducible, and does not require optimization of cell numbers. In order to maintain physiologically suitable conditions for cells, the microscope is equipped with CO(2) supply and temperature thermostat. Cell movement is monitored by taking pictures using a camera fitted to the microscope at regular intervals. Cell migration can be calculated by measuring average speed and average displacement, which is calculated by Slidebook software.
Mib1 contributes to persistent directional cell migration by regulating the Ctnnd1-Rac1 pathway.
Mizoguchi, Takamasa; Ikeda, Shoko; Watanabe, Saori; Sugawara, Michiko; Itoh, Motoyuki
2017-10-31
Persistent directional cell migration is involved in animal development and diseases. The small GTPase Rac1 is involved in F-actin and focal adhesion dynamics. Local Rac1 activity is required for persistent directional migration, whereas global, hyperactivated Rac1 enhances random cell migration. Therefore, precise control of Rac1 activity is important for proper directional cell migration. However, the molecular mechanism underlying the regulation of Rac1 activity in persistent directional cell migration is not fully understood. Here, we show that the ubiquitin ligase mind bomb 1 (Mib1) is involved in persistent directional cell migration. We found that knockdown of MIB1 led to an increase in random cell migration in HeLa cells in a wound-closure assay. Furthermore, we explored novel Mib1 substrates for cell migration and found that Mib1 ubiquitinates Ctnnd1. Mib1-mediated ubiquitination of Ctnnd1 K547 attenuated Rac1 activation in cultured cells. In addition, we found that posterior lateral line primordium cells in the zebrafish mib1 ta52b mutant showed increased random migration and loss of directional F-actin-based protrusion formation. Knockdown of Ctnnd1 partially rescued posterior lateral line primordium cell migration defects in the mib1 ta52b mutant. Taken together, our data suggest that Mib1 plays an important role in cell migration and that persistent directional cell migration is regulated, at least in part, by the Mib1-Ctnnd1-Rac1 pathway. Published under the PNAS license.
Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C
2013-06-01
Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.
Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration.
Nabissi, Massimo; Morelli, Maria Beatrice; Offidani, Massimo; Amantini, Consuelo; Gentili, Silvia; Soriani, Alessandra; Cardinali, Claudio; Leoni, Pietro; Santoni, Giorgio
2016-11-22
Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with Δ9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggesting their use in combination therapy. In the current study, we evaluated the effects of THC alone and in combination with CBD in MM cell lines. We found that CBD and THC, mainly in combination, were able to reduce cell viability by inducing autophagic-dependent necrosis. Moreover, we showed that the CBD-THC combination was able to reduce MM cells migration by down-regulating expression of the chemokine receptor CXCR4 and of the CD147 plasma membrane glycoprotein. Furthermore, since the immuno-proteasome is considered a new target in MM and also since carfilzomib (CFZ) is a new promising immuno-proteasome inhibitor that creates irreversible adducts with the β5i subunit of immuno-proteasome, we evaluated the effect of CBD and THC in regulating the expression of the β5i subunit and their effect in combination with CFZ. Herein, we also found that the CBD and THC combination is able to reduce expression of the β5i subunit as well as to act in synergy with CFZ to increase MM cell death and inhibits cell migration. In summary, these results proved that this combination exerts strong anti-myeloma activities.
Ceballos, María Paula; Decándido, Giulia; Quiroga, Ariel Darío; Comanzo, Carla Gabriela; Livore, Verónica Inés; Lorenzetti, Florencia; Lambertucci, Flavia; Chazarreta-Cifre, Lorena; Banchio, Claudia; Alvarez, María de Luján; Mottino, Aldo Domingo; Carrillo, María Cristina
2018-06-01
Sirtuins (SIRTs) 1 and 2 deacetylases are overexpressed in hepatocellular carcinoma (HCC) and are associated with tumoral progression and multidrug resistance (MDR). In this study we analyzed whether SIRTs 1 and 2 activities blockage was able to affect cellular survival and migration and to modulate p53 and FoxO1 acetylation in HepG2 and Huh7 cells. Moreover, we analyzed ABC transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 3 (MRP3) expression. We used cambinol and EX-527 as SIRTs inhibitors. Both drugs reduced cellular viability, number of colonies and cellular migration and augmented apoptosis. In 3D cultures, SIRTs inhibitors diminished spheroid growth and viability. 3D culture was less sensitive to drugs than 2D culture. The levels of acetylated p53 and FoxO1 increased after treatments. Drugs induced a decrease in ABC transporters mRNA and protein levels in HepG2 cells; however, only EX-527 was able to reduce MRP3 mRNA and protein levels in Huh7 cells. This is the first work demonstrating the regulation of MRP3 by SIRTs. In conclusion, both drugs decreased HCC cells survival and migration, suggesting SIRTs 1 and 2 activities blockage could be beneficial during HCC therapy. Downregulation of the expression of P-gp and MRP3 supports the potential application of SIRTs 1 and 2 inhibitions in combination with conventional chemotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Huang, Jing; Zhang, Zhiping; Guo, Jian; Ni, Aiguo; Deb, Arjun; Zhang, Lunan; Mirotsou, Maria; Pratt, Richard E; Dzau, Victor J
2010-06-11
Although mesenchymal stem cell (MSC) transplantation has been shown to promote cardiac repair in acute myocardial injury in vivo, its overall restorative capacity appears to be restricted mainly because of poor cell viability and low engraftment in the ischemic myocardium. Specific chemokines are upregulated in the infarcted myocardium. However the expression levels of the corresponding chemokine receptors (eg, CCR1, CXCR2) in MSCs are very low. We hypothesized that this discordance may account for the poor MSC engraftment and survival. To determine whether overexpression of CCR1 or CXCR2 chemokine receptors in MSCs augments their cell survival, migration and engraftment after injection in the infarcted myocardium. Overexpression of CCR1, but not CXCR2, dramatically increased chemokine-induced murine MSC migration and protected MSC from apoptosis in vitro. Moreover, when MSCs were injected intramyocardially one hour after coronary artery ligation, CCR1-MSCs accumulated in the infarcted myocardium at significantly higher levels than control-MSCs or CXCR2-MSCs 3 days postmyocardial infarction (MI). CCR1-MSC-injected hearts exhibited a significant reduction in infarct size, reduced cardiomyocytes apoptosis and increased capillary density in injured myocardium 3 days after MI. Furthermore, intramyocardial injection of CCR1-MSCs prevented cardiac remodeling and restored cardiac function 4 weeks after MI. Our results demonstrate the in vitro and in vivo salutary effects of genetic modification of stem cells. Specifically, overexpression of chemokine receptor enhances the migration, survival and engraftment of MSCs, and may provide a new therapeutic strategy for the injured myocardium.
Viability of long range dragonfly migration across the Indian Ocean: An energetics perspective
NASA Astrophysics Data System (ADS)
Saha, Sandeep; Nirwal, Satvik
2016-11-01
Recently Pantala flavescens (dragonflies) have been reported to migrate in millions from India to Eastern Africa on a multigenerational migratory circuit of length 14000-18000 kms. We attempt to understand the ability of dragonflies to perform long range migration by examining the energetics using computer simulations. In absence of a theory for long range insect migrations, we resort to the extensive literature on long range bird migration from the energetics perspective. The flight energetics depends upon instantaneous power and velocity. The mechanical flight power is computed from the power curve which is then converted to mass depletion using Brequet's equation. However, the mechanical flight power itself depends upon the instantaneous velocity which can vary depending upon the current mass. In order to predict the range in our simulations, we assume that the insect progressively tries to achieve the maximum range velocity. The results indicate that the migration range is approximately 1260 kms in 70 hours based on the true airspeed. However, our analysis is restricted by the lack of data and certain caveats in drag prediction and basal metabolism rate.
Wang, Lu; Yang, Lei; Lu, Ying; Chen, Yingzhun; Liu, Tianhua; Peng, Yanli; Zhou, Yuhong; Cao, Yang; Bi, Zhenggang; Liu, Tianyi; Liu, Zhenhong; Shan, Hongli
2016-01-01
Osteosarcoma is the second highest cause of cancer-related death in children and adolescents. Majority of osteosarcoma patients (90%) show metastasis. Previous reports revealed that osthole showed antitumor activities via induction of apoptosis and inhibition of proliferation. However, the potential effects and detailed molecular mechanisms involved remained unclear. Cell viability was analyzed by MTT assay in osteosarcoma cell lines MG-63 and SAOS-2. Cell cycle was detected by flow cytometry. The effects of migration and invasion were evaluated by wound healing assay and transwell assays. Moreover, the level of proteins expression was determined by Western blot. The cell viability of MG63 and SAOS-2 were markedly inhibited by osthole in a dose- and time-dependent manner. Cell cycle was arrested and the ability of migration and invasion was obviously reduced when cells were exposed to osthole. Moreover, enzymes involved in PTEN/Akt pathway were regulated such as PTEN and p-Akt proteins. Furthermore, osthole inhibited the tumor growth in vivo. Our study unraveled, for the first time, the ability of osthole to suppress osteosarcoma and elucidated the regulation of PTEN/Akt pathway as a signaling mechanism for the anti-tumor action of osthole. These findings indicate that osthole may represent a novel therapeutic strategy in the treatment of osteosarcoma. © 2016 The Author(s) Published by S. Karger AG, Basel.
Timofeeva, Olga; Pasquale, Elena B.; Hirsch, Kellen; MacDonald, Tobey J.; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel
2015-01-01
The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target. PMID:25879388
Bhatia, Shilpa; Baig, Nimrah A; Timofeeva, Olga; Pasquale, Elena B; Hirsch, Kellen; MacDonald, Tobey J; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel; Rodriguez, Olga; Albanese, Chris; Karam, Sana D
2015-04-20
The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target.
Johnson, Jed; Nowicki, M. Oskar; Lee, Carol H.; Chiocca, E. Antonio; Viapiano, Mariano S.; Lawler, Sean E.
2009-01-01
Malignant gliomas are the most common tumors originating within the central nervous system and account for over 15,000 deaths annually in the United States. The median survival for glioblastoma, the most common and aggressive of these tumors, is only 14 months. Therapeutic strategies targeting glioma cells migrating away from the tumor core are currently hampered by the difficulty of reproducing migration in the neural parenchyma in vitro. We utilized a tissue engineering approach to develop a physiologically relevant model of glioma cell migration. This revealed that glioma cells display dramatic differences in migration when challenged by random versus aligned electrospun poly-ɛ-caprolactone nanofibers. Cells on aligned fibers migrated at an effective velocity of 4.2 ± 0.39 μm/h compared to 0.8 ± 0.08 μm/h on random fibers, closely matching in vivo models and prior observations of glioma spread in white versus gray matter. Cells on random fibers exhibited extension along multiple fiber axes that prevented net motion; aligned fibers promoted a fusiform morphology better suited to infiltration. Time-lapse microscopy revealed that the motion of individual cells was complex and was influenced by cell cycle and local topography. Glioma stem cell–containing neurospheres seeded on random fibers did not show cell detachment and retained their original shape; on aligned fibers, cells detached and migrated in the fiber direction over a distance sixfold greater than the perpendicular direction. This chemically and physically flexible model allows time-lapse analysis of glioma cell migration while recapitulating in vivo cell morphology, potentially allowing identification of physiological mediators and pharmacological inhibitors of invasion. PMID:19199562
He, Qianru; Zhao, Lini; Liu, Yunhui; Liu, Xiaobai; Zheng, Jian; Yu, Hai; Cai, Heng; Ma, Jun; Liu, Libo; Wang, Ping; Li, Zhen; Xue, Yixue
2018-03-02
Circular RNAs (circRNAs) are a type of endogenous non-coding RNAs, which have been considered to mediate diverse tumorigenesis including angiogenesis. The present study aims to elucidate the potential role and molecular mechanism of circ-SHKBP1 in regulating the angiogenesis of U87 glioma-exposed endothelial cells (GECs). The expression of circ-SHKBP1, but not linear SHKBP1, was significantly upregulated in GECs compared with astrocyte-exposed endothelial cells (AECs). circ-SHKBP1 knockdown inhibited the viability, migration, and tube formation of GECs dramatically. The expressions of miR-379/miR-544a were downregulated in GECs, and circ-SHKBP1 functionally targeted miR-544a/miR-379 in an RNA-induced silencing complex (RISC) manner. Dual-luciferase reporter assay demonstrated that forkhead box P1/P2 (FOXP1/FOXP2) were targets of miR-544a/miR-379. The expressions of FOXP1/FOXP2 were upregulated in GECs, and silencing of FOXP1/FOXP2 inhibited the viability, migration, and tube formation of GECs. Meanwhile, FOXP1/FOXP2 promoted angiogenic factor with G patch and FHA domains 1 (AGGF1) expression at the transcriptional level. Furthermore, knockdown of AGGF1 suppressed the viability, migration, and tube formation of GECs via phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK)1/2 pathways. Taken together, the present study demonstrated that circ-SHKBP1 regulated the angiogenesis of GECs through miR-544a/FOXP1 and miR-379/FOXP2 pathways, and these findings might provide a potential target and effective strategy for combined therapy of gliomas. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
MicroRNA-196b Inhibits Cell Growth and Metastasis of Lung Cancer Cells by Targeting Runx2.
Bai, Xiaoxue; Meng, Lin; Sun, Huijie; Li, Zhuo; Zhang, Xiufang; Hua, Shucheng
2017-01-01
Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer. The Author(s). Published by S. Karger AG, Basel.
Pivonello, Claudia; Negri, Mariarosaria; De Martino, Maria Cristina; Napolitano, Maria; de Angelis, Cristina; Provvisiero, Donatella Paola; Cuomo, Gaia; Auriemma, Renata Simona; Simeoli, Chiara; Izzo, Francesco; Colao, Annamaria; Hofland, Leo J.; Pivonello, Rosario
2016-01-01
Deregulation of mTOR and IGF pathways is frequent in hepatocellular carcinoma (HCC), thus mTOR and IGF1R represent suitable therapeutic targets in HCC. The aim of this study was to evaluate the effects of mTOR inhibitors (mTORi) and OSI-906, blocker of IGF1R/IR, on HCC cell proliferation, viability, migration and invasion, and alpha-fetoprotein (α-FP) secretion. In HepG2 and HuH-7 we evaluated, the expression of mTOR and IGF pathway components; the effects of Sirolimus, Everolimus, Temsirolimus and OSI-906 on cell proliferation; the effects of Sirolimus, OSI-906, and their combination, on cell secretion, proliferation, viability, cell cycle, apoptosis, invasion and migration. Moreover, intracellular mechanisms underlying these cell functions were evaluated in both cell lines. Our results show that HepG2 and HuH-7 present with the same mRNA expression profile with high levels of IGF2. OSI-906 inhibited cell proliferation at high concentration, while mTORi suppressed cell proliferation in a dose-time dependent manner in both cell lines. The co-treatment showed an additive inhibitory effect on cell proliferation and viability. This effect was not related to induction of apoptosis, but to G0/G1 phase block. Moreover, the co-treatment prevented the Sirolimus-induced AKT activation as escape mechanism. Both agents demonstrated to be differently effective in inhibiting α-FP secretion. Sirolimus, OSI-906, and their combination, blocked cell migration and invasion in HuH-7. These findings indicate that, co-targeting of IGF1R/IR and mTOR pathways could be a novel therapeutic approach in the management of HCC, in order to maximize antitumoral effect and to prevent the early development of resistance mechanisms. PMID:26756219
Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun
2011-01-01
To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (<0.002%). Diclofenac Sodium Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug research and development.
Panax notoginseng saponins (PNS) inhibits breast cancer metastasis.
Wang, Peiwei; Cui, Jingang; Du, Xiaoye; Yang, Qinbo; Jia, Chenglin; Xiong, Minqi; Yu, Xintong; Li, Li; Wang, Wenjian; Chen, Yu; Zhang, Teng
2014-07-03
Panax notoginseng (Burkill) F.H. Chen (Araliaceae) has been extensively used as a therapeutic agent to treat a variety of diseases. Panax notoginseng saponins (PNS) consist of major therapeutically active components of Panax notoginseng. PNS inhibit the growth of a variety of tumor cells in vitro and in vivo. The aim of the study is to investigate the effects and underlying mechanisms of PNS on breast cancer metastasis. 4T1 cell, a highly metastatic mouse breast carcinoma cell line, was utilized for in vitro and in vivo assays. In vitro assays were first performed to examine the effects of PNS on 4T1 cell viability, migration and invasion, respectively. Real-time PCR analyses were also performed to examine the effects of PNS on the expression of genes associated with tumor metastasis. The effect of PNS on 4T1 tumor cell metastasis was further assessed in spontaneous and experimental metastasis models in vivo. PNS treatment exhibited a dose-dependent effect on impairing 4T1 cell viability in vitro. However, when examined at a lower dose that did not affect cell viability, the migration and invasion of 4T1 cell was remarkably inhibited in vitro. Meanwhile, PNS treatment led to upregulated expression of genes known to inhibit metastasis and downregulated expression of genes promoting metastasis in cultured 4T1 cells. These results suggested a selective effect of PNS on 4T1 migration and invasion. This hypothesis was further addressed in 4T1 metastasis models in vivo. The results showed that the lung metastasis was significantly inhibited by PNS treatment in both spontaneous and experimental metastasis models. Taken together, our results demonstrated an inhibitory effect of PNS on 4T1 tumor metastasis, warranting further evaluation of PNS as a therapeutic agent for treating breast cancer metastasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Multi-Cellular Logistics of Collective Cell Migration
Yamao, Masataka; Naoki, Honda; Ishii, Shin
2011-01-01
During development, the formation of biological networks (such as organs and neuronal networks) is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic) blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes “collective migration,” whereas strong noise from non-migratory cells causes “dispersive migration.” Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems. PMID:22205934
Tao, Zhi-Wei; Zou, Ping-An
2018-06-13
Osteosarcoma is a disease prone to recurrence and metastasis, and adenovirus expression vector is frequently studied as a therapeutic target of osteosarcoma in recent year. This study attempts to explore the effect of adenovirus-mediated small interfering RNA (siRNA) targeting ezrin on the proliferation, migration, invasion and apoptosis of human osteosarcoma MG-63 cells. Human osteosarcoma MG-63 cell line was selected for construction of recombinant adenovirus vector. The mRNA and protein levels of ezrin, Bcl2-associated X protein (Bax), B cell lymphoma-2 (Bcl-2), p21, p53, Caspase-3, matrix metalloproteinase 2 (MMP-2) and MMP-9, Cyclin D1, and cyclin-dependent kinase 4a (CDK4a) were determined. Through ELISA, the levels of Caspase-3, MMP-2 and MMP-9 were examined. Finally, human osteosarcoma MG-63 cell viability, growth, invasion, migration, and apoptosis were detected. Initially, adenovirus expression vector of ezrin was constructed by ezrin 2 siRNA sequence. Adenovirus-mediated siRNA targeting ezrin reduced expression of ezrin in MG-63 cells. The results revealed that adenovirus-mediated siRNA targeting ezrin elevated expression levels of Bax, P21, P53, and Caspase-3, Cyclin D1, and CDK4a and reduced expression levels of Bcl-2, MMP-2, and MMP-9. Furthermore, adenovirus-mediated siRNA targeting ezrin inhibited human osteosarcoma MG-63 cell viability, growth, invasion, and migration, and promoted apoptosis. Our study demonstrates that adenovirus-mediated siRNA targeting ezrin can induce apoptosis and inhibit the proliferation, migration and invasion of human osteosarcoma MG-63 cells. ©2018 The Author(s).
Zheng, Dong; Chen, Ziang; Chen, Jingfu; Zhuang, Xiaomin; Feng, Jianqiang; Li, Juan
2016-10-01
Hydrogen sulfide (H2S), regarded as the third gaseous transmitter, mediates and induces various biological effects. The present study investigated the effects of H2S on multiple myeloma cell progression via amplifying the activation of Akt pathway in multiple myeloma cells. The level of H2S produced in multiple myeloma (MM) patients and healthy subjects was measured using enzyme-linked immunosorbent assay (ELISA). MM cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated-Akt (p-Akt), Bcl-2 and caspase-3 were measured by western blot assay. Cell viability was detected by Cell Counting Kit 8 (CCK-8). The cell cycle was analyzed by flow cytometry. Our results show that the concentration of H2S was higher in MM patients and that it increased in parallel with disease progression. Treating MM cells with 500 µmol/l NaHS for 24 h markedly increased the expression level of Bcl-2 and the activation of p-Akt, however, the expression level of caspase-3 was decreased, cell viability was increased, and cell cycle progression was accelerated in MM cells. NaHS also induced migration in MM cells in transwell migration assay. Furthermore, co-treatment of MM cells with 500 µmol/l NaHS and 50 µmol/l LY294002 for 24 h significantly overset these effects. In conclusion, our findings demonstrate that the Akt pathway contributes to NaHS-induced cell proliferation, migration and acceleration of cell cycle progression in MM cells.
Ren, Min; Wang, Ying; Wu, Xiaodong; Ge, Suxia; Wang, Benzhong
2017-03-01
The study aimed to investigate the effects of combination treatment of curcumin and β-interferon (IFN-β)/retinoic acid (RA) on breast cancer cells, including cell viability, apoptosis and migration, and to determine the mechanisms related to GRIM-19 through STAT3-dependent and STAT3-independent pathways. The following groups were used for the in vitro experiment: control siRNA, GRIM-19 siRNA, IFN-β/RA and IFN-β/RA + curcumin. Cell viability is by the MTT method, cell apoptosis by flow cytometry and cell migration by wound healing experiment; GRIM-19, STAT3, survivin, Bcl-2, GADD153 and COX-2 expression was measured by Western blot. In vivo experiment, MCF-7 cells were subcutaneously injected into nude mice. GRIM-19 siRNA promoted MCF-7 cell proliferation and migration; inhibited cell apoptosis; and promoted the expression of STAT3, survivin, Bcl-2 and MMP-9. IFN-β/RA inhibited cell proliferation and migration; promoted cell apoptosis; up-regulated GRIM-19; and inhibited the expression of STAT3, survivin, Bcl-2 and MMP-9. Combination treatment of curcumin and IFN-β/RA had a stronger effect than that of the IFN-β/RA group. In addition, curcumin and IFN-β/RA combination inhibited the expression of COX-2 and up-regulated GADD153. Curcumin synergistically increases the effects of IFN-β/RA on breast cancer cells. The mechanism may be related to the up-regulation of GRIM-19 through STAT3-dependent and STAT3-independent pathways.
Forbes, W M; Ashton, F T; Boston, R; Zhu, X; Schad, G A
2004-03-25
Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.
MacDonald, Cristin; Barbee, Kenneth; Polyak, Boris
2012-05-01
To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems.
Ke, Yang; Bao, Tianhao; Wu, Xuesong; Tang, Haoran; Wang, Yan; Ge, Jiayun; Fu, Bimang; Meng, Xu; Chen, Li; Zhang, Cheng; Tan, Yuqi; Chen, Haotian; Guo, Zhitang; Ni, Fan; Lei, Xuefen; Shi, Zhitian; Wei, Dong; Wang, Lin
2017-01-29
Scutellarin is an active flavone from Erigeron breviscapine (vant) Hand Mass. This study aimed to investigate the potential role of scutellarin in migration and invasion of human hepatocellular carcinoma (HCC) cells and its possible mechanism. In comparison with the vehicle-treated controls, treatment with scutellarin (50 mg/kg/day) for 35 days significantly mitigated the lung and intrahepatic metastasis of HCC tumors in vivo. Scutellarin treatment significantly reduced HepG2 cell viability in a dose-dependent manner, and inhibited migration and invasion of HCC cells in vitro. Scutellarin treatment significantly reduced STAT3 and Girders of actin filaments (Girdin) expression, STAT3 and Akt phosphorylation in HCC cells. Introduction of STAT3 overexpression restored the scutellarin-downregulated Girdin expression, Akt activation, migration and invasion of HCC cells. Furthermore, induction of Girdin overexpression completely abrogated the inhibition of scutellarin on the Akt phosphorylation, migration and invasion of HCC cells. Scutellarin can inhibit HCC cell metastasis in vivo, and migration and invasion in vitro by down-regulating the STAT3/Girdin/Akt signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
MiR-661 inhibits glioma cell proliferation, migration and invasion by targeting hTERT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhen, E-mail: lizhen7111@163.com; Liu, Yun-hui; Diao, Hong-yu
In this study, we analyzed the functional role of miR-661 in glioma cell proliferation, migration and invasion. We found that overexpression of miR-661 obviously suppressed the proliferation, migration and invasion of glioma cells. MiRNA target prediction algorithms implied that hTERT is a candidate target gene for miR-661. A fluorescent reporter assay confirmed that miR-661 could lead to hTERT gene silencing by recognizing and specifically binding to the predicted site of the hTERT mRNA 3′ untranslated region (3′UTR) specifically. Furthermore, hTERT knockdown significantly decreased the growth and viability of glioma cells. These results indicate that miR-661 can inhibit glioma cell proliferation,more » migration and invasion by targeting hTERT. - Highlights: • MiR-661 was downregulated in glioma tissues and functional as a tumor suppressor. • MiR-661 modulates cell proliferation, invasion and migration of glioma cells. • MiR-661 directly target hTERT in glioma cells. • MiR-661 inhibits glioma cell tumorgenesis by targeting hTERT.« less
Size differences in migrant sandpiper flocks: ghosts in ephemeral guilds
Eldridge, J.L.; Johnson, D.H.
1988-01-01
Scolopacid sandpipers were studied from 1980 until 1984 during spring migration in North Dakota. Common species foraging together in mixed-species flocks differed in bill length most often by 20 to 30 percent (ratios from 1.2:1 to 1.3:1). Observed flocks were compared to computer generated flocks drawn from three source pools of Arctic-nesting sandpipers. The source pools included 51 migrant species from a global pool, 33 migrant species from a Western Hemisphere pool, and 13 species that migrated through North Dakota. The observed flocks formed randomly from the available species that used the North Dakota migration corridor but the North Dakota species were not a random selection from the Western Hemisphere and global pools of Arctic-nesting scolopacid sandpipers. In short, the ephemeral, mixed-species foraging flocks that we observed in North Dakota were random mixes from a non-random pool. The size-ratio distributions were consistent with the interpretation that use of this migration corridor by sandpipers has been influenced by some form of size-related selection such as competition.
Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M Q; Bruna, Roberto E; García-Véscovi, Eleonora; Osherov, Nir
2016-05-01
We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well.S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M. Q.; Bruna, Roberto E.; García-Véscovi, Eleonora
2016-01-01
We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well. S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. PMID:26896140
Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells.
Wang, Juan; Petefish, Joseph W; Hillier, Andrew C; Schneider, Ian C
2015-01-01
Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.
Antitumor activity of 7-O-succinyl macrolactin A tromethamine salt in the mouse glioma model.
Jin, Jun; Choi, Suh Hee; Lee, Jung Eun; Joo, Jin-Deok; Han, Jung Ho; Park, Su-Young; Kim, Chae-Yong
2017-05-01
Chemoradiotherapy with temozolomide is the current standard treatment option for patients with glioblastoma. However, the majority of patients with glioblastoma survive for <2 years. Therefore, it is necessary to develop more effective therapeutic strategies for the treatment of glioblastoma. 7-O-succinyl macrolactin A tromethamine salt (SMA salt), a macrolactin compound, is known to possess an antiangiogenic activity. The present study investigated the antitumor effects of SMA salt in the treatment of glioblastoma by evaluating in vitro and in vivo antitumor effects of SMA salt in an experimental glioblastoma model. The antitumor effects of the drug on human glioblastoma U87MG, U251MG and LN229 cell lines were assessed using in vitro cell viability, migration and invasion assays. Nude mice with established U87MG glioblastoma were assigned to either the control or SMA salt treatment group. The volume of tumors and the duration of survival were also measured. SMA salt affected cell viability and caused a concentration-dependent inhibition effect on the migration and invasion of glioblastoma cell lines. Animals in the SMA salt treatment group demonstrated a significant reduction in tumor volume and an increase in survival (P<0.05). Treatment with SMA salt presented more cytotoxic effects as well as anti-migration and anti-invasion activity compared with the control group in vitro and in vivo . These results suggest that SMA salt has significant antitumor effects on glioblastoma.
Knockdown of RhoA expression alters ovarian cancer biological behavior in vitro and in nude mice.
Wang, Xiaoxia; Jiang, Wenyan; Kang, Jiali; Liu, Qicai; Nie, Miaoling
2015-08-01
RhoA regulates cell proliferation, migration, angiogenesis and gene expression. Altered RhoA activity contributes to cancer progression. The present study investigated the effects of RhoA knockdown on the regulation of ovarian cancer biological behavior in vitro and in nude mice. The expression of RhoA was knocked down using a lentivirus carrying RhoA short hairpin RNA (shRNA) in ovarian cancer cells and was confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The altered ovarian cancer biological behaviors were assayed by cell viability, terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL), migration, invasion, and nude mice tumorigenicity assays, while the altered gene expression was detected by RT-qPCR and western blot analysis. The results showed that lentivirus-carrying RhoA shRNA significantly suppressed RhoA expression in ovarian cancer cells, which suppressed tumor cell viability, migration, invasion and adhesion in vitro. RhoA silencing also inhibited the tumorigenicity of ovarian cancer cells in nude mice, which was characterized by the suppression of tumor xenograft formation and growth and induction of tumor cell apoptosis. The results of the present study demonstrated that knockdown of RhoA expression had a significant antitumor effect on ovarian cancer cells in vitro and in nude mice, suggesting that RhoA may be a target for the development of a novel therapeutic strategy in the control of ovarian cancer.
Continuous Time Random Walk and Migration-Proliferation Dichotomy of Brain Cancer
NASA Astrophysics Data System (ADS)
Iomin, A.
A theory of fractional kinetics of glial cancer cells is presented. A role of the migration-proliferation dichotomy in the fractional cancer cell dynamics in the outer-invasive zone is discussed and explained in the framework of a continuous time random walk. The main suggested model is based on a construction of a 3D comb model, where the migration-proliferation dichotomy becomes naturally apparent and the outer-invasive zone of glioma cancer is considered as a fractal composite with a fractal dimension Dfr < 3.
A stylistic classification of Russian-language texts based on the random walk model
NASA Astrophysics Data System (ADS)
Kramarenko, A. A.; Nekrasov, K. A.; Filimonov, V. V.; Zhivoderov, A. A.; Amieva, A. A.
2017-09-01
A formal approach to text analysis is suggested that is based on the random walk model. The frequencies and reciprocal positions of the vowel letters are matched up by a process of quasi-particle migration. Statistically significant difference in the migration parameters for the texts of different functional styles is found. Thus, a possibility of classification of texts using the suggested method is demonstrated. Five groups of the texts are singled out that can be distinguished from one another by the parameters of the quasi-particle migration process.
Kaye, T.N.; Pyke, David A.
2003-01-01
Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and possibly other life histories.
Angiotensin II improves random-flap viability in a rat model.
Okuyama, N; Roda, N; Sherman, R; Guerrero, A; Dougherty, W; Nguyen, T; diZerega, G; Rodgers, K
1999-03-01
Angiotensin II (AII) is a naturally occurring peptide that has been shown to be angiogenic, cause the proliferation of several primary cell types (including endothelial cells), accelerate the repair of dermal injuries, and increase production of growth factors and extracellular matrix. The effect of a single administration of AII on the viability and vascularity of a random flap was assessed in a rat model. In the control model, the viability of the distal portion of the flap was reduced consistently by postoperative day 8. Initially, AII was administered in an aqueous vehicle (phosphate-buffered saline [PBS]) and a viscous vehicle (10% carboxymethyl cellulose [CMC]). Administration of 1 mg per milliliter AII in PBS did not affect the viability of random flaps (1.2 x 7 cm) in this animal model. However, a single administration of a higher dose of AII in PBS (10 mg per milliliter) or 1 mg per milliliter AII in the CMC vehicle resulted in 67% of the grafts being fully viable at postsurgical day 12, in contrast to vehicle-treated control flaps, none of which were fully viable at day 12. Furthermore, the portion of the flap that was viable was increased significantly (p < or = 0.05). Subsequently, a study was conducted to assess the dose-response curve for AII in a CMC vehicle in this rat model. As the dose of AII was reduced, the percentage of animals with fully viable flaps and the percentage of the flap that was viable decreased correspondingly. Administration of 0.03 mg per milliliter AII and greater increased significantly (p < or = 0.05) the viability of the flaps. In conclusion, AII appears to be highly efficacious in increasing the percentage of distal flap surface area survival when administered as a single topical dose to the wound bed.
Nishioka, Michele A; Pinfildi, Carlos E; Sheliga, Tatiana Rodrigues; Arias, Victor E; Gomes, Heitor C; Ferreira, Lydia M
2012-09-01
Skin flap procedures are commonly used in plastic surgery. Failures can follow, leading to the necrosis of the flap. Therefore, many studies use LLLT to improve flap viability. Currently, the LED has been introduced as an alternative to LLLT. The objective of this study was to evaluate the effect of LLLT and LED on the viability of random skin flaps in rats. Forty-eight rats were divided into four groups, and a random skin flap (10 × 4 cm) was performed in all animals. Group 1 was the sham group; group 2 was submitted to LLLT 660 nm, 0.14 J; group 3 with LED 630 nm, 2.49 J, and group 4 with LLLT 660 nm, with 2.49 J. Irradiation was applied after surgery and repeated on the four subsequent days. On the 7th postoperative day, the percentage of flap necrosis was calculated and skin samples were collected from the viable area and from the transition line of the flap to evaluate blood vessels and mast cells. The percentage of necrosis was significantly lower in groups 3 and 4 compared to groups 1 and 2. Concerning blood vessels and mast cell numbers, only the animals in group 3 showed significant increase compared to group 1 in the skin sample of the transition line. LED and LLLT with the same total energies were effective in increasing viability of random skin flaps. LED was more effective in increasing the number of mast cells and blood vessels in the transition line of random skin flaps.
Yang, Ke; Wu, Jiandong; Xu, Guoqing; Xie, Dongxue; Peretz-Soroka, Hagit; Santos, Susy; Alexander, Murray; Zhu, Ling; Zhang, Michael; Liu, Yong; Lin, Francis
2017-04-18
Chemotaxis is a classic mechanism for guiding cell migration and an important topic in both fundamental cell biology and health sciences. Neutrophils are a widely used model to study eukaryotic cell migration and neutrophil chemotaxis itself can lead to protective or harmful immune actions to the body. While much has been learnt from past research about how neutrophils effectively navigate through a chemoattractant gradient, many interesting questions remain unclear. For example, while it is tempting to model neutrophil chemotaxis using the well-established biased random walk theory, the experimental proof was challenged by the cell's highly persistent migrating nature. A special experimental design is required to test the key predictions from the random walk model. Another question that has interested the cell migration community for decades concerns the existence of chemotactic memory and its underlying mechanism. Although chemotactic memory has been suggested in various studies, a clear quantitative experimental demonstration will improve our understanding of the migratory memory effect. Motivated by these questions, we developed a microfluidic cell migration assay (so-called dual-docking chip or D 2 -Chip) that can test both the biased random walk model and the memory effect for neutrophil chemotaxis on a single chip enabled by multi-region gradient generation and dual-region cell alignment. Our results provide experimental support for the biased random walk model and chemotactic memory for neutrophil chemotaxis. Quantitative data analyses provide new insights into neutrophil chemotaxis and memory by making connections to entropic disorder, cell morphology and oscillating migratory response.
Zhang, Dawei; Li, Haiyan; Xie, Juping; Jiang, Decan; Cao, Liangqi; Yang, Xuewei; Xue, Ping; Jiang, Xiaofeng
2018-06-01
The aim of the present study was to elucidate whether, and how, long intergenic non-protein coding RNA 1296 (LINC01296) is involved in the modulation of human cholangiocarcinoma (CCA) development and progression. Microarray data analysis and reverse transcription-quantitative polymerase chain reaction analysis demonstrated that LINC01296 was significantly upregulated in human CCA compared with nontumor tissues. Furthermore, the expression of LINC01296 in human CCA was positively associated with tumor severity and clinical stage. Knockdown of LINC01296 dramatically suppressed the viability, migration and invasion of RBE and CCLP1 cells, and promoted cell apoptosis in vitro. Furthermore, LINC01296 knockdown inhibited tumor growth in a xenograft model. Mechanistically, LINC01296 was demonstrated to sponge microRNA-5095 (miR-5095), which targets MYCN proto-oncogene bHLH transcription factor (MYCN) mRNA in human CCA. By inhibition of miR-5095, LINC01296 overexpression upregulated the expression of MYCN and promoted cell viability, migration and invasion in CCA cells. The results reveal that the axis of LINC01296/miR-5095/MYCN may be a mechanism to regulate CCA development and progression.
Schneider, Natália; Gonçalves, Fabiany da Costa; Pinto, Fernanda Otesbelgue; Lopez, Patrícia Luciana da Costa; Araújo, Anelise Bergmann; Pfaffenseller, Bianca; Passos, Eduardo Pandolfi; Cirne-Lima, Elizabeth Obino; Meurer, Luíse; Lamers, Marcelo Lazzaron; Paz, Ana Helena
2015-01-01
Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD), and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK) distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA) and dexamethasone (DEX). After an initial characterization, MSCs were treated with DEX (10 μM) or AZA (1 μM) for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05) with a higher presence of ventral actin stress fibers (P < 0.05) and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST) and increased the migration speed (24.35%, P < 0.05, n = 4), while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4). In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy.
Yang, Xiujiang; Sun, Bo; Zhu, Haihang; Jiang, Ziting
2015-01-01
The aim was to explore the effect of negative pressure on the proliferation and metastasis of human pancreatic cancer SW1990 cells. Three groups were conducted in the work: normal control group (NC group, 0 mm Hg), low negative pressure group (LN group, -300 mm Hg), and high negative pressure group (HN group, -600 mm Hg). Cell morphological assay was conducted using an inverted Nikon TE2000-S microscope. Cell viability was assayed using cell counting kit-8 solution. Cell apoptosis was evaluated with flow cytometry. Cell migration was investigated using transwell assay. Compared to LN and HN groups, SW1990 cells in NC group grew quite well, showing a higher density. The NC group represented the highest cell viability. The HN group represented the lowest cell viability, which was lower than that of the LN group (P < 0.01). The apoptosis rate in NC group, LN group and HN group was 1.91% ± 0.13%, 2.31% ± 0.06% and 15.22% ± 0.81%, respectively (P < 0.05). The average number of migration cells in NC group was 53.60 ± 4.14 (× 200), which was decreased to 18.93 ± 3.67 and 11.07 ± 3.01 in LN group and HN group, respectively (P < 0.01). The negative pressure shows suppression effects on the proliferation and metastasis of human pancreatic cancer SW1990 cells. It is indicated that negative pressure may be involved in the development of human pancreatic cancer by influencing cell biological characteristics.
Cen, Yan-Hui; Guo, Wen-Wen; Luo, Bin; Lin, Yong-Da; Zhang, Qing-Mei; Zhou, Su-Fang; Luo, Guo-Rong; Xiao, Shao-Wen; Xie, Xiao-Xun
2012-10-01
OY-TES-1 is a member of the CTA (cancer-testis antigen) group expressed in a variety of cancer and restrictedly expressed in adult normal tissues, except for testis. To determine whether MSCs (mesenchymal stem cells) express OY-TES-1 and its possible roles on MSCs, OY-TES-1 expression in MSCs isolated from human bone marrow was tested with RT (reverse transcription)-PCR, immunocytochemistry and Western blot. Using RNAi (RNA interference) technology, OY-TES-1 expression was knocked down followed by analysing cell viability, cell cycle, apoptosis and migration ability. MSCs expressed OY-TES-1 at both mRNA and protein levels. The down-regulation of OY-TES-1 expression in these MSCs caused cell growth inhibition, cell cycle arrest, apoptosis induction and migration ability attenuation. Through these primary results it was suggested that OY-TES-1 may influence the biological behaviour of MSCs.
Extracellular Acidic pH Inhibits Oligodendrocyte Precursor Viability, Migration, and Differentiation
Jagielska, Anna; Wilhite, Kristen D.; Van Vliet, Krystyn J.
2013-01-01
Axon remyelination in the central nervous system requires oligodendrocytes that produce myelin. Failure of this repair process is characteristic of neurodegeneration in demyelinating diseases such as multiple sclerosis, and it remains unclear how the lesion microenvironment contributes to decreased remyelination potential of oligodendrocytes. Here, we show that acidic extracellular pH, which is characteristic of demyelinating lesions, decreases the migration, proliferation, and survival of oligodendrocyte precursor cells (OPCs), and reduces their differentiation into oligodendrocytes. Further, OPCs exhibit directional migration along pH gradients toward acidic pH. These in vitro findings support a possible in vivo scenario whereby pH gradients attract OPCs toward acidic lesions, but resulting reduction in OPC survival and motility in acid decreases progress toward demyelinated axons and is further compounded by decreased differentiation into myelin-producing oligodendrocytes. As these processes are integral to OPC response to nerve demyelination, our results suggest that lesion acidity could contribute to decreased remyelination. PMID:24098762
Jia, Puyou; Zhang, Meng; Hu, Lihong; Song, Fei; Feng, Guodong; Zhou, Yonghong
2018-01-25
The waste cooking oil (WCO) production from the catering industry and food processing industry causes serious environmental, economic and social problems. However, WCO can be used for the preparation of fine chemicals such as internal plasticizer. With this aim, this work is focused on preparing internal plasticizer by using WCO and determining technical viability of non-migration poly (vinyl chloride) (PVC) materials. The mannich base of waste cooking oil methyl ester (WCOME) was synthesized from WCO via esterification, interesterification and mannich reaction, which was used to produce self-plasticization PVC materials as an internal plasticizer. The results showed that the PVC was plasticized effectively. Self-plasticization PVC films showed no migration in n-hexane, but 15.7% of dioctyl phthalate (DOP) leached from DOP/PVC(50/50) system into n-hexane. These findings transformed the traditional plastic processing technology and obtained cleaner production of no migration plasticizer from WCO.
Zheng, Qiaomei; Xu, Ying; Lu, Jingjing; Zhao, Jing; Wei, Xuan; Liu, Peishu
2016-11-01
To determine whether emodin facilitates the mesenchymal-epithelial transition (MET) of endometrial stromal cells (ESCs) as well as to explore the mechanism through which emodin favored the MET of ESCs. Cell viability was tested by methyl thiazolyl tetrazolium assay. Cell migration and invasion abilities were detected by transwell assays. Levels of integrin-linked kinase (ILK) and epithelial-mesenchymal transition (EMT)-related proteins were detected by Western blot. Upregulated ILK and increased abilities of migration and invasion were confirmed in the eutopic and ectopic ESCs (EuSCs and EcSCs), especially in the EcSCs. After treated with emodin, the expression of ILK was statistically downregulated in EcSCs, resulting in the MET and decreased migration and invasion abilities of EcSCs. Additionally, silencing of the ILK gene in EcSCs also achieved the above-mentioned effects, which were strengthened by emodin. Furthermore, exogenous expression of ILK in control ESCs (CSCs) resulted in the EMT and increased abilities of migration and invasion of CSCs, which can be abrogated by emodin. Besides, exogenous expression of ILK also abrogated the effects of emodin on CSCs. Emodin inhibits the migration and invasion abilities of human ESCs by facilitating the MET through targeting ILK. © The Author(s) 2016.
Rai, Tanvi; Lambert, Helen S.; Ward, Helen
2017-01-01
ABSTRACT Migrant workers are understood to be vulnerable to HIV. However, little is known about the experience of migration-based households following HIV infection. This qualitative study examined the migration-HIV relationship beyond the point of infection, looking at how it affects livelihood choices, household relationships and the economic viability of migrant families. We conducted semi-structured interviews with 33 HIV-positive migrant men and women recruited from an anti-retroviral therapy (ART) centre in north India. Following infection among the migrant men, contact with free, public-sector HIV services was often made late, after the development of debilitating symptoms, abandonment of migrant work and return to native villages. After enrolment at the ART centre participants’ health eventually stabilised but they now faced serious economic debt, an inflexible treatment regimen and reduced physical strength. Insecure migrant job markets, monthly drug collection and discriminatory employment policies impeded future migration plans. HIV-positive wives of migrants occupied an insecure position in the rural marital household that depended on their husbands’ health and presence of children. The migration-HIV relationship continued to shape the life course of migrant families beyond the point of infection, often exposing them again to the economic insecurity that migration had helped to overcome, threatening their long-term survival. PMID:27002744
MacDonald, Cristin; Barbee, Kenneth
2015-01-01
Purpose To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. Methods MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. Results MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. Conclusions Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems. PMID:22234617
Rai, Tanvi; Lambert, Helen S; Ward, Helen
2017-04-01
Migrant workers are understood to be vulnerable to HIV. However, little is known about the experience of migration-based households following HIV infection. This qualitative study examined the migration-HIV relationship beyond the point of infection, looking at how it affects livelihood choices, household relationships and the economic viability of migrant families. We conducted semi-structured interviews with 33 HIV-positive migrant men and women recruited from an anti-retroviral therapy (ART) centre in north India. Following infection among the migrant men, contact with free, public-sector HIV services was often made late, after the development of debilitating symptoms, abandonment of migrant work and return to native villages. After enrolment at the ART centre participants' health eventually stabilised but they now faced serious economic debt, an inflexible treatment regimen and reduced physical strength. Insecure migrant job markets, monthly drug collection and discriminatory employment policies impeded future migration plans. HIV-positive wives of migrants occupied an insecure position in the rural marital household that depended on their husbands' health and presence of children. The migration-HIV relationship continued to shape the life course of migrant families beyond the point of infection, often exposing them again to the economic insecurity that migration had helped to overcome, threatening their long-term survival.
Martínez-Rodríguez, Carmen; Anel-López, Luis; Alvarez, Mercedes; Ortega-Ferrusola, Cristina; Boixo, Juan Carlos; Peña, Fernando J; Anel, Luis; de Paz, Paulino
2018-05-15
Forward progressive motility of spermatozoa is an essential prerequisite for reproductive success, and sperm navigation is assisted by guidance mechanisms that may depend on micro-environmental factors. In the present study, we performed an integrated analysis of long-distance ram sperm migration in vitro that combined two environmental factors (10 μM progesterone and a geotactic effect) and the physiological status of the cells (capacitation treatment). A penetration assay was used in which spermatozoa had to travel 20 mm in a viscous medium (two media of differing viscosity: acrylamide and hyaluronic acid) through a tube device. The number of migrating spermatozoa, the physiology of the cells (motility analyzed using a CASA system; acrosomal status, viability and active mitochondria evaluated by flow cytometry; DNA fragmentation index calculated by quantitative PCR) and the morphometry of sperm heads (performed using an image analysis system) were evaluated after long-distance sperm migration. Ram sperm capacitation significantly stimulates cell migration through viscous media under geotactic conditions, and this effect is enhanced by progesterone induction. The rheological characteristics of viscous media have a marked impact on ram sperm migration, and acrylamide more favorably facilitates navigation over a large distance. The migrating spermatozoa are morphologically better adapted (high ellipticity) for displacement in viscous media and exhibit remarkably depleted mitochondrial membrane potential. Copyright © 2018 Elsevier Inc. All rights reserved.
Türker Şener, Leyla; Albeni̇z, Gürcan; Di̇nç, Bi̇rcan; Albeni̇z, Işil
2017-01-01
The recently developed iCELLigence™ real-time cell analyzer (RTCA) can be used for the label-free real-time monitoring of cancer cell proliferation, viability, invasion and cytotoxicity. The RTCA system uses 16-well microtiter plates with a gold microelectrode biosensor array that measures impedance when cells adhere to the microelectrodes causing an alternating current. By measuring the electric field generated in this process, the RTCA system can be used for the analysis of cell proliferation, viability, morphology and migration. The present review aimed to summarize the working method of the RTCA system, in addition to discussing the research performed using the system for various applications, including cancer drug discovery via measuring cytotoxicity. PMID:28962095
Functional characterization of the turkey macrophage migration inhibitory factor
USDA-ARS?s Scientific Manuscript database
Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characte...
Sperm competition games: sperm selection by females.
Ball, M A; Parker, G A
2003-09-07
We analyse a co-evolutionary sexual conflict game, in which males compete for fertilizations (sperm competition) and females operate sperm selection against unfavourable ejaculates (cryptic female choice). For simplicity, each female mates with two males per reproductive event, and the competing ejaculates are of two types, favourable (having high viability or success) or unfavourable (where progeny are less successful). Over evolutionary time, females can increase their level of sperm selection (measured as the proportion of unfavourable sperm eliminated) by paying a fecundity cost. Males can regulate sperm allocations depending on whether they will be favoured or disfavoured, but increasing sperm allocation reduces their mating rate. The resolution of this game depends on whether males are equal, or unequal. Males could be equal: each is favoured with probability, p, reflecting the proportion of females in the population that favour his ejaculate (the 'random-roles' model); different males are favoured by different sets of females. Alternatively, males could be unequal: given males are perceived consistently by all females as two distinct types, favoured and disfavoured, where p is now the frequency of the favoured male type in the population (the 'constant-types' model). In both cases, the evolutionarily stable strategy (ESS) is for females initially to increase sperm selection from zero as the viability of offspring from unfavourable ejaculates falls below that of favourable ejaculates. But in the random-roles model, sperm selection decreases again towards zero as the unfavourable ejaculates become disastrous (i.e. as their progeny viability decreases towards zero). This occurs because males avoid expenditure in unfavourable matings, to conserve sperm for matings in the favoured role where their offspring have high viability, thus allowing females to relax sperm selection. If sperm selection is costly to females, ESS sperm selection is high across a region of intermediate viabilities. If it is uncostly, there is no ESS in this region unless sperm limitation (i.e. some eggs fail to be fertilized because sperm numbers are too low) is included into the model. In the constant-types model, no relaxation of sperm selection occurs at very low viabilities of disfavoured male progeny. If sperm selection is sufficiently costly, ESS sperm selection increases as progeny viability decreases down towards zero; but if it is uncostly, there is no ESS at the lowest viabilities, and unlike the random-roles model, this cannot be stabilized by including sperm limitation. Sperm allocations in the ESS regions differ between the two models. With random roles, males always allocate more sperm in the favoured role. With constant types, the male type that is favoured allocates less sperm than the disfavoured type. These results suggests that empiricists studying cryptic female choice and sperm allocation patterns need to determine whether sperm selection is applied differently, or consistently, on given males by different females in the same population.
Modeling Invasion Dynamics with Spatial Random-Fitness Due to Micro-Environment
Manem, V. S. K.; Kaveh, K.; Kohandel, M.; Sivaloganathan, S.
2015-01-01
Numerous experimental studies have demonstrated that the microenvironment is a key regulator influencing the proliferative and migrative potentials of species. Spatial and temporal disturbances lead to adverse and hazardous microenvironments for cellular systems that is reflected in the phenotypic heterogeneity within the system. In this paper, we study the effect of microenvironment on the invasive capability of species, or mutants, on structured grids (in particular, square lattices) under the influence of site-dependent random proliferation in addition to a migration potential. We discuss both continuous and discrete fitness distributions. Our results suggest that the invasion probability is negatively correlated with the variance of fitness distribution of mutants (for both advantageous and neutral mutants) in the absence of migration of both types of cells. A similar behaviour is observed even in the presence of a random fitness distribution of host cells in the system with neutral fitness rate. In the case of a bimodal distribution, we observe zero invasion probability until the system reaches a (specific) proportion of advantageous phenotypes. Also, we find that the migrative potential amplifies the invasion probability as the variance of fitness of mutants increases in the system, which is the exact opposite in the absence of migration. Our computational framework captures the harsh microenvironmental conditions through quenched random fitness distributions and migration of cells, and our analysis shows that they play an important role in the invasion dynamics of several biological systems such as bacterial micro-habitats, epithelial dysplasia, and metastasis. We believe that our results may lead to more experimental studies, which can in turn provide further insights into the role and impact of heterogeneous environments on invasion dynamics. PMID:26509572
Yang, Yangfan; Ye, Yiming; Lin, Xianchai; Wu, Kaili; Yu, Minbin
2013-01-01
Background Posterior capsular opacification (PCO) is a common complication of cataract surgery. Transforming growth factor-β2 (TGF-β2) plays important roles in the development of PCO. The existing pharmacological treatments are not satisfactory and can have toxic side effects. Methodologies/Principal Findings We evaluated the effect of pirfenidone on proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cell line SRA01/04 (HLECs) in vitro. After treatment with 0, 0.25, and 0.5 mg/ml pirfenidone, cell proliferation was measured by MTT assay. Cell viability was determined by trypan blue exclusion assay and measurement of lactate dehydrogenase (LDH) activity released from the damaged cells. And cell migration was measured by scratch assay in the absence or presence of transforming growth factor-β2 (TGF-β2). The expressions of TGF-β2 and SMADs were evaluated with real-time RT-PCR, western blot, and immunofluorescence analyses. The mesenchymal phenotypic marker fibronectin (FN) was demonstrated by Immunocytofluorescence analyses. The cells had high viability, which did not vary across different concentrations of pirfenidone (0 [control] 0.3, 0.5 or 1.0 mg/ml) after 24 hours. Pirfenidone (0∼0.5 mg/ml) had no significant cytotoxicity effect on SRA01/04 by LDH assay. Pirfenidone significantly inhibited the proliferation and TGF-β2-induced cell migration and the effects were dose-dependent, and inhibited TGF-β2-induced fibroblastic phenotypes and TGF-β2-induced expression of FN in SRA01/04 cells. The cells showed dose-dependent decreases in mRNA and protein levels of TGF-β2 and SMADs. Pirfenidone also depressed the TGF-β2-induced expression of SMADs and blocked the nuclear translocation of SMADs in cells. Conclusion Pirfenidone inhibits TGF-β2-induced proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cells line SRA01/04 at nontoxic concentrations. This effect may be achieved by down regulation of TGF-β/SAMD signaling in SRA01/04 cells. PMID:23437252
Tan, Jun Jie; Azmi, Siti Maisura; Yong, Yoke Keong; Cheah, Hong Leong; Lim, Vuanghao; Sandai, Doblin; Shaharuddin, Bakiah
2014-01-01
Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3±0.4%) were observed compared to the untreated population (20.5±0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro. PMID:24802273
Zhang, Jing; Liu, Likun; Wang, Jing; Ren, Baoyin; Zhang, Lin; Li, Weiling
2018-07-15
Astragalus membranaceus which was originally described in the Shennong's Classic of Materia Medica, the earliest complete Pharmacopoeia of China written from the Warring States Period to Han Dynasty, has been widely used in Chinese medicine for > 2000 years, especially in the prescription of curing cancer. A. membranaceus has various bioactivities, such as anti-tumor, anti-viral, anti-oxidant, anti-diabetes, anti-inflammation, anti-atherosclerosis, immunomodulation, hepatoprotection, hematopoiesis, neuroprotection and so on. As an important component of A. membranaceus, whether formononetin has a close relationship with its tumor-inhibiting effect on ovarian cancer cell has been investigated. The present study aimed to demonstrate the anti-proliferation, anti- migration and invasion effects of formononetin on ovarian cancer cells and further explore the underlying molecular mechanisms associated with apoptosis, migration and invasion. MTT assay was performed to detect the viability of ovarian cancer cells. DAPI staining, Annexin-V assay and assay for mitochondrial membrane potential detected the apoptosis of ovarian cancer cells treated by formononetin. The migration and invasion of ovarian cancer cells which exposed to formononetin were detected by scratch assay and transwell assay. Meanwhile, the protein-level changes of in ovarian cancer cells treated by formononetin were assessed by western blot analysis. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with formononetin. DAPI staining, Annexin-V assay and assay for mitochondrial membrane potential suggested that formononetin suppressed cells proliferation by inducing apoptosis. We detected the expression of apoptosis-related proteins in ovarian cancer cells after treatment with formononetin and found the expression of caspase 3/9 proteins and the ratio of Bax/Bcl-2 were increased in a dose-dependent manner. In addition, wound healing and transwell chamber assays showed that formononetin suppressed the migration and invasion of ovarian cancer cells. And formononetin decreased expression of MMP-2/9 proteins and phosphorylation level of ERK. The present results demonstrated that formononetin have potential effects on induction of apoptosis and suppression of migration and invasion. Copyright © 2018 Elsevier B.V. All rights reserved.
Kawahara, Takashi; Aljarah, Ali Kadhim; Shareef, Hasanain Khaleel; Inoue, Satoshi; Ide, Hiroki; Patterson, John D; Kashiwagi, Eiji; Han, Bin; Li, Yi; Zheng, Yichun; Miyamoto, Hiroshi
2016-06-01
Biological significance of ELK1, a transcriptional factor whose phosphorylation is necessary for c-fos proto-oncogene activation, in prostate cancer remains far from fully understood. In this study, we aim to investigate the role of ELK1 in tumor growth as well as the efficacy of a selective α1A-adrenergic blocker, silodosin, in ELK1 activity in prostate cancer cells. We first immunohistochemically determined the levels of phospho-ELK1 (p-ELK1) expression in radical prostatectomy specimens. We then assessed the effects of ELK1 knockdown via short hairpin RNA and silodosin on cell proliferation, migration, and invasion in prostate cancer lines. The levels of p-ELK1 expression were significantly higher in carcinoma than in benign (P < 0.001) or high-grade prostatic intraepithelial neoplasia (HGPIN) (P = 0.002) as well as in HGPIN than in benign (P < 0.001). Kaplan-Meier and log-rank tests revealed that moderate-strong positivity of p-ELK1 in carcinomas tended to correlate with biochemical recurrence after radical prostatectomy (P = 0.098). In PC3 and DU145 expressing ELK1 (mRNA/protein) but no androgen receptor (AR), ELK1 silencing resulted in considerable decreases in the expression of c-fos as well as in cell migration/invasion and matrix metalloproteinase-2 expression, but not in cell viability. Silodosin treatment reduced the expression/activity of ELK1 in these cells as well as the viability of AR-positive LNCaP and C4-2 cells and the migration of both AR-positive and AR-negative cells, but not the viability of AR-negative or ELK1-negative cells. Interestingly, silodosin significantly increased sensitivity to gemcitabine, but not to cisplatin or docetaxel, even in AR-negative cells. ELK1 is likely to be activated in prostate cancer cells and promote tumor progression. Furthermore, silodosin that inactivates ELK1 in prostate cancer cells not only inhibits their growth but also enhances the cytotoxic activity of gemcitabine. Thus, ELK1 inhibition has the potential of being a therapeutic approach for prostate cancer. © 2016 Wiley Periodicals, Inc.
Hsieh, Chih-Hsiung; Lu, Chueh-Hsuan; Chen, Wei-Ting; Ma, Bo-Lun
2017-01-01
Traditional therapies for pancreatic cancer are usually expensive and likely to cause side effects, and most patients have the risk of recurrence and suffering pain. Here, we investigated combination treatment of epigallocatechin-3-gallate (EGCG) and non-invasive low strength pulsed electric field (PEF) on the human pancreatic cell line PANC-1. Cells were cultured in various concentrations of EGCG and exposed to trains of PEF. The results showed that the low strength PEF alone or single treatment with low concentration of EGCG did not obviously affect the cell proliferation and migration in PANC-1. However, the EGCG-induced inhibitions of cell viability and migration ability in PANC-1 were dramatically enhanced by the further exposure of low strength PEF (60 V/cm). In particular, the same combination treatment caused less inhibition of cell viability in non-malignant HEK293 cells. We also found the combination treatment significantly decreased the ratio of Bcl-2/Bax protein and increased caspase activity in PANC-1 cells, resulting in the promotion of apoptotic responses, evidenced by chromatin condensation. The findings of the present study reveal the synergistic reactions in the combination treatment may severely disturb mitochondria, enhance the intrinsic pathway transduction, and effectively induce apoptosis; moreover, the migration and invasion of PANC-1 cancer cells were also significantly suppressed. Since normal cells are less sensitive to this combination treatment, and the non-invasive PEF could be modified to focus on a specific location, this treatment may serve as a promising method for anti-cancer therapy. PMID:29186186
Hsieh, Chih-Hsiung; Lu, Chueh-Hsuan; Chen, Wei-Ting; Ma, Bo-Lun; Chao, Chih-Yu
2017-01-01
Traditional therapies for pancreatic cancer are usually expensive and likely to cause side effects, and most patients have the risk of recurrence and suffering pain. Here, we investigated combination treatment of epigallocatechin-3-gallate (EGCG) and non-invasive low strength pulsed electric field (PEF) on the human pancreatic cell line PANC-1. Cells were cultured in various concentrations of EGCG and exposed to trains of PEF. The results showed that the low strength PEF alone or single treatment with low concentration of EGCG did not obviously affect the cell proliferation and migration in PANC-1. However, the EGCG-induced inhibitions of cell viability and migration ability in PANC-1 were dramatically enhanced by the further exposure of low strength PEF (60 V/cm). In particular, the same combination treatment caused less inhibition of cell viability in non-malignant HEK293 cells. We also found the combination treatment significantly decreased the ratio of Bcl-2/Bax protein and increased caspase activity in PANC-1 cells, resulting in the promotion of apoptotic responses, evidenced by chromatin condensation. The findings of the present study reveal the synergistic reactions in the combination treatment may severely disturb mitochondria, enhance the intrinsic pathway transduction, and effectively induce apoptosis; moreover, the migration and invasion of PANC-1 cancer cells were also significantly suppressed. Since normal cells are less sensitive to this combination treatment, and the non-invasive PEF could be modified to focus on a specific location, this treatment may serve as a promising method for anti-cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korvala, Johanna, E-mail: johanna.korvala@oulu.fi; Jee, Kowan; Department of Pathology, Haartman Institute, University of Helsinki, Helsinki
Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteinsmore » and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.« less
2013-01-01
Background Advanced glycation end products (AGEs), inflammatory-associated macrophage migration and accumulation are crucial for initiation and progression of diabetic vascular complication. Enzymatic activity of heparanase (HPA) is implicated strongly in dissemination of metastatic tumor cells and cells of the immune system. In addition, HPA enhances the phosphorylation of selected signaling molecules including AKT pathway independent of enzymatic activity. However, virtually nothing is presently known the role of HPA during macrophage migration exposed to AGEs involving signal pathway. Methods These studies were carried out in Ana-1 macrophages. Macrophage viability was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. HPA and AKT protein expression in macrophages are analysed by Western blotting and HPA mRNA expression by real time quantitative RT-PCR. Release of HPA was determined by ELISA. Macrophage migration was assessed by Transwell assays. Results HPA protein and mRNA were found to be increased significantly in AGEs-treated macrophages. Pretreatment with anti-HPA antibody which recognizes the nonenzymatic terminal of HPA prevented AGEs-induced AKT phosphorylation and macrophage migration. LY294002 (PI3k/AKT inhibitor) inhibited AGEs-induced macrophage migration. Furthermore, pretreatment with anti-receptor for advanced glycation end products (RAGE) antibody attenuated AGEs-induced HPA expression, AKT phosphorylation and macrophage migration. Conclusions These data indicate that AGEs-induced macrophage migration is dependent on HPA involving RAGE-HPA-PI3K/AKT pathway. The nonenzymatic activity of HPA may play a key role in AGEs-induced macrophage migration associated with inflammation in diabetic vascular complication. PMID:23442498
Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology.
Vieira de Castro, Joana; Gomes, Eduardo D; Granja, Sara; Anjo, Sandra I; Baltazar, Fátima; Manadas, Bruno; Salgado, António J; Costa, Bruno M
2017-10-02
Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton's jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM.
Kim, Bo-Gyoung; Kim, Jin-Wook; Kim, Soo-Min; Go, Ryeo-Eun; Hwang, Kyung-A
2018-01-01
Cyprodinil (CYP) is a pyrimidine amine fungicide that has been extensively used in agricultural areas. 3,3′-Diindolylmethane (DIM) is a derivative of the dietary phytoestrogen, indole-3-carbinol (I3C), which is derived from cruciferous vegetables and considered to be a cancer-preventive phytonutrient agent. In this study, the effects of CYP and DIM were examined on the cell viability, invasion, and metastasis of human endometrial cancer cells, Ishikawa, via epithelial mesenchymal transition (EMT). CYP increased the level of cell viability of Ishikawa cells compared to DMSO as a control, as did E2. Ishikawa cells lost cell-to-cell contact and obtained a spindle-shaped or fibroblast-like morphology in response to the application of E2 or CYP by the cell morphology assay. In the cell migration and invasion assay, CYP enhanced the ability of migration and invasion of Ishikawa cells, as did E2. E2 and CYP increased the expressions of N-cadherin and Snail proteins, while decreasing the expression of E-cadherin protein as EMT-related markers. In addition, E2 and CYP increased the protein expressions of cathepsin D and MMP-9, metastasis-related markers. Conversely, CYP-induced EMT, cell migration, and invasion were reversed by fulvestrant (ICI 182,780) as an estrogen receptor (ER) antagonist, indicating that CYP exerts estrogenic activity by mediating these processes via an ER-dependent pathway. Similar to ICI 182,780, DIM significantly suppressed E2 and CYP-induced proliferation, EMT, migration, and invasion of Ishikawa cancer cells. Overall, the present study revealed that DIM has an antiestrogenic chemopreventive effect to withdraw the cancer-enhancing effect of E2 and CYP, while CYP has the capacity to enhance the metastatic potential of estrogen-responsive endometrial cancer. PMID:29316692
Lipocalin 2 Enhances Migration and Resistance against Cisplatin in Endometrial Carcinoma Cells.
Miyamoto, Tsutomu; Kashima, Hiroyasu; Yamada, Yasushi; Kobara, Hisanori; Asaka, Ryoichi; Ando, Hirofumi; Higuchi, Shotaro; Ida, Koichi; Mvunta, David Hamisi; Shiozawa, Tanri
2016-01-01
Lipocalin 2 (LCN2) is a secretory protein that is involved in various physiological processes including iron transport. We previously identified LCN2 as an up-regulated gene in endometrial carcinoma, and found that the overexpression of LCN2 and its receptor, SLC22A17, was associated with a poor prognosis. However, the functions and mechanism of action of LCN2 currently remain unclear. The LCN2-overexpressing endometrial carcinoma cell lines, HHUA and RL95-2, and LCN2-low-expressing one, HEC1B, were used. The effects of LCN2 on cell migration, cell viability, and apoptosis under various stresses, including ultraviolet (UV) irradiation and cisplatin treatment, were examined using the scratch wound healing assay, WST-1 assay, and Apostrand assay, respectively. LCN2-silencing using shRNA method significantly reduced the migration ability of cells (p<0.05). Cytotoxic stresses significantly decreased the viability of LCN2-silenced cells more than that of control cells. In contrast, LCN2 overexpression was significantly increased cisplatin resistance. These effects were canceled by the addition of the iron chelator, deferoxamine. After UV irradiation, the expression of phosphorylated Akt (pAkt) was decreased in LCN2-silenced cells, and the PI3K inhibitor canceled the difference induced in UV sensitivity by LCN2. The cisplatin-induced expression of pAkt was not affected by LCN2; however, the expression of p53 and p21 was increased by LCN2-silencing. These results indicated that LCN2 was involved in the migration and survival of endometrial carcinoma cells under various stresses in an iron-dependent manner. The survival function of LCN2 may be exerted through the PI3K pathway and suppression of the p53-p21 pathway. These functions of LCN2 may increase the malignant potential of endometrial carcinoma cells.
Lipocalin 2 Enhances Migration and Resistance against Cisplatin in Endometrial Carcinoma Cells
Kashima, Hiroyasu; Yamada, Yasushi; Kobara, Hisanori; Asaka, Ryoichi; Ando, Hirofumi; Higuchi, Shotaro; Ida, Koichi; Mvunta, David Hamisi; Shiozawa, Tanri
2016-01-01
Purpose Lipocalin 2 (LCN2) is a secretory protein that is involved in various physiological processes including iron transport. We previously identified LCN2 as an up-regulated gene in endometrial carcinoma, and found that the overexpression of LCN2 and its receptor, SLC22A17, was associated with a poor prognosis. However, the functions and mechanism of action of LCN2 currently remain unclear. Methods The LCN2-overexpressing endometrial carcinoma cell lines, HHUA and RL95-2, and LCN2-low-expressing one, HEC1B, were used. The effects of LCN2 on cell migration, cell viability, and apoptosis under various stresses, including ultraviolet (UV) irradiation and cisplatin treatment, were examined using the scratch wound healing assay, WST-1 assay, and Apostrand assay, respectively. Results LCN2-silencing using shRNA method significantly reduced the migration ability of cells (p<0.05). Cytotoxic stresses significantly decreased the viability of LCN2-silenced cells more than that of control cells. In contrast, LCN2 overexpression was significantly increased cisplatin resistance. These effects were canceled by the addition of the iron chelator, deferoxamine. After UV irradiation, the expression of phosphorylated Akt (pAkt) was decreased in LCN2-silenced cells, and the PI3K inhibitor canceled the difference induced in UV sensitivity by LCN2. The cisplatin-induced expression of pAkt was not affected by LCN2; however, the expression of p53 and p21 was increased by LCN2-silencing. Conclusions These results indicated that LCN2 was involved in the migration and survival of endometrial carcinoma cells under various stresses in an iron-dependent manner. The survival function of LCN2 may be exerted through the PI3K pathway and suppression of the p53-p21 pathway. These functions of LCN2 may increase the malignant potential of endometrial carcinoma cells. PMID:27168162
Zhao, J M; Cheng, W; He, X G; Liu, Y L; Wang, F F; Gao, Y F
2018-06-26
Lung cancer remains the most common cause of tumor-related death worldwide. Recent studies have revealed that long non-coding RNAs (lncRNAs) are involved in the development of various cancers, including lung cancer. This study aimed to investigate the effect and the molecular basis of lncRNA PICART1 on lung cancer. We first assessed the PICART1 expression in lung cancer in vitro and vivo by qRT-PCR. Then the expression of PICART1 in SPC-A-1 and NCI-H1975 cell lines was inhibited and overexpressed by transient transfections. Thereafter, cell viability, cell cycle, migration and apoptosis were respectively measured by MTT, Transwell and flow cytometry assay. Furthermore, qRT-PCR and western blot analysis were mainly performed to assess the expression levels of apoptosis- and migration-related proteins and JAK2/STAT3 pathway proteins. Tumor formation was measured by xenograft tumor model assay in vivo. PICART1 expression was down-regulated in human lung cancer tissues and cell lines. Knockdown of PICART1 increased cell viability of lung cancer cell lines. However, PICART1 overexpression inhibited cell cycle progression and promoted apoptosis in SPC-A-1 and NCI-H1975 cell lines. PICART1 overexpression also inhibited migration, as evidenced by up-regulation of E-cadherin, and down-regulation of Twist1, MMP2 and MMP9. Furthermore, we found PICART1 inhibition may regulate cell apoptosis and migration through activating JAK2/STAT3 pathway. In vivo experiments revealed that PICART1 knockdown significantly promoted tumor formation.This study demonstrates that PICART1 overexpression represents an anti-growth and anti-metastasis role in lung cancer cells. Additionally, PICART1 acts as a tumor suppressor may be via regulation of JAK2/STAT3 pathway.
de Matos Cândido-Bacani, Priscila; Ezan, Frédéric; de Oliveira Figueiredo, Patrícia; Matos, Maria de Fátima Cepa; Rodrigues Garcez, Fernanda; Silva Garcez, Walmir; Baffet, Georges
2017-05-05
[1-9-NαC]-crourorb A1 is a cyclic peptide isolated from Croton urucurana Baillon latex, found in midwestern Brazil, that has been shown to exert cytotoxic effects against a panel of cancer cell lines. However, the underlying mechanisms responsible for the crourorb A1-induced cytotoxicity in cancer cells remain unknown. In this study, the effects of crourorb A1 on the viability, apoptosis, cell cycle and migration of Huh-7 (human hepatocarcinoma) cells were investigated. We evaluated the viability of Huh-7 cells treated with crourorb A1 in 2D and 3D collagen cultures and found that cells in 3D culture exhibited increased resistance to crourorb A1 compared to cells in 2D culture (IC 50 : 62μg/ml versus 35.75μg/ml). Crourorb A1 treatment decreases the viability of Huh-7 cells in a dose- and time-dependent manner and is associated with the induction of apoptosis, in the absence of necrotic cells, through the activation of caspase-3/7 and increased expression of the pro-apoptotic proteins Bak, Bid, Bax, Puma, Bim, and Bad. The effects of crourorb A1 are also associated with G2/M phase cell cycle arrest and increases in cyclin-dependent kinase (CDK1) and cyclin B1 expression. A significant reduction in Huh-7 cell migration induced by crourorb A1 was also observed in the presence of mitomycin C. Finally, we showed that the JNK/MAP pathway, but not ERK signaling, is involved in crourorb A1-induced hepatocarcinoma cell mortality. Copyright © 2017 Elsevier B.V. All rights reserved.
Koko, Kiavash R; Chang, Shaohua; Hagaman, Ashleigh L; Fromer, Marc W; Nolan, Ryan S; Gaughan, John P; Zhang, Ping; Carpenter, Jeffrey P; Brown, Spencer A; Matthews, Martha; Bird, Dorothy
2017-06-01
Paclitaxel improves the oncologic response of breast cancer resections; however, it may negatively affect the wound-healing potential of human adipose-derived stem cells (hASCs) for fat grafting and reconstructive surgery. Histone deacetylase inhibitors (HDACis) modify the epigenetic regulation of gene expression and stabilize microtubules similarly to paclitaxel, thus, creating a synergistic mechanism of cell cycle arrest. We aim to combine these drugs to enhance cytotoxicity towards breast cancer cells, while preserving the wound-healing function of hASCs for downstream reconstructive applications. Triple negative breast cancer cells (MBA-MB-231) and hASCs (institutional review board-approved clinical isolates) were treated with a standard therapeutic dose of paclitaxel (1.0 μM) or with low-dose paclitaxel (0.1 μM) combined with the HDACi suberoylanilide hydroxamic acid or trichostatin A. Cell viability, gene expression, apoptosis, and wound-healing/migration were measured via methylthiazol tetrazolium assay, quantitative real-time polymerase chain reaction, annexin V assay, and fibroblast scratch assay, respectively. Combined HDACi and low-dose paclitaxel therapy maintained cytotoxicity towards breast cancer cells and preserved adipose-derived stem cell viability. Histone deacetylase inhibitor demonstrated selective anti-inflammatory effects on adipose-derived stem cell gene expression and decreased expression of the proapoptotic gene FAS. Furthermore, HDACi therapy did not increase relative apoptosis within hASCs. A scratch assay demonstrated enhanced wound healing among injured fibroblasts indirectly co-cultured with HDACi-treated hASCs. Combining HDACi with low-dose paclitaxel improved cytotoxicity towards breast cancer cells and preserved hASC viability. Furthermore, enhanced wound healing was observed by improved migration in a fibroblast scratch assay. These results suggest that the addition of HDACi to taxane chemotherapy regimens may improve oncologic results and wound-healing outcomes after reconstructive surgery.
Souza, Raquel Pantarotto; de Souza Bonfim-Mendonca, Patricia; Damke, Gabrielle Marconi Zago Ferreira; De Assis Carvalho, Analine Rosa Barquez; Ratti, Bianca Altrao; de Oliveira Dembogurski, Djaceli Sampaio; da Silva, Vania Ramos Sela; Silva, Sueli Oliveira; da Silva, Denise Brentan; Bruschi, Marcos Luciano; Maria-Engler, Silvya Stuchi; Consolaro, Marcia Edilaine Lopes
2018-06-03
Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) is the main bioactive component of Brazilian green propolis, and possesses, among other things, anticancer properties. However, to the best of our knowledge, there are no studies of artepillin C in cervical cancer. To explore a new therapeutic candidate for cervical cancer, we have evaluated the effects of artepillin C on cellular viability in a comprehensive panel of human cervical cancer-derived cell lines including HeLa (human papillomavirus/HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16- and 18-positive) and C33A (HPV-negative) cells compared to a spontaneously immortalized human epithelial cell line (HaCaT). Our results demonstrated that artepillin C had a selective effect on cellular viability and could induce apoptosis possibly by intrinsic pathway, likely a result of oxidative stress, in all cancer-derived cell lines but not in HaCaT. Additionally, artepillin C was able to inhibit the migration and invasion of cancer cells. Thus, artepillin C appears to be a promising new candidate as an anticancer drug for cervical cancer induced by different HPV types. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Chemopreventive Activities of Sulforaphane and Its Metabolites in Human Hepatoma HepG2 Cells.
Liu, Peng; Wang, Wei; Zhou, Zhigang; Smith, Andrew J O; Bowater, Richard P; Wormstone, Ian Michael; Chen, Yuqiong; Bao, Yongping
2018-05-09
Sulforaphane (SFN) exhibits chemopreventive effects through various mechanisms. However, few studies have focused on the bioactivities of its metabolites. Here, three metabolites derived from SFN were studied, known as sulforaphane glutathione, sulforaphane cysteine and sulforaphane- N -acetylcysteine. Their effects on cell viability, DNA damage, tumorigenicity, cell migration and adhesion were measured in human hepatoma HepG2 cells, and their anti-angiogenetic effects were determined in a 3D co-culture model of human umbilical vein endothelial cells (HUVECs) and pericytes. Results indicated that these metabolites at high doses decreased cancer cell viability, induced DNA damage and inhibited motility, and impaired endothelial cell migration and tube formation. Additionally, pre-treatment with low doses of SFN metabolites protected against H₂O₂ challenge. The activation of the nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway and the induction of intracellular glutathione (GSH) played an important role in the cytoprotective effects of SFN metabolites. In conclusion, SFN metabolites exhibited similar cytotoxic and cytoprotective effects to SFN, which proves the necessity to study the mechanisms of action of not only SFN but also of its metabolites. Based on the different tissue distribution profiles of these metabolites, the most relevant chemical forms can be selected for targeted chemoprevention.
Effect of platelet lysate on human cells involved in different phases of wound healing.
Barsotti, Maria Chiara; Chiara Barsotti, Maria; Losi, Paola; Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio
2013-01-01
Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.
Effect of Platelet Lysate on Human Cells Involved in Different Phases of Wound Healing
Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio
2013-01-01
Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing. PMID:24386412
Harnik, Branko; Miron, Richard J; Buser, Daniel; Gruber, Reinhard
2017-03-01
Angiogenesis is essential for the consolidation of bone allografts. The underlying molecular mechanism, however, remains unclear. Soluble factors released from demineralized freeze-dried bone target mesenchymal cells; however, their effect on endothelial cells has not been investigated so far. The aim of the present study was therefore to examine the effect of conditioned medium from demineralized freeze-dried bone on human umbilical endothelial cells in vitro. Conditioned medium was first prepared from demineralized freeze-dried bone following 24 hours incubation at room temperature to produce demineralized bone conditioned media. Thereafter, conditioned medium was used to stimulate human umbilical vein endothelial cells in vitro by determining the cell response based on viability, proliferation, expression of apoptotic genes, a Boyden chamber to determine cell migration, and the formation of branches. The authors report here that conditioned medium decreased viability and proliferation of endothelial cells. Neither of the apoptotic marker genes was significantly altered when endothelial cells were exposed to conditioned medium. The Boyden chamber revealed that endothelial cells migrate toward conditioned medium. Moreover, conditioned medium moderately stimulated the formation of branches. These findings support the concept that conditioned medium from demineralized freeze-dried bone targets endothelial cells by decreasing their proliferation and enhancing their motility under these in vitro conditions.
The expression and function of epithelial membrane protein 1 in laryngeal carcinoma.
Li, Hong; Zhang, Xiaowen; Jiang, Xuejun; Ji, Xu
2017-01-01
In this study, we compared the expression of epithelial membrane protein 1 (EMP1) on the steady-state mRNA level (by quantitative real-time PCR) and on the protein level (by western immunoblot and immunohistochemistry) in 51 pairs of laryngeal carcinoma tissues and matched cancer-free peritumor tissues, and we analyzed the correlation between EMP1 expression and different clinicopathological factors. Furthermore, we ectopically expressed EMP1 in human laryngeal carcinoma Hep-2 cells and examined the effects on cell viability, apoptosis, colonogenicity, and motility, by MTT assay, flow cytometry, colony formation assay and Transwell migration assay, respectively. EMP1 expression (on both the mRNA and protein levels) was significantly lower in the cancer tissues than in matched peritumor tissues (P<0.05). In laryngeal cancers, the level of EMP1 protein was correlated with histological grade (P<0.05), but not with age, gender, clinical stage, cancer subtype or lymph node metastasis (P>0.05). Functionally, ectopic expression of EMP1 in Hep-2 cells significantly reduced cell viability, colony formation, and migration, but enhanced apoptosis. Therefore, EMP1 is a tumor suppressor in laryngeal carcinoma. Boosting EMP1 expression in laryngeal carcinoma initiates multiple anticancer phenotypes and thus presents a promising therapeutic strategy for laryngeal cancer.
Synergistic effects of plasma-activated medium and chemotherapeutic drugs in cancer treatment
NASA Astrophysics Data System (ADS)
Chen, Chao-Yu; Cheng, Yun-Chien; Cheng, Yi-Jing
2018-04-01
Chemotherapy is an important treatment method for metastatic cancer, but the drug-uptake efficiency of cancer cells needs to be enhanced in order to diminish the side effects of chemotherapeutic drugs and improve survival. The use of a nonequilibrium low-temperature atmospheric-pressure plasma jet (APPJ) has been demonstrated to exert selective effects in cancer therapy and to be able to enhance the uptake of molecules by cells, which makes an APPJ a good candidate adjuvant in combination chemotherapy. This study estimated the effects of direct helium-based APPJ (He-APPJ) exposure (DE) and He-APPJ-activated RPMI medium (PAM) on cell viability and migration. Both of these treatments decreased cell viability and inhibited cell migration, but to different degrees in different cell types. The use of PAM as a culture medium resulted in the dialkylcarbocyanine (DiI) fluorescent dye entering the cells more efficiently. PAM was combined with the anticancer drug doxorubicin (Doxo) to treat human heptocellular carcinoma HepG2 cells and human adenocarcinomic alveolar basal epithelial A549 cells. The results showed that the synergistic effects of combined PAM and Doxo treatment resulted in stronger lethality in cancer cells than did PAM or Doxo treatment alone. To sum up, PAM has potential as an adjuvant in combination with other drugs to improve curative cancer therapies.
USDA-ARS?s Scientific Manuscript database
Macrophage migration inhibitory factor (MIF) is a soluble factor produced by sensitized T lymphocytes that inhibits the random migration of macrophages. Homologues of MIF from invertebrates have been identified making it an interesting molecule from a functional perspective. In the present study, ...
Lin, Wen-Jian; Ma, Xue-Fei; Hao, Ming; Zhou, Huan-Ran; Yu, Xin-Yang; Shao, Ning; Gao, Xin-Yuan; Kuang, Hong-Yu
2018-07-01
Retinal pericyte migration represents a novel mechanism of pericyte loss in diabetic retinopathy (DR), which plays a crucial role in the early impairment of the blood-retinal barrier (BRB). Glucagon-like peptide-1 (GLP-1) has been shown to protect the diabetic retina in the early stage of DR; however, the relationship between GLP-1 and retinal pericytes has not been discussed. In this study, advanced glycation end products (AGEs) significantly increased the migration of primary bovine retinal pericytes without influencing cell viability. AGEs also significantly enhanced phosphatidylinositol 3-kinase (PI3K)/Akt activation, and changed the expressions of migration-related proteins, including phosphorylated focal adhesion kinase (p-FAK), matrix metalloproteinase (MMP)-2 and vinculin. PI3K inhibition significantly attenuated the AGEs-induced migration of retinal pericytes and reversed the overexpression of MMP-2. Glucagon-like peptide-1 receptor (Glp1r) was expressed in retinal pericytes, and liraglutide, a GLP-1 analog, significantly attenuated the migration of pericytes by Glp1r and reversed the changes in p-Akt/Akt, p-FAK/FAK, vinculin and MMP-2 levels induced by AGEs, indicating that the protective effect of liraglutide was associated with the PI3K/Akt pathway. These results provided new insights into the mechanism underlying retinal pericyte migration. The early use of liraglutide exerts a potential bebefical effect on regulating pericyte migration, which might contribute to mechanisms that maintain the integrity of vascular barrier and delay the development of DR. Copyright © 2018 Elsevier Inc. All rights reserved.
Lee, Hyun Sook; Hong, Ji Eun; Kim, Eun Ji; Kim, Sun Hyo
2014-01-01
Escin, a natural mixture of triterpene saponins isolated from horse chestnut, has been reported to possess anticancer activity in many human cancer cells. However, the effect of escin on the metastasis has not been studied. The present study examined the effect of escin on the migration and invasion of AGS human gastric cancer cells. To examine the effects of escin on metastatic capacities of gastric cancer cells, AGS cells were cultured in the presence of 0-4 μmol/L escin. Escin inhibited cell migration and invasion in AGS cells. However, escin did not affect the viability of these cells at these concentrations. The chemokine receptor and its ligands play an important role in cancer metastasis. Escin decreased the production of soluble C-X-C motif chemokine (CXCL)16 but increased the expression of trans-membranous CXCL16. The expression of C-X-C chemokine receptor (CXCR)6 was not affected by escin treatment. Exogenous CXCL16 reversed escin-induced migration inhibition. In addition, escin inhibited the phosphorylation of focal adhesion kinase and Akt. These results demonstrate that escin inhibited the migration and invasion of AGS cells, which is associated with altered CXCL16/CXCR6 axis. These findings suggest that escin has potential as an antimetastatic agent in gastric cancer.
NASA Astrophysics Data System (ADS)
Roy, M.; Rios, D.; Cosburn, K.
2017-12-01
Shear between the moving lithosphere and the underlying asthenospheric mantle can produce dynamic pressure gradients that control patterns of melt migration by percolative flow. Within continental interiors these pressure gradients may be large enough to focus melt migration into zones of low dynamic pressure and thus influence the surface distribution of magmatism. We build upon previous work to show that for a lithospheric keel that protrudes into the "mantle wind," spatially-variable melt migration can lead to spatially-variable thermal weakening of the lithosphere. Our models treat advective heat transfer in porous flow in the limit that heat transfer between the melt and surrounding matrix dominates over conductive heat transfer within either the melt or the solid alone. The models are parameterized by a heat transfer coefficient that we interpret to be related to the efficiency of heat transfer across the fluid-rock interface, related to the geometry and distribution of porosity. Our models quantitatively assess the viability of spatially variable thermal-weakening caused by melt-migration through continental regions that are characterized by variations in lithospheric thickness. We speculate upon the relevance of this process in producing surface patterns of Cenozoic magmatism and heatflow at the Colorado Plateau in the western US.
Genetic profiling links changing sea-ice to shifting beluga whale migration patterns
Mahoney, Andrew R.; Suydam, Robert; Quakenbush, Lori; Whiting, Alex; Lowry, Lloyd; Harwood, Lois
2016-01-01
There is increasing concern over how Arctic fauna will adapt to climate related changes in sea-ice. We used long-term sighting and genetic data on beluga whales (Delphinapterus leucas) in conjunction with multi-decadal patterns of sea-ice in the Pacific Arctic to investigate the influence of sea-ice on spring migration and summer residency patterns. Substantial variations in sea-ice conditions were detected across seasons, years and sub-regions, revealing ice–ocean dynamics more complex than Arctic-wide trends suggest. This variation contrasted with a highly consistent pattern of migration and residency by several populations, indicating that belugas can accommodate widely varying sea-ice conditions to perpetuate philopatry to coastal migration destinations. However, a number of anomalous migration and residency events were detected and coincided with anomalous ice years, and in one case with an increase in killer whale (Orcinus orca) sightings and reported predation on beluga whales. The behavioural shifts were likely driven by changing sea-ice and associated changes in resource dispersion and predation risk. Continued reductions in sea-ice may result in increased predation at key aggregation areas and shifts in beluga whale behaviour with implications for population viability, ecosystem structure and the subsistence cultures that rely on them.
NASA Astrophysics Data System (ADS)
Azimzade, Youness; Mashaghi, Alireza
2017-12-01
Efficient search acts as a strong selective force in biological systems ranging from cellular populations to predator-prey systems. The search processes commonly involve finding a stationary or mobile target within a heterogeneously structured environment where obstacles limit migration. An open generic question is whether random or directionally biased motions or a combination of both provide an optimal search efficiency and how that depends on the motility and density of targets and obstacles. To address this question, we develop a simple model that involves a random walker searching for its targets in a heterogeneous medium of bond percolation square lattice and used mean first passage time (〈T 〉 ) as an indication of average search time. Our analysis reveals a dual effect of directional bias on the minimum value of 〈T 〉 . For a homogeneous medium, directionality always decreases 〈T 〉 and a pure directional migration (a ballistic motion) serves as the optimized strategy, while for a heterogeneous environment, we find that the optimized strategy involves a combination of directed and random migrations. The relative contribution of these modes is determined by the density of obstacles and motility of targets. Existence of randomness and motility of targets add to the efficiency of search. Our study reveals generic and simple rules that govern search efficiency. Our findings might find application in a number of areas including immunology, cell biology, ecology, and robotics.
Brain Tumor Genetic Modification Yields Increased Resistance to Paclitaxel in Physical Confinement
Bui, Loan; Hendricks, Alissa; Wright, Jamie; Chuong, Cheng-Jen; Davé, Digant; Bachoo, Robert; Kim, Young-tae
2016-01-01
Brain tumor cells remain highly resistant to radiation and chemotherapy, particularly malignant and secondary cancers. In this study, we utilized microchannel devices to examine the effect of a confined environment on the viability and drug resistance of the following brain cancer cell lines: primary cancers (glioblastoma multiforme and neuroblastoma), human brain cancer cell lines (D54 and D54-EGFRvIII), and genetically modified mouse astrocytes (wild type, p53−/−, p53−/− PTEN−/−, p53−/− Braf, and p53−/− PTEN−/− Braf). We found that loss of PTEN combined with Braf activation resulted in higher viability in narrow microchannels. In addition, Braf conferred increased resistance to the microtubule-stabilizing drug Taxol in narrow confinement. Similarly, survival of D54-EGFRvIII cells was unaffected following treatment with Taxol, whereas the viability of D54 cells was reduced by 75% under these conditions. Taken together, our data suggests key targets for anticancer drugs based on cellular genotypes and their specific survival phenotypes during confined migration. PMID:27184621
MARCKS promotes invasion and is associated with biochemical recurrence in prostate cancer
Dorris, Emma; O'Neill, Amanda; Hanrahan, Karen; Treacy, Ann; Watson, R. William
2017-01-01
Background Overtreatment of low-grade prostate cancer is a recognised problem for clinicians and patients. However, under-treatment runs the risk of missing the opportunity for cure in those who could benefit. Identification of new biomarkers of disease progression, including metastases, is required to better stratify and appropriately treat these patients. The ability to predict if prostate cancer will recur is an important clinical question that would impact treatment options for patients. Studies in other cancers have associated MARCKS with metastasis. Methods Tissue microarrays of local prostatectomy samples from a cohort of biochemical recurrent and non-biochemical recurrent tumours were assayed for MARCKS protein expression. Prostate cancer cell lines were transfected with siRNA targeting MARCKS or a control and functional endpoints of migration, invasion, proliferation, viability and apoptosis were measured. Actin was visualised by fluorescent microscopy and evidence of a cadherin switch and activation of the AKT pathway were assayed. Results MARCKS was upregulated in biochemical recurrent patients compared to non-biochemical recurrent. Knockdown of MARCKS reduced migration and invasion of prostate cancer cells, reduced MMP9 mRNA expression, as well as decreasing cell spreading and increased cell:cell adhesion in prostate cancer cell colonies. Knockdown of MARCKS had no effect on proliferation, viability or apoptosis of the prostate cancer cells. Conclusions In conclusion, MARCKS promotes migration and invasion and is associated with biochemical recurrence in localised prostate cancer tumours. The mechanisms by which this occurs have yet to be fully elucidated but lack of a cadherin switch indicates it is not via epithelial-to-mesenchymal transition. Actin rearrangement indicates that MARCKS promotes invasion through regulating the architecture of the cell. PMID:29069765
Busch, Maike; Große-Kreul, Jan; Wirtz, Janina Jasmin; Beier, Manfred; Stephan, Harald; Royer-Pokora, Brigitte; Metz, Klaus; Dünker, Nicole
2017-08-01
Trefoil factor family (TFF) peptides have been shown to play a pivotal role in oncogenic transformation, tumorigenesis and metastasis by changing cell proliferation, apoptosis, migration and invasion behavior of various cancer cell lines. In the study presented, we investigated the effect of TFF1 overexpression on cell growth, viability, migration and tumorigenicity of different retinoblastoma (RB) cell lines. Transient TFF1 overexpression significantly increases RB cell apoptosis levels. Stable, lentiviral TFF1 overexpression likewise decreases RB cell viability, proliferation and growth and significantly increases apoptosis as revealed by WST-1 assays, BrdU and DAPI cell counts. TFF1-induced apoptosis is executed via cleaved caspase-3 activation as revealed by caspase blockage experiments and caspase-3 immunocytochemistry. Results from pG13-luciferase reporter assays and Western blot analyses indicate that TFF1-induced apoptosis is mediated through transcriptional activity of p53 with concurrently downregulated miR-18a expression. In ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF1 overexpression significantly decreases the size of tumors forming from Y79 and RB355 cells and reduces the migration potential of RB355 cells. Differentially expressed genes and pathways involved in cancer progression were identified after TFF1 overexpression in Y79 cells by gene expression array analysis, underlining the effects on reduced tumorigenicity. TFF1 knockdown in RBL30 cells revealed caspase-3/7-independent apoptosis induction, but no changes on cell proliferation level. In summary, the in vitro and in vivo data demonstrate for the first time a tumor suppressor function of TFF1 in RB cells which is at least partly mediated by p53 activation and miR-18a downregulation. © 2017 UICC.
Sesamin induces ER stress-mediated apoptosis and activates autophagy in cervical cancer cells.
Dou, Haowen; Yang, Shasha; Hu, Yulai; Xu, Dongyuan; Liu, Lan; Li, Xiangdan
2018-05-01
Sesamin, a major lignan of sesame oil, has demonstrated anticancer properties. However, its anticancer effects on cervical cancer have not been studied. Here, we investigated the effects of sesamin on cervical cancer (HeLa) cell line and explored the underlying mechanisms. HeLa cells were cultured with sesamin. CCK-8 and scratch wound test were applied to detect the proliferation and migration ability, while flow cytometry and TUNEL staining were applied to detect apoptosis. The expression of Bax and Bcl-2 was assessed by Western blotting. Further observe the ultrastructure using transmission electron microscopy (TEM) and detect the expression of caspase-12, GRP78, GADD153, IRE1α, p-IRE1α, JNK, p-JNK, LC3I/II and beclin-1. In addition, HeLa cells were treated with 3-MA (an autophagy inhibitor) and/or sesamin. Then detect the expression of LC3I/II and cell viability. CCK-8 and scratch wound test revealed that sesamin inhibits HeLa cells proliferation and migration, while flow cytometry and TUNEL staining indicated that sesamin induces apoptosis in these cells. In sesamin group, the expression of Bax, caspase-12, GRP78, GADD153, p-IRE1α, p-JNK, LC3I/II and beclin-1 was up-regulated while Bcl-2 was down-regulated compared to control group. Further research revealed that sesamin also induces Hela cells autophagy and inhibition of autophagy increases cell viability of sesamin-treated HeLa cells. Sesamin inhibits proliferation/migration of HeLa cells and induces ER stress-mediated apoptosis through IRE1α/JNK pathway, and that it activates autophagy and autophagic death in these cells, further validate the anticancer effect of sesamin. Copyright © 2018 Elsevier Inc. All rights reserved.
An, Guang-Zhou; Xu, Hui; Zhou, Yan; Du, Le; Miao, Xia; Jiang, Da-Peng; Li, Kang-Chu; Guo, Guo-Zhen; Zhang, Chen; Ding, Gui-Rong
2015-01-01
Power-line frequency electromagnetic field (PF-EMF) was reported as a human carcinogen by some epidemiological research, but the conclusion is lack of robust experiment evidence. To identify the effects of long-term PF-EMF exposure on cell behavior, Balb/c 3T3 cells in exponential growth phase were exposed or sham-exposed to 50 Hertz (Hz) PF-EMF at 2.3 mT for 2 hours (h) one day, 5 days every week. After 11 weeks exposure, cells were collected instantly. Cell morphology was observed under invert microscope and Giemsa staining, cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and apoptosis was examined by flow cytometry, the protein level of Proliferating Cell Nuclear Antigen (PCNA) and CyclinD1 was detected by western blot, cell transformation was examined by soft agar clone assay and plate clone forming test, and cell migration ability was observed by scratch adhesion test. It was found that after PF-EMF exposure, cell morphology, apoptosis, cell migration ability and cell transformation didn’t change. However, compared with sham group, cell viability obviously decreased and cell cycle distribution also changed after 11 weeks PF-EMF exposure. Meanwhile, the protein level of PCNA and CyclinD1 significantly decreased after PF-EMF exposure. These data suggested that although long-term 50Hz PF-EMF exposure under this experimental condition had no effects on apoptosis, cell migration ability and cell transformation, it could affect cell proliferation and cell cycle by down-regulation the expression of PCNA and CyclinD1 protein. PMID:25695503
Song, Xuedong; Wang, Yin; Du, Hongfei; Fan, Yanru; Yang, Xue; Wang, Xiaorong; Wu, Xiaohou; Luo, Chunli
2014-07-01
HepaCAM is suppressed in a variety of human cancers, and involved in cell adhesion, growth, migration, invasion, and survival. However, the expression and function of HepaCAM in prostate cancer are still unknown. HepaCAM expression has been detected by RT-PCR, Western blotting and immunohistochemistry staining in prostate cell lines RWPE-1, LNCap, DU145, PC3, and in 75 human prostate tissue specimens, respectively. Meanwhile, the cell proliferation ability was detected by WST-8 assay. The role of HepaCAM in prostate cancer cell migration and invasion was examined by wound healing and transwell assay. And flow cytometry was used to observe the apoptosis of prostate cancer cells. Then we detected changes of Androgen Receptor translocation and ERK signaling using immunofluorescence staining and western blot after overexpression of HepaCAM. The HepaCAM expression was significantly down-regulated in prostate cancer tissues and undetected in prostate cancer cells. However, the low HepaCAM expression was not statistically associated with clinicopathological characteristics of prostate cancer. Overexpression of HepaCAM in prostate cancer cells decreased the cell proliferation, migration and invasion, and induced the cell apoptosis. Meanwhile, HepaCAM prevented the androgen receptor translocation from the cytoplasm to the nucleus and down-regulated the MAPK/ERK signaling. Our results suggested that HepaCAM acted as a tumor suppressor in prostate cancer. HepaCAM inhibited cell viability and motility which might be through suppressing the nuclear translocation of Androgen Receptor and down-regulating the ERK signaling. Therefore, it was indicated that HepaCAM may be a potential therapeutic target for prostate cancer. © 2014 Wiley Periodicals, Inc.
Yang, Tianzheng; Zhai, Hongyan; Yan, Ruihong; Zhou, Zhenhu; Gao, Lei; Wang, Luqing
2018-01-01
Thyroid cancer is a common malignant tumor. Long non-coding RNA colon cancer-associated transcript 1 (lncRNA CCAT1) is highly expressed in many cancers; however, the molecular mechanism of CCAT1 in thyroid cancer remains unclear. Hence, this study aimed to investigate the effect of CCAT1 on human thyroid cancer cell line FTC-133. FTC-133 cells were transfected with CCAT1 expressing vector, CCAT1 shRNA, miR-143 mimic, and miR-143 inhibitor, respectively. After different treatments, cell viability, proliferation, migration, invasion, and apoptosis were measured. Moreover, the regulatory relationship of CCAT1 and miR-143, as well as miR-143 and VEGF were tested using dual-luciferase reporter assay. The relative expressions of CCAT1, miR-143, and VEGF were tested by qRT-PCR. The expressions of apoptosis-related factors and corresponding proteins in PI3K/AKT and MAPK pathways were analyzed using western blot analysis. The results suggested that CCAT1 was up-regulated in the FTC-133 cells. CCAT1 suppression decreased FTC-133 cell viability, proliferation, migration, invasion, and miR-143 expression, while it increased apoptosis and VEGF expression. CCAT1 might act as a competing endogenous RNA (ceRNA) for miR-143. Moreover, CCAT1 activated PI3K/AKT and MAPK signaling pathways through inhibition of miR-143. This study demonstrated that CCAT1 exhibited pro-proliferative and pro-metastasis functions on FTC-133 cells and activated PI3K/AKT and MAPK signaling pathways via down-regulation of miR-143. These findings will provide a possible target for clinical treatment of thyroid cancer.
An, Guang-Zhou; Xu, Hui; Zhou, Yan; Du, Le; Miao, Xia; Jiang, Da-Peng; Li, Kang-Chu; Guo, Guo-Zhen; Zhang, Chen; Ding, Gui-Rong
2015-01-01
Power-line frequency electromagnetic field (PF-EMF) was reported as a human carcinogen by some epidemiological research, but the conclusion is lack of robust experiment evidence. To identify the effects of long-term PF-EMF exposure on cell behavior, Balb/c 3T3 cells in exponential growth phase were exposed or sham-exposed to 50 Hertz (Hz) PF-EMF at 2.3 mT for 2 hours (h) one day, 5 days every week. After 11 weeks exposure, cells were collected instantly. Cell morphology was observed under invert microscope and Giemsa staining, cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and apoptosis was examined by flow cytometry, the protein level of Proliferating Cell Nuclear Antigen (PCNA) and CyclinD1 was detected by western blot, cell transformation was examined by soft agar clone assay and plate clone forming test, and cell migration ability was observed by scratch adhesion test. It was found that after PF-EMF exposure, cell morphology, apoptosis, cell migration ability and cell transformation didn't change. However, compared with sham group, cell viability obviously decreased and cell cycle distribution also changed after 11 weeks PF-EMF exposure. Meanwhile, the protein level of PCNA and CyclinD1 significantly decreased after PF-EMF exposure. These data suggested that although long-term 50Hz PF-EMF exposure under this experimental condition had no effects on apoptosis, cell migration ability and cell transformation, it could affect cell proliferation and cell cycle by down-regulation the expression of PCNA and CyclinD1 protein.
Tsukahara, Tamotsu; Murakami-Murofushi, Kimiko
2012-01-01
Microparticle and nanoparticle formulations are widely used to improve the bioavailability of low-solubility drugs and as vehicles for organ- and tissue-specific targeted drug delivery. We investigated the effect of a novel, controlled-release form of a bioactive lipid, cyclic phosphatidic acid (cPA), on human colon cancer cell line functions. We encapsulated cPA in gelatin-based hydrogels and examined its ability to inhibit the viability and migration of HT-29 and DLD-1 cells in vitro and the LPA-induced activity of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ). The hydrogel delivery system prolonged cPA release into the culture medium. Accordingly, cPA-hydrogel microspheres substantially inhibited LPA-induced PPARγ activity and cell growth and migration compared with that of cells cultured with cPA alone. Thus, hydrogel microspheres are a potential system for stable and efficient delivery of bioactive lipids such as cPA and may offer a new strategy for targeted colon cancer treatment. PMID:23008752
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.
We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwovenmore » scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.« less
Burley, Lisa M; Fell, Richard D; Saacke, Richard G
2008-08-01
We conducted research to examine the potential impacts ofcoumaphos, fluvalinate, and Apilife VAR (Thymol) on drone honey bee, Apis mellifera L. (Hymenoptera: Apidae), sperm viability over time. Drones were reared in colonies that had been treated with each miticide by using the dose recommended on the label. Drones from each miticide treatment were collected, and semen samples were pooled. The pooled samples from each treatment were subdivided and analyzed for periods of up to 6 wk. Random samples were taken from each treatment (n = 6 pools) over the 6-wk period. Sperm viability was measured using dual-fluorescent staining techniques. The exposure of drones to coumaphos during development and sexual maturation significantly reduced sperm viability for all 6 wk. Sperm viability significantly decreased from the initial sample to week 1 in control colonies, and a significant decrease in sperm viability was observed from week 5 to week 6 in all treatments and control. The potential impacts of these results on queen performance and failure are discussed.
Van Hamersveld, Koen T; Marang-Van De Mheen, Perla J; Nelissen, Rob G H H; Toksvig-Larsen, Sören
2018-05-09
Background and purpose - Biological fixation of uncemented knee prostheses can be improved by applying hydroxyapatite coating around the porous surface via a solution deposition technique called Peri-Apatite (PA). The 2-year results of a randomized controlled trial, evaluating the effect of PA, revealed several components with continuous migration in the second postoperative year, particularly in the uncoated group. To evaluate whether absence of early stabilization is diagnostic of loosening, we now present long-term follow-up results. Patients and methods - 60 patients were randomized to PA-coated or uncoated (porous only) total knee arthroplasty of which 58 were evaluated with radiostereometric analysis (RSA) performed at baseline, at 3 months postoperatively and at 1, 2, 5, 7, and 10 years. A linear mixed-effects model was used to analyze the repeated measurements. Results - PA-coated components had a statistically significantly lower mean migration at 10 years of 0.94 mm (95% CI 0.72-1.2) compared with the uncoated group showing a mean migration of 1.72 mm (95% CI 1.4-2.1). Continuous migration in the second postoperative year was seen in 7 uncoated components and in 1 PA-coated component. All of these implants stabilized after 2 years except for 2 uncoated components. Interpretation - Peri-apatite enhances stabilization of uncemented components. The number of components that stabilized after 2 years emphasizes the importance of longer follow-up to determine full stabilization and risk of loosening in uncemented components with biphasic migration profiles.
Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.
2014-01-01
Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454
Tufto, Jarle
2010-01-01
Domesticated species frequently spread their genes into populations of wild relatives through interbreeding. The domestication process often involves artificial selection for economically desirable traits. This can lead to an indirect response in unknown correlated traits and a reduction in fitness of domesticated individuals in the wild. Previous models for the effect of gene flow from domesticated species to wild relatives have assumed that evolution occurs in one dimension. Here, I develop a quantitative genetic model for the balance between migration and multivariate stabilizing selection. Different forms of correlational selection consistent with a given observed ratio between average fitness of domesticated and wild individuals offsets the phenotypic means at migration-selection balance away from predictions based on simpler one-dimensional models. For almost all parameter values, correlational selection leads to a reduction in the migration load. For ridge selection, this reduction arises because the distance the immigrants deviates from the local optimum in effect is reduced. For realistic parameter values, however, the effect of correlational selection on the load is small, suggesting that simpler one-dimensional models may still be adequate in terms of predicting mean population fitness and viability.
Facilitators and constraints at each stage of the migration decision process.
Kley, Stefanie
2017-10-01
Behavioural models of migration emphasize the importance of migration decision-making for the explanation of subsequent behaviour. But empirical migration research regularly finds considerable gaps between those who intend to migrate and those who actually realize their intention. This paper applies the Theory of Planned Behaviour, enriched by the Rubicon model, to test specific hypotheses about distinct effects of facilitators and constraints on specific stages of migration decision-making and behaviour. The data come from a tailor-made panel survey based on random samples of people drawn from two German cities in 2006-07. The results show that in conventional models the effects of facilitators and constraints on migration decision-making are likely to be underestimated. Splitting the process of migration decision-making into a pre-decisional and a pre-actional phase helps to avoid bias in the estimated effects of facilitators and constraints on both migration decision-making and migration behaviour.
Li, Yumei; Zhang, Chunmei; Cai, Danfeng; Chen, Congde; Mu, Dongmei
2017-12-01
Rhabdoid tumors, which tend to occur prior to the age of 2 years, are one of the most aggressive malignancies and have a poor prognosis due to the frequency of metastasis. Silibinin, a natural extract, has been approved as a potential tumor suppressor in various studies, however, whether or not it also exerts its antitumor capacity in rhabdoid tumors, particularly with regards to tumor migration and invasion, is unclear. The rhabdoid tumor G401 cell line was used in the present in vitro study. An MTT assay was used to assess the cytotoxicity of silibinin on G401 cells, cell migration was studied using a wound healing assay and a Transwell migration assay, and cell invasion was determined using a Transwell invasion assay. The underlying mechanism in silibinin inhibited cell migration and invasion was investigated by western blot analysis and further confirmed using a specific inhibitor. Experimental results demonstrated that high doses of silibinin suppressed cell viability, and that low doses of silibinin inhibited cell migration and invasion without affecting cell proliferation. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway was involved in the silibinin-induced inhibition of metastasis. Silibinin inactivated the PI3K/Akt pathway, and inhibited cell migration and invasion, an effect that was further enhanced when LY294002, a classic PI3K inhibitor, was used concurrently. In general, silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway and may be a potential chemotherapeutic drug to combat rhabdoid tumors in the future.
NASA Astrophysics Data System (ADS)
Williams, Richard Leroy
Wound healing is a complex process leading to the maintenance of skin integrity. Stress is known to increase susceptibility to bacterial infection, alter proinflammatory cytokine expression, and delay wound closure. Recently, antimicrobial peptides have generated interest due to their prokaryotic selectivity, decreased microbial resistance and multifunctional roles in wound healing, including fibroblast stimulation, keratinocyte migration and leukocyte migration. The objective of this dissertation project was to evaluate the effect of a synthetic antimicrobial decapeptide (KSLW) on bacterial clearance inflammation, and wound closure during stress-impaired healing. SKH-1 mice were randomly assigned to either control or restraint-stressed (RST) groups. Punch biopsy wounds (3.5 mm in diameter) were created bilaterally on the dorsal skin. Wounds were injected with 50 microL of empty carriers or KSLW prepared in Pluronic-F68, phospholipid micelles, or saline. Bacterial assays of harvested wounds were conducted on BHI agar. Wound closure was determined by photoplanimetry. Cytokine and growth factor mRNA expression was assessed with real-time RT-PCR. Human neutrophil migration assays and checkerboard analyses were performed using Transweli plates, and counting on hemacytometer. Oxidative burst activity was measured by spectrophotometric analysis of 2,7-dichlorofluorescein oxidation. KSLW-treatment resulted in significant reductions in bacterial load among RST mice, with no difference from control after 24h. The effect was sustained 5 days post-wounding, in RST mice treated with KSLW-F68. Temporal analysis of gene induction revealed reversals of stress-induced altered expression of growth factors, proinflammatory cytokines, and chemokines essential for favorable wound healing, at various time points. KSLW-treatment in RST mice demonstrated faster wound closure throughout the stress period. KSLW, at micromolar concentrations, demonstrated a significant effect on neutrophil migration and oxidative burst. These data suggest KSLW enhances bacterial clearance and promotes proinflammatory activity during early wound healing in stressed mice. Peptide delivery in Pluronic-F68 demonstrated increased substantivity, with faster wound closure, compared to other delivery systems. In addition to its antimicrobial activity, KSLW was shown to enhance neutrophil chemotaxis and sustain cell viability by inhibition of oxidative burst responses. Taken together, the cationic peptide may be implicated in the management of infection in different systems demonstrating impaired healing, including diabetes, age, hormone-imbalance, and bum models.
Chen, Luoping; Zheng, Lisha; Jiang, Jingyi; Gui, Jinpeng; Zhang, Lingyu; Huang, Yan; Chen, Xiaofang; Ji, Jing; Fan, Yubo
2016-09-01
Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Three-dimensional Cell Culture Devices for Cancer Migration and Drug Testing
NASA Astrophysics Data System (ADS)
Ma, Liang
Porous polymeric materials are widely used to mimic the extracellular matrix (ECM) environment for applications such as 3D cell culturing and tissue engineering. A series of comparative experiments on 3D cell cultures both in PLA porous scaffolds and alginate gels were conducted to create an in vitro tumor model. A novel 3D cell culture device based on porous polymeric material was developed to study cancer migration. Significant cell migration was observed through the porous channel within 1--2 weeks induced by 20% fetal bovine serum (FBS). A three-dimensional micro-scale perfusion-based two-chamber (3D-muPTC) tissue model system was developed to test the cytotoxicity of anticancer drugs by emulating liver metabolism effects in vitro. Hepatoma cells and glioblastoma multiforme (GBM) cancer cells were cultured in porous polymeric scaffolds in two separate chambers, representing the liver and tumor, respectively. The cytotoxic effect of temozolomide (TMZ) was first tested using this system. It was found that the GBM cells showed a much higher viability under the TMZ treatment with liver cells in the system, suggesting that the drug metabolism in liver is affecting the efficacy of the drug. The favorable metabolism effect of cytochrome P450 (CYP) was tested using a prodrug ifosfamide (IFO). Without the liver cells, IFO showed only slight toxicity to GBM cells. Moreover, it was shown that different expression levels of CYP 3A4, a major drug metabolizing enzyme, in liver cells caused significantly different levels of GBM cell viability. Simulation of the flow characteristics in the 3D-muPTC system was conducted using the finite-element analysis approach. The shear stress was predicted in the porous scaffolds under different flow rate conditions. The predicted shear stress effects agreed well with an experimental cell viability study. A low cost organic solvent free approach to fabricating tissue engineering scaffolds was developed by combining the twin-screw extrusion and particulate leaching. High porosity and interconnected porous PLA scaffolds with the pore size 50 to 200μm were fabricated with this immiscible polymer blending method. This combined extrusion and particulate leaching method provides a new technique to fabricate tissue engineering scaffolds that can be used in the 3D-muPTC device.
Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.
Pang, Yonggang; Yang, Jing; Hui, Zhixin; Grottkau, Brian E
2018-04-01
Collective cell migration, in which cells migrate as a group, is fundamental in many biological and pathological processes. There is increasing interest in studying the collective cell migration in high throughput. Cell scratching, insertion blocker, and gel-dissolving techniques are some methodologies used previously. However, these methods have the drawbacks of cell damage, substrate surface alteration, limitation in medium exchange, and solvent interference. The superhydrophobic surface, on which the water contact angle is greater than 150 degrees, has been recently utilized to generate patterned arrays. Independent cell culture areas can be generated on a substrate that functions the same as a conventional multiple well plate. However, so far there has been no report on superhydrophobic patterning for the study of cell migration. In this study, we report on the successful development of a robotically patterned superhydrophobic array for studying collective cell migration in high throughput. The array was developed on a rectangular single-well cell culture plate consisting of hydrophilic flat microwells separated by the superhydrophobic surface. The manufacturing process is robotic and includes patterning discrete protective masks to the substrate using 3D printing, robotic spray coating of silica nanoparticles, robotic mask removal, robotic mini silicone blocker patterning, automatic cell seeding, and liquid handling. Compared with a standard 96-well plate, our system increases the throughput by 2.25-fold and generates a cell-free area in each well non-destructively. Our system also demonstrates higher efficiency than conventional way of liquid handling using microwell plates, and shorter processing time than manual operating in migration assays. The superhydrophobic surface had no negative impact on cell viability. Using our system, we studied the collective migration of human umbilical vein endothelial cells and cancer cells using assays of endpoint quantification, dynamic cell tracking, and migration quantification following varied drug treatments. This system provides a versatile platform to study collective cell migration in high throughput for a broad range of applications.
Wang, Wenqian; Cheng, Yaya; Li, Yansheng; Zhou, Hao; Xu, Li-Ping; Wen, Yongqiang; Zhao, Liang; Zhang, Xueji
2017-04-06
The formation and metastatic colonization of circulating tumor cells (CTCs) are responsible for the vast majority of cancer-related deaths. Over the last decade, drug-delivery systems (DDSs) have rapidly developed with the emergence of nanotechnology; however, most reported tumor-targeting DDSs are able to deliver drugs only to solid tumor cells and not CTCs. Herein, a novel DDS comprising a composite nanofiber film was constructed to inhibit the viability of CTCs. In this system, gold nanoparticles (Au NPs) were functionalized with doxorubicin (DOX) through an acid-responsive cleavable linker to obtain Au-DOX NPs. Then, the Au-DOX NPs were mixed in a solution of an acid-responsive polymer {i.e., poly[2-(dimethylamino)ethyl methacrylate]} to synthesize the nanofiber film through electrospinning technology. After that, the nanofiber film was modified with a specific antibody (i.e., anti-EpCAM) to enrich the concentration of CTCs on the film. Finally, the Au-DOX NPs were released from the nanofiber film, and they consequently inhibited the viability of CTCs by delivering DOX to the enriched CTCs. This composite nanofiber film was able to decrease the viability of CTCs significantly in the suspended and fluid states, and it is expected to limit the migration and proliferation of tumor cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej
2017-01-01
The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.
Simson, Jacob A; Strehin, Iossif A; Allen, Brian W; Elisseeff, Jennifer H
2013-08-01
The weak intrinsic meniscus healing response and technical challenges associated with meniscus repair contribute to a high rate of repair failures and meniscectomies. Given this limited healing response, the development of biologically active adjuncts to meniscal repair may hold the key to improving meniscal repair success rates. This study demonstrates the development of a bone marrow (BM) adhesive that binds, stabilizes, and stimulates fusion at the interface of meniscus tissues. Hydrogels containing several chondroitin sulfate (CS) adhesive levels (30, 50, and 70 mg/mL) and BM levels (30%, 50%, and 70%) were formed to investigate the effects of these components on hydrogel mechanics, bovine meniscal fibrochondrocyte viability, proliferation, matrix production, and migration ability in vitro. The BM content positively and significantly affected fibrochondrocyte viability, proliferation, and migration, while the CS content positively and significantly affected adhesive strength (ranged from 60±17 kPa to 335±88 kPa) and matrix production. Selected material formulations were translated to a subcutaneous model of meniscal fusion using adhered bovine meniscus explants implanted in athymic rats and evaluated over a 3-month time course. Fusion of adhered meniscus occurred in only the material containing the highest BM content. The technology can serve to mechanically stabilize the tissue repair interface and stimulate tissue regeneration across the injury site.
Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking
Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.
2013-01-01
Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825
Tu, Fengxia; Pang, Qiongyi; Chen, Xiang; Huang, Tingting; Liu, Meixia; Zhai, Qiongxiang
2017-01-01
In the present study, we aimed to elucidate whether apigenin contributes to the induction of angiogenesis and the related mechanisms in cell hypoxia-reoxygenation injury. The role of apigenin was examined in human umbilical vein endothelial cell (HUVEC) viability, migration and tube formation in vitro. To investigate the related mechanisms, we used caveolin-1 short interfering RNA. The viability of HUVECs was measured using Cell Counting Kit-8 assays, HUVEC migration was analyzed by crystal violet staining, and a tube formation assay was performed using the branch point method. Expression of caveolin-1, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS) in HUVECs was examined by polymerase chain reaction and western blotting. Our data revealed that apigenin induced angiogenesis in vitro by increasing the tube formation ability of HUVECs, which was counteracted by caveolin-1 silencing. Compared to the NC group, Caveolin-1 and eNOS expression was upregulated by apigenin, whereas compared to the NC group, eNOS expression was increased upon caveolin-1 silencing. The expression of VEGF was increased by treatment with apigenin; however, compared to the NC group, caveolin-1 silencing did not affect VEGF expression, and apigenin did not increase VEGF expression in HUVECs after caveolin-1 silencing. These data suggest that apigenin may be a candidate therapeutic target for stroke recovery by promoting angiogenesis via the caveolin-1 signaling pathway. PMID:29039442
An, Rong; Wang, Yisong; Voeller, Donna; Gower, Arjan; Kim, In-Kyu; Zhang, Yu-Wen; Giaccone, Giuseppe
2016-05-17
Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex. We used LC-MS/MS-based phosphotyrosine-peptide profiling in the EML4-ALK rearranged H3122 and H2228 cells treated with ALK inhibitors, to identify downstream effectors of ALK. We then used Western blot, siRNA experiments, cell proliferation, viability and migration assays to validate our findings. We identified CRKL as a novel downstream effector of ALK signaling. We demonstrated that CRKL tyrosine phosphorylation was repressed by pharmacological inhibition or small interfering RNA (siRNA) knockdown of ALK in the ALK-rearranged cells. More importantly, CRKL knockdown attenuated their cell proliferation, viability, and migration, but it had no effect on ALK phosphorylation and expression in these cells. Furthermore, CRKL tyrosine phosphorylation was inhibited by dasatinib (an inhibitor of ABL and SRC kinases), which in combination with the ALK inhibitor crizotinib displayed a synergistic inhibitory effect in vitro. In conclusion, our study suggests that CRKL is a key downstream effector of ALK, and combined inhibition of ALK and CRKL may represent an effective strategy for treating ALK-rearranged NSCLC patients.
Gomes, Evan G; Connelly, Sarah F; Summy, Justin M
2013-07-01
Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.
Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H
2011-05-26
Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1(-/-)) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1(-/-) mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function.
Shin, Yoo Seob; Cha, Hyun Young; Lee, Bok-Soon; Kang, Sung Un; Hwang, Hye Sook; Kwon, Hak Cheol; Kim, Chul-Ho; Choi, Eun Chang
2016-04-01
The purpose of this study is to determine whether luminacin, a marine microbial extract from the Streptomyces species, has anti-tumor effects on head and neck squamous cell carcinoma (HNSCC) cell lines via autophagic cell death. Inhibition of cell survival and increased cell death was measured using cell viability, colony forming, and apoptosis assays. Migration and invasion abilities of head and cancer cells were evaluated using wound healing, scattering, and invasion assays. Changes in the signal pathway related to autophagic cell death were investigated. Drug toxicity of luminacin was examined in in vitro HaCaT cells and an in vivo zebrafish model. Luminacin showed potent cytotoxicity in HNSCC cells in cell viability, colony forming, and fluorescence-activated cell sorting analysis. In vitro migration and invasion of HNSCC cells were attenuated by luminacin treatment. Combined with Beclin-1 and LC3B, Luminacin induced autophagic cell death in head and neck cancer cells. In addition, in a zebrafish model and human keratinocyte cell line used for toxicity testing, luminacin treatment with a cytotoxic concentration to HNSCC cells did not cause toxicity. Taken together, these results demonstrate that luminacin induces the inhibition of growth and cancer progression via autophagic cell death in HNSCC cell lines, indicating a possible alternative chemotherapeutic approach for treatment of HNSCC.
Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials
Zhao, Nan; Zhu, Donghui
2016-01-01
Biodegradable tailored magnesium (Mg) alloys are some of the most promising scaffolds for cardiovascular stents. During the course of degradation after implantation, all the alloying elements in the scaffold will be released to the surrounding vascular tissues. However, fundamental questions regarding the toxicity of alloying elements towards vascular cells, the maximum amount of each element that could be used in alloy design, or how each of the alloying elements affects vascular cellular activity and gene expression, are still not fully answered. This work systematically addressed these questions by revealing how application of different alloying elements commonly used in Mg stent materials influences several indices of human endothelial cell health, i.e., viability, proliferations, cytoskeletal reorganizations, migration, and the gene expression profile. The overall cell viability and proliferation showed a decreasing trend with increasing concentrations of the ions, and the half maximal effective concentrations (EC50) for each element were determined. When applied at a low concentration of around 10 mM, Mg had no adverse effects but improved cell proliferation and migration instead. Mg ions also altered endothelial gene expression significantly in a dose dependent manner. Most of the changed genes are related to angiogenesis and the cell adhesion signaling pathways. Findings from this work provide useful information on maximum safe doses of these ions for endothelial cells, endothelial responses towards these metal ions, and some guidance for future Mg stent design. PMID:25363018
Maguire, J; Pearton, R
2000-09-01
In this study, we examined sociocultural aspects of the identification, selection and development of elite soccer players as part of wider processes of globalization, particularly worker migration. Patterns of migration were identified among the 704 players who comprised the national squads of the 32 nations contesting the finals of the 1998 World Cup in France. An analysis of the migration patterns within and between the six Confederations into which member nations of FIFA are grouped established the European Federation (UEFA) as soccer's core economy. The study is subsequently focused on Europe and, in particular, upon the import strategies of clubs in the four most popular destination countries - England, Germany, Italy and Spain. It is argued that, in light of European Union deregulation of worker migration between member states and, in particular, the Bosman judgement, European soccer is being reshaped. The identification and selection of elite players are producing migrant patterns that are seen increasingly to impact upon indigenous player development and, potentially, the viability and success of national teams. We argue that, although these developments are contoured in part by global economic factors, economic accounts alone do not provide an adequate understanding of them. A series of interrelated economic, political, cultural and social factors is at work. We conclude with a brief outline of the policy implications of the analysis.
Nitrosoureas inhibit the stathmin-mediated migration and invasion of malignant glioma cells.
Liang, Xing-Jie; Choi, Yong; Sackett, Dan L; Park, John K
2008-07-01
Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule-destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement-related processes. Scratch wound-healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down-regulation of cellular stathmin levels and in the absence and presence of sublethal nitrosourea ([1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]; CCNU) concentrations. We show that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 micromol/L, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain, and that nitrosoureas may have therapeutic benefits in addition to their antiproliferative effects.
NASA Astrophysics Data System (ADS)
Qu, Jing; Zhou, Dandan; Xu, Xiaojing; Zhang, Feng; He, Lihong; Ye, Rong; Zhu, Ziyu; Zuo, Baoqi; Zhang, Huanxiang
2012-11-01
Silk fibroin scaffolds are a naturally derived biocompatible matrix with the potential for reconstructive surgical applications. In this study, tussah silk fibroin (TSF) nanofiber with different diameters (400 nm, 800 nm and 1200 nm) and alignment (random and aligned) were prepared by electrospinning, then the growth and migration of mesenchymal stem cells (MSCs) on these materials were further evaluated. CD90 immunofluorescence staining showed that fiber alignment exhibited a strong influence on the morphology of MSCs, indicating that the alignment of the scaffolds could determine the distribution of cells. Moreover, smaller diameter and aligned TSF scaffolds are more favorable to the growth of MSCs as compared with 800 nm and 1200 nm random TSF scaffolds. In addition, the increased migration speed and efficiency of MSCs induced by three-D TSF were verified, highlighting the guiding roles of TSF to the migrated MSCs. More importantly, 400 nm aligned TSF scaffolds dramatically improved cell migratory speed and further induced the most efficient migration of MSCs as compared with larger diameter TSF scaffolds. In conclusion, the data demonstrate that smaller diameter and aligned electrospun TSF represent valuable scaffolds for supporting and promoting MSCs growth and migration, thus raising the possibility of manipulating TSF scaffolds to enhance homing and therapeutic potential of MSCs in cellular therapy.
Navigator-3, a modulator of cell migration, may act as a suppressor of breast cancer progression
Cohen-Dvashi, Hadas; Ben-Chetrit, Nir; Russell, Roslin; Carvalho, Silvia; Lauriola, Mattia; Nisani, Sophia; Mancini, Maicol; Nataraj, Nishanth; Kedmi, Merav; Roth, Lee; Köstler, Wolfgang; Zeisel, Amit; Yitzhaky, Assif; Zylberg, Jacques; Tarcic, Gabi; Eilam, Raya; Wigelman, Yoav; Will, Rainer; Lavi, Sara; Porat, Ziv; Wiemann, Stefan; Ricardo, Sara; Schmitt, Fernando; Caldas, Carlos; Yarden, Yosef
2015-01-01
Dissemination of primary tumor cells depends on migratory and invasive attributes. Here, we identify Navigator-3 (NAV3), a gene frequently mutated or deleted in human tumors, as a regulator of epithelial migration and invasion. Following induction by growth factors, NAV3 localizes to the plus ends of microtubules and enhances their polarized growth. Accordingly, NAV3 depletion trimmed microtubule growth, prolonged growth factor signaling, prevented apoptosis and enhanced random cell migration. Mathematical modeling suggested that NAV3-depleted cells acquire an advantage in terms of the way they explore their environment. In animal models, silencing NAV3 increased metastasis, whereas ectopic expression of the wild-type form, unlike expression of two, relatively unstable oncogenic mutants from human tumors, inhibited metastasis. Congruently, analyses of > 2,500 breast and lung cancer patients associated low NAV3 with shorter survival. We propose that NAV3 inhibits breast cancer progression by regulating microtubule dynamics, biasing directionally persistent rather than random migration, and inhibiting locomotion of initiated cells. PMID:25678558
Gavidia, Cesar M.; Gonzalez, Armando E.; Barron, Eduardo A.; Ninaquispe, Berenice; Llamosas, Monica; Verastegui, Manuela R.; Robinson, Colin; Gilman, Robert H.
2010-01-01
Background Cystic Echinococosis (CE) is a zoonotic disease caused by larval stage Echinococcus granulosus. We determined the effects of high dose of Oxfendazole (OXF), combination Oxfendazole/Praziquantel (PZQ), and combination Albendazole (ABZ)/Praziquantel against CE in sheep. Methodology/Principal Findings A randomized placebo-controlled trial was carried out on 118 randomly selected ewes. They were randomly assigned to one of the following groups: 1) placebo; 2) OXF 60 mg/Kg of body weight (BW) weekly for four weeks; 3) ABZ 30 mg/Kg BW + PZQ 40 mg/Kg BW weekly for 6 weeks, and 4) OXF 30 mg/Kg BW+ PZQ 40 mg/Kg BW biweekly for 3 administrations (6 weeks). Percent protoscolex (PSC) viability was evaluated using a 0.1% aqueous eosin vital stain for each cyst. “Noninfective” sheep were those that had no viable PSCs; “low-medium infective” were those that had 1% to 60% PSC viability; and “high infective” were those with more than 60% PSC viability. We evaluated 92 of the 118 sheep. ABZ/PZQ led the lowest PSC viability for lung cysts (12.7%), while OXF/PZQ did so for liver cysts (13.5%). The percentage of either “noninfective” or “low-medium infective” sheep was 90%, 93.8% and 88.9% for OXF, ABZ/PZQ and OXF/PZQ group as compared to 50% “noninfective” or “low-medium infective” for placebo. After performing all necropsies, CE prevalence in the flock of sheep was 95.7% (88/92) with a total number of 1094 cysts (12.4 cysts/animal). On average, the two-drug-combination groups resulted pulmonary cysts that were 6 mm smaller and hepatic cysts that were 4.2 mm smaller than placebo (p<0.05). Conclusions/Significance We demonstrate that Oxfendazole at 60 mg, combination Oxfendazole/Praziquantel and combination Albendazole/Praziquantel are successful schemas that can be added to control measures in animals and merits further study for the treatment of animal CE. Further investigations on different schedules of monotherapy or combined chemotherapy are needed, as well as studies to evaluate the safety and efficacy of Oxfendazole in humans. PMID:20186332
Gavidia, Cesar M; Gonzalez, Armando E; Barron, Eduardo A; Ninaquispe, Berenice; Llamosas, Monica; Verastegui, Manuela R; Robinson, Colin; Gilman, Robert H
2010-02-23
Cystic Echinococosis (CE) is a zoonotic disease caused by larval stage Echinococcus granulosus. We determined the effects of high dose of Oxfendazole (OXF), combination Oxfendazole/Praziquantel (PZQ), and combination Albendazole (ABZ)/Praziquantel against CE in sheep. A randomized placebo-controlled trial was carried out on 118 randomly selected ewes. They were randomly assigned to one of the following groups: 1) placebo; 2) OXF 60 mg/Kg of body weight (BW) weekly for four weeks; 3) ABZ 30 mg/Kg BW + PZQ 40 mg/Kg BW weekly for 6 weeks, and 4) OXF 30 mg/Kg BW+ PZQ 40 mg/Kg BW biweekly for 3 administrations (6 weeks). Percent protoscolex (PSC) viability was evaluated using a 0.1% aqueous eosin vital stain for each cyst. "Noninfective" sheep were those that had no viable PSCs; "low-medium infective" were those that had 1% to 60% PSC viability; and "high infective" were those with more than 60% PSC viability. We evaluated 92 of the 118 sheep. ABZ/PZQ led the lowest PSC viability for lung cysts (12.7%), while OXF/PZQ did so for liver cysts (13.5%). The percentage of either "noninfective" or "low-medium infective" sheep was 90%, 93.8% and 88.9% for OXF, ABZ/PZQ and OXF/PZQ group as compared to 50% "noninfective" or "low-medium infective" for placebo. After performing all necropsies, CE prevalence in the flock of sheep was 95.7% (88/92) with a total number of 1094 cysts (12.4 cysts/animal). On average, the two-drug-combination groups resulted pulmonary cysts that were 6 mm smaller and hepatic cysts that were 4.2 mm smaller than placebo (p<0.05). We demonstrate that Oxfendazole at 60 mg, combination Oxfendazole/Praziquantel and combination Albendazole/Praziquantel are successful schemas that can be added to control measures in animals and merits further study for the treatment of animal CE. Further investigations on different schedules of monotherapy or combined chemotherapy are needed, as well as studies to evaluate the safety and efficacy of Oxfendazole in humans.
Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells.
Qu, Lijun; Li, Sumei; Zhuo, Yumin; Chen, Jianfan; Qin, Xiaoping; Guo, Guoqing
2017-12-01
Ganoderma lucidum , within the Polyporaceae family of Basidiomycota, is a popular traditional remedy medicine used in Asia to promote health and longevity. Compounds extracted from G. lucidum have revealed anticancer, antioxidant and liver protective effects. G. lucidum has been associated with prostate cancer cells. G. lucidum extracts contain numerous bioactive components; however, the exact functional monomer is unknown and the role of triterpenes from G. lucidum (GLT) in prostate cancer remain obscure. The present study investigated the effects of GLT on cell viability, migration, invasion and apoptosis in DU-145 human prostate cancer cells. The results demonstrated that a high dose (2 mg/ml) of GLT inhibits cell viability in a dose- and time-dependent manner by the regulation of matrix metalloproteases. Furthermore, GLT induced apoptosis of DU-145 cells. In general, GLT exerts its effect on cancer cells via numerous mechanisms and may have potential therapeutic use for the prevention and treatment of cancer.
Sánchez-Martínez, Ruth; Álvarez-Fernández, Mónica; Vargas, Teodoro; Molina, Susana; García, Belén; Herranz, Jesús; Moreno-Rubio, Juan; Reglero, Guillermo; Pérez-Moreno, Mirna; Feliu, Jaime; Malumbres, Marcos; de Molina, Ana Ramírez
2015-01-01
The alterations in carbohydrate metabolism that fuel tumor growth have been extensively studied. However, other metabolic pathways involved in malignant progression, demand further understanding. Here we describe a metabolic acyl-CoA synthetase/stearoyl-CoA desaturase ACSL/SCD network causing an epithelial-mesenchymal transition (EMT) program that promotes migration and invasion of colon cancer cells. The mesenchymal phenotype produced upon overexpression of these enzymes is reverted through reactivation of AMPK signaling. Furthermore, this network expression correlates with poorer clinical outcome of stage-II colon cancer patients. Finally, combined treatment with chemical inhibitors of ACSL/SCD selectively decreases cancer cell viability without reducing normal cells viability. Thus, ACSL/SCD network stimulates colon cancer progression through conferring increased energetic capacity and invasive and migratory properties to cancer cells, and might represent a new therapeutic opportunity for colon cancer treatment. PMID:26451612
Voytik-Harbin, Sherry L.; Sarkaria, Jann N.; Pollok, Karen E.; Fishel, Melissa L.; Rickus, Jenna L.
2018-01-01
Despite the increasingly recognized importance of the tumor microenvironment (TME) as a regulator of tumor progression, only few in vitro models have been developed to systematically study the effects of TME on tumor behavior in a controlled manner. Here we developed a three-dimensional (3D) in vitro model that recapitulates the physical and compositional characteristics of Glioblastoma (GBM) extracellular matrix (ECM) and incorporates brain stromal cells such as astrocytes and endothelial cell precursors. The model was used to evaluate the effect of TME components on migration and survival of various patient-derived GBM cell lines (GBM10, GBM43 and GBAM1) in the context of STAT3 inhibition. Migration analysis of GBM within the 3D in vitro model demonstrated that the presence of astrocytes significantly increases the migration of GBM, while presence of endothelial precursors has varied effects on the migration of different GBM cell lines. Given the role of the tumor microenvironment as a regulator of STAT3 activity, we tested the effect of the STAT3 inhibitor SH-4-54 on GBM migration and survival. SH-4-54 inhibited STAT3 activity and reduced 3D migration and survival of GBM43 but had no effect on GBM10. SH-4-54 treatment drastically reduced the viability of the stem-like line GBAM1 in liquid culture, but its effect lessened in presence of a 3D ECM and stromal cells. Our results highlight the interplay between the ECM and stromal cells in the microenvironment with the cancer cells and indicate that the impact of these relationships may differ for GBM cells of varying genetic and clinical histories. PMID:29566069
Tang, Qinggong; Piard, Charlotte; Lin, Jonathan; Nan, Kai; Guo, Ting; Caccamese, John; Fisher, John; Chen, Yu
2018-01-01
Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions, and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2 ∼ 3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration, and bone mineralization within bone tissue engineering scaffolds in situ. © 2017 Wiley Periodicals, Inc.
The Evolution of Latent Genes in Subdivided Populations
Moody, M. E.; Basten, C. J.
1990-01-01
We define latent genes as phenotypically silent DNA sequences which may be reactivated by various genetic mechanisms. Of interest is how they and their functional counterparts can be maintained at high frequency in the face of mutation and selection pressure. We propose a two-deme, three-allele model incorporating viability selection, mutation and migration in haploid populations. It is shown that polymorphism for the three alleles can be easily maintained for a wide range of biologically meaningful parameter values. Computer simulations were employed to gain qualitative insight into the global dynamics of the system. It was found that the dynamics of the latent allele is closely correlated with that of the functional allele. In addition, bias in the migration rates can strengthen or weaken selective conditions for preservation of the functional and latent alleles. PMID:2307354
Gugerell, Alfred; Neumann, Anne; Kober, Johanna; Tammaro, Loredana; Hoch, Eva; Schnabelrauch, Matthias; Kamolz, Lars; Kasper, Cornelia; Keck, Maike
2015-02-01
Generation of adipose tissue for burn patients that suffer from an irreversible loss of the hypodermis is still one of the most complex challenges in tissue engineering. Electrospun materials with their micro- and nanostructures are already well established for their use as extracellular matrix substitutes. Gelatin is widely used in tissue engineering to gain thickness and volume. Under conventional static cultivation methods the supply of nutrients and transport of toxic metabolites is controlled by diffusion and therefore highly dependent on size and porosity of the biomaterial. A widely used method in order to overcome these limitations is the medium perfusion of 3D biomaterial-cell-constructs. In this study we combined perfusion bioreactor cultivation techniques with electrospun poly(l-lactide-co-glycolide) (P(LLG)) and gelatin hydrogels together with adipose-derived stem cells (ASCs) for a new approach in soft tissue engineering. ASCs were seeded on P(LLG) scaffolds and in gelatin hydrogels and cultivated for 24 hours under static conditions. Thereafter, biomaterials were cultivated under static conditions or in a bioreactor system for three, nine or twelve days with a medium flow of 0.3ml/min. Viability, morphology and differentiation of cells was monitored. ASCs seeded on P(LLG) scaffolds had a physiological morphology and good viability and were able to migrate from one electrospun scaffold to another under flow conditions but not migrate through the mesh. Differentiated ASCs showed lipid droplet formations after 21 days. Cells in hydrogels were viable but showed rounded morphology. Under flow conditions, morphology of cells was more diffuse. ASCs could be cultivated on P(LLG) scaffolds and in gelatin hydrogels under flow conditions and showed good cell viability as well as the potential to differentiate. These results should be a next step to a physiological three-dimensional construct for soft tissue engineering and regeneration. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Dinda, Manikarna; Dasgupta, Uma; Singh, Namrata; Bhattacharyya, Debasish; Karmakar, Parimal
2015-04-01
Calendula officinalis, a member of the Asteraceae family, is a flowering plant and has been used for its antibacterial, antifungal, antiviral, antiinflammatory, anticancer and wound healing activity. The mode of action of C. officinalis tincture on wound healing is poorly understood. Here, we investigated the role of C. officinalis tincture (CDOT) on cell viability and wound closure. C. officinalis tincture stimulated both proliferation and migration of fibroblasts in a statistically significant manner in a PI3K-dependent pathway. The increase in phosphorylation of FAK (Tyr 397) and Akt (Ser 473) was detected after treatment of CDOT. Inhibition of the PI3K pathway by wortmannin and LY294002 decreased both cell proliferation and cell migration. HPLC-ESI MS revealed the presence of flavonol glycosides as the major compounds of CDOT. Altogether, our results showed that CDOT potentiated wound healing by stimulating proliferation and migration of fibroblast in a PI3K-dependent pathway, and the identified compounds are likely to be responsible for wound healing activity. Copyright © 2015 John Wiley & Sons, Ltd.
Both host and parasite MIF molecules bind to chicken macrophages via CD74 surface receptor
USDA-ARS?s Scientific Manuscript database
Macrophage migration inhibitory factor (MIF) is recognized as a soluble factor that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. Our group has identified both chicken and Eimeria MIFs, and characterized their function in...
Markhoff, Jana; Wieding, Jan; Weissmann, Volker; Pasold, Juliane; Jonitz-Heincke, Anika; Bader, Rainer
2015-01-01
In the treatment of osseous defects micro-structured three-dimensional materials for bone replacement serve as leading structure for cell migration, proliferation and bone formation. The scaffold design and culture conditions are crucial for the limited diffusion distance of nutrients and oxygen. In static culture, decreased cell activity and irregular distribution occur within the scaffold. Dynamic conditions entail physical stimulation and constant medium perfusion imitating physiological nutrient supply and metabolite disposal. Therefore, we investigated the influence of different scaffold configurations and cultivation methods on human osteoblasts. Cells were seeded on three-dimensional porous Ti-6Al-4V scaffolds manufactured with selective laser melting (SLM) or electron beam melting (EBM) varying in porosity, pore size and basic structure (cubic, diagonal, pyramidal) and cultured under static and dynamic conditions. Cell viability, migration and matrix production were examined via mitochondrial activity assay, fluorescence staining and ELISA. All scaffolds showed an increasing cell activity and matrix production under static conditions over time. Expectations about the dynamic culture were only partially fulfilled, since it enabled proliferation alike the static one and enhanced cell migration. Overall, the SLM manufactured scaffold with the highest porosity, small pore size and pyramidal basic structure proved to be the most suitable structure for cell proliferation and migration. PMID:28793519
Markhoff, Jana; Wieding, Jan; Weissmann, Volker; Pasold, Juliane; Jonitz-Heincke, Anika; Bader, Rainer
2015-08-24
In the treatment of osseous defects micro-structured three-dimensional materials for bone replacement serve as leading structure for cell migration, proliferation and bone formation. The scaffold design and culture conditions are crucial for the limited diffusion distance of nutrients and oxygen. In static culture, decreased cell activity and irregular distribution occur within the scaffold. Dynamic conditions entail physical stimulation and constant medium perfusion imitating physiological nutrient supply and metabolite disposal. Therefore, we investigated the influence of different scaffold configurations and cultivation methods on human osteoblasts. Cells were seeded on three-dimensional porous Ti-6Al-4V scaffolds manufactured with selective laser melting (SLM) or electron beam melting (EBM) varying in porosity, pore size and basic structure (cubic, diagonal, pyramidal) and cultured under static and dynamic conditions. Cell viability, migration and matrix production were examined via mitochondrial activity assay, fluorescence staining and ELISA. All scaffolds showed an increasing cell activity and matrix production under static conditions over time. Expectations about the dynamic culture were only partially fulfilled, since it enabled proliferation alike the static one and enhanced cell migration. Overall, the SLM manufactured scaffold with the highest porosity, small pore size and pyramidal basic structure proved to be the most suitable structure for cell proliferation and migration.
Maisanaba, Sara; Pichardo, Silvia; Jordá-Beneyto, María; Aucejo, Susana; Cameán, Ana M; Jos, Ángeles
2014-04-01
Clays are used in the food packaging industry to obtain nanocomposites. The use of these new materials is a concern, because they could reach consumers by oral exposure through possible migration, and potential toxic effects could be derived. In the present study, several in vitro basal cytotoxicity and mutagenicity tests on migration extracts obtained from a nanocomposite material with poly (lactic) acid (PLA) and two modified clays, Clay1 and Clay2, are shown. Migration extracts in distilled water showed values of 0.1 ± 0.2mg/dm(2) in all samples. Also, the content of characteristic metals of the clays structure (Al, Ca, Mg, Fe, Si) was studied and no statistical differences were observed. For the cytotoxicity assays, the human intestinal Caco-2 and human liver HepG2 cells were selected. Cells were exposed to concentrations between 2.5% and 100% extracts determining three different biomarkers of cellular viability. No significant differences were observed in the cytotoxicity assays. Finally, mutagenicity was evaluated by the Ames test and resulted in the absence of mutagenic response at all the concentrations assayed. Taking in account all above mentioned, these new materials show a good profile for their use in food packaging although further research is still needed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Azzarà, A; Chimenti, M
2004-01-01
One of the main techniques used to explore neutrophil motility, employs micropore filters in chemotactic chambers. Many new models have been proposed, in order to perform multiple microassays in a rapid, inexpensive and reproducible way. In this work, LEGO bricks have been used as chemotactic chambers in the evaluation of neutrophil random motility and chemotaxis and compared with conventional Boyden chambers in a "time-response" experiment. Neutrophil motility throughout the filters was evaluated by means of an image-processing workstation, in which a dedicated algorithm recognizes and counts the cells in several fields and focal planes throughout the whole filter; correlates counts and depth values; performs a statistical analysis of data; calculates the true value of neutrophil migration; determines the distribution of cells; and displays the migration pattern. By this method, we found that the distances travelled by the cells in conventional chambers and in LEGO bricks were perfectly identical, both in random migration and under chemotactic conditions. Moreover, no interference with the physiological behaviour of neutrophils was detectable. In fact, the kinetics of migration was identical both in random migration (characterized by a gaussian pattern) and in chemotaxis (characterized by a typical stimulation peak, previously identified by our workstation). In conclusion, LEGO bricks are extremely precise devices. They are simple to use and allow the use of small amounts of chemoattractant solution and cell suspension, supplying by itself a triplicate test. LEGO bricks are inexpensive, fast and suitable for current diagnostic activity or for research investigations in every laboratory.
Valverde, Thalita M; Castro, Elisandra G; Cardoso, Maíssa H S; Martins-Júnior, Paulo A; Souza, Lívia M O; Silva, Patrícia P; Ladeira, Luiz O; Kitten, Gregory T
2016-10-01
This study characterized a three-dimensional (3D) biocomposite scaffolds produced using type I collagen, mineral trioxide aggregate (MTA) and multi-walled carbon nanotubes (MWCNT) to be used in bone tissue regeneration. The scaffolds were analyzed via scanning (SEM) and transmission (TEM) electron microscopy, as well as the viability and migration of osteoblasts and mineralization of the scaffolds. SEM and TEM analyses showed that MTA and MWCNT were distributed as both large agglomerates entrapped within the collagen network and as smaller accumulations or individual molecules dispersed throughout the scaffold. Ultrastructural analysis revealed that osteoblastic MC3T3-E1 cells grown in the biocomposite endocytosed MWCNT, which were localized in the cytoplasm and in vesicles. Analysis of cells grown in the 3D scaffolds demonstrated that >95% of the cells remained viable in all tested combinations and concentrations of the biocomposite. MC3T3-E1 osteoblasts migrated into scaffolds formed with concentrations of type I collagen between 1.75 and 3.0mg/mL. Cells displayed increased migration into scaffolds formed with collagen and a range of low to high concentrations of MTA. In contrast, the presence of MWCNT in the biocomposite had a slight negative effect on migration. Collagen gels containing specific concentrations of MTA, or MWCNT, or combinations of MTA/MWCNT, caused an increase in mineralization of scaffolds. Scaffolds composed of defined concentrations of type I collagen, MTA and MWCNT are biocompatible, promote migration and mineralization of osteoblasts, and hence may be useful as bone tissue mimetics. Copyright © 2016 Elsevier Inc. All rights reserved.
Lee, Seung-Hee; Lee, Jee Hyun; Kim, Eun-Ju; Kim, Won-Jung; Suk, Kyoungho; Kim, Joo-Hwan; Song, Gyu Yong; Lee, Won-Ha
2012-07-01
Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.
Modeling of thin-film GaAs growth
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.
1981-01-01
A solid Monte Carlo model is constructed for the simulation of crystal growth. The model assumes thermally accommodated adatoms impinge upon the surface during a delta time interval. The surface adatoms are assigned a random energy from a Boltzmann distribution, and this energy determines whether the adatoms evaporate, migrate, or remain stationary during the delta time interval. For each addition or migration of an adatom, potential wells are adjusted to reflect the absorption, migration, or desorption potential changes.
Stopover habitats of spring migrating surf scoters in southeast Alaska
Lok, E.K.; Esler, Daniel N.; Takekawa, John Y.; De La Cruz, S.W.; Sean, Boyd W.; Nysewander, D.R.; Evenson, J.R.; Ward, D.H.
2011-01-01
Habitat conditions and nutrient reserve levels during spring migration have been suggested as important factors affecting population declines in waterfowl, emphasizing the need to identify key sites used during spring and understand habitat features and resource availability at stopover sites. We used satellite telemetry to identify stopover sites used by surf scoters migrating through southeast Alaska during spring. We then contrasted habitat features of these sites to those of random sites to determine habitat attributes corresponding to use by migrating scoters. We identified 14 stopover sites based on use by satellite tagged surf scoters from several wintering sites. We identified Lynn Canal as a particularly important stopover site for surf scoters originating throughout the Pacific winter range; approximately half of tagged coastally migrating surf scoters used this site, many for extended periods. Stopover sites were farther from the mainland coast and closer to herring spawn sites than random sites, whereas physical shoreline habitat attributes were generally poor predictors of site use. The geography and resource availability within southeast Alaska provides unique and potentially critical stopover habitat for spring migrating surf scoters. Our work identifies specific sites and habitat resources that deserve conservation and management consideration. Aggregations of birds are vulnerable to human activity impacts such as contaminant spills and resource management decisions. This information is of value to agencies and organizations responsible for emergency response planning, herring fisheries management, and bird and ecosystem conservation.
Weidinger, G; Wolke, U; Köprunner, M; Klinger, M; Raz, E
1999-12-01
In many organisms, the primordial germ cells have to migrate from the position where they are specified towards the developing gonad where they generate gametes. Extensive studies of the migration of primordial germ cells in Drosophila, mouse, chick and Xenopus have identified somatic tissues important for this process and demonstrated a role for specific molecules in directing the cells towards their target. In zebrafish, a unique situation is found in that the primordial germ cells, as marked by expression of vasa mRNA, are specified in random positions relative to the future embryonic axis. Hence, the migrating cells have to navigate towards their destination from various starting positions that differ among individual embryos. Here, we present a detailed description of the migration of the primordial germ cells during the first 24 hours of wild-type zebrafish embryonic development. We define six distinct steps of migration bringing the primordial germ cells from their random positions before gastrulation to form two cell clusters on either side of the midline by the end of the first day of development. To obtain information on the origin of the positional cues provided to the germ cells by somatic tissues during their migration, we analyzed the migration pattern in mutants, including spadetail, swirl, chordino, floating head, cloche, knypek and no isthmus. In mutants with defects in axial structures, paraxial mesoderm or dorsoventral patterning, we find that certain steps of the migration process are specifically affected. We show that the paraxial mesoderm is important for providing proper anteroposterior information to the migrating primordial germ cells and that these cells can respond to changes in the global dorsoventral coordinates. In certain mutants, we observe accumulation of ectopic cells in different regions of the embryo. These ectopic cells can retain both morphological and molecular characteristics of primordial germ cells, suggesting that, in zebrafish at the early stages tested, the vasa-expressing cells are committed to the germ cell lineage.
Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells
Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.
2008-01-01
Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement related processes. Scratch-wound healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down regulation of cellular stathmin levels and in the absence and presence of sub-lethal nitrosourea (CCNU; [1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]) concentrations. We demonstrate that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 μM, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain and that nitrosoureas may have therapeutic benefits in addition to their anti-proliferative effects. PMID:18593927
Winslow, C.-E. A.; Falk, I. S.; Caulfield, M. F.
1923-01-01
1. We have confirmed the results of earlier workers particularly of Northrop and De Kruif in regard to the following points: (a) the general tendency of the bacterial cell when suspended in distilled water near the zone of neutrality to move toward the anode of an electrical field; (b) the fact that the migration of bacterial cells in the electrical field is a function of the reaction of the menstruum. The curve obtained by plotting velocity of migration against pH passes through an isoelectric point at about pH 3.0, at greater acidity the direction of migration becomes reversed (toward the cathode) and in still more acid solution (pH = 1.0) again disappears; while at reactions less acid than pH 3.0 the velocity is toward the anode and increases with increasing alkalinity; (c) the fact that neutral salts depress the velocity of migration, calcium salts being much more effective than sodium salts of the same concentration. 2. We further find: (a) that on the extreme alkaline side of the curve of velocity of migration plotted against pH a maximum value is reached at about pH 10 with a fall at about pH 12.0 which in many experiments reaches an isopotential point; (b) that the depressing effect of salts is accompanied by a general shifting of the curve of migration velocity so that a maximum velocity (of course absolutely less than that manifest in the absence of salts) appears at about pH 7.0 and an abolition of velocity at pH 9.0 to 10.0; (c) that an apparent "antagonistic" effect is indicated between CaCl2 and NaCl, the presence of a certain concentration of the latter salt diminishing to a slight but definite degree the depressing effect produced by the former; (d) that heat-killed bacterial cells exhibit essentially the same curve of migration velocity as that of the living cells; (e) that bacterial spores exhibit the same general curve of migration velocity as vegetative cells, although the actual velocity is apparently slightly less. 3. All of the observed phenomena appear to be in accord with the assumption that marked differences in dielectric constants did not appear under the conditions studied and if this assumption be granted the results are in accord with the fundamental postulates of the Donnan equilibrium as applied to the explanation of the origin of potential difference between a bacterial cell and its enveloping menstruum. It is possible but not at all certain that the phenomenon of antagonism may require the introduction of additional assumptions for its explanation. Professor Donnan and other investigators have clearly understood the importance of applying the concept of membrane equilibria in the elucidation of physiological phenomena. Our findings add to the numerous vindications favoring this view and emphasize the importance of further study of membrane equilibria in bacterial suspensions. We have pointed out that certain potential differences between bacteria and their menstrua are apparently associated with some of the phenomena of viability. Viability and potential differences may, however, under certain conditions vary quite independently as evidenced by the fact that normal rates of migration are demonstrable after the cells have been killed by heat. Thus, considerable caution must be exercised in relating the existence of these charges to the metabolism of the cell. PMID:19872061
Aref, S
1982-01-01
A study of the migration of fourth stage larvae of the parasite Strongylus vulgaris in the intestinal arteries of the horse is presented. It is established, that the larvae migrate along the arteries in almost straight lines. It is suggested that this is primarily due to their ability to sense the curvature of the vessel wall, and not, as might have been expected, because of an ability to sense the direction of blood flow. A larva will sometimes alter its direction of motion when encountering a small off-branching artery. This behaviour suggests, that the migration of S. vulgaris larvae can be modeled as a one-dimensional discrete random walk on a long time scale. This model is simpler than any deterministic model and, in particular, does not require the existence of a predilection site. The available data is not, however, sufficient for a convincing, quantitative test of the model. The proposed reluctance of the larvae to bend into off-branching arteries is used to explain the crowding of larvae in the cranial mesenteric artery.
Hostanska, Katarina; Rostock, Matthias; Melzer, Joerg; Baumgartner, Stephan; Saller, Reinhard
2012-07-18
Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712-2), its succussed hydroalcoholic solvent (0712-1) and unsuccussed solvent (0712-3) on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined "wound field". All assays were performed in three independent controlled experiments. None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712-2) exerted a stimulating effect on fibroblast migration (31.9%) vs 14.7% with succussed solvent (0712-1) at 1:100 dilutions (p < 0.001). Unsuccussed solvent (0712-3) had no influence on cell migration (6.3%; p > 0.05). Preparation (0712-2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p < 0.001) from succussed solvent (0712-1), which caused 22.1% wound closure. Results of this study showed that the low potency homeopathic remedy (0712-2) exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis.
Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth.
Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; El-Shishtawy, Kareem A; Li, Yi; Reis, Leonardo O; Zheng, Yichun; Miyamoto, Hiroshi
2016-10-01
Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. Our current data support recent observations indicating the involvement of the AR pathway in bladder cancer growth and further suggest that AR antagonists, including enzalutamide, are of therapeutic benefit in AR-positive bladder cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Xu, Yawen; Zheng, Shaobo; Chen, Binshen; Wen, Yong; Zhu, Shanwen
2016-01-01
Prostate cancer (PCa) is a leading cause of cancer-related death in men. Sodium phenylbutyrate (SPB) has shown its potential as an anticancer therapy in numerous cancer types. In the present study, we attempted to assess the effect of SPB against PCa and whether this treatment was associated with the regulation of survivin. Two human PCa cancer cell lines, DU145 and PC3, were used in the present study. Cell Counting Kit-8 (CCK-8) assay was conducted to measure the proliferation of PCa cells incubated with SPB. The effect of SPB on the cell apoptosis, cell colony formation ability, and cell morphological change was also assessed. Transwell experiment and Western blotting assay were performed to determine the effect of SPB on the migration and invasion ability of both cell types. Moreover, the expression pattern of survivin and MAPK members in both cell types after the treatment of SPB was also detected. Additionally, an in vivo tumor formation assay was performed to evaluate the treatment potential of SPB against PCa. We found that the viability of PCa cells was significantly inhibited by SPB treatment. As illustrated by flow cytometry, for DU145 cell line the average apoptotic rate of SPB-treated cells was significantly lower than that of the control group (P<0.05); similar results were also seen for PC3 (P<0.05). SPB administration also attenuated the colony formation and migration abilities in both cell lines. The expression level of survivin in SPB-treated cells was significantly downregulated, while the phosphorylation of p-38 and ERK was enhanced. Furthermore, in vivo tumor formation of both cell lines was suppressed by SPB as well. The above results confirmed the potential of SPB as an effective therapeutic agent for the prevention or treatment of PCa. This amelioration might be due to the blockade of the survivin pathway.
Kruse, Carla R; Singh, Mansher; Targosinski, Stefan; Sinha, Indranil; Sørensen, Jens A; Eriksson, Elof; Nuutila, Kristo
2017-04-01
Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents both wound closure and reepithelialization while a prolonged alkaline environment did not have any negative impact on wound closure or reepithelialization. Separately, both in vitro and in vivo studies showed that prolonged acidic conditions significantly increased the expression of IL-1 α in fibroblast cultures and in wound fluid, whereas prolonged alkaline conditions did not result in elevated amounts of IL-1 α. © 2017 by the Wound Healing Society.
Ranjbarnejad, Tayebeh; Saidijam, Massoud; Moradkhani, Shirin; Najafi, Rezvan
2017-07-01
Colorectal cancer (CRC) is the most common cancer. A proper method to reduce mortality of CRC is chemoprevention to prevent initiation and promotion of intestinal tumorgenesis. One of the promising and developing chemopreventive agents is natural compounds found in plants. Frankincense, the resin extract from the Boswellia specious, has been used in traditional and modern medicine for treating various diseases with very minimal side effects. In the current study, we investigated the anti-cancer activity of methanolic extract of Boswellia serrata (B. serrata) on HT-29 human colon cancer cells. HT-29 cells were treated with different concentrations of B. serrata and cell viability was assessed by MTT assay. mRNA expression of microsomal prostaglandin E synthase-1 (mPGES-1), vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4 (CXCR4), matrix metalloproteinase-2 (MMP-2), MMP-9 and hypoxia-inducible factor-1 (HIF-1) were examined by quantitative real-time PCR. Apoptosis was evaluated by the proportion of sub-G1 cells. Prostaglandin E2 (PGE2) level and caspase 3 activity were determined by ELISA assay. Tube formation potential and HT-29 cells migration were assessed using three-dimensional vessel formation assay and scratch test. B. serrata extract considerably decreased the expression of mPGES-1, VEGF, CXCR4, MMP-2, MMP-9 and HIF-1. The caspase 3 activity and percent of cells in sub-G1 phase were increased by B. serrata extract. Cell viability, PGE2 generation, in vitro tube formation and cell migration were decreased significantly in B. serrata-treated HT-29 compared to the control group. Our findings suggest that B. serrata extract inhibits proliferation, angiogenesis and migration and induces apoptosis in HT-29 cells by inhibiting of mPGES-1 and decreasing the PGE2 level and its downstream targets. Copyright © 2017 Elsevier Inc. All rights reserved.
Finasteride Inhibits Human Prostate Cancer Cell Invasion through MMP2 and MMP9 Downregulation
Moroz, Andrei; Delella, Flávia K.; Almeida, Rodrigo; Lacorte, Lívia Maria; Fávaro, Wágner José; Deffune, Elenice; Felisbino, Sérgio L.
2013-01-01
Introduction The use of the 5-alpha reductase inhibitors (5-ARIs) finasteride and dutasteride for prostate cancer prevention is still under debate. The FDA recently concluded that the increased prevalence of high-grade tumors among 5-ARI-treated patients must not be neglected, and they decided to disallow the use of 5-ARIs for prostate cancer prevention. This study was conducted to verify the effects of finasteride on prostate cell migration and invasion and the related enzymes/proteins in normal human and tumoral prostatic cell lines. Materials and Methods RWPE-1, LNCaP, PC3 and DU145 cells were cultivated to 60% confluence and exposed for different periods to either 10 µM or 50 µM finasteride that was diluted in culture medium. The conditioned media were collected and concentrated, and MMP2 and MMP9 activities and TIMP-1 and TIMP-2 protein expression were determined. Cell viability, migration and invasion were analyzed, and the remaining cell extracts were submitted to androgen receptor (AR) detection by western blotting techniques. Experiments were carried out in triplicate. Results Cell viability was not significantly affected by finasteride exposure. Finasteride significantly downregulated MMP2 and MMP9 activities in RWPE-1 and PC3 cells and MMP2 in DU145 cells. TIMP-2 expression in RWPE-1 cells was upregulated after exposure. The cell invasion of all four tested cell lines was inhibited by exposure to 50 µM of finasteride, and migration inhibition only occurred for RWPE-1 and LNCaP cells. AR was expressed by LNCaP, RWPE-1 and PC3 cells. Conclusions Although the debate on the higher incidence of high-grade prostate cancer among 5-ARI-treated patients remains, our findings indicate that finasteride may attenuate tumor aggressiveness and invasion, which could vary depending on the androgen responsiveness of a patient’s prostate cells. PMID:24386413
Rezabakhsh, Aysa; Ahmadi, Mahdi; Khaksar, Majid; Montaseri, Azadeh; Malekinejad, Hassan; Rahbarghazi, Reza; Garjani, Alireza
2017-09-01
Chronic hyperglycemia is a potent risk factor of abnormal angiogenesis with various tissue diseases. Autophagy, as an alternative cell response, is mostly generated by a vast array of insults. Applying autophagic response contributes to normal cell retrieval circumstance during various insults. We aimed to show whether stimulation/inhibition of autophagy could reduce or exacerbate oxidative status and angiogenic potential in endothelial cells after exposure to 30mM glucose. HUVECs were incubated with the combined regime of 100nM Rapamycin and 30mM glucose over a period of 72h. The effect of rapamycin on cell viability, malondialdehyde levels, and nitric oxide were monitored by convenient assays. Intracellular ROS level was measured by flow cytometric analysis and DCFDA. HUVECs migration and angiogenic properties were assessed using scratch test and tubulogenesis assay. The expression of autophagic modulators LC3, Becline-1 and P62 was measured by using western blotting. Data showed 30mM glucose reduced cell viability, migration and in vitro tubulogenesis and level of ROS and nitric oxide were found to increased (p<0.05). Rapamycin had potential to increase cell survival and significantly decreased the total levels of oxidative stress markers after cell exposure to 30mM glucose (p<0.05). Rapamycin potentially improved the detrimental effect of 30mM glucose on cell migration and tubulogenesis capacity (p<0.05). Effective autophagic response was stimulated by rapamycin by increasing beclin-1, and the LC3-II/I ratio and reducing intracellular P62 level (p<0.05), resulting in the improvement of cell health and function. Together, rapamycin protected HUVECs from damages caused by high glucose concentration. This effect was possibly mediated by autophagy-dependent pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhou, Tao; Wang, Chen-Han; Yan, Hua; Zhang, Rui; Zhao, Jin-Bing; Qian, Chun-Fa; Xiao, Hong; Liu, Hong-Yi
2016-05-01
The Ras-related C3 botulinum toxin substrate 1 (Rac1)-WASP-family verprolin-homologous protein-2 (WAVE2)-actin-related protein 2/3 (Arp2/3) signaling pathway has been identified to be involved in cell migration and invasion in various types of cancer cell. Cofilin‑1 (CFL‑1), which is regulated by the Rac1‑WAVE2‑Arp2/3 signaling pathway, may promote radioresistance in glioma. Therefore, the present study aimed to investigate the potential role of the Rac1‑WAVE2‑Arp2/3 signaling pathway in radioresistance in U251 human glioma cells and elucidate its affect on CFL‑1 expression. Western blot analysis was performed to evaluate the protein expression of CFL‑1. In the present study, Rac1 was inhibited by NSC 23766, WAVE2 was inhibited by transfection with short hairpin (sh)RNA‑WAVE2 using Lipofectamine™ 2000 and Arp2/3 was inhibited by CK‑666. Cell viability was measured using the 3‑(4,5‑dimethylthiazol‑2‑yl)-2,5‑diphenyltetrazolium bromide assay, the cell migration ability was examined by a wound‑healing assay, and the cell invasion ability was assessed using a Transwell culture chamber system. The results showed that inhibition of the Rac1‑WAVE2‑Arp2/3 signaling pathway using NSC 23766, shRNA‑WAVE2 or CK‑666 reduced the cell viability, migration and invasion abilities in U251 human glioma cells, concordant with a reduced expression of CFL‑1. Furthermore, the expression of CFL‑1 was significantly increased in radioresistant U251 glioma cells when compared with normal U251 human glioma cells. These findings indicate that inhibition of the Rac1‑WAVE2‑Arp2/3 signaling pathway may promote radiosensitivity, which may partially result from the downregulation of CFL‑1 in U251 human glioma cells.
Xia, Jingwen; Jiang, Nianxin; Li, Yansong; Wei, Yong; Zhang, Xuan
2018-05-10
Myocardial infarction (MI) is a leading cause of disease with high morbidity and mortality worldwide. Recent studies have revealed that long non-coding RNAs (lncRNAs) are involved in heart disease pathogenesis. This study aimed to investigate the effect and the molecular basis of THRIL on hypoxia-injured H9C2 cells. THRIL, miR-99a and Brahma-related gene 1 (Brg1) expression in H9C2 cells were altered by transient transfections. The cells were subjected to hypoxia for 4 h, and then the levels of THRIL, miR-99a and Brg1 were investigated. Cell viability, migration and invasion, and apoptotic cells were respectively measured by trypan blue exclusion assay, transwell migration assay and flow cytometry assay. Dual luciferase reporter assay was conducted to verify the interaction between miR-99a and THRIL. Furthermore, levels of apoptosis-, PI3K/AKT and mTOR pathways-related factors were measured by western blotting. Hypoxia induced an increase of THRIL but a reduction of miR-99a and Brg1. THRIL inhibition significantly attenuated hypoxia-induced cell injuries, as increased cell viability, migration and invasion, and decreased cell apoptosis. THRIL negatively regulated miR-99a expression through sponging with miR-99a binding site, and miR-99a inhibition abolished the protective effects of THRIL knockdown against hypoxia-induced injury in H9C2 cells. Furthermore, miR-99a positively regulated the expression of Brg1. Brg1 inhibition promoted hypoxia-induced cell injuries, while Brg1 overexpression alleviated hypoxia-induced cell injuries. Moreover, Brg1 overexpression activated PI3K/AKT and mTOR pathways. This study demonstrates that THRIL inhibition represents a protective effect against hypoxia-induced injuries in H9C2 cells by up-regulating miR-99a expression.
Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors
Yang, Esther H.; Rode, Julia; Howlader, Md. Amran; Eckermann, Marina; Santos, Jobette T.; Hernandez Armada, Daniel; Zheng, Ruixiang; Zou, Chunxia
2017-01-01
Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5β1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased β1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3–integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins. PMID:29016609
Tu, Fengxia; Pang, Qiongyi; Chen, Xiang; Huang, Tingting; Liu, Meixia; Zhai, Qiongxiang
2017-12-01
In the present study, we aimed to elucidate whether apigenin contributes to the induction of angiogenesis and the related mechanisms in cell hypoxia-reoxygenation injury. The role of apigenin was examined in human umbilical vein endothelial cell (HUVEC) viability, migration and tube formation in vitro. To investigate the related mechanisms, we used caveolin-1 short interfering RNA. The viability of HUVECs was measured using Cell Counting Kit-8 assays, HUVEC migration was analyzed by crystal violet staining, and a tube formation assay was performed using the branch point method. Expression of caveolin-1, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS) in HUVECs was examined by polymerase chain reaction and western blotting. Our data revealed that apigenin induced angiogenesis in vitro by increasing the tube formation ability of HUVECs, which was counteracted by caveolin-1 silencing. Compared to the NC group, Caveolin-1 and eNOS expression was upregulated by apigenin, whereas compared to the NC group, eNOS expression was increased upon caveolin-1 silencing. The expression of VEGF was increased by treatment with apigenin; however, compared to the NC group, caveolin-1 silencing did not affect VEGF expression, and apigenin did not increase VEGF expression in HUVECs after caveolin-1 silencing. These data suggest that apigenin may be a candidate therapeutic target for stroke recovery by promoting angiogenesis via the caveolin-1 signaling pathway.
Li, Xiaojin; Xu, Anjian; Li, Huihui; Zhang, Bei; Cao, Bangwei; Huang, Jian
2018-05-01
Although apatinib has been demonstrated with potential antitumor activity in multiple solid tumors, the underlying mechanism of apatinib for the treatment of hepatocellular carcinoma (HCC) remains unclear. In the present study, we explored if there are any direct suppression effects of apatinib on HCC cells and its relevant targets. We investigated the effect of apatinib on viability of five HCC cell lines and an intrahepatic cholangiocarcinoma cell line, and colony formation, apoptosis and migration of representative HCC cells in vitro; and HCC progression in a xenograft mouse model. Using a phospho-receptor tyrosine kinase pathway array with 49 different tyrosine kinases, we screened and verified the tyrosine kinase targets involved in apatinib response. Apatinib treatment significantly inhibited HCC cell viability, proliferation, colony formation, and migration, and enhanced cell apoptosis in a concentration-dependent manner (p < 0.05). Furthermore, apatinib showed a favorable anti-tumor growth effect (71% of inhibition ratio, p < 0.05) in an established human HCC xenograft mice model with good safety. RTK pathway arrays and western blots analysis demonstrated that apatinib significantly downregulated the phosphorylation levels of several tyrosine kinase receptors, particularly PDGFR-α and IGF-IR, and inhibited Akt phosphorylation. These data suggest that the apatinib may have a direct anti-HCC effect as a direct multi-target RTK inhibitor of HCC cells and a promising potentiality in HCC clinical therapies. Copyright © 2018 Elsevier B.V. All rights reserved.
Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H
2011-01-01
Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1−/−) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1−/− mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function. PMID:21614093
Strandberg, Roine; Klaassen, Raymond H G; Hake, Mikael; Olofsson, Patrik; Alerstam, Thomas
2009-02-22
Autumn migration of adult Eurasian hobbies Falco subbuteo from Europe to southern Africa was recorded by satellite telemetry and observed routes were compared with randomly simulated routes. Two non-random features of observed routes were revealed: (i) shifts to more westerly longitudes than straight paths to destinations and (ii) strong route convergence towards a restricted area close to the equator (1 degree S, 15 degrees E). The birds migrated south or southwest to approximately 10 degrees N, where they changed to south-easterly courses. The maximal spread between routes at 10 degrees N (2134 km) rapidly decreased to a minimum (67 km) close to the equator. We found a striking relationship between the route convergence and the distribution of continuous rainforest, suggesting that hobbies minimize flight distance across the forest, concentrating in a corridor where habitat may be more suitable for travelling and foraging. With rainforest forming a possible ecological barrier, many migrants may cross the equator either at 15 degrees E, similar to the hobbies, or at 30-40 degrees E, east of the rainforest where large-scale migration is well documented. Much remains to be understood about the role of the rainforest for the evolution and future of the trans-equatorial Palaearctic-African bird migration systems.
Schotanus, M G M; Pilot, P; Kaptein, B L; Draijer, W F; Tilman, P B J; Vos, R; Kort, N P
2017-09-01
A concern that arises with any new prosthesis is whether it will achieve satisfactory long-term implant stability. The gold standard of assessing the quality of fixation in a new or relatively new implant is to undertake a randomized controlled trial using radiostereometric analysis. It was hypothesized that both mobile-bearing total knee arthroplasty and fixed-bearing total knee arthroplasty have comparable migration patterns at 2-year follow-up. This study investigated two types of cemented total knee arthroplasty, the mobile- or fixed-bearing variant from the same family with use of radiostereometric analysis. This prospective, patient-blinded, randomized, controlled trial was designed to investigate early migration of the tibia component after two years of follow-up with use of radiostereometric analysis. A total of 50 patients were randomized to receive a mobile- or fixed-bearing TKA from the same family. Patients were evaluated during 2-year follow-up, including radiostereometric analysis, physical and clinical examination and patient reported outcome measures (PROMs). At two-year follow-up, the mean (±SD) maximum total point motion (MTPM) in the fixed-bearing group was 0.82 (±1.16) versus 0.92 mm (±0.64) in the mobile-bearing group (p = n.s) with the largest migration seen during the first 6 weeks (0.45 ± 0.32 vs. 0.54 ± 0.30). The clinical outcome and PROMs significantly improved within each group, not between both groups. Measuring early micromotion is useful for predicting clinical loosening that can lead to revision. The results of this study demonstrate that early migration of the mobile-bearing is similar to that of the fixed-bearing component at two years and was mainly seen in the first weeks after implantation. Randomized, single-blind, controlled trial, Level I.
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Kasai, Hideaki; Kishi, Hirofumi; Awaya, Nobuyoshi; Ohnishi, Shigeo; Tamai, Yukio
2013-01-01
The resistance random access memory (RRAM™) device, with its electrically induced nanoscale resistive switching capacity, has attracted considerable attention as a future nonvolatile memory device. Here, we propose a mechanism of switching based on an oxygen vacancy migration-driven change in the electronic properties of the transition-metal oxide film stimulated by set pulse voltages. We used density functional theory-based calculations to account for the effect of oxygen vacancies and their migration on the electronic properties of HfO2 and Ta/HfO2 systems, thereby providing a complete explanation of the RRAM™ switching mechanism. Furthermore, computational results on the activation energy barrier for oxygen vacancy migration were found to be consistent with the set and reset pulse voltage obtained from experiments. Understanding this mechanism will be beneficial to effectively realizing the materials design in these devices.
Nagatani, Takashi; Ichinose, Genki; Tainaka, Kei-Ichi
2018-05-04
Understanding mechanisms of biodiversity has been a central question in ecology. The coexistence of three species in rock-paper-scissors (RPS) systems are discussed by many authors; however, the relation between coexistence and network structure is rarely discussed. Here we present a metapopulation model for RPS game. The total population is assumed to consist of three subpopulations (nodes). Each individual migrates by random walk; the destination of migration is randomly determined. From reaction-migration equations, we obtain the population dynamics. It is found that the dynamic highly depends on network structures. When a network is homogeneous, the dynamics are neutrally stable: each node has a periodic solution, and the oscillations synchronize in all nodes. However, when a network is heterogeneous, the dynamics approach stable focus and all nodes reach equilibriums with different densities. Hence, the heterogeneity of the network promotes biodiversity.
Ejaz, Ashir; Laursen, Anders C; Jakobsen, Thomas; Rasmussen, Sten; Nielsen, Poul Torben; Laursen, Mogens B
2015-12-01
We aimed to determine whether not using a tourniquet in cemented TKA would affect migration of the tibial component measured by radiosterometric analysis (RSA). Seventy patients were randomized into a tourniquet group and a non-tourniquet group and using model-based RSA, the migration of the tibial component was analyzed. Primary and secondary outcome measures were maximum total point motion (MTPM) and translations and rotations. Follow-up period was 2 years. The tibial component was well fixated in both groups and no significant difference in migration between the two groups was detected (P=0.632). Mean MTPM (SD) was 0.47 mm (0.16) in the tourniquet group and 0.45 mm (0.21) in the non-tourniquet group. Absence of tourniquet indicates that stable fixation of the tibial component can be achieved in cemented TKA. Copyright © 2015 Elsevier Inc. All rights reserved.
Can lagrangian models reproduce the migration time of European eel obtained from otolith analysis?
NASA Astrophysics Data System (ADS)
Rodríguez-Díaz, L.; Gómez-Gesteira, M.
2017-12-01
European eel can be found at the Bay of Biscay after a long migration across the Atlantic. The duration of migration, which takes place at larval stage, is of primary importance to understand eel ecology and, hence, its survival. This duration is still a controversial matter since it can range from 7 months to > 4 years depending on the method to estimate duration. The minimum migration duration estimated from our lagrangian model is similar to the duration obtained from the microstructure of eel otoliths, which is typically on the order of 7-9 months. The lagrangian model showed to be sensitive to different conditions like spatial and time resolution, release depth, release area and initial distribution. In general, migration showed to be faster when decreasing the depth and increasing the resolution of the model. In average, the fastest migration was obtained when only advective horizontal movement was considered. However, faster migration was even obtained in some cases when locally oriented random migration was taken into account.
Hoganson, David M; Owens, Gwen E; Meppelink, Amanda M; Bassett, Erik K; Bowley, Chris M; Hinkel, Cameron J; Finkelstein, Eric B; Goldman, Scott M; Vacanti, Joseph P
2016-07-01
Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 µm microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1728-1735, 2016. © 2016 Wiley Periodicals, Inc.
Genomic signatures predict migration and spawning failure in wild Canadian salmon.
Miller, Kristina M; Li, Shaorong; Kaukinen, Karia H; Ginther, Norma; Hammill, Edd; Curtis, Janelle M R; Patterson, David A; Sierocinski, Thomas; Donnison, Louise; Pavlidis, Paul; Hinch, Scott G; Hruska, Kimberly A; Cooke, Steven J; English, Karl K; Farrell, Anthony P
2011-01-14
Long-term population viability of Fraser River sockeye salmon (Oncorhynchus nerka) is threatened by unusually high levels of mortality as they swim to their spawning areas before they spawn. Functional genomic studies on biopsied gill tissue from tagged wild adults that were tracked through ocean and river environments revealed physiological profiles predictive of successful migration and spawning. We identified a common genomic profile that was correlated with survival in each study. In ocean-tagged fish, a mortality-related genomic signature was associated with a 13.5-fold greater chance of dying en route. In river-tagged fish, the same genomic signature was associated with a 50% increase in mortality before reaching the spawning grounds in one of three stocks tested. At the spawning grounds, the same signature was associated with 3.7-fold greater odds of dying without spawning. Functional analysis raises the possibility that the mortality-related signature reflects a viral infection.
Timm, David M.; Chen, Jianbo; Sing, David; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Raphael, Robert M.; Dehghani, Mehdi; Rosenblatt, Kevin P.; Killian, T. C.; Tseng, Hubert; Souza, Glauco R.
2013-01-01
There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures. PMID:24141454
Luzzani, Gabriela A; Callero, Mariana A; Kuruppu, Anchala I; Trapani, Valentina; Flumian, Carolina; Todaro, Laura; Bradshaw, Tracey D; Loaiza Perez, Andrea I
2017-12-01
We investigated activity and mechanism of action of two AhR ligand antitumor agents, AFP 464 and 5F 203 on human renal cancer cells, specifically examining their effects on cell cycle progression, apoptosis, and migration. TK-10, SN12C, Caki-1, and ACHN human renal cancer cell lines were treated with AFP 464 and 5F 203. We evaluated cytotoxicity by MTS assays, cell cycle arrest, and apoptosis by flow cytometry and corroborated a mechanism of action involving AhR signal transduction activation. Changes in migration properties by wound healing assays were investigated: 5F 203-sensitive cells show decreased migration after treatment, therefore, we measured c-Met phosphorylation by Western blot in these cells. A 5F 203 induced a decrease in cell viability which was more marked than AFP 464. This cytotoxicity was reduced after treatment with the AhR inhibitor α-NF for both compounds indicating AhR signaling activation plays a role in the mechanism of action. A 5F 203 is sequestered by TK-10 cells and induces CYP1A1 expression; 5F 203 potently inhibited migration of TK-10, Caki-1, and SN12C cells, and inhibited c-Met receptor phosphorylation in TK-10 cells. AhR ligand antitumor agents AFP 464 and 5F 203 represent potential new candidates for the treatment of renal cancer. A 5F 203 only inhibited migration of sensitive cells and c-Met receptor phosphorylation in TK-10 cells. c-Met receptor signal transduction is important in migration and metastasis. Therefore, we consider that 5F 203 offers potential for the treatment of metastatic renal carcinoma. J. Cell. Biochem. 118: 4526-4535, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Reiss, K; Makarova, N; Spallek, J; Zeeb, H; Razum, O
2013-06-01
In 2009, 19.6% of the population of Germany either had migrated themselves or were the offspring of people with migration experience. Migrants differ from the autochthonous German population in terms of health status, health awareness and health behaviour. To further investigate the health situation of migrants in Germany, epidemiological studies are needed. Such studies can employ existing databases which provide detailed information on migration status. Otherwise, onomastic or toponomastic procedures can be applied to identify people with migration background. If migrants have to be recruited into an epidemiological study, this can be done register-based (e. g., data from registration offices or telephone lists), based on residential location (random-route or random-walk procedure), via snowball sampling (e. g., through key persons) or via settings (e. g., school entry examination). An oversampling of people with migration background is not sufficient to avoid systematic bias in the sample due to non-participation. Additional measures have to be taken to increase access and raise participation rates. Personal contacting, multilingual instruments, multilingual interviewers and extensive public relations increase access and willingness to participate. Empirical evidence on 'successful' recruitment strategies for studies with migrants is still lacking in epidemiology and health sciences in Germany. The choice of the recruitment strategy as well as the measures to raise accessibility and willingness to participate depend on the available resources, the research question and the specific migrant target group. © Georg Thieme Verlag KG Stuttgart · New York.
Air bubble migration is a random event post embryo transfer.
Confino, E; Zhang, J; Risquez, F
2007-06-01
Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.
Takayama, Yukiya; Kusamori, Kosuke; Hayashi, Mika; Tanabe, Noriko; Matsuura, Satoru; Tsujimura, Mari; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira
2017-12-05
Mesenchymal stem cells (MSCs) have various functions, making a significant contribution to tissue repair. On the other hand, the viability and function of MSCs are not lasting after an in vivo transplant, and the therapeutic effects of MSCs are limited. Although various chemical modification methods have been applied to MSCs to improve their viability and function, most of conventional drug modification methods are short-term and unstable and cause cytotoxicity. In this study, we developed a method for long-term drug modification to C3H10T1/2 cells, murine mesenchymal stem cells, without any damage, using the avidin-biotin complex method (ABC method). The modification of NanoLuc luciferase (Nluc), a reporter protein, to C3H10T1/2 cells by the ABC method lasted for at least 14 days in vitro without major effects on the cellular characteristics (cell viability, cell proliferation, migration ability, and differentiation ability). Moreover, in vivo, the surface Nluc modification to C3H10T1/2 cells by the ABC method lasted for at least 7 days. Therefore, these results indicate that the ABC method may be useful for long-term surface modification of drugs and for effective MSC-based therapy.
Ayala, Diego; Guerrero, Rafael F; Kirkpatrick, Mark
2013-04-01
Chromosome inversions have long been thought to be involved in speciation and local adaptation. We have little quantitative information, however, about the effects that inversion polymorphisms have on reproductive isolation and viability. Here we provide the first estimates from any organism for the total amount of reproductive isolation associated with an inversion segregating in natural populations. We sampled chromosomes from 751 mosquitoes of the malaria vector Anopheles funestus along a 1421 km transect in Cameroon that traverses savannah, highland, and rainforest ecological zones. We then developed a series of population genetic models that account for selection, migration, and assortative mating, and fit the models to the data using likelihood. Results from the best-fit models suggest there is strong local adaptation, with relative viabilities of homozygotes ranging from 25% to 130% compared to heterozygotes. Viabilities vary qualitatively between regions: the inversion is underdominant in the savannah, whereas in the highlands it is overdominant. The inversion is also implicated in strong assortative mating. In the savannah, the two homozygote forms show 92% reproductive isolation, suggesting that this one inversion can generate most of the genetic barriers needed for speciation. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Normal and tumoral melanocytes exhibit q-Gaussian random search patterns.
da Silva, Priscila C A; Rosembach, Tiago V; Santos, Anésia A; Rocha, Márcio S; Martins, Marcelo L
2014-01-01
In multicellular organisms, cell motility is central in all morphogenetic processes, tissue maintenance, wound healing and immune surveillance. Hence, failures in its regulation potentiates numerous diseases. Here, cell migration assays on plastic 2D surfaces were performed using normal (Melan A) and tumoral (B16F10) murine melanocytes in random motility conditions. The trajectories of the centroids of the cell perimeters were tracked through time-lapse microscopy. The statistics of these trajectories was analyzed by building velocity and turn angle distributions, as well as velocity autocorrelations and the scaling of mean-squared displacements. We find that these cells exhibit a crossover from a normal to a super-diffusive motion without angular persistence at long time scales. Moreover, these melanocytes move with non-Gaussian velocity distributions. This major finding indicates that amongst those animal cells supposedly migrating through Lévy walks, some of them can instead perform q-Gaussian walks. Furthermore, our results reveal that B16F10 cells infected by mycoplasmas exhibit essentially the same diffusivity than their healthy counterparts. Finally, a q-Gaussian random walk model was proposed to account for these melanocytic migratory traits. Simulations based on this model correctly describe the crossover to super-diffusivity in the cell migration tracks.
Weber, Erik; Sundberg, Martin; Flivik, Gunnar
2014-12-01
Even small design modifications of uncemented hip stems may alter the postoperative 3-D migration pattern. The Furlong Active is an uncemented femoral stem which, in terms of design, is based on its precursor-the well-proven Furlong HAC-but has undergone several design changes. The collar has been removed on the Active stem along with the lateral fin; it is shorter and has more rounded edges in the proximal part. We compared the migration patterns of the uncemented Furlong HAC stem and the modified Furlong Active stem in a randomized, controlled trial over 5 years using radiostereometry (RSA). 50 patients with primary osteoarthritis were randomized to receive either the HAC stem or the Active stem. The patients underwent repeated RSA examinations (postoperatively, at 3 months, and after 1, 2, and 5 years) and conventional radiography, and they also filled out hip-specific questionnaires. During the first 3 months, the collarless Active stem subsided to a greater extent than the collar-fitted HAC stem (0.99 mm vs. 0.31 mm, p=0.05). There were, however, no other differences in movement measured by RSA or in clinical outcome between the 2 stems. After 3 months, both stem types had stabilized and almost no further migration was seen. The Active stem showed no signs of unfavorable migration. Our results suggest that the osseointegration is not compromised by the new design features.
Hong, Jing-Fang; Song, Ying-Fang; Liu, Zheng; Zheng, Zhao-Cong; Chen, Hong-Jie; Wang, Shou-Sen
2016-06-01
The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle‑associated proteins and autophagy‑linked LC3B‑II proteins. The results demonstrated that taraxerol acetate induced dose‑ and time‑dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate‑treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub‑G1 cell cycle arrest with a corresponding decrease in the number of S‑phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate‑buffered saline (PBS)‑treated group (control) to 0.81 and 0.42 g, respectively. Similarly, 0.25 and 0.75 µg/g taraxerol acetate injection reduced the tumor volume from 1.3 cm3 in the PBS-treated group (control) to 0.67 and 0.25 cm3, respectively.
Immunostimulatory CpG on Carbon Nanotubes Selectively Inhibits Migration of Brain Tumor Cells.
Alizadeh, Darya; White, Ethan E; Sanchez, Teresa C; Liu, Shunan; Zhang, Leying; Badie, Behnam; Berlin, Jacob M
2018-05-16
Even when treated with aggressive current therapies, patients with glioblastoma usually survive less than two years and exhibit a high rate of recurrence. CpG is an oligonucleotide that activates the innate immune system via Toll-like receptor 9 (TLR9) activation. Injection of CpG into glioblastoma tumors showed promise as an immunotherapy in mouse models but proved disappointing in human trials. One aspect of glioma that is not addressed by CpG therapy alone is the highly invasive nature of glioma cells, which is associated with resistance to radiation and chemotherapy. Here, we demonstrate that single-walled carbon nanotubes noncovalently functionalized with CpG (SWNT/CpG), which retain the immunostimulatory property of the CpG, selectively inhibit the migration of glioma cells and not macrophages without affecting cell viability or proliferation. SWNT/CpG also selectively decreased NF-κB activation in glioma cells, while activating macrophages by induction of the TLR9/NF-κB pathway, as we have previously reported. The migration inhibition of glioma cells was correlated with selective reduction of intracellular levels of reactive oxygen species (ROS), suggesting that an antioxidant-based mechanism mediates the observed effects. To the best of our knowledge, SWNT/CpG is the first nanomaterial that inhibits the migration of cancer cells while stimulating the immune system.
Pan, Chun-Hsu; Li, Pei-Chuan; Chien, Yi-Chung; Yeh, Wan-Ting; Liaw, Chih-Chuang; Sheu, Ming-Jyh; Wu, Chieh-Hsi
2018-02-01
Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G 0 /G 1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation. Copyright © 2017 John Wiley & Sons, Ltd.
Lou, Chenghua; Zhu, Zhihui; Zhao, Yaping; Zhu, Rui; Zhao, Huajun
2017-01-01
Arctigenin is a bioactive lignan isolated from the seeds of Arctium lappa L. which has been widely used as a diuretic and a diaphoretic in Traditional Chinese Medicine. In the present study, the authors investigated the effects of arctigenin on tumor migration and invasion in aggressive human breast cancer cells. The MTT assay results showed that arctigenin did not show a significant cytotoxic effect on the cell viability of MDA-MB-231 cells. However, wound healing migration and Boyden chamber invasion assays demonstrated that arctigenin significantly inhibited in vitro migration and invasion of the MDA-MB-231 cells. Furthermore, gelatin zymography results showed that arctigenin reduced the activity of MMP-2 and MMP-9. Western blot analysis results demonstrated that the expression of MMP-2, MMP-9 and heparanase proteins was significantly downregulated following the treatment of arctigenin. Finally, the antiangiogenic activity of arctigenin was also examined by the chick embryo chorioallantoic membrane (CAM) assay. Arctigenin treatment significantly inhibited angiogenesis in the CAM. In conclusion, the results revealed that arctigenin significantly inhibited the migration and invasion of MDA-MB-231 cells by downregulating MMP-2, MMP-9 and heparanase expression. However, further studies are still necessary to investigate the exact mechanisms involved and to explore signal transduction pathways to better understand the biological mechanisms.
3D Electrospun scaffolds promote a cytotrophic phenotype of cultured primary astrocytes.
Lau, Chew L; Kovacevic, Michelle; Tingleff, Tine S; Forsythe, John S; Cate, Holly S; Merlo, Daniel; Cederfur, Cecilia; Maclean, Francesca L; Parish, Clare L; Horne, Malcolm K; Nisbet, David R; Beart, Philip M
2014-07-01
Astrocytes are a target for regenerative neurobiology because in brain injury their phenotype arbitrates brain integrity, neuronal death and subsequent repair and reconstruction. We explored the ability of 3D scaffolds to direct astrocytes into phenotypes with the potential to support neuronal survival. Poly-ε-caprolactone scaffolds were electrospun with random and aligned fibre orientations on which murine astrocytes were sub-cultured and analysed at 4 and 12 DIV. Astrocytes survived, proliferated and migrated into scaffolds adopting 3D morphologies, mimicking in vivo stellated phenotypes. Cells on random poly-ε-caprolactone scaffolds grew as circular colonies extending processes deep within sub-micron fibres, whereas astrocytes on aligned scaffolds exhibited rectangular colonies with processes following not only the direction of fibre alignment but also penetrating the scaffold. Cell viability was maintained over 12 DIV, and cytochemistry for F-/G-actin showed fewer stress fibres on bioscaffolds relative to 2D astrocytes. Reduced cytoskeletal stress was confirmed by the decreased expression of glial fibrillary acidic protein. PCR demonstrated up-regulation of genes (excitatory amino acid transporter 2, brain-derived neurotrophic factor and anti-oxidant) reflecting healthy biologies of mature astrocytes in our extended culture protocol. This study illustrates the therapeutic potential of bioengineering strategies using 3D electrospun scaffolds which direct astrocytes into phenotypes supporting brain repair. Astrocytes exist in phenotypes with pro-survival and destructive components, and their biology can be modulated by changing phenotype. Our findings demonstrate murine astrocytes adopt a healthy phenotype when cultured in 3D. Astrocytes proliferate and extend into poly-ε-caprolactone scaffolds displaying 3D stellated morphologies with reduced GFAP expression and actin stress fibres, plus a cytotrophic gene profile. Bioengineered 3D scaffolds have potential to direct inflammation to aid regenerative neurobiology. © 2014 International Society for Neurochemistry.
Chen, Jiao; Weihs, Daphne; Vermolen, Fred J
2018-04-01
Cell migration, known as an orchestrated movement of cells, is crucially important for wound healing, tumor growth, immune response as well as other biomedical processes. This paper presents a cell-based model to describe cell migration in non-isotropic fibrin networks around pancreatic tumor islets. This migration is determined by the mechanical strain energy density as well as cytokines-driven chemotaxis. Cell displacement is modeled by solving a large system of ordinary stochastic differential equations where the stochastic parts result from random walk. The stochastic differential equations are solved by the use of the classical Euler-Maruyama method. In this paper, the influence of anisotropic stromal extracellular matrix in pancreatic tumor islets on T-lymphocytes migration in different immune systems is investigated. As a result, tumor peripheral stromal extracellular matrix impedes the immune response of T-lymphocytes through changing direction of their migration.
Assessment of anti-angiogenic and anti-tumoral potentials of Origanum onites L. essential oil.
Bostancıoğlu, Rakibe Beklem; Kürkçüoğlu, Mine; Başer, Kemal Hüsnü Can; Koparal, Ayşe Tansu
2012-06-01
Medicinal plants and culinary herbs with anti-angiogenic and little toxicity properties have gained importance. Non-toxic anti-angiogenic phytochemicals are useful in combating cancer by preventing the formation of new blood vessels to support the tumor growth. We have investigated the essential oil of Origanum onites L. (OOEO), for a possible anti-angiogenic activity. OOEO was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The anti-proliferative activities (by MTT assay, 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide), anti-angiogenic activities (by tube formation assay), cell migration inhibiting capability (migration assay) and apoptotic potential (DAPI staining) of OOEO were evaluated on rat adipose tissue endothelial cells (RATECs) and 5RP7 (c-H-ras transformed rat embryonic fibroblasts) cells. Our results revealed that OOEO could markedly inhibit cell viability and induced apoptosis of 5RP7 cells and also could block in vitro tube formation and migration of RATEC. These results imply that OOEO having anti-angiogenic activity might be useful in preventing angiogenesis-related diseases and in combating cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hasnat, Md Abul; Pervin, Mehnaz; Lim, Ji Hong; Lim, Beong Ou
2015-11-27
Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.
Suresh, Shruthy; Raghu, Dinesh; Karunagaran, Devarajan
2013-01-01
Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells. Menadione treatment increased the expression of pro-apoptotic proteins, Bax and p53, with a concurrent decrease in anti-apoptotic proteins, Bcl-2 and p65. Menadione induced the expression of E-cadherin but reduced the expression of EMT markers, vimentin and fibronectin. Menadione also inhibited anchorage independent growth and migration in SAS cells. These findings reveal and confirm that menadione is a potential candidate in oral cancer therapy as it exhibits cytotoxic, antineoplastic and antimigratory effects besides effectively blocking EMT in oral cancer cells.
Guo, Yan; Chen, Xinguang; Gong, Jie; Li, Fang; Zhu, Chaoyang; Yan, Yaqiong; Wang, Liang
2016-01-01
Background Millions of people move from rural areas to urban areas in China to pursue new opportunities while leaving their spouses and children at rural homes. Little is known about the impact of migration-related separation on mental health of these rural migrants in urban China. Methods Survey data from a random sample of rural-to-urban migrants (n = 1113, aged 18–45) from Wuhan were analyzed. The Domestic Migration Stress Questionnaire (DMSQ), an instrument with four subconstructs, was used to measure migration-related stress. The relationship between spouse/child separation and stress was assessed using survey estimation methods to account for the multi-level sampling design. Results 16.46% of couples were separated from their spouses (spouse-separation only), 25.81% of parents were separated from their children (child separation only). Among the participants who married and had children, 5.97% were separated from both their spouses and children (double separation). Spouse-separation only and double separation did not scored significantly higher on DMSQ than those with no separation. Compared to parents without child separation, parents with child separation scored significantly higher on DMSQ (mean score = 2.88, 95% CI: [2.81, 2.95] vs. 2.60 [2.53, 2.67], p < .05). Stratified analysis by separation type and by gender indicated that the association was stronger for child-separation only and for female participants. Conclusion Child-separation is an important source of migration-related stress, and the effect is particularly strong for migrant women. Public policies and intervention programs should consider these factors to encourage and facilitate the co-migration of parents with their children to mitigate migration-related stress. PMID:27124768
Guo, Yan; Chen, Xinguang; Gong, Jie; Li, Fang; Zhu, Chaoyang; Yan, Yaqiong; Wang, Liang
2016-01-01
Millions of people move from rural areas to urban areas in China to pursue new opportunities while leaving their spouses and children at rural homes. Little is known about the impact of migration-related separation on mental health of these rural migrants in urban China. Survey data from a random sample of rural-to-urban migrants (n = 1113, aged 18-45) from Wuhan were analyzed. The Domestic Migration Stress Questionnaire (DMSQ), an instrument with four subconstructs, was used to measure migration-related stress. The relationship between spouse/child separation and stress was assessed using survey estimation methods to account for the multi-level sampling design. 16.46% of couples were separated from their spouses (spouse-separation only), 25.81% of parents were separated from their children (child separation only). Among the participants who married and had children, 5.97% were separated from both their spouses and children (double separation). Spouse-separation only and double separation did not scored significantly higher on DMSQ than those with no separation. Compared to parents without child separation, parents with child separation scored significantly higher on DMSQ (mean score = 2.88, 95% CI: [2.81, 2.95] vs. 2.60 [2.53, 2.67], p < .05). Stratified analysis by separation type and by gender indicated that the association was stronger for child-separation only and for female participants. Child-separation is an important source of migration-related stress, and the effect is particularly strong for migrant women. Public policies and intervention programs should consider these factors to encourage and facilitate the co-migration of parents with their children to mitigate migration-related stress.
Contact guidance is cell cycle-dependent.
Pourfarhangi, Kamyar Esmaeili; De La Hoz, Edgar Cardenas; Cohen, Andrew R; Gligorijevic, Bojana
2018-09-01
Cancer cell migration is essential for metastasis, during which cancer cells move through the tumor and reach the blood vessels. In vivo , cancer cells are exposed to contact guidance and chemotactic cues. Depending on the strength of such cues, cells will migrate in a random or directed manner. While similar cues may also stimulate cell proliferation, it is not clear whether cell cycle progression affects migration of cancer cells and whether this effect is different in random versus directed migration. In this study, we tested the effect of cell cycle progression on contact guided migration in 2D and 3D environments, in the breast carcinoma cell line, FUCCI-MDA-MB-231. The results were quantified from live cell microscopy images using the open source lineage editing and validation image analysis tools (LEVER). In 2D, cells were placed inside 10 μ m-wide microchannels to stimulate contact guidance, with or without an additional chemotactic gradient of the soluble epidermal growth factor. In 3D, contact guidance was modeled by aligned collagen fibers. In both 2D and 3D, contact guidance was cell cycle-dependent, while the addition of the chemo-attractant gradient in 2D increased cell velocity and persistence in directionally migrating cells, regardless of their cell cycle phases. In both 2D and 3D contact guidance, cells in the G1 phase of the cell cycle outperformed cells in the S/G2 phase in terms of migration persistence and instantaneous velocity. These data suggest that in the presence of contact guidance cues in vivo , breast carcinoma cells in the G1 phase of the cell cycle may be more efficient in reaching the neighboring vasculature.
Simulating the Oceanic Migration of Silver Japanese Eels
Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie
2016-01-01
The oceanic migration of silver Japanese eels starts from their continental growth habitats in East Asia and ends at the spawning area near the West Mariana Ridge seamount chain. However, the actual migration routes remain unknown. In this study, we examined the possible oceanic migration routes and strategies of silver Japanese eels using a particle tracking method in which virtual eels (v-eels) were programmed to move vertically and horizontally in an ocean circulation model (Japan Coastal Ocean Predictability Experiment 2, JCOPE2). Four horizontal swimming strategies were tested: random heading, true navigation (readjusted heading), orientation toward the spawning area (fixed heading), and swimming against the Kuroshio. We found that all strategies, except random swimming, allowed v-eels swimming at 0.65 m s−1 to reach the spawning area within eight months after their departure from the south coast of Japan (end of the spawning season). The estimated minimum swimming speed required to reach the area spawning within eight months was 0.1 m s−1 for true navigation, 0.12 m s−1 for constant compass heading, and 0.35 m s−1 for swimming against the Kuroshio. The lowest swimming speed estimated from tracked Japanese eels at sea was 0.03 m.s−1, which would not allow them to reach the spawning area within eight months, through any of the tested orientation strategies. Our numerical experiments also showed that ocean circulation significantly affected the migration of Japanese v-eels. A strong Kuroshio could advect v-eels further eastward. In addition, western Pacific ocean currents accelerated the migration of navigating v-eels. The migration duration was shortened in years with a stronger southward flow, contributed by a stronger recirculation south of Japan, an enhanced subtropical gyre, or a higher southward Kuroshio velocity. PMID:26982484
Simulating the Oceanic Migration of Silver Japanese Eels.
Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie
2016-01-01
The oceanic migration of silver Japanese eels starts from their continental growth habitats in East Asia and ends at the spawning area near the West Mariana Ridge seamount chain. However, the actual migration routes remain unknown. In this study, we examined the possible oceanic migration routes and strategies of silver Japanese eels using a particle tracking method in which virtual eels (v-eels) were programmed to move vertically and horizontally in an ocean circulation model (Japan Coastal Ocean Predictability Experiment 2, JCOPE2). Four horizontal swimming strategies were tested: random heading, true navigation (readjusted heading), orientation toward the spawning area (fixed heading), and swimming against the Kuroshio. We found that all strategies, except random swimming, allowed v-eels swimming at 0.65 m s-1 to reach the spawning area within eight months after their departure from the south coast of Japan (end of the spawning season). The estimated minimum swimming speed required to reach the area spawning within eight months was 0.1 m s-1 for true navigation, 0.12 m s-1 for constant compass heading, and 0.35 m s-1 for swimming against the Kuroshio. The lowest swimming speed estimated from tracked Japanese eels at sea was 0.03 m.s-1, which would not allow them to reach the spawning area within eight months, through any of the tested orientation strategies. Our numerical experiments also showed that ocean circulation significantly affected the migration of Japanese v-eels. A strong Kuroshio could advect v-eels further eastward. In addition, western Pacific ocean currents accelerated the migration of navigating v-eels. The migration duration was shortened in years with a stronger southward flow, contributed by a stronger recirculation south of Japan, an enhanced subtropical gyre, or a higher southward Kuroshio velocity.
Assessing the impact of engineered nanoparticles on wound healing using a novel in vitro bioassay
Zhou, Enhua H; Watson, Christa; Pizzo, Richard; Cohen, Joel; Dang, Quynh; de Barros, Pedro Macul Ferreira; Park, Chan Young; Chen, Cheng; Brain, Joseph D; Butler, James P; Ruberti, Jeffrey W; Fredberg, Jeffrey J; Demokritout, Philip
2015-01-01
Aim As engineered nanoparticles (ENPs) increasingly enter consumer products, humans become increasingly exposed. The first line of defense against ENPs is the epithelium, the integrity of which can be compromised by wounds induced by trauma, infection, or surgery, but the implications of ENPs on wound healing are poorly understood. Materials & methods Herein, we developed an in vitro assay to assess the impact of ENPs on the wound healing of cells from human cornea. Results & discussion We show that industrially relevant ENPs impeded wound healing and cellular migration in a manner dependent on the composition, dose and size of the ENPs as well as cell type. CuO and ZnO ENPs impeded both viability and wound healing for both fibroblasts and epithelial cells. Carboxylated polystyrene ENPs retarded wound healing of corneal fibroblasts without affecting viability. Conclusion Our results highlight the impact of ENPs on cellular wound healing and provide useful tools for studying the physiological impact of ENPs. PMID:24823434
Mayol, Laura; De Stefano, Daniela; De Falco, Francesca; Carnuccio, Rosa; Maiuri, Maria Chiara; De Rosa, Giuseppe
2014-11-04
Aim of this work was to investigate the influence of hyaluronic acid (HA) molecular weight on the thermogelation and biocompatibility of its blends with methyl cellulose in view of a possible application in drug delivery and/or wound healing. We found out that it was possible to obtain MC/HA blends showing a rheological behavior typical of a viscous solution at 20 °C and of a weak gel at 37 °C only when blending MC with low molecular weight HA. Moreover, the blends containing low molecular weight HA did not affect human foreskin fetal fibroblasts viability, proliferation and migration. On the contrary, the cell incubation with high molecular weight HA resulted in a marked and significant reduction of cell viability, compared to control cells. Finally, the optimized blends, in terms of rheological properties and biocompatibility, proved to be able to control and prolong bovine serum albumin release by a combined mechanism of platform dissolution and drug diffusion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chou, Kee-Lee; Wong, Winky K F; Chow, Nelson W S
2011-10-01
The goal of the current study is to examine the role of poor migration planning as a moderator for the effects of two post-migration factors, namely acculturation stress and quality of life, on symptoms of depression. Using a random sample of 347 Hong Kong new migrants from a 1-year longitudinal study, we used multiple regression analyses to examine both the direct and interaction effects of poorly planned migration, acculturation stress, and quality of life on depressive symptoms. Although poorly planned migration did not predict depressive symptoms at 1-year follow-up, it did exacerbate the detrimental effect of the two post-migration factors, namely high stress or low quality of life (both also measured at baseline) on depressive symptoms at this stage. Our results indicate that preventive measures must be developed for new immigrants in Hong Kong, especially for those who were not well prepared for migration.
NASA Astrophysics Data System (ADS)
Nagatani, Takashi; Tainaka, Kei-ichi
2018-01-01
In most cases, physicists have studied the migration of biospecies by the use of random walk. In the present article, we apply cellular automaton of traffic model. For simplicity, we deal with an ecosystem contains a prey and predator, and use one-dimensional lattice with two layers. Preys stay on the first layer, but predators uni-directionally move on the second layer. The spatial and temporal evolution is numerically explored. It is shown that the migration has the important effect on populations of both prey and predator. Without migration, the phase transition between a prey-phase and coexisting-phase occurs. In contrast, the phase transition disappears by migration. This is because predator can survive due to migration. We find another phase transition for spatial distribution: in one phase, prey and predator form a stripe pattern of condensation and rarefaction, while in the other phase, they uniformly distribute. The self-organized stripe may be similar to the migration patterns in real ecosystems.
[Viability and germination of Hechtia perotensis (Bromeliaceae) seed].
Elizalde, Violeta; García, José Rodolfo; Peña-Valdivia, Cecilia Beatriz; Ybarra, Ma Carmen; Leyva, Otto Raúl; Trejo, Carlos
2017-03-01
Endemic populations of Hechtia perotensis have been described in Puebla and Veracruz, Mexico. Good quality seed collections can be used in conservation, research and ecological restoration. To evaluate seed quality of wild and endemic species, some compounds are used as effective promoters of germination, such as potassium nitrate (KNO3) and gibberellic acid (AG3), because they increase seed germination capacity and reduce latency. The triphenyl tetrazolium chloride (tetrazolium) test correlates seed viability because it is based on the activity of dehydrogenases in live tissues that catalyze mitochondrial respiration. The objective of this study was to obtain information on size and weight of capsules and seeds and seed germination and viability of H. perotensis, collected in Veracruz in the year 2012 and 2015. The hypotheses were 1) that seed germination and viability are independent of the year of collection, 2) that there is a tetrazolium concentration that can identify seed viability better than others, and 3) that pretreatment with KNO3 or AG3 improves seed germination. Seed germination was assessed using a completely randomized design with three treatments (control and the germination promoters 0.2 % KNO3 and 500 mg/L AG3), four treatments for the viability test (control, 0.2, 0.5 and 1.0 % of tetrazolium) and six replicates for each treatment. A total of one hundred seeds for germination experiments, and 25 seeds for the viability test were used. The results between and within years were analyzed with ANOVA and multiple comparison with the Tukey test. The proportion of non-germinated seeds was quantified along with the number of normal and abnormal seedlings, seeds with viable embryo, seeds without embryo, and seeds with low or no viability. On average, for the 2012 collected sample, 36 % had viable embryos, 7 % had low viability, 24 % were not viable and 33 % had no embryo. This result was significantly different from the 2015 sample, for which 87 % of seed showed viable embryos, 10 % had low viability, 0 % was not viable and 3 % had no embryo. Seed germination was also significantly different between years (22 and 92 %) Pregerminative treatments did not improve germination. Seed germination and viability of H. perotensis significantly varied between years of seed collection.
NASA Astrophysics Data System (ADS)
Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore
2014-02-01
The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (P<0.05) compared to the other tested doses (1, 2, 3, 4, 6 and 7 J/cm2) and sham irradiated controls. In conclusion, the LLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.
Jin, Aihong; Chen, Hao; Wang, Chaoqun; Tsang, Lai Ling; Jiang, Xiaohua; Cai, Zhiming; Chan, Hsiao Chang; Zhou, Xiaping
2014-06-01
To examine the expression of CD147 in 60 human endometriosis lesions and how CD147 regulates migration and apoptosis in human uterine epithelial (HESs) cells. Experimental clinical study and laboratory-based investigation. Hospital and academic research center. Sixty women with chocolate cysts and 16 control women without endometriosis. Human uterine epithelial cells were treated with anti-CD147 antibody. Real-time polymerase chain reaction for detecting CD147 expression in 60 human endometriosis lesions; migration assay and CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS) assay for cell functional investigation; Western blot for detecting protein levels; gelatin zymography for evaluating the activity of matrix metalloproteinase-2 (MMP-2) in cultured cells. Expression of CD147 was significantly higher in ectopic endometrial tissues from patients with endometriosis than in normal endometrial tissues. Interference with CD147 function led to decreased migration and cell viability in HESs cells. Surprisingly, MMP-2 expression and activity were not changed after treating HESs cells with anti-CD147 antibody. Further examination revealed that immunodepletion of CD147 induced apoptosis in HESs cells, leading to the activation of caspase 3 and poly(ADP-ribose) polymerase. The results of the present study suggest that abnormally high expression of CD147 in ovarian endometriosis lesions with enhanced cell survival (reduced apoptosis) and migration, in an MMP-2-independent manner, may underlie the progression of endometriosis in humans. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Influence of gravity and light on the developmental polarity of Ceratopteris richardii fern spores
NASA Technical Reports Server (NTRS)
Edwards, E. S.; Roux, S. J.
1998-01-01
The polarity of germinating single-celled spores of the fern Ceratopteris richardii Brogn. is influenced by gravity during a time period prior to the first cellular division designated a "polarity-determination window". After this window closes, control of polarity is seen in the downward (with respect to gravity) migration of the nucleus along the proximal face of the spore and the subsequent downward growth of the primary rhizoid. When spores are germinated on a clinostat the direction of nuclear migration and subsequent primary rhizoid growth is random. However, in each case the direction of nuclear migration predicts the direction of rhizoid elongation. Although it is the most obvious movement, the downward migration is not the first movement of the nucleus. During the polarity-determination window, the nucleus moves randomly within a region centered behind the trilete marking. While the polarity of many fern spores has been reported to be controlled by light, spores of C. richardii are the first documented to have their polarity influenced by gravity. Directional white light also affects the polarity of these spores, but this influence is slight and is secondary to that of gravity.
Strandberg, Roine; Klaassen, Raymond H.G.; Hake, Mikael; Olofsson, Patrik; Alerstam, Thomas
2008-01-01
Autumn migration of adult Eurasian hobbies Falco subbuteo from Europe to southern Africa was recorded by satellite telemetry and observed routes were compared with randomly simulated routes. Two non-random features of observed routes were revealed: (i) shifts to more westerly longitudes than straight paths to destinations and (ii) strong route convergence towards a restricted area close to the equator (1° S, 15° E). The birds migrated south or southwest to approximately 10° N, where they changed to south-easterly courses. The maximal spread between routes at 10° N (2134 km) rapidly decreased to a minimum (67 km) close to the equator. We found a striking relationship between the route convergence and the distribution of continuous rainforest, suggesting that hobbies minimize flight distance across the forest, concentrating in a corridor where habitat may be more suitable for travelling and foraging. With rainforest forming a possible ecological barrier, many migrants may cross the equator either at 15° E, similar to the hobbies, or at 30–40° E, east of the rainforest where large-scale migration is well documented. Much remains to be understood about the role of the rainforest for the evolution and future of the trans-equatorial Palaearctic-African bird migration systems. PMID:18986977
Shih, Yung-Luen; Chou, Hsiao-Min; Chou, Hsiu-Chen; Lu, Hsu-Feng; Chu, Yung-Lin; Shang, Hung-Sheng; Chung, Jing-Gung
2017-09-01
Casticin, a polymethoxyflavone, is one of the major active components obtained from Fructus viticis, which have been shown to have anticancer activities including induce cell apoptosis in human cancer cells. The aim of this study was to investigate the molecular mechanisms by which casticin inhibits cell migration and invasion of mouse melanoma B16F10 cells. Cell viability was examined by MTT assay and the results indicated that casticin decreased the total percentages of viable cells in dose-dependent manners. Casticin affected cell migration and invasion in B16F10 cells were examined by wound healing mobility assay and Boyden chamber migration and invasion assay and results indicated that casticin inhibited cell migration and invasion in dose-dependent manners. Western blotting was used to examine the protein expression of B16F10 cells after exposed to casticin and the results showed that casticin decreased the expressions of MMP-9, MMP-2, MMP-1, FAK, 14-3-3, GRB2, Akt, NF-κB p65, SOS-1, p-EGFR, p-JNK 1/2, uPA, and Rho A in B16F10 cells. Furthermore, cDNA microarray assay was used to show that casticin affected associated gene expression of cell migration and invasion and the results indicated that casticin affected some of the gene expression such as increased SCN1B (cell adhesion molecule 1) and TIMP2 (TIMP metallopeptidase inhibitor 2) and decreased NDUFS4 (NADH dehydrogenase (ubiquinone) Fe-S protein4), VEGFA (vascular endothelial growth factor A), and DDIT3 (DNA-damage-inducible transcript 3) which associated cell migration and invasion in B16F10 cells. Based on those observations, we suggest that casticin could be used as a novel anticancer metastasis of melanoma cancer in the future. © 2017 Wiley Periodicals, Inc.
Zhang, Yan; Cheng, Xiaoling; Liang, Hua; Jin, Zhenzhen
2018-04-25
Homeobox (HOX) transcript antisense RNA (HOTAIR) is a long intergenic non-coding RNA (lncRNA) that has been reported to be highly upregulated in several types of cancers. However, the role of HOTAIR in human cervical cancer is still unclear. We therefore investigated the expression and probable function of HOTAIR in cervical cancer cells. The expression of HOTAIR was examined in (HeLa, CaSki, ME-180, HT-3) and Human Cervical Epithelial Cells (HCerEpiC) by qRT-PCR. Transfection of si-NC, si-HOTAIR or si-STAT3 was carried out with the help of Lipofectamine 2000. The cell viability was assessed by CCK-8 assay. The cell migration and invasion was examined by wound healing and Boyden chamber assays. Protein expression was determined by western blotting. Our results showed that expression of HOTAIR was significantly upregulated in cervical cancer cells and inhibition of the expression of HOTAIR in HeLa cervical cancer cells resulted in suppression of cell proliferation, migration and invasion. Further, analysis of the promoter of HOTAIR, revealed that STAT3 could potentially regulate the activity of the HOTAIR in cervical cancer cells and inhibition of STAT3 had similar effects on the proliferation, migration and invasion of the cervical cancer cells as that of HOTAIR. Further, the suppression of STAT3 expression was associated with concomitant downregulation of IncRNA HOTAIR as indicated by the qRT-PCR. To unveil if STAT3 and HOTAIR have synergistic effects on the cell migration and invasion, si-STAT3 and si-HOTAIR were co-transformed into cervical HeLa cancer cells and it was observed that STAT3 and HOTAIR could synergistically inhibit the proliferation, migration and invasion of the cervical cancer cells. Taken together we conclude that HOTAIR and STAT3 synergistically regulate the proliferation, migration and invasion of cervical cancer cells. Copyright © 2018. Published by Elsevier B.V.
Saini, Divya; Gadicherla, Prahlad; Chandra, Prakash; Anandakrishna, Latha
2017-06-01
The viability of periodontal ligament (PDL) cells is a significant determinant of the long-term prognosis of replanted avulsed teeth. A storage medium is often required to maintain the viability of these cells during the extra-alveolar period. Many studies have been carried out to search for the most suitable storage medium for avulsed teeth, but an ideal solution has not yet been found. The purpose of the study was to compare and analyze the ability of coconut milk and probiotic milk to maintain PDL cell viability. In an in vitro setting, 69 caries free human premolars with normal periodontium that had been extracted for orthodontic purposes were randomly divided into two experimental groups on the basis of storage media used (i.e., coconut milk or probiotic milk) and a Hanks' balanced salt solution (HBSS) control group (23 samples per group). Immediately after extraction, the teeth were stored dry for 20 min and then immersed for 30 min in one of the storage media. The teeth were then subjected to collagenase-dispase assay and labeled with 0.5% trypan blue staining solution for determination of cell viability. The number of viable cells was counted under a light microscope and statistically analyzed using anova and post hoc Tukey test (P ≤ 0.05). Statistical analysis demonstrated there was a significant difference (P < 0.001) between coconut milk and probiotic milk as well as HBSS in maintaining cell viability. However, there was no significant difference between probiotic milk and HBSS in ability to maintain PDL cell viability (P > 0.05). Coconut milk may not be suitable as an interim transport media due to poor maintenance of cell viability. However, probiotic milk was able to maintain PDL cell viability as well as HBSS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Viability of randomized skin flaps-an experimental study in rats.
António, Nsingi N; Monte Alto Costa, Andréa; Marques, Ruy G
2017-01-01
Randomized skin flaps are extensively used in plastic surgery, but the possibility of necrosis has challenged their use. Several studies have been conducted aiming to find ways to reduce the occurrence of necrosis. We evaluated the effects of pentoxifylline (PTX) and hyaluronidase (HLD), each alone or combined, on randomized rat skin flaps. Fifty male Wistar rats were divided into five groups of 10 animals each: control I, control II, PTX, HLD, PTX-HLD. Substances were administered from the first to the 14th postoperative day. The necrotic area was measured on the seventh and 14th postoperative day; the animals were killed on the 14th day, when samples were collected for histologic and immunohistochemical examination. On the seventh day, percentage of the necrotic area was significantly reduced in PTX, HLD, and PTX-HLD animals compared with control groups. On 14th day, percentage of the necrotic area in PTX, HDL, and PTX-HLD groups was also significantly reduced compared with control groups. PTX and PTX-HLD showed a significant reduction in dermis cellularity, V V of macrophages, and myofibroblasts compared with control groups; PTX showed a significant enhancement of L V of blood vessels compared with all other groups. The use of each substance alone or combined increased flap viability compared with control groups. On the seventh day, PTX exhibited lower viability than HLD, whereas on the 14th day there was no difference between treated groups. PTX alone enhanced the L V of blood vessels, whereas PTX-HLD did not. However, PTX-HLD was more effective in decreasing the dermis cellularity and macrophage V V than HLD alone. Copyright © 2016 Elsevier Inc. All rights reserved.
CUI, YANG; MENG, HONGMEI; LIU, WEIDONG; WANG, HUAN; LIU, QINGPENG
2015-01-01
In recent years, aqueous extract of Trametes robiniophila Murr. (Huaier), a traditional Chinese medicine, has been frequently used in China for complementary cancer therapy. However, the mechanisms underlying its anticancer effects have yet to be elucidated. The present study aimed to evaluate the ability of Huaier extract to inhibit proliferation, promote apoptosis and suppress mobility in the fibrosarcoma HT1080 cell line in vitro. The cells were treated with gradient doses of Huaier extract at concentrations of 0, 4, 8 or 16 mg/ml for 24, 48 or 72 h. The cell viability and motility were measured in vitro using MTT, invasive, migration and scratch assays. The distribution of the cell cycle and the extent of cellular apoptosis were analyzed by flow cytometry. The apoptotic pathways were detected using a mitochondrial membrane potential transition assay and western blotting. The results revealed that the cellular viability decreased significantly with increasing concentrations of Huaier extract. In addition, cell invasiveness and migration were also suppressed significantly. It was demonstrated that Huaier extract induced G2 cell-cycle arrest and cellular apoptosis in a time- and dose-dependent manner. The decreased mitochondrial membrane potential, the downregulation of B-cell lymphoma 2 and pro-caspase-3, and upregulation of Bcl-2-associated X protein, cleaved caspase-9 and caspase-3 suggested that Huaier extract induced the apoptosis of HT1080 cells through the mitochondrial pathway. The results of the present study indicate that Huaier extract is a potential complementary agent for the treatment of fibrosarcoma. PMID:25789006
Randelli, Pietro; Menon, Alessandra; Ragone, Vincenza; Creo, Pasquale; Alfieri Montrasio, Umberto; Perucca Orfei, Carlotta; Banfi, Giuseppe; Cabitza, Paolo; Tettamanti, Guido; Anastasia, Luigi
2016-08-18
Current clinical procedures for rotator cuff tears need to be improved, as a high rate of failure is still observed. Therefore, new approaches have been attempted to stimulate self-regeneration, including biophysical stimulation modalities, such as low-frequency pulsed electromagnetic fields, which are alternative and non-invasive methods that seem to produce satisfying therapeutic effects. While little is known about their mechanism of action, it has been speculated that they may act on resident stem cells. Thus, the purpose of this study was to evaluate the effects of a pulsed electromagnetic field (PST®) on human tendon stem cells (hTSCs) in order to elucidate the possible mechanism of the observed therapeutic effects. hTSCs from the rotator cuff were isolated from tendon biopsies and cultured in vitro. Then, cells were exposed to a 1-h PST® treatment and compared to control untreated cells in terms of cell morphology, proliferation, viability, migration, and stem cell marker expression. Exposure of hTSCs to PST® did not cause any significant changes in proliferation, viability, migration, and morphology. Instead, while stem cell marker expression significantly decreased in control cells during cell culturing, PST®-treated cells did not have a significant reduction of the same markers. While PST® did not have significant effects on hTSCs proliferation, the treatment had beneficial effects on stem cell marker expression, as treated cells maintained a higher expression of these markers during culturing. These results support the notion that PST® treatment may increase the patient stem cell regenerative potential.
Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells
Loureiro, Renata Ruoco; Cristovam, Priscila Cardoso; Martins, Caio Marques; Covre, Joyce Luciana; Sobrinho, Juliana Aparecida; Ricardo, José Reinaldo da Silva; Hazarbassanov, Rossen Myhailov; Höfling-Lima, Ana Luisa; Belfort, Rubens; Nishi, Mauro
2013-01-01
Purpose To compare the effectiveness of three culture media for growth, proliferation, differentiation, and viability of ex vivo cultured limbal epithelial progenitor cells. Methods Limbal epithelial progenitor cell cultures were established from ten human corneal rims and grew on plastic wells in three culture media: supplemental hormonal epithelial medium (SHEM), keratinocyte serum-free medium (KSFM), and Epilife. The performance of culturing limbal epithelial progenitor cells in each medium was evaluated according to the following parameters: growth area of epithelial migration; immunocytochemistry for adenosine 5′-triphosphate-binding cassette member 2 (ABCG2), p63, Ki67, cytokeratin 3 (CK3), and vimentin (VMT) and real-time reverse transcription polymerase chain reaction (RT–PCR) for CK3, ABCG2, and p63, and cell viability using Hoechst staining. Results Limbal epithelial progenitor cells cultivated in SHEM showed a tendency to faster migration, compared to KSFM and Epilife. Immunocytochemical analysis showed that proliferated cells in the SHEM had lower expression for markers related to progenitor epithelial cells (ABCG2) and putative progenitor cells (p63), and a higher percentage of positive cells for differentiated epithelium (CK3) when compared to KSFM and Epilife. In PCR analysis, ABCG2 expression was statistically higher for Epilife compared to SHEM. Expression of p63 was statistically higher for Epilife compared to SHEM and KSFM. However, CK3 expression was statistically lower for KSFM compared to SHEM. Conclusions Based on our findings, we concluded that cells cultured in KSFM and Epilife media presented a higher percentage of limbal epithelial progenitor cells, compared to SHEM. PMID:23378720
MALAT1 affects ovarian cancer cell behavior and patient survival
Lin, Qunbo; Guan, Wencai; Ren, Weimin; Zhang, Lingyun; Zhang, Jinguo; Xu, Guoxiong
2018-01-01
Epithelial ovarian cancer (EOC) is one of the most lethal malignancies of the female reproductive organs. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) participate in tumorigenesis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is an lncRNA and plays a role in various types of tumors. However, the function of MALAT1 on cellular behavior in EOC remains unclear. The current study explored the expression of MALAT1 in ovarian cancer tissues and in EOC cell lines. Quantitative RT-PCR analysis revealed that the expression of MALAT1 was higher in human ovarian malignant tumor tissues and EOC cells than in normal ovarian tissues and non-tumorous human ovarian surface epithelial cells, respectively. By analyzing the online database Kaplan-Meier Plotter, MALAT1 was identified to be correlated with the overall survival (OS) and progression-free survival (PFS) of patients with ovarian cancer. Furthermore, knockdown of MALAT1 by small interfering RNA (siRNA) significantly decreased EOC cell viability, migration, and invasion. Finally, dual-luciferase reporter assays demonstrated that MALAT1 interacted with miR-143-3p, a miRNA that plays a role in EOC as demonstrated in our previous study. Inhibition of MALAT1 resulted in an increase of miR-143-3p expression, leading to a decrease of CMPK protein expression. In conclusion, our results indicated that MALAT1 was overexpressed in EOC. Silencing of MALAT1 decreased EOC cell viability and inhibited EOC cell migration and invasion. These data revealed that MALAT1 may serve as a new therapeutic target of human EOC. PMID:29693187
He, Bin; Wei, Wen; Liu, Ji; Xu, Yundan; Zhao, Gang
2017-09-01
Curcumin is an anticancer compound that exerts anti-proliferative and apoptotic effects via multiple molecular targets. The purpose of the present study was to investigate the anticancer effects of curcumin in combination with 5-fluorouracil plus cisplatin (FP) on the MGC-803 human gastric cancer cell line. Following treatment with curcumin and/or FP for 24, 48 and 72 h, cell viability, cell cycle progression and the apoptosis rate were evaluated using an MTT assay, flow cytometry and dual acridine orange/ethidium bromide staining, respectively. In addition, colony formation, Transwell migration and caspase-3/caspase-8 activity assays were performed. The expression of the apoptosis regulator B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected by western blotting analysis. Following treatment with curcumin and/or FP, cell viability, colony formation and cell migration were significantly reduced compared with the untreated control group. The rate of apoptosis, caspase-3/caspase-8 activity and the expression of Bax were significantly increased, whereas Bcl-2 expression was significantly reduced following treatment with curcumin and/or FP, compared with the untreated control group. The efficacy of curcumin combined with low-dose FP was significantly increased, compared with that of curcumin combined with high-dose FP (P<0.05). Therefore, curcumin may enhance the anticancer effects of FP chemotherapy in MGC-803 cells through the promotion of apoptosis via the caspase-3/caspase-8, Bcl-2 and Bax signaling pathways. These results suggest that curcumin may serve as a synergistic drug with chemotherapy regimen FP for the treatment of gastric cancer.
Yang, Min Jae; Kim, Jin Hong; Yoo, Byung Moo; Hwang, Jae Chul; Yoo, Jun Hwan; Lee, Ki Seong; Kang, Joon Koo; Kim, Soon Sun; Lim, Sun Gyo; Shin, Sung Jae; Cheong, Jae Youn; Lee, Kee Myung; Lee, Kwang Jae; Cho, Sung Won
2015-01-01
Covered self-expandable metal stents (SEMSs) are increasingly used as alternatives to uncovered SEMSs for the palliation of inoperable malignant distal biliary obstruction to counteract tumor ingrowth. We aimed to compare the outcomes of partially covered and uncovered SEMSs with identical mesh structures and anti-migration properties, such as low axial force and flared ends. One hundred and three patients who were diagnosed with inoperable malignant distal biliary obstruction between January 2006 and August 2013 were randomly assigned to either the partially covered (n = 51) or uncovered (n = 52) SEMS group. There were no significant differences in the cumulative stent patency, overall patient survival, stent dysfunction-free survival and overall adverse events, including pancreatitis and cholecystitis, between the two groups. Compared to the uncovered group, stent migration (5.9% vs. 0%, p = 0.118) and tumor overgrowth (7.8% vs. 1.9%, p = 0.205) were non-significantly more frequent in the partially covered group, whereas tumor ingrowth showed a significantly higher incidence in the uncovered group (5.9% vs. 19.2%, p = 0.041). Stent migration in the partially covered group occurred only in patients with short stenosis of the utmost distal bile duct (two in ampullary cancer, one in bile duct cancer), and did not occur in any patients with pancreatic cancer. For the palliation of malignant distal biliary obstruction, endoscopic placement of partially covered SEMSs with anti-migration designs and identical mesh structures to uncovered SEMSs failed to prolong cumulative stent patency or reduce stent migration.
Evaluating the Potential of Tributary Restoration to Increase the Overall Survival of Salmon
NASA Astrophysics Data System (ADS)
Budy, P.; Schaller, H.
2006-12-01
Stream restoration has become a major focus of conservation efforts with millions of dollars spent each year on efforts aimed at recovering imperiled species; however, for animals with complex life-history strategies, this reliance on stream restoration for increasing overall survival requires that several key assumptions be met. We addressed fundamental uncertainties of the current focus on tributary restoration for recovery of endangered Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha): 1) is there potential for improving habitat in tributary streams, 2) what magnitude of early survival improvement can be expected based on stream restoration, and 3) will incremental increases in early survival be sufficient to ensure viability of the populations that compose the Evolutionarily Significant Unit (ESU)? We combined simple mechanistic habitat models, population viability measures, and categorical filters to quantify the potential for increasing total life-cycle survival (TLCS) across all 32 populations (ESU), based on increases to early freshwater survival, predicted to occur in response to restored tributary condition. A wide gap remains between how much survival improvement is needed, versus what is likely to occur under tributary restoration; tributary restoration has the potential to increase survival to the necessary minimum for only four populations in the ESU while the remaining populations (84%) still fall far below the survival needed for future viability. In addition, across the ESU; on average, a 171% increase in TLCS is necessary, whereas only ~106% appears possible. A recovery strategy for these salmon that relies largely on tributary restoration, to mitigate for known mortality imposed at other life stages (e.g., migration through hydropower dams) is risky and has a low probability of success. For animals with complex life cycles and exhibiting long migrations, stream restoration efforts may be ineffective and misplaced, if the targeted life stage is not limiting or unresponsive, and/or if there is little potential for increasing survival overall. We demonstrate both an approach for, and the importance of, completing a comprehensive a prior evaluation of restoration potential, such that scarce resources can be allocated to efforts with the greatest potential and the least amount of risk.
NASA Astrophysics Data System (ADS)
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
Modeling a secular trend by Monte Carlo simulation of height biased migration in a spatial network.
Groth, Detlef
2017-04-01
Background: In a recent Monte Carlo simulation, the clustering of body height of Swiss military conscripts within a spatial network with characteristic features of the natural Swiss geography was investigated. In this study I examined the effect of migration of tall individuals into network hubs on the dynamics of body height within the whole spatial network. The aim of this study was to simulate height trends. Material and methods: Three networks were used for modeling, a regular rectangular fishing net like network, a real world example based on the geographic map of Switzerland, and a random network. All networks contained between 144 and 148 districts and between 265-307 road connections. Around 100,000 agents were initially released with average height of 170 cm, and height standard deviation of 6.5 cm. The simulation was started with the a priori assumption that height variation within a district is limited and also depends on height of neighboring districts (community effect on height). In addition to a neighborhood influence factor, which simulates a community effect, body height dependent migration of conscripts between adjacent districts in each Monte Carlo simulation was used to re-calculate next generation body heights. In order to determine the direction of migration for taller individuals, various centrality measures for the evaluation of district importance within the spatial network were applied. Taller individuals were favored to migrate more into network hubs, backward migration using the same number of individuals was random, not biased towards body height. Network hubs were defined by the importance of a district within the spatial network. The importance of a district was evaluated by various centrality measures. In the null model there were no road connections, height information could not be delivered between the districts. Results: Due to the favored migration of tall individuals into network hubs, average body height of the hubs, and later, of the whole network increased by up to 0.1 cm per iteration depending on the network model. The general increase in height within the network depended on connectedness and on the amount of height information that was exchanged between neighboring districts. If higher amounts of neighborhood height information were exchanged, the general increase in height within the network was large (strong secular trend). The trend in the homogeneous fishnet like network was lowest, the trend in the random network was highest. Yet, some network properties, such as the heteroscedasticity and autocorrelations of the migration simulation models differed greatly from the natural features observed in Swiss military conscript networks. Autocorrelations of district heights for instance, were much higher in the migration models. Conclusion: This study confirmed that secular height trends can be modeled by preferred migration of tall individuals into network hubs. However, basic network properties of the migration simulation models differed greatly from the natural features observed in Swiss military conscripts. Similar network-based data from other countries should be explored to better investigate height trends with Monte Carlo migration approach.
Impact of density-dependent migration flows on epidemic outbreaks in heterogeneous metapopulations
NASA Astrophysics Data System (ADS)
Ripoll, J.; Avinyó, A.; Pellicer, M.; Saldaña, J.
2015-08-01
We investigate the role of migration patterns on the spread of epidemics in complex networks. We enhance the SIS-diffusion model on metapopulations to a nonlinear diffusion. Specifically, individuals move randomly over the network but at a rate depending on the population of the departure patch. In the absence of epidemics, the migration-driven equilibrium is described by quantifying the total number of individuals living in heavily or lightly populated areas. Our analytical approach reveals that strengthening the migration from populous areas contains the infection at the early stage of the epidemic. Moreover, depending on the exponent of the nonlinear diffusion rate, epidemic outbreaks do not always occur in the most populated areas as one might expect.
Modeling of thin film GaAs growth
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.
1982-01-01
A potential scaling Monte Carlo model of crystal growth is developed. The model is a modification of the solid-on-solid method for studying crystal growth in that potentials at surface sites are continuously updated on a time scale reflecting the surface events of migration, incorporation and evaporation. The model allows for B on A type of crystal growth and lattice disregistry by the assignment of potential values at various surface sites. The surface adatoms are periodically assigned a random energy from a Boltzmann distribution and this energy determines whether the adatoms evaporate, migrate or remain stationary during the sampling interval. For each addition or migration of an adatom, the surface potentials are adjusted to reflect the adsorption, migration or desorption potential changes.
Hölzel, Lars P; Ries, Zivile; Zill, Jördis M; Kriston, Levente; Dirmaier, Jörg; Härter, Martin; Bermejo, Isaac
2014-07-04
Many of the approximately 15 million people with a migration background living in Germany (19% of the population) are inadequately reached by existing healthcare provision. In the literature, the necessity for cultural adaptation of information material for patients with a migration background is often cited as a measure for improving healthcare.In this study, culturally sensitive information material will be developed and evaluated for patients with a migration background and depression or chronic low back pain. In this respect, it will be examined whether culturally sensitive information material is judged as more useful by the patients than standard translated patient information without cultural adaptation. The implementation and evaluation of culturally sensitive patient information material will occur in the framework of a double-blind randomized controlled parallel-group study in four study centres in Germany. Primary care patients with a Turkish, Polish, Russian or Italian migration background with a diagnosis of depressive disorder or chronic low back pain will be included and randomly allocated to the intervention group or the control group. In the intervention group, culturally sensitive patient information will be handed to the patient at the end of the physician consultation, while in the control group, standard translated patient information material will be provided. The patients will be surveyed by means of questionnaires following the consultation as well as after 8 weeks and 6 months. In addition to the primary outcome (subjective usefulness), several patient- and physician-rated secondary outcomes will be considered. The study will provide an empirical answer to the question of whether persons with a migration background perceive culturally sensitive patient information material as more useful than translated information material without cultural adaptation. Deutsches Register Klinischer Studien (DRKS-ID) DRKS00004241 and Universal Trial Number (UTN) U1111-1135-8043.
Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.
Potdar, Alka A; Jeon, Junhwan; Weaver, Alissa M; Quaranta, Vito; Cummings, Peter T
2010-03-10
Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW). Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation). Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.
Isolation of hair follicle bulge stem cells from YFP-expressing reporter mice.
Nakrieko, Kerry-Ann; Irvine, Timothy S; Dagnino, Lina
2013-01-01
In this article we provide a method to isolate hair follicle stem cells that have undergone targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26-yellow fluorescent protein (YFP) reporter background, which results in YFP expression in the targeted stem cell population. These cells are isolated and purified by fluorescence-activated cell sorting, using epidermal stem cell-specific markers in conjunction with YFP fluorescence. The purified cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as viability and capacity for directional migration.
Therapeutic potential of Pirfenidone for treating equine corneal scarring
Fink, Michael K.; Giuliano, Elizabeth A.; Tandon, Ashish; Mohan, Rajiv R.
2014-01-01
Objective To evaluate the safety and efficacy of Pirfenidone (PFD) in the treatment of equine corneal fibrosis using an in vitro model. Methods Healthy donor equine corneas were collected and used to generate primary equine corneal fibroblasts (ECFs) by growing cultures in minimal essential medium supplemented with 10% fetal bovine serum. Equine corneal myofibroblasts (ECMs), used as a model of equine corneal fibrosis, were produced by growing ECF cultures in serum-free medium containing transforming growth factor β1 (1ng/ml). Trypan blue viability assays and changes in ECF morphology were utilized to determine the optimal PFD dose for this in vitro model. Trypan blue viability, phase contrast microscopy, and TUNEL assays were used to evaluate the cytotoxicity of PFD. Scratch and MTT assays were used to evaluate the effect of PFD on cellular migration and proliferation. Real-time PCR, immunoblot analysis, and immunocytochemistry were employed to determine the efficacy of PFD to inhibit ECM formation in vitro. Results Topical PFD application at 200 μg/ml successfully decreased αSMA expression when compared to the TGFβ1 only treatment group (P < 0.01). PFD application ≤ 200 μg/ml did not affect ECF phenotype or cellular viability and did not result in significant cytotoxicity. Conclusions Pirfenidone safely and effectively inhibits TGFβ1-induced equine corneal fibrosis in vitro. In vivo studies are warranted. PMID:25041235
Blocki, Anna; Löper, Farina; Chirico, Nino; Neffe, Axel T; Jung, Friedrich; Stamm, Christof; Lendlein, Andreas
2017-01-01
Cell-based therapies often face the challenge of low cell retention and viability upon transplantation. Hence, biomaterials, which can immobilize transplanted cells, while at the same time support cell viability, are essential for successful clinical application. Noteworthy, biomaterials in the micrometer range such as microcapsules or microspheres have the advantage of a minimally invasive introduction into tissue.Hence, we established an approach to generate gelatin-based cell carriers in the form of microspherical hydrogels. Fibroblasts were microencapsulated in glycidylmethacrylate (GMA)-functionalized gelatin by photopolymerization. While the degree of GMA-functionalization was kept constant, the hydrogel cross-linking density was adjusted by varying the time of irradiation or the average gelatin-chain length.Stable microspheres were synthesized from 10 wt% GMA-gelatin solutions for all irradiation periods tested (0.5 -2 min). Evaluation of cell viability revealed that microgels with the same weight content of biopolymer but with decreased cross-linking densities and thus decreased storage and E modulus, resulted in best cell support. Noteworthy, encapsulated cells partially migrated out of the microspheres and attached to the spherical surface.10 wt% GMA-gelatin-based hydrogels with E moduli comparable to the native cellular niche proved to be a promising biomaterial suitable for the production of cell-laden microspheres and shall be evaluated further for biomedical application.
Stutzman, Ryan J.; Fontaine, Joseph J
2015-01-01
Changes in temperature and seasonality resulting from climate change are heterogeneous, potentially altering important sources of natural selection acting on species phenology. Some species have apparently adapted to climate change but the ability of most species to adapt remains unknown. The life history strategies of migratory animals are dictated by seasonal factors, which makes these species particularly vulnerable to heterogeneous changes in climate and phenology. Here, we examine the phenology of migratory shorebirds, their habitats, and primary food resources, and we hypothesize how climate change may affect migrants through predicted changes in phenology. Daily abundance of shorebirds at stopover sites was correlated with local phenology and peaked immediately prior to peaks in invertebrate food resources. A close relationship between migrant and invertebrate phenology indicates that shorebirds may be vulnerable to changes in seasonality driven by climate change. It is possible that shifts in migrant and invertebrate phenology will be congruent in magnitude and direction, but because migration phenology is dependent on a suite of ecological factors, any response is likely to occur at a larger temporal scale and may lag behind the response of invertebrate food resources. The resulting lack of sufficient access to food at stopover habitats may cause migrants to extend migration and have cascading effects throughout their life cycle. If the heterogeneous nature of climate change results in uneven changes in phenology between migrants and their prey, it may threaten the long-term viability of migratory populations
Usp7 promotes medulloblastoma cell survival and metastasis by activating Shh pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Meixiao; Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Jinan University, Zhuhai; Sun, Xiaohan
The ubiquitin-specific protease Usp7 plays roles in multiple cellular processes through deubiquitinating and stabilizing numerous substrates, including P53, Pten and Gli. Aberrant Usp7 activity has been implicated in many disorders and tumorigenesis, making it as a potential target for therapeutic intervention. Although it is clear that Usp7 is involved in many types of cancer, its role in regulating medulloblastoma (MB) is still unknown. In this study, we show that knockdown of Usp7 inhibits the proliferation and migration of MB cells, while Usp7 overexpression exerts an opposite effect. Furthermore, we establish Usp7 knockout MB cell line using the CRISPR/Cas9 system andmore » further confirm that Usp7 knockout also blocks MB cell proliferation and metastasis. In addition, we reveal that knockdown of Usp7 compromises Shh pathway activity and decrease Gli protein levels, while P53 level and P53 target gene expression have no obvious changes. Finally, we find that Usp7 inhibitors apparently inhibit MB cell viability and migration. Taken together, our findings suggest that Usp7 is important for MB cell proliferation and metastasis by activating Shh pathway, and is a putative therapeutic target for MBs. - Highlights: • Loss of usp7 blocks the proliferation and metastasis of MB cells. • Usp7 regulates MB cell growth and migration through stimulating Shh pathway. • Usp7 inhibitors hamper MB cell proliferation and migration. • Usp7 inhibitors could attenuate Shh pathway activity.« less
Prevention of stone migration with the Accordion during endoscopic ureteral lithotripsy.
Pagnani, Christopher J; El Akkad, Magdy; Bagley, Demetrius H
2012-05-01
Endoscopic lithotripsy is often prolonged secondary to the retrograde migration of calculous fragments. Various balloons, baskets, and other devices have been used to prevent this migration. Our purpose is to analyze the effect of the Accordion(®) on stone migration and overall efficiency during lithotripsy. We prospectively evaluated 21 patients with a total of 23 distal ureteral stones. Patients underwent lithotripsy using an endoscopic impact lithotriptor. The Accordion was randomly used in 11 of these 21 patients. Data were collected regarding stone migration, stone size, stone ablation, ureteral clearing, and lengths of time for various stages of each procedure. Patients who were treated with the Accordion device experienced significantly less retrograde migration during fragmentation (P=0.0064). When stone volume was taken into account (but not on a per stone basis), ablation and ureteral clearing were also expedited, and fewer lithotripter "hits" and basket "sweeps" were needed. The Accordion device is effective in preventing the migration of stone fragments during endoscopic ureteral lithotripsy. Our data suggest that this device may also increase efficiency of the fragmentation and clearance of ureteral calculi.
[Migration expectations among nursing students in Mexico City].
Rosales-Martínez, Yetzi; Nigenda, Gustavo; Galárraga, Omar; Ruiz-Larios, José Arturo
2010-01-01
To analyze the factors associated with the expectations to migrate abroad among nursing students in Mexico City. A cross-sectional study was conducted with a non-random sample of 420 students. A logistic regression model was estimated. A total of 69% of the informants expressed their intention to move abroad, to look for employment (65%) and/or to continue their studies (26%). Of those, 50% would choose Canada as their destination, followed by Spain and the United States. The variables associated with migration expectations were: age, income, having relatives abroad, and perception of poor labor conditions and low wages in Mexico. Results are consistent with international literature. Low wages, poor labor conditions and the limited possibilities for professional development in Mexico are factors that contribute to generate migration expectations among nursing students. Additionally, optimistic perceptions about the job market and the labor demand in more developed countries heighten expectations to migrate.
Evolution with Stochastic Fitness and Stochastic Migration
Rice, Sean H.; Papadopoulos, Anthony
2009-01-01
Background Migration between local populations plays an important role in evolution - influencing local adaptation, speciation, extinction, and the maintenance of genetic variation. Like other evolutionary mechanisms, migration is a stochastic process, involving both random and deterministic elements. Many models of evolution have incorporated migration, but these have all been based on simplifying assumptions, such as low migration rate, weak selection, or large population size. We thus have no truly general and exact mathematical description of evolution that incorporates migration. Methodology/Principal Findings We derive an exact equation for directional evolution, essentially a stochastic Price equation with migration, that encompasses all processes, both deterministic and stochastic, contributing to directional change in an open population. Using this result, we show that increasing the variance in migration rates reduces the impact of migration relative to selection. This means that models that treat migration as a single parameter tend to be biassed - overestimating the relative impact of immigration. We further show that selection and migration interact in complex ways, one result being that a strategy for which fitness is negatively correlated with migration rates (high fitness when migration is low) will tend to increase in frequency, even if it has lower mean fitness than do other strategies. Finally, we derive an equation for the effective migration rate, which allows some of the complex stochastic processes that we identify to be incorporated into models with a single migration parameter. Conclusions/Significance As has previously been shown with selection, the role of migration in evolution is determined by the entire distributions of immigration and emigration rates, not just by the mean values. The interactions of stochastic migration with stochastic selection produce evolutionary processes that are invisible to deterministic evolutionary theory. PMID:19816580
Essential role of STX6 in esophageal squamous cell carcinoma growth and migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Jin; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028; Liu, Xiang
Abnormalities in endosomes, or dysregulation in their trafficking, play an important role directly in many diseases including oncogenesis. Syntaxin-6 (STX6) is involved in diverse cellular functions in a variety of cell types and has been shown to regulate many intracellular membrane trafficking events such as endocytosis, recycling and anterograde and retrograde trafficking. However, its expression pattern and biological functions in esophageal squamous cell carcinoma (ESCC) remained unknown. Here, we have found that the expression of STX6 was up-regulated in ESCC samples, its expression was significantly correlated with tumor size, histological differentiation, lymph node metastasis and depth. On one hand, STX6more » silencing inhibited ESCC cells viability and proliferation in a p53-dependent manner. On the other hand, STX6 effect integrin trafficking and regulate ESCC cells migration. Taken together, our study revealed the oncogenic roles of STX6 in the progression of ESCC, and it might be a valuable target for ESCC therapy.« less
Silva, Maria C. C. de Sousa e; Gonçalves, Luis R. C.
1996-01-01
The injection of Crotalus durissus terrificus venom into the foot pad of mice did not induce a significant inflammatory response as evaluated by oedema formation, increased vascular permeability and cell migration. The subcutaneous injection of the venom, or its addition to cell cultures, had an inhibitory effect on the spreading and phagocytosis of resident macrophages, without affecting the viability of the cells. This effect was not observed when the venom was added to cultures of thioglycollate elicited macrophages, but it was able to inhibit these macrophage functions when the cells were obtained from animals injected simultaneously with the venom and thioglycollate. These observations suggest that the venom interferes with the mechanisms of macrophage activation. Leukocyte migration induced by intraperitoneal injection of thioglycollate was also inhibited by previous venom injection. This down-regulatory activity of the venom on macrophage functions could account for the mild inflammatory response observed in the site of the snake bite in Crotalus durissus terrificus envenomation in man. PMID:18475692
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yunzhen; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025; Wang, Gaoxiong
Long non-coding RNAs (LncRNAs) have played very important roles in the malignancy behaviors of hepatocellular carcinoma (HCC). Linc-cdh4-2 (TCONS-00027978) is a novel LncRNA that has been identified in HCC tissues from our previous study. Overexpression of linc-cdh4-2 in HCC cell lines (SK-Hep-1 and Huh7) significantly decreases the migration and invasion abilities of these cells, while knockdown the expression of linc-cdh4-2 significantly increases the migration and invasion abilities. Interestingly, neither the over expression nor the knock down of linc-cdh4-2 could affect the viability and proliferation of HCC cells. Mechanistically, the linc-cdh4-2 could up-regulate the protein level of R-cadherin through direct bindingmore » that might improve the protein stability. Over expression of linc-cdh4-2 could significantly increase the protein levels of R-cadherin and decrease the protein levels of small GTPase RAC1, and vice-versa. Further knockdown R-cadherin in linc-cdh4-2 stably overexpressed cells, could significantly upregulate the protein levels of RAC1 and improve the cell migration and invasion abilities. Taken together, the novel linc-cdh4-2 may negatively regulate the motility of the HCC cells through targeting R-cadherin-RAC1 signaling pathway. - Highlights: • Linc-cdh4-2 negatively related with the invasion and metastasis ability of HCC cells. • Linc-cdh4-2 could up-regulate the protein level of R-cadherin through direct binding. • Knockdown of R-cadherin increases the migration and invasion abilities of HCC cell. • Knockdown of R-cadherin could significantly upregulate the protein levels of RAC1.« less
Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization.
Tang, L; Wu, J J; Ma, Q; Cui, T; Andreopoulos, F M; Gil, J; Valdes, J; Davis, S C; Li, J
2010-07-01
Human lactoferrin (hLF), a member of the transferrin family, is known for its antimicrobial and anti-inflammatory effects. Recent studies on various nonskin cell lines indicate that hLF may have a stimulatory effect on cell proliferation. To study the potential role of hLF in wound re-epithelialization. The effects of hLF on cell growth, migration, attachment and survival were assessed, with a rice-derived recombinant hLF (holo-rhLF), using proliferation analysis, scratch migration assay, calcein-AM/propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) method, respectively. The mechanisms of hLF on cell proliferation and migration were explored using specific pathway inhibitors. The involvement of lactoferrin receptor low-density lipoprotein receptor-related protein 1 (LRP1) was examined with RNA interference technique. An in vivo swine second-degree burn wound model was also used to assess wound re-epithelialization. Studies revealed that holo-rhLF significantly stimulated keratinocyte proliferation which could be blocked by mitogen-activated protein kinase (MAPK) kinase 1 inhibitor. Holo-rhLF also showed strong promoting effects on keratinocyte migration, which could be blocked by either inhibition of the MAPK, Src and Rho/ROCK pathways, or downregulation of the LRP1 receptor. With cells under starving or 12-O-tetradecanoylphorbol-13-acetate exposure, the addition of holo-rhLF was found greatly to increase cell viability and inhibit cell apoptosis. Additionally, holo-rhLF significantly increased the rate of wound re-epithelialization in swine second-degree burn wounds. Our studies demonstrate the direct effects of holo-rhLF on wound re-epithelialization including the enhancement of keratinocyte proliferation and migration as well as the protection of cells from apoptosis. The data strongly indicate its potential therapeutic applications in wound healing.
Role of NADPH Oxidase-4 in Human Endothelial Progenitor Cells
Hakami, Nora Y.; Ranjan, Amaresh K.; Hardikar, Anandwardhan A.; Dusting, Greg J.; Peshavariya, Hitesh M.
2017-01-01
Introduction: Endothelial progenitor cells (EPCs) display a unique ability to promote angiogenesis and restore endothelial function in injured blood vessels. NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) serves as a signaling molecule and promotes endothelial cell proliferation and migration as well as protecting against cell death. However, the role of NOX4 in EPC function is not completely understood. Methods: EPCs were isolated from human saphenous vein and mammary artery discarded during bypass surgery. NOX4 gene and protein expression in EPCs were measured by real time-PCR and Western blot analysis respectively. NOX4 gene expression was inhibited using an adenoviral vector expressing human NOX4 shRNA (Ad-NOX4i). H2O2 production was measured by Amplex red assay. EPC migration was evaluated using a transwell migration assay. EPC proliferation and viability were measured using trypan blue counts. Results: Inhibition of NOX4 using Ad-NOX4i reduced Nox4 gene and protein expression as well as H2O2 formation in EPCs. Inhibition of NOX4-derived H2O2 decreased both proliferation and migration of EPCs. Interestingly, pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) decreased NOX4 expression and reduced survival of EPCs. However, the survival of EPCs was further diminished by TNF-α in NOX4-knockdown cells, suggesting that NOX4 has a protective role in EPCs. Conclusion: These findings suggest that NOX4-type NADPH oxidase is important for proliferation and migration functions of EPCs and protects against pro-inflammatory cytokine induced EPC death. These properties of NOX4 may facilitate the efficient function of EPCs which is vital for successful neovascularization. PMID:28386230
ALG2 regulates glioblastoma cell proliferation, migration and tumorigenicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Dunke; Wang, Feng; Pang, Yi
Apoptosis-linked gene-2 (ALG-2), also known as programmed cell death 6 (PDCD6), has recently been reported to be aberrantly expressed in various tumors and required for tumor cell viability. The aim of the present study was to investigate whether ALG-2 plays a crucial role in tumor cell proliferation, migration and tumorigenicity. In this study, we examined the expression of PDCD6 in glioblastoma cell lines and found that ALG-2 was generally expressed in glioblastoma cell lines. We also performed an analysis of an online database and found that high expression of ALG-2 was associated with poor prognosis (p = 0.039). We found that over-expressionmore » of ALG2 in glioblastoma could inhibit cell proliferation and, conversely, that down-regulation of ALG2 could promote cell proliferation. Further studies showed that over-expression of ALG2 inhibited the migration of tumor cells, whereas down-regulation of ALG2 promoted tumor cell migration. Finally, in vitro and in vivo studies showed that over-expression of ALG2 inhibited the tumorigenic ability of tumor cells, while down-regulation of ALG2 promoted tumor cell tumorigenic ability. In conclusion, ALG2 has a tumor suppressive role in glioblastoma and might be a potential target for the treatment of glioblastoma. - Highlights: • Low ALG2 expression is indicative of poor prognosis in glioblastoma patients. • ALG2 is required for cell proliferation in GBM cells. • ALG2 is involved in GBM cell migration. • ALG2 is involved in GBM cell self-renewal and tumorigenesis in vitro and in vivo.« less
Yao, Zhenyu; Keeney, Michael; Lin, Tzu-Hua; Pajarinen, Jukka; Barcay, Katherine; Waters, Heather; Egashira, Kensuke; Yang, Fan; Goodman, Stuart
2014-09-01
Wear particles generated from total joint replacements can stimulate macrophages to release chemokines, such as monocyte chemoattractant protein 1 (MCP-1), which is the most important chemokine regulating systemic and local cell trafficking and infiltration of monocyte/macrophages in chronic inflammation. One possible strategy to curtail the adverse events associated with wear particles is to mitigate migration and activation of monocyte/macrophages. The purpose of this study is to modulate the adverse effects of particulate biomaterials and inflammatory stimuli such as endotoxin by interfering with the biological effects of the chemokine MCP-1. In the current study, the function of MCP-1 was inhibited by the mutant MCP-1 protein called 7ND, which blocks its receptor, the C-C chemokine receptor type 2 (CCR2) on macrophages. Addition of 7ND decreased MCP-1-induced migration of THP-1 cells in cell migration experiments in a dose-dependent manner. Conditioned media from murine macrophages exposed to clinically relevant polymethylmethacrylate (PMMA) particles with/without endotoxin [lipopolysaccharide (LPS)] had a chemotactic effect on human macrophages, which was decreased dramatically by 7ND. 7ND demonstrated no adverse effects on the viability of macrophages, and the capability of mesenchymal stem cells (MSCs) to form bone at the doses tested. Finally, proinflammatory cytokine production was mitigated when macrophages were exposed to PMMA particles with/without LPS in the presence of 7ND. Our studies confirm that the MCP-1 mutant protein 7ND can decrease macrophage migration and inflammatory cytokine release without adverse effects at the doses tested. Local delivery of 7ND at the implant site may provide a therapeutic strategy to diminish particle-associated periprosthetic inflammation and osteolysis. © 2013 Wiley Periodicals, Inc.
Ortiz-López, Leonardo; Vega-Rivera, Nelly Maritza; Babu, Harish; Ramírez-Rodríguez, Gerardo Bernabé
2017-01-01
The generation of new neurons during adulthood involves local precursor cell migration and terminal differentiation in the dentate gyrus. These events are influenced by the hippocampal microenvironment. Brain-derived neurotrophic factor (BDNF) is relevant for hippocampal neuronal development and behavior. Interestingly, studies that have been performed in controlled in vitro systems that involve isolated precursor cells that were derived from the dentate gyrus (AHPCs) have shown that BDNF induces the activation of the TrkB receptor and, consequentially, might activate signaling pathways that favor survival and neuronal differentiation. Based on the fact that the cellular events of AHPCs that are induced by single factors can be studied in this controlled in vitro system, we investigated the ability of BDNF and the involvement of protein kinase C (PKC), as one of the TrkB-downstream activated signaling proteins, in the regulation of migration, here reflected by motility, of AHPCs. Precursor cells were cultured following a concentration-response curve (1-640 ng/ml) for 24 or 96 h. We found that BDNF favored cell survival without altering the viability under culture proliferative conditions of the AHPCs. Concomitantly, glial- and neuronal-differentiated precursor cells increased as a consequence of survival promoted by BDNF. Additionally, pharmacological approaches showed that BDNF (40 ng/ml)-induced migration of AHPCs was blocked with the compounds K252a and GF109203x, which prevent the activation of TrkB and PKC, respectively. The results indicate that in the in vitro migration of differentiated AHPCs it is involved the BDNF and TrkB cascade. Our results provide additional information about the mechanism by which BDNF impacts adult neurogenesis in the hippocampus.
The effects of acoustic vibration on fibroblast cell migration.
Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic
2016-12-01
Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of PPARα inhibition in head and neck paraganglioma cells.
Florio, Rosalba; De Lellis, Laura; di Giacomo, Viviana; Di Marcantonio, Maria Carmela; Cristiano, Loredana; Basile, Mariangela; Verginelli, Fabio; Verzilli, Delfina; Ammazzalorso, Alessandra; Prasad, Sampath Chandra; Cataldi, Amelia; Sanna, Mario; Cimini, Annamaria; Mariani-Costantini, Renato; Mincione, Gabriella; Cama, Alessandro
2017-01-01
Head and neck paragangliomas (HNPGLs) are rare tumors that may cause important morbidity, because of their tendency to infiltrate the skull base. At present, surgery is the only therapeutic option, but radical removal may be difficult or impossible. Thus, effective targets and molecules for HNPGL treatment need to be identified. However, the lack of cellular models for this rare tumor hampers this task. PPARα receptor activation was reported in several tumors and this receptor appears to be a promising therapeutic target in different malignancies. Considering that the role of PPARα in HNPGLs was never studied before, we analyzed the potential of modulating PPARα in a unique model of HNPGL cells. We observed an intense immunoreactivity for PPARα in HNPGL tumors, suggesting that this receptor has an important role in HNPGL. A pronounced nuclear expression of PPARα was also confirmed in HNPGL-derived cells. The specific PPARα agonist WY14643 had no effect on HNPGL cell viability, whereas the specific PPARα antagonist GW6471 reduced HNPGL cell viability and growth by inducing cell cycle arrest and caspase-dependent apoptosis. GW6471 treatment was associated with a marked decrease of CDK4, cyclin D3 and cyclin B1 protein expression, along with an increased expression of p21 in HNPGL cells. Moreover, GW6471 drastically impaired clonogenic activity of HNPGL cells, with a less marked effect on cell migration. Notably, the effects of GW6471 on HNPGL cells were associated with the inhibition of the PI3K/GSK3β/β-catenin signaling pathway. In conclusion, the PPARα antagonist GW6471 reduces HNPGL cell viability, interfering with cell cycle and inducing apoptosis. The mechanisms affecting HNPGL cell viability involve repression of the PI3K/GSK3β/β-catenin pathway. Therefore, PPARα could represent a novel therapeutic target for HNPGL.
Oliveira, Karen A; Dal-Cim, Tharine A; Lopes, Flávia G; Nedel, Cláudia B; Tasca, Carla Inês
2017-09-01
Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells. The chemotherapy allied to adjuvant drugs are being suggested as a novel approach in gliomas treatment. In this way, this study evaluated whether GUO presented cytotoxic effects on human glioma cells as well as GUO effects in association with a classical chemotherapeutic compound, TMZ. Classical parameters of tumor aggressiveness, as alterations on cell viability, type of cell death, migration, and parameters of glutamatergic transmission, were evaluated. GUO (500 and 1000 μM) decreases the A172 glioma cell viability after 24, 48, or 72 h of treatment. TMZ alone or GUO plus TMZ also reduced glioma cell viability similarly. GUO combined with TMZ showed a potentiation effect of increasing apoptosis in A172 glioma cells, and a similar pattern was observed in reducing mitochondrial membrane potential. GUO per se did not elevate the acidic vesicular organelles occurrence, but TMZ or GUO plus TMZ increased this autophagy hallmark. GUO did not alter glutamate transport per se, but it prevented TMZ-induced glutamate release. GUO or TMZ did not alter glutamine synthetase activity. Pharmacological blockade of glutamate receptors did not change GUO effect on glioma viability. GUO cytotoxicity was partially prevented by adenosine receptor (A 1 R and A 2A R) ligands. These results point to a cytotoxic effect of GUO on A172 glioma cells and suggest an anticancer effect of GUO as a putative adjuvant treatment, whose mechanism needs to be unraveled.
Effects of SASH1 on lung cancer cell proliferation, apoptosis, and invasion in vitro.
Chen, En-guo; Chen, Yanfan; Dong, Liang-liang; Zhang, Ji-song
2012-10-01
The purposes of this study were to investigate the effects of the SASH1 gene on the growth, proliferation, apoptosis, invasiveness, and metastatic potential of lung cancer cells and explore the potential use of SASH1 for the treatment of human lung cancer. The SASH1 gene was cloned into the pcDNA3.1 eukaryotic expression vector, and SASH1 shRNA were designed and constructed. The resulting constructs were transfected into A549 human lung cancer cells, and the changes in the relevant biological characteristics of the cells overexpressing SASH1 and cells with downregulated expression of SASH1 were analyzed using the MTT assay, transwell invasion assay, and flow cytometry. The effects of the SASH1 gene on the expression of cyclin D1, Bcl-2, and MMP-2/9 were also concurrently examined. In the A549 cells from the pcDNA3.1-SASH1 transfected group, cell viability, proliferation, and migration were significantly reduced compared to the control cells (p = 0.039, p = 0.013), and a cell cycle arrest in G1 was observed. The A549 cells transfected with the SASH1 shRNA demonstrated significantly higher cell viabilities, proliferation, and migration compared to the control cells (p = 0.012, p = 0.045). Additionally, the percentage of A549 cells undergoing apoptosis was significantly higher in the pcDNA3.1-SASH1 transfected cells and significantly lower in the SASH1 shRNA transfected cells compared to the control cells (p = 0.010, p = 0.000). The cyclin D1, Bcl-2, and MMP-9/2 protein expression levels were significantly lower in the pcDNA3.1-SASH1-transfected cells and were significantly higher in the SASH1 shRNA-transfected cells than that in the control cells. The SASH1 gene may inhibit A549 cell growth and proliferation as well as promote cellular apoptosis. The overexpression of the SASH1 gene may also be related to the decreased migration of A549 human lung cancer cells.
2012-01-01
Background Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. Methods We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712–2), its succussed hydroalcoholic solvent (0712–1) and unsuccussed solvent (0712–3) on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined “wound field”. All assays were performed in three independent controlled experiments. Results None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712–2) exerted a stimulating effect on fibroblast migration (31.9%) vs 14.7% with succussed solvent (0712–1) at 1:100 dilutions (p < 0.001). Unsuccussed solvent (0712–3) had no influence on cell migration (6.3%; p > 0.05). Preparation (0712–2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p < 0.001) from succussed solvent (0712–1), which caused 22.1% wound closure. Conclusion Results of this study showed that the low potency homeopathic remedy (0712–2) exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis. PMID:22809174
Wu, Jing; Liu, Shuye; Fan, Zhijuan; Zhang, Lei; Tian, Yaqiong; Yang, Rui
2016-06-01
Cell motility and chemotaxis play pivotal roles in the process of tumor development and metastasis. Protein kinase C ζ (PKC ζ) mediates epidermal growth factor (EGF)-stimulated chemotactic signaling pathway through regulating cytoskeleton rearrangement and cell adhesion. The purpose of this study was to develop anti-PKC ζ therapeutics for breast cancer metastasis. In this study, a novel and high-efficient PKC ζ inhibitor named PKCZI195.17 was screened out through a substrate-specific strategy. MTT assay was used to determine the cell viability of human breast cancer MDA-MB-231, MDA-MB-435, and MCF-7 cells while under PKCZI195.17 treatment. Wound-healing, chemotaxis, and Matrigel invasion assays were performed to detect the effects of PKCZI195.17 on breast cancer cells migration and invasion. Adhesion, actin polymerization, and Western blotting were performed to detect the effects of PKCZI195.17 on cells adhesion and actin polymerization, and explore the downsteam signaling mechanisms involved in PKC ζ inhibition. MDA-MB-231 xenograft was used to measure the in vivo anti-metastasis efficacy of PKCZI195.17. The compound PKCZI195.17 selectively inhibited PKC ζ kinase activity since it failed to inhibit PKC α, PKC β, PKC δ, PKC η, AKT2, as well as FGFR2 activity. PKCZI195.17 significantly impaired spontaneous migration, chemotaxis, and invasion of human breast cancer MDA-MB-231, MDA-MB-435, and MCF-7 cells, while PKCZI195.17 did not obviously inhibited cells viability. PKCZI195.17 also inhibited cells adhesion and actin polymerization through attenuating the phosphorylations of integrin β1, LIMK, and cofilin, which might be the downstream effectors of PKC ζ-mediated chemotaxis in MDA-MB-231 cells. Furthermore, PKCZI195.17 suppressed the breast cancer metastasis and increased the survival time of breast tumor-bearing mice. In summary, PKCZI195.17 was a PKC ζ-specific inhibitor which dampened cancer cell migration and metastasis and may serve as a novel therapeutic drug for breast cancer metastasis.
NASA Astrophysics Data System (ADS)
Sutariati, G. A. K.; Bande, L. O. S.; Khaeruni, A.; Muhidin; Mudi, L.; Savitri, R. M.
2018-02-01
Research was aimed to evaluate the bio-invigoration techniques using Bacillus sp. CKD061 in improving seed viability and vigor of local upland rice. The research is arranged in factorial with completely randomized design (CRD). The different upland rice cultivars as first factor that consists of 11 cultivars, namely: Pae Tinangge, Pae Rowu, Pae Uwa, Pae Tanta, Pae Waburi-Buri, Pae Mornene, Pae Indalibana, Pae Lawarangka, Pae Huko, Pae Wagamba and Pae Momea. The second factor is the seed bio-invigoration technique, consists of 5 treatments, namely: without seed bio-invigoration (B0), NaCl + Bacillus sp. CKD061 (B1), KNO3 + Bacillus sp. CKD061 (B2), Ground burned-rice husk + Bacillus sp. CKD061 (B3), and Ground brick + Bacillus sp. CKD061 (B4). The results showed that seed bio-invigoration using Bacillus sp. CKD061 gave effect on the seed viability and vigor. Interaction of the seed bio-invigoration and upland rice cultivars were able to improve seed viability and vigor. Seed bio-invigoration ttreatment using ground brick + Bacillus sp. CKD061 was the best treatment, which could improve the viability and vigor of Pae Waburi-Buri, Pae Mornene and Pae Indalibana. The treatment increased vigor index by 133% in Pae Waburi-Buri and 127% in Pae Mornene, and Pae Indalibana compared with control.
NASA Astrophysics Data System (ADS)
Sumarmin, R.; Huda, N. K.; Yuniarti, E.
2018-04-01
The uncontrol using of pesticides, harmful to the environment, health, and it would have impact to non-target animal as earthworm. This study describes the effect of the Dicofol to cocoon production and viability of earthworm Pontoscolex corethrurus Fr. Mull., has been done in-July - Augustus 2016 at the zoology laboratory of Biology Department of Universitas Negeri Padang. The experiment used the Completely Randomized Design (4 treatments 6 replications). The treatments are with 0 g / l (P1), 0.002 g / L (P2), 0.004 g / L (P3), and 0.006 g / L (P4) and 0.008 g / L of Dicofol that diluted to water. The Data of production and viability of earthworm cocoons Pontoscolex corethrurus Fr. Mull collected during 30 days in alternate day. Data analyzed by ANOVA and Duncan New Multiple Range Test at p <0.05. The results Showed that the average number of cocoons production at P1 30 cocoons (the highest), 16 cocoons P2, P3 7 cocoons, and the P4 and P5 0 cocoons (the Lowest). The average percentage of cocoons viability were highest in P1, and P2 (100%); P3 (10%) and the cancel at P4 and P5 (0%). It can conclude that the pesticide Dicofol decreased the production and viability of the earthworm cocoons Pontoscolex corethrurus Fr. Mull.
D’Costa, Vivian Flourish; Bangera, Madhu Keshava; Kini, Shravan; Kutty, Shakkira Moosa; Ragher, Mallikarjuna
2017-01-01
Background and Objectives: Two of the most critical factors affecting the prognosis of an avulsed tooth after replantation are extraoral dry time and the storage media in which the tooth is placed before treatment is rendered. The present study is undertaken to evaluate the periodontal ligament (PDL) cell viability after storage of teeth in different storage media, namely, coconut water, milk, and saline. Materials and Methods: Forty sound human premolars undergoing extraction for orthodontic purpose were selected. The teeth were allowed to lie dry on sand/mud for 30 min followed by which they were randomly divided and stored in three different media, i.e., coconut water, milk, and saline. After 45-min storage in their respective media, the root surface was then scraped for PDL tissue. Results: The ANOVA and Newman–Keuls post hoc procedure for statistical analysis of viable cell count under a light microscope using hemocytometer demonstrated that coconut water preserved significantly more PDL cells viable (P < 0.05) compared with milk and saline. Conclusion: Storage media help in preserving the viability of PDL cells when immediate replantation is not possible. This study evaluated the posttraumatic PDL cells’ viability following storage in three different storage media. Within the parameters of this study, it was found that coconut water is the most effective media for maintaining the viability of PDL. PMID:29284947
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krokidis, Miltiadis, E-mail: mkrokidis@hotmail.co; Fanelli, Fabrizio; Orgera, Gianluigi
To compare clinical effectiveness of Viabil-covered stents versus uncovered metallic Wallstents, for palliation of malignant jaundice due to extrahepatic cholangiocarcinoma, 60 patients were enrolled in a prospective and randomized study. In half of the patients a bare Wallstent was used, and in the other half a Viabil biliary stent. Patients were followed up until death. Primary patency, survival, complication rates, and mean cost were calculated in both groups. Stent dysfunction occurred in 9 (30%) patients in the bare stent group after a mean period of 133.1 days and in 4 (13.3%) patients in the covered stent group after a meanmore » of 179.5 days. The incidence of stent dysfunction was significantly lower in the covered stent group (P = 0.046). Tumor ingrowth occurred exclusively in the bare stent group (P = 0.007). Median survival was 180.5 days for the Wallstent and 243.5 days for the Viabil group (P = 0.039). Complications and mean cost were similar in the two groups. Viabil stent-grafts proved to be significantly superior to Wallstents for the palliation of malignant jaundice due to extrahepatic cholangiocarcinoma, with comparable cost and complication rates. Appropriate patient selection should be performed prior to stent placement.« less
Finding a Comparison Group: Is Online Crowdsourcing a Viable Option?
ERIC Educational Resources Information Center
Azzam, Tarek; Jacobson, Miriam R.
2013-01-01
This article explores the viability of online crowdsourcing for creating matched-comparison groups. This exploratory study compares survey results from a randomized control group to survey results from a matched-comparison group created from Amazon.com's MTurk crowdsourcing service to determine their comparability. Study findings indicate…
Dancing Styles of Collective Cell Migration: Image-Based Computational Analysis of JRAB/MICAL-L2.
Sakane, Ayuko; Yoshizawa, Shin; Yokota, Hideo; Sasaki, Takuya
2018-01-01
Collective cell migration is observed during morphogenesis, angiogenesis, and wound healing, and this type of cell migration also contributes to efficient metastasis in some kinds of cancers. Because collectively migrating cells are much better organized than a random assemblage of individual cells, there seems to be a kind of order in migrating clusters. Extensive research has identified a large number of molecules involved in collective cell migration, and these factors have been analyzed using dramatic advances in imaging technology. To date, however, it remains unclear how myriad cells are integrated as a single unit. Recently, we observed unbalanced collective cell migrations that can be likened to either precision dancing or awa-odori , Japanese traditional dancing similar to the style at Rio Carnival, caused by the impairment of the conformational change of JRAB/MICAL-L2. This review begins with a brief history of image-based computational analyses on cell migration, explains why quantitative analysis of the stylization of collective cell behavior is difficult, and finally introduces our recent work on JRAB/MICAL-L2 as a successful example of the multidisciplinary approach combining cell biology, live imaging, and computational biology. In combination, these methods have enabled quantitative evaluations of the "dancing style" of collective cell migration.
Feng, Xiaolan; Wang, Pan; Liu, Quanhong; Zhang, Ting; Mai, Bingjie; Wang, Xiaobing
2015-06-01
Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.
Boron and Poloxamer (F68 and F127) Containing Hydrogel Formulation for Burn Wound Healing.
Demirci, Selami; Doğan, Ayşegül; Karakuş, Emre; Halıcı, Zekai; Topçu, Atila; Demirci, Elif; Sahin, Fikrettin
2015-11-01
Burn injuries, the most common and destructive forms of wounds, are generally accompanied with life-threatening infections, inflammation, reduced angiogenesis, inadequate extracellular matrix production, and lack of growth factor stimulation. In the current study, a new antimicrobial carbopol-based hydrogel formulated with boron and pluronic block copolymers was evaluated for its healing activity using in vitro cell culture techniques and an experimental burn model. Cell viability, gene expression, and wound healing assays showed that gel formulation increased wound healing potential. In vitro tube-like structure formation and histopathological examinations revealed that gel not only increased wound closure by fibroblastic cell activity, but also induced vascularization process. Moreover, gel formulation exerted remarkable antimicrobial effects against bacteria, yeast, and fungi. Migration, angiogenesis, and contraction-related protein expressions including collagen, α-smooth muscle actin, transforming growth factor-β1, vimentin, and vascular endothelial growth factor were considerably enhanced in gel-treated groups. Macrophage-specific antigen showed an oscillating expression at the burn wounds, indicating the role of initial macrophage migration to the wound site and reduced inflammation phase. This is the first study indicating that boron containing hydrogel is able to heal burn wounds effectively. The formulation promoted burn wound healing via complex mechanisms including stimulation of cell migration, growth factor expression, inflammatory response, and vascularization.
Müller, Maike; Raabe, Oksana; Addicks, Klaus; Wenisch, Sabine; Arnhold, Stefan
2011-03-01
In equine medicine, stem cell therapies for orthopaedic diseases are routinely accompanied by application of NSAIDs (non-steroidal anti-inflammatory drugs). Thus, it has to be analysed how NSAIDs actually affect the growth and differentiation potential of MSCs (mesenchymal stem cells) in vitro in order to predict the influence of NSAIDs such as phenylbutazone, meloxicam, celecoxib and flunixin on MSCs after grafting in vivo. The effects of NSAIDs were evaluated regarding cell viability and proliferation. Additionally, the multilineage differentiation capacity and cell migration was analysed. NSAIDs at lower concentrations (0.1-1 μM for celecoxib and meloxicam and 10-50 μM for flunixin) exert a positive effect on cell proliferation and migration, while at higher concentrations (10-200 μM for celecoxib and meloxicam and 100-1000 μM for flunixin and phenylbutazone), there is rather a negative influence. While there is hardly any influence on the adipogenic as well as on the chondrogenic MSC differentiation, the osteogenic differentiation potential, as demonstrated with the von Kossa staining, is significantly disturbed. Thus, it can be concluded that the effects of NSAIDs on MSCs are largely dependent on the concentrations used. Additionally, for some differentiation lineages, also the choice of NSAID is critical.
Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin
2016-08-05
For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC.
Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κB
Zhang, Linlin; Chen, Liping; Zhu, Min; Yao, Song; Wang, Jiabing; Wu, Jianzhang; Liang, Guang
2017-01-01
Laryngeal carcinoma remains one of the most common malignancies, and curcumin has been proven to be effective against head and neck cancers in vitro. However, it has not yet been applied in clinical settings due to its low stability. In the current study, we synthesized 34 monocarbonyl analogues of curcumin with stable structures. CA15, which exhibited a stronger inhibited effect on laryngeal cancer cells HEp-2 but a lower toxicity on hepatic cells HL-7702 in MTT assay, was selected for further analysis. The effects of CA15 on cell viability, proliferation, migration, apoptosis, and NF-κB activation were measured using MTT, Transwell migration, flow cytometry, Western blot, and immunofluorescence assays in HEp-2 cells. An NF-κB inhibitor, BMS-345541, as well as curcumin was also tested. Results showed that CA15 induced decreased toxicity towards HL-7702 cells compared to curcumin and BMS-345541. However, similar to BMS-345541 and curcumin, CA15 not only significantly inhibited proliferation and migration and induced caspase-3-dependent apoptosis but also attenuated TNF-α-induced NF-κB activation in HEp-2 cells. These results demonstrated that curcumin analogue CA15 exhibited anticancer effects on laryngeal cancer cells via targeting of NF-κB. PMID:28409156
Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κB.
Chen, Jian; Zhang, Linlin; Shu, Yilai; Chen, Liping; Zhu, Min; Yao, Song; Wang, Jiabing; Wu, Jianzhang; Liang, Guang; Wu, Haitao; Li, Wulan
2017-01-01
Laryngeal carcinoma remains one of the most common malignancies, and curcumin has been proven to be effective against head and neck cancers in vitro. However, it has not yet been applied in clinical settings due to its low stability. In the current study, we synthesized 34 monocarbonyl analogues of curcumin with stable structures. CA15, which exhibited a stronger inhibited effect on laryngeal cancer cells HEp-2 but a lower toxicity on hepatic cells HL-7702 in MTT assay, was selected for further analysis. The effects of CA15 on cell viability, proliferation, migration, apoptosis, and NF- κ B activation were measured using MTT, Transwell migration, flow cytometry, Western blot, and immunofluorescence assays in HEp-2 cells. An NF- κ B inhibitor, BMS-345541, as well as curcumin was also tested. Results showed that CA15 induced decreased toxicity towards HL-7702 cells compared to curcumin and BMS-345541. However, similar to BMS-345541 and curcumin, CA15 not only significantly inhibited proliferation and migration and induced caspase-3-dependent apoptosis but also attenuated TNF- α -induced NF- κ B activation in HEp-2 cells. These results demonstrated that curcumin analogue CA15 exhibited anticancer effects on laryngeal cancer cells via targeting of NF- κ B.
Effect of botulinum toxin A and nitroglycerin on random skin flap survival in rats.
Ghanbarzadeh, Kourosh; Tabatabaie, Omid Reza; Salehifar, Ebrahim; Amanlou, Massoud; Khorasani, Ghasemali
2016-01-01
A suitable pharmacological substitute for the well-established surgical delay technique for random skin flaps to increase viability has been elusive. To evaluate the effects of nitroglycerin and botulinum toxin type A on random flap survival in a rat model. The present controlled experimental study was performed in the four groups of rats. One week after intervention in each group, the flap was raised and kept in situ, and flap necrosis was evaluated through follow-up. Group 1 received intradermal botulinum toxin type A (BTX-A) and topical nitroglycerin 2%; group 2 received BTX-A and topical Vaseline (Unilever, USA); group 3 received topical nitroglycerin and intradermal normal saline; and group 4 received topical Vaseline and intradermal normal saline. BTX-A reduced the area of necrosis compared with control (24% versus 56% respectively; P<0.001). Nitroglycerin application was associated with a trend toward improved flap viability (42% versus 56%; P=0.059). The combination of topical nitroglycerin and BTX-A, compared with Vaseline and BTX-A, was associated with decreased flap necrosis (16.1% versus 24%, respectively), although it was not statistically significant (P=0.45). BTX-A was effective in reducing distal flap necrosis. The effect of BTX-A was significantly more pronounced than nitroglycerin ointment.
Weston, Victoria C.; Meurer, William J.; Frederiksen, Shirley M.; Fox, Allison K.; Scott, Phillip A.
2016-01-01
Objectives Cluster randomized trials (CRTs) are increasingly utilized to evaluate quality improvement interventions aimed at healthcare providers. In trials testing emergency department interventions, migration of emergency physicians (EPs) between hospitals is an important concern, as contamination may affect both internal and external validity. We hypothesized that geographically isolating emergency departments would prevent migratory contamination in a CRT designed to increase ED delivery of tPA in stroke (The INSTINCT Trial). Methods INSTINCT was a prospective, cluster randomized, controlled trial. 24 Michigan community hospitals were randomly selected in matched pairs for study. Contamination was defined at the cluster level, with substantial contamination defined a priori as >10% of EPs affected. Non-adherence, total crossover (contamination + non-adherence), migration distance and characteristics were determined. Results 307 emergency physicians were identified at all sites. Overall, 7 (2.3%) changed study sites. 1 moved between control sites, leaving 6 (2.0%) total crossovers. Of these, 2 (0.7%) moved from intervention to control (contamination) and 4 (1.3%) moved from control to intervention (non-adherence). Contamination was observed in 2 of 12 control sites, with 17% and 9% contamination of the total site EP workforce at follow-up, respectively. Average migration distance was 42 miles for all EPs moving in the study and 35 miles for EPs moving from intervention to control sites. Conclusion The mobile nature of emergency physicians should be considered in the design of quality improvement CRTs. Increased reporting of contamination in CRTs is encouraged to clarify thresholds and facilitate CRT design. PMID:25440230
Liu, Xing; Bi, Yongyi
2016-01-01
Background The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (−)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. Material/Methods PANC-1 cells, maintained in Dulbecco’s Modified Eagle’s Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator–activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). Results EGCG (20–80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARα and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. Conclusions Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARα mRNA and Caspase-3 mRNA. PMID:27694793
Liu, Xing; Bi, Yongyi
2016-10-03
BACKGROUND The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (-)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. MATERIAL AND METHODS PANC-1 cells, maintained in Dulbecco's Modified Eagle's Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator-activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS EGCG (20-80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARa and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. CONCLUSIONS Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARa mRNA and Caspase-3 mRNA.
Li, Cunshu; Chang, Ye; Li, Yuan; Chen, Shuang; Chen, Yintao; Ye, Ning; Dai, Dongxue; Sun, Yingxian
2017-01-01
The present study was aimed to investigate the role of reactive oxygen species (ROS) on advanced glycation end product (AGE)-induced proliferation and migration of vascular smooth muscle cells (VSMCs) and whether Bcl-2-associated athanogene 3 (BAG3) is involved in the process. Primary rat VSMCs were extracted and cultured in vitro. Cell viability was detected by MTT assay and cell proliferation was detected by EdU incorporation assay. Cell migration was detected by wound healing and Transwell assays. BAG3 was detected using qPCR and western blot analysis. Transcriptional and translational inhibitors (actinomycin D and cycloheximide, respectively) were used to study the effect of AGEs on the expression of BAG3 in VSMCs. Lentiviral plasmids containing short hairpin RNA (shRNA) against rat BAG3 or control shRNA were transduced into VSMCs. Cellular ROS were detected by 2′,7′-dichlorofluorescein diacetate (DCFH-DA) staining. Mitochondrial membrane potential was detected by tetramethylrhodamine methyl ester (TMRE) staining. AGEs significantly increased the expression of BAG3 in a dose-and time-dependent manner. Furthermore, AGEs mainly increased the expression of BAG3 mRNA by increasing the RNA synthesis rather than inhibiting the RNA translation. BAG3 knockdown reduced the proliferation and migration of VSMCs induced by AGEs. BAG3 knockdown reduced the generation of ROS and sustained the mitochondrial membrane potential of VSMCs. Reduction of ROS production by N-acetylcysteine (NAC), a potent antioxidant, also reduced the proliferation and migration of VSMCs. On the whole, the present study demonstrated for the first time that AGEs could increase ROS production and promote the proliferation and migration of VSMCs by upregulating BAG3 expression. This study indicated that BAG3 should be considered as a potential target for the prevention and/or treatment of vascular complications of diabetes. PMID:28350077
Li, Cunshu; Chang, Ye; Li, Yuan; Chen, Shuang; Chen, Yintao; Ye, Ning; Dai, Dongxue; Sun, Yingxian
2017-05-01
The present study was aimed to investigate the role of reactive oxygen species (ROS) on advanced glycation end product (AGE)-induced proliferation and migration of vascular smooth muscle cells (VSMCs) and whether Bcl-2‑associated athanogene 3 (BAG3) is involved in the process. Primary rat VSMCs were extracted and cultured in vitro. Cell viability was detected by MTT assay and cell proliferation was detected by EdU incorporation assay. Cell migration was detected by wound healing and Transwell assays. BAG3 was detected using qPCR and western blot analysis. Transcriptional and translational inhibitors (actinomycin D and cycloheximide, respectively) were used to study the effect of AGEs on the expression of BAG3 in VSMCs. Lentiviral plasmids containing short hairpin RNA (shRNA) against rat BAG3 or control shRNA were transduced into VSMCs. Cellular ROS were detected by 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining. Mitochondrial membrane potential was detected by tetramethylrhodamine methyl ester (TMRE) staining. AGEs significantly increased the expression of BAG3 in a dose-and time-dependent manner. Furthermore, AGEs mainly increased the expression of BAG3 mRNA by increasing the RNA synthesis rather than inhibiting the RNA translation. BAG3 knockdown reduced the proliferation and migration of VSMCs induced by AGEs. BAG3 knockdown reduced the generation of ROS and sustained the mitochondrial membrane potential of VSMCs. Reduction of ROS production by N-acetylcysteine (NAC), a potent antioxidant, also reduced the proliferation and migration of VSMCs. On the whole, the present study demonstrated for the first time that AGEs could increase ROS production and promote the proliferation and migration of VSMCs by upregulating BAG3 expression. This study indicated that BAG3 should be considered as a potential target for the prevention and/or treatment of vascular complications of diabetes.
Anti-tumor effects of osthole on ovarian cancer cells in vitro.
Jiang, Guoqiang; Liu, Jia; Ren, Baoyin; Tang, Yawei; Owusu, Lawrence; Li, Man; Zhang, Jing; Liu, Likun; Li, Weiling
2016-12-04
Cnidium monnieri (L.) Cusson is a commonly used traditional Chinese medicine to treat gynecological disease in some countries. Osthole, an active O-methylated coumadin isolated from Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-seizure and anti-inflammatory effects. However, the anti-tumor mechanism of osthole is not well known. Here, we show that osthole inhibited the proliferation and migration of two widely used ovarian cancer cell lines, A2780 and OV2008 cells, in a dose-dependent manner. The study investigated the molecular mechanisms underlying ovarian cancer cells proliferation, apoptosis, cell cycle arrest and migration triggered by osthole. Ovarian cancer cell lines A2780, OV2008 and normal ovarian cell line IOSE80 were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry assays were performed to confirm apoptosis and cell cycle. We employed wound healing and transwell assays to delineate invasive and migratory potential triggered by osthole. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with osthole without effect on normal ovarian cells. Flow cytometric analysis revealed that osthole suppressed cells proliferation by promoting G2/M arrest and inducing apoptosis. The underlying mechanisms involved were regulation of the relative apoptotic protein Bcl-2, Bax and Caspase 3/9. In addition, wound healing and transwell assays revealed that the migratory potential and activity of matrix metalloproteinase MMP-2 and MMP-9 were markedly inhibited when cells were exposed to osthole. Our findings suggested that osthole has the potential to be used in novel anti-cancer therapeutic formulations for ovarian cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sevelda, Florian; Mayr, Lisa; Kubista, Bernd; Lötsch, Daniela; van Schoonhoven, Sushilla; Windhager, Reinhard; Pirker, Christine; Micksche, Michael; Berger, Walter
2015-11-02
Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.
Nitric oxide-donating statin improves multiple functions of circulating angiogenic cells
Mangialardi, G; Monopoli, A; Ongini, E; Spinetti, G; Fortunato, O; Emanueli, C; Madeddu, P
2011-01-01
BACKGROUND AND PURPOSE Statins, a major component of the prevention of cardiovascular disease, aid progenitor cell functions in vivo and in vitro. Statins bearing a NO-releasing moiety were developed for their enhanced anti-inflammatory/anti-thrombotic properties. Here, we investigated if the NO-donating atorvastatin (NCX 547) improved the functions of circulating angiogenic cells (CACs). EXPERIMENTAL APPROACH Circulating angiogenic cells (CACs) were prepared from peripheral blood monocytes of healthy volunteers and type-2 diabetic patients and were cultured in low (LG) or high glucose (HG) conditions, in presence of atorvastatin or NCX 547 (both at 0.1 µM) or vehicle. Functional assays (outgrowth, proliferation, viability, senescence and apoptosis) were performed in presence of the endothelial NOS inhibitor L-NIO, the NO scavenger c-PTIO or vehicle. KEY RESULTS Culturing in HG conditions lowered NO in CACs, inhibited outgrowth, proliferation, viability and migration, and induced cell senescence and apoptosis. NCX 547 fully restored NO levels and functions of HG-cultured CACs, while atorvastatin prevented only apoptosis in CACs. The activity of Akt, a pro-survival kinase, was increased by atorvastatin in LG-cultured but not in HG-cultured CACs, whereas NCX 547 increased Akt activity in both conditions. L-NIO partially blunted and c-PTIO prevented NCX 547-induced improvements in CAC functions. Finally, NCX 547 improved outgrowth and migration of CACs prepared from patients with type 2 diabetes. CONCLUSIONS AND IMPLICATIONS NCX 547 was more effective than atorvastatin in preserving functions of CACs. This property adds to the spectrum of favourable actions that would make NO-releasing statins more effective agents for treating cardiovascular disease. PMID:21486281
2011-01-01
Background Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Results Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. Conclusions In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run. PMID:21859457
Vanden-Broeck, An; Gruwez, Robert; Cox, Karen; Adriaenssens, Sandy; Michalczyk, Inga M; Verheyen, Kris
2011-08-22
Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.
Circulating Angiogenic Cells can be Derived from Cryopreserved Peripheral Blood Mononuclear Cells
Sofrenovic, Tanja; McEwan, Kimberly; Crowe, Suzanne; Marier, Jenelle; Davies, Robbie; Suuronen, Erik J.; Kuraitis, Drew
2012-01-01
Background Cell transplantation for regenerative medicine has become an appealing therapeutic method; however, stem and progenitor cells are not always freshly available. Cryopreservation offers a way to freeze cells as they are generated, for storage and transport until required for therapy. This study was performed to assess the feasibility of cryopreserving peripheral blood mononuclear cells (PBMCs) for the subsequent in vitro generation of their derived therapeutic population, circulating angiogenic cells (CACs). Methods PBMCs were isolated from healthy human donors. Freshly isolated cells were either analyzed immediately or cryopreserved in media containing 6% plasma serum and 5% dimethyl sulfoxide. PBMCs were thawed after being frozen for 1 (early thaw) or 28 (late thaw) days and analyzed, or cultured for 4 days to generate CACs. Analysis of the cells consisted of flow cytometry for viability and phenotype, as well as functional assays for their adhesion and migration potential, cytokine secretion, and in vivo angiogenic potential. Results The viability of PBMCs and CACs as well as their adhesion and migration properties did not differ greatly after cryopreservation. Phenotypic changes did occur in PBMCs and to a lesser extent in CACs after freezing; however the potent CD34+VEGFR2+CD133+ population remained unaffected. The derived CACs, while exhibiting changes in inflammatory cytokine secretion, showed no changes in the secretion of important regenerative and chemotactic cytokines, nor in their ability to restore perfusion in ischemic muscle. Conclusion Overall, it appears that changes do occur in cryopreserved PBMCs and their generated CACs; however, the CD34+VEGFR2+CD133+ progenitor population, the secretion of pro-vasculogenic factors, and the in vivo angiogenic potential of CACs remain unaffected by cryopreservation. PMID:23133548
Stimulation of the Nonneuronal Cholinergic System by Highly Diluted Acetylcholine in Keratinocytes.
Uberti, Francesca; Bardelli, Claudio; Morsanuto, Vera; Ghirlanda, Sabrina; Cochis, Andrea; Molinari, Claudio
2017-01-01
The physiological effects of acetylcholine on keratinocytes depend on the presence of nicotinic and muscarinic receptors. The role of nonneuronal acetylcholine in keratinocytes could have important clinical implications for patients with various skin disorders such as nonhealing wounds. In order to evaluate the efficacy of highly diluted acetylcholine solutions obtained by sequential kinetic activation, we aimed to investigate the effects of these solutions on normal human keratinocytes. Two different concentrations (10 fg/mL and 1 pg/mL) and formulations (kinetically activated and nonkinetically activated) of acetylcholine were used to verify keratinocyte viability, proliferation, and migration and the intracellular pathways involved using MTT, crystal violet, wound healing, and Western blot compared to 147 ng/mL acetylcholine. The activated formulations (1 pg/mL and 10 fg/mL) revealed a significant capacity to increase migration, cell viability, and cell proliferation compared to 147 ng/mL acetylcholine, and these effects were more evident after a single administration. Sequential kinetic activation resulted in a statistically significant decrease in reactive oxygen species production accompanied by an increase in mitochondrial membrane potential and a decrease in oxygen consumption compared to 147 ng/mL acetylcholine. The M1 muscarinic receptor was involved in these effects. Finally, the involvement of ERK/mitogen-activated protein kinases (MAPK) and KI67 confirmed the effectiveness of the single treatment on cell proliferation. The intracellular pathways of calcium were investigated as well. Our results indicate for the first time that highly diluted and kinetically activated acetylcholine seems to play an active role in an in vitro model of wound healing. Moreover, the administration of acetylcholine within the physiological range may not only be effective but is also likely to be safe. © 2016 S. Karger AG, Basel.
Ren, Peng; Ren, Xiang; Cheng, Lei; Xu, Lixin
2018-01-01
BC (BC), as the most common malignancy in women worldwide, is associated with high morbidity and mortality. However, chemoresistance and toxicity are the main causes that limit the success of treatment in aggressive BC cases. Thus, there is a vital need to identify and develop novel therapeutic agents. Frankincense, pine needle and geranium essential oils have been reported to play critical biological activities in cancer. However, to the best of our knowledge whether frankincense, pine needle and geranium essential oils have any effect on the progression of BC in MCF-7 cells remains unclear. In the present study, we assessed the possible effects of frankincense, pine needle and geranium essential oils on cell viability, proliferation, migration and invasion as well as the possible mechanisms. MCF-7 cells were treated with oils, and associations with BC were investigated. In the present study, we clearly revealed that frankincense, pine needle and geranium essential oils suppressed cell viability, proliferation, migration and invasion in human BC MCF-7 cells. Further data demonstrated that frankincense, pine needle and geranium essential oils induced apoptosis, but did not affect cell cycle progression. Consistent with the in vitro activities, frankincense essential oil was effective in inhibiting tumor growth and inducing tumor cell apoptosis in a human BC mouse model. In addition, these 3 essential oils modulated the activity of the AMPK/mTOR signaling pathway. In conclusion, the present study indicated that frankincense, pine needle and geranium essential oils were involved in the progression of BC cells possibly through the AMPK/mTOR pathway.
Shammas, Ronnie L; Fales, Andrew M; Crawford, Bridget M; Wisdom, Amy J; Devi, Gayathri R; Brown, David A; Vo-Dinh, Tuan; Hollenbeck, Scott T
2017-04-01
Gold nanostars are unique nanoplatforms that can be imaged in real time and transform light energy into heat to ablate cells. Adipose-derived stem cells migrate toward tumor niches in response to chemokines. The ability of adipose-derived stem cells to migrate and integrate into tumors makes them ideal vehicles for the targeted delivery of cancer nanotherapeutics. To test the labeling efficiency of gold nanostars, undifferentiated adipose-derived stem cells were incubated with gold nanostars and a commercially available nanoparticle (Qtracker), then imaged using two-photon photoluminescence microscopy. The effects of gold nanostars on cell phenotype, proliferation, and viability were assessed with flow cytometry, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide metabolic assay, and trypan blue, respectively. Trilineage differentiation of gold nanostar-labeled adipose-derived stem cells was induced with the appropriate media. Photothermolysis was performed on adipose-derived stem cells cultured alone or in co-culture with SKBR3 cancer cells. Efficient uptake of gold nanostars occurred in adipose-derived stem cells, with persistence of the luminescent signal over 4 days. Labeling efficiency and signal quality were greater than with Qtracker. Gold nanostars did not affect cell phenotype, viability, or proliferation, and exhibited stronger luminescence than Qtracker throughout differentiation. Zones of complete ablation surrounding the gold nanostar-labeled adipose-derived stem cells were observed following photothermolysis in both monoculture and co-culture models. Gold nanostars effectively label adipose-derived stem cells without altering cell phenotype. Once labeled, photoactivation of gold nanostar-labeled adipose-derived stem cells ablates neighboring cancer cells, demonstrating the potential of adipose-derived stem cells as a vehicle for the delivery of site-specific cancer therapy.
Kang, Haeyoun; Jeong, Ju-Yeon; Song, Ji-Ye; Kim, Tae Heon; Kim, Gwangil; Huh, Jin Hyung; Kwon, Ah-Young; Jung, Sang Geun; An, Hee Jung
2016-07-01
Notch signaling plays an important role in ovarian cancer chemoresistance, which is responsible for recurrence. Gamma-secretase inhibitor (GSI) is a broad-spectrum Notch inhibitor, but it has serious side effects. The efficacy of Notch3-specific inhibition in paclitaxel-resistant ovarian cancers was assessed in this study, which has not yet been evaluated relative to GSI. To analyze the effect of Notch3-specific inhibition on paclitaxel-resistant ovarian cancers, we compared cell viability, apoptosis, cell migration, angiogenesis, cell cycle, and spheroid formation after treatment with either Notch3 siRNA or GSI in paclitaxel-resistant SKpac cells and parental SKOV3 cells. Expression levels of survival, cell cycle, and apoptosis-related proteins were measured and compared between groups. Notch3 was significantly overexpressed in chemoresistant cancer tissues and cell lines relative to chemosensitive group. In paclitaxel-resistant cancer cells, Notch inhibition significantly reduced viability, migration, and angiogenesis and increased apoptosis, thereby boosting sensitivity to paclitaxel. Spheroid formation was also significantly reduced. Both Notch3 siRNA-treated cells and GSI-treated cells arrested in the G2/M phase of the cell cycle. Proteins of cell survival, cyclin D1 and cyclin D3 were reduced, whereas p21 and p27 were elevated. Both GSI and Notch3 siRNA treatment reduced expression of anti-apoptotic proteins (BCL-W, BCL2, and BCL-XL) and increased expression of pro-apoptotic proteins (Bad, Bak, Bim, Bid, and Bax). These results indicate that Notch3-specific inhibition sensitizes paclitaxel-resistant cancer cells to paclitaxel treatment, with an efficacy comparable to that of GSI. This approach would be likely to avoid the side effects of broad-spectrum GSI treatment. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
SPOP suppresses tumorigenesis by regulating Hedgehog/Gli2 signaling pathway in gastric cancer.
Zeng, Chunyan; Wang, Yao; Lu, Quqin; Chen, Jiang; Zhang, Junyan; Liu, Tao; Lv, Nonghua; Luo, Shiwen
2014-09-11
Recent evidence suggests that aberrant activation of Hedgehog (Hh) signaling by Gli transcription factors is characteristic of a variety of aggressive human carcinomas including gastric cancer. Speckle-type POZ protein, SPOP, is an E3 ubiquitin ligase adaptor, and it is found to inhibit oncogenic signaling. However, the molecular mechanisms are largely unknown. In this study, we characterized the expression of SPOP in 88 pairs of gastric cancer tissues and adjacent tissues by immunohistochemical staining and Western blotting. The relationship between SPOP expression and clinical pathologic factors was analyzed. Transfected gastric cancer cell lines were used in cell viability, wound healing and colony formation assays. The interaction of SPOP with Gli2 and other related apoptotic proteins was assessed by immunoprecipitation, Western blotting, real-time PCR and dual luciferase reporter assays. Intracellular interaction of SPOP and Gli2 was visualized by immunofluorescent staining in gastric cancer cells. Immunohistochemical staining of SPOP can be detected in gastric cancer tissues but much less than adjacent gastric tissues (P < 0.01). High SPOP expression is negatively correlated with lymph node metastasis, poor histological differentiation, and tumor malignancy according to TNM staging. In vitro experiments revealed that over-expression of SPOP prevented tumor cells from proliferation, migration and colony formation in gastric cancer cell lines. Likewise, repression of SPOP promoted cell viability, migration, proliferation, and attenuated apoptosis. Mechanistic studies revealed that increasing SPOP accelerated Gli2 degradation but regardless of Gli2 synthesis. Furthermore, cytoplasmic Gli2 decreased markedly along with the abundant expression of SPOP in MKN45 cells. Our findings indicate that SPOP plays critical roles in suppressing gastric tumorigenesis through inhibiting Hh/Gli2 signaling pathway. It may provide an alternative strategy for developing therapeutic agents of gastric cancer in future.
Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules
Buhrmann, Constanze; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi
2017-01-01
Resveratrol, a safe and multi-targeted agent, has been associated with suppression of survival, proliferation and metastasis of cancer, however, the underlying mechanisms for its anti-cancer activity, particularly on cellular signaling during cancer cell migration still remain poorly understood. We investigated the invasion response of two human colorectal cancer (CRC) cells (HCT116 and SW480) to resveratrol and studied the effect of specific pharmacological inhibitors, cytochalasin D (CytD) and focal adhesion kinase-inhibitor (FAK-I) on FAK, cell viability and migration in CRC. We found that resveratrol altered cell phenotype of both CRC cells, reduced cell viability and the results were comparable to FAK-I and CytD. These effects of resveratrol were associated with marked Sirt1 up-regulation, FAK down-regulation, inhibition of focal adhesion and potentiation of effects by combinatorial treatment of resveratrol and inhibitors. Interestingly, inhibition of FAK with FAK-I or treatment with CytD suppressed resveratrol-induced Sirt1 up-regulation and markedly down-regulated FAK expression. Resveratrol or combination treatment with inhibitors significantly activated caspase-3 and potentiated apoptosis. Moreover, resveratrol suppressed invasion and colony forming capacity, cell proliferation, β1-Integrin expression and activation of FAK of cells in alginate tumor microenvironment, similar to FAK-I or CytD. Finally, we demonstrated that resveratrol, FAK-I or CytD inhibited activation of NF-κB, suppressed NF-κB-dependent gene end-products involved in invasion, metastasis, and apoptosis; and these effects of resveratrol were potentiated by combination treatment with FAK-I or CytD. Our data illustrated that the anti-invasion effect of resveratrol by inhibition of FAK activity has a potential beneficial role in disease prevention and therapeutic management of CRC. PMID:28953264
Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules.
Buhrmann, Constanze; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi
2017-09-27
Resveratrol, a safe and multi-targeted agent, has been associated with suppression of survival, proliferation and metastasis of cancer, however, the underlying mechanisms for its anti-cancer activity, particularly on cellular signaling during cancer cell migration still remain poorly understood. We investigated the invasion response of two human colorectal cancer (CRC) cells (HCT116 and SW480) to resveratrol and studied the effect of specific pharmacological inhibitors, cytochalasin D (CytD) and focal adhesion kinase-inhibitor (FAK-I) on FAK, cell viability and migration in CRC. We found that resveratrol altered cell phenotype of both CRC cells, reduced cell viability and the results were comparable to FAK-I and CytD. These effects of resveratrol were associated with marked Sirt1 up-regulation, FAK down-regulation, inhibition of focal adhesion and potentiation of effects by combinatorial treatment of resveratrol and inhibitors. Interestingly, inhibition of FAK with FAK-I or treatment with CytD suppressed resveratrol-induced Sirt1 up-regulation and markedly down-regulated FAK expression. Resveratrol or combination treatment with inhibitors significantly activated caspase-3 and potentiated apoptosis. Moreover, resveratrol suppressed invasion and colony forming capacity, cell proliferation, β1-Integrin expression and activation of FAK of cells in alginate tumor microenvironment, similar to FAK-I or CytD. Finally, we demonstrated that resveratrol, FAK-I or CytD inhibited activation of NF-κB, suppressed NF-κB-dependent gene end-products involved in invasion, metastasis, and apoptosis; and these effects of resveratrol were potentiated by combination treatment with FAK-I or CytD. Our data illustrated that the anti-invasion effect of resveratrol by inhibition of FAK activity has a potential beneficial role in disease prevention and therapeutic management of CRC.
Yue, Wen; Zheng, Xi; Lin, Yong; Yang, Chung S.; Xu, Qing; Carpizo, Darren; Huang, Huarong; DiPaola, Robert S.; Tan, Xiang-Lin
2015-01-01
Metformin and aspirin have been studied extensively as cancer preventive or therapeutic agents. However, the effects of their combination on pancreatic cancer cells have not been investigated. Herein, we evaluated the effects of metformin and aspirin, alone or in combination, on cell viability, migration, and apoptosis as well as the molecular changes in mTOR, STAT3 and apoptotic signaling pathways in PANC-1 and BxPC3 cells. Metformin and aspirin, at relatively low concentrations, demonstrated synergistically inhibitory effects on cell viability. Compared to the untreated control or individual drug, the combination of metformin and aspirin significantly inhibited cell migration and colony formation of both PANC-1 and BxPC-3 cells. Metformin combined with aspirin significantly inhibited the phosphorylation of mTOR and STAT3, and induced apoptosis as measured by caspase-3 and PARP cleavage. Remarkably, metformin combined with aspirin significantly downregulated the anti-apoptotic proteins Mcl-1 and Bcl-2, and upregulated the pro-apoptotic proteins Bim and Puma, as well as interrupted their interactions. The downregulation of Mcl-1 and Bcl-2 was independent of AMPK or STAT3 pathway but partially through mTOR signaling and proteasome degradation. In a PANC-1 xenograft mouse model, we demonstrated that the combination of metformin and aspirin significantly inhibited tumor growth and downregulated the protein expression of Mcl-1 and Bcl-2 in tumors. Taken together, the combination of metformin and aspirin significantly inhibited pancreatic cancer cell growth in vitro and in vivo by regulating the pro- and anti-apoptotic Bcl-2 family members, supporting the continued investigation of this two drug combination as chemopreventive or chemotherapeutic agents for pancreatic cancer. PMID:26056043
In vitro DNA damage by Casiopeina II-gly in human blood cells.
Rodríguez-Mercado, Juan José; Florín-Ramírez, Diana; Álvarez-Barrera, Lucila; Altamirano-Lozano, Mario Agustín
2017-04-01
A variety of metal ions have biological functions, and many researchers have not actively investigated copper compounds, based on the assumption that endogenous metals might be less toxic. In the present study, we used a dual fluorochrome method and a single cell gel electrophoresis (SCGE) assay at pH > 13 to evaluate the cell viability and DNA damage induced by a copper-based antineoplastic drug, Casiopeina II-gly®, at concentrations of 1.04, 2.08, 4.17, 8.35 or 16 μg/mL in human peripheral-blood leukocytes in vitro. We observed that Casiopeina II-gly® reduced cell viability at high concentrations (8.35 and 16 μg/mL) and induced DNA damage characterized by single-strand breaks and alkali labile sites at several concentrations from 2.08 to 16 μg/mL. This chemical clearly affected DNA migration in a concentration- and time-dependent manner and induced genotoxic effects in few minutes (>20 min), at which point the genotoxicity was followed by cytotoxicity.
He, Zhangyi; Beaumont, Mark; Yu, Feng
2017-01-01
We explore the effect of different mechanisms of natural selection on the evolution of populations for one- and two-locus systems. We compare the effect of viability and fecundity selection in the context of the Wright-Fisher model with selection under the assumption of multiplicative fitness. We show that these two modes of natural selection correspond to different orderings of the processes of population regulation and natural selection in the Wright-Fisher model. We find that under the Wright-Fisher model these two different orderings can affect the distribution of trajectories of haplotype frequencies evolving with genetic recombination. However, the difference in the distribution of trajectories is only appreciable when the population is in significant linkage disequilibrium. We find that as linkage disequilibrium decays the trajectories for the two different models rapidly become indistinguishable. We discuss the significance of these findings in terms of biological examples of viability and fecundity selection, and speculate that the effect may be significant when factors such as gene migration maintain a degree of linkage disequilibrium. PMID:28500051
Zhu, Mingyue; Li, Wei; Guo, Junli; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Li, Mengsen
2016-11-15
Benzyl isothiocyanate (BITC) is a dietary isothiocyanate derived from cruciferous vegetables. Recent studies showed that BITC inhibited the growth of many cancer cells, including hepatocellular carcinoma (HCC) cells. Alpha-fetoprotein (AFP) is a important molecule for promoting progression of HCC, in the present investigation, we explore the influence of AFP on the role of BITC in the malignant behaviours of HCC cells, and the potential underlying mechanisms. We found thatBITC inhibited viability, migration, invasion and induced apoptosis of human liver cancer cell lines, Bel 7402(AFP producer) and HLE(non-AFP producer) cells in vitro. The role of BITC involve in promoting actived-caspase-3 and PARP-1 expression, and enhancing caspase-3 activity but decreasing MMP-2/9, survivin and CXCR4 expression. AFP antagonized the effect of BITC. This study suggests that BITC induced significant reductions in the viability of HCC cell lines. BITC may activate caspase-3 signal and inhibit the expression of growth- and metastasis-related proteins; AFP is an pivotal molecule for the HCC chemo-resistance of BITC.
The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation
NASA Astrophysics Data System (ADS)
Abrahamse, H.; de Villiers, J.; Mvula, B.
2009-06-01
There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.
Cell viability and MRI performance of highly efficient polyol-coated magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Arteaga-Cardona, Fernando; Gutiérrez-García, Eric; Hidalgo-Tobón, Silvia; López-Vasquez, Ciro; Brito-Barrera, Yazmín A.; Flores-Tochihuitl, Julia; Angulo-Molina, Aracely; Reyes-Leyva, Julio R.; González-Rodríguez, Roberto; Coffer, Jeffery L.; Pal, Umapada; Diaz-Conti, Mario Pérez-Peña; Platas-Neri, Diana; Dies-Suarez, Pilar; Fonseca, Rebeca Sosa; Arias-Carrión, Oscar; Méndez-Rojas, Miguel A.
2016-11-01
This work aimed at determining conditions that would allow us to control the size of the NPs and create a system with characteristics apt for biomedical applications. We describe a comprehensive study on the synthesis and physical characterization of two highly sensitive sets of triethylene glycol (TREG) and polyethylene glycol (PEG)-coated superparamagnetic iron oxide nanoparticles (SPIONs) to be evaluated for use as magnetic resonance (MR) contrast agents. The ferrofluids demonstrated excellent colloidal stability in deionized water at pH 7.0 as indicated by dynamic light scattering (DLS) data. The magnetic relaxivities, r 2, were measured on a 1.5 T clinical MRI instrument. Values in the range from 205 to 257 mM-1 s-1 were obtained, varying proportionally to the SPIONs' sizes and coating nature. Further in vitro cell viability tests and in vivo biodistribution analyses of the intravenously administered nanoparticles showed that the prepared systems have good biocompatibility and migrate to several organs, mainly the meninges, spleen, and liver. Based on these results, our findings demonstrated the potential utility of these nanosystems as clinical contrast agents for MR imaging.
NASA Astrophysics Data System (ADS)
Jacobsen, Matthew M.; Li, David; Gyune Rim, Nae; Backman, Daniel; Smith, Michael L.; Wong, Joyce Y.
2017-04-01
Silk is a natural polymer with broad utility in biomedical applications because it exhibits general biocompatibility and high tensile material properties. While mechanical integrity is important for most biomaterial applications, proper function and integration also requires biomaterial incorporation into complex surrounding tissues for many physiologically relevant processes such as wound healing. In this study, we spin silk fibroin into a protein alloy fibre with whole fibronectin using wet spinning approaches in order to synergize their respective strength and cell interaction capabilities. Results demonstrate that silk fibroin alone is a poor adhesive surface for fibroblasts, endothelial cells, and vascular smooth muscle cells in the absence of serum. However, significantly improved cell attachment is observed to silk-fibronectin alloy fibres without serum present while not compromising the fibres’ mechanical integrity. Additionally, cell viability is improved up to six fold on alloy fibres when serum is present while migration and spreading generally increase as well. These findings demonstrate the utility of composite protein alloys as inexpensive and effective means to create durable, biologically active biomaterials.
Altruism Can Proliferate through Population Viscosity despite High Random Gene Flow
Schonmann, Roberto H.; Vicente, Renato; Caticha, Nestor
2013-01-01
The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis has led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism through population viscosity in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism that benefits equally all group members, regardless of kinship and without greenbeard effects, can spread when rare under realistic group sizes and levels of migration, due to the assortment of genes resulting only from population viscosity. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton’s rule for the spread of altruistic alleles, applicable under broad conditions. PMID:23991035
Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells
NASA Astrophysics Data System (ADS)
Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat
2017-05-01
Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results.
Guan, Jingxia; Zhang, Shaofeng; Zhou, Qin; Yuan, Zhenhua; Lu, Zuneng
2016-09-01
To investigate the effect of thrombin preconditioning (TPC) on the intracerebral hemorrhage (ICH)-induced proliferation, migration, and function of subventriclular zone (SVZ) cells and to find new strategies that enhance endogenous neurogenesis after ICH. Male Sprague-Dawley rats were randomly divided into 3 groups (ICH, TPC, and control group). Rats of each group were randomly divided into 5 subgroups (3-d, 7-d, 14-d, 21-d, and 28-d subgroup). ICH was caused by intrastrial stereotactic administration of collagenase type IV. Brdu was used to label newborn SVZ cells. Organotypic brain slices were cultured to dynamically observe the migration of SVZ cells at living brain tissue. Migration of Dil-labeled SVZ cells in living brain slices was traced by time-lapse microscopy. To assess whether SVZ cells migrating to injured striatum had the ability to form synapses with other cells, brain slices from each group were double immunolabeled with Brdu and synapsin I. The number of Brdu-positive cells markedly increased in the ipsilateral SVZ and striatum 3 days after TPC, peaked at 14 days (P < 0.01), continued to 21 days, and then gradually decreased at 28 days with significant difference compared to the ICH group at each time point (P < 0.01). Migration of Dil-labeled SVZ cells in brain slices in each group was observed and imaged during a 12-h period. Dil-labeled SVZ cells in the TPC group were observed to migrate laterally toward striatum with time with a faster velocity compared to the ICH group (P < 0.01). Our study also demonstrated that TPC induced strong colocalization of Brdu and synapsin I in the ipsilateral striatum between 3 and 28 days after injury.TPC made colocalization of Brdu and synapsin I appear earlier and continue for a longer time compared to the ICH group. Our results demonstrated that TPC could promote proliferation, migration, and function of SVZ cells after ICH, which may provide a new idea for enhancing endogenous neurogenesis and developing new therapeutic strategies against ICH-induced brain injury.
Zhao, Jia; Hu, Liang; Ding, Yan; Xu, Gaochao; Hu, Ming
2014-01-01
The field of live VM (virtual machine) migration has been a hotspot problem in green cloud computing. Live VM migration problem is divided into two research aspects: live VM migration mechanism and live VM migration policy. In the meanwhile, with the development of energy-aware computing, we have focused on the VM placement selection of live migration, namely live VM migration policy for energy saving. In this paper, a novel heuristic approach PS-ES is presented. Its main idea includes two parts. One is that it combines the PSO (particle swarm optimization) idea with the SA (simulated annealing) idea to achieve an improved PSO-based approach with the better global search's ability. The other one is that it uses the Probability Theory and Mathematical Statistics and once again utilizes the SA idea to deal with the data obtained from the improved PSO-based process to get the final solution. And thus the whole approach achieves a long-term optimization for energy saving as it has considered not only the optimization of the current problem scenario but also that of the future problem. The experimental results demonstrate that PS-ES evidently reduces the total incremental energy consumption and better protects the performance of VM running and migrating compared with randomly migrating and optimally migrating. As a result, the proposed PS-ES approach has capabilities to make the result of live VM migration events more high-effective and valuable. PMID:25251339
Zhao, Jia; Hu, Liang; Ding, Yan; Xu, Gaochao; Hu, Ming
2014-01-01
The field of live VM (virtual machine) migration has been a hotspot problem in green cloud computing. Live VM migration problem is divided into two research aspects: live VM migration mechanism and live VM migration policy. In the meanwhile, with the development of energy-aware computing, we have focused on the VM placement selection of live migration, namely live VM migration policy for energy saving. In this paper, a novel heuristic approach PS-ES is presented. Its main idea includes two parts. One is that it combines the PSO (particle swarm optimization) idea with the SA (simulated annealing) idea to achieve an improved PSO-based approach with the better global search's ability. The other one is that it uses the Probability Theory and Mathematical Statistics and once again utilizes the SA idea to deal with the data obtained from the improved PSO-based process to get the final solution. And thus the whole approach achieves a long-term optimization for energy saving as it has considered not only the optimization of the current problem scenario but also that of the future problem. The experimental results demonstrate that PS-ES evidently reduces the total incremental energy consumption and better protects the performance of VM running and migrating compared with randomly migrating and optimally migrating. As a result, the proposed PS-ES approach has capabilities to make the result of live VM migration events more high-effective and valuable.
Statistical characteristics of dynamics for population migration driven by the economic interests
NASA Astrophysics Data System (ADS)
Huo, Jie; Wang, Xu-Ming; Zhao, Ning; Hao, Rui
2016-06-01
Population migration typically occurs under some constraints, which can deeply affect the structure of a society and some other related aspects. Therefore, it is critical to investigate the characteristics of population migration. Data from the China Statistical Yearbook indicate that the regional gross domestic product per capita relates to the population size via a linear or power-law relation. In addition, the distribution of population migration sizes or relative migration strength introduced here is dominated by a shifted power-law relation. To reveal the mechanism that creates the aforementioned distributions, a dynamic model is proposed based on the population migration rule that migration is facilitated by higher financial gains and abated by fewer employment opportunities at the destination, considering the migration cost as a function of the migration distance. The calculated results indicate that the distribution of the relative migration strength is governed by a shifted power-law relation, and that the distribution of migration distances is dominated by a truncated power-law relation. These results suggest the use of a power-law to fit a distribution may be not always suitable. Additionally, from the modeling framework, one can infer that it is the randomness and determinacy that jointly create the scaling characteristics of the distributions. The calculation also demonstrates that the network formed by active nodes, representing the immigration and emigration regions, usually evolves from an ordered state with a non-uniform structure to a disordered state with a uniform structure, which is evidenced by the increasing structural entropy.
NASA Astrophysics Data System (ADS)
Sitepu, S. A.; Zaituni, U.; Jaswandi; Hendri
2018-02-01
This research aimed to determine the extent of frozen semen quality Boer Goat by essential oils of sweet orange peel in tris yolk and gentamicin extender. Research has been conducted at the Laboratory Loka Penelitian Kambing Potong Sei Putih, Deli Serdang, North Sumatra in February 2017. This study used a completely randomized design with 4 treatments and 5 replications. Treatments are 0.25; 0.5; 0.75 and 1% essential oils as additional diluent. The parameters were measured percentage Motility, membrane integrity, acrosome integrity and viability Boer Goat frozen semen. The results showed that the addition of essential oils as diluent semen was significant (P <0.01) in the percentage motility, Viability, membrane integrity and acrosome integrity Boer Goat frozen semen. Motility, membrane integrity, acrosome integrity and viability was significantly higher in all treated groups than the control group. The best results of all treatments In the study was the addition of essential oil as much as 1%.
PARENTAL AND SIBLING MIGRATION AND HIGH BLOOD PRESSURE AMONG RURAL CHILDREN IN CHINA.
Wen, Ming; Li, Kelin
2016-01-01
This study examines the associations between parental and sibling rural-to-urban migration and blood pressure (BP) of rural left-behind children (LBC) in rural China. Analysis was based on the 2000, 2004, 2006 and 2009 waves of longitudinal data from the China Health and Nutrition Survey, which is an ongoing prospective survey covering nine provinces with an individual-level response rate of 88%. Blood pressure levels were measured by trained examiners at three consecutive times on the same visit and the means of three measurements were used as the final BP values. An ordinal BP measure was then created using a recently validated age-sex-specified distribution for Chinese children and adolescents, distinguishing normal BP, pre-hypertension and hypertension. Random effect modelling was performed. Different migration circumstances play different roles in LBC's BP with mother-only and both-parent migration being particularly detrimental and father-only and sibling-only migration either having no association or a negative association with LBC's BP levels or odds of high BP. In conclusion, the link between family migration and left-behind children's blood pressure is complex, and depends on who is the person out-migrating.
Outcomes of Parent Education Programs Based on Reevaluation Counseling
ERIC Educational Resources Information Center
Wolfe, Randi B.; Hirsch, Barton J.
2003-01-01
We report two studies in which a parent education program based on Reevaluation Counseling was field-tested on mothers randomly assigned to treatment groups or equivalent, no-treatment comparison groups. The goal was to evaluate the program's viability, whether there were measurable effects, whether those effects were sustained over time, and…
Characteristics of trajectory in the migration of Amoeba proteus.
Miyoshi, Hiromi; Masaki, Noritaka; Tsuchiya, Yoshimi
2003-01-01
We investigated the behavior of migration of Amoeba proteus in an isotropic environment. We found that the trajectory in the migration of A. proteus is smooth in the observation time of 500-1000 s, but its migration every second (the cell velocity) on the trajectory randomly changes. Stochastic analysis of the cell velocity and the turn angle of the trajectory has shown that the histograms of the both variables well fit to Gaussian curves. Supposing a simple model equation for the cell motion, we have estimated the motive force of the migrating cell, which is of the order of piconewton. Furthermore, we have found that the cell velocity and the turn angle have a negative cross-correlation coefficient, which suggests that the amoeba explores better environment by changing frequently its migrating direction at a low speed and it moves rectilinearly to the best environment at a high speed. On the other hand, the model equation has simulated the negative correlation between the cell velocity and the turn angle. This indicates that the apparently rational behavior comes from intrinsic characteristics in the dynamical system where the motive force is not torquelike.
Effect of migration in a diffusion model for template coexistence in protocells.
Fontanari, José F; Serva, Maurizio
2014-03-01
The compartmentalization of distinct templates in protocells and the exchange of templates between them (migration) are key elements of a modern scenario for prebiotic evolution. Here we use the diffusion approximation of population genetics to study analytically the steady-state properties of such a prebiotic scenario. The coexistence of distinct template types inside a protocell is achieved by a selective pressure at the protocell level (group selection) favoring protocells with a mixed template composition. In the degenerate case, where the templates have the same replication rate, we find that a vanishingly small migration rate suffices to eliminate the segregation effect of random drift and so to promote coexistence. In the nondegenerate case, a small migration rate greatly boosts coexistence as compared with the situation where there is no migration. However, increase of the migration rate beyond a critical value leads to the complete dominance of the more efficient template type (homogeneous regime). In this case, we find a continuous phase transition separating the homogeneous and the coexistence regimes, with the order parameter vanishing linearly with the distance to the transition point.
Phenotypic Screening for Friedreich Ataxia Using Random shRNA Selection.
Cotticelli, M Grazia; Acquaviva, Fabio; Xia, Shujuan; Kaur, Avinash; Wang, Yongping; Wilson, Robert B
2015-10-01
Friedreich ataxia (FRDA) is an autosomal recessive neuro- and cardio-degenerative disorder for which there are no proven effective treatments. FRDA is caused by decreased expression and/or function of the protein frataxin. Frataxin chaperones iron in the mitochondrial matrix and regulates the iron-sulfur cluster (ISC) assembly complex. ISCs are prosthetic groups critical for the function of the Krebs cycle and the mitochondrial electron transport chain. Decreased expression of frataxin is associated with decreased ISC assembly, mitochondrial iron accumulation, and increased oxidative stress, all of which contribute to mitochondrial dysfunction. In media with beta-hydroxybutyrate (BHB) as carbon source, primary FRDA fibroblasts grow poorly and/or lose viability over several days. We screened a random, short-hairpin-RNA (shRNA)-expressing library in primary FRDA fibroblasts and identified two shRNAs that reverse the growth/viability defect in BHB media. One of these two clones increases frataxin expression in primary FRDA fibroblasts, either as a vector-expressed shRNA or as a transfected short-interfering RNA (siRNA). © 2015 Society for Laboratory Automation and Screening.
GLOBAL HIGH-RESOLUTION N-BODY SIMULATION OF PLANET FORMATION. I. PLANETESIMAL-DRIVEN MIGRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kominami, J. D.; Daisaka, H.; Makino, J.
2016-03-01
We investigated whether outward planetesimal-driven migration (PDM) takes place or not in simulations when the self-gravity of planetesimals is included. We performed N-body simulations of planetesimal disks with a large width (0.7–4 au) that ranges over the ice line. The simulations consisted of two stages. The first-stage simulations were carried out to see the runaway growth phase using the planetesimals of initially the same mass. The runaway growth took place both at the inner edge of the disk and at the region just outside the ice line. This result was utilized for the initial setup of the second-stage simulations, in which themore » runaway bodies just outside the ice line were replaced by the protoplanets with about the isolation mass. In the second-stage simulations, the outward migration of the protoplanet was followed by the stopping of the migration due to the increase of the random velocity of the planetesimals. Owing to this increase of random velocities, one of the PDM criteria derived in Minton and Levison was broken. In the current simulations, the effect of the gas disk is not considered. It is likely that the gas disk plays an important role in PDM, and we plan to study its effect in future papers.« less
DeZwaan, Todd M.; Ellingson, Eric; Pellman, David; Roof, David M.
1997-01-01
Spindle orientation and nuclear migration are crucial events in cell growth and differentiation of many eukaryotes. Here we show that KIP3, the sixth and final kinesin-related gene in Saccharomyces cerevisiae, is required for migration of the nucleus to the bud site in preparation for mitosis. The position of the nucleus in the cell and the orientation of the mitotic spindle was examined by microscopy of fixed cells and by time-lapse microscopy of individual live cells. Mutations in KIP3 and in the dynein heavy chain gene defined two distinct phases of nuclear migration: a KIP3-dependent movement of the nucleus toward the incipient bud site and a dynein-dependent translocation of the nucleus through the bud neck during anaphase. Loss of KIP3 function disrupts the unidirectional movement of the nucleus toward the bud and mitotic spindle orientation, causing large oscillations in nuclear position. The oscillatory motions sometimes brought the nucleus in close proximity to the bud neck, possibly accounting for the viability of a kip3 null mutant. The kip3 null mutant exhibits normal translocation of the nucleus through the neck and normal spindle pole separation kinetics during anaphase. Simultaneous loss of KIP3 and kinesin-related KAR3 function, or of KIP3 and dynein function, is lethal but does not block any additional detectable movement. This suggests that the lethality is due to the combination of sequential and possibly overlapping defects. Epitope-tagged Kip3p localizes to astral and central spindle microtubules and is also present throughout the cytoplasm and nucleus. PMID:9281581
Velan, Baruch; Bar-Haim, Erez; Zauberman, Ayelet; Mamroud, Emanuelle; Shafferman, Avigdor; Cohen, Sara
2006-11-01
The encounter between invading microorganisms and dendritic cells (DC) triggers a series of events which include uptake and degradation of the microorganism, induction of a maturation process, and enhancement of DC migration to the draining lymph nodes. Various pathogens have developed strategies to counteract these events as a measure to evade the host defense. In the present study we found that interaction of the Yersinia pestis EV76 strain with DC has no effect on cell viability and is characterized by compliance with effective maturation, which is manifested by surface display of major histocompatibility complex class II, of costimulatory markers, and of the chemokine receptor CCR7. This is in contrast to maturation inhibition and cell death induction exerted by the related species Yersinia enterocolitica WA O:8. Y. pestis interactions with DC were found, however, to impair functions related to cytoskeleton rearrangement. DC pulsed with Y. pestis failed to adhere to solid surfaces and to migrate toward the chemokine CCL19 in an in vitro transmembrane assay. Both effects were dependent on the presence of the pCD1 virulence plasmid and on a bacterial growth shift to 37 degrees C prior to infection. Moreover, while instillation of a pCD1-cured Y. pestis strain into mouse airways triggered effective transport of alveolar DC to the mediastinal lymph node, instillation of Y. pestis harboring the plasmid failed to do so. Taken together, these results suggest that virulence plasmid-dependent impairment of DC migration is the major mechanism utilized by Y. pestis to subvert DC function.
Lee, I-Ping; Works, Melissa G.; Kumar, Vineet; De Miguel, Zurine; Manley, Nathan C.; Sapolsky, Robert M.
2014-01-01
The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1) T. gondii relies on glutamine for optimal infection, replication and viability, and 2) T. gondii-infected bone marrow-derived dendritic cells (DCs) display both “hypermotility” and “enhanced migration” to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2) is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1) in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1) blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS)-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility. PMID:25299045
Holly, Thomas A.; Bonow, Robert O.; Arnold, J. Malcolm O.; Oh, Jae K.; Varadarajan, Padmini; Pohost, Gerald M.; Haddad, Haissam; Jones, Robert H.; Velazquez, Eric J.; Birkenfeld, Bozena; Asch, Federico M.; Malinowski, Marcin; Barretto, Rodrigo; Kalil, Renato A.K.; Berman, Daniel S.; Sun, Jie-Lena; Lee, Kerry L.; Panza, Julio A.
2014-01-01
Objective In the Surgical Treatment for Ischemic Heart Failure (STICH) trial, surgical ventricular reconstruction plus coronary artery bypass surgery was not associated with a reduction in the rate of death or cardiac hospitalization compared to bypass alone. We hypothesized that the absence of viable myocardium identifies patients with coronary artery disease and left ventricular dysfunction who have a greater benefit with coronary artery bypass graft surgery and surgical ventricular reconstruction compared to bypass alone. Methods Myocardial viability was assessed by single photon computed tomography in 267 of the 1,000 patients randomized to bypass or bypass plus surgical ventricular reconstruction in STICH. Myocardial viability was assessed on a per patient basis as well as regionally based on pre-specified criteria. Results At 3 years, there was no difference in mortality or the combined outcome of death or cardiac hospitalization between those with and those without viability, and there was no significant interaction between the type of surgery and global viability status with respect to mortality or death plus cardiac hospitalization. Furthermore, there was no difference in mortality or death plus cardiac hospitalization between those with and without anterior wall or apical scar, and no significant interaction between the presence of scar in these regions and the type of surgery with respect to mortality. Conclusion In patients with coronary artery disease and severe regional left ventricular dysfunction, assessment of myocardial viability does not identify patients who will derive a mortality benefit from adding surgical ventricular reconstruction to coronary artery bypass graft surgery. PMID:25152476
Brandsch, Rainer
2017-10-01
Migration modelling provides reliable migration estimates from food-contact materials (FCM) to food or food simulants based on mass-transfer parameters like diffusion and partition coefficients related to individual materials. In most cases, mass-transfer parameters are not readily available from the literature and for this reason are estimated with a given uncertainty. Historically, uncertainty was accounted for by introducing upper limit concepts first, turning out to be of limited applicability due to highly overestimated migration results. Probabilistic migration modelling gives the possibility to consider uncertainty of the mass-transfer parameters as well as other model inputs. With respect to a functional barrier, the most important parameters among others are the diffusion properties of the functional barrier and its thickness. A software tool that accepts distribution as inputs and is capable of applying Monte Carlo methods, i.e., random sampling from the input distributions of the relevant parameters (i.e., diffusion coefficient and layer thickness), predicts migration results with related uncertainty and confidence intervals. The capabilities of probabilistic migration modelling are presented in the view of three case studies (1) sensitivity analysis, (2) functional barrier efficiency and (3) validation by experimental testing. Based on the predicted migration by probabilistic migration modelling and related exposure estimates, safety evaluation of new materials in the context of existing or new packaging concepts is possible. Identifying associated migration risk and potential safety concerns in the early stage of packaging development is possible. Furthermore, dedicated material selection exhibiting required functional barrier efficiency under application conditions becomes feasible. Validation of the migration risk assessment by probabilistic migration modelling through a minimum of dedicated experimental testing is strongly recommended.
NASA Astrophysics Data System (ADS)
Babi Moses, Lomoro Alfred; Guogping, Xiong; Celestino Ladu John, Leju
2017-08-01
Migration is the movement of people from one ecological region to another; it may be on temporary or permanent basis. This research studies focused on the causes and consequences of rural-urban migration in Juba Metropolitan, Republic of South Sudan as a case study. The stratified random sampling method on the basis of existing payam (districts) was used to divide the study area into three zones of Juba, Kator and Munuku. Data were generated through primary and secondary sources. The data generated were analyzed using SPSS. The findings of the study show that Munuki payam covers most of the migrants. The study also reveals that males migrate more than the females in Juba and migration is high within the age cohorts of 30-39 years and 40-49 years old. Furthermore, the study revealed that the propensity to migrate is directly related to educational attainment. It can be inferred from the findings of the study that the majority of migrants in Juba Metropolitan migrated in search of employment while others migrated to continue their education while others migrated in search for basic amenities, to join relatives and get married. This means, until the imbalance or disparity in socio-economic development between the rural and urban areas are removed, no amount of persuasion or force can put a stop to rural-urban migration and its’ multiplying effects in Juba Metropolitan, Republic of South Sudan.
Weston, Victoria C; Meurer, William J; Frederiksen, Shirley M; Fox, Allison K; Scott, Phillip A
2014-12-01
Cluster randomized trials (CRTs) are increasingly used to evaluate quality improvement interventions aimed at health care providers. In trials testing emergency department (ED) interventions, migration of emergency physicians (EPs) between hospitals is an important concern, as contamination may affect both internal and external validity. We hypothesized that geographically isolating EDs would prevent migratory contamination in a CRT designed to increase ED delivery of tissue plasminogen activator (tPA) in stroke (the INSTINCT trial). INSTINCT was a prospective, cluster randomized, controlled trial. Twenty-four Michigan community hospitals were randomly selected in matched pairs for study. Contamination was defined at the cluster level, with substantial contamination defined a priori as greater than 10% of EPs affected. Nonadherence, total crossover (contamination+nonadherence), migration distance, and characteristics were determined. Three hundred seven EPs were identified at all sites. Overall, 7 (2.3%) changed study sites. One moved between control sites, leaving 6 (2.0%) total crossovers. Of these, 2 (0.7%) moved from intervention to control (contamination); and 4 (1.3%) moved from control to intervention (nonadherence). Contamination was observed in 2 of 12 control sites, with 17% and 9% contamination of the total site EP workforce at follow-up, respectively. Average migration distance was 42 miles for all EPs moving in the study and 35 miles for EPs moving from intervention to control sites. The mobile nature of EPs should be considered in the design of quality improvement CRTs. Increased reporting of contamination in CRTs is encouraged to clarify thresholds and facilitate CRT design. Copyright © 2014 Elsevier Inc. All rights reserved.
Kwon, Chae Hwa; Moon, Hyun Jung; Park, Hye Ji; Choi, Jin Hwa; Park, Do Youn
2013-01-01
S100A8 and S100A9 (S100A8/A9) are low-molecular weight members of the S100 family of calcium-binding proteins. Recent studies have reported S100A8/A9 promote tumorigenesis. We have previously reported that S100A8/A9 is mostly expressed in stromal cells and inflammatory cells between gastric tumor cells. However, the role of environmental S100A8/A9 in gastric cancer has not been defined. We observed in the present study the effect of S100A8/A9 on migration and invasion of gastric cancer cells. S100A8/A9 treatment increased migration and invasionat lower concentrations that did not affect cell proliferation and cell viability. S100A8/A9 caused activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The phosphorylation of p38 MAPK was not affected by the NF-κB inhibitor Bay whereas activation of NF-κB was blocked by p38 MAPK inhibitor SB203580, indicating that S100A8/A9-induced NF-κB activation is mediated by phosphorylation of p38 MAPK. S100A8/A9-induced cell migration and invasion was inhibited by SB203580 and Bay, suggesting that activation of p38 MAPK and NF-κB is involved in the S100A8/A9 induced cell migration and invasion. S100A8/A9 caused an increase in matrix metalloproteinase 2 (MMP2) and MMP12 expression, which were inhibited by SB203580 and Bay. S100A8/A9-induced cell migration and invasion was inhibited by MMP2 siRNA and MMP12 siRNA, indicating that MMP2 and MMP12 is related to the S100A8/A9 induced cell migration and invasion. Taken together, these results suggest that S100A8/A9 promotes cell migration and invasion through p38 MAPK-dependent NF-κB activation leading to an increase of MMP2 and MMP12 in gastric cancer. PMID:23456298
Polymorphonuclear cell motility, ankylosing spondylitis, and HLA B27.
Pease, C T; Fordham, J N; Currey, H L
1984-01-01
Polymorphonuclear leucocyte (PMN) function was studied in 29 subjects with ankylosing spondylitis (AS). Of these, 20 were HLA B27+ve and 9 B27-ve. There were 30 controls and, of these, 15 were B27+ve. Random and directed cell migration was measured by 2 techniques: migration through a micropore filter and migration under an agar film. The chemo-attractant was either case in-activated serum or zymosan-activated serum. By both techniques directed motility was increased in subjects with B27 or with AS when compared to the B27-ve controls. This suggests that the disease AS and the possession of B27 are both associated with increased PMN motility. PMID:6608924
Clines in quantitative traits: The role of migration patterns and selection scenarios
Geroldinger, Ludwig; Bürger, Reinhard
2015-01-01
The existence, uniqueness, and shape of clines in a quantitative trait under selection toward a spatially varying optimum is studied. The focus is on deterministic diploid two-locus n-deme models subject to various migration patterns and selection scenarios. Migration patterns may exhibit isolation by distance, as in the stepping-stone model, or random dispersal, as in the island model. The phenotypic optimum may change abruptly in a single environmental step, more gradually, or not at all. Symmetry assumptions are imposed on phenotypic optima and migration rates. We study clines in the mean, variance, and linkage disequilibrium (LD). Clines result from polymorphic equilibria. The possible equilibrium configurations are determined as functions of the migration rate. Whereas for weak migration, many polymorphic equilibria may be simultaneously stable, their number decreases with increasing migration rate. Also for intermediate migration rates polymorphic equilibria are in general not unique, however, for loci of equal effects the corresponding clines in the mean, variance, and LD are unique. For sufficiently strong migration, no polymorphism is maintained. Both migration pattern and selection scenario exert strong influence on the existence and shape of clines. The results for discrete demes are compared with those from models in which space varies continuously and dispersal is modeled by diffusion. Comparisons with previous studies, which investigated clines under neutrality or under linkage equilibrium, are performed. If there is no long-distance migration, the environment does not change abruptly, and linkage is not very tight, populations are almost everywhere close to linkage equilibrium. PMID:25446959
Random and non-random mating populations: Evolutionary dynamics in meiotic drive.
Sarkar, Bijan
2016-01-01
Game theoretic tools are utilized to analyze a one-locus continuous selection model of sex-specific meiotic drive by considering nonequivalence of the viabilities of reciprocal heterozygotes that might be noticed at an imprinted locus. The model draws attention to the role of viability selections of different types to examine the stable nature of polymorphic equilibrium. A bridge between population genetics and evolutionary game theory has been built up by applying the concept of the Fundamental Theorem of Natural Selection. In addition to pointing out the influences of male and female segregation ratios on selection, configuration structure reveals some noted results, e.g., Hardy-Weinberg frequencies hold in replicator dynamics, occurrence of faster evolution at the maximized variance fitness, existence of mixed Evolutionarily Stable Strategy (ESS) in asymmetric games, the tending evolution to follow not only a 1:1 sex ratio but also a 1:1 different alleles ratio at particular gene locus. Through construction of replicator dynamics in the group selection framework, our selection model introduces a redefining bases of game theory to incorporate non-random mating where a mating parameter associated with population structure is dependent on the social structure. Also, the model exposes the fact that the number of polymorphic equilibria will depend on the algebraic expression of population structure. Copyright © 2015 Elsevier Inc. All rights reserved.
A Wilderness Adventure Program as an Alternative for Juvenile Probationers: An Evaluation.
ERIC Educational Resources Information Center
Winterdyk, John Albert
A true experimental design with 60 male probationers, ages 13-16, was used to evaluate the viability of an Ontario-based 21-day wilderness adventure program as an alternative for adjudicated juveniles placed on probation. Participants were randomly assigned to a control group and an experimental group. The experimental group was subdivided into 3…
Turkekul, Kader; Colpan, R Dilsu; Baykul, Talha; Ozdemir, Mehmet D; Erdogan, Suat
2018-03-01
Prostate cancer (PCa) is one of the most important causes of death in men and thus new therapeutic approaches are needed. In this study, antiproliferative and anti-migration properties of a coumarin derivative esculetin were evaluated. Human PCa cell lines PC3, DU145, and LNCaP were treated with various concentrations of esculetin for 24 to 72 hours, and cell viability was determined by the MTT test. Cell cycle and apoptosis were analyzed by using cell-based cytometer. Gene expression levels were assessed by reverse transcription and quantitative real-time PCR, cell migration was determined by the wound healing assay. The protein expression was measured by Western blotting. Esculetin inhibited cell proliferation in a dose- and time-dependent manner. Cell migration was inhibited by esculetin treatment. Administration of esculetin significantly reduced the cells survival, induced apoptosis and caused the G1 phase cell cycle arrest shown by image-based cytometer. The induced expression of cytochrome c , p53, p21 and p27, and down-regulated CDK2 and CDK4 may be the underlying molecular mechanisms of esculetin effect. Esculetin suppressed phosphorylation of Akt and enhanced protein expression of tumor-suppressor phosphatase and tensin homologue. Our findings showed that the coumarin derivative esculetin could be used in the management of PCa. However, further in vivo research is needed.
Turkekul, Kader; Colpan, R. Dilsu; Baykul, Talha; Ozdemir, Mehmet D.
2018-01-01
Background Prostate cancer (PCa) is one of the most important causes of death in men and thus new therapeutic approaches are needed. In this study, antiproliferative and anti-migration properties of a coumarin derivative esculetin were evaluated. Methods Human PCa cell lines PC3, DU145, and LNCaP were treated with various concentrations of esculetin for 24 to 72 hours, and cell viability was determined by the MTT test. Cell cycle and apoptosis were analyzed by using cell-based cytometer. Gene expression levels were assessed by reverse transcription and quantitative real-time PCR, cell migration was determined by the wound healing assay. The protein expression was measured by Western blotting. Results Esculetin inhibited cell proliferation in a dose- and time-dependent manner. Cell migration was inhibited by esculetin treatment. Administration of esculetin significantly reduced the cells survival, induced apoptosis and caused the G1 phase cell cycle arrest shown by image-based cytometer. The induced expression of cytochrome c, p53, p21 and p27, and down-regulated CDK2 and CDK4 may be the underlying molecular mechanisms of esculetin effect. Esculetin suppressed phosphorylation of Akt and enhanced protein expression of tumor-suppressor phosphatase and tensin homologue. Conclusions Our findings showed that the coumarin derivative esculetin could be used in the management of PCa. However, further in vivo research is needed. PMID:29629344
Uzarevic, Zvonimir; Ozretic, Petar; Musani, Vesna; Rafaj, Maja; Cindric, Mario; Levanat, Sonja
2014-01-01
Hedgehog-Gli (Hh-Gli) signaling pathway is one of the new molecular targets found upregulated in breast tumors. Estrogen receptor alpha (ERα) signaling has a key role in the development of hormone-dependent breast cancer. We aimed to investigate the effects of inhibiting both pathways simultaneously on breast cancer cell survival and the potential interactions between these two signaling pathways. ER-positive MCF-7 cells show decreased viability after treatment with cyclopamine, a Hh-Gli pathway inhibitor, as well as after tamoxifen (an ERα inhibitor) treatment. Simultaneous treatment with cyclopamine and tamoxifen on the other hand, causes short-term survival of cells, and increased migration. We found upregulated Hh-Gli signaling under these conditions and protein profiling revealed increased expression of proteins involved in cell proliferation and migration. Therefore, even though Hh-Gli signaling seems to be a good potential target for breast cancer therapy, caution must be advised, especially when combining therapies. In addition, we also show a potential direct interaction between the Shh protein and ERα in MCF-7 cells. Our data suggest that the Shh protein is able to activate ERα independently of the canonical Hh-Gli signaling pathway. Therefore, this may present an additional boost for ER-positive cells that express Shh, even in the absence of estrogen. PMID:25503972
Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin
2016-01-01
For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC. PMID:27527161
Karki, Surya B; Yildirim-Ayan, Eda; Eisenmann, Kathryn M; Ayan, Halim
2017-01-01
Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.
Computer simulation of the probability that endangered whales will interact with oil spills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, M.; Jayko, K.; Bowles, A.
1987-03-01
A numerical model system was developed to assess quantitatively the probability that endangered bowhead and gray whales will encounter spilled oil in Alaskan waters. Bowhead and gray whale migration and diving-surfacing models, and an oil-spill trajectory model comprise the system. The migration models were developed from conceptual considerations, then calibrated with and tested against observations. The movement of a whale point is governed by a random walk algorithm which stochastically follows a migratory pathway. The oil-spill model, developed under a series of other contracts, accounts for transport and spreading behavior in open water and in the presence of sea ice.more » Historical wind records and heavy, normal, or light ice cover data sets are selected at random to provide stochastic oil-spill scenarios for whale-oil interaction simulations.« less
Survival and migration behavior of juvenile salmonids at Lower Granite Dam, 2006
Beeman, John W.; Fielding, Scott D.; Braatz, Amy C.; Wilkerson, Tamara S.; Pope, Adam C.; Walker, Christopher E.; Hardiman, Jill M.; Perry, Russell W.; Counihan, Timothy D.
2008-01-01
We described behavior and estimated passage and survival parameters of juvenile salmonids during spring and summer migration periods at Lower Granite Dam in 2006. During the spring, the study was designed to examine the effects of the Behavioral Guidance Structure (BGS) by using a randomized-block BGS Stored / BGS Deployed treatment design. The summer study was designed to compare passage and survival through Lower Granite Dam using a randomized-block design during two spill treatments while the BGS was in the stored position. We used the Route Specific Survival Model to estimate survival and passage probabilities of hatchery yearling Chinook salmon, hatchery juvenile steelhead, and hatchery and wild subyearling Chinook salmon. We also estimated fish guidance efficiency (FGE), fish passage efficiency (FPE), Removable Spillway Weir passage effectiveness (RPE), spill passage effectiveness (SPY), and combined spill and RSW passage effectiveness.
Migration stopover ecology of western avian populations: A southwestern migration workshop
Skagen, Susan K.; Melcher, Cynthia P.; Hazelwood, Rob
2004-01-01
Workshop participants discussed a coordinated approach for addressing immediate research needs regarding migration patterns and crucial stopover sites and types. They envisioned a three-tiered, coordinated approach: (1) long-term research to address effects of climate change and other large-scale patterns, (2) intensive, short-term survey and monitoring efforts using a stratified random design within habitats of interest to elucidate regional patterns of distribution and habitat use, and (3) research conducted at existing survey and banding sites to address more in-depth questions (e.g., rates of lipid deposition, microhabitat use, isotope analyses). There was considerable interest in developing common research proposals to blend the broad expertise represented at this workshop. A second meeting is recommended to build on the momentum of these discussions, to facilitate collaborations, and further the goals of integrated approaches to broadscale research on migration stopover ecology.
Traces of business cycles in credit-rating migrations
Boreiko, Dmitri; Kaniovski, Serguei; Pflug, Georg
2017-01-01
Using migration data of a rating agency, this paper attempts to quantify the impact of macroeconomic conditions on credit-rating migrations. The migrations are modeled as a coupled Markov chain, where the macroeconomic factors are represented by unobserved tendency variables. In the simplest case, these binary random variables are static and credit-class-specific. A generalization treats tendency variables evolving as a time-homogeneous Markov chain. A more detailed analysis assumes a tendency variable for every combination of a credit class and an industry. The models are tested on a Standard and Poor’s (S&P’s) dataset. Parameters are estimated by the maximum likelihood method. According to the estimates, the investment-grade financial institutions evolve independently of the rest of the economy represented by the data. This might be an evidence of implicit too-big-to-fail bail-out guarantee policies of the regulatory authorities. PMID:28426758
Traces of business cycles in credit-rating migrations.
Boreiko, Dmitri; Kaniovski, Serguei; Kaniovski, Yuri; Pflug, Georg
2017-01-01
Using migration data of a rating agency, this paper attempts to quantify the impact of macroeconomic conditions on credit-rating migrations. The migrations are modeled as a coupled Markov chain, where the macroeconomic factors are represented by unobserved tendency variables. In the simplest case, these binary random variables are static and credit-class-specific. A generalization treats tendency variables evolving as a time-homogeneous Markov chain. A more detailed analysis assumes a tendency variable for every combination of a credit class and an industry. The models are tested on a Standard and Poor's (S&P's) dataset. Parameters are estimated by the maximum likelihood method. According to the estimates, the investment-grade financial institutions evolve independently of the rest of the economy represented by the data. This might be an evidence of implicit too-big-to-fail bail-out guarantee policies of the regulatory authorities.
NASA Astrophysics Data System (ADS)
Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun
2017-12-01
The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.
Riley, W D; Ibbotson, A T; Maxwell, D L; Davison, P I; Beaumont, W R C; Ives, M J
2014-10-01
The downstream migratory behaviour of wild Atlantic salmon Salmo salar smolts was monitored using passive integrated transponder (PIT) antennae systems over 10 years in the lower reaches of a small chalk stream in southern England, U.K. The timing of smolt movements and the likely occurrence of schooling were investigated and compared to previous studies. In nine of the 10 consecutive years of study, the observed diel downstream patterns of S. salar smolt migration appeared to be synchronized with the onset of darkness. The distribution of time intervals between successive nocturnal detections of PIT-tagged smolts was as expected if generated randomly from observed hourly rates. There were, however, significantly more short intervals than expected for smolts detected migrating during the day. For each year from 2006 to 2011, the observed 10th percentile of the daytime intervals was <4 s, compared to ≥55 s for the simulated random times, indicating greater incidence of groups of smolts. Groups with the shortest time intervals between successive PIT tag detections originated from numerous parr tagging sites (used as a proxy for relatedness). The results suggest that the ecological drivers influencing daily smolt movements in the lower reaches of chalk stream catchments are similar to those previously reported at the onset of migration for smolts leaving their natal tributaries; that smolts detected migrating during the night are moving independently following initiation by a common environmental factor (presumably darkness), whereas those detected migrating during the day often move in groups, and that such schools may not be site (kin)-structured. The importance of understanding smolt migratory behaviour is considered with reference to stock monitoring programmes and enhancing downstream passage past barriers. © 2014 Crown copyright. Journal of Fish Biology © 2014 The Fisheries Society of the British Isles.
Gazard, Billy; Frissa, Souci; Nellums, Laura; Hotopf, Matthew; Hatch, Stephani L.
2015-01-01
Objectives. This study aimed to investigate the associations between migration status and health-related outcomes and to examine whether and how the effect of migration status changes when it is disaggregated by length of residence, first language, reason for migration and combined with ethnicity. Design. A total of 1698 adults were interviewed from 1076 randomly selected households in two South London boroughs. We described the socio-demographic and socio-economic differences between migrants and non-migrants and compared the prevalence of health-related outcomes by migration status, length of residence, first language, reason for migration and migration status within ethnic groups. Unadjusted models and models adjusted for socio-demographic and socio-economic indicators are presented. Results. Migrants were disadvantaged in terms of socio-economic status but few differences were found between migrant and non-migrants regarding health or health service use indicators; migration status was associated with decreased hazardous alcohol use, functional limitations due to poor mental health and not being registered with a general practitioner. Important differences emerged when migration status was disaggregated by length of residence in the UK, first language, reason for migration and intersected with ethnicity. The association between migration status and functional limitations due to poor mental health was only seen in White migrants, migrants whose first language was not English and migrants who had moved to the UK for work or a better life or for asylum or political reasons. There was no association between migration status and self-rated health overall, but Black African migrants had decreased odds for reporting poor health compared to their non-migrant counterparts [odds ratio = 0.15 (0.05–0.48), p < 0.01]. Conclusions. Disaggregating migration status by length of residence, first language and reason for migration as well as intersecting it with ethnicity leads to better understanding of the effect migration status has on health and health service use. PMID:25271468
Zhang, Ling; Liu, Shuming; Liu, Wenjun
2014-02-01
Polymeric pipes, such as unplasticized polyvinyl chloride (uPVC) pipes, polypropylene random (PPR) pipes and polyethylene (PE) pipes are increasingly used for drinking water distribution lines. Plastic pipes may include some additives like metallic stabilizers and other antioxidants for the protection of the material during its production and use. Thus, some compounds can be released from those plastic pipes and cast a shadow on drinking water quality. This work develops a new procedure to investigate three types of polymer pipes (uPVC, PE and PPR) with respect to the migration of total organic carbon (TOC) into drinking water. The migration test was carried out in stagnant conditions with two types of migration processes, a continuous migration process and a successive migration process. These two types of migration processes are specially designed to mimic the conditions of different flow manners in drinking water pipelines, i.e., the situation of continuous stagnation with long hydraulic retention times and normal flow status with regular water renewing in drinking water networks. The experimental results showed that TOC release differed significantly with different plastic materials and under different flow manners. The order of materials with respect to the total amount of TOC migrating into drinking water was observed as PE > PPR > uPVC under both successive and continuous migration conditions. A higher amount of organic migration from PE and PPR pipes was likely to occur due to more organic antioxidants being used in pipe production. The results from the successive migration tests indicated the trend of the migration intensity of different pipe materials over time, while the results obtained from the continuous migration tests implied that under long stagnant conditions, the drinking water quality could deteriorate quickly with the consistent migration of organic compounds and the dramatic consumption of chlorine to a very low level. Higher amounts of TOC were released under the continuous migration tests.
Calzi, Sergio Li; Kent, David L.; Chang, Kyung-Hee; Padgett, Kyle R.; Afzal, Aqeela; Chandra, Saurav B.; Caballero, Sergio; English, Denis; Garlington, Wendy; Hiscott, Paul S.; Sheridan, Carl M.; Grant, Maria B.; Forder, John R.
2013-01-01
Precise localization of exogenously delivered stem cells is critical to our understanding of their reparative response. Our current inability to determine the exact location of small numbers of cells may hinder optimal development of these cells for clinical use. We describe a method using magnetic resonance imaging to track and localize small numbers of stem cells following transplantation. Endothelial progenitor cells (EPC) were labeled with monocrystalline iron oxide nanoparticles (MIONs) which neither adversely altered their viability nor their ability to migrate in vitro and allowed successful detection of limited numbers of these cells in muscle. MION-labeled stem cells were also injected into the vitreous cavity of mice undergoing the model of choroidal neovascularization, laser rupture of Bruch’s membrane. Migration of the MION-labeled cells from the injection site towards the laser burns was visualized by MRI. In conclusion, MION labeling of EPC provides a non-invasive means to define the location of small numbers of these cells. Localization of these cells following injection is critical to their optimization for therapy. PMID:19345699
Daniel, Claudia; Baker, Brian
2013-03-12
Demand for organic cherries offers producers a premium price to improve their commercial viability. Organic standards require that producers find alternatives to pesticides. Soil treatments to control the European cherry fruit fly Rhagoletis cerasi (L.) (Diptera: Tephrididae) appear to be an attractive option. However, soil treatments can only be effective if the migration of flies is low, because mature flies may migrate from near-by trees for oviposition. To examine the general potential of soil treatments and to understand the dispersal and flight behaviour of R. cerasi within orchards, experiments using netting to cover the soil were conducted in two orchards with different pest pressure during two years. The netting reduced flight activity by 77% and fruit infestation by 91%. The data showed that the flies have a dispersal of less than 5 m within orchards, which is very low. The low thresholds for tolerance for infested fruit in the fresh market creates a strong economic incentive for control, therefore, soil covering is a promising strategy for controlling R. cerasi in commercial orchards.
Daniel, Claudia; Baker, Brian
2013-01-01
Demand for organic cherries offers producers a premium price to improve their commercial viability. Organic standards require that producers find alternatives to pesticides. Soil treatments to control the European cherry fruit fly Rhagoletis cerasi (L.) (Diptera: Tephrididae) appear to be an attractive option. However, soil treatments can only be effective if the migration of flies is low, because mature flies may migrate from near-by trees for oviposition. To examine the general potential of soil treatments and to understand the dispersal and flight behaviour of R. cerasi within orchards, experiments using netting to cover the soil were conducted in two orchards with different pest pressure during two years. The netting reduced flight activity by 77% and fruit infestation by 91%. The data showed that the flies have a dispersal of less than 5 m within orchards, which is very low. The low thresholds for tolerance for infested fruit in the fresh market creates a strong economic incentive for control, therefore, soil covering is a promising strategy for controlling R. cerasi in commercial orchards. PMID:26466801
Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells
BARNI, M.V.; CARLINI, M.J.; CAFFERATA, E.G.; PURICELLI, L.; MORENO, S.
2012-01-01
Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide. The objective of this study was to examine whether carnosic acid (CA), the main antioxidant compound of Rosmarinus officinalis L., would inhibit the cell viability of three CRC cell lines: Caco-2, HT29 and LoVo in a dose-dependent manner, with IC50 values in the range of 24–96 μM. CA induced cell death by apoptosis in Caco-2 line after 24 h of treatment and inhibited cell adhesion and migration, possibly by reducing the activity of secreted proteases such as urokinase plasminogen activator (uPA) and metalloproteinases (MMPs). These effects may be associated through a mechanism involving the inhibition of the COX-2 pathway, because we have determined that CA downregulates the expression of COX-2 in Caco-2 cells at both the mRNA and protein levels. Therefore, CA modulates different targets involved in the development of CRC. These findings indicate that carnosic acid may have anticancer activity and may be useful as a novel chemotherapeutic agent. PMID:22246562
Gubernskaya, Zoya
2015-03-01
This research contributes to the "immigrant health paradox" debate by testing the hypothesis that older age at migration is associated with the increased risk of poor health in later life. Using the 1992-2008 Health and Retirement Study, I construct linear random-intercept models to estimate self-rated health (SRH) trajectories after age 50 for the native and foreign born by age at migration. At age 50, both Hispanic and non-Hispanic foreign born report better SRH compared with their native-born counterparts, net of race, gender, and education. Non-Hispanic foreign born who migrated after age 35 and Hispanic foreign born who migrated after age 18, however, experience steeper decline in SRH after age 50, which results in a health disadvantage vis-à-vis the native born in old age. Education has a smaller protective effect on SRH for the foreign born, especially those who migrated as adults. Age at migration is an important factor for understanding health status of older immigrants. Steeper health decline in later life of the foreign born who migrated in advanced ages may be related to longer exposure to unfavorable conditions in home countries and limited opportunities for incorporation in the United States. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Is head-shaft angle a valuable continuous risk factor for hip migration in cerebral palsy?
Chougule, Sanjay; Dabis, John; Petrie, Aviva; Daly, Karen; Gelfer, Yael
2016-12-01
Reimer's migration percentage (MP) is the most established radiographic risk factor for hip migration in cerebral palsy (CP), and it assists surgical decision-making. The head-shaft angle (HSA) measures the valgus of the head and neck in relation to the shaft and may also be a useful predictor of hip migration at a young age. This study first defined normal values and investigated whether the head-shaft angle (HSA) is a continuous risk factor for hip migration in CP. Three hundred and fifty AP pelvic radiographs of 100 consecutive children comprising the hip surveillance programme in our region were analysed for MP and HSA. Inclusion criteria were children with spastic CP and Gross Motor Function Classification System (GMFCS) levels of III-V, along with a minimum follow-up of 5 years. The mean age was 8.8 (range 3-18) years and the mean follow-up time was 7.5 (range 5-10) years. Radiographs of 103 typically developing children (TDC) were selected for the control group. The reliability of the measurements was determined. A random effects analysis was used to assess the relationship between MP and HSA for all data and for MP > 40 %. The TDC cohort had a mean HSA of 157.7° whilst that for the CP cohort was 161.7°. The value declined with age in both groups but remained consistently higher in the CP group. A random effects analysis considering the longitudinal data showed that there was no significant effect of HSA on MP. Similarly, when excluding CP patients with MP < 40 %, there was no significant effect of HSA on MP. This study found no correlation between HSA and hip migration in children with CP in this age group. Using the HSA as a routine radiographic measure in the management pathway across childhood does not offer any added value. Early enrolment onto the hip surveillance programme could offer a better prediction of hip migration using the HSA at a very young age. II retrospective prognostic study.
Connacher, Mary Katherine; Tay, Jian Wei; Ahn, Natalie G.
2017-01-01
In contrast to events at the cell leading edge, rear-polarized mechanisms that control directional cell migration are poorly defined. Previous work described a new intracellular complex, the Wnt5a-receptor-actomyosin polarity (WRAMP) structure, which coordinates the polarized localization of MCAM, actin, and myosin IIB in a Wnt5a-induced manner. However, the polarity and function for the WRAMP structure during cell movement were not determined. Here we characterize WRAMP structures during extended cell migration using live-cell imaging. The results demonstrate that cells undergoing prolonged migration show WRAMP structures stably polarized at the rear, where they are strongly associated with enhanced speed and persistence of directional movement. Strikingly, WRAMP structures form transiently, with cells displaying directional persistence during periods when they are present and cells changing directions randomly when they are absent. Cells appear to pause locomotion when WRAMP structures disassemble and then migrate in new directions after reassembly at a different location, which forms the new rear. We conclude that WRAMP structures represent a rear-directed cellular mechanism to control directional migration and that their ability to form dynamically within cells may control changes in direction during extended migration. PMID:28592632
Gartlan, Kate H; Wee, Janet L; Demaria, Maria C; Nastovska, Roza; Chang, Tsz Man; Jones, Eleanor L; Apostolopoulos, Vasso; Pietersz, Geoffrey A; Hickey, Michael J; van Spriel, Annemiek B; Wright, Mark D
2013-05-01
Previous studies on the role of the tetraspanin CD37 in cellular immunity appear contradictory. In vitro approaches indicate a negative regulatory role, whereas in vivo studies suggest that CD37 is necessary for optimal cellular responses. To resolve this discrepancy, we studied the adaptive cellular immune responses of CD37(-/-) mice to intradermal challenge with either tumors or model antigens and found that CD37 is essential for optimal cell-mediated immunity. We provide evidence that an increased susceptibility to tumors observed in CD37(-/-) mice coincides with a striking failure to induce antigen-specific IFN-γ-secreting T cells. We also show that CD37 ablation impairs several aspects of DC function including: in vivo migration from skin to draining lymph nodes; chemo-tactic migration; integrin-mediated adhesion under flow; the ability to spread and form actin protrusions and in vivo priming of adoptively transferred naïve T cells. In addition, multiphoton microscopy-based assessment of dermal DC migration demonstrated a reduced rate of migration and increased randomness of DC migration in CD37(-/-) mice. Together, these studies are consistent with a model in which the cellular defect that underlies poor cellular immune induction in CD37(-/-) mice is impaired DC migration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soman, Pranav; Kelber, Jonathan A; Lee, Jin Woo; Wright, Tracy N; Vecchio, Kenneth S; Klemke, Richard L; Chen, Shaochen
2012-10-01
Our current understanding of 3-dimensional (3D) cell migration is primarily based on results from fibrous scaffolds with randomly organized internal architecture. Manipulations that change the stiffness of these 3D scaffolds often alter other matrix parameters that can modulate cell motility independently or synergistically, making observations less predictive of how cells behave when migrating in 3D. In order to decouple microstructural influences and stiffness effects, we have designed and fabricated 3D polyethylene glycol (PEG) scaffolds that permit orthogonal tuning of both elastic moduli and microstructure. Scaffolds with log-pile architectures were used to compare the 3D migration properties of normal breast epithelial cells (HMLE) and Twist-transformed cells (HMLET). Our results indicate that the nature of cell migration is significantly impacted by the ability of cells to migrate in the third dimension. 2D ECM-coated PEG substrates revealed no statistically significant difference in cell migration between HMLE and HMLET cells among substrates of different stiffness. However, when cells were allowed to move along the third dimension, substantial differences were observed for cell displacement, velocity and path straightness parameters. Furthermore, these differences were sensitive to both substrate stiffness and the presence of the Twist oncogene. Importantly, these 3D modes of migration provide insight into the potential for oncogene-transformed cells to migrate within and colonize tissues of varying stiffness. Copyright © 2012 Elsevier Ltd. All rights reserved.
Scaion, D; Vettier, A; Sébert, P
2008-01-01
The European eel (Anguilla anguilla) migrates (6000 km) from European coast towards the supposed spawning area: the Sargasso Sea. This intensive and sustained swimming activity is performed without feeding and by using essentially red muscle i.e. aerobic metabolism. Temperature and hydrostatic pressure vary during migration and have known effects on energy metabolism, mainly on mitochondrial functioning. We raise the question about the existence of a pressure-temperature combination that optimizes energy metabolism. We have measured the maximal oxygen consumption (MO2) of red muscle fibres of silver eel (migrating stage) in a temperature range (5 to 25 degrees C) covering what can be reasonably expected during the migration. We have combined (random order) three temperatures (5, 15, 25 degrees C) with 5 different pressures steps from 0.1 to 10.1 MPa (corresponding to depths from surface to 1000 m). The results show that when an adequate temperature is chosen as a reference, pressure effects and pressure sensitivity depend on the temperature. Based on the fact that energy budget is limited in migrating eels, we consider that the best conditions are low temperature and high pressure.
Cooperation in group-structured populations with two layers of interactions
Zhang, Yanling; Fu, Feng; Chen, Xiaojie; Xie, Guangming; Wang, Long
2015-01-01
Recently there has been a growing interest in studying multiplex networks where individuals are structured in multiple network layers. Previous agent-based simulations of games on multiplex networks reveal rich dynamics arising from interdependency of interactions along each network layer, yet there is little known about analytical conditions for cooperation to evolve thereof. Here we aim to tackle this issue by calculating the evolutionary dynamics of cooperation in group-structured populations with two layers of interactions. In our model, an individual is engaged in two layers of group interactions simultaneously and uses unrelated strategies across layers. Evolutionary competition of individuals is determined by the total payoffs accrued from two layers of interactions. We also consider migration which allows individuals to move to a new group within each layer. An approach combining the coalescence theory with the theory of random walks is established to overcome the analytical difficulty upon local migration. We obtain the exact results for all “isotropic” migration patterns, particularly for migration tuned with varying ranges. When the two layers use one game, the optimal migration ranges are proved identical across layers and become smaller as the migration probability grows. PMID:26632251
Iwadate, Yoshiaki; Okimura, Chika; Sato, Katsuya; Nakashima, Yuta; Tsujioka, Masatsune; Minami, Kazuyuki
2013-01-01
Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin. PMID:23442953
Antigen-loaded dendritic cell migration: MR imaging in a pancreatic carcinoma model.
Zhang, Zhuoli; Li, Weiguo; Procissi, Daniele; Li, Kangan; Sheu, Alexander Y; Gordon, Andrew C; Guo, Yang; Khazaie, Khashayarsha; Huan, Yi; Han, Guohong; Larson, Andrew C
2015-01-01
To test the following hypotheses in a murine model of pancreatic cancer: (a) Vaccination with antigen-loaded iron-labeled dendritic cells reduces T2-weighted signal intensity at magnetic resonance (MR) imaging within peripheral draining lymph nodes ( LN lymph node s) and (b) such signal intensity reductions are associated with tumor size changes after dendritic cell vaccination. The institutional animal care and use committee approved this study. Panc02 cells were implanted into the flanks of 27 C57BL/6 mice bilaterally. After tumors reached 10 mm, cell viability was evaluated, and iron-labeled dendritic cell vaccines were injected into the left hind footpad. The mice were randomly separated into the following three groups (n = 9 in each): Group 1 was injected with 1 million iron-labeled dendritic cells; group 2, with 2 million cells; and control mice, with 200 mL of phosphate-buffered saline. T1- and T2-weighted MR imaging of labeled dendritic cell migration to draining LN lymph node s was performed before cell injection and 6 and 24 hours after injection. The signal-to-noise ratio ( SNR signal-to-noise ratio ) of the draining LN lymph node s was measured. One-way analysis of variance ( ANOVA analysis of variance ) was used to compare Prussian blue-positive dendritic cell measurements in LN lymph node s. Repeated-measures ANOVA analysis of variance was used to compare in vivo T2-weighted SNR signal-to-noise ratio LN lymph node measurements between groups over the observation time points. Trypan blue assays showed no significant difference in mean viability indexes (unlabeled vs labeled dendritic cells, 4.32% ± 0.69 [standard deviation] vs 4.83% ± 0.76; P = .385). Thirty-five days after injection, the mean left and right flank tumor sizes, respectively, were 112.7 mm(2) ± 16.4 and 109 mm(2) ± 24.3 for the 1-million dendritic cell group, 92.2 mm(2) ± 9.9 and 90.4 mm(2) ± 12.8 for the 2-million dendritic cell group, and 193.7 mm(2) ± 20.9 and 189.4 mm(2) ± 17.8 for the control group (P = .0001 for control group vs 1-million cell group; P = .00007 for control group vs 2-million cell group). There was a correlation between postinjection T2-weighted SNR signal-to-noise ratio decreases in the left popliteal LN lymph node 24 hours after injection and size changes at follow-up for tumors in both flanks (R = 0.81 and R = 0.76 for left and right tumors, respectively). MR imaging approaches can be used for quantitative measurement of accumulated iron-labeled dendritic cell-based vaccines in draining LN lymph node s. The amount of dendritic cell-based vaccine in draining LN lymph node s correlates well with observed protective effects.
Antigen-loaded Dendritic Cell Migration: MR Imaging in a Pancreatic Carcinoma Model
Li, Weiguo; Procissi, Daniele; Li, Kangan; Sheu, Alexander Y.; Gordon, Andrew C.; Guo, Yang; Khazaie, Khashayarsha; Huan, Yi; Han, Guohong; Larson, Andrew C.
2015-01-01
Purpose To test the following hypotheses in a murine model of pancreatic cancer: (a) Vaccination with antigen-loaded iron-labeled dendritic cells reduces T2-weighted signal intensity at magnetic resonance (MR) imaging within peripheral draining lymph nodes (LNlymph nodes) and (b) such signal intensity reductions are associated with tumor size changes after dendritic cell vaccination. Materials and Methods The institutional animal care and use committee approved this study. Panc02 cells were implanted into the flanks of 27 C57BL/6 mice bilaterally. After tumors reached 10 mm, cell viability was evaluated, and iron-labeled dendritic cell vaccines were injected into the left hind footpad. The mice were randomly separated into the following three groups (n = 9 in each): Group 1 was injected with 1 million iron-labeled dendritic cells; group 2, with 2 million cells; and control mice, with 200 mL of phosphate-buffered saline. T1- and T2-weighted MR imaging of labeled dendritic cell migration to draining LNlymph nodes was performed before cell injection and 6 and 24 hours after injection. The signal-to-noise ratio (SNRsignal-to-noise ratio) of the draining LNlymph nodes was measured. One-way analysis of variance (ANOVAanalysis of variance) was used to compare Prussian blue–positive dendritic cell measurements in LNlymph nodes. Repeated-measures ANOVAanalysis of variance was used to compare in vivo T2-weighted SNRsignal-to-noise ratio LNlymph node measurements between groups over the observation time points. Results Trypan blue assays showed no significant difference in mean viability indexes (unlabeled vs labeled dendritic cells, 4.32% ± 0.69 [standard deviation] vs 4.83% ± 0.76; P = .385). Thirty-five days after injection, the mean left and right flank tumor sizes, respectively, were 112.7 mm2 ± 16.4 and 109 mm2 ± 24.3 for the 1-million dendritic cell group, 92.2 mm2 ± 9.9 and 90.4 mm2 ± 12.8 for the 2-million dendritic cell group, and 193.7 mm2 ± 20.9 and 189.4 mm2 ± 17.8 for the control group (P = .0001 for control group vs 1-million cell group; P = .00007 for control group vs 2-million cell group). There was a correlation between postinjection T2-weighted SNRsignal-to-noise ratio decreases in the left popliteal LNlymph node 24 hours after injection and size changes at follow-up for tumors in both flanks (R = 0.81 and R = 0.76 for left and right tumors, respectively). Conclusion MR imaging approaches can be used for quantitative measurement of accumulated iron-labeled dendritic cell–based vaccines in draining LNlymph nodes. The amount of dendritic cell–based vaccine in draining LNlymph nodes correlates well with observed protective effects. © RSNA, 2014 Online supplemental material is available for this article. PMID:25222066
Effects of long-term cryopreservation on peripheral blood progenitor cells.
Vosganian, Gregory S; Waalen, Jill; Kim, Kevin; Jhatakia, Sejal; Schram, Ethan; Lee, Tracey; Riddell, Dan; Mason, James R
2012-11-01
The long-term stability of cryopreserved peripheral blood progenitor cells is an important issue for patients experiencing disease relapse. However, there is no consensus on how to evaluate the long-term effects of cryopreservation. We describe the effect of cryopreservation on viability and progenitor colony activity from 87 individual samples processed at the Scripps Green Hospital Stem Cell Processing Center (La Jolla, CA, USA). We randomly selected 87 peripheral blood hematopoietic stem cell (PBHSC) samples from 60 patients and evaluated the effect of cryopreservation on sample viability and red and white cell colony activity after < 24 h and 7, 10 and 15 years of cryopreservation. Viability was assayed via trypan blue dye exclusion and activity was measured following 14 days of culture. An age at collection older than 50 years may result in suboptimal activity and viability following long-term cryopreservation, while gender and disease status had no effect. Cryopreservation did not significantly affect white or red cell activity following 10 years of cryopreservation. However, for samples stored longer than 10 years, viability and activity significantly decreased. We noted a positive association between higher pre-cryopreservation %CD34 count and colony activity. Cryopreservation of peripheral blood progenitor cells for up to 10 years results in no loss of clonogenic capacity, as determined by culture activity, although longer durations of storage may affect activity. Until validated methods are developed, cryopreserved grafts should be evaluated based on pre-freeze CD34(+) cell counts as assayed by flow cytometry, and post-thaw sample evaluation should be reserved for patients identified as poor mobilizers.
Kaempferia parviflora Extract Exhibits Anti-cancer Activity against HeLa Cervical Cancer Cells
Potikanond, Saranyapin; Sookkhee, Siriwoot; Na Takuathung, Mingkwan; Mungkornasawakul, Pitchaya; Wikan, Nitwara; Smith, Duncan R.; Nimlamool, Wutigri
2017-01-01
Kaempferia parviflora (KP) has been traditionally used as a folk remedy to treat several diseases including cancer, and several studies have reported cytotoxic activities of extracts of KP against a number of different cancer cell lines. However, many aspects of the molecular mechanism of action of KP remain unclear. In particular, the ability of KP to regulate cancer cell growth and survival signaling is still largely unexplored. The current study aimed to investigate the effects of KP on cell viability, cell migration, cell invasion, cell apoptosis, and on signaling pathways related to growth and survival of cervical cancer cells, HeLa. We discovered that KP reduced HeLa cell viability in a concentration-dependent manner. The potent cytotoxicity of KP against HeLa cells was associated with a dose-dependent induction of apoptotic cell death as determined by flow cytometry and observation of nuclear fragmentation. Moreover, KP-induced cell apoptosis was likely to be mediated through the intrinsic apoptosis pathway since caspase 9 and caspase 7, but not BID, were shown to be activated after KP exposure. Based on the observation that KP induced apoptosis in HeLa cell, we further investigated the effects of KP at non-cytotoxic concentrations on suppressing signal transduction pathways relevant to cell growth and survival. We found that KP suppressed the MAPK and PI3K/AKT signaling pathways in cells activated with EGF, as observed by a significant decrease in phosphorylation of ERK1/2, Elk1, PI3K, and AKT. The data suggest that KP interferes with the growth and survival of HeLa cells. Consistent with the inhibitory effect on EGF-stimulated signaling, KP potently suppressed the migration of HeLa cells. Concomitantly, KP was demonstrated to markedly inhibit HeLa cell invasion. The ability of KP in suppressing the migration and invasion of HeLa cells was associated with the suppression of matrix metalloproteinase-2 production. These data strongly suggest that KP may slow tumor progression and metastasis in patients with cervical cancer. Taken together, the present report provides accumulated evidence revealing the potent anti-cancer activities of Kaempferia parviflora against cervical cancer HeLa cells, and suggests its potential use as an alternative way for cervical cancer prevention and therapy. PMID:28955234
Kaempferia parviflora Extract Exhibits Anti-cancer Activity against HeLa Cervical Cancer Cells.
Potikanond, Saranyapin; Sookkhee, Siriwoot; Na Takuathung, Mingkwan; Mungkornasawakul, Pitchaya; Wikan, Nitwara; Smith, Duncan R; Nimlamool, Wutigri
2017-01-01
Kaempferia parviflora (KP) has been traditionally used as a folk remedy to treat several diseases including cancer, and several studies have reported cytotoxic activities of extracts of KP against a number of different cancer cell lines. However, many aspects of the molecular mechanism of action of KP remain unclear. In particular, the ability of KP to regulate cancer cell growth and survival signaling is still largely unexplored. The current study aimed to investigate the effects of KP on cell viability, cell migration, cell invasion, cell apoptosis, and on signaling pathways related to growth and survival of cervical cancer cells, HeLa. We discovered that KP reduced HeLa cell viability in a concentration-dependent manner. The potent cytotoxicity of KP against HeLa cells was associated with a dose-dependent induction of apoptotic cell death as determined by flow cytometry and observation of nuclear fragmentation. Moreover, KP-induced cell apoptosis was likely to be mediated through the intrinsic apoptosis pathway since caspase 9 and caspase 7, but not BID, were shown to be activated after KP exposure. Based on the observation that KP induced apoptosis in HeLa cell, we further investigated the effects of KP at non-cytotoxic concentrations on suppressing signal transduction pathways relevant to cell growth and survival. We found that KP suppressed the MAPK and PI3K/AKT signaling pathways in cells activated with EGF, as observed by a significant decrease in phosphorylation of ERK1/2, Elk1, PI3K, and AKT. The data suggest that KP interferes with the growth and survival of HeLa cells. Consistent with the inhibitory effect on EGF-stimulated signaling, KP potently suppressed the migration of HeLa cells. Concomitantly, KP was demonstrated to markedly inhibit HeLa cell invasion. The ability of KP in suppressing the migration and invasion of HeLa cells was associated with the suppression of matrix metalloproteinase-2 production. These data strongly suggest that KP may slow tumor progression and metastasis in patients with cervical cancer. Taken together, the present report provides accumulated evidence revealing the potent anti-cancer activities of Kaempferia parviflora against cervical cancer HeLa cells, and suggests its potential use as an alternative way for cervical cancer prevention and therapy.
Effects of negative pressures on epithelial tight junctions and migration in wound healing.
Hsu, Chih-Chin; Tsai, Wen-Chung; Chen, Carl Pai-Chu; Lu, Yun-Mei; Wang, Jong-Shyan
2010-08-01
Negative-pressure wound therapy has recently gained popularity in chronic wound care. This study attempted to explore effects of different negative pressures on epithelial migration in the wound-healing process. The electric cell-substrate impedance sensing (ECIS) technique was used to create a 5 x 10(-4) cm(2) wound in the Madin-Darby canine kidney (MDCK) and human keratinocyte (HaCaT) cells. The wounded cells were cultured in a negative pressure incubator at ambient pressure (AP) and negative pressures of 75 mmHg (NP(75)), 125 mmHg (NP(125)), and 175 mmHg (NP(175)). The effective time (ET), complete wound healing time (T(max)), healing rate (R(heal)), cell diameter, and wound area over time at different pressures were evaluated. Traditional wound-healing assays were prepared for fluorescent staining of cells viability, cell junction proteins, including ZO-1 and E-cadherin, and actins. Amount of cell junction proteins at AP and NP(125) was also quantified. In MDCK cells, the ET (1.25 +/- 0.27 h), T(max) (1.76 +/- 0.32 h), and R(heal) (2.94 +/- 0.62 x 10(-4) cm(2)/h) at NP(125) were significantly (P < 0.01) different from those at three other pressure conditions. In HaCaT cells, the T(max) (7.34 +/- 0.29 h) and R(heal) (6.82 +/- 0.26 x 10(-5) cm(2)/h) at NP(125) were significantly (P < 0.01) different from those at NP(75). Prominent cell migration features were identified in cells at the specific negative pressure. Cell migration activities at different pressures can be documented with the real-time wound-healing measurement system. Negative pressure of 125 mmHg can help disassemble the cell junction to enhance epithelial migration and subsequently result in quick wound closure.
Borawska, Maria H; Naliwajko, Sylwia K; Moskwa, Justyna; Markiewicz-Żukowska, Renata; Puścion-Jakubik, Anna; Soroczyńska, Jolanta
2016-09-20
Propolis and Hypericum perforatum L. are natural products which contain many active compounds and have numerous beneficial effects, including an antitumor effect. Gliobmastoma multiforme (GBM) is a common primary brain tumor with poor prognosis and limited treatment options. In this study, the effect of propolis (EEP) combined with H. perforatum L. (HPE) on glioblastoma cell line U87MG was investigated for the first time. Anti-proliferative activity of EEP, HPE and their combination (EEP + HPE) was determined by a cytotoxicity test, DNA binding by [(3)H]-thymidine incorporation and cell migration assay. Anti-metastatic properties in U87MG treated with EEP, HPE and EEP + HPE were estimated on cells migration test (scratch assay) and metalloproteinases (MMP2 and MMP9) secretion (gelatin zymography). Combination of HPE and EEP extracts was found to have a time- and dose-dependent inhibitory effect on the viability of U87MG cells. This effect was significantly higher (p < 0.05) when compared to these two extracts applied separately, which was confirmed by the significant reduction of DNA synthesis and significantly higher mitochondrial membrane permeabilization. A significant decreasing in migration cells and in pro-MMP9 and pro-MMP2 secretion in U87MG cells were demonstrated after exposure to combination of EEP (30 μg/ml) with HPE (6.25 μg/ml). In this study, the combination of ethanolic extract from propolis and ethanolic extract of fresh-cut H. perforatum L. was proved the ability to reduce invasiveness of glioma cells through the inhibition of MMP2 and MMP9 secretion and suppression of cell migration. It has a more potent anti-proliferative effect on U87MG glioma cell line compared to using propolis and H. perforatum L. separately. Further studies are required to verify whether the examined extracts can activate apoptotic pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiang; Zhang, Aijun; Tao, Changbo
2013-11-22
Highlights: •SDF-1 pretreating increased the levels of CXCR4, CXCR7 in ADSCs. •SDF-1 improved cells paracrine migration and proliferation abilities. •CXCR4 and CXCR7 could function in ADSCs paracrine, migration and proliferation. -- Abstract: Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study wasmore » designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.« less
Effects of PPARα inhibition in head and neck paraganglioma cells
Florio, Rosalba; di Giacomo, Viviana; Di Marcantonio, Maria Carmela; Cristiano, Loredana; Basile, Mariangela; Verginelli, Fabio; Verzilli, Delfina; Ammazzalorso, Alessandra; Prasad, Sampath Chandra; Cataldi, Amelia; Sanna, Mario; Cimini, Annamaria; Mariani-Costantini, Renato; Mincione, Gabriella; Cama, Alessandro
2017-01-01
Head and neck paragangliomas (HNPGLs) are rare tumors that may cause important morbidity, because of their tendency to infiltrate the skull base. At present, surgery is the only therapeutic option, but radical removal may be difficult or impossible. Thus, effective targets and molecules for HNPGL treatment need to be identified. However, the lack of cellular models for this rare tumor hampers this task. PPARα receptor activation was reported in several tumors and this receptor appears to be a promising therapeutic target in different malignancies. Considering that the role of PPARα in HNPGLs was never studied before, we analyzed the potential of modulating PPARα in a unique model of HNPGL cells. We observed an intense immunoreactivity for PPARα in HNPGL tumors, suggesting that this receptor has an important role in HNPGL. A pronounced nuclear expression of PPARα was also confirmed in HNPGL-derived cells. The specific PPARα agonist WY14643 had no effect on HNPGL cell viability, whereas the specific PPARα antagonist GW6471 reduced HNPGL cell viability and growth by inducing cell cycle arrest and caspase-dependent apoptosis. GW6471 treatment was associated with a marked decrease of CDK4, cyclin D3 and cyclin B1 protein expression, along with an increased expression of p21 in HNPGL cells. Moreover, GW6471 drastically impaired clonogenic activity of HNPGL cells, with a less marked effect on cell migration. Notably, the effects of GW6471 on HNPGL cells were associated with the inhibition of the PI3K/GSK3β/β-catenin signaling pathway. In conclusion, the PPARα antagonist GW6471 reduces HNPGL cell viability, interfering with cell cycle and inducing apoptosis. The mechanisms affecting HNPGL cell viability involve repression of the PI3K/GSK3β/β-catenin pathway. Therefore, PPARα could represent a novel therapeutic target for HNPGL. PMID:28594934
Wong, Chin-Chean; Chen, Chih-Hwa; Chan, Wing P; Chiu, Li-Hsuan; Ho, Wei-Pin; Hsieh, Fon-Jou; Chen, You-Tzung; Yang, Tsung-Lin
2017-11-01
To avoid complicated procedures requiring in vitro chondrocyte expansion for cartilage repair, the development of a culture-free, 1-stage approach combining platelet-rich fibrin (PRF) and autologous cartilage grafts may be the solution. To develop a feasible 1-step procedure to combine PRF and autologous cartilage grafts for articular chondral defects. Controlled laboratory study Methods: The chemotactic effects of PRF on chondrocytes harvested from the primary culture of rabbit cartilage were evaluated in vitro and ex vivo. The rabbit chondrocytes were cultured with different concentrations of PRF media and evaluated for their cell proliferation, chondrogenic gene expression, cell viability, and extracellular matrix synthesis abilities. For the in vivo study, the chondral defects were created on established animal models of rabbits. The gross anatomy, histology, and objective scores were evaluated to validate the treatment results. PRF improved the chemotaxis, proliferation, and viability of the cultured chondrocytes. The gene expression of the chondrogenic markers, including type II collagen and aggrecan, revealed that PRF induced the chondrogenic differentiation of cultured chondrocytes. PRF increased the formation and deposition of the cartilaginous matrix produced by cultured chondrocytes. The efficacy of PRF on cell viability was comparable with that of fetal bovine serum. In animal disease models, morphologic, histological, and objectively quantitative evaluation demonstrated that PRF combined with cartilage granules was feasible in facilitating chondral repair. PRF enhances the migration, proliferation, viability, and differentiation of chondrocytes, thus showing an appealing capacity for cartilage repair. The data altogether provide evidence to confirm the feasibility of 1-stage, culture-free method of combining PRF and autologous cartilage graft for repairing articular chondral defects. The single-stage, culture-free method of combining PRF and autologous cartilage is useful for repairing articular chondral defects. These advantages benefit clinical translation by simplifying and potentiating the efficacy of autologous cartilage transplantation.
Zhou, Jie; Zhang, Chao; Pan, Jun; Chen, Ligang; Qi, Song-Tao
2017-06-01
Total resection of adamantinomatous craniopharyngioma (ACP) is complex and often leads to postoperative recurrence. This is due to the tendency of the tumor to invade the surrounding brain tissue and the generation of a local inflammatory state between the tumor cells and parenchyma. While there is evidence to suggest that interleukin‑6 (IL‑6) induces craniopharyngioma (CP)‑associated inflammation, particularly in ACP, the role of IL‑6 in the progression of ACP remains unclear. The results of the present study demonstrated that CP inflammation was associated with pathological classification, extent of surgery, degree of calcification and postoperative hypothalamic status scale. Cytokine antibody arrays were conducted to measure the expression of IL‑6 and other inflammatory factors in tumor tissues in response to various levels of inflammatory exposure. IL‑6, IL‑6 receptor (IL‑6R) and glycoprotein 130 expression was detected by immunohistochemistry. In addition, an ELISA was performed to quantify the levels of soluble IL‑6R (sIL‑6R) in the cystic fluid and supernatants of ACP cells and tumor‑associated fibroblasts. These measurements demonstrated that ACP cells produce IL‑6 and its associated proteins. In addition, the results revealed that while the viability of ACP cells was not affected, the migration of ACP cells was promoted by IL‑6 treatment in a concentration‑dependent manner. Conversely, treatment with an IL‑6‑blocking monoclonal antibody significantly decreased the migration of ACP cells. In addition, IL‑6 treatment increased the expression of vimentin and decreased the expression of E‑cadherin in a dose‑dependent manner. The findings of the present study demonstrate that IL‑6 may promote migration in vitro via the classic‑ and trans‑signaling pathways by inducing epithelial‑mesenchymal transition in ACP cell cultures.
Zhou, Jie; Zhang, Chao; Pan, Jun; Chen, Ligang; Qi, Song-Tao
2017-01-01
Total resection of adamantinomatous craniopharyngioma (ACP) is complex and often leads to postoperative recurrence. This is due to the tendency of the tumor to invade the surrounding brain tissue and the generation of a local inflammatory state between the tumor cells and parenchyma. While there is evidence to suggest that interleukin-6 (IL-6) induces craniopharyngioma (CP)-associated inflammation, particularly in ACP, the role of IL-6 in the progression of ACP remains unclear. The results of the present study demonstrated that CP inflammation was associated with pathological classification, extent of surgery, degree of calcification and postoperative hypothalamic status scale. Cytokine antibody arrays were conducted to measure the expression of IL-6 and other inflammatory factors in tumor tissues in response to various levels of inflammatory exposure. IL-6, IL-6 receptor (IL-6R) and glycoprotein 130 expression was detected by immunohistochemistry. In addition, an ELISA was performed to quantify the levels of soluble IL-6R (sIL-6R) in the cystic fluid and supernatants of ACP cells and tumor-associated fibroblasts. These measurements demonstrated that ACP cells produce IL-6 and its associated proteins. In addition, the results revealed that while the viability of ACP cells was not affected, the migration of ACP cells was promoted by IL-6 treatment in a concentration-dependent manner. Conversely, treatment with an IL-6-blocking monoclonal antibody significantly decreased the migration of ACP cells. In addition, IL-6 treatment increased the expression of vimentin and decreased the expression of E-cadherin in a dose-dependent manner. The findings of the present study demonstrate that IL-6 may promote migration in vitro via the classic- and trans-signaling pathways by inducing epithelial-mesenchymal transition in ACP cell cultures. PMID:28487953
Peng, Wenyan; Yu, Ying; Li, Tiejun; Zhu, Yuanyuan
2013-01-01
Purpose Tissue factor (TF) plays an important role in neovascularization (NV). This study aimed to determine whether small interfering RNA–targeting TF (TF-siRNA) could knock down TF expression and inhibit cell proliferation, cell migration, and tube formation in an in vitro model of NV. Methods Lipopolysaccharide (LPS) was used to stimulate human umbilical vein endothelial cell (HUVEC) lines to express TF and mimic certain phenotypes of NV in vitro. HUVECs were transfected with TF-siRNAs and control siRNAs using LipofectamineTM 2000. The inhibitory effect of the siRNAs on the expression of TF mRNA and protein was evaluated by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and western blot analysis. The effects on the cell viability, migration, and tube formation of siRNA-treated cells were examined by MTT assay, wound-healing assay, and Matrigel-induced capillary tube formation. Results Lipopolysaccharide treatment increased the expression of TF. TF-siRNAs effectively knocked down TF expression, with the most efficient TF-siRNA reducing 78.9% of TF expression. TF protein was also notably curtailed by TF-siRNA. The MTT and wound-healing assays showed that the TF-siRNA substantially inhibited the proliferation and migration of HUVECs. Tube formation was decreased by 47.4% and 59.4% in cells treated with the TF-siRNA and vascular endothelial growth factor–siRNA, respectively, compared with the blank control. Conclusions TF-siRNA can knockdown TF expression and inhibit cell proliferation, migration, and tube formation in vitro. TF-siRNA may provide a novel therapeutic candidate for NV-related diseases. PMID:23805036
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himaya, S.W.A.; Dewapriya, Pradeep; Kim, Se-Kwon, E-mail: sknkim@pknu.ac.kr
Helicobacter pylori infection is one of the most critical causes of stomach cancer. The current study was conducted to explore the protective effects of an isolated active peptide H-P-6 (Pro-Gln-Pro-Lys-Val-Leu-Asp-Ser) from microbial hydrolysates of Chlamydomonas sp. against H. pylori-induced carcinogenesis. The peptide H-P-6 has effectively suppressed H. pylori-induced hyper-proliferation and migration of gastric epithelial cells (AGS). However, the peptide did not inhibit the viability of the bacteria or invasion into AGS cells. Therefore, the effect of the peptide on regulating H. pylori-induced molecular signaling was investigated. The results indicated that H. pylori activates the EGFR tyrosine kinase signaling and nuclearmore » translocation of the β-catenin. The EGFR activation has led to the up-regulation of PI3K/Akt signaling pathway. Moreover, the nuclear translocation levels of β-catenin were significantly increased as a result of Akt mediated down-regulation of GSK3/β protein levels in the cytoplasm. Both of these consequences have resulted in increased expression of cell survival and migration related genes such as c-Myc, cyclin-D, MMP-2 and matrilysin. Interestingly, the isolated peptide potently inhibited H. pylori-mediated EGFR activation and thereby down-regulated the subsequent P13K/Akt signaling leading to β-catenin nuclear translocation. The effect of the peptide was confirmed with the use of EGFR tyrosine kinase inhibitor AG1487 and molecular docking studies. Collectively this study identifies a potent peptide which regulates the H. pylori-induced hyper-proliferation and migration of AGS cells at molecular level. - Highlights: • Chlamydomonas sp. derived peptide H-P-6 inhibits H. pylori-induced pathogenesis. • H-P-6 suppresses H. pylori-induced hyper-proliferation and migration of AGS cells. • The peptide inhibits H. pylori-induced EGFR activation.« less
miR-625 suppresses cell proliferation and migration by targeting HMGA1 in breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wen-bin; Zhong, Cai-neng; Luo, Xun-peng
Dysregulation of microRNA contributes to the high incidence and mortality of breast cancer. Here, we show that miR-625 was frequently down-regulated in breast cancer. Decrease of miR-625 was closely associated with estrogen receptor (P = 0.004), human epidermal growth factor receptor 2 (P = 0.003) and clinical stage (P = 0.001). Kaplan–Meier and multivariate analyses indicated miR-625 as an independent factor for unfavorable prognosis (hazard ratio = 2.654, 95% confident interval: 1.300–5.382, P = 0.007). Re-expression of miR-625 impeded, whereas knockdown of miR-625 enhanced cell viabilities and migration abilities in breast cancer cells. HMGA1 was confirmed as a direct target of miR-625. The expressions of HMGA1 mRNA and protein weremore » induced by miR-625 mimics, but reduced by miR-625 inhibitor. Re-introduction of HMGA1 in cells expressing miR-625 distinctly abrogated miR-625-mediated inhibition of cell growth. Taken together, our data demonstrate that miR-625 suppresses cell proliferation and migration by targeting HMGA1 and suggest miR-625 as a promising prognostic biomarker and a potential therapeutic target for breast cancer. - Highlights: • miR-625 expression was significantly decreased in breast cancer. • Decrease of miR-625 was associated with poor clinical outcomes and unfavorable overall survival. • miR-625 overexpression inhibits cell proliferation and migration in vitro. • miR-625 directly targets and suppresses the expression of HMGA1.« less
Baicalein inhibits the migration and invasive properties of human hepatoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Yung-Wei; Institute of Medicine, Chung Shan Medical University, Taiwan; Lin, Tseng-Hsi
Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38more » mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-{beta}. In addition, baicalein reduced the phosphorylation levels of PKC{alpha} and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: > Baicalein inhibits several essential steps in the onset of metastasis.« less
Yu, Ji-Kuen; Yue, Chia-Herng; Pan, Ying-Ru; Chiu, Yung-Wei; Liu, Jer-Yuh; Lin, Kun-I; Lee, Chia-Jen
2018-04-01
Epidermal growth factor receptor (EGFR) has been suggested to play an important role in survival, proliferation, migration, differentiation, and tumorigenesis of many cell types. Breast cancer patients with high EGFR expression have a poor prognosis. In this study, we investigated the molecular mechanism of the inhibitory effect of isochlorogenic acid c (ICAC) extracted from Lonicera japonica on elevated EGFR levels of the triple-negative breast cancer (TNBC) cell line, MDA-MB-231. The cell viability and cell-cycle analysis were evaluated using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometry, respectively. The migration ability and invasiveness of ICAC-treated MDA-MB-231 were examined by migration and Matrigel invasion assay. The epithelial-mesenchymal-transition (EMT)-related protein expression was examined by western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR). ICAC led to significant morphological changes and suppressed migration and invasion capacities of highly metastatic MDA-MB-231 cells. Western blot analysis for EGFR/EMT-associated proteins suggested that ICAC attenuated the mesenchymal traits as observed by up-regulation of epithelial markers and down-regulation of mesenchymal markers as well as decreased activities of matrix metalloproteinase-9 (MMP-9). These results suggested that the inhibitory effects of ICAC against EGFR-induced EMT and MDA-MB-231 cell invasion were dependent on the EGFR/ phospholipase Cγ (PLCγ)/extracellular regulated protein kinase ½ (ERK½)/slug signaling pathway. Therefore, the obtained results could provide us clues for the next therapeutic strategy in the treatment of TNBC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Bueno-Silva, Bruno; Franchin, Marcelo; Alves, Claudiney de Freitas; Denny, Carina; Colón, David Fernando; Cunha, Thiago Mattar; Alencar, Severino Matias; Napimoga, Marcelo Henrique; Rosalen, Pedro Luiz
2016-12-01
Brazilian propolis is popularly used as treatment for different diseases including the ones with inflammatory origin. Brazilian red propolis chemical profile and its anti-inflammatory properties were recently described however, its mechanism of action has not been investigated yet. Elucidate Brazilian red propolis major pathways of action on the modulation of neutrophil migration during the inflammatory process. The ethanolic extract of propolis (EEP) activity was investigated for neutrophil migration into the peritoneal cavity, intravital microscopy (rolling and adhesion of leukocytes), quantification of cytokines TNF-α, IL-1β and chemokines CXCL1/KC, CXCL2/MIP-2, neutrophil chemotaxis induced by CXCL2/MIP-2, calcium influx and CXCR2 expression on neutrophils. EEP at 10mg/kg prevented neutrophil migration into peritoneal cavity (p < 0.05), reduced leukocyte rolling and adhesion on the mesenteric microcirculation (p < 0.05) and inhibited the release TNF-α, IL-1β, CXCL1/KC and CXCL2/MIP-2 (p < 0.05). EEP at 0.01, 0.1 and 1µg/ml reduced the CXCL2/MIP-2-induced neutrophils chemotaxis (p < 0.05) without affect cell viability (p > 0.05).EEP at 1µg/ml decreased the calcium influx induced by CXCL2/MIP-2 (p<0.05). On the other hand, none of EEP concentrations tested altered CXCR2 expression by neutrophils (p>0.05). Brazilian red propolis appears as a promising anti-inflammatory natural product which mechanism seems to be by reducing leukocyte rolling and adhesion; TNF-α, IL-1β, CXCL1/KC and CXCL2/MIP-2 release; CXCL2/MIP-2-induced chemotaxis and calcium influx. Copyright © 2016 Elsevier GmbH. All rights reserved.
Kabała-Dzik, Agata; Rzepecka-Stojko, Anna; Kubina, Robert; Jastrzębska-Stojko, Żaneta; Stojko, Rafał; Wojtyczka, Robert Dariusz; Stojko, Jerzy
2017-10-19
One of the deadliest cancers among women is a breast cancer. Research has shown that two natural substances occurring in propolis, caffeic acid (CA) and caffeic acid phenethyl ester (CAPE), have significant anticancer effects. The purpose of our in vitro study was to compare cytotoxic activity and migration rate inhibition using CA and CAPE (doses of 50 and 100 µm) against triple-negative, MDA-MB-231 breast adenocarcinoma line cells, drawn from Caucasian women. Viability was measured by XTT-NR-SRB assay (Tetrazolium hydroxide-Neutral Red-Sulforhodamine B) for 24 h and 48 h periods. Cell migration for wound healing assay was taken for 0 h, 8 h, 16 h, and 24 h periods. CAPE displayed more than two times higher cytotoxicity against MDA-MB-231 cells. IC 50 values for the XTT assay were as follows: CA for 24 h and 48 h were 150.94 µM and 108.42 µM, respectively, while CAPE was 68.82 µM for 24 h and 55.79 µM for 48 h. For the NR assay: CA was 135.85 µM at 24 h and 103.23 µM at 48 h, while CAPE was 64.04 µM at 24 h and 53.25 µM at 48 h. For the SRB assay: CA at 24 h was 139.80 µM and at 48 h 103.98 µM, while CAPE was 66.86 µM at 24 h and 47.73 µM at 48 h. Both agents suspended the migration rate; however, CAPE displayed better activity. Notably, for the 100 µM CAPE dose, motility of the tested breast carcinoma cells was halted.
Bilirubin Inhibits Neointima Formation and Vascular Smooth Muscle Cell Proliferation and Migration
Peyton, Kelly J.; Shebib, Ahmad R.; Azam, Mohammad A.; Liu, Xiao-ming; Tulis, David A.; Durante, William
2012-01-01
Bilirubin is a heme metabolite generated by the concerted action of the enzymes heme oxygenase and biliverdin reductase. Although long considered a toxic byproduct of heme catabolism, recent preclinical, and clinical studies indicate the bilirubin exerts beneficial effects in the circulation. In the present study, we determined whether local administration of bilirubin attenuates neointima formation following injury of rat carotid arteries. In addition, the ability of bilirubin to regulate the proliferation and migration of human arterial smooth muscle cells (SMCs) was investigated. Local perivascular administration of bilirubin immediately following balloon injury of rat carotid arteries significantly attenuated neointima formation. Bilirubin-mediated inhibition of neointimal thickening was associated with a significant decrease in ERK activity and cyclin D1 and A protein expression, and an increase in p21 and p53 protein expression in injured blood vessels. Treatment of human aortic SMCs with bilirubin inhibited proliferation and migration in a concentration-dependent manner without affecting cell viability. In addition, bilirubin resulted in a concentration-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and this was paralleled by a decrease in the fraction of cells in the S and G2M phases of the cell cycle. Finally, bilirubin had no effect on mitochondrial function and ATP content of vascular SMCs. In conclusion, these studies demonstrate that bilirubin inhibits neointima formation after arterial injury and this is associated with alterations in the expression of cell cycle regulatory proteins. Furthermore, bilirubin blocks proliferation and migration of human arterial SMCs and arrests SMCs in the G0/G1 phase of the cell cycle. Bilirubin represents an attractive therapeutic agent in treating occlusive vascular disease. PMID:22470341
Jayakumar, Thanasekaran; Liu, Chao-Hong; Wu, Guan-Yi; Lee, Tzu-Yin; Manubolu, Manjunath; Hsieh, Cheng-Ying; Yang, Chih-Hao; Sheu, Joen-Rong
2018-03-22
Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana , has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1-5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1-5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention.
Zhou, R; Xu, L; Ye, M; Liao, M; Du, H; Chen, H
2014-10-01
Formononetin is a naturally existing isoflavone, which can be found in the roots of Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata. It was found to be associated with inhibition of cell proliferation and cell cycle progression, as well as induction of apoptosis in various cancer cell lines. However, the effect of formononetin on breast cancer cell metastasis remains unclear. In this study, we examined the effect of formononetin on the migration and invasion of breast cancer cells MDA-MB-231 and 4T1 in vitro and in vivo. Our data demonstrated that formononetin did not effectively inhibit the cell viability of MDA-MB-231 and 4T1 in 24 h with the concentration lower than 160 μmol/l. When treated with nontoxic concentration of formononetin, the migration and invasion of MDA-MB-231 and 4T1 cells were markedly suppressed by wound healing assay, chamber invasion assay, and in vivo mouse metastasis model. In vitro, formononetin reduced the expression of matrix metalloproteinase-2 (MMP-2), MMP-9 and increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Furthermore, the immunofluorescence and immunoblotting assays indicated that formononetin was very effective in suppressing the phosphorylation of Akt and PI3K. Collectively, these results suggest that formononetin inhibited breast cancer cell migration and invasion by reducing the expression of MMP-2 and MMP-9 through the PI3K/AKT signaling pathway. These findings demonstrate a potentially new therapeutic strategy of formononetin as anti-invasive agent for breast cancer. © Georg Thieme Verlag KG Stuttgart · New York.
Li, Qi; Zhang, Yan; Shi, Jun-Ling; Wang, Yi-Lin; Zhao, Hao-Bin; Shao, Dong-Yan; Huang, Qing-Sheng; Yang, Hui; Jin, Ming-Liang
2017-01-01
Backgroud: Pinoresinol (Pin) and pinoresinol monoglucoside (PMG) are plant-derived lignan molecules with multiple functions. We showed previously that an endophytic fungus from Eucommia ulmoides Oliv., Phomopsis sp. XP-8 is able to produce Pin and PMG. This study was carried out to test the anti-tumor capability of the culture of XP-8 and identify the major effective compounds. The fungal culture was added in the culture of HepG2 and K562 cells, and the viabilities of these cells were detected and the possible mechanism was analyzed. The fungal culture showed significant capaiblity in decreasing the viability of tumor cells and induce apoptosis via up-regulation of the expression of apoptosis-related genes. It also significantly inhibited the adhesion and migration of HepG2 cells by blocking MMP-9 expression. Pin and PMG were isolated from the growth culture and shown to be the major effective components for inhibition. The study indicated the potential application of XP-8 in the production of anti-tumour products by the bioconversion of glucose. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Che, Huan-Yong; Guo, Hang-Yuan; Si, Xu-Wei; You, Qiao-Ying; Lou, Wei-Ying
2014-01-01
The phosphatidylinositol-3-kinase/Akt pathway and receptor tyrosine kinases regulate many tumorigenesis related cellular processes including cell metabolism, cell survival, cell motility, and angiogenesis. Anaplastic thyroid carcinoma (ATC) is a rare type of thyroid cancer with no effective systemic therapy. It has been shown that Akt activation is associated with tumor progression in ATC. Here we observed the additive effect between an Akt inhibitor (MK-2206) and a novel platelet-derived growth factor receptor inhibitor (tyrphostin AG 1296) in ATC therapy. We found an additive effect between MK-2206 and tyrphostin AG 1296 in suppressing ATC cell viability. The combination of MK-2206 and tyrphostin AG 1296 induces additive apoptosis, additive suppression of the Akt signaling pathway, as well as additive inhibition of cell migration and invasion of ATC cells. Furthermore, the combination of MK-2206 and tyrphostin AG 1296 induced additive suppression of ATC tumor growth in vivo. In summary, our studies suggest that the combination of Akt and receptor tyrosine kinase inhibitors may be an efficient therapeutic strategy for ATC treatment, which might shed new light on ATC therapy.
Gupton, Stephanie L; Anderson, Karen L; Kole, Thomas P; Fischer, Robert S; Ponti, Aaron; Hitchcock-DeGregori, Sarah E; Danuser, Gaudenz; Fowler, Velia M; Wirtz, Denis; Hanein, Dorit; Waterman-Storer, Clare M
2005-02-14
The actin cytoskeleton is locally regulated for functional specializations for cell motility. Using quantitative fluorescent speckle microscopy (qFSM) of migrating epithelial cells, we previously defined two distinct F-actin networks based on their F-actin-binding proteins and distinct patterns of F-actin turnover and movement. The lamellipodium consists of a treadmilling F-actin array with rapid polymerization-dependent retrograde flow and contains high concentrations of Arp2/3 and ADF/cofilin, whereas the lamella exhibits spatially random punctae of F-actin assembly and disassembly with slow myosin-mediated retrograde flow and contains myosin II and tropomyosin (TM). In this paper, we microinjected skeletal muscle alphaTM into epithelial cells, and using qFSM, electron microscopy, and immunolocalization show that this inhibits functional lamellipodium formation. Cells with inhibited lamellipodia exhibit persistent leading edge protrusion and rapid cell migration. Inhibition of endogenous long TM isoforms alters protrusion persistence. Thus, cells can migrate with inhibited lamellipodia, and we suggest that TM is a major regulator of F-actin functional specialization in migrating cells.
A Novel Artificial Bee Colony Approach of Live Virtual Machine Migration Policy Using Bayes Theorem
Xu, Gaochao; Hu, Liang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on the VM placement selection of live migration for power saving. We present a novel heuristic approach which is called PS-ABC. Its algorithm includes two parts. One is that it combines the artificial bee colony (ABC) idea with the uniform random initialization idea, the binary search idea, and Boltzmann selection policy to achieve an improved ABC-based approach with better global exploration's ability and local exploitation's ability. The other one is that it uses the Bayes theorem to further optimize the improved ABC-based process to faster get the final optimal solution. As a result, the whole approach achieves a longer-term efficient optimization for power saving. The experimental results demonstrate that PS-ABC evidently reduces the total incremental power consumption and better protects the performance of VM running and migrating compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24385877
A novel artificial bee colony approach of live virtual machine migration policy using Bayes theorem.
Xu, Gaochao; Ding, Yan; Zhao, Jia; Hu, Liang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on the VM placement selection of live migration for power saving. We present a novel heuristic approach which is called PS-ABC. Its algorithm includes two parts. One is that it combines the artificial bee colony (ABC) idea with the uniform random initialization idea, the binary search idea, and Boltzmann selection policy to achieve an improved ABC-based approach with better global exploration's ability and local exploitation's ability. The other one is that it uses the Bayes theorem to further optimize the improved ABC-based process to faster get the final optimal solution. As a result, the whole approach achieves a longer-term efficient optimization for power saving. The experimental results demonstrate that PS-ABC evidently reduces the total incremental power consumption and better protects the performance of VM running and migrating compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.
Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser
Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen
2015-01-01
We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915
Terahertz multistatic reflection imaging.
Dorney, Timothy D; Symes, William W; Baraniuk, Richard G; Mittleman, Daniel M
2002-07-01
We describe a new imaging method using single-cycle pulses of terahertz (THz) radiation. This technique emulates the data collection and image processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a migration procedure to solve the inverse problem; this permits us to reconstruct the location, the shape, and the refractive index of targets. We show examples for both metallic and dielectric model targets, and we perform velocity analysis on dielectric targets to estimate the refractive indices of imaged components. These results broaden the capabilities of THz imaging systems and also demonstrate the viability of the THz system as a test bed for the exploration of new seismic processing methods.
The evolution of phase holographic imaging from a research idea to publicly traded company
NASA Astrophysics Data System (ADS)
Egelberg, Peter
2018-02-01
Recognizing the value and unmet need for label-free kinetic cell analysis, Phase Holograhic Imaging defines its market segment as automated, easy to use and affordable time-lapse cytometry. The process of developing new technology, meeting customer expectations, sources of corporate funding and R&D adjustments prompted by field experience will be reviewed. Additionally, it is discussed how relevant biological information can be extracted from a sequence of quantitative phase images, with negligible user assistance and parameter tweaking, to simultaneously provide cell culture characteristics such as cell growth rate, viability, division rate, mitosis duration, phagocytosis rate, migration, motility and cell-cell adherence without requiring any artificial cell manipulation.
Woolley, Thomas E; Gaffney, Eamonn A; Goriely, Alain
2017-07-01
If the plasma membrane of a cell is able to delaminate locally from its actin cortex, a cellular bleb can be produced. Blebs are pressure-driven protrusions, which are noteworthy for their ability to produce cellular motion. Starting from a general continuum mechanics description, we restrict ourselves to considering cell and bleb shapes that maintain approximately spherical forms. From this assumption, we obtain a tractable algebraic system for bleb formation. By including cell-substrate adhesions, we can model blebbing cell motility. Further, by considering mechanically isolated blebbing events, which are randomly distributed over the cell, we can derive equations linking the macroscopic migration characteristics to the microscopic structural parameters of the cell. This multiscale modeling framework is then used to provide parameter estimates, which are in agreement with current experimental data. In summary, the construction of the mathematical model provides testable relationships between the bleb size and cell motility.
Velasquez-Vottelerd, P.; Anton, Y.; Salazar-Lugo, R.
2015-01-01
The freshwater fish Ancistrus brevifilis, which is found in Venezuelan rivers, is considered a potential sentinel fish in ecotoxicological studies. The cadmium (Cd) effect on the mitochondrial viability (MV) and acid soluble thiols levels (AST) in A. brevifilis tissues (liver, kidney, heart, and gill) was evaluated. Forty-two fish with similar sizes and weights were randomly selected, of which 7 fish (with their respective replicate) were exposed for 7 and 30 days to a Cd sublethal concentration (0.1 mg.l-1). We determined the MV through a Janus Green B colorimetric assay and we obtained the concentration of AST by Ellman’s method. Mitochondrial viability decreased in fish exposed to Cd for 30 days with the liver being the most affected tissue. We also detected a significant decrease in AST levels was in fishes exposed to Cd for 7 days in liver and kidney tissues; these results suggests that AST levels are elevated in some tissues may act as cytoprotective and adaptive alternative mechanism related to the ROS detoxification, maintenance redox status and mitochondrial viability. Organ-specifics variations were observed in both assays. We conclude that the Cd exposure effect on AST levels and MV, vary across fish tissues and is related to the exposure duration, the molecule dynamics in different tissues, the organism and environmental conditions. PMID:26623384
Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles.
Guo, Qianqian; Zhang, Tianqi; An, Jinxia; Wu, Zhongming; Zhao, Yu; Dai, Xiaomei; Zhang, Xinge; Li, Chaoxing
2015-10-12
To explore the effect of polymer structure on their self-assembled aggregates and their unique characteristics, this study was devoted to developing a series of amphiphilic block and random phenylboronic acid-based glycopolymers by RAFT polymerization. The amphiphilic glycopolymers were successfully self-assembled into spherically shaped nanoparticles with narrow size distribution in aqueous solution. For block and random copolymers with similar monomer compositions, block copolymer nanoparticles exhibited a more regular transmittance change with the increasing glucose level, while a more evident variation of size and quicker decreasing tendency in I/I0 behavior in different glucose media were observed for random copolymer nanoparticles. Cell viability of all the polymer nanoparticles investigated by MTT assay was higher than 80%, indicating that both block and random copolymers had good cytocompatibility. Insulin could be encapsulated into both nanoparticles, and insulin release rate for random glycopolymer was slightly quicker than that for the block ones. We speculate that different chain conformations between block and random glycopolymers play an important role in self-assembled nanoaggregates and underlying glucose-sensitive behavior.
Cvikl, Barbara; Haubenberger-Praml, Gertraud; Drabo, Petra; Hagmann, Michael; Gruber, Reinhard; Moritz, Andreas; Nell, Andrea
2014-05-09
A low level of education and the migration background of parents are associated with the development of caries in children. The aim of this study was to evaluate whether a higher educational level of parents can overcome risks for the development of caries in immigrants in Vienna, Austria. The educational level of the parents, the school type, and the caries status of 736 randomly selected twelve-year-old children with and without migration background was determined in this cross sectional study. In children attending school in Vienna the decayed, missing, and filled teeth (DMFT) index was determined. For statistical analysis, a mixed negative-binomial-model was used. The caries status of the children with migration background was significantly worse compared to that of the native Viennese population. A significant interaction was found between migration background and the educational level of the parents (p = 0.045). No interaction was found between the school type and either the migration background (p = 0.220) or the education level of the parents (p = 0.08). In parents with a higher scholarly education level, migration background (p < 0.01) and school type (p = 0.018) showed an association with DMFT values. In parents with a low education level, however, migration background and school type had no significant association with DMFT values. These data indicate that children with a migration background are at higher risk to acquire caries than other Viennese children, even when the parents have received a higher education.
2014-01-01
Background A low level of education and the migration background of parents are associated with the development of caries in children. The aim of this study was to evaluate whether a higher educational level of parents can overcome risks for the development of caries in immigrants in Vienna, Austria. Methods The educational level of the parents, the school type, and the caries status of 736 randomly selected twelve-year-old children with and without migration background was determined in this cross sectional study. In children attending school in Vienna the decayed, missing, and filled teeth (DMFT) index was determined. For statistical analysis, a mixed negative-binomial-model was used. Results The caries status of the children with migration background was significantly worse compared to that of the native Viennese population. A significant interaction was found between migration background and the educational level of the parents (p = 0.045). No interaction was found between the school type and either the migration background (p = 0.220) or the education level of the parents (p = 0.08). In parents with a higher scholarly education level, migration background (p < 0.01) and school type (p = 0.018) showed an association with DMFT values. In parents with a low education level, however, migration background and school type had no significant association with DMFT values. Conclusion These data indicate that children with a migration background are at higher risk to acquire caries than other Viennese children, even when the parents have received a higher education. PMID:24886105
Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.
2014-01-01
Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744
Effects of ozone gas on skin flaps viability in rats: an experimental study.
Güner, Mehmet Haşim; Görgülü, Tahsin; Olgun, Abdulkerim; Torun, Merve; Kargi, Eksal
2016-10-01
The main purpose of this study was to assess the effects of ozone gas on the viability of flaps for reconstruction and to determine the optimum application method. The antioxidant, immunomodulatory, and reperfusion effects of ozone gas have been previously assessed, and successful results have been reported. However, only one study has investigated the effect of ozone gas on flap viability. In the present study, it was hypothesised that the antioxidant and reperfusion effects of ozone gas would enhance flap viability. Forty female Wistar rats were randomly divided into four groups of 10 rats each. A cranial-based, 3 × 11 cm modified McFarlane flap including the panniculus carnosus was raised from the dorsum of a rat and re-sutured to its own bed using 3/0 sharp propylene. Group 1 (n = 10): no pharmacological agent was used after the operation. Group 2 (n = 10): vegetable (olive) oil group; vegetable-oil-impregnated gauze was used as a dressing for 7 days. Group 3 (n = 10): Vegetable (olive) oil with ozone peroxide group; vegetable oil with ozone peroxide-impregnated gauze was used as a dressing for 7 days. Group 4 (n = 10): Hemo-ozone therapy group; hemo-ozone therapy was applied rectally once every day for 7 days. All rats were sacrificed at the end of week 1 and assessed macroscopically and histopathologically. The proportion of substantive necrosis was less in group 4 than in the other three groups. Survival area ratios were better in groups 2 and 3 than in group 1; however, there was no significant difference between groups 2 and 3. No significant differences in the histopathological scores were observed among the groups. Ozone gas enhanced flap viability. No differences in flap viability were observed between the vegetable oil and vegetable oil with ozone peroxide groups. The greatest benefit ratios were found in the hemo-ozone therapy group.
Effect of some Evaporation Matters on Storability of Sunflower ( Helianthus annuus L.) Seed.
El-Saidy, Aml E A; El-Hai, K M Abd
This study focuses on finding compounds that are safe to humans and environment, such as propionic and acetic acids that may provide an alternative control of seed-borne pathogens and decrease seed deterioration during storage. The objectives of this study were to reduce sunflower seed deterioration and improve the viability of sunflower seed using environmentally safe organic acids. Propionic and acetic acids were applied on sunflower seed at different concentrations under laboratory conditions during different storage periods. After 6 months storage period, the viability of sunflower seed as well as morphological and physiological characteristics of seedlings were evaluated under greenhouse conditions. Laboratory experiment was conducted in a factorial completely randomized design and randomized complete block design for greenhouse experiment. Propionic and acetic acids at different concentrations showed inhibitory effects on the presence of different fungal genera in all storage periods. Propionic acid was most effective followed by acetic acid. Increasing storage periods from 0-6 months significantly decreased germination percentage, germination energy, seedling characters, survived healthy seedlings and seed oil and protein percentages but dead and rotted seeds, as well as rotted seedlings were increased. Treating sunflower seeds with propionic acid (100%) improved germination criteria, seedling characters and seed chemical characters as well as survival seedlings and minimized the dead seeds, rotted seeds and rotted seedlings as compared with the control under all storage periods. Under greenhouse conditions, the maximum growth parameter and physiological characters (chlorophylls a, b, carotenoids and total phenols) were recorded from seed treated with 100% propionic acid after 6 months of storage. It may be concluded that propionic and acetic acids vapors can have considerable fungicidal activity against sunflower pathogens and improve seed viability. Therefore, it is recommended using 100% propionic acid to reduce deterioration and seed-borne pathogens of sunflower under storage conditions.
Decision-Making in Agent-Based Models of Migration: State of the Art and Challenges.
Klabunde, Anna; Willekens, Frans
We review agent-based models (ABM) of human migration with respect to their decision-making rules. The most prominent behavioural theories used as decision rules are the random utility theory, as implemented in the discrete choice model, and the theory of planned behaviour. We identify the critical choices that must be made in developing an ABM, namely the modelling of decision processes and social networks. We also discuss two challenges that hamper the widespread use of ABM in the study of migration and, more broadly, demography and the social sciences: (a) the choice and the operationalisation of a behavioural theory (decision-making and social interaction) and (b) the selection of empirical evidence to validate the model. We offer advice on how these challenges might be overcome.
NASA Astrophysics Data System (ADS)
Lan, Tian; Cheng, Kai; Ren, Tina; Arce, Stephen Hugo; Tseng, Yiider
2016-09-01
Cell migration is an essential process in organism development and physiological maintenance. Although current methods permit accurate comparisons of the effects of molecular manipulations and drug applications on cell motility, effects of alterations in subcellular activities on motility cannot be fully elucidated from those methods. Here, we develop a strategy termed cell-nuclear (CN) correlation to parameterize represented dynamic subcellular activities and to quantify their contributions in mesenchymal-like migration. Based on the biophysical meaning of the CN correlation, we propose a cell migration potential index (CMPI) to measure cell motility. When the effectiveness of CMPI was evaluated with respect to one of the most popular cell migration analysis methods, Persistent Random Walk, we found that the cell motility estimates among six cell lines used in this study were highly consistent between these two approaches. Further evaluations indicated that CMPI can be determined using a shorter time period and smaller cell sample size, and it possesses excellent reliability and applicability, even in the presence of a wide range of noise, as might be generated from individual imaging acquisition systems. The novel approach outlined here introduces a robust strategy through an analysis of subcellular locomotion activities for single cell migration assessment.
Effects of direct current electric-field using ITO plate on breast cancer cell migration.
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Seo, Hyok Jin; Koo, Min-Ah; You, Kyung Eun; Kim, Dohyun; Park, Jong-Chul
2014-01-01
Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.
Paulucci-Holthauzen, Adriana A.; Vergara, Leoncio A.; Bellot, Larry J.; Canton, David; Scott, John D.; O'Connor, Kathleen L.
2009-01-01
Protein kinase A (PKA) has been suggested to be spatially regulated in migrating cells due to its ability to control signaling events that are critical for polarized actin cytoskeletal dynamics. Here, using the fluorescence resonance energy transfer-based A-kinase activity reporter (AKAR1), we find that PKA activity gradients form with the strongest activity at the leading edge and are restricted to the basal surface in migrating cells. The existence of these gradients was confirmed using immunocytochemistry using phospho-PKA substrate antibodies. This observation holds true for carcinoma cells migrating randomly on laminin-1 or stimulated to migrate on collagen I with lysophosphatidic acid. Phosphodiesterase inhibition allows the formation of PKA activity gradients; however, these gradients are no longer polarized. PKA activity gradients are not detected when a non-phosphorylatable mutant of AKAR1 is used, if PKA activity is inhibited with H-89 or protein kinase inhibitor, or when PKA anchoring is perturbed. We further find that a specific A-kinase anchoring protein, AKAP-Lbc, is a major contributor to the formation of these gradients. In summary, our data show that PKA activity gradients are generated at the leading edge of migrating cells and provide additional insight into the mechanisms of PKA regulation of cell motility. PMID:19106088
Acanthamoeba migration in an electric field.
Rudell, Jolene Chang; Gao, Jing; Sun, Yuxin; Sun, Yaohui; Chodosh, James; Schwab, Ivan; Zhao, Min
2013-06-21
We investigated the in vitro response of Acanthamoeba trophozoites to electric fields (EFs). Acanthamoeba castellanii were exposed to varying strengths of an EF. During EF exposure, cell migration was monitored using an inverted microscope equipped with a CCD camera and the SimplePCI 5.3 imaging system to capture time-lapse images. The migration of A. castellanii trophozoites was analyzed and quantified with ImageJ software. For analysis of cell migration in a three-dimensional culture system, Acanthamoeba trophozoites were cultured in agar, exposed to an EF, digitally video recorded, and analyzed at various Z focal planes. Acanthamoeba trophozoites move at random in the absence of an EF, but move directionally in response to an EF. Directedness in the absence of an EF is 0.08 ± 0.01, while in 1200 mV/mm EF, directedness is significantly higher at -0.65 ± 0.01 (P < 0.001). We find that the trophozoite migration response is voltage-dependent, with higher directionality with higher voltage application. Acanthamoeba move directionally in a three-dimensional (3D) agar system as well when exposed to an EF. Acanthamoeba trophozoites move directionally in response to an EF in a two-dimensional and 3D culture system. Acanthamoeba trophozoite migration is also voltage-dependent, with increased directionality with increasing voltage. This may provide new treatment modalities for Acanthamoeba keratitis.
Gong, Li-Cheng; Xu, Hai-Ming; Guo, Gong-Liang; Zhang, Tao; Shi, Jing-Wei; Chang, Chang
2017-01-01
Acute myocardial infarction (AMI) occurs when blood supply to the heart is diminished (ischemia) for long time; ischemia is primarily caused due to hypoxia. The present study evaluated the effects of long non-coding RNA H19 on hypoxic rat H9c2 cells and mouse HL-1 cells. Hypoxic injury was confirmed by measuring cell viability, migration and invasion, and apoptosis using MTT, Transwell and flow cytometry assays, respectively. H19 expression after hypoxia was estimated by qRT-PCR. We then measured the effects of non-physiologically expressed H19, knockdown of miR-139 with or without H19 silence, and abnormally expressed Sox8 on hypoxia-induced H9c2 cells. Moreover, the interacted miRNA for H19 and downstream target gene were virtually screened and verified. The involved signaling pathways and the effects of abnormally expressed H19 on contractility of HL-1 cells were explored via Western blot analysis. Hypoxia induced decreases of cell viability, migration and invasion, increase of cell apoptosis and up-regulation of H19. Knockdown of H19 increased hypoxia-induced injury in H9c2 cells. H19 acted as a sponge for miR-139 and H19 knockdown aggravated hypoxia-induced injury by up-regulating miR-139. Sox8 was identified as a target of miR-139, and its expression was negatively regulated by miR-139. The mechanistic studies revealed that overexpression of Sox8 might decrease hypoxia-induced cell injury by activating the PI3K/AKT/mTOR pathway and MAPK. Besides, H19 promoted contractility of HL-1 cells. These findings suggest that H19 alleviates hypoxia-induced myocardial cell injury by miR-139-mediated up-regulation of Sox8, along with activation of the PI3K/AKT/mTOR pathway and MAPK. © 2017 The Author(s). Published by S. Karger AG, Basel.
Li, Xiaoli; Liu, Jian; Qian, Li; Ke, Honggang; Yao, Chan; Tian, Wei; Liu, Yifei; Zhang, Jianguo
2018-01-11
Phosphofructokinase-2/fructose-2, 6-bisphosphatase 3 (PFKFB3) catalyzes the synthesis of F2,6BP, which is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1): the rate-limiting enzyme of glycolysis. During tumorigenesis, PFKFB3 increases glycolysis, angiogenesis, and tumor progression. In this study, our aim was to investigate the significance of PFKFB3 and Ki67 in human lung adenocarcinomas and to target PFKFB3 as a therapeutic strategy. In this study, we determined the expression levels of PFKFB3 mRNA and proteins in cancerous and normal lung adenocarcinomas by quantitative reverse transcription PCR (qRT-PCR), Western blot analysis, and tissue microarray immunohistochemistry analysis, respectively. In human adenocarcinoma tissues, PFKFB3 and Ki67 protein levels were related to the clinical characteristics and overall survival. Both PFKFB3 mRNA and protein were significantly higher in lung adenocarcinoma cells (all P < 0.05). A high expression of PFKFB3 and Ki67 were associated with the degree of differentiation, TNM staging, lymph node metastasis, and survival. A high expression of PFKFB3 protein was an independent prognostic marker in lung adenocarcinoma. Subsequently, 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) was used as a selective antagonist of PFKFB3. Glycolytic flux was determined by measuring glucose uptake, F2,6BP, and lactate production. Cell viability, cell cycle, cell apoptosis, cell migration, and invasion were analyzed by MTT, flow cytometry, Western blot analysis, wound healing assay, and transwell chamber assay. By targeting PFKFB3, it inhibited cell viability and glycolytic activity. It also caused apoptosis and induced cell cycle arrest. Furthermore, the migration and invasion of A549 cells was inhibited. We conclude that PFKFB3 bears an oncogene-like regulatory element in lung adenocarcinoma progression. In the treatment of lung adenocarcinoma, targeting PFKFB3 would be a promising therapeutic strategy.
Chai, DongDong; Zhang, Lei; Xi, SiWei; Cheng, YanYong; Jiang, Hong; Hu, Rong
2018-01-01
Nuclear erythroid 2-related factor-2 (Nrf2) is a major stress-response transcription factor that has been implicated in regulating ischemic angiogenesis. We investigated the effects of Nrf2 in regulating revascularization and modulating acute lung injury. The expression of Nrf2 and sirtuin1 (Sirt1) was assessed in lung tissue by western blotting and immunofluorescence staining after intestinal ischemia/reperfusion (IIR) in Nrf2-/- and wild-type (WT) mice. The involvement of Nrf2 in angiogenesis, cell viability, and migration was investigated in human pulmonary microvascular endothelial cells (PMVECs). Additionally, the influence of Nrf2 expression on NOX pathway activation was measured in PMVECs after oxygen-glucose deprivation/reoxygenation. We found activation and nuclear accumulation of Nrf2 in lung tissue after IIR. Compared to IIR in WT mice, IIR in Nrf2-/- mice significantly enhanced leukocyte infiltration and collagen deposit, and inhibited endothelial cell marker CD31 expression. Nrf2 upregulation and translocation into the nucleus stimulated by Sirt1 overexpression exhibited remission of histopathologic changes and enhanced CD31 expression. Nrf2 knockdown repressed non-phagocytic cell oxidase 4 (NOX4), hypoxia-inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) expression after IIR. Nrf2 upregulation by Sirt1 enhances NOX4, HIF-1α and VEGF expression after IIR in WT mice. Furthermore, Nrf2 knockdown suppressed cell viability, capillary tube formation and cell migration in PMVECs after oxygen-glucose deprivation/reoxygenation and also inhibited NOX4, HIF-1 and VEGF expression. Moreover, NOX4 knockdown in PMVECs decreased the levels of VEGF, HIF-1α and angiogenesis. Nrf2 stimulation by Sirt1 plays an important role in sustaining angiogenic potential through NOX4-mediated gene regulation. © 2018 The Author(s). Published by S. Karger AG, Basel.
Effector CD8^+ T cells migrate via chemokine-enhanced generalized L'evy walks
NASA Astrophysics Data System (ADS)
Banigan, Edward; Harris, Tajie; Christian, David; Liu, Andrea; Hunter, Christopher
2012-02-01
Chemokines play a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. In order to understand the role of the chemokine CXCL10 during chronic infection by the parasite T. gondii, we analyze tracks of migrating CD8^+ T cells in brain tissue. Surprisingly, we find that T cell motility is not described by a Brownian walk, but instead is consistent with a generalized L'evy walk consisting of L'evy-distributed runs alternating with pauses of L'evy-distributed durations. According to our model, this enables T cells to find rare targets more than an order of magnitude more efficiently than Brownian random walkers. The chemokine CXCL10 increases the migration speed without changing the character of the walk statistics. Thus, CD8^+ T cells use an efficient search strategy to facilitate an effective immune response, and CXCL10 aids them in shortening the average time to find rare targets.
Jopling, Helen M.; Odell, Adam F.; Pellet-Many, Caroline; Latham, Antony M.; Frankel, Paul; Sivaprasadarao, Asipu; Walker, John H.; Zachary, Ian C.; Ponnambalam, Sreenivasan
2014-01-01
Rab GTPases are implicated in endosome-to-plasma membrane recycling, but how such membrane traffic regulators control vascular endothelial growth factor receptor 2 (VEGFR2/KDR) dynamics and function are not well understood. Here, we evaluated two different recycling Rab GTPases, Rab4a and Rab11a, in regulating endothelial VEGFR2 trafficking and signalling with implications for endothelial cell migration, proliferation and angiogenesis. In primary endothelial cells, VEGFR2 displays co-localisation with Rab4a, but not Rab11a GTPase, on early endosomes. Expression of a guanosine diphosphate (GDP)-bound Rab4a S22N mutant caused increased VEGFR2 accumulation in endosomes. TfR and VEGFR2 exhibited differences in endosome-to-plasma membrane recycling in the presence of chloroquine. Depletion of Rab4a, but not Rab11a, levels stimulated VEGF-A-dependent intracellular signalling. However, depletion of either Rab4a or Rab11a levels inhibited VEGF-A-stimulated endothelial cell migration. Interestingly, depletion of Rab4a levels stimulated VEGF-A-regulated endothelial cell proliferation. Rab4a and Rab11a were also both required for endothelial tubulogenesis. Evaluation of a transgenic zebrafish model showed that both Rab4 and Rab11a are functionally required for blood vessel formation and animal viability. Rab-dependent endosome-to-plasma membrane recycling of VEGFR2 is important for intracellular signalling, cell migration and proliferation during angiogenesis. PMID:24785348
Zhou, Hao; Li, Dandan; Shi, Chen; Xin, Ting; Yang, Junjie; Zhou, Ying; Hu, Shunyin; Tian, Feng; Wang, Jing; Chen, Yundai
2015-01-01
Mesenchymal stem cells (MSC) are regarded as an attractive source of therapeutic stem cells for myocardial infarction. However, their limited self-renewal capacity, low migration capacity and poor viability after transplantation hamper the clinical use of MSC; thus, a strategy to enhance the biological functions of MSC is required. Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, exerts cell-protective effects on many types of cells. However, little information is available regarding the influence of Ex-4 on MSC. In our study, MSC were isolated from bone marrow and cultured in vitro. After treatment with Ex-4, MSC displayed a higher proliferative capacity, increased C-X-C motif receptor 4 (CXCR4) expression and an enhanced migration response. Moreover, in H2O2-induced apoptosis, Ex-4 preserved mitochondrial function through scavenging ROS and balancing the expression of anti- and pro-apoptotic proteins, leading to the inhibition of the mitochondria-dependent cell death pathways and increased cell survival. Moreover, higher phospho-Akt (p-Akt) expression was observed after Ex-4 intervention. However, blockade of the PI3K/Akt pathway with inhibitors suppressed the above cytoprotective effects of Ex-4, suggesting that the PI3K/Akt pathway is partly responsible for Ex-4-mediated MSC growth, mobilization and survival. These findings provide an attractive method of maximizing the effectiveness of MSC-based therapies in clinical applications. PMID:26250571
Non-Brownian dynamics and strategy of amoeboid cell locomotion.
Nishimura, Shin I; Ueda, Masahiro; Sasai, Masaki
2012-04-01
Amoeboid cells such as Dictyostelium discoideum and Madin-Darby canine kidney cells show the non-Brownian dynamics of migration characterized by the superdiffusive increase of mean-squared displacement. In order to elucidate the physical mechanism of this non-Brownian dynamics, a computational model is developed which highlights a group of inhibitory molecules for actin polymerization. Based on this model, we propose a hypothesis that inhibitory molecules are sent backward in the moving cell to accumulate at the rear of cell. The accumulated inhibitory molecules at the rear further promote cell locomotion to form a slow positive feedback loop of the whole-cell scale. The persistent straightforward migration is stabilized with this feedback mechanism, but the fluctuation in the distribution of inhibitory molecules and the cell shape deformation concurrently interrupt the persistent motion to turn the cell into a new direction. A sequence of switching behaviors between persistent motions and random turns gives rise to the superdiffusive migration in the absence of the external guidance signal. In the complex environment with obstacles, this combined process of persistent motions and random turns drives the simulated amoebae to solve the maze problem in a highly efficient way, which suggests the biological advantage for cells to bear the non-Brownian dynamics.
The Effect of Omeprazole Usage on the Viability of Random Pattern Skin Flaps in Rats.
Şen, Hilmi; Oruç, Melike; Işik, Veysel Murat; Sadiç, Murat; Sayar, Hamide; Çitil, Rana; Korkmaz, Meliha; Koçer, Uğur
2017-06-01
Necrosis of random pattern flaps caused by inadequate blood flow, especially in the distal part of the flap is one of the biggest challenges in reconstructive surgery. Various agents have been used to prevent flap ischemia. In this study, we used omeprazole, which is a potent inhibitor of gastric acidity to increase flap viability. In this study, 35 Wistar-Albino type rats which were divided into 5 equal groups were used. Random-pattern dorsal skin flaps were raised in all groups at seventh day of the study. Group 1 was accepted as control group, and the rats in this group was only given distilled water intraperitoneally for 14 days. Group 2 and group 3 received 10 and 40 mg/kg omeprazole daily for 14 days, respectively. Group 4 and group 5 were given distilled water for the first 7 days and then after the operations they received 10 and 40 mg/kg omeprazole daily for 7 days, respectively. Survival rates of the flaps were examined seventh day after elevation of the flaps by digital imaging and scintigraphy. After assessment of the amount of necrosis, number of vascular structures were counted histopathologically. Percentage of flap necrosis was found to be less in all omeprazole received groups. On digital imaging, percentages of flap necrosis in the study groups were statistically significantly lower than that of the control group (P < 0.001), but there was no significant difference between the study groups (P > 0.05).In the histopathologic specimens, it was detected that the mean number of vessels in proximal (a) and distal (c) portions of the flap in the study groups showed a significant increase when compared with the control group (P < 0.01 for groups 2, 4 and 5, and P < 0.05 for group 3). In conclusion, possible clinical usage of medications increasing gastrin during flap surgeries can be thought as a positive contributor. In this sense, this study showed that parenteral administration of omeprazole in skin flap surgery increases flap viability possibly by increasing gastrin levels.
Law, Ryan; Prabhu, Anoop; Fujii-Lau, Larissa; Shannon, Carol; Singh, Siddharth
2018-02-01
Covered self-expandable metal stents (SEMS) are utilized for the management of benign and malignant esophageal conditions; however, covered SEMS are prone to migration. Endoscopic suture fixation may mitigate the migration risk of covered esophageal SEMS. Hence, we conducted a systematic review and meta-analysis to evaluate the effectiveness and safety of endoscopic suture fixation for covered esophageal SEMS. Following PRISMA guidelines, we performed a systematic review from 2011 to 2016 to identify studies (case control/case series) reporting the technical success and migration rate of covered esophageal SEMS following endoscopic suture fixation. We searched multiple electronic databases and conference proceedings. We calculated pooled rates (and 95% confidence intervals [CI]) of technical success and stent migration using a random effects model. We identified 14 studies (212 patients) describing covered esophageal SEMS placement with endoscopic suture fixation. When reported, SEMS indications included leak/fistula (n = 75), stricture (n = 65), perforation (n = 10), and achalasia (n = 4). The pooled technical success rate was 96.7% (95% CI 92.3-98.6), without heterogeneity (I 2 = 0%). We identified 29 SEMS migrations at rate of 15.9% (95% CI 11.4-21.6), without heterogeneity (I 2 = 0%). Publication bias was observed, and using the trim-and-fill method, a more conservative estimate for stent migration was 17.0%. Suture-related adverse events were estimated to occur in 3.7% (95% CI 1.6-8.2) of cases. Endoscopic suture fixation of covered esophageal SEMS appears to reduce stent migration when compared to published rates of non-anchored SEMS. However, SEMS migration still occurs in approximately 1 out of 6 cases despite excellent immediate technical success and low risk of suture-related adverse events.
Optimum swimming pathways of fish spawning migrations in rivers
McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert
2012-01-01
Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.
Sensing of substratum rigidity and directional migration by fast-crawling cells
NASA Astrophysics Data System (ADS)
Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki
2018-05-01
Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ˜10 μ m and migration velocity is ˜10 μ m /min . In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.
Sensing of substratum rigidity and directional migration by fast-crawling cells.
Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki
2018-05-01
Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ∼10 μm and migration velocity is ∼10 μm/min. In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.
Depolymerized products of lambda-carrageenan as a potent angiogenesis inhibitor.
Chen, Haimin; Yan, Xiaojun; Lin, Jing; Wang, Feng; Xu, Weifeng
2007-08-22
Since angiogenesis is involved in initiating and promoting several diseases such as cancer and cardiovascular events, this study was designed to evaluate the anti-angiogenesis of low-molecular-weight (LMW), highly sulfated lambda-carrageenan oligosaccharides (lambda-CO) obtained by carrageenan depolymerization, by CAM (chick chorioallantoic membrane) model and human umbilical vein endothelial cells (HUVECs). Significant inhibition of vessel growth was observed at 200 microg/pellet. A histochemistry assay also revealed a decrease of capillary plexus and connective tissue in lambda-CO treated samples. lambda-CO inhibited the viability of cells at the high concentration of 1 mg/mL, whereas it affected the cell survival slightly (>95%) at a low concentration (<250 microg/mL), and HUVEC is the most sensitive to lambda-CO among three kinds of cells. Furthermore, the inhibitory action of lambda-CO was also observed in the endothelial cell invasion and migration at relatively low concentration (150-300 microg/mL), through down-regulation of intracellular matrix metalloproteinases (MMP-2) expression on endothelial cells. Taken together, these findings demonstrate that lambda-CO is a potential angiogenesis inhibitor with combined effects of inhibiting invasion, migration, and proliferation.
Wang, Jieqiong; Liu, Yali; Zhao, Jingjing; Zhang, Wen; Pang, Xiufeng
2013-04-01
The inedible bottom part (~30-40%) of asparagus (Asparagus officinalis L.) spears is usually discarded as waste. However, since this by-product has been reported to be rich in many bioactive phytochemicals, it might be utilisable as a supplement in foods or natural drugs for its therapeutic effects. In this study it was identifed that saponins from old stems of asparagus (SSA) exerted potential inhibitory activity on tumour growth and metastasis. SSA suppressed cell viability of breast, colon and pancreatic cancers in a concentration-dependent manner, with half-maximum inhibitory concentrations ranging from 809.42 to 1829.96 µg mL(-1). However, SSA was more functional in blocking cell migration and invasion as compared with its cytotoxic effect, with an effective inhibitory concentration of 400 µg mL(-1). A mechanistic study showed that SSA markedly increased the activities of Cdc42 and Rac1 and decreased the activity of RhoA in cancer cells. SSA inhibits tumour cell motility through modulating the Rho GTPase signalling pathway, suggesting a promising use of SSA as a supplement in healthcare foods and natural drugs for cancer prevention and treatment. © 2012 Society of Chemical Industry.
Zhao, Guangming; Han, Xiaodong; Cheng, Wei; Ni, Jing; Zhang, Yunfei; Lin, Jingrong; Song, Zhiqi
2017-04-01
Malignant melanoma is the most invasive and fatal form of cutaneous cancer. Moreover it is extremely resistant to conventional chemotherapy and radiotherapy. Apigenin, a non-mutagenic flavonoid, has been found to exhibit chemopreventive and/or anticancerogenic properties in many different types of human cancer cells. Therefore, apigenin may have particular relevance for development as a chemotherapeutic agent for cancer treatment. In the present study, we investigated the effects of apigenin on the viability, migration and invasion potential, dendrite morphology, cell cycle distribution, apoptosis, phosphorylation of the extracellular signal-regulated protein kinase (ERK) and the AKT/mTOR signaling pathway in human melanoma A375 and C8161 cell lines in vitro. Apigenin effectively suppressed the proliferation of melanoma cells in vitro. Moreover, it inhibited cell migration and invasion, lengthened the dendrites, and induced G2/M phase arrest and apoptosis. Furthermore, apigenin promoted the activation of cleaved caspase-3 and cleaved PARP proteins and decreased the expression of phosphorylated (p)‑ERK1/2 proteins, p-AKT and p-mTOR. Consequently, apigenin is a novel therapeutic candidate for melanoma.
Xu, S; Adisetiyo, H; Tamura, S; Grande, F; Garofalo, A; Roy-Burman, P; Neamati, N
2015-07-14
Survivin and monoamine oxidase A (MAOA) levels are elevated in prostate cancer (PCa) compared to normal prostate glands. However, the relationship between survivin and MAOA in PCa is unclear. We examined MAOA expression in the prostate lobes of a conditional PTEN-deficient mouse model mirroring human PCa, with or without survivin knockout. We also silenced one gene at a time and examined the expression of the other. We further evaluated the combination of MAOA inhibitors and survivin suppressants on the growth, viability, migration and invasion of PCa cells. Survivin and MAOA levels are both increased in clinical PCa tissues and significantly associated with patients' survival. Survivin depletion delayed MAOA increase during PCa progression, and silencing MAOA decreased survivin expression. The combination of MAOA inhibitors and the survivin suppressants (YM155 and SC144) showed significant synergy on the inhibition of PCa cell growth, migration and invasion with concomitant decrease in survivin and MMP-9 levels. There is a positive feedback loop between survivin and MAOA expression in PCa. Considering that survivin suppressants and MAOA inhibitors are currently available in clinical trials and clinical use, their synergistic effects in PCa support a rapid translation of this combination to clinical practice.
Gothai, Sivapragasam; Arulselvan, Palanisamy; Tan, Woan Sean; Fakurazi, Sharida
2016-01-01
Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for the treatment of cuts, wounds and burns. Moringa oleifera (MO) is an herb used as a traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of MO leaves extract are completely unknown. In the current study, ethyl acetate fraction of MO leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate) in human normal dermal fibroblast cells. Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml) of ethyl acetate fraction of MO leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. This study suggested that ethyl acetate fraction of MO leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use.
Ding, Guo-Bin; Wang, Yan; Guo, Yi; Xu, Li
2014-10-08
Organic/inorganic nanohybrids, which integrate advantages of the biocompatibility of organic polymers and diversified functionalities of inorganic nanoparticles, have been extensively investigated in recent years. Herein, we report the construction of arginine-glycine-aspartic acid-cysteine (RGDC) tetrapeptide functionalized and 10-hydroxycamptothecin (HCPT)-encapsulated magnetic nanohybrids (RFHEMNs) for integrin αVβ3-targeted drug delivery. The obtained RFHEMNs were near-spherical in shape with a homogeneous size about 50 nm, and exhibited a superparamagnetic behavior. In vitro drug release study showed a sustained and pH-dependent release profile. Cell viability tests revealed that RFHEMNs displayed a significant enhancement of cytotoxicity against αVβ3-overexpressing A549 cells, as compared to free HCPT and nontargeting micelles. Flow cytometry analysis indicated that this cytotoxic effect was associated with dose-dependent S phase arrest. Finally, RFHEMNs exerted encouraging anti-cell-migration activity as determined by an in vitro wound-healing assay and a transwell assay. Overall, we envision that this tumor-targeting nanoscale drug delivery system may be of great application potential in chemotherapy of primary tumor and their metastases.
Øhrn, Frank-David; Van Leeuwen, Justin; Tsukanaka, Masako; Röhrl, Stephan M
2018-05-09
Background and purpose - There is some concern regarding the revision rate of the Vanguard CR TKA in 1 registry, and the literature is ambiguous about the efficacy of patient-specific positioning guides (PSPGs). The objective of this study was to investigate the stability of the cemented Vanguard CR Total Knee using 2 different surgical techniques. Our hypothesis was that there is no difference in migration when implanting the Vanguard CR with either PSPGs or conventional technique. We hereby present a randomized controlled trial of 2-year follow-up with radiostereometric analysis (RSA). Patients and methods - 40 TKAs were performed between 2011 and 2013 with either PSPGs or the conventional technique and 22 of these were investigated with RSA. Results - The PSPG (8 knees) and the conventional (14 knees) groups had a mean maximum total point motion (MTPM) (95% CI) of 0.83 (0.48-1.18) vs. 0.70 (0.43-0.97) mm, 1.03 (0.60-1.43) vs. 0.86 (0.53-1.19), and 1.46 (1.07-1.85) vs. 0.80 (0.52-1.43) at 3, 12, and 24 months respectively (p = 0.1). 5 implants had either an MTPM >1.6 mm at 12 months and/or a migration of more than 0.2 mm between 1- and 2-year follow-ups. 2 of these also had a peripheral subsidence of more than 0.6 mm at 2 years. Interpretation - 5 implants (3 in the PSPG group) were found to be at risk of later aseptic loosening. The PSPG group continuously migrated between 12 and 24 months. The conventional group had an initial high migration between postoperative and 3 months, but seemed more stable after 1 year. Although the difference was not statistically significant, we think the migration in the PSPG group is of some concern.
Lee, Hyuk; Min, Byung-Hoon; Lee, Jeong Hoon; Shin, Cheol Min; Kim, Younjoo; Chung, Hyunsoo; Lee, Sang Hyub
2015-01-01
OBJECTIVES: Previous studies reported comparable stent patency between covered self-expandable metallic stents (SEMS) and uncovered SEMS (UCS) for palliation of malignant gastric outlet obstruction (GOO). The aim of this study was to evaluate the efficacy and safety of the newly developed WAVE-covered SEMS (WCS), which has an anti-migration design, compared with UCS in gastric cancer patients with symptomatic GOO. METHODS: A total of 102 inoperable gastric cancer patients with symptomatic GOO were prospectively enrolled from five referral centers and randomized to undergo UCS or WCS placement. Stent patency and recurrence of obstructive symptoms were assessed at 8 weeks and 16 weeks after stent placement. RESULTS: At the 8-week follow-up, both stent patency rates (72.5% vs. 62.7%) and re-intervention rates (19.6% vs. 19.6%) were comparable between the WCS and the UCS groups. Both stent stenosis (2.4% vs. 8.1%) and migration rates (9.5% vs. 5.4%) were comparable between WCS and UCS groups. At the 16-week follow-up, however, the WCS group had a significantly higher stent patency rate than the UCS group (68.6% vs. 41.2%). Re-intervention rates in the WCS and UCS groups were 23.5% and 39.2%, respectively. Compared with the UCS group, the WCS group had a significantly lower stent restenosis rate (7.1% vs. 37.8%) and a comparable migration rate (9.5% vs. 5.4%). Overall stent patency was significantly longer in the WCS group than in the UCS group. No stent-associated significant adverse events occurred in either the WCS or UCS groups. In the multivariate analysis, WCS placement and chemotherapy were identified as independent predictors of 16-week stent patency. CONCLUSIONS: WCS group showed comparable migration rate and significantly more durable long-term stent patency compared with UCS group for the palliation of GOO in patients with inoperable gastric cancer. PMID:26372507
Flow and diffusion in channel-guided cell migration.
Marel, Anna-Kristina; Zorn, Matthias; Klingner, Christoph; Wedlich-Söldner, Roland; Frey, Erwin; Rädler, Joachim O
2014-09-02
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Wang, Shaobo; Brunne, Bianka; Zhao, Shanting; Chai, Xuejun; Li, Jiawei; Lau, Jeremie; Failla, Antonio Virgilio; Zobiak, Bernd; Sibbe, Mirjam; Westbrook, Gary L; Lutz, David; Frotscher, Michael
2018-01-03
Reelin controls neuronal migration and layer formation. Previous studies in reeler mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in reeler , but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated proopiomelanocortin-EGFP -expressing dentate granule cells in slice cultures from reeler , reeler -like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from reeler and reeler -like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in reeler slices cocultured to wild-type dentate gyrus showed that the reeler neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of reeler slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer. SIGNIFICANCE STATEMENT Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the present study, we took advantage of the expression of proopiomelanocortin-EGFP by newly generated, migrating granule cells to analyze their migratory trajectories in hippocampal slice cultures from wild-type mice and mutants deficient in Reelin signaling. We show that the compartmentalized presence of Reelin is essential for the directionality, but not the actual migratory process or speed, of migrating granule cells leading to their characteristic lamination in the dentate gyrus. Copyright © 2018 the authors 0270-6474/18/380137-12$15.00/0.
Osteochondral Tissue Cell Viability Is Affected by Total Impulse during Impaction Grafting
Balash, Paul; Kang, Richard W.; Schwenke, Thorsten; Cole, Brian J.; Wimmer, Markus A.
2010-01-01
Objective: Osteochondral graft transplantation has garnered significant attention because of its ability to replace the lesion with true hyaline cartilage. However, surgical impaction of the graft to anchor it into the defect site can be traumatic and lead to cell death and cartilage degeneration. This study aimed to test the hypothesis that increasing impulse magnitude during impaction of osteochondral plugs has a direct effect on loss of cell viability. Design: In this controlled laboratory study, the impaction force was kept constant while the impulse was varied. Ninety-six osteochondral plugs were extracted from the trochlea of bovine stifle joints and were randomly assigned into 3 experimental and 1 (nonimpacted) control group. The transferred impulse of the experimental groups reflected the median and the lower and upper quartiles of preceding clinical measurements. Data were obtained at day 0, day 4, and day 8; at each point, cell viability was assessed using the Live/Dead staining kit and histological assessments were performed to visualize matrix structural changes. Results: After impaction, cartilage samples stayed intact and did not show any histological signs of matrix disruption. As expected, higher impulse magnitudes introduced more cell death; however, this relationship was lost at day 8 after impaction. Conclusion: Impulse magnitude has a direct effect on cell viability of the graft. Because impulse magnitude is mostly governed by the press-fit characteristics of the recipient site, this study aids in the definition of optimal insertion conditions for osteochondral grafts. PMID:26069558
Wu, Jindan; Mao, Zhengwei; Gao, Changyou
2012-01-01
Cell migration is an important biological activity. Regulating the migration of vascular smooth muscle cells (VSMCs) is critical in tissue engineering and therapy of cardiovascular disease. In this work, methoxy poly(ethylene glycol) (mPEG) brushes of different molecular weight (Mw 2 kDa, 5 kDa and 10 kDa) and grafting mass (0-859 ng/cm(2)) were prepared on aldehyde-activated glass slides, and were characterized by X-ray photoelectron spectrometer (XPS) and quartz crystal microbalance with dissipation (QCM-d). Adhesion and migration processes of VSMCs were studied as a function of different mPEG Mw and grafting density. We found that these events were mainly regulated by the grafting mass of mPEG regardless of mPEG Mw and grafting density. The VSMCs migrated on the surfaces randomly without a preferential direction. Their migration rates increased initially and then decreased along with the increase of mPEG grafting mass. The fastest rates (~24 μm/h) appeared on the mPEG brushes with grafting mass of 300-500 ng/cm(2) depending on the Mw. Cell adhesion strength, arrangement of cytoskeleton, and gene and protein expression levels of adhesion related proteins were studied to unveil the intrinsic mechanism. It was found that the cell-substrate interaction controlled the cell mobility, and the highest migration rate was achieved on the surfaces with appropriate adhesion force. Copyright © 2011 Elsevier Ltd. All rights reserved.
Markov Chains for Investigating and Predicting Migration: A Case from Southwestern China
NASA Astrophysics Data System (ADS)
Qin, Bo; Wang, Yiyu; Xu, Haoming
2018-03-01
In order to accurately predict the population’s happiness, this paper conducted two demographic surveys on a new district of a city in western China, and carried out a dynamic analysis using related mathematical methods. This paper argues that the migration of migrants in the city will change the pattern of spatial distribution of human resources in the city and thus affect the social and economic development in all districts. The migration status of the population will change randomly with the passage of time, so it can be predicted and analyzed through the Markov process. The Markov process provides the local government and decision-making bureau a valid basis for the dynamic analysis of the mobility of migrants in the city as well as the ways for promoting happiness of local people’s lives.
Tales told by tails: watching DNA driven through a random medium
NASA Astrophysics Data System (ADS)
Guan, Juan; Wang, Bo; Bae, Sung Chul; Granick, Steve
2013-03-01
DNA ligation is used to label separately the ends and centers of monodisperse DNA 16 μm in contour length, and 2-color fluorescence microscopy is used to follow with nm resolution how chains migrate through agarose networks driven by electric fields, at both whole chain and segment level. We observe that the leading segment is always a physical chain end which stretches and pulls out slack in the still-quiescent remainder of the chain until the other end is taken up. Heads and tails behave strikingly differently: the leading end of migrating chains migrates more smoothly, whereas motion of the trailing end shows intermittent pauses and jerky recoil. None of the mechanisms imagined classically for this situation - chain reptation, hooking or entropic trapping, appears to fully describe these data obtained from single-molecule visualization.
NASA Astrophysics Data System (ADS)
Schorghofer, Norbert
2015-05-01
On the Moon, water molecules and other volatiles are thought to migrate along ballistic trajectories. Here, this migration process is described in terms of a two-dimensional partial differential equation for the surface concentration, based on the probability distribution of thermal ballistic hops. A random-walk model, a corresponding diffusion coefficient, and a continuum description are provided. In other words, a surface-bounded exosphere is described purely in terms of quantities on the surface, which can provide computational and conceptual advantages. The derived continuum equation can be used to calculate the steady-state distribution of the surface concentration of volatile water molecules. An analytic steady-state solution is obtained for an equatorial ring; it reveals the width and mass of the pileup of molecules at the morning terminator.
Seehaus, Frank; Schwarze, Michael; Flörkemeier, Thilo; von Lewinski, Gabriela; Kaptein, Bart L; Jakubowitz, Eike; Hurschler, Christof
2016-05-01
Implant migration can be accurately quantified by model-based Roentgen stereophotogrammetric analysis (RSA), using an implant surface model to locate the implant relative to the bone. In a clinical situation, a single reverse engineering (RE) model for each implant type and size is used. It is unclear to what extent the accuracy and precision of migration measurement is affected by implant manufacturing variability unaccounted for by a single representative model. Individual RE models were generated for five short-stem hip implants of the same type and size. Two phantom analyses and one clinical analysis were performed: "Accuracy-matched models": one stem was assessed, and the results from the original RE model were compared with randomly selected models. "Accuracy-random model": each of the five stems was assessed and analyzed using one randomly selected RE model. "Precision-clinical setting": implant migration was calculated for eight patients, and all five available RE models were applied to each case. For the two phantom experiments, the 95%CI of the bias ranged from -0.28 mm to 0.30 mm for translation and -2.3° to 2.5° for rotation. In the clinical setting, precision is less than 0.5 mm and 1.2° for translation and rotation, respectively, except for rotations about the proximodistal axis (<4.1°). High accuracy and precision of model-based RSA can be achieved and are not biased by using a single representative RE model. At least for implants similar in shape to the investigated short-stem, individual models are not necessary. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:903-910, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jin, Wang; Penington, Catherine J.; McCue, Scott W.; Simpson, Matthew J.
2016-10-01
Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of r≥slant 1 concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, λ C(1-C), where λ is the proliferation rate, is generalised to a universal growth function, λ C f(C). Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.
Kadar, Thomas; Hallan, Geir; Aamodt, Arild; Indrekvam, Kari; Badawy, Mona; Havelin, Leif Ivar; Stokke, Terje; Haugan, Kristin; Espehaug, Birgitte; Furnes, Ove
2011-10-01
We performed a randomized study to determine the migration patterns of the Spectron EF femoral stem and to compare them with those of the Charnley stem, which is regarded by many as the gold standard for comparison of implants due to its extensive documentation. 150 patients with a mean age of 70 years were randomized, single-blinded, to receive either a cemented Charnley flanged 40 monoblock, stainless steel, vaquasheen surface femoral stem with a 22.2-mm head (n = 30) or a cemented Spectron EF modular, matte, straight, collared, cobalt-chrome femoral stem with a 28-mm femoral head and a roughened proximal third of the stem (n = 120). The patients were followed with repeated radiostereometric analysis for 2 years to assess migration. At 2 years, stem retroversion was 2.3° and 0.7° (p < 0.001) and posterior translation was 0.44 mm and 0.17 mm (p = 0.002) for the Charnley group (n = 26) and the Spectron EF group (n = 74), respectively. Subsidence was 0.26 mm for the Charnley and 0.20 mm for the Spectron EF (p = 0.5). The Spectron EF femoral stem was more stable than the Charnley flanged 40 stem in our study when evaluated at 2 years. In a report from the Norwegian arthroplasty register, the Spectron EF stem had a higher revision rate due to aseptic loosening beyond 5 years than the Charnley. Initial stability is not invariably related to good long-term results. Our results emphasize the importance of prospective long-term follow-up of prosthetic implants in clinical trials and national registries and a stepwise introduction of implants.
Jin, Wang; Penington, Catherine J; McCue, Scott W; Simpson, Matthew J
2016-10-07
Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of [Formula: see text] concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, [Formula: see text], where λ is the proliferation rate, is generalised to a universal growth function, [Formula: see text]. Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.
Wallin, Jeffrey J; Guan, Jane; Prior, Wei Wei; Lee, Leslie B; Berry, Leanne; Belmont, Lisa D; Koeppen, Hartmut; Belvin, Marcia; Friedman, Lori S; Sampath, Deepak
2012-07-15
Docetaxel is a front-line standard-of-care chemotherapeutic drug for the treatment of breast cancer. Phosphoinositide 3-kinases (PI3K) are lipid kinases that regulate breast tumor cell growth, migration, and survival. The current study was intended to determine whether GDC-0941, an orally bioavailable class I selective PI3K inhibitor, enhances the antitumor activity of docetaxel in human breast cancer models in vitro and in vivo. A panel of 25 breast tumor cell lines representing HER2+, luminal, and basal subtypes were treated with GDC-0941, docetaxel, or the combination of both drugs and assayed for cellular viability, modulation of PI3K pathway markers, and apoptosis induction. Drug combination effects on cellular viability were also assessed in nontransformed MCF10A human mammary epithelial cells. Human xenografts of breast cancer cell lines and patient-derived tumors were used to assess efficacy of GDC-0941 and docetaxel in vivo. Combination of GDC-0941 and docetaxel decreased the cellular viability of breast tumor cell lines in vitro but to variable degrees of drug synergy. Compared with nontransformed MCF10A cells, the addition of both drugs resulted in stronger synergistic effects in a subset of tumor cell lines that were not predicted by breast cancer subtype. In xenograft models, GDC-0941 enhanced the antitumor activity of docetaxel with maximum combination efficacy observed within 1 hour of administering both drugs. GDC-0941 increased the rate of apoptosis in cells arrested in mitosis upon cotreatment with docetaxel. GDC-0941 augments the efficacy of docetaxel by increasing drug-induced apoptosis in breast cancer models.
Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression
Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio
2010-01-01
Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor. Electronic supplementary material The online version of this article (doi:10.1007/s13277-010-0108-7) contains supplementary material, which is available to authorized users. PMID:20820980
Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression.
Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio; Folgueira, Maria Aparecida Azevedo Koike
2011-02-01
Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor.
Blattes, Gabriela Bess Ferraz; Mestieri, Leticia Boldrin; Böttcher, Daiana Elisabeth; Fossati, Anna Cristina Medeiros; Montagner, Francisco; Grecca, Fabiana Soares
2017-01-01
This study aimed to analyze in vitro cytotoxicity to cultured 3T3 fibroblasts and in vivo inflammatory reaction in rats by calcium hypochlorite (Ca(OCl) 2 ) solutions compared with sodium hypochlorite (NaOCl) solutions. Cultured 3T3 fibroblasts were exposed to different concentrations of (Ca(OCl) 2 ) and NaOCl solutions, and a scratch assay was performed. The viability rate was analyzed with trypan blue assay. Both solutions of 1% and 2.5% concentrations were injected into the subcutaneous tissue of 18 male Wistar rats aged 18 weeks. The inflammatory tissue reaction was evaluated at 2h, 24h, and 14days after the injections. The samples were qualitatively analyzed using a light microscope. Statistical analysis was performed with ANOVA and Tukey post hoc tests for in vitro assays and Kruskal-Wallis and Dunn post hoc tests for in vivo assays (α=0.05). In the scratch assay, Ca(OCl) 2 showed no significant difference compared with the control group (culture medium) at 24h (p<0.05). Solutions of 0.0075% and 0.005% NaOCl and Ca(OCl) 2 concentrations presented similar results compared with those in the positive control group (hydrogen peroxide) (p>0.05) in the trypan blue assay. In the in vivo assay, 1% Ca(OCl) 2 group showed a significant decrease in neutrophils at 2h and 24h (p=0.041) and 2h and 14days (p=0.017). There was no statistically significant difference for lymphocyte/plasmocyte and macrophage counts among the different concentration groups. Ca(OCl) 2 showed favorable results of viability and induced a low-level inflammatory response. Ca(OCl) 2 presented acceptable cytotoxicity and biocompatibility as an irrigant solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Qu, Wei; Li, Dichen; Wang, Yufei; Wu, Qining; Hao, Dingjun
2018-06-04
BACKGROUND Radioresistance restricts the application of radiotherapy in human osteosarcoma (OS). This study investigated the molecular mechanism of radioresistance in OS, which may provide clues to finding ideal targets for genetic therapy. MATERIAL AND METHODS The human OS cell line MG63 was employed as parent cells. After repeat low-dose X-ray irradiation of MG63, the radioresistant OS cell line MG63R was produced. Colony formation assay was used to assess the radioresistance. Cell viability was evaluated by CCK-8 assay. Flow cytometry was used to detect cell apoptosis, and wound healing assay was used to evaluate invasive capacity. The nuclear translocation was evaluated by fluorescent immunohistochemistry. Protein expression levels were assessed by Western blotting. Specific siRNA against Shh was used to silence Shh. RESULTS More survival colony formation, elevated cell viability, less cell apoptosis, and increased wound closure were found in MG63R than in MG63 cells exposed to irradiation. The nuclear translocation of Gli, expression levels of Shh, Smo, Ptch1, Bcl2, active MMP2, and active MMP9 were increased in MG63R cells compared with MG63 cells. Transfection of Shh-siRNA suppressed expression levels of Shh, Smo, Ptch1, Bcl2, active MMP2, and active MMP9, as well as the nuclear translocation of Gli in MG63R cells. The cell viability, survival colony formation, and wound closure were impaired, whereas cell apoptosis was increased, in siRNA-transfected MG63R cells than in control MG63R cells exposed to irradiation. CONCLUSIONS Activation of Shh signaling was involved in radioresistance of OS cells. Blocking this signaling can impair the radioresistance capacity of OS cells.
Long, Zi-Wen; Wu, Jiang-Hong; Hong, Cai-; Wang, Ya-Nong; Zhou, Ye
2018-06-14
Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR- 374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR- 374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.
Yu, Tenghua; Liu, Manran; Luo, Haojun; Wu, Chengyi; Tang, Xi; Tang, Shifu; Hu, Ping; Yan, Yuzhao; Wang, Zhiliang; Tu, Gang
2014-09-01
Triple-negative breast cancer (TNBC) is an aggressive breast cancer with a generally poor prognosis. Due to lack of specific targets for its treatment, an efficient therapy is needed. G protein-coupled estrogen receptor (GPER), a novel estrogen receptor, has been reported to be expressed in TNBC tissues. In this study, we investigated the effects of blocking non-genomic signaling mediated by the estrogen/GPER pathway on cell viability and motility in the TNBC cells. GPER was strongly expressed in the TNBC cell lines MDA-MB-468 and MDA-MB-436, and the estrogen-mediated non-genomic ERK signaling activated by GPER was involved in cell viability and motility of TNBC cells. Treatment with 17β-estradiol (E2), the GPER-specific agonist G-1 and tamoxifen (TAM) led to rapid activation of p-ERK1/2, but not p-Akt. Moreover, estrogen/GPER/ERK signaling was involved in increasing cell growth, survival, and migration/invasion by upregulating expression of cyclinA, cyclinD1, Bcl-2, and c-fos associated with the cell cycle, proliferation, and apoptosis. Immunohistochemical analysis of TNBC specimens showed a significantly different staining of p-ERK1/2 between GPER-positive tissues (58/66, 87.9%) and GPER-negative tissues (13/30, 43.3%). The positivity of GPER and p-ERK1/2 displayed a strong association with large tumor size and poor clinical stage, indicating that GPER/ERK signaling might also contribute to tumor progression in TNBC patients which corresponded with in vitro experimental data. Our findings suggest that inhibition of estrogen/GPER/ERK signaling represents a novel targeted therapy in TNBC. Copyright © 2014 Elsevier Ltd. All rights reserved.
Silva, Cláudia; Nunes, Catarina; Correia-Branco, Ana; Araújo, João R; Martel, Fátima
2017-04-01
Our aim was to investigate the effect of high levels of glucose, insulin, leptin, and tumor necrosis factor alpha, biomarkers of diabetes in pregnancy, in the process of placentation, using as a cell model a first trimester extravillous human trophoblast cell line (HTR8/SVneo cells). Exposure of HTR8/SVneo cells for 24 hours to either glucose (20 mmol/L) or leptin (25-100 ng/mL) did not cause significant changes in cell proliferation and viability. Tumor necrosis factor alpha (24 hours; 10-100 ng/L) caused a small decrease (10%) in cell proliferation and an increase (9%) in cell viability; however, both effects disappeared when exposure time was increased. Insulin (24 hours; 1-10 nmol/L) caused a concentration- and time-dependent decrease (10%-20%) in cell proliferation; the effect of insulin (10 nmol/L) was more pronounced after a 48 hours exposure (35%). In contrast, exposure to insulin (10 nmol/L; 48 hours) showed no significant effect on cell viability, apoptosis, and migration capacity. Insulin appears to cause hypertrophy of HTR8/SVneo cells as it reduces the cell mitotic index while increasing the culture protein content. The antiproliferative effect of insulin seems to involve activation of mammalian target of rapamycin, phosphoinositide 3-kinase, and p38 mitogen-activated protein kinase. Finally, simvastatin and the polyphenol quercetin potentiated the antiproliferative effect of insulin; on the contrary, the polyphenol resveratrol, the polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids, and folic acid were not able to change it. In conclusion, we show that insulin has an antiproliferative and hypertrophic effect on a first trimester extravillous human trophoblast cell line. So insulin might affect the process of placentation.
NASA Astrophysics Data System (ADS)
Martignago, C. C. S. M.; Tim, C. R.; Assis, L.; Neve, L. M. G.; Bossini, P. S.; Renno, A. C.; Avó, L. R. S.; Liebano, R. E.; Parizotto, N. A.
2018-02-01
Objective: to identify the best low intensity laser photobiomodulation application site to increase the viability of the cutaneous flap in rats. Methods: 18 male rats (Rattus norvegicus: var. Albinus, Rodentia Mammalia) were randomly distributed into 3 groups (n = 6). Group I (GI) was submitted to simulated laser photobiomodulation, group II (GII) was submitted to the laser photobiomodulation at three points in the flap cranial base, and group III (GIII) was submitted to laser photobiomodulation at twelve points distributed along the flap. All groups were irradiated with an Indium, Galium, Aluminum and Phosphorus diode laser (InGaAlP), 660 nm, with power of 50 mW, total energy of 12 J in continuous emission mode. The treatment started immediately after performing the cranial base random skin flap (dimension of 10X4 cm2 ) and reapplied every 24 hours, with a total of 5 applications. The animals were euthanized after the evaluation of the percentage of necrosis area and the material was collected for histological analysis on the 7th postoperative day. Results: GII animals presented a statistically significant decrease for the necrosis area when compared to the other groups, and a statistically significant increase in the quantification of collagen when compared to the control. We did not observe a statistical difference between the TGFβ and FGF expression in the different groups evaluated. Conclusion: the application of laser photobiomodulation at three points of the flap cranial base was more effective than at twelve points regarding the reduction of necrosis area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petukhov, B. V., E-mail: petukhov@ns.crys.ras.r
2010-01-15
A model has been proposed for describing the influence of impurities adsorbed by dislocation cores on the mobility of dislocation kinks in materials with a high crystalline relief (Peierls barriers). The delay time spectrum of kinks at statistical fluctuations of the impurity density has been calculated for a sufficiently high energy of interaction between impurities and dislocations when the migration potential is not reduced to a random Gaussian potential. It has been shown that fluctuations in the impurity distribution substantially change the character of the migration of dislocation kinks due to the slow decrease in the probability of long delaymore » times. The dependences of the position of the boundary of the dynamic phase transition to a sublinear drift of kinks x {proportional_to} t{sup {delta}} ({delta} {sigma} 1) and the characteristics of the anomalous mobility on the physical parameters (stress, impurity concentration, experimental temperature, etc.) have been calculated.« less
Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang
2016-03-01
The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.
A rapid co-culture stamping device for studying intercellular communication.
Hassanzadeh-Barforoushi, Amin; Shemesh, Jonathan; Farbehi, Nona; Asadnia, Mohsen; Yeoh, Guan Heng; Harvey, Richard P; Nordon, Robert E; Warkiani, Majid Ebrahimi
2016-10-18
Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.
Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy
2017-01-01
Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE), a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80%) and yield (>70%). Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies. PMID:28122047
A rapid co-culture stamping device for studying intercellular communication
NASA Astrophysics Data System (ADS)
Hassanzadeh-Barforoushi, Amin; Shemesh, Jonathan; Farbehi, Nona; Asadnia, Mohsen; Yeoh, Guan Heng; Harvey, Richard P.; Nordon, Robert E.; Warkiani, Majid Ebrahimi
2016-10-01
Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.
In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam
Muhammad, Abubakar Amali; Pauzi, Nur Aimi Syarina; Arulselvan, Palanisamy; Abas, Faridah; Fakurazi, Sharida
2013-01-01
Moringa oleifera Lam. (M. oleifera) from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF) cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro. PMID:24490175
Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application.
Carter, Princeton; Rahman, Shekh M; Bhattarai, Narayan
2016-01-01
Guided tissue regeneration (GTR) is a widely used method in dental surgical procedures that utilizes a barrier membrane to exclude migration of epithelium and ensure repopulation of periodontal ligament cells at the sites having insufficient gingiva. Commercial GTR membranes are typically composed of synthetic polymers that have had mild clinical success mostly because of their lack of proper bioactivity and appropriate degradation profile. In this study, a natural polymer, aloe vera was blended with polycaprolactone (PCL) to create nanofibrous GTR membranes by electrospinning. Aloe vera has proven anti-inflammatory properties and enhances the regeneration of periodontium tissues. PCL, a synthetic polymer, is well known to produce miscible polyblends nanofibers with natural polymers. Nanofibrous membranes with varying composition of PCL to aloe vera were fabricated, and several physicochemical and biological properties, such as fiber morphology, wettability, chemical structure, mechanical strength, and cellular compatibility of the membranes were analyzed. PCL/aloe vera membranes with ratios from 100/00 to 70/30 showed good uniformity in fiber morphology and suitable mechanical properties, and retained the integrity of their fibrous structure in aqueous solutions. Experimental results, using cell viability assay and cell attachment observation, showed that the nanofibrous membranes support 3T3 cell viability and could be a potential candidate for GTR therapy.
Cheng, Xu-Dong; Gu, Jun-Fei; Yuan, Jia-Rui; Feng, Liang; Jia, Xiao-Bin
2015-12-01
The migration and invasion of lung cancer cells into the extracellular matrix contributes to the high mortality rates of lung cancer. The protein kinase C (PKC) and downstream signaling pathways are important in the invasion and migration of lung cancer cells. Calycosin (Cal), an effector chemical from Astragalus has been reported to affect the recurrence and metastasis of cancer cells via the regulation of the protein expression of matrix metalloproteinases (MMPs). The inhibition of Cal on the migration and invasion of A549 cells was investigated in the present study. Cell viability and apoptosis assays were performed using MTT and flow cytometric analyses. A wound healing assay and Transwell invasion assay were performed to evaluate the effect of Cal on A549 cell migration and invasion. Invasion‑associated proteins, including MMP‑2, MMP‑9, E‑cadherin (E‑cad), integrin β1, PKC‑α and extracellular signal‑regulated kinase 1/2 (ERK1/2) were detected using western blotting. In addition, PKC‑α inhibitor, AEB071, and ERK1/2 inhibitor, PD98059, were used to determine the association between the suppression of PKC‑α /ERK1/2 and invasion, MMP‑2, MMP‑9, E‑cad and integrin β1. Cal was observed to suppress cell proliferation and induce apoptosis. There were significant differences between the phorbol‑12‑myristate‑13‑acetate (TPA)‑induced A549 cells treated with Cal and the untreated cells in the rates of migration and invasion. The levels of MMP‑2, MMP‑9, E‑cad and integrin β1 in the TPA‑induced A549 cells changed markedly, compared with the untreated cells. In addition, the suppression of Cal was affected by the PKC inhibitor, AEB071, an ERK1/2 inhibitor, PD98059. The results of the present study indicated that Cal inhibited the proliferation, adhesion, migration and invasion of the TPA‑induced A549 cells. The Cal‑induced repression of PKC‑α/ERK1/2, increased the expression of E‑Cad and inhibited the expression levels of MMP‑2, MMP‑9 and integrin β1, which possibly demonstrates the mechanism underlying the biological anticancer effects of Cal.
1994-01-01
JNM1, a novel gene on chromosome XIII in the yeast Saccharomyces cerevisiae, is required for proper nuclear migration. jnm1 null mutants have a temperature-dependent defect in nuclear migration and an accompanying alteration in astral microtubules. At 30 degrees C, a significant proportion of the mitotic spindles is not properly located at the neck between the mother cell and the bud. This defect is more severe at low temperature. At 11 degrees C, 60% of the cells accumulate with large buds, most of which have two DAPI staining regions in the mother cell. Although mitosis is delayed and nuclear migration is defective in jnm1 mutant, we rarely observe more than two nuclei in a cell, nor do we frequently observe anuclear cells. No loss of viability is observed at 11 degrees C and cells continue to grow exponentially with increased doubling time. At low temperature the large budded cells of jnm1 mutants exhibit extremely long astral microtubules that often wind around the periphery of the cell. jnm1 mutants are not defective in chromosome segregation during mitosis, as assayed by the rate of chromosome loss, or nuclear migration during conjugation, as assayed by the rate of mating and cytoduction. The phenotype of a jnm1 mutant is strikingly similar to that for mutants in the dynein heavy chain gene (Eshel, D., L. A. Urrestarazu, S. Vissers, J.-C. Jauniaux, J. C. van Vliet-Reedijk, R. J. Plants, and I. R. Gibbons. 1993. Proc. Natl. Acad. Sci. USA. 90:11172-11176; Li, Y. Y., E. Yeh, T. Hays, and K. Bloom. 1993. Proc. Natl. Acad. Sci. USA. 90:10096-10100). The JNM1 gene product is predicted to encode a 44-kD protein containing three coiled coil domains. A JNM1:lacZ gene fusion is able to complement the cold sensitivity and microtubule phenotype of a jnm1 deletion strain. This hybrid protein localizes to a single spot in the cell, most often near the spindle pole body in unbudded cells and in the bud in large budded cells. Together these results point to a specific role for Jnm1p in spindle migration, possibly as a subunit or accessory protein for yeast dynein. PMID:8138567
Zhen, Yulan; Wu, Qiaomei; Ding, Yiqian; Zhang, Wei; Zhai, Yuansheng; Lin, Xiaoxiong; Weng, Yunxia; Guo, Ruixian; Zhang, Ying; Feng, Jianqiang; Lei, Yiyan; Chen, Jingfu
2018-01-01
The effects of hydrogen sulfide (H2S) on cancer are controversial. Our group previously demonstrated that exogenous H2S promotes the development of cancer via amplifying the activation of the nuclear factor-κB signaling pathway in hepatocellular carcinoma (HCC) cells (PLC/PRF/5). The present study aimed to further investigate the hypothesis that exogenous H2S promotes PLC/PRF/5 cell proliferation and migration, and inhibits apoptosis by activating the signal transducer and activator of transcription 3 (STAT3)-cyclooxygenase-2 (COX-2) signaling pathway. PLC/PRF/5 cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated (p)-STAT3, STAT3, cleaved caspase-3 and COX-2 were measured by western blot assay. Cell viability was detected by Cell Counting kit-8 assay. Apoptotic cells were observed by Hoechst 33258 staining. The expression of STAT3 and COX-2 messenger RNA (mRNA) was detected by semiquantitative reverse transcription-polymerase chain reaction. The production of vascular endothelial growth factor (VEGF) was evaluated by ELISA. The results indicated that treatment of PLC/PRF/5 cells with 500 µmol/l NaHS for 24 h markedly increased the expression levels of p-STAT3 and STAT3 mRNA, leading to COX-2 and COX-2 mRNA overexpression, VEGF induction, decreased cleaved caspase-3 production, increased cell viability and migration, and decreased number of apoptotic cells. However, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 30 µmol/l AG490 (an inhibitor of STAT3) or 20 µmol/l NS-398 (an inhibitor of COX-2) for 24 h significantly reverted the effects induced by NaHS. Furthermore, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 30 µmol/l AG490 markedly decreased the NaHS-induced increase in the expression level of COX-2. By contrast, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 20 µmol/l NS-398 inhibited the NaHS-induced increase in the expression level of p-STAT3. In conclusion, the findings of the present study provide evidence that the STAT3-COX-2 signaling pathway is involved in NaHS-induced cell proliferation, migration, angiogenesis and anti-apoptosis in PLC/PRF/5 cells, and suggest that the positive feedback between STAT3 and COX-2 may serve a crucial role in hepatocellular carcinoma carcinogenesis. PMID:29725404
Directional Migration of Recirculating Lymphocytes through Lymph Nodes via Random Walks
Thomas, Niclas; Matejovicova, Lenka; Srikusalanukul, Wichat; Shawe-Taylor, John; Chain, Benny
2012-01-01
Naive T lymphocytes exhibit extensive antigen-independent recirculation between blood and lymph nodes, where they may encounter dendritic cells carrying cognate antigen. We examine how long different T cells may spend in an individual lymph node by examining data from long term cannulation of blood and efferent lymphatics of a single lymph node in the sheep. We determine empirically the distribution of transit times of migrating T cells by applying the Least Absolute Shrinkage & Selection Operator () or regularised to fit experimental data describing the proportion of labelled infused cells in blood and efferent lymphatics over time. The optimal inferred solution reveals a distribution with high variance and strong skew. The mode transit time is typically between 10 and 20 hours, but a significant number of cells spend more than 70 hours before exiting. We complement the empirical machine learning based approach by modelling lymphocyte passage through the lymph node . On the basis of previous two photon analysis of lymphocyte movement, we optimised distributions which describe the transit times (first passage times) of discrete one dimensional and continuous (Brownian) three dimensional random walks with drift. The optimal fit is obtained when drift is small, i.e. the ratio of probabilities of migrating forward and backward within the node is close to one. These distributions are qualitatively similar to the inferred empirical distribution, with high variance and strong skew. In contrast, an optimised normal distribution of transit times (symmetrical around mean) fitted the data poorly. The results demonstrate that the rapid recirculation of lymphocytes observed at a macro level is compatible with predominantly randomised movement within lymph nodes, and significant probabilities of long transit times. We discuss how this pattern of migration may contribute to facilitating interactions between low frequency T cells and antigen presenting cells carrying cognate antigen. PMID:23028891
Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Yang, Chao-Chin; Mac Low, M.; Menou, K.
2010-01-01
In core accretion scenario of planet formation, kilometer-sized planetesimals are the building blocks toward planetary cores. Their dynamics, however, are strongly influenced by their natal protoplanetary gas disks. It is generally believed that these disks are turbulent, most likely due to magnetorotational instability. The resulting density perturbations in the gas render the movement of the particles a random process. Depending on its strength, this process might cause several interesting consequences in the course of planet formation, specifically the survivability of objects under rapid inward type-I migration and/or collisional destruction. Using the local-shearing-box approximation, we conduct numerical simulations of planetesimals moving in a turbulent, magnetized gas disk, either unstratified or vertically stratified. We produce a fiducial disk model with turbulent accretion of Shakura-Sunyaev alpha about 10-2 and root-mean-square density perturbation of about 10% and statistically characterize the evolution of the orbital properties of the particles moving in the disk. These measurements result in accurate calibration of the random process of particle orbital change, indicating noticeably smaller magnitudes than predicted by global simulations, although the results may depend on the size of the shearing box. We apply these results to revisit the survivability of planetesimals under collisional destruction or protoplanets under type-I migration. Planetesimals are probably secure from collisional destruction, except for kilometer-sized objects situated in the outer regions of a young protoplanetary disk. On the other hand, we confirm earlier studies of local models in that type-I migration probably dominates diffusive migration due to stochastic torques for most planetary cores and terrestrial planets. Discrepancies in the derived magnitude of turbulence between local and global simulations of magnetorotationally unstable disks remains an open issue, with important consequences for planet formation scenarios.
Arden, Jessica D; Lavik, Kari I; Rubinic, Kaitlin A; Chiaia, Nicolas; Khuder, Sadik A; Howard, Marthe J; Nestor-Kalinoski, Andrea L; Alberts, Arthur S; Eisenmann, Kathryn M
2015-11-01
The extensive invasive capacity of glioblastoma (GBM) makes it resistant to surgery, radiotherapy, and chemotherapy and thus makes it lethal. In vivo, GBM invasion is mediated by Rho GTPases through unidentified downstream effectors. Mammalian Diaphanous (mDia) family formins are Rho-directed effectors that regulate the F-actin cytoskeleton to support tumor cell motility. Historically, anti-invasion strategies focused upon mDia inhibition, whereas activation remained unexplored. The recent development of small molecules directly inhibiting or activating mDia-driven F-actin assembly that supports motility allows for exploration of their role in GBM. We used the formin inhibitor SMIFH2 and mDia agonists IMM-01/-02 and mDia2-DAD peptides, which disrupt autoinhibition, to examine the roles of mDia inactivation versus activation in GBM cell migration and invasion in vitro and in an ex vivo brain slice invasion model. Inhibiting mDia suppressed directional migration and spheroid invasion while preserving intrinsic random migration. mDia agonism abrogated both random intrinsic and directional migration and halted U87 spheroid invasion in ex vivo brain slices. Thus mDia agonism is a superior GBM anti-invasion strategy. We conclude that formin agonism impedes the most dangerous GBM component-tumor spread into surrounding healthy tissue. Formin activation impairs novel aspects of transformed cells and informs the development of anti-GBM invasion strategies. © 2015 Arden et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Code for ethical international recruitment practices: the CGFNS alliance case study.
Shaffer, Franklin A; Bakhshi, Mukul; Dutka, Julia To; Phillips, Janice
2016-06-30
Projections indicate a global workforce shortage of approximately 4.3 million across the health professions. The need to ensure an adequate supply of health workers worldwide has created a context for the increased global migration of these professionals. The global trend in the migration of health professionals has given rise to the international recruitment industry to facilitate the passage of health workers from source to destination countries. This is particularly the case in the United States, where the majority of immigrant health professionals have come by way of the recruiting industry. This industry is largely unregulated in the United States as well as in many other countries, for which voluntary codes have been used as a means to increase transparency of the recruitment process, shape professional conduct, and mitigate harm to foreign-educated health workers. The CGFNS Alliance case study presented herein describes a multi-stakeholder effort in the United States to promote ethical recruitment practices. Such codes not only complement the WHO Global Code of Practice but are necessary to maximize the impact of these global standards on local settings. This case study offers both a historical perspective and a conceptual framework for examining the multiplicity of factors affecting the migration of human resources for health. The lessons learned provide critical insights into the factors pertaining to the relevancy and effectiveness of the WHO Code from the perspectives of both source and destination countries. This study provides a conceptual model for examining the usefulness of the WHO Code as well as how best to ensure its viability, sustainability, relevancy, and effectiveness in the global environment. This case study concludes with recommendations for evolving business models that need to be in place to strengthen the effectiveness of the WHO Code in the marketplace and to ensure its impact on the international recruitment industry in advancing ethical practices. These recommendations include using effective screening mechanisms to determine health professionals' readiness for migration as well as implementing certification processes to raise the practice standards for those directly involved in recruiting skilled workers and managing the migration flow.
Zhai, Huan; Qi, Xun; Li, Zixuan; Zhang, Wei; Li, Chenguang; Ji, Lu; Xu, Ke; Zhong, Hongshan
2018-06-26
The present study investigated the role of tissue inhibitor of matrix metalloproteinase‑3 (TIMP‑3) in regulating the proliferation, migration, apoptosis and activity of matrix metalloproteinase (MMP)‑2 and ‑9, during the development of an atherosclerotic abdominal artery aneurysm (AAA). Experiments were conducted using rabbit AAA neck (NA) smooth muscle cells (SMCs), to investigate the potential for TIMP‑3 to be used as a novel stent coating in preventing aortic dilation adjacent to the AAA. The atherosclerotic AAA model was induced in New Zealand white rabbits via a 6‑week high‑cholesterol diet, followed by incubation of the targeted aortic region with elastase. SMCs were isolated from the aorta adjacent to the aneurysm 30 days after AAA model induction, and stimulated with 3, 10, 30 or 100 ng/ml TIMP‑3. Cell proliferation was investigated using Cell Counting Kit‑8 reagent, migration was examined using a Boyden chamber assay and apoptotic rate was analyzed using the Annexin V‑fluorescein isothiocyanate Apoptosis Detection kit. Gelatin zymography and ELISA were used to measure the activity of MMP‑2 and MMP‑9, and the expression of tumor necrosis factor‑α (TNF‑α), respectively. Analysis of cell proliferation indicated that 10, 30 and 100 ng/ml TIMP‑3 reduced cell viability. Cell migration was decreased by 10, 30 and 100 ng/ml TIMP‑3. MMP‑2 activity was inhibited by 10, 30 and 100 ng/ml TIMP‑3, and MMP‑9 activity was suppressed by 30 and 100 ng/ml TIMP‑3. The protein levels of secreted TNF‑α were reduced by 10, 30 and 100 ng/ml TIMP‑3. The present study demonstrated the ability of 30 and 100 ng/ml TIMP‑3 to attenuate migration and proliferation, and to inhibit the activity of MMP‑2, MMP‑9 and TNF‑α secretion of NA SMCs. In conclusion, TIMP‑3 may be considered a potential therapeutic drug for use in a novel drug‑eluting stent, to attenuate the progressive dilation of the aortic NA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelovani, Juri G.
Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits.more » Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to stem cell imaging is proposed to circumvent the major limitation of in vitro radiolabeling – the eventual radiolabel decay. Stable transduction of stem cells in vitro would allow for the selection of high quality stem cells with optimal functional parameters of the transduced reporter systems. The use of a long-lived radioisotope 124I to label a highly specific reporter gene probe will allow for ex vivo labeling of stem cells and their imaging immediately after injection and during the following next week. The use of short-lived radioisotopes (i.e., 18F) to label highly specific reporter gene probes will allow repetitive PET imaging for the assessment of to stem cell migration, targeting, differentiation, and long-term viability of stem cell-derived tissues. Qualifications of the research team and resources. An established research team of experts in various disciplines has been assembled at MD Anderson Cancer Center (MDACC) over the past two years including the PI, senior co-investigators and collaborators. The participants of this team are recognized internationally to be among the leaders in their corresponding fields of research and clinical medicine. The resources at MDACC are exceptionally well developed and have been recently reinforced by the installation of a microPET and microSPECT/CT cameras, and a 7T MRI system for high resolution animal imaging; and by integrating a synthetic chemistry core for the development and production of precursors for radiolabeling.« less
Bermejo, Isaac; Frank, F; Komarahadi, F; Albicker, J; Ries, Z; Kriston, L; Härter, M
2015-07-01
For migrants who are older than 50, alcohol frequently becomes a problem. Simultaneously alcohol-related prevention measures only reach this group insufficiently. Therefore, a transcultural concept for preventing alcohol-related disorders in elderly (≥ 45 years) migrants has been developed. The transcultural concept, which consisted of a prevention event as well as a cultural and language-sensitive information booklet, was evaluated in a cluster-randomized controlled trial (n = 310 immigrants). As a control condition there was a prevention event with materials from Deutsche Hauptstelle für Suchtfragen (German Centre for Addiction Issues). Data were obtained before and after the event, as well as after 6 months. All materials were available both in German and in Russian, Italian, Spanish and Turkish. Directly after the event, as well as 6 months thereafter, the transcultural approach was rated significantly better than the general prevention event. 73.4 % of the participants read the cultural and migration-sensitive booklet, whereas only 21.2 % in the control condition (p = 0.0001). Furthermore, significantly more participants of the transcultural approach reported a reduced alcohol consumption (49.4 vs. 16.7 %; p = 0.004) after 6 months. The consideration of diversity with respect to cultural, migration-related, socio demographic und linguistic aspects improves the effectiveness of prevention measures.
Resident Perceptions in Growth-Impacted Western Agricultural Communities.
ERIC Educational Resources Information Center
Mileti, Dennis S.; And Others
A study of community satisfaction in two eastern Colorado towns found that residents' perceptions of their communities were significantly related to demographic and residential/migrational characteristics. Questionnaires were sent to 450 telephone subscribers, selected randomly from the 1977 directories for both communities; 49% were completed and…
Tompkins, Adrian M; McCreesh, Nicky
2016-03-31
One year of mobile phone location data from Senegal is analysed to determine the characteristics of journeys that result in an overnight stay, and are thus relevant for malaria transmission. Defining the home location of each person as the place of most frequent calls, it is found that approximately 60% of people who spend nights away from home have regular destinations that are repeatedly visited, although only 10% have 3 or more regular destinations. The number of journeys involving overnight stays peaks at a distance of 50 km, although roughly half of such journeys exceed 100 km. Most visits only involve a stay of one or two nights away from home, with just 4% exceeding one week. A new agent-based migration model is introduced, based on a gravity model adapted to represent overnight journeys. Each agent makes journeys involving overnight stays to either regular or random locations, with journey and destination probabilities taken from the mobile phone dataset. Preliminary simulations show that the agent-based model can approximately reproduce the patterns of migration involving overnight stays.
Pageler, Natalie M; Grazier G'Sell, Max Jacob; Chandler, Warren; Mailes, Emily; Yang, Christine; Longhurst, Christopher A
2016-09-01
The objective of this project was to use statistical techniques to determine the completeness and accuracy of data migrated during electronic health record conversion. Data validation during migration consists of mapped record testing and validation of a sample of the data for completeness and accuracy. We statistically determined a randomized sample size for each data type based on the desired confidence level and error limits. The only error identified in the post go-live period was a failure to migrate some clinical notes, which was unrelated to the validation process. No errors in the migrated data were found during the 12- month post-implementation period. Compared to the typical industry approach, we have demonstrated that a statistical approach to sampling size for data validation can ensure consistent confidence levels while maximizing efficiency of the validation process during a major electronic health record conversion. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Quantitative analysis of eosinophil chemotaxis tracked using a novel optical device -- TAXIScan.
Nitta, Nao; Tsuchiya, Tomoko; Yamauchi, Akira; Tamatani, Takuya; Kanegasaki, Shiro
2007-03-30
We have reported previously the development of an optically accessible, horizontal chemotaxis apparatus, in which migration of cells in the channel from a start line can be traced with time-lapse intervals using a CCD camera (JIM 282, 1-11, 2003). To obtain statistical data of migrating cells, we have developed quantitative methods to calculate various parameters in the process of chemotaxis, employing human eosinophil and CXCL12 as a model cell and a model chemoattractant, respectively. Median values of velocity and directionality of each cell within an experimental period could be calculated from the migratory pathway data obtained from time-lapse images and the data were expressed as Velocity-Directionality (VD) plot. This plot is useful for quantitatively analyzing multiple migrating cells exposed to a certain chemoattractant, and can distinguish chemotaxis from random migration. Moreover precise observation of cell migration revealed that each cell had a different lag period before starting chemotaxis, indicating variation in cell sensitivity to the chemoattractant. Thus lag time of each cell before migration, and time course of increment of the migrating cell ratio at the early stages could be calculated. We also graphed decrement of still moving cell ratio at the later stages by calculating the duration time of cell migration of each cell. These graphs could distinguish different motion patterns of chemotaxis of eosinophils, in response to a range of chemoattractants; PGD(2), fMLP, CCL3, CCL5 and CXCL12. Finally, we compared parameters of eosinophils from normal volunteers, allergy patients and asthma patients and found significant difference in response to PGD(2). The quantitative methods described here could be applicable to image data obtained with any combination of cells and chemoattractants and useful not only for basic studies of chemotaxis but also for diagnosis and for drug screening.
Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W
2009-10-01
Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.
Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg HW
2009-01-01
Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc. PMID:18774958
Freeley, Michael; Derrick, Emily; Dempsey, Eugene; Hoff, Antje; Davies, Anthony; Leake, Devin; Vermeulen, Annaleen; Kelleher, Dermot; Long, Aideen
2015-09-01
Screening of RNA interference (RNAi) libraries in primary T cells is labor-intensive and technically challenging because these cells are hard to transfect. Chemically modified, self-delivering small interfering RNAs (siRNAs) offer a solution to this problem, because they enter hard-to-transfect cell types without needing a delivery reagent and are available in library format for RNAi screening. In this study, we have screened a library of chemically modified, self-delivering siRNAs targeting the expression of 72 distinct genes in conjunction with an image-based high-content-analysis platform as a proof-of-principle strategy to identify genes involved in lymphocyte function-associated antigen-1 (LFA-1)-mediated migration in primary human T cells. Our library-screening strategy identified the small GTPase RhoA as being crucial for T cell polarization and migration in response to LFA-1 stimulation and other migratory ligands. We also demonstrate that multiple downstream assays can be performed within an individual RNAi screen and have used the remainder of the cells for additional assays, including cell viability and adhesion to ICAM-1 (the physiological ligand for LFA-1) in the absence or presence of the chemokine SDF-1α. This study therefore demonstrates the ease and benefits of conducting siRNA library screens in primary human T cells using self-delivering, chemically modified siRNAs, and it emphasizes the feasibility and potential of this approach for elucidating the signaling pathways that regulate T cell function. © 2015 Society for Laboratory Automation and Screening.
Liu, Bin; Yu, Hai-Hong; Ye, Hong-Li; Luo, Zhi-Ying; Xiao, Feng
2015-08-01
Gastric cancer is one of the most common types of cancer worldwide. It has been reported that stromal interacting molecule 1 (STIM1) is associated with tumor progression and metastatic spread, including in cervical cancer, breast carcinoma and prostatic cancer. The present study investigated whether STIM1, an endoplasmic reticulum Ca(2+) sensor and activator of store-operated channel entry, contributed to SGC7901 cell progression. The pGPU6-shSTIM1 recombinant plasmid was constructed, and the effects of downregulation of STIM1 on the proliferation, apoptosis, migration and invasion of SGC7901 cells were examined. Western blot analysis revealed that transfection with the pGPU6-shSTIM1 plasmid successfully inhibited the expression of STIM1. STIM1 silencing in the gastric cancer cells significantly inhibited cell proliferation by arresting the cell cycle at the G0/G1 phase, and increasing the apoptotic rate following treatment of the SGC7901 cells with pGPU6-shSTIM1, indicated using an MTT cell viability assay and flow cytometery, respectively. As expected, STIM1 knock down also reduced the migration and invasion of the SGC7901 cells, demonstrated using a Transwell assay. The possible molecular mechanism involved the regulation of several signaling pathways involved in the biological behavior of cell survival, apoptosis, migration and metastasis. Together, these finding suggested that the expression of STIM1 is crucial for the proliferation and invasion of SGC7901 cells, providing a foundation for the development of novel type‑specific diagnostic strategies and treatments for gastric cancer.
Tao, Jun; Wu, Deyao; Xu, Bin; Qian, Weichun; Li, Pengchao; Lu, Qiang; Yin, Changjun; Zhang, Wei
2012-06-01
It has been shown that regulation of EGFR expression in prostate cancer cells is mostly at the transcriptional level. microRNA-133 (miR-133) has long been recognized as a muscle-specific miRNA which may regulate myoblast differentiation and participate in many myogenic diseases. Recently, it has been reported that miR-133 is also involved in other tumors, such as bladder cancer, esophageal cancer and may regulate cell motility in these cancer cells. In the present study, we examined the expression and effects of miR-133 in two hormone-insensitive prostate cancer cell lines. The expression of miR-133a and miR-133b were analyzed by quantitative RT-PCR. After transfection of miR-133a and miR-133b, cell viability assay, luciferase assay, western blot analysis, cell migration and invasion assay were conducted in Du145 and PC3 cells. In this study, we showed that miR‑133a and miR-133b are expressed at the detection limit in two hormone-insensitive prostate cancer cell lines, PC3 and DU145. Ectopic expression of miR-133 inhibited cell proliferation, migration and invasion in these cells. We also provide the first evidence that miR-133 may target EGFR. Our study provided the first glimpse of the functional role of miR-133 in two hormone-independent prostate cancer cell lines. These results may add to our knowledge on the molecular basis of prostate cancer progression.
Kitano, Masayuki; Yamashita, Yukitaka; Tanaka, Kiyohito; Konishi, Hideyuki; Yazumi, Shujiro; Nakai, Yoshitaka; Nishiyama, Osamu; Uehara, Hiroyuki; Mitoro, Akira; Sanuki, Tsuyoshi; Takaoka, Makoto; Koshitani, Tatsuya; Arisaka, Yoshifumi; Shiba, Masatsugu; Hoki, Noriyuki; Sato, Hideki; Sasaki, Yuichi; Sato, Masako; Hasegawa, Kazunori; Kawabata, Hideaki; Okabe, Yoshihiro; Mukai, Hidekazu
2013-11-01
The requirements of biliary stents used in the palliation of malignant biliary obstruction are a long duration of patency and minimal adverse effects. Covered self-expandable metal stents (SEMSs) have been shown to prevent tumor ingrowth, which is the most frequent complication of uncovered SEMSs. However, because they are prone to migration, the superiority of covered SEMS has yet to be convincingly demonstrated. The aim of this study was to evaluate the superiority of covered over uncovered SEMSs in the palliation of distal biliary obstruction due to unresectable pancreatic carcinoma, using both stent types with relatively low axial force and uncovered flared ends to prevent their migration. From April 2009 to December 2010, 120 patients who were admitted to 22 tertiary-care centers because of distal biliary obstruction from unresectable pancreatic carcinomas were enrolled in this prospective randomized multicenter study. Patients were randomly assigned to receive a covered or uncovered SEMS deployed at the site of the biliary stricture during endoscopic retrograde cholangiopancreatography. Stent patency time, patient survival time, patient survival time without stent dysfunction (time to stent dysfunction or patient death), cause of stent dysfunction (ingrowth, overgrowth, migration, or sludge formation), and serious adverse events were compared between covered and uncovered SEMS groups. Patient survival time in the two groups did not significantly differ (median: 285 and 223 days, respectively; P=0.68). Patient survival time without stent dysfunction was significantly longer in the covered than in the uncovered SEMS group (median: 187 vs. 132 days; P=0.043). Stent patency was also significantly longer in the covered than in the uncovered SEMS group (mean±s.d.: 219.3±159.1 vs. 166.9±124.9 days; P=0.047). Reintervention for stent dysfunction was performed in 14 of 60 patients with covered SEMSs (23%) and in 22 of 60 patients with uncovered SEMSs (37%; P=0.08). Stent dysfunction was caused by tumor ingrowth, tumor overgrowth, and sludge formation in 0 (0%), 3 (5%), and 11 (18%) patients in the covered SEMSs group, and in 15 (25%), 2 (3%), and 6 (10%) patients in the uncovered SEMSs group, respectively. Stent migration was not observed in either group. Rates of tumor overgrowth and sludge formation did not significantly differ between the two groups, whereas the rate of tumor ingrowth was significantly lower in the covered than in the uncovered SEMS group (P<0.01). Acute pancreatitis occurred in only one patient in the covered SEMS group. Acute cholecystitis occurred in one patient in the covered SEMS group and in two patients in the uncovered SEMS group. There was no significant difference between the two groups in the incidence of serious adverse events. By preventing tumor ingrowth and migration, covered SEMSs with an anti-migration system had a longer duration of patency than uncovered SEMSs, which recommends their use in the palliative treatment of patients with biliary obstruction due to pancreatic carcinomas.
Clan-structured migration and phenotypic differentiation in the Jirels of Nepal.
Williams-Blangero, S
1989-04-01
This paper examines the impact of clan-structured migration on the between-village differentiation of the Jirels, a tribal population of eastern Nepal. The Jirel population is geographically restricted to nine villages, all of which were sampled to some extent for this study. Data on five head measurements, stature, and digital ridge counts are utilized to illustrate the patterns of phenotypic variation. Multivariate statistical techniques are used to assess the extent to which clan membership and associated patterns of marital exchange influence the population structure of the Jirels. The phenotypic characteristics of randomly generated migrant sets are compared to those of the observed clan-structured sets, demonstrating the clan-related phenotypic nonrandomness of migrants. The results indicate that clan-structured migration may significantly influence the amount of between-village variation. Clan structure may be a significant factor in determining patterns of variation and should not be ignored in studies of microdifferentiation in tribal populations.
Sanfo, Safiétou; Fonta, M William; Boubacar, Ibrahim; Lamers, P A John
2016-12-01
This article describes two datasets generated from various sources in south western Burkina Faso to identify the key climate and environmental drivers that cause farmers to migrate. The survey sampling is random but reasoned and rational. The first dataset from 367 farm households contains data on farmers' perception of climate change risks or hazards, their impacts on farmland productivity and farm households' risk management strategies. The second dataset from 58 farm households contains data on agricultural practices, environmental changes, and environmental migration. Three supplemental Excel sheets show the results of the surveys. Details on the sample as well as further interpretation and discussion of the surveys are available in the associated research article ('Field Facts for Crop Insurance Design: Empirical Evidence from South Western Burkina Faso' (W. M. Fonta, S. Sanfo, B. Ibrahim, B. Barry, 2015) [1]).
Norling, Wayne; Jeske, Clinton W.; Thigpen, Tyler F.; Chadwick, Paul C.
2012-01-01
Migrating shorebird populations using approximately 2% of Louisiana and Texas Gulf Coastal rice fields were surveyed during spring migration (March–May of 1997 and 1998) using biweekly stratified random surveys conducted at 50 roadside survey points and approximately 30,000 shorebirds were observed. Shorebird counts were extrapolated and almost 1.4 million birds in 1997 and over 1.6 million birds of 31 species in 1998 were estimated to use rice field habitat for stopover sites in Louisiana and Texas. Greater than 50% of the estimated North American populations were estimated to use rice field habitats for five species, including a species of concern, Buff-breasted Sandpiper (Tryngites subruficollis) at 187%. Because of predictability of suitable rice field habitat acreage, timing of field preparation and water availability, coastal rice prairies are identified as critical spring migration stopover sites.
Fused cerebral organoids model interactions between brain regions.
Bagley, Joshua A; Reumann, Daniel; Bian, Shan; Lévi-Strauss, Julie; Knoblich, Juergen A
2017-07-01
Human brain development involves complex interactions between different regions, including long-distance neuronal migration or formation of major axonal tracts. Different brain regions can be cultured in vitro within 3D cerebral organoids, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a coculture method combining brain regions of choice within one organoid tissue. By fusing organoids of dorsal and ventral forebrain identities, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate CXCR4-dependent GABAergic interneuron migration from ventral to dorsal forebrain and describe methodology for time-lapse imaging of human interneuron migration. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions should offer researchers the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients and to test potential therapeutic compounds.
Metamorphosis of mesothelial cells with active horizontal motility in tissue culture.
Nagai, Hirotaka; Chew, Shan Hwu; Okazaki, Yasumasa; Funahashi, Satomi; Namba, Takashi; Kato, Takuya; Enomoto, Atsushi; Jiang, Li; Akatsuka, Shinya; Toyokuni, Shinya
2013-01-01
Mesothelial cells, which have diverse roles in physiology and pathology, constitute the mesothelium along with connective tissue and the basement membrane; the mesothelium serves to shield the somatic cavities. After mesothelial injury, mesothelial cells undergo tissue recovery. However, the mechanism of mesothelial regeneration remains poorly understood. In this study, we used confocal time-lapse microscopy to demonstrate that transformed mesothelial cells (MeT5A) and mouse peritoneal mesothelial cells can randomly migrate between cells in cell culture and in ex vivo tissue culture, respectively. Moreover, peritoneal mesothelial cells changed their morphology from a flattened shape to a cuboidal one prior to the migration. Conversely, MDCKII epithelial cells forming tight cell-cell contacts with one another do not alter the arrangement of adjacent cells during movement. Our evidence complements the current hypotheses of mesothelial regeneration and suggests that certain types of differentiated mesothelial cells undergo morphological changes before initiating migration to repair injured sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zong-Han; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw
2016-08-01
Understanding switching mechanisms is very important for resistive random access memory (RRAM) applications. This letter reports an investigation of Al/Mg{sub 0.5}Ca{sub 0.5}TiO{sub 3} (MCTO)/ITO RRAM, which exhibits bipolar resistive switching behavior. The filaments that connect Al electrodes with indium tin oxide electrodes across the MCTO layer at a low-resistance state are identified. The filaments composed of In{sub 2}O{sub 3} crystals are observed through energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, nanobeam diffraction, and comparisons of Joint Committee on Powder Diffraction Standards (JCPDS) cards. Finally, a switching mechanism resulting from an electrical field induced by In{sup 3+} ion migration is proposed.more » In{sup 3+} ion migration forms/ruptures the conductive filaments and sets/resets the RRAM device.« less
Jamil, Hikmet; Nassar-McMillanb, Sylvia; Lambert, Richard; Wangd, Yun; Ager, Joel; Arnetz, Bengt
2010-01-01
The objective of this study was to determine whether perceived health status of Iraqi immigrants and refugees residing in the United States was related to pre-migration environmental stress, current unemployment, and if they had emigrated before or after the 1991 Gulf War. A random sample of Iraqis residing in Southeast Michigan, US, was interviewed using an Arab language structured survey. The main outcome measure was self-rated health (SRH). Major predictors included socioeconomics, employment status, pre-migration environmental stress, and health disorders. Path analysis was used to look at mediating effects between predictors and SRH. We found that SRH was significantly worse among participants that had left Iraq after the 1991 Gulf War. Unemployment and environmental stress exposure were inversely related to SRH. There was a direct path between Gulf War exposure and poor health. In addition, there were indirect paths mediated through psychosomatic and psychiatric disorders to SRH. Another path went from Gulf War exposure, via environmental stress and somatic health to poor health. Unemployment had a direct path, as well as indirect paths mediated through psychiatric and psychosomatic disorders, to poor self-rated health. In conclusion, these results suggest that pre- as well as post-migration factors, and period of migration, affect health.